The posterior parietal cortex in recognition memory: a neuropsychological study.
Haramati, Sharon; Soroker, Nachum; Dudai, Yadin; Levy, Daniel A
2008-01-01
Several recent functional neuroimaging studies have reported robust bilateral activation (L>R) in lateral posterior parietal cortex and precuneus during recognition memory retrieval tasks. It has not yet been determined what cognitive processes are represented by those activations. In order to examine whether parietal lobe-based processes are necessary for basic episodic recognition abilities, we tested a group of 17 first-incident CVA patients whose cortical damage included (but was not limited to) extensive unilateral posterior parietal lesions. These patients performed a series of tasks that yielded parietal activations in previous fMRI studies: yes/no recognition judgments on visual words and on colored object pictures and identifiable environmental sounds. We found that patients with left hemisphere lesions were not impaired compared to controls in any of the tasks. Patients with right hemisphere lesions were not significantly impaired in memory for visual words, but were impaired in recognition of object pictures and sounds. Two lesion--behavior analyses--area-based correlations and voxel-based lesion symptom mapping (VLSM)---indicate that these impairments resulted from extra-parietal damage, specifically to frontal and lateral temporal areas. These findings suggest that extensive parietal damage does not impair recognition performance. We suggest that parietal activations recorded during recognition memory tasks might reflect peri-retrieval processes, such as the storage of retrieved memoranda in a working memory buffer for further cognitive processing.
The nucleosome: orchestrating DNA damage signaling and repair within chromatin.
Agarwal, Poonam; Miller, Kyle M
2016-10-01
DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.
Swartz, R. Andrew
2013-01-01
This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136
Functional MRI study of diencephalic amnesia in Wernicke-Korsakoff syndrome.
Caulo, M; Van Hecke, J; Toma, L; Ferretti, A; Tartaro, A; Colosimo, C; Romani, G L; Uncini, A
2005-07-01
Anterograde amnesia in Wernicke-Korsakoff syndrome is associated with diencephalic lesions, mainly in the anterior thalamic nuclei. Whether diencephalic and temporal lobe amnesias are distinct entities is still not clear. We investigated episodic memory for faces using functional MRI (fMRI) in eight controls and in a 34-year-old man with Wernicke-Korsakoff syndrome and diencephalic lesions but without medial temporal lobe (MTL) involvement at MRI. fMRI was performed with a 1.5 tesla unit. Three dual-choice tasks were employed: (i) face encoding (18 faces were randomly presented three times and subjects were asked to memorize the faces); (ii) face perception (subjects indicated which of two faces matched a third face); and (iii) face recognition (subjects indicated which of two faces belonged to the group they had been asked to memorize during encoding). All activation was greater in the right hemisphere. In controls both the encoding and recognition tasks activated two hippocampal regions (anterior and posterior). The anterior hippocampal region was more activated during recognition. Activation in the prefrontal cortex was greater during recognition. In the subject with Wernicke-Korsakoff syndrome, fMRI did not show hippocampal activation during either encoding or recognition. During recognition, although behavioural data showed defective retrieval, the prefrontal regions were activated as in controls, except for the ventrolateral prefrontal cortex. fMRI activation of the visual cortices and the behavioural score on the perception task indicated that the subject with Wernicke-Korsakoff syndrome perceived the faces, paid attention to the task and demonstrated accurate judgement. In the subject with Wernicke-Korsakoff syndrome, although the anatomical damage does not involve the MTL, the hippocampal memory encoding has been lost, possibly as a consequence of the hippocampal-anterior thalamic axis involvement. Anterograde amnesia could therefore be the expression of damage to an extended hippocampal system, and the distinction between temporal lobe and diencephalic amnesia has limited value. In the subject with Wernicke-Korsakoff syndrome, the preserved dorsolateral prefrontal cortex activation during incorrect recognition suggests that this region is more involved in either the orientation or attention at retrieval than in retrieval. The lack of activation of the prefrontal ventrolateral cortex confirms the role of this area in episodic memory formation.
Negureanu, Lacramioara; Salsbury, Freddie R
2013-11-01
DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα's surveillance for DNA errors would possibly be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations.
Role of pattern recognition receptors of the neurovascular unit in inflamm-aging.
Wilhelm, Imola; Nyúl-Tóth, Ádám; Kozma, Mihály; Farkas, Attila E; Krizbai, István A
2017-11-01
Aging is associated with chronic inflammation partly mediated by increased levels of damage-associated molecular patterns, which activate pattern recognition receptors (PRRs) of the innate immune system. Furthermore, many aging-related disorders are associated with inflammation. PRRs, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs), are expressed not only in cells of the innate immune system but also in other cells, including cells of the neurovascular unit and cerebral vasculature forming the blood-brain barrier. In this review, we summarize our present knowledge about the relationship between activation of PRRs expressed by cells of the neurovascular unit-blood-brain barrier, chronic inflammation, and aging-related pathologies of the brain. The most important damage-associated molecular pattern-sensing PRRs in the brain are TLR2, TLR4, and NLR family pyrin domain-containing protein-1 and pyrin domain-containing protein-3, which are activated during physiological and pathological aging in microglia, neurons, astrocytes, and possibly endothelial cells and pericytes. Copyright © 2017 the American Physiological Society.
Holdstock, J S; Mayes, A R; Roberts, N; Cezayirli, E; Isaac, C L; O'Reilly, R C; Norman, K A
2002-01-01
The claim that recognition memory is spared relative to recall after focal hippocampal damage has been disputed in the literature. We examined this claim by investigating object and object-location recall and recognition memory in a patient, YR, who has adult-onset selective hippocampal damage. Our aim was to identify the conditions under which recognition was spared relative to recall in this patient. She showed unimpaired forced-choice object recognition but clearly impaired recall, even when her control subjects found the object recognition task to be numerically harder than the object recall task. However, on two other recognition tests, YR's performance was not relatively spared. First, she was clearly impaired at an equivalently difficult yes/no object recognition task, but only when targets and foils were very similar. Second, YR was clearly impaired at forced-choice recognition of object-location associations. This impairment was also unrelated to difficulty because this task was no more difficult than the forced-choice object recognition task for control subjects. The clear impairment of yes/no, but not of forced-choice, object recognition after focal hippocampal damage, when targets and foils are very similar, is predicted by the neural network-based Complementary Learning Systems model of recognition. This model postulates that recognition is mediated by hippocampally dependent recollection and cortically dependent familiarity; thus hippocampal damage should not impair item familiarity. The model postulates that familiarity is ineffective when very similar targets and foils are shown one at a time and subjects have to identify which items are old (yes/no recognition). In contrast, familiarity is effective in discriminating which of similar targets and foils, seen together, is old (forced-choice recognition). Independent evidence from the remember/know procedure also indicates that YR's familiarity is normal. The Complementary Learning Systems model can also accommodate the clear impairment of forced-choice object-location recognition memory if it incorporates the view that the most complete convergence of spatial and object information, represented in different cortical regions, occurs in the hippocampus.
Negureanu, Lacramioara; Salsbury, Freddie R
2013-01-01
DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα’s surveillance for DNA errors would possible be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations. PMID:24061854
Recognition of emotion with temporal lobe epilepsy and asymmetrical amygdala damage.
Fowler, Helen L; Baker, Gus A; Tipples, Jason; Hare, Dougal J; Keller, Simon; Chadwick, David W; Young, Andrew W
2006-08-01
Impairments in emotion recognition occur when there is bilateral damage to the amygdala. In this study, ability to recognize auditory and visual expressions of emotion was investigated in people with asymmetrical amygdala damage (AAD) and temporal lobe epilepsy (TLE). Recognition of five emotions was tested across three participant groups: those with right AAD and TLE, those with left AAD and TLE, and a comparison group. Four tasks were administered: recognition of emotion from facial expressions, sentences describing emotion-laden situations, nonverbal sounds, and prosody. Accuracy scores for each task and emotion were analysed, and no consistent overall effect of AAD on emotion recognition was found. However, some individual participants with AAD were significantly impaired at recognizing emotions, in both auditory and visual domains. The findings indicate that a minority of individuals with AAD have impairments in emotion recognition, but no evidence of specific impairments (e.g., visual or auditory) was found.
Prefrontal Engagement during Source Memory Retrieval Depends on the Prior Encoding Task
Kuo, Trudy Y.; Van Petten, Cyma
2008-01-01
The prefrontal cortex is strongly engaged by some, but not all, episodic memory tests. Prior work has shown that source recognition tests—those that require memory for conjunctions of studied attributes—yield deficient performance in patients with prefrontal damage and greater prefrontal activity in healthy subjects, as compared to simple recognition tests. Here, we tested the hypothesis that there is no intrinsic relationship between the prefrontal cortex and source memory, but that the prefrontal cortex is engaged by the demand to retrieve weakly encoded relationships. Subjects attempted to remember object/color conjunctions after an encoding task that focused on object identity alone, and an integrative encoding task that encouraged attention to object/color relationships. After the integrative encoding task, the late prefrontal brain electrical activity that typically occurs in source memory tests was eliminated. Earlier brain electrical activity related to successful recognition of the objects was unaffected by the nature of prior encoding. PMID:16839287
Dissociated active and passive tactile shape recognition: a case study of pure tactile apraxia.
Valenza, N; Ptak, R; Zimine, I; Badan, M; Lazeyras, F; Schnider, A
2001-11-01
Disorders of tactile object recognition (TOR) may result from primary motor or sensory deficits or higher cognitive impairment of tactile shape representations or semantic memory. Studies with healthy participants suggest the existence of exploratory motor procedures directly linked to the extraction of specific properties of objects. A pure deficit of these procedures without concomitant gnostic disorders has never been described in a brain-damaged patient. Here, we present a patient with a right hemispheric infarction who, in spite of intact sensorimotor functions, had impaired TOR with the left hand. Recognition of 2D shapes and objects was severely deficient under the condition of spontaneous exploration. Tactile exploration of shapes was disorganized and exploratory procedures, such as the contour-following strategy, which is necessary to identify the precise shape of an object, were severely disturbed. However, recognition of 2D shapes under manually or verbally guided exploration and the recognition of shapes traced on the skin were intact, indicating a dissociation in shape recognition between active and passive touch. Functional MRI during sensory stimulation of the left hand showed preserved activation of the spared primary sensory cortex in the right hemisphere. We interpret the deficit of our patient as a pure tactile apraxia without tactile agnosia, i.e. a specific inability to use tactile feedback to generate the exploratory procedures necessary for tactile shape recognition.
DDB2 promotes chromatin decondensation at UV-induced DNA damage
Lindh, Michael; Acs, Klara; Vrouwe, Mischa G.; Pines, Alex; van Attikum, Haico; Mullenders, Leon H.
2012-01-01
Nucleotide excision repair (NER) is the principal pathway that removes helix-distorting deoxyribonucleic acid (DNA) damage from the mammalian genome. Recognition of DNA lesions by xeroderma pigmentosum group C (XPC) protein in chromatin is stimulated by the damaged DNA-binding protein 2 (DDB2), which is part of a CUL4A–RING ubiquitin ligase (CRL4) complex. In this paper, we report a new function of DDB2 in modulating chromatin structure at DNA lesions. We show that DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Our data reveal a marked adenosine triphosphate (ATP)–dependent reduction in the density of core histones in chromatin containing UV-induced DNA lesions, which strictly required functional DDB2 and involved the activity of poly(adenosine diphosphate [ADP]–ribose) polymerase 1. Finally, we show that lesion recognition by XPC, but not DDB2, was strongly reduced in ATP-depleted cells and was regulated by the steady-state levels of poly(ADP-ribose) chains. PMID:22492724
DOT National Transportation Integrated Search
2015-11-01
One of the most efficient ways to solve the damage detection problem using the statistical pattern recognition : approach is that of exploiting the methods of outlier analysis. Cast within the pattern recognition framework, : damage detection assesse...
NASA Astrophysics Data System (ADS)
Su, Zhongqing; Ye, Lin
2004-08-01
The practical utilization of elastic waves, e.g. Rayleigh-Lamb waves, in high-performance structural health monitoring techniques is somewhat impeded due to the complicated wave dispersion phenomena, the existence of multiple wave modes, the high susceptibility to diverse interferences, the bulky sampled data and the difficulty in signal interpretation. An intelligent signal processing and pattern recognition (ISPPR) approach using the wavelet transform and artificial neural network algorithms was developed; this was actualized in a signal processing package (SPP). The ISPPR technique comprehensively functions as signal filtration, data compression, characteristic extraction, information mapping and pattern recognition, capable of extracting essential yet concise features from acquired raw wave signals and further assisting in structural health evaluation. For validation, the SPP was applied to the prediction of crack growth in an alloy structural beam and construction of a damage parameter database for defect identification in CF/EP composite structures. It was clearly apparent that the elastic wave propagation-based damage assessment could be dramatically streamlined by introduction of the ISPPR technique.
Metallotherapeutics - Novel Strategies in Drug Design
Hocharoen, Lalintip; Cowan, J. A.
2011-01-01
A new paradigm for drug activity is presented, which includes both recognition and subsequent irreversible inactivation of therapeutic targets. Application to both RNA and enzyme biomolecules has been demonstrated. In contrast to RNA targets that are subject to strand scission chemistry mediated by ribose H-atom abstraction, proteins appear to be inactivated through oxidative damage to amino acid side chains around the enzyme active site. PMID:19685535
Autoregressive statistical pattern recognition algorithms for damage detection in civil structures
NASA Astrophysics Data System (ADS)
Yao, Ruigen; Pakzad, Shamim N.
2012-08-01
Statistical pattern recognition has recently emerged as a promising set of complementary methods to system identification for automatic structural damage assessment. Its essence is to use well-known concepts in statistics for boundary definition of different pattern classes, such as those for damaged and undamaged structures. In this paper, several statistical pattern recognition algorithms using autoregressive models, including statistical control charts and hypothesis testing, are reviewed as potentially competitive damage detection techniques. To enhance the performance of statistical methods, new feature extraction techniques using model spectra and residual autocorrelation, together with resampling-based threshold construction methods, are proposed. Subsequently, simulated acceleration data from a multi degree-of-freedom system is generated to test and compare the efficiency of the existing and proposed algorithms. Data from laboratory experiments conducted on a truss and a large-scale bridge slab model are then used to further validate the damage detection methods and demonstrate the superior performance of proposed algorithms.
Step-by-step mechanism of DNA damage recognition by human 8-oxoguanine DNA glycosylase.
Kuznetsova, Alexandra A; Kuznetsov, Nikita A; Ishchenko, Alexander A; Saparbaev, Murat K; Fedorova, Olga S
2014-01-01
Extensive structural studies of human DNA glycosylase hOGG1 have revealed essential conformational changes of the enzyme. However, at present there is little information about the time scale of the rearrangements of the protein structure as well as the dynamic behavior of individual amino acids. Using pre-steady-state kinetic analysis with Trp and 2-aminopurine fluorescence detection the conformational dynamics of hOGG1 wild-type (WT) and mutants Y203W, Y203A, H270W, F45W, F319W and K249Q as well as DNA-substrates was examined. The roles of catalytically important amino acids F45, Y203, K249, H270, and F319 in the hOGG1 enzymatic pathway and their involvement in the step-by-step mechanism of oxidative DNA lesion recognition and catalysis were elucidated. The results show that Tyr-203 participates in the initial steps of the lesion site recognition. The interaction of the His-270 residue with the oxoG base plays a key role in the insertion of the damaged base into the active site. Lys-249 participates not only in the catalytic stages but also in the processes of local duplex distortion and flipping out of the oxoG residue. Non-damaged DNA does not form a stable complex with hOGG1, although a complex with a flipped out guanine base can be formed transiently. The kinetic data obtained in this study significantly improves our understanding of the molecular mechanism of lesion recognition by hOGG1. © 2013.
Facial recognition in children after perinatal stroke.
Ballantyne, A O; Trauner, D A
1999-04-01
To examine the effects of prenatal or perinatal stroke on the facial recognition skills of children and young adults. It was hypothesized that the nature and extent of facial recognition deficits seen in patients with early-onset lesions would be different from that seen in adults with later-onset neurologic impairment. Numerous studies with normal and neurologically impaired adults have found a right-hemisphere superiority for facial recognition. In contrast, little is known about facial recognition in children after early focal brain damage. Forty subjects had single, unilateral brain lesions from pre- or perinatal strokes (20 had left-hemisphere damage, and 20 had right-hemisphere damage), and 40 subjects were controls who were individually matched to the lesion subjects on the basis of age, sex, and socioeconomic status. Each subject was given the Short-Form of Benton's Test of Facial Recognition. Data were analyzed using the Wilcoxon matched-pairs signed-rank test and multiple regression. The lesion subjects performed significantly more poorly than did matched controls. There was no clear-cut lateralization effect, with the left-hemisphere group performing significantly more poorly than matched controls and the right-hemisphere group showing a trend toward poorer performance. Parietal lobe involvement, regardless of lesion side, adversely affected facial recognition performance in the lesion group. Results could not be accounted for by IQ differences between lesion and control groups, nor was lesion severity systematically related to facial recognition performance. Pre- or perinatal unilateral brain damage results in a subtle disturbance in facial recognition ability, independent of the side of the lesion. Parietal lobe involvement, in particular, has an adverse effect on facial recognition skills. These findings suggest that the parietal lobes may be involved in the acquisition of facial recognition ability from a very early point in brain development, but that there is sufficient potential to reorganize or compensate such that the residual deficits, though significant, are subtle.
PINK1 autophosphorylation is required for ubiquitin recognition.
Rasool, Shafqat; Soya, Naoto; Truong, Luc; Croteau, Nathalie; Lukacs, Gergely L; Trempe, Jean-François
2018-04-01
Mutations in PINK1 cause autosomal recessive Parkinson's disease (PD), a neurodegenerative movement disorder. PINK1 is a kinase that acts as a sensor of mitochondrial damage and initiates Parkin-mediated clearance of the damaged organelle. PINK1 phosphorylates Ser65 in both ubiquitin and the ubiquitin-like (Ubl) domain of Parkin, which stimulates its E3 ligase activity. Autophosphorylation of PINK1 is required for Parkin activation, but how this modulates the ubiquitin kinase activity is unclear. Here, we show that autophosphorylation of Tribolium castaneum PINK1 is required for substrate recognition. Using enzyme kinetics and NMR spectroscopy, we reveal that PINK1 binds the Parkin Ubl with a 10-fold higher affinity than ubiquitin via a conserved interface that is also implicated in RING1 and SH3 binding. The interaction requires phosphorylation at Ser205, an invariant PINK1 residue (Ser228 in human). Using mass spectrometry, we demonstrate that PINK1 rapidly autophosphorylates in trans at Ser205. Small-angle X-ray scattering and hydrogen-deuterium exchange experiments provide insights into the structure of the PINK1 catalytic domain. Our findings suggest that multiple PINK1 molecules autophosphorylate first prior to binding and phosphorylating ubiquitin and Parkin. © 2018 The Authors.
Innate immunity and the sensing of infection, damage and danger in the female genital tract.
Sheldon, Iain Martin; Owens, Siân-Eleri; Turner, Matthew Lloyd
2017-02-01
Tissue homeostasis in the female genital tract is challenged by infection, damage, and even physiological events during reproductive cycles. We propose that the evolutionarily ancient system of innate immunity is sufficient to sense and respond to danger in the non-pregnant female genital tract. Innate immunity produces a rapidly inducible, non-specific response when cells sense danger. Here we provide a primer on innate immunity and discuss what is known about how danger signals are sensed in the endometrium and ovary, the impact of inflammatory responses on reproduction, and how endocrinology and innate immunity are integrated. Endometrial epithelial and stromal cells, and ovarian granulosa cells express pattern recognition receptors, similar to cells of the innate immune system. These pattern recognition receptors, such as the Toll-like receptors, bind pathogen-associated or damage-associated molecular patterns. Activation of pattern recognition receptors leads to inflammation, recruitment of immune cells from the peripheral circulation, and phagocytosis. Although the inflammatory response helps maintain or restore endometrial health, there may also be negative consequences for fertility, including perturbation of oocyte competence. The intensity of the inflammatory response reflects the balance between the level of danger and the systems that regulate innate immunity, including the endocrine environment. Understanding innate immunity is important because disease and inappropriate inflammatory responses in the endometrium or ovary cause infertility. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
2013-12-01
University) "Effectors of the DNA damage and radiotherapy response in cancer" 9:20 pm - 9:30 pm Discussion TUESDAY 7:30 am - 8:30 am Breakfast 9:00...M. Morris , Hideki Onagi, Timothy M. Altamore, Allan B. Gamble, Christopher J. Easton Prohormone-substrate peptide sequence recognition by
Cortical visual dysfunction in children: a clinical study.
Dutton, G; Ballantyne, J; Boyd, G; Bradnam, M; Day, R; McCulloch, D; Mackie, R; Phillips, S; Saunders, K
1996-01-01
Damage to the cerebral cortex was responsible for impairment in vision in 90 of 130 consecutive children referred to the Vision Assessment Clinic in Glasgow. Cortical blindness was seen in 16 children. Only 2 were mobile, but both showed evidence of navigational blind-sight. Cortical visual impairment, in which it was possible to estimate visual acuity but generalised severe brain damage precluded estimation of cognitive visual function, was observed in 9 children. Complex disorders of cognitive vision were seen in 20 children. These could be divided into five categories and involved impairment of: (1) recognition, (2) orientation, (3) depth perception, (4) perception of movement and (5) simultaneous perception. These disorders were observed in a variety of combinations. The remaining children showed evidence of reduced visual acuity and/ or visual field loss, but without detectable disorders of congnitive visual function. Early recognition of disorders of cognitive vision is required if active training and remediation are to be implemented.
Epigenetic Telomere Protection by Drosophila DNA Damage Response Pathways
Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H
2006-01-01
Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms. PMID:16710445
Epigenetic telomere protection by Drosophila DNA damage response pathways.
Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H
2006-05-01
Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms.
Detection of insect damage in almonds
NASA Astrophysics Data System (ADS)
Kim, Soowon; Schatzki, Thomas F.
1999-01-01
Pinhole insect damage in natural almonds is very difficult to detect on-line. Further, evidence exists relating insect damage to aflatoxin contamination. Hence, for quality and health reasons, methods to detect and remove such damaged nuts are of great importance in this study, we explored the possibility of using x-ray imaging to detect pinhole damage in almonds by insects. X-ray film images of about 2000 almonds and x-ray linescan images of only 522 pinhole damaged almonds were obtained. The pinhole damaged region appeared slightly darker than non-damaged region in x-ray negative images. A machine recognition algorithm was developed to detect these darker regions. The algorithm used the first order and the second order information to identify the damaged region. To reduce the possibility of false positive results due to germ region in high resolution images, germ detection and removal routines were also included. With film images, the algorithm showed approximately an 81 percent correct recognition ratio with only 1 percent false positives whereas line scan images correctly recognized 65 percent of pinholes with about 9 percent false positives. The algorithms was very fast and efficient requiring only minimal computation time. If implemented on line, theoretical throughput of this recognition system would be 66 nuts/second.
Negureanu, Lacramioara; Salsbury, Freddie R.
2012-01-01
The cellular response to DNA damage signaling by MMR proteins is incompletely understood. It is generally accepted that MMR-dependent apoptosis pathway in response to DNA damage detection is independent of MMR's DNA repair function. In this study we investigate correlated motions in response to the binding of mismatched and PCL DNA fragments by MutSα, as derived from 50 ns molecular dynamics simulations. The protein dynamics in response to the mismatched and damaged DNA recognition suggests that MutSα signals their recognition through independent pathways providing evidence for the molecular origin of the MMR-dependent apoptosis. MSH2 subunit is indicated to play a key role in signaling both mismatched and damaged DNA recognition; localized and collective motions within the protein allow identifying sites on the MSH2 surface possible involved in recruiting proteins responsible for downstream events. Unlike in the mismatch complex, predicted key communication sites specific for the damage recognition are on the list of known cancer causing mutations or deletions. This confirms MSH2's role in signaling DNA-damage induced apoptosis and suggests that defects in MMR alone is sufficient to trigger tumorigenesis, supporting the experimental evidence that MMR-damage response function could protect from the early occurrence of tumors. Identifying these particular communication sites may have implications for the treatment of cancers that are not defective for MMR, but are unable to function optimally for MMR-dependent responses following DNA damage such as the case of resistance to cisplatin. PMID:22712459
Buechner, Claudia N.; Heil, Korbinian; Michels, Gudrun; Carell, Thomas; Kisker, Caroline; Tessmer, Ingrid
2014-01-01
Recognition and removal of DNA damages is essential for cellular and organismal viability. Nucleotide excision repair (NER) is the sole mechanism in humans for the repair of carcinogenic UV irradiation-induced photoproducts in the DNA, such as cyclobutane pyrimidine dimers. The broad substrate versatility of NER further includes, among others, various bulky DNA adducts. It has been proposed that the 5′-3′ helicase XPD (xeroderma pigmentosum group D) protein plays a decisive role in damage verification. However, despite recent advances such as the identification of a DNA-binding channel and central pore in the protein, through which the DNA is threaded, as well as a dedicated lesion recognition pocket near the pore, the exact process of target site recognition and verification in eukaryotic NER still remained elusive. Our single molecule analysis by atomic force microscopy reveals for the first time that XPD utilizes different recognition strategies to verify structurally diverse lesions. Bulky fluorescein damage is preferentially detected on the translocated strand, whereas the opposite strand preference is observed for a cyclobutane pyrimidine dimer lesion. Both states, however, lead to similar conformational changes in the resulting specific complexes, indicating a merge to a “final” verification state, which may then trigger the recruitment of further NER proteins. PMID:24338567
Image recognition on raw and processed potato detection: a review
NASA Astrophysics Data System (ADS)
Qi, Yan-nan; Lü, Cheng-xu; Zhang, Jun-ning; Li, Ya-shuo; Zeng, Zhen; Mao, Wen-hua; Jiang, Han-lu; Yang, Bing-nan
2018-02-01
Objective: Chinese potato staple food strategy clearly pointed out the need to improve potato processing, while the bottleneck of this strategy is technology and equipment of selection of appropriate raw and processed potato. The purpose of this paper is to summarize the advanced raw and processed potato detection methods. Method: According to consult research literatures in the field of image recognition based potato quality detection, including the shape, weight, mechanical damage, germination, greening, black heart, scab potato etc., the development and direction of this field were summarized in this paper. Result: In order to obtain whole potato surface information, the hardware was built by the synchronous of image sensor and conveyor belt to achieve multi-angle images of a single potato. Researches on image recognition of potato shape are popular and mature, including qualitative discrimination on abnormal and sound potato, and even round and oval potato, with the recognition accuracy of more than 83%. Weight is an important indicator for potato grading, and the image classification accuracy presents more than 93%. The image recognition of potato mechanical damage focuses on qualitative identification, with the main affecting factors of damage shape and damage time. The image recognition of potato germination usually uses potato surface image and edge germination point. Both of the qualitative and quantitative detection of green potato have been researched, currently scab and blackheart image recognition need to be operated using the stable detection environment or specific device. The image recognition of processed potato mainly focuses on potato chips, slices and fries, etc. Conclusion: image recognition as a food rapid detection tool have been widely researched on the area of raw and processed potato quality analyses, its technique and equipment have the potential for commercialization in short term, to meet to the strategy demand of development potato as staple food in China.
Cisplatin: mode of cytotoxic action and molecular basis of resistance.
Siddik, Zahid H
2003-10-20
Cisplatin is one of the most potent antitumor agents known, displaying clinical activity against a wide variety of solid tumors. Its cytotoxic mode of action is mediated by its interaction with DNA to form DNA adducts, primarily intrastrand crosslink adducts, which activate several signal transduction pathways, including those involving ATR, p53, p73, and MAPK, and culminate in the activation of apoptosis. DNA damage-mediated apoptotic signals, however, can be attenuated, and the resistance that ensues is a major limitation of cisplatin-based chemotherapy. The mechanisms responsible for cisplatin resistance are several, and contribute to the multifactorial nature of the problem. Resistance mechanisms that limit the extent of DNA damage include reduced drug uptake, increased drug inactivation, and increased DNA adduct repair. Origins of these pharmacologic-based mechanisms, however, are at the molecular level. Mechanisms that inhibit propagation of the DNA damage signal to the apoptotic machinery include loss of damage recognition, overexpression of HER-2/neu, activation of the PI3-K/Akt (also known as PI3-K/PKB) pathway, loss of p53 function, overexpression of antiapoptotic bcl-2, and interference in caspase activation. The molecular signature defining the resistant phenotype varies between tumors, and the number of resistance mechanisms activated in response to selection pressures dictates the overall extent of cisplatin resistance.
ERIC Educational Resources Information Center
Newsome, Rachel N.; Trelle, Alexandra N.; Fidalgo, Celia; Hong, Bryan; Smith, Victoria M.; Jacob, Alexander; Ryan, Jennifer D.; Rosenbaum, R. Shayna; Cowell, Rosemary A.; Barense, Morgan D.
2018-01-01
The thalamic nuclei are thought to play a critical role in recognition memory. Specifically, the anterior thalamic nuclei and medial dorsal nuclei may serve as critical output structures in distinct hippocampal and perirhinal cortex systems, respectively. Existing evidence indicates that damage to the anterior thalamic nuclei leads to impairments…
Active sensors for health monitoring of aging aerospace structures
NASA Astrophysics Data System (ADS)
Giurgiutiu, Victor; Redmond, James M.; Roach, Dennis P.; Rackow, Kirk
2000-06-01
A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto- ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.
Hamperl, Stephan; Cimprich, Karlene A.
2014-01-01
Accurate DNA replication and DNA repair are crucial for the maintenance of genome stability, and it is generally accepted that failure of these processes is a major source of DNA damage in cells. Intriguingly, recent evidence suggests that DNA damage is more likely to occur at genomic loci with high transcriptional activity. Furthermore, loss of certain RNA processing factors in eukaryotic cells is associated with increased formation of co-transcriptional RNA:DNA hybrid structures known as R-loops, resulting in double-strand breaks (DSBs) and DNA damage. However, the molecular mechanisms by which R-loop structures ultimately lead to DNA breaks and genome instability is not well understood. In this review, we summarize the current knowledge about the formation, recognition and processing of RNA:DNA hybrids, and discuss possible mechanisms by which these structures contribute to DNA damage and genome instability in the cell. PMID:24746923
NASA Astrophysics Data System (ADS)
Moe, Elin; Rollo, Filipe; Silveira, Célia M.; Sezer, Murat; Hildebrandt, Peter; Todorovic, Smilja
2018-01-01
Endonuclease III is a Fe-S containing bifunctional DNA glycosylase which is involved in the repair of oxidation damaged DNA. Here we employ surface enhanced IR spectroelectrochemistry and electrochemistry to study the enzyme from the highly radiation- and desiccation-resistant bacterium Deinococcus radiodurans (DrEndoIII2). The experiments are designed to shed more light onto specific parameters that are currently proposed to govern damage search and recognition by endonucleases III. We demonstrate that electrostatic interactions required for the redox activation of DrEndoIII2 may result in high electric fields that alter its structural and thermodynamic properties. Analysis of inactive DrEndoIII2 (K132A/D150A double mutant) interacting with undamaged DNA, and the active enzyme interacting with damaged DNA also indicate that the electron transfer is modulated by subtle differences in the protein-DNA complex.
Moe, Elin; Rollo, Filipe; Silveira, Célia M; Sezer, Murat; Hildebrandt, Peter; Todorovic, Smilja
2018-01-05
Endonuclease III is a Fe-S containing bifunctional DNA glycosylase which is involved in the repair of oxidation damaged DNA. Here we employ surface enhanced IR spectroelectrochemistry and electrochemistry to study the enzyme from the highly radiation- and desiccation-resistant bacterium Deinococcus radiodurans (DrEndoIII 2 ). The experiments are designed to shed more light onto specific parameters that are currently proposed to govern damage search and recognition by endonucleases III. We demonstrate that electrostatic interactions required for the redox activation of DrEndoIII 2 may result in high electric fields that alter its structural and thermodynamic properties. Analysis of inactive DrEndoIII 2 (K132A/D150A double mutant) interacting with undamaged DNA, and the active enzyme interacting with damaged DNA also indicate that the electron transfer is modulated by subtle differences in the protein-DNA complex. Copyright © 2017 Elsevier B.V. All rights reserved.
Evidence for conformational capture mechanism for damage recognition by NER protein XPC/Rad4.
NASA Astrophysics Data System (ADS)
Chakraborty, Sagnik; Steinbach, Peter J.; Paul, Debamita; Min, Jung-Hyun; Ansari, Anjum
Altered flexibility of damaged DNA sites is considered to play an important role in damage recognition by DNA repair proteins. Characterizing lesion-induced DNA dynamics has remained a challenge. We have combined ps-resolved fluorescence lifetime measurements with cytosine analog FRET pair uniquely sensitive to local unwinding/twisting to analyze DNA conformational distributions. This innovative approach maps out with unprecedented sensitivity the alternative conformations accessible to a series of DNA constructs containing 3-base-pair mismatch, suitable model lesions for the DNA repair protein xeroderma pigmentosum C (XPC) complex. XPC initiates eukaryotic nucleotide excision repair by recognizing various DNA lesions primarily through DNA deformability. Structural studies show that Rad4 (yeast ortholog of XPC) unwinds DNA at the lesion site and flips out two nucleotide pairs. Our results elucidate a broad range of conformations accessible to mismatched DNA even in the absence of the protein. Notably, the most severely distorted conformations share remarkable resemblance to the deformed conformation seen in the crystal structure of the Rad4-bound ``recognition'' complex supporting for the first time a possible ``conformational capture'' mechanism for damage recognition by XPC/Rad4. NSF Univ of Illinois-Chicago.
Schalk, Catherine; Cognat, Valérie; Graindorge, Stéfanie; Vincent, Timothée; Voinnet, Olivier; Molinier, Jean
2017-01-01
As photosynthetic organisms, plants need to prevent irreversible UV-induced DNA lesions. Through an unbiased, genome-wide approach, we have uncovered a previously unrecognized interplay between Global Genome Repair and small interfering RNAs (siRNAs) in the recognition of DNA photoproducts, prevalently in intergenic regions. Genetic and biochemical approaches indicate that, upon UV irradiation, the DNA DAMAGE-BINDING PROTEIN 2 (DDB2) and ARGONAUTE 1 (AGO1) of Arabidopsis thaliana form a chromatin-bound complex together with 21-nt siRNAs, which likely facilitates recognition of DNA damages in an RNA/DNA complementary strand-specific manner. The biogenesis of photoproduct-associated siRNAs involves the noncanonical, concerted action of RNA POLYMERASE IV, RNA-DEPENDENT RNA POLYMERASE-2, and DICER-LIKE-4. Furthermore, the chromatin association/dissociation of the DDB2-AGO1 complex is under the control of siRNA abundance and DNA damage signaling. These findings reveal unexpected nuclear functions for DCL4 and AGO1, and shed light on the interplay between small RNAs and DNA repair recognition factors at damaged sites. PMID:28325872
Dissociation between recognition and recall in developmental amnesia
Adlam, Anna-Lynne R.; Malloy, Megan; Mishkin, Mortimer; Vargha-Khadem, Faraneh
2009-01-01
Developmental amnesia (DA) is a memory disorder due to hypoxia/ischaemia-induced damage to the hippocampus early in life. To test the hypothesis that this disorder is associated with a disproportionate impairment in recall vis-à-vis recognition, we examined a group of 10 patients with DA on the Doors and People test, which affords a quantitative comparison between measures of the two memory processes. The results supported the hypothesis in that the patients showed a sharp, though not complete, recall-recognition dissociation, exhibiting impairment on both measures relative to their matched controls, but with a far greater loss in recall than in recognition. Whether their relatively spared recognition ability is due to restriction of their medial temporal lobe damage to the hippocampus or whether it is due instead to their early age at injury is still uncertain. PMID:19524088
ERIC Educational Resources Information Center
Cross, Laura; Brown, Malcolm W.; Aggleton, John P.; Warburton, E. Clea
2013-01-01
In humans recognition memory deficits, a typical feature of diencephalic amnesia, have been tentatively linked to mediodorsal thalamic nucleus (MD) damage. Animal studies have occasionally investigated the role of the MD in single-item recognition, but have not systematically analyzed its involvement in other recognition memory processes. In…
Neural correlates of auditory recognition memory in the primate dorsal temporal pole
Ng, Chi-Wing; Plakke, Bethany
2013-01-01
Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324
DNA glycosylases search for and remove oxidized DNA bases.
Wallace, Susan S
2013-12-01
This review article presents, an overview of the DNA glycosylases that recognize oxidized DNA bases using the Fpg/Nei family of DNA glycosylases as models for how structure can inform function. For example, even though human NEIL1 and the plant and fungal orthologs lack the zinc finger shown to be required for binding, DNA crystal structures revealed a "zincless finger" with the same properties. Moreover, the "lesion recognition loop" is not involved in lesion recognition, rather, it stabilizes 8-oxoG in the active site pocket. Unlike the other Fpg/Nei family members, Neil3 lacks two of the three void-filling residues that stabilize the DNA duplex and interact with the opposite strand to the damage which may account for its preference for lesions in single-stranded DNA. Also single-molecule approaches show that DNA glycosylases search for their substrates in a sea of undamaged DNA by using a wedge residue that is inserted into the DNA helix to probe for the presence of damage. Copyright © 2013 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Braun, M.; Traue, H.C.; Frisch, S.; Deighton, R.M.; Kessler, H.
2005-01-01
The aim of this study was to investigate the effect of a stroke event on people's ability to recognize basic emotions. In particular, the hypothesis that right brain-damaged (RBD) patients would show less of emotion recognition ability compared with left brain-damaged (LBD) patients and healthy controls, was tested. To investigate this the FEEL…
Peterson, M A; de Gelder, B; Rapcsak, S Z; Gerhardstein, P C; Bachoud-Lévi, A
2000-01-01
In three experiments we investigated whether conscious object recognition is necessary or sufficient for effects of object memories on figure assignment. In experiment 1, we examined a brain-damaged participant, AD, whose conscious object recognition is severely impaired. AD's responses about figure assignment do reveal effects from memories of object structure, indicating that conscious object recognition is not necessary for these effects, and identifying the figure-ground test employed here as a new implicit test of access to memories of object structure. In experiments 2 and 3, we tested a second brain-damaged participant, WG, for whom conscious object recognition was relatively spared. Nevertheless, effects from memories of object structure on figure assignment were not evident in WG's responses about figure assignment in experiment 2, indicating that conscious object recognition is not sufficient for effects of object memories on figure assignment. WG's performance sheds light on AD's performance, and has implications for the theoretical understanding of object memory effects on figure assignment.
Martin, Markus; Dressing, Andrea; Bormann, Tobias; Schmidt, Charlotte S M; Kümmerer, Dorothee; Beume, Lena; Saur, Dorothee; Mader, Irina; Rijntjes, Michel; Kaller, Christoph P; Weiller, Cornelius
2017-08-01
The study aimed to elucidate areas involved in recognizing tool-associated actions, and to characterize the relationship between recognition and active performance of tool use.We performed voxel-based lesion-symptom mapping in a prospective cohort of 98 acute left-hemisphere ischemic stroke patients (68 male, age mean ± standard deviation, 65 ± 13 years; examination 4.4 ± 2 days post-stroke). In a video-based test, patients distinguished correct tool-related actions from actions with spatio-temporal (incorrect grip, kinematics, or tool orientation) or conceptual errors (incorrect tool-recipient matching, e.g., spreading jam on toast with a paintbrush). Moreover, spatio-temporal and conceptual errors were determined during actual tool use.Deficient spatio-temporal error discrimination followed lesions within a dorsal network in which the inferior parietal lobule (IPL) and the lateral temporal cortex (sLTC) were specifically relevant for assessing functional hand postures and kinematics, respectively. Conversely, impaired recognition of conceptual errors resulted from damage to ventral stream regions including anterior temporal lobe. Furthermore, LTC and IPL lesions impacted differently on action recognition and active tool use, respectively.In summary, recognition of tool-associated actions relies on a componential network. Our study particularly highlights the dissociable roles of LTC and IPL for the recognition of action kinematics and functional hand postures, respectively. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A network of enzymes involved in repair of oxidative DNA damage in Neisseria meningitidis
Li, Yanwen; Pelicic, Vladimir; Freemont, Paul S.; Baldwin, Geoff S.; Tang, Christoph M.
2013-01-01
Although oxidative stress is a key aspect of innate immunity, little is known about how host-restricted pathogens successfully repair DNA damage. Base excision repair (BER) is responsible for correcting nucleobases damaged by oxidative stress, and is essential for bloodstream infection caused by the human pathogen, Neisseria meningitidis. We have characterised meningococcal BER enzymes involved in the recognition and removal of damaged nucleobases, and incision of the DNA backbone. We demonstrate that the bi-functional glycosylase/lyases Nth and MutM share several overlapping activities and functional redundancy. However MutM and other members of the GO system, which deal with 8-oxoG, a common lesion of oxidative damage, are not required for survival of N. meningitidis under oxidative stress. Instead, the mismatch repair pathway provides back-up for the GO system, while the lyase activity of Nth can substitute for the meningococcal AP endonuclease, NApe. Our genetic and biochemical evidence show that DNA repair is achieved through a robust network of enzymes that provides a flexible system of DNA repair. This network is likely to reflect successful adaptation to the human nasopharynx, and might provide a paradigm for DNA repair in other prokaryotes. PMID:22296581
A multistep damage recognition mechanism for global genomic nucleotide excision repair
Sugasawa, Kaoru; Okamoto, Tomoko; Shimizu, Yuichiro; Masutani, Chikahide; Iwai, Shigenori; Hanaoka, Fumio
2001-01-01
A mammalian nucleotide excision repair (NER) factor, the XPC–HR23B complex, can specifically bind to certain DNA lesions and initiate the cell-free repair reaction. Here we describe a detailed analysis of its binding specificity using various DNA substrates, each containing a single defined lesion. A highly sensitive gel mobility shift assay revealed that XPC–HR23B specifically binds a small bubble structure with or without damaged bases, whereas dual incision takes place only when damage is present in the bubble. This is evidence that damage recognition for NER is accomplished through at least two steps; XPC–HR23B first binds to a site that has a DNA helix distortion, and then the presence of injured bases is verified prior to dual incision. Cyclobutane pyrimidine dimers (CPDs) were hardly recognized by XPC–HR23B, suggesting that additional factors may be required for CPD recognition. Although the presence of mismatched bases opposite a CPD potentiated XPC–HR23B binding, probably due to enhancement of the helix distortion, cell-free excision of such compound lesions was much more efficient than expected from the observed affinity for XPC–HR23B. This also suggests that additional factors and steps are required for the recognition of some types of lesions. A multistep mechanism of this sort may provide a molecular basis for ensuring the high level of damage discrimination that is required for global genomic NER. PMID:11238373
A multistep damage recognition mechanism for global genomic nucleotide excision repair.
Sugasawa, K; Okamoto, T; Shimizu, Y; Masutani, C; Iwai, S; Hanaoka, F
2001-03-01
A mammalian nucleotide excision repair (NER) factor, the XPC-HR23B complex, can specifically bind to certain DNA lesions and initiate the cell-free repair reaction. Here we describe a detailed analysis of its binding specificity using various DNA substrates, each containing a single defined lesion. A highly sensitive gel mobility shift assay revealed that XPC-HR23B specifically binds a small bubble structure with or without damaged bases, whereas dual incision takes place only when damage is present in the bubble. This is evidence that damage recognition for NER is accomplished through at least two steps; XPC-HR23B first binds to a site that has a DNA helix distortion, and then the presence of injured bases is verified prior to dual incision. Cyclobutane pyrimidine dimers (CPDs) were hardly recognized by XPC-HR23B, suggesting that additional factors may be required for CPD recognition. Although the presence of mismatched bases opposite a CPD potentiated XPC-HR23B binding, probably due to enhancement of the helix distortion, cell-free excision of such compound lesions was much more efficient than expected from the observed affinity for XPC-HR23B. This also suggests that additional factors and steps are required for the recognition of some types of lesions. A multistep mechanism of this sort may provide a molecular basis for ensuring the high level of damage discrimination that is required for global genomic NER.
The Differential Effects of Thalamus and Basal Ganglia on Facial Emotion Recognition
ERIC Educational Resources Information Center
Cheung, Crystal C. Y.; Lee, Tatia M. C.; Yip, James T. H.; King, Kristin E.; Li, Leonard S. W.
2006-01-01
This study examined if subcortical stroke was associated with impaired facial emotion recognition. Furthermore, the lateralization of the impairment and the differential profiles of facial emotion recognition deficits with localized thalamic or basal ganglia damage were also studied. Thirty-eight patients with subcortical strokes and 19 matched…
Identifying environmental sounds: a multimodal mapping study
Tomasino, Barbara; Canderan, Cinzia; Marin, Dario; Maieron, Marta; Gremese, Michele; D'Agostini, Serena; Fabbro, Franco; Skrap, Miran
2015-01-01
Our environment is full of auditory events such as warnings or hazards, and their correct recognition is essential. We explored environmental sounds (ES) recognition in a series of studies. In study 1 we performed an Activation Likelihood Estimation (ALE) meta-analysis of neuroimaging experiments addressing ES processing to delineate the network of areas consistently involved in ES processing. Areas consistently activated in the ALE meta-analysis were the STG/MTG, insula/rolandic operculum, parahippocampal gyrus and inferior frontal gyrus bilaterally. Some of these areas truly reflect ES processing, whereas others are related to design choices, e.g., type of task, type of control condition, type of stimulus. In study 2 we report on 7 neurosurgical patients with lesions involving the areas which were found to be activated by the ALE meta-analysis. We tested their ES recognition abilities and found an impairment of ES recognition. These results indicate that deficits of ES recognition do not exclusively reflect lesions to the right or to the left hemisphere but both hemispheres are involved. The most frequently lesioned area is the hippocampus/insula/STG. We made sure that any impairment in ES recognition would not be related to language problems, but reflect impaired ES processing. In study 3 we carried out an fMRI study on patients (vs. healthy controls) to investigate how the areas involved in ES might be functionally deregulated because of a lesion. The fMRI evidenced that controls activated the right IFG, the STG bilaterally and the left insula. We applied a multimodal mapping approach and found that, although the meta-analysis showed that part of the left and right STG/MTG activation during ES processing might in part be related to design choices, this area was one of the most frequently lesioned areas in our patients, thus highlighting its causal role in ES processing. We found that the ROIs we drew on the two clusters of activation found in the left and in the right STG overlapped with the lesions of at least 4 out of the 7 patients' lesions, indicating that the lack of STG activation found for patients is related to brain damage and is crucial for explaining the ES deficit. PMID:26539096
Damage signals in the insect immune response
Krautz, Robert; Arefin, Badrul; Theopold, Ulrich
2014-01-01
Insects and mammals share an ancient innate immune system comprising both humoral and cellular responses. The insect immune system consists of the fat body, which secretes effector molecules into the hemolymph and several classes of hemocytes, which reside in the hemolymph and of protective border epithelia. Key features of wound- and immune responses are shared between insect and mammalian immune systems including the mode of activation by commonly shared microbial (non-self) patterns and the recognition of these patterns by dedicated receptors. It is unclear how metazoan parasites in insects, which lack these shared motifs, are recognized. Research in recent years has demonstrated that during entry into the insect host, many eukaryotic pathogens leave traces that alert potential hosts of the damage they have afflicted. In accordance with terminology used in the mammalian immune systems, these signals have been dubbed danger- or damage-associated signals. Damage signals are necessary byproducts generated during entering hosts either by mechanical or proteolytic damage. Here, we briefly review the current stage of knowledge on how wound closure and wound healing during mechanical damage is regulated and how damage-related signals contribute to these processes. We also discuss how sensors of proteolytic activity induce insect innate immune responses. Strikingly damage-associated signals are also released from cells that have aberrant growth, including tumor cells. These signals may induce apoptosis in the damaged cells, the recruitment of immune cells to the aberrant tissue and even activate humoral responses. Thus, this ensures the removal of aberrant cells and compensatory proliferation to replace lost tissue. Several of these pathways may have been co-opted from wound healing and developmental processes. PMID:25071815
Luo, Man; Bao, Zhengqiang; Xu, Feng; Wang, Xiaohui; Li, Fei; Li, Wen; Chen, Zhihua; Ying, Songmin; Shen, Huahao
2018-04-14
The inflammatory cascade can be initiated with the recognition of damaged DNA. Macrophages play an essential role in particulate matter (PM)-induced airway inflammation. In this study, we aim to explore the PM induced DNA damage response of macrophages and its function in airway inflammation. The DNA damage response and inflammatory response were assessed using bone marrow-derived macrophages following PM treatment and mouse model instilled intratracheally with PM. We found that PM induced significant DNA damage both in vitro and in vivo and simultaneously triggered a rapid DNA damage response, represented by nuclear RPA, 53BP1 and γH2AX foci formation. Genetic ablation or chemical inhibition of the DNA damage response sensor amplified the production of cytokines including Cxcl1, Cxcl2 and Ifn-γ after PM stimulation in bone marrow-derived macrophages. Similar to that seen in vitro , mice with myeloid-specific deletion of RAD50 showed higher levels of airway inflammation in response to the PM challenge, suggesting a protective role of DNA damage sensor during inflammation. These data demonstrate that PM exposure induces DNA damage and activation of DNA damage response sensor MRN complex in macrophages. Disruption of MRN complex lead to persistent, unrepaired DNA damage that causes elevated inflammatory response.
Injury and immune response: applying the danger theory to mosquitoes
Moreno-García, Miguel; Recio-Tótoro, Benito; Claudio-Piedras, Fabiola; Lanz-Mendoza, Humberto
2014-01-01
The insect immune response can be activated by the recognition of both non-self and molecular by-products of tissue damage. Since pathogens and tissue damage usually arise at the same time during infection, the specific mechanisms of the immune response to microorganisms, and to tissue damage have not been unraveled. Consequently, some aspects of damage caused by microorganisms in vector-borne arthropods have been neglected. We herein reassess the Anopheles–Plasmodium interaction, incorporating Matzinger’s danger/damage hypothesis and George Salt’s injury assumptions. The invasive forms of the parasite cross the peritrophic matrix and midgut epithelia to reach the basal lamina and differentiate into an oocyst. The sporozoites produced in the oocyst are released into the hemolymph, and from there enter the salivary gland. During parasite development, wounds to midgut tissue and the basement membrane are produced. We describe the response of the different compartments where the parasite interacts with the mosquito. In the midgut, the response includes the expression of antimicrobial peptides, production of reactive oxygen species, and possible activation of midgut regenerative cells. In the basal membrane, wound repair mainly involves the production of molecules and the recruitment of hemocytes. We discuss the susceptibility to damage in tissues, and how the place and degree of damage may influence the differential response and the expression of damage associated molecular patterns (DAMPs). Knowledge about damage caused by parasites may lead to a deeper understanding of the relevance of tissue damage and the immune response it generates, as well as the origins and progression of infection in this insect–parasite interaction. PMID:25250040
Luch, Andreas; Glas, Andreas; Carell, Thomas; Naegeli, Hanspeter
2011-01-01
How tightly packed chromatin is thoroughly inspected for DNA damage is one of the fundamental unanswered questions in biology. In particular, the effective excision of carcinogenic lesions caused by the ultraviolet (UV) radiation of sunlight depends on UV-damaged DNA-binding protein (UV-DDB), but the mechanism by which this DDB1-DDB2 heterodimer stimulates DNA repair remained enigmatic. We hypothesized that a distinctive function of this unique sensor is to coordinate damage recognition in the nucleosome repeat landscape of chromatin. Therefore, the nucleosomes of human cells have been dissected by micrococcal nuclease, thus revealing, to our knowledge for the first time, that UV-DDB associates preferentially with lesions in hypersensitive, hence, highly accessible internucleosomal sites joining the core particles. Surprisingly, the accompanying CUL4A ubiquitin ligase activity is necessary to retain the xeroderma pigmentosum group C (XPC) partner at such internucleosomal repair hotspots that undergo very fast excision kinetics. This CUL4A complex thereby counteracts an unexpected affinity of XPC for core particles that are less permissive than hypersensitive sites to downstream repair subunits. That UV-DDB also adopts a ubiquitin-independent function is evidenced by domain mapping and in situ protein dynamics studies, revealing direct but transient interactions that promote a thermodynamically unfavorable β-hairpin insertion of XPC into substrate DNA. We conclude that the evolutionary advent of UV-DDB correlates with the need for a spatiotemporal organizer of XPC positioning in higher eukaryotic chromatin. PMID:22039351
Finite element model updating and damage detection for bridges using vibration measurement.
DOT National Transportation Integrated Search
2013-12-01
In this report, the results of a study on developing a damage detection methodology based on Statistical Pattern Recognition are : presented. This methodology uses a new damage sensitive feature developed in this study that relies entirely on modal :...
Early effects of whole-body (56)Fe irradiation on hippocampal function in C57BL/6J mice.
Haley, Gwendolen E; Yeiser, Lauren; Olsen, Reid H J; Davis, Matthew J; Johnson, Lance A; Raber, Jacob
2013-05-01
Relatively little is known about early irradiation effects on hippocampal function in wild-type mice. In this study, the effects of (56)Fe irradiation on hippocampal function were assessed starting 2 weeks after whole-body irradiation. Compared to sham irradiation, radiation impaired novel object recognition in female and male C57BL/6J wild-type mice. There were no effects of irradiation on contextual fear conditioning or spatial memory retention in the water maze. It is possible that oxidative damage might contribute to radiation-induced cognitive changes. Therefore, hippocampal and cortical levels of 3-nitrotyrosine (3NT) and lipid peroxidation, measures of oxidative damage were assessed. There were no effects of irradiation on these measures of oxidative damage. As (56)Fe irradiation can increase reactive oxygen species (ROS) levels, which may contribute to the impairments in novel object recognition, the effects of the antioxidant alpha-lipoic acid (ALA) on cognition following sham irradiation and irradiation were also assessed. ALA did not prevent radiation-induced impairments in novel object recognition and impaired spatial memory retention of sham-irradiated and irradiated mice in the probe trial after the first day of hidden platform training in the water maze. Thus, the novel object recognition test is particularly sensitive to detect early cognitive effects of (56)Fe irradiation through a mechanism unlikely involving ROS or oxidative damage.
A new selective developmental deficit: Impaired object recognition with normal face recognition.
Germine, Laura; Cashdollar, Nathan; Düzel, Emrah; Duchaine, Bradley
2011-05-01
Studies of developmental deficits in face recognition, or developmental prosopagnosia, have shown that individuals who have not suffered brain damage can show face recognition impairments coupled with normal object recognition (Duchaine and Nakayama, 2005; Duchaine et al., 2006; Nunn et al., 2001). However, no developmental cases with the opposite dissociation - normal face recognition with impaired object recognition - have been reported. The existence of a case of non-face developmental visual agnosia would indicate that the development of normal face recognition mechanisms does not rely on the development of normal object recognition mechanisms. To see whether a developmental variant of non-face visual object agnosia exists, we conducted a series of web-based object and face recognition tests to screen for individuals showing object recognition memory impairments but not face recognition impairments. Through this screening process, we identified AW, an otherwise normal 19-year-old female, who was then tested in the lab on face and object recognition tests. AW's performance was impaired in within-class visual recognition memory across six different visual categories (guns, horses, scenes, tools, doors, and cars). In contrast, she scored normally on seven tests of face recognition, tests of memory for two other object categories (houses and glasses), and tests of recall memory for visual shapes. Testing confirmed that her impairment was not related to a general deficit in lower-level perception, object perception, basic-level recognition, or memory. AW's results provide the first neuropsychological evidence that recognition memory for non-face visual object categories can be selectively impaired in individuals without brain damage or other memory impairment. These results indicate that the development of recognition memory for faces does not depend on intact object recognition memory and provide further evidence for category-specific dissociations in visual recognition. Copyright © 2010 Elsevier Srl. All rights reserved.
Hashimoto, Kiyohiro; Sharma, Vyom; Sasanuma, Hiroyuki; Tian, Xu; Takata, Minoru; Takeda, Shunichi; Swenberg, James A.; Nakamura, Jun
2016-01-01
Isopropyl methanesulfonate (IPMS) is the most potent genotoxic compound among methanesulfonic acid esters. The genotoxic potential of alkyl sulfonate esters is believed to be due to their alkylating ability of the O6 position of guanine. Understanding the primary repair pathway activated in response to IPMS-induced DNA damage is important to profile the genotoxic potential of IPMS. In the present study, both chicken DT40 and human TK6 cell-based DNA damage response (DDR) assays revealed that dysfunction of the FANC pathway resulted in higher sensitivity to IPMS compared to EMS or MMS. O6-alkyl dG is primarily repaired by methyl guanine methyltransferase (MGMT), while isopropyl dG is less likely to be a substrate for MGMT. Comparison of the cytotoxic potential of IPMS and its isomer n-propyl methanesulfonate (nPMS) revealed that the isopropyl moiety avoids recognition by MGMT and leads to higher cytotoxicity. Next, the micronucleus (MN) assay showed that FANC deficiency increases the sensitivity of DT40 cells to MN induction by IPMS. Pretreatment with O6-benzyl guanine (OBG), an inhibitor of MGMT, increased the MN frequency in DT40 cells treated with nPMS, but not IPMS. Lastly, IPMS induced more double strand breaks in FANC-deficient cells compared to wild-type cells in a time-dependent manner. All together, these results suggest that IPMS-derived O6-isopropyl dG escapes recognition by MGMT, and the unrepaired DNA damage leads to double strand breaks, resulting in MN induction. FANC, therefore, plays a pivotal role in preventing MN induction and cell death caused by IPMS. PMID:27486975
What happens to the motor theory of perception when the motor system is damaged?
Stasenko, Alena; Garcea, Frank E; Mahon, Bradford Z
2013-09-01
Motor theories of perception posit that motor information is necessary for successful recognition of actions. Perhaps the most well known of this class of proposals is the motor theory of speech perception, which argues that speech recognition is fundamentally a process of identifying the articulatory gestures (i.e. motor representations) that were used to produce the speech signal. Here we review neuropsychological evidence from patients with damage to the motor system, in the context of motor theories of perception applied to both manual actions and speech. Motor theories of perception predict that patients with motor impairments will have impairments for action recognition. Contrary to that prediction, the available neuropsychological evidence indicates that recognition can be spared despite profound impairments to production. These data falsify strong forms of the motor theory of perception, and frame new questions about the dynamical interactions that govern how information is exchanged between input and output systems.
What happens to the motor theory of perception when the motor system is damaged?
Stasenko, Alena; Garcea, Frank E.; Mahon, Bradford Z.
2016-01-01
Motor theories of perception posit that motor information is necessary for successful recognition of actions. Perhaps the most well known of this class of proposals is the motor theory of speech perception, which argues that speech recognition is fundamentally a process of identifying the articulatory gestures (i.e. motor representations) that were used to produce the speech signal. Here we review neuropsychological evidence from patients with damage to the motor system, in the context of motor theories of perception applied to both manual actions and speech. Motor theories of perception predict that patients with motor impairments will have impairments for action recognition. Contrary to that prediction, the available neuropsychological evidence indicates that recognition can be spared despite profound impairments to production. These data falsify strong forms of the motor theory of perception, and frame new questions about the dynamical interactions that govern how information is exchanged between input and output systems. PMID:26823687
Zhu, Wei; Gao, Yufeng; Wan, Jieru; Lan, Xi; Han, Xiaoning; Zhu, Shanshan; Zang, Weidong; Chen, Xuemei; Ziai, Wendy; Hanley, Daniel F; Russo, Scott J; Jorge, Ricardo E; Wang, Jian
2018-03-01
Intracerebral hemorrhage (ICH) is a detrimental type of stroke. Mouse models of ICH, induced by collagenase or blood infusion, commonly target striatum, but not other brain sites such as ventricular system, cortex, and hippocampus. Few studies have systemically investigated brain damage and neurobehavioral deficits that develop in animal models of ICH in these areas of the right hemisphere. Therefore, we evaluated the brain damage and neurobehavioral dysfunction associated with right hemispheric ICH in ventricle, cortex, hippocampus, and striatum. The ICH model was induced by autologous whole blood or collagenase VII-S (0.075 units in 0.5 µl saline) injection. At different time points after ICH induction, mice were assessed for brain tissue damage and neurobehavioral deficits. Sham control mice were used for comparison. We found that ICH location influenced features of brain damage, microglia/macrophage activation, and behavioral deficits. Furthermore, the 24-point neurologic deficit scoring system was most sensitive for evaluating locomotor abnormalities in all four models, especially on days 1, 3, and 7 post-ICH. The wire-hanging test was useful for evaluating locomotor abnormalities in models of striatal, intraventricular, and cortical ICH. The cylinder test identified locomotor abnormalities only in the striatal ICH model. The novel object recognition test was effective for evaluating recognition memory dysfunction in all models except for striatal ICH. The tail suspension test, forced swim test, and sucrose preference test were effective for evaluating emotional abnormality in all four models but did not correlate with severity of brain damage. These results will help to inform future preclinical studies of ICH outcomes. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Alescio-Lautier, B.; Michel, B. F.; Herrera, C.; Elahmadi, A.; Chambon, C.; Touzet, C.; Paban, V.
2007-01-01
It has been proposed that visual recognition memory and certain attentional mechanisms are impaired early in Alzheimer disease (AD). Little is known about visuospatial recognition memory in AD. The crucial role of the hippocampus on spatial memory and its damage in AD suggest that visuospatial recognition memory may also be impaired early. The aim…
ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage
Maya, Ruth; Balass, Moshe; Kim, Seong-Tae; Shkedy, Dganit; Leal, Juan-Fernando Martinez; Shifman, Ohad; Moas, Miri; Buschmann, Thomas; Ronai, Ze'ev; Shiloh, Yosef; Kastan, Michael B.; Katzir, Ephraim; Oren, Moshe
2001-01-01
The p53 tumor suppressor protein, a key regulator of cellular responses to genotoxic stress, is stabilized and activated after DNA damage. The rapid activation of p53 by ionizing radiation and radiomimetic agents is largely dependent on the ATM kinase. p53 is phosphorylated by ATM shortly after DNA damage, resulting in enhanced stability and activity of p53. The Mdm2 oncoprotein is a pivotal negative regulator of p53. In response to ionizing radiation and radiomimetic drugs, Mdm2 undergoes rapid ATM-dependent phosphorylation prior to p53 accumulation. This results in a decrease in its reactivity with the 2A10 monoclonal antibody. Phage display analysis identified a consensus 2A10 recognition sequence, possessing the core motif DYS. Unexpectedly, this motif appears twice within the human Mdm2 molecule, at positions corresponding to residues 258–260 and 393–395. Both putative 2A10 epitopes are highly conserved and encompass potential phosphorylation sites. Serine 395, residing within the carboxy-terminal 2A10 epitope, is the major target on Mdm2 for phosphorylation by ATM in vitro. Mutational analysis supports the conclusion that Mdm2 undergoes ATM-dependent phosphorylation on serine 395 in vivo in response to DNA damage. The data further suggests that phosphorylated Mdm2 may be less capable of promoting the nucleo-cytoplasmic shuttling of p53 and its subsequent degradation, thereby enabling p53 accumulation. Our findings imply that activation of p53 by DNA damage is achieved, in part, through attenuation of the p53-inhibitory potential of Mdm2. PMID:11331603
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikary, Suraj; Eichman, Brandt F.
DNA glycosylases specialized for the repair of alkylation damage must identify, with fine specificity, a diverse array of subtle modifications within DNA. The current mechanism involves damage sensing through interrogation of the DNA duplex, followed by more specific recognition of the target base inside the active site pocket. To better understand the physical basis for alkylpurine detection, we determined the crystal structure of Schizosaccharomyces pombe Mag1 (spMag1) in complex with DNA and performed a mutational analysis of spMag1 and the close homologue from Saccharomyces cerevisiae (scMag). Despite strong homology, spMag1 and scMag differ in substrate specificity and cellular alkylation sensitivity,more » although the enzymological basis for their functional differences is unknown. We show that Mag preference for 1,N{sup 6}-ethenoadenine ({var_epsilon}A) is influenced by a minor groove-interrogating residue more than the composition of the nucleobase-binding pocket. Exchanging this residue between Mag proteins swapped their {var_epsilon}A activities, providing evidence that residues outside the extrahelical base-binding pocket have a role in identification of a particular modification in addition to sensing damage.« less
Fruit as Potent Natural Antioxidants and Their Biological Effects.
Gomes-Rochette, Neuza F; Da Silveira Vasconcelos, Mirele; Nabavi, Seyed M; Mota, Erika F; Nunes-Pinheiro, Diana C S; Daglia, Maria; De Melo, Dirce F
The consumption of fruit has increased in the last 20 years, along with the growing recognition of its nutritional and protective values. Many of the benefits of a diet rich in fruit are attributed to the presence of different bioactive substances, such as vitamins, carotenoids and phenolic compounds. Flavanoids, a class of phenolic compounds, present particular antioxidant activity and thus provide protection against cellular damage caused by reactive oxygen species. Research suggests that an increased intake of plant foods is associated with a reduced incidence of chronic disease. There is currently a great deal of interest in the study of antioxidants, in particular due to the discovery of the damaging effects of free radicals to the body. Thus, this review aims to address the beneficial effects of the antioxidants present in fruits, on the neutralization of reactive species and the reduction of any damage they may cause.
Structural Basis for the Interaction of Mutasome Assembly Factor REV1 with Ubiquitin.
Cui, Gaofeng; Botuyan, Maria Victoria; Mer, Georges
2018-05-18
REV1 is an evolutionarily conserved translesion synthesis (TLS) DNA polymerase and an assembly factor key for the recruitment of other TLS polymerases to DNA damage sites. REV1-mediated recognition of ubiquitin in the proliferative cell nuclear antigen is thought to be the trigger for TLS activation. Here we report the solution NMR structure of a 108-residue fragment of human REV1 encompassing the two putative ubiquitin-binding motifs UBM1 and UBM2 in complex with ubiquitin. While in mammals UBM1 and UBM2 are both required for optimal association of REV1 with replication factories after DNA damage, we show that only REV1 UBM2 binds ubiquitin. Structure-guided mutagenesis in Saccharomyces cerevisiae further highlights the importance of UBM2 for REV1-mediated mutagenesis and DNA damage tolerance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Doni, Andrea; Musso, Tiziana; Morone, Diego; Bastone, Antonio; Zambelli, Vanessa; Sironi, Marina; Castagnoli, Carlotta; Cambieri, Irene; Stravalaci, Matteo; Pasqualini, Fabio; Laface, Ilaria; Valentino, Sonia; Tartari, Silvia; Ponzetta, Andrea; Maina, Virginia; Barbieri, Silvia S.; Tremoli, Elena; Catapano, Alberico L.; Norata, Giuseppe D.; Bottazzi, Barbara; Garlanda, Cecilia
2015-01-01
Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule and a key component of the humoral arm of innate immunity. In four different models of tissue damage in mice, PTX3 deficiency was associated with increased fibrin deposition and persistence, and thicker clots, followed by increased collagen deposition, when compared with controls. Ptx3-deficient macrophages showed defective pericellular fibrinolysis in vitro. PTX3-bound fibrinogen/fibrin and plasminogen at acidic pH and increased plasmin-mediated fibrinolysis. The second exon-encoded N-terminal domain of PTX3 recapitulated the activity of the intact molecule. Thus, a prototypic component of humoral innate immunity, PTX3, plays a nonredundant role in the orchestration of tissue repair and remodeling. Tissue acidification resulting from metabolic adaptation during tissue repair sets PTX3 in a tissue remodeling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. PMID:25964372
Extra virgin olive oil improves learning and memory in SAMP8 mice.
Farr, Susan A; Price, Tulin O; Dominguez, Ligia J; Motisi, Antonio; Saiano, Filippo; Niehoff, Michael L; Morley, John E; Banks, William A; Ercal, Nuran; Barbagallo, Mario
2012-01-01
Polyphenols are potent antioxidants found in extra virgin olive oil (EVOO); antioxidants have been shown to reverse age- and disease-related learning and memory deficits. We examined the effects of EVOO on learning and memory in SAMP8 mice, an age-related learning/memory impairment model associated with increased amyloid-β protein and brain oxidative damage. We administered EVOO, coconut oil, or butter to 11 month old SAMP8 mice for 6 weeks. Mice were tested in T-maze foot shock avoidance and one-trial novel object recognition with a 24 h delay. Mice which received EVOO had improved acquisition in the T-maze and spent more time with the novel object in one-trial novel object recognition versus mice which received coconut oil or butter. Mice that received EVOO had improve T-maze retention compared to the mice that received butter. EVOO increased brain glutathione levels suggesting reduced oxidative stress as a possible mechanism. These effects plus increased glutathione reductase activity, superoxide dismutase activity, and decreased tissue levels of 4-hydroxynoneal and 3-nitrotyrosine were enhanced with enriched EVOO (3 × and 5 × polyphenols concentration). Our findings suggest that EVOO has beneficial effects on learning and memory deficits found in aging and diseases, such as those related to the overproduction of amyloid-β protein, by reversing oxidative damage in the brain, effects that are augmented with increasing concentrations of polyphenols in EVOO.
Damage identification in cement paste amended with carbon nanotubes
NASA Astrophysics Data System (ADS)
Soltangharaei, Vafa; Anay, Rafal; Assi, Lateef; Ziehl, Paul; Matta, Fabio
2018-04-01
Cement-based composites have been used as reliable materials in building and civil engineering infrastructure for many decades. Although there are several advantages, some drawbacks such as premature cracking may be problematic for sensitive applications such as those found in nuclear power plants or associated waste storage facilities. In this study, acoustic emission monitoring was employed to detect stress waves associated with damage progression during uniaxial compressive loading. Acoustic emission data resulting from loading of plain cement paste prisms and cement paste prisms amended with carbon nanotubes are compared. Unsupervised pattern recognition is employed to categorize the data. Results indicate that increased acoustic emission activity was recorded for the plain cement paste prisms when compared to prisms amended with carbon nanotubes.
Patel, Shyama D.; Pierce, Leslie; Ciardiello, Amber; Hutton, Alexandra; Paskewitz, Samuel; Aronowitz, Eric; Voss, Henning U.; Moore, Holly; Vannucci, Susan J.
2015-01-01
Background Hypoxic-ischemic encephalopathy (HIE) is a major cause of morbidity in survivors. Therapeutic hypothermia (TH) is the only available intervention, but the protection is incomplete. Preclinical studies of HIE/TH in the rodent have relied on the postnatal day (P) 7 rat whose brain approximates a 32–36 week gestation infant, less relevant for these studies. We propose that HIE and TH in the term-equivalent P10 rat will be more translational. Methods P10–11 rat pups were subjected to unilateral hypoxia-ischemia (HI) and 4 hours recovery in normothermic (N) or hypothermic (TH) conditions. Brain damage was assessed longitudinally at 24 hours, 2 and 12 weeks. Motor function was assessed with the beam walk; recognition memory was measured by novel object recognition. Results Neuroprotection with TH was apparent at 2 and 12 weeks in both moderately and severely damaged animals. TH improved motor function in moderate, but not severe damage. Impaired object recognition occurred with severe damage with no evidence of protection of TH. Conclusion This adaptation of the immature rat model of HI provides a reproducible platform to further study HIE/TH in which individual animals are followed longitudinally to provide a useful translational preclinical model. PMID:25996893
Conformational Dynamics of DNA Repair by Escherichia coli Endonuclease III*
Kuznetsov, Nikita A.; Kladova, Olga A.; Kuznetsova, Alexandra A.; Ishchenko, Alexander A.; Saparbaev, Murat K.; Zharkov, Dmitry O.; Fedorova, Olga S.
2015-01-01
Escherichia coli endonuclease III (Endo III or Nth) is a DNA glycosylase with a broad substrate specificity for oxidized or reduced pyrimidine bases. Endo III possesses two types of activities: N-glycosylase (hydrolysis of the N-glycosidic bond) and AP lyase (elimination of the 3′-phosphate of the AP-site). We report a pre-steady-state kinetic analysis of structural rearrangements of the DNA substrates and uncleavable ligands during their interaction with Endo III. Oligonucleotide duplexes containing 5,6-dihydrouracil, a natural abasic site, its tetrahydrofuran analog, and undamaged duplexes carried fluorescent DNA base analogs 2-aminopurine and 1,3-diaza-2-oxophenoxazine as environment-sensitive reporter groups. The results suggest that Endo III induces several fast sequential conformational changes in DNA during binding, lesion recognition, and adjustment to a catalytically competent conformation. A comparison of two fluorophores allowed us to distinguish between the events occurring in the damaged and undamaged DNA strand. Combining our data with the available structures of Endo III, we conclude that this glycosylase uses a multistep mechanism of damage recognition, which likely involves Gln41 and Leu81 as DNA lesion sensors. PMID:25869130
OTUB1 Co-opts Lys48-Linked Ubiquitin Recognition to Suppress E2 Enzyme Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juang, Yu-Chi; Landry, Marie-Claude; Sanches, Mario
2012-03-26
Ubiquitylation entails the concerted action of E1, E2, and E3 enzymes. We recently reported that OTUB1, a deubiquitylase, inhibits the DNA damage response independently of its isopeptidase activity. OTUB1 does so by blocking ubiquitin transfer by UBC13, the cognate E2 enzyme for RNF168. OTUB1 also inhibits E2s of the UBE2D and UBE2E families. Here we elucidate the structural mechanism by which OTUB1 binds E2s to inhibit ubiquitin transfer. OTUB1 recognizes ubiquitin-charged E2s through contacts with both donor ubiquitin and the E2 enzyme. Surprisingly, free ubiquitin associates with the canonical distal ubiquitin-binding site on OTUB1 to promote formation of the inhibitedmore » E2 complex. Lys48 of donor ubiquitin lies near the OTUB1 catalytic site and the C terminus of free ubiquitin, a configuration that mimics the products of Lys48-linked ubiquitin chain cleavage. OTUB1 therefore co-opts Lys48-linked ubiquitin chain recognition to suppress ubiquitin conjugation and the DNA damage response.« less
Phagocyte-Myocyte Interactions and Consequences during Hypoxic Wound Healing
Zhang, Shuang; Dehn, Shirley; DeBerge, Matthew; Rhee, KJ; Hudson, Barry; Thorp, Edward
2014-01-01
Myocardial infarction (MI), secondary to atherosclerotic plaque rupture and occlusive thrombi, triggers acute margination of inflammatory neutrophils and monocyte phagocyte subsets to the damaged heart, the latter of which may give rise briefly to differentiated macrophage-like or dendritic-like cells. Within the injured myocardium, a primary function of these phagocytic cells is to remove damaged extracellular matrix, necrotic and apoptotic cardiac cells, as well as immune cells that turn over. Recognition of dying cellular targets by phagocytes triggers intracellular signaling, particularly in macrophages, wherein cytokines and lipid mediators are generated to promote inflammation resolution, fibrotic scarring, angiogenesis, and compensatory organ remodeling. These actions cooperate in an effort to preserve myocardial contractility and prevent heart failure. Immune cell function is modulated by local tissue factors that include secreted protease activity, oxidative stress during clinical reperfusion, and hypoxia. Importantly, experimental evidence suggests that monocyte function and phagocytosis efficiency is compromised in the setting of MI risk factors, including hyperlipidemia and ageing, however underlying mechanisms remain unclear. Herein we review seminal phagocyte and cardiac molecular factors that lead to, and culminate in, the recognition and removal of dying injured myocardium, the effects of hypoxia, and their relationship to cardiac infarct size and heart healing. PMID:24862542
Repair of DNA-polypeptide crosslinks by human excision nuclease
NASA Astrophysics Data System (ADS)
Reardon, Joyce T.; Sancar, Aziz
2006-03-01
DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair
Pascual, María; Baliño, Pablo; Alfonso-Loeches, Silvia; Aragón, Carlos M G; Guerri, Consuelo
2011-06-01
Toll-like receptors (TLRs) play an important role in the innate immune response, and emerging evidence indicates their role in brain injury and neurodegeneration. Our recent results have demonstrated that ethanol is capable of activating glial TLR4 receptors and that the elimination of these receptors in mice protects against ethanol-induced glial activation, induction of inflammatory mediators and apoptosis. This study was designed to assess whether ethanol-induced inflammatory damage causes behavioral and cognitive consequences, and if behavioral alterations are dependent of TLR4 functions. Here we show in mice drinking alcohol for 5months, followed by a 15-day withdrawal period, that activation of the astroglial and microglial cells in frontal cortex and striatum is maintained and that these events are associated with cognitive and anxiety-related behavioral impairments in wild-type (WT) mice, as demonstrated by testing the animals with object memory recognition, conditioned taste aversion and dark and light box anxiety tasks. Mice lacking TLR4 receptors are protected against ethanol-induced inflammatory damage, and behavioral associated effects. We further assess the possibility of the epigenetic modifications participating in short- or long-term behavioral effects associated with neuroinflammatory damage. We show that chronic alcohol treatment decreases H4 histone acetylation and histone acetyltransferases activity in frontal cortex, striatum and hippocampus of WT mice. Alterations in chromatin structure were not observed in TLR4(-/-) mice. These results provide the first evidence of the role that TLR4 functions play in the behavioral consequences of alcohol-induced inflammatory damage and suggest that the epigenetic modifications mediated by TLR4 could contribute to short- or long-term alcohol-induced behavioral or cognitive dysfunctions. Copyright © 2011 Elsevier Inc. All rights reserved.
Detector sustainability improvements at LCLS
NASA Astrophysics Data System (ADS)
Browne, Michael C.; Carini, Gabriella; DePonte, Daniel P.; Galtier, Eric C.; Hart, Philip A.; Koralek, J. D.; Mitra, Ankush; Nakahara, Kazutaka
2017-06-01
The Linac Coherent Light Source (LCLS) poses a number of daunting and often unusual challenges to maintaining X-ray detectors, such as proximity to liquid-sample injectors, complex setups with moving components, intense X-ray and optical laser light, and Electromagnetic Pulse (EMP). The Detector and Sample Environment departments at LCLS are developing an array of engineering, monitoring, and administrative controls solutions to better address these issues. These include injector improvements and monitoring methods, fast online damage recognition algorithms, EMP mapping and protection, actively cooled filters, and more.
NASA Astrophysics Data System (ADS)
Ren, W. X.; Lin, Y. Q.; Fang, S. E.
2011-11-01
One of the key issues in vibration-based structural health monitoring is to extract the damage-sensitive but environment-insensitive features from sampled dynamic response measurements and to carry out the statistical analysis of these features for structural damage detection. A new damage feature is proposed in this paper by using the system matrices of the forward innovation model based on the covariance-driven stochastic subspace identification of a vibrating system. To overcome the variations of the system matrices, a non-singularity transposition matrix is introduced so that the system matrices are normalized to their standard forms. For reducing the effects of modeling errors, noise and environmental variations on measured structural responses, a statistical pattern recognition paradigm is incorporated into the proposed method. The Mahalanobis and Euclidean distance decision functions of the damage feature vector are adopted by defining a statistics-based damage index. The proposed structural damage detection method is verified against one numerical signal and two numerical beams. It is demonstrated that the proposed statistics-based damage index is sensitive to damage and shows some robustness to the noise and false estimation of the system ranks. The method is capable of locating damage of the beam structures under different types of excitations. The robustness of the proposed damage detection method to the variations in environmental temperature is further validated in a companion paper by a reinforced concrete beam tested in the laboratory and a full-scale arch bridge tested in the field.
Kong, Xiangduo; Mohanty, Samarendra K.; Stephens, Jared; Heale, Jason T.; Gomez-Godinez, Veronica; Shi, Linda Z.; Kim, Jong-Soo; Yokomori, Kyoko; Berns, Michael W.
2009-01-01
Proper recognition and repair of DNA damage is critical for the cell to protect its genomic integrity. Laser microirradiation ranging in wavelength from ultraviolet A (UVA) to near-infrared (NIR) can be used to induce damage in a defined region in the cell nucleus, representing an innovative technology to effectively analyze the in vivo DNA double-strand break (DSB) damage recognition process in mammalian cells. However, the damage-inducing characteristics of the different laser systems have not been fully investigated. Here we compare the nanosecond nitrogen 337 nm UVA laser with and without bromodeoxyuridine (BrdU), the nanosecond and picosecond 532 nm green second-harmonic Nd:YAG, and the femtosecond NIR 800 nm Ti:sapphire laser with regard to the type(s) of damage and corresponding cellular responses. Crosslinking damage (without significant nucleotide excision repair factor recruitment) and single-strand breaks (with corresponding repair factor recruitment) were common among all three wavelengths. Interestingly, UVA without BrdU uniquely produced base damage and aberrant DSB responses. Furthermore, the total energy required for the threshold H2AX phosphorylation induction was found to vary between the individual laser systems. The results indicate the involvement of different damage mechanisms dictated by wavelength and pulse duration. The advantages and disadvantages of each system are discussed. PMID:19357094
Cheng, David; Spiro, Adena S; Jenner, Andrew M; Garner, Brett; Karl, Tim
2014-01-01
Impairments in cognitive ability and widespread pathophysiological changes caused by neurotoxicity, neuroinflammation, oxidative damage, and altered cholesterol homeostasis are associated with Alzheimer's disease (AD). Cannabidiol (CBD) has been shown to reverse cognitive deficits of AD transgenic mice and to exert neuroprotective, anti-oxidative, and anti-inflammatory properties in vitro and in vivo. Here we evaluate the preventative properties of long-term CBD treatment in male AβPPSwe/PS1ΔE9 (AβPP × PS1) mice, a transgenic model of AD. Control and AD transgenic mice were treated orally from 2.5 months of age with CBD (20 mg/kg) daily for 8 months. Mice were then assessed in the social preference test, elevated plus maze, and fear conditioning paradigms, before cortical and hippocampal tissues were analyzed for amyloid load, oxidative damage, cholesterol, phytosterols, and inflammation. We found that AβPP × PS1 mice developed a social recognition deficit, which was prevented by CBD treatment. CBD had no impact on anxiety or associative learning. The prevention of the social recognition deficit was not associated with any changes in amyloid load or oxidative damage. However, the study revealed a subtle impact of CBD on neuroinflammation, cholesterol, and dietary phytosterol retention, which deserves further investigation. This study is the first to demonstrate CBD's ability to prevent the development of a social recognition deficit in AD transgenic mice. Our findings provide the first evidence that CBD may have potential as a preventative treatment for AD with a particular relevance for symptoms of social withdrawal and facial recognition.
Implications of Animal Object Memory Research for Human Amnesia
ERIC Educational Resources Information Center
Winters, Boyer D.; Saksida, Lisa M.; Bussey, Timothy J.
2010-01-01
Damage to structures in the human medial temporal lobe causes severe memory impairment. Animal object recognition tests gained prominence from attempts to model "global" human medial temporal lobe amnesia, such as that observed in patient HM. These tasks, such as delayed nonmatching-to-sample and spontaneous object recognition, for assessing…
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Prabhu, M.; Arnold, S. M. (Technical Monitor)
2002-01-01
Recently, a conceptually simple approach, based on the notion of defect energy in material space has been developed and extensively studied (from the theoretical and computational standpoints). The present study focuses on its evaluation from the viewpoint of damage localization capabilities in case of two-dimensional plates; i.e., spatial pattern recognition on surfaces. To this end, two different experimental modal test results are utilized; i.e., (1) conventional modal testing using (white noise) excitation and accelerometer-type sensors and (2) pattern recognition using Electronic speckle pattern interferometry (ESPI), a full field method capable of analyzing the mechanical vibration of complex structures. Unlike the conventional modal testing technique (using contacting accelerometers), these emerging ESPI technologies operate in a non-contacting mode, can be used even under hazardous conditions with minimal or no presence of noise and can simultaneously provide measurements for both translations and rotations. Results obtained have clearly demonstrated the robustness and versatility of the global NDE scheme developed. The vectorial character of the indices used, which enabled the extraction of distinct patterns for localizing damages proved very useful. In the context of the targeted pattern recognition paradigm, two algorithms were developed for the interrogation of test measurements; i.e., intensity contour maps for the damaged index, and the associated defect energy vector field plots.
Wienholz, Franziska; Vermeulen, Wim
2017-01-01
Abstract Nucleotide excision repair (NER) comprises two damage recognition pathways: global genome NER (GG-NER) and transcription-coupled NER (TC-NER), which remove a wide variety of helix-distorting lesions including UV-induced damage. During NER, a short stretch of single-stranded DNA containing damage is excised and the resulting gap is filled by DNA synthesis in a process called unscheduled DNA synthesis (UDS). UDS is measured by quantifying the incorporation of nucleotide analogues into repair patches to provide a measure of NER activity. However, this assay is unable to quantitatively determine TC-NER activity due to the low contribution of TC-NER to the overall NER activity. Therefore, we developed a user-friendly, fluorescence-based single-cell assay to measure TC-NER activity. We combined the UDS assay with tyramide-based signal amplification to greatly increase the UDS signal, thereby allowing UDS to be quantified at low UV doses, as well as DNA-repair synthesis of other excision-based repair mechanisms such as base excision repair and mismatch repair. Importantly, we demonstrated that the amplified UDS is sufficiently sensitive to quantify TC-NER-derived repair synthesis in GG-NER-deficient cells. This assay is important as a diagnostic tool for NER-related disorders and as a research tool for obtaining new insights into the mechanism and regulation of excision repair. PMID:28088761
Sollinger, Daniel; Eißler, Ruth; Lorenz, Steffen; Strand, Susanne; Chmielewski, Stefan; Aoqui, Cristiane; Schmaderer, Christoph; Bluyssen, Hans; Zicha, Josef; Witzke, Oliver; Scherer, Elias; Lutz, Jens; Heemann, Uwe; Baumann, Marcus
2014-03-01
Recent publications have shed new light on the role of the adaptive and innate immune system in the pathogenesis of hypertension. However, there are limited data whether receptors of the innate immune system may influence blood pressure. Toll-like receptor 4 (TLR4), a pattern recognition receptor, is a key component of the innate immune system, which is activated by exogenous and endogenous ligands. Hypertension is associated with end-organ damage and thus might lead to the release of damage-associated molecular patterns (DAMPs), which are endogenous activators of TLR4 receptors. The present study aimed to elucidate whether TLR4 signalling is able to modulate vascular contractility in an experimental model of hypertension thus contributing to blood pressure regulation. NG-nitro-l-arginine methyl ester (l-NAME)-induced hypertension was blunted in TLR4(-/-) when compared with wild-type mice. Treatment with l-NAME was associated with a release of DAMPs, leading to reactive oxygen species production of smooth muscle cells in a TLR4-dependent manner. As oxidative stress leads to an impaired function of the NO-sGC-cyclic GMP (cGMP) pathway, we were able to demonstrate that TLR4(-/-) was protected from sGC inactivation. Consequently, arterial contractility was reduced in TLR4(-/-). Cell damage-associated TLR4 signalling might act as a direct mediator of vascular contractility providing a molecular link between inflammation and hypertension.
van Assche, Mitsouko; Kebets, Valeria; Lopez, Ursula; Saj, Arnaud; Goldstein, Rachel; Bernasconi, Françoise; Vuilleumier, Patrik; Assal, Frédéric
2016-01-01
The parahippocampal cortex (PHC) participates in both perception and memory. However, the way perceptual and memory processes cooperate when we navigate in our everyday life environment remains poorly understood. We studied a stroke patient presenting a brain lesion in the right PHC, which resulted in a mild and quantifiable topographic agnosia, and allowed us to investigate the role of this structure in overt place recognition. Photographs of personally familiar and unfamiliar places were displayed during functional magnetic resonance imaging (fMRI). Familiar places were either recognized or unrecognized by the patient and 6 age- and education-matched controls in a visual post-scan recognition test. In fMRI, recognized places were associated with a network comprising the fusiform gyrus in the intact side, but also the right anterior PHC, which included the lesion site. Moreover, this right PHC showed increased connectivity with the left homologous PHC in the intact hemisphere. By contrasting recognized with unrecognized familiar places, we replicate the finding of the joint involvement of the retrosplenial cortex, occipito-temporal areas, and posterior parietal cortex in place recognition. This study shows that the ability for left and right anterior PHC to communicate despite the neurological damage conditioned place recognition success in this patient. It further highlights a hemispheric asymmetry in this process, by showing the fundamental role of the right PHC in topographic agnosia.
Cell Death and DAMPs in Acute Pancreatitis
Kang, Rui; Lotze, Michael T; Zeh, Herbert J; Billiar, Timothy R; Tang, Daolin
2014-01-01
Cell death and inflammation are key pathologic responses of acute pancreatitis (AP), the leading cause of hospital admissions for gastrointestinal disorders. It is becoming increasingly clear that damage-associated molecular pattern molecules (DAMPs) play an important role in the pathogenesis of AP by linking local tissue damage to systemic inflammation syndrome. Endogenous DAMPs released from dead, dying or injured cells initiate and extend sterile inflammation via specific pattern recognition receptors. Inhibition of the release and activity of DAMPs (for example, high mobility group box 1, DNA, histones and adenosine triphosphate) provides significant protection against experimental AP. Moreover, increased serum levels of DAMPs in patients with AP correlate with disease severity. These findings provide novel insight into the mechanism, diagnosis and management of AP. DAMPs might be an attractive therapeutic target in AP. PMID:25105302
What Combined Measurements From Structures and Imaging Tell Us About DNA Damage Responses
Brosey, Chris A.; Ahmed, Zamal; Lees-Miller, Susan P.; Tainer, John A.
2017-01-01
DNA damage outcomes depend upon the efficiency and fidelity of DNA damage responses (DDRs) for different cells and damage. As such, DDRs represent tightly regulated prototypical systems for linking nanoscale biomolecular structure and assembly to the biology of genomic regulation and cell signaling. However, the dynamic and multifunctional nature of DDR assemblies can render elusive the correlation between the structures of DDR factors and specific biological disruptions to the DDR when these structures are altered. In this chapter, we discuss concepts and strategies for combining structural, biophysical, and imaging techniques to investigate DDR recognition and regulation, and thus bridge sequence-level structural biochemistry to quantitative biological outcomes visualized in cells. We focus on representative DDR responses from PARP/PARG/AIF damage signaling in DNA single-strand break repair and nonhomologous end joining complexes in double-strand break repair. Methods with exemplary experimental results are considered with a focus on strategies for probing flexibility, conformational changes, and assembly processes that shape a predictive understanding of DDR mechanisms in a cellular context. Integration of structural and imaging measurements promises to provide foundational knowledge to rationally control and optimize DNA damage outcomes for synthetic lethality and for immune activation with resulting insights for biology and cancer interventions. PMID:28668129
Immunology of Cryptococcal Infections: Developing a Rational Approach to Patient Therapy
Elsegeiny, Waleed; Marr, Kieren A.; Williamson, Peter R.
2018-01-01
Cryptococcal meningoencephalitis is responsible for upwards of 15% of HIV-related deaths worldwide and is currently the most common cause of non-viral meningitis in the US, affecting both previously healthy and people with immune suppression caused by cancer chemotherapy, transplantation, and biologic therapies. Despite a continued 30–50% attributable mortality, recommended therapeutic strategies have remained largely unchanged since the 1950s. Recent murine models and human studies examining the role of the immune system in both susceptibility to the infection as well as host damage have begun to influence patient care decisions. The Damage Framework Response, originally proposed in 1999, was recently used to discuss dichotomous etiologies of host damage in cryptococcal disease. These include patients suffering microbiological damage with low host immunity (especially those immunosuppressed with HIV) and those having low (live) microbiological burden but high immune-mediated damage (HIV-related immune reconstitution syndrome and non-HIV-related postinfectious inflammatory response syndrome). Cryptococcal disease in previously healthy hosts, albeit rare, has been known for a long time. Immunophenotyping and dendritic cell-T cell signaling studies on cerebral spinal fluid of these rare patients reveal immune capacity for recognition and T-cell activation pathways including increased levels of HLA-DR and CD56. However, despite effective T-cell signals, brain biopsy and autopsy specimens demonstrated an M2 alternative macrophage polarization and poor phagocytosis of fungal cells. These studies expand the paradigm for cryptococcal disease susceptibility to include a prominent role for immune-mediated damage and suggest a need for careful individual consideration of immune activation during therapy of cryptococcal disease in diverse hosts. PMID:29670625
Immunology of Cryptococcal Infections: Developing a Rational Approach to Patient Therapy.
Elsegeiny, Waleed; Marr, Kieren A; Williamson, Peter R
2018-01-01
Cryptococcal meningoencephalitis is responsible for upwards of 15% of HIV-related deaths worldwide and is currently the most common cause of non-viral meningitis in the US, affecting both previously healthy and people with immune suppression caused by cancer chemotherapy, transplantation, and biologic therapies. Despite a continued 30-50% attributable mortality, recommended therapeutic strategies have remained largely unchanged since the 1950s. Recent murine models and human studies examining the role of the immune system in both susceptibility to the infection as well as host damage have begun to influence patient care decisions. The Damage Framework Response, originally proposed in 1999, was recently used to discuss dichotomous etiologies of host damage in cryptococcal disease. These include patients suffering microbiological damage with low host immunity (especially those immunosuppressed with HIV) and those having low (live) microbiological burden but high immune-mediated damage (HIV-related immune reconstitution syndrome and non-HIV-related postinfectious inflammatory response syndrome). Cryptococcal disease in previously healthy hosts, albeit rare, has been known for a long time. Immunophenotyping and dendritic cell-T cell signaling studies on cerebral spinal fluid of these rare patients reveal immune capacity for recognition and T-cell activation pathways including increased levels of HLA-DR and CD56. However, despite effective T-cell signals, brain biopsy and autopsy specimens demonstrated an M2 alternative macrophage polarization and poor phagocytosis of fungal cells. These studies expand the paradigm for cryptococcal disease susceptibility to include a prominent role for immune-mediated damage and suggest a need for careful individual consideration of immune activation during therapy of cryptococcal disease in diverse hosts.
Bihippocampal damage with emotional dysfunction: impaired auditory recognition of fear.
Ghika-Schmid, F; Ghika, J; Vuilleumier, P; Assal, G; Vuadens, P; Scherer, K; Maeder, P; Uske, A; Bogousslavsky, J
1997-01-01
A right-handed man developed a sudden transient, amnestic syndrome associated with bilateral hemorrhage of the hippocampi, probably due to Urbach-Wiethe disease. In the 3rd month, despite significant hippocampal structural damage on imaging, only a milder degree of retrograde and anterograde amnesia persisted on detailed neuropsychological examination. On systematic testing of recognition of facial and vocal expression of emotion, we found an impairment of the vocal perception of fear, but not that of other emotions, such as joy, sadness and anger. Such selective impairment of fear perception was not present in the recognition of facial expression of emotion. Thus emotional perception varies according to the different aspects of emotions and the different modality of presentation (faces versus voices). This is consistent with the idea that there may be multiple emotion systems. The study of emotional perception in this unique case of bilateral involvement of hippocampus suggests that this structure may play a critical role in the recognition of fear in vocal expression, possibly dissociated from that of other emotions and from that of fear in facial expression. In regard of recent data suggesting that the amygdala is playing a role in the recognition of fear in the auditory as well as in the visual modality this could suggest that the hippocampus may be part of the auditory pathway of fear recognition.
Cepstrum based feature extraction method for fungus detection
NASA Astrophysics Data System (ADS)
Yorulmaz, Onur; Pearson, Tom C.; Çetin, A. Enis
2011-06-01
In this paper, a method for detection of popcorn kernels infected by a fungus is developed using image processing. The method is based on two dimensional (2D) mel and Mellin-cepstrum computation from popcorn kernel images. Cepstral features that were extracted from popcorn images are classified using Support Vector Machines (SVM). Experimental results show that high recognition rates of up to 93.93% can be achieved for both damaged and healthy popcorn kernels using 2D mel-cepstrum. The success rate for healthy popcorn kernels was found to be 97.41% and the recognition rate for damaged kernels was found to be 89.43%.
NASA Astrophysics Data System (ADS)
Wang, Ying; Hu, Yuehua; Wu, Tao; Zhang, Lihua; Liu, Hua; Zhou, Xiaoshun; Shao, Yong
2016-01-01
Removal of a damaged base in DNA produces an abasic site (AP site) nanocavity. If left un-repaired in vivo by the specific enzyme, this nanocavity will result in nucleotide mutation in the following DNA replication. Therefore, selective recognition of AP site nanocavity by small molecules is important for identification of such DNA damage and development of genetic drugs. In this work, we investigate the fluorescence behavior of isoquinoline alkaloids including palmatine (PAL), berberine (BER), epiberberine (EPI), jatrorrhizine (JAT), coptisine (COP), coralyne (COR), worenine (WOR), berberrubine (BEU), sanguinarine (SAN), chelerythrine (CHE), and nitidine (NIT) upon binding with the AP nanocavity. PAL is screened out as the most efficient fluorophore-switched probe to recognize the AP nanocavity over the fully matched DNA. Its fluorescence enhancement occurs for all of the AP nanocavity sequence environments, which has not been achieved by the previously used probes. The bridged π conjugation effect should partially contribute to the AP nanocavity-specific fluorescence, as opposed to the solvent effect. Due to the strong binding with the AP nanocavity, PAL will find wide applications in the DNA damage recognition and sensor development.
Neutrophil cell surface receptors and their intracellular signal transduction pathways☆
Futosi, Krisztina; Fodor, Szabina; Mócsai, Attila
2013-01-01
Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca2 + signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases. PMID:23994464
Fractionation of memory in medial temporal lobe amnesia.
Bird, Chris M; Shallice, Tim; Cipolotti, Lisa
2007-03-25
We report a comprehensive investigation of the anterograde memory functions of two patients with memory impairments (RH and JC). RH had neuroradiological evidence of apparently selective right-sided hippocampal damage and an intact cognitive profile apart from selective memory impairments. JC, had neuroradiological evidence of bilateral hippocampal damage following anoxia due to cardiac arrest. He had anomic and "executive" difficulties in addition to a global amnesia, suggesting atrophy extending beyond hippocampal regions. Their performance is compared with that of a previously reported hippocampal amnesic patient who showed preserved recollection and familiarity for faces in the context of severe verbal and topographical memory impairment [VC; Cipolotti, L., Bird, C., Good, T., Macmanus, D., Rudge, P., & Shallice, T. (2006). Recollection and familiarity in dense hippocampal amnesia: A case study. Neuropsychologia, 44, 489-506.] The patients were administered experimental tests using verbal (words) and two types of non-verbal materials (faces and buildings). Receiver operating characteristic analyses were used to estimate the contribution of recollection and familiarity to recognition performance on the experimental tests. RH had preserved verbal recognition memory. Interestingly, her face recognition memory was also spared, whilst topographical recognition memory was impaired. JC was impaired for all types of verbal and non-verbal materials. In both patients, deficits in recollection were invariably associated with deficits in familiarity. JC's data demonstrate the need for a comprehensive cognitive investigation in patients with apparently selective hippocampal damage following anoxia. The data from RH suggest that the right hippocampus is necessary for recollection and familiarity for topographical materials, whilst the left hippocampus is sufficient to underpin these processes for at least some types of verbal materials. Face recognition memory may be adequately subserved by areas outside of the hippocampus.
The Yin and Yang of innate immunity in stroke.
Xu, Xiaomeng; Jiang, Yongjun
2014-01-01
Immune system plays an elementary role in the pathophysiological progress of ischemic stroke. It consists of innate and adaptive immune system. Activated within minutes after ischemic onset, innate immunity is responsible for the elimination of necrotic cells and tissue repair, while it is critically involved in the initiation and amplification of poststroke inflammation that amplifies ischemic damage to the brain tissue. Innate immune response requires days to be fully developed, providing a considerable time window for therapeutic intervention, suggesting prospect of novel immunomodulatory therapies against poststroke inflammation-induced brain injury. However, obstacles still exist and a comprehensive understanding of ischemic stroke and innate immune reaction is essential. In this review, we highlighted the current experimental and clinical data depicting the innate immune response following ischemic stroke, mainly focusing on the recognition of damage-associated molecular patterns, activation and recruitment of innate immune cells, and involvement of various cytokines. In addition, clinical trials targeting innate immunity were also documented regardless of the outcome, stressing the requirements for further investigation.
Dashniani, M G; Burjanadze, M A; Naneishvili, T L; Chkhikvishvili, N C; Beselia, G V; Kruashvili, L B; Pochkhidze, N O; Chighladze, M R
2015-01-01
In the present study, the effect of the medial septal (MS) lesions on exploratory activity in the open field and the spatial and object recognition memory has been investigated. This experiment compares three types of MS lesions: electrolytic lesions that destroy cells and fibers of passage, neurotoxic - ibotenic acid lesions that spare fibers of passage but predominantly affect the septal noncholinergic neurons, and immunotoxin - 192 IgG-saporin infusions that only eliminate cholinergic neurons. The main results are: the MS electrolytic lesioned rats were impaired in habituating to the environment in the repeated spatial environment, but rats with immuno- or neurotoxic lesions of the MS did not differ from control ones; the MS electrolytic and ibotenic acid lesioned rats showed an increase in their exploratory activity to the objects and were impaired in habituating to the objects in the repeated spatial environment; rats with immunolesions of the MS did not differ from control rats; electrolytic lesions of the MS disrupt spatial recognition memory; rats with immuno- or neurotoxic lesions of the MS were normal in detecting spatial novelty; all of the MS-lesioned and control rats clearly reacted to the object novelty by exploring the new object more than familiar ones. Results observed across lesion techniques indicate that: (i) the deficits after nonselective damage of MS are limited to a subset of cognitive processes dependent on the hippocampus, (ii) MS is substantial for spatial, but not for object recognition memory - the object recognition memory can be supported outside the septohippocampal system; (iii) the selective loss of septohippocampal cholinergic or noncholinergic projections does not disrupt the function of the hippocampus to a sufficient extent to impair spatial recognition memory; (iv) there is dissociation between the two major components (cholinergic and noncholinergic) of the septohippocampal pathway in exploratory behavior assessed in the open field - the memory exhibited by decrements in exploration of repeated object presentations is affected by either electrolytic or ibotenic lesions, but not saporin.
Flores-Balter, Gabriela; Cordova-Jadue, Héctor; Chiti-Morales, Alessandra; Lespay, Carolyne; Espina-Marchant, Pablo; Falcon, Romina; Grinspun, Noemi; Sanchez, Jessica; Bustamante, Diego; Morales, Paola; Herrera-Marschitz, Mario; Valdés, José L
2016-10-15
Perinatal asphyxia (PA) is associated with long-term neuronal damage and cognitive deficits in adulthood, such as learning and memory disabilities. After PA, specific brain regions are compromised, including neocortex, hippocampus, basal ganglia, and ascending neuromodulatory pathways, such as dopamine system, explaining some of the cognitive disabilities. We hypothesize that other neuromodulatory systems, such as histamine system from the tuberomammillary nucleus (TMN), which widely project to telencephalon, shown to be relevant for learning and memory, may be compromised by PA. We investigated here the effect of PA on (i) Density and neuronal activity of TMN neurons by double immunoreactivity for adenosine deaminase (ADA) and c-Fos, as marker for histaminergic neurons and neuronal activity respectively. (ii) Expression of the histamine-synthesizing enzyme, histidine decarboxylase (HDC) by western blot and (iii) thioperamide an H3 histamine receptor antagonist, on an object recognition memory task. Asphyxia-exposed rats showed a decrease of ADA density and c-Fos activity in TMN, and decrease of HDC expression in hypothalamus. Asphyxia-exposed rats also showed a low performance in object recognition memory compared to caesarean-delivered controls, which was reverted in a dose-dependent manner by the H3 antagonist thioperamide (5-10mg/kg, i.p.). The present results show that the histaminergic neuronal system of the TMN is involved in the long-term effects induced by PA, affecting learning and memory. Copyright © 2016 Elsevier B.V. All rights reserved.
Phagocyte-myocyte interactions and consequences during hypoxic wound healing.
Zhang, Shuang; Dehn, Shirley; DeBerge, Matthew; Rhee, Ki-Jong; Hudson, Barry; Thorp, Edward B
2014-01-01
Myocardial infarction (MI), secondary to atherosclerotic plaque rupture and occlusive thrombi, triggers acute margination of inflammatory neutrophils and monocyte phagocyte subsets to the damaged heart, the latter of which may give rise briefly to differentiated macrophage-like or dendritic-like cells. Within the injured myocardium, a primary function of these phagocytic cells is to remove damaged extracellular matrix, necrotic and apoptotic cardiac cells, as well as immune cells that turn over. Recognition of dying cellular targets by phagocytes triggers intracellular signaling, particularly in macrophages, wherein cytokines and lipid mediators are generated to promote inflammation resolution, fibrotic scarring, angiogenesis, and compensatory organ remodeling. These actions cooperate in an effort to preserve myocardial contractility and prevent heart failure. Immune cell function is modulated by local tissue factors that include secreted protease activity, oxidative stress during clinical reperfusion, and hypoxia. Importantly, experimental evidence suggests that monocyte function and phagocytosis efficiency is compromised in the setting of MI risk factors, including hyperlipidemia and ageing, however underlying mechanisms remain unclear. Herein we review seminal phagocyte and cardiac molecular factors that lead to, and culminate in, the recognition and removal of dying injured myocardium, the effects of hypoxia, and their relationship to cardiac infarct size and heart healing. Copyright © 2014 Elsevier Inc. All rights reserved.
RO 90-7501 Enhances TLR3 and RLR Agonist Induced Antiviral Response
Guo, Fang; Mead, Jennifer; Aliya, Nishat; Wang, Lijuan; Cuconati, Andrea; Wei, Lai; Li, Kui; Block, Timothy M.; Guo, Ju-Tao; Chang, Jinhong
2012-01-01
Recognition of virus infection by innate pattern recognition receptors (PRRs), including membrane-associated toll-like receptors (TLR) and cytoplasmic RIG-I-like receptors (RLR), activates cascades of signal transduction pathways leading to production of type I interferons (IFN) and proinflammatory cytokines that orchestrate the elimination of the viruses. Although it has been demonstrated that PRR-mediated innate immunity plays an essential role in defending virus from infection, it also occasionally results in overwhelming production of proinflammatory cytokines that cause severe inflammation, blood vessel leakage and tissue damage. In our efforts to identify small molecules that selectively enhance PRR-mediated antiviral, but not the detrimental inflammatory response, we discovered a compound, RO 90–7501 (‘2’-(4-Aminophenyl)-[2,5′-bi-1H-benzimidazol]-5-amine), that significantly promoted both TLR3 and RLR ligand-induced IFN-β gene expression and antiviral response, most likely via selective activation of p38 mitogen-activated protein kinase (MAPK) pathway. Our results thus imply that pharmacological modulation of PRR signal transduction pathways in favor of the induction of a beneficial antiviral response can be a novel therapeutic strategy. PMID:23056170
Coin, Frédéric; Frit, Philippe; Viollet, Benoit; Salles, Bernard; Egly, Jean-Marc
1998-01-01
DNA damage recognition by basal transcription factors follows different mechanisms. Using transcription-competition, nitrocellulose filter binding, and DNase I footprinting assays, we show that, although the general transcription factor TFIIH is able to target any kind of lesion which can be repaired by the nucleotide excision repair pathway, TATA binding protein (TBP)-TFIID is more selective in damage recognition. Only genotoxic agents which are able to induce kinked DNA structures similar to the one for the TATA box in its TBP complex are recognized. Indeed, DNase I footprinting patterns reveal that TBP protects equally 4 nucleotides upstream and 6 nucleotides downstream from the A-T (at position −29 of the noncoding strand) of the adenovirus major late promoter and from the G-G of a cisplatin-induced 1,2-d(GpG) cross-link. Together, our results may partially explain differences in transcription inhibition rates following DNA damage. PMID:9632775
Kim, Ju-Won; Park, Seunghee
2018-01-02
In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.
Basati, Zahra; Jamshidi, Bahareh; Rasekh, Mansour; Abbaspour-Gilandeh, Yousef
2018-05-30
The presence of sunn pest-damaged grains in wheat mass reduces the quality of flour and bread produced from it. Therefore, it is essential to assess the quality of the samples in collecting and storage centers of wheat and flour mills. In this research, the capability of visible/near-infrared (Vis/NIR) spectroscopy combined with pattern recognition methods was investigated for discrimination of wheat samples with different percentages of sunn pest-damaged. To this end, various samples belonging to five classes (healthy and 5%, 10%, 15% and 20% unhealthy) were analyzed using Vis/NIR spectroscopy (wavelength range of 350-1000 nm) based on both supervised and unsupervised pattern recognition methods. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) as the unsupervised techniques and soft independent modeling of class analogies (SIMCA) and partial least squares-discriminant analysis (PLS-DA) as supervised methods were used. The results showed that Vis/NIR spectra of healthy samples were correctly clustered using both PCA and HCA. Due to the high overlapping between the four unhealthy classes (5%, 10%, 15% and 20%), it was not possible to discriminate all the unhealthy samples in individual classes. However, when considering only the two main categories of healthy and unhealthy, an acceptable degree of separation between the classes can be obtained after classification with supervised pattern recognition methods of SIMCA and PLS-DA. SIMCA based on PCA modeling correctly classified samples in two classes of healthy and unhealthy with classification accuracy of 100%. Moreover, the power of the wavelengths of 839 nm, 918 nm and 995 nm were more than other wavelengths to discriminate two classes of healthy and unhealthy. It was also concluded that PLS-DA provides excellent classification results of healthy and unhealthy samples (R 2 = 0.973 and RMSECV = 0.057). Therefore, Vis/NIR spectroscopy based on pattern recognition techniques can be useful for rapid distinguishing the healthy wheat samples from those damaged by sunn pest in the maintenance and processing centers. Copyright © 2018 Elsevier B.V. All rights reserved.
Voice Recognition in Face-Blind Patients
Liu, Ran R.; Pancaroglu, Raika; Hills, Charlotte S.; Duchaine, Brad; Barton, Jason J. S.
2016-01-01
Right or bilateral anterior temporal damage can impair face recognition, but whether this is an associative variant of prosopagnosia or part of a multimodal disorder of person recognition is an unsettled question, with implications for cognitive and neuroanatomic models of person recognition. We assessed voice perception and short-term recognition of recently heard voices in 10 subjects with impaired face recognition acquired after cerebral lesions. All 4 subjects with apperceptive prosopagnosia due to lesions limited to fusiform cortex had intact voice discrimination and recognition. One subject with bilateral fusiform and anterior temporal lesions had a combined apperceptive prosopagnosia and apperceptive phonagnosia, the first such described case. Deficits indicating a multimodal syndrome of person recognition were found only in 2 subjects with bilateral anterior temporal lesions. All 3 subjects with right anterior temporal lesions had normal voice perception and recognition, 2 of whom performed normally on perceptual discrimination of faces. This confirms that such lesions can cause a modality-specific associative prosopagnosia. PMID:25349193
Haoudi, Abdelali; Daniels, Rodney C; Wong, Eric; Kupfer, Gary; Semmes, O John
2003-09-26
The virally encoded oncoprotein Tax has been implicated in HTLV-1-mediated cellular transformation. The exact mechanism by which this protein contributes to the oncogenic process is not known. However, it has been hypothesized that Tax induces genomic instability via repression of cellular DNA repair. We examined the effect of de novo Tax expression upon the cell cycle, because appropriate activation of cell cycle checkpoints is essential to a robust damage-repair response. Upon induction of tax expression, Jurkat T-cells displayed a pronounced accumulation in G2/M that was reversible by caffeine. We examined the G2-specific checkpoint signaling response in these cells and found activation of the ATM/chk2-mediated pathway, whereas the ATR/chk1-mediated response was unaffected. Immunoprecipitation with anti-chk2 antibody results in co-precipitation of Tax demonstrating a direct interaction of Tax with a chk2-containing complex. We also show that Tax targets a discrete nuclear site and co-localizes with chk2 and not chk1. This nuclear site, previously identified as Tax Speckled Structures (TSS), also contains the early damage response factor 53BP1. The recruitment of 53BP1 to TSS is dependent upon ATM signaling and requires expression of Tax. Specifically, Tax expression induces redistribution of diffuse nuclear 53BP1 to the TSS foci. Taken together these data suggest that the TSS describe a unique nuclear site involved in DNA damage recognition, repair response, and cell cycle checkpoint activation. We suggest that association of Tax with this multifunctional subnuclear site results in disruption of a subset of the site-specific activities and contributes to cellular genomic instability.
Mehta, Sonya; Inoue, Kayo; Rudrauf, David; Damasio, Hanna; Tranel, Daniel; Grabowski, Thomas
2015-01-01
Lesion-deficit studies support the hypothesis that the left anterior temporal lobe (ATL) plays a critical role in retrieving names of concrete entities. They further suggest that different regions of the left ATL process different conceptual categories. Here we test the specificity of these relationships and whether the anatomical segregation is related to the underlying organization of white matter connections. We reanalyzed data from a previous lesion study of naming and recognition across five categories of concrete entities. In voxelwise logistic regressions of lesion-deficit associations, we formally incorporated measures of disconnection of long-range association fiber tracts (FTs) and covaried for recognition and non-category specific naming deficits. We also performed fiber tractwise analyses to assess whether damage to specific FTs was preferentially associated with category-selective naming deficits. Damage to the basolateral ATL was associated with naming deficits for both unique (famous faces) and non-unique entities, whereas the damage to the temporal pole was associated with naming deficits for unique entities only. This segregation pattern remained after accounting for comorbid recognition deficits or naming deficits in other categories. The tractwise analyses showed that damage to the uncinate fasciculus was associated with naming impairments for unique entities, while damage to the inferior longitudinal fasciculus was associated with naming impairments for non-unique entities. Covarying for FT transection in voxelwise analyses rendered the cortical association for unique entities more focal. These results are consistent with the partial segregation of brain system support for name retrieval of unique and non-unique entities at both the level of cortical components and underlying white matter fiber bundles. Our study reconciles theoretic accounts of the functional organization of the left ATL by revealing both category-related processing and semantic hub sectors. PMID:26707082
NASA Astrophysics Data System (ADS)
Vasquez, Karen M.; Christensen, Jesper; Li, Lei; Finch, Rick A.; Glazer, Peter M.
2002-04-01
Nucleotide excision repair (NER) plays a central role in maintaining genomic integrity by detecting and repairing a wide variety of DNA lesions. Xeroderma pigmentosum complementation group A protein (XPA) is an essential component of the repair machinery, and it is thought to be involved in the initial step as a DNA damage recognition and/or confirmation factor. Human replication protein A (RPA) and XPA have been reported to interact to form a DNA damage recognition complex with greater specificity for damaged DNA than XPA alone. The mechanism by which these two proteins recognize such a wide array of structures resulting from different types of DNA damage is not known. One possibility is that they recognize a common feature of the lesions, such as distortions of the helical backbone. We have tested this idea by determining whether human XPA and RPA proteins can recognize the helical distortions induced by a DNA triple helix, a noncanonical DNA structure that has been shown to induce DNA repair, mutagenesis, and recombination. We measured binding of XPA and RPA, together or separately, to substrates containing triplexes with three, two, or no strands covalently linked by psoralen conjugation and photoaddition. We found that RPA alone recognizes all covalent triplex structures, but also forms multivalent nonspecific DNA aggregates at higher concentrations. XPA by itself does not recognize the substrates, but it binds them in the presence of RPA. Addition of XPA decreases the nonspecific DNA aggregate formation. These results support the hypothesis that the NER machinery is targeted to helical distortions and demonstrate that RPA can recognize damaged DNA even without XPA.
How Does the Macula Protect Itself from Oxidative Stress?
Handa, James T.
2012-01-01
Oxidative stress has been hypothesized to contribute to the development of age-related macular degeneration (AMD), the most common cause of blindness in the United States. At present, there is no treatment for early disease. Reactive oxygen species (ROS) play a physiological role in the retinal pigment epithelium (RPE), a key cell type in this disease, but with excessive ROS, oxidative damage or excessive innate immune system activation can result. The RPE has developed a robust antioxidant system driven by the transcription factor Nrf2. Impaired Nrf2 signaling can lead to oxidative damage or activate the innate immune response, both of which can lead to RPE apoptosis, a defining change in AMD. Several mouse models simulating environmental stressors or targeting specific antioxidant enzymes such as superoxide dismutase or Nrf2, have simulated some of the features of AMD. While ROS are short-lived, oxidatively damaged molecules termed oxidation specific epitopes (OSEs), can be long-lived and a source of chronic stress that activates the innate immune system through pattern recognition receptors (PRRs). The macula accumulates a number of OSEs including carboxyethylpyrrole, malondialdehyde, 4-hydroxynonenal, and advanced glycation endproducts, as well as their respective neutralizing PRRs. Excessive accumulation of OSEs results in pathologic immune activation. For example, mice immunized with the carboxyethylpyrrole develop cardinal features of AMD. Regulating ROS in the RPE by modulating antioxidant systems or neutralizing OSEs through an appropriate innate immune response are potential modalities to treat or prevent early AMD. PMID:22503691
How does the macula protect itself from oxidative stress?
Handa, James T
2012-08-01
Oxidative stress has been hypothesized to contribute to the development of age-related macular degeneration (AMD), the most common cause of blindness in the United States. At present, there is no treatment for early disease. Reactive oxygen species (ROS) play a physiological role in the retinal pigment epithelium (RPE), a key cell type in this disease, but with excessive ROS, oxidative damage or excessive innate immune system activation can result. The RPE has developed a robust antioxidant system driven by the transcription factor Nrf2. Impaired Nrf2 signaling can lead to oxidative damage or activate the innate immune response, both of which can lead to RPE apoptosis, a defining change in AMD. Several mouse models simulating environmental stressors or targeting specific antioxidant enzymes such as superoxide dismutase or Nrf2, have simulated some of the features of AMD. While ROS are short-lived, oxidatively damaged molecules termed oxidation specific epitopes (OSEs), can be long-lived and a source of chronic stress that activates the innate immune system through pattern recognition receptors (PRRs). The macula accumulates a number of OSEs including carboxyethylpyrrole, malondialdehyde, 4-hydroxynonenal, and advanced glycation endproducts, as well as their respective neutralizing PRRs. Excessive accumulation of OSEs results in pathologic immune activation. For example, mice immunized with the carboxyethylpyrrole develop cardinal features of AMD. Regulating ROS in the RPE by modulating antioxidant systems or neutralizing OSEs through an appropriate innate immune response are potential modalities to treat or prevent early AMD. Copyright © 2012 Elsevier Ltd. All rights reserved.
Activation of WIP1 Phosphatase by HTLV-1 Tax Mitigates the Cellular Response to DNA Damage
Dayaram, Tajhal; Lemoine, Francene J.; Donehower, Lawrence A.; Marriott, Susan J.
2013-01-01
Genomic instability stemming from dysregulation of cell cycle checkpoints and DNA damage response (DDR) is a common feature of many cancers. The cancer adult T cell leukemia (ATL) can occur in individuals infected with human T cell leukemia virus type 1 (HTLV-1), and ATL cells contain extensive chromosomal abnormalities, suggesting that they have defects in the recognition or repair of DNA damage. Since Tax is the transforming protein encoded by HTLV-1, we asked whether Tax can affect cell cycle checkpoints and the DDR. Using a combination of flow cytometry and DNA repair assays we showed that Tax-expressing cells exit G1 phase and initiate DNA replication prematurely following damage. Reduced phosphorylation of H2AX (γH2AX) and RPA2, phosphoproteins that are essential to properly initiate the DDR, was also observed in Tax-expressing cells. To determine the cause of decreased DDR protein phosphorylation in Tax-expressing cells, we examined the cellular phosphatase, WIP1, which is known to dephosphorylate γH2AX. We found that Tax can interact with Wip1 in vivo and in vitro, and that Tax-expressing cells display elevated levels of Wip1 mRNA. In vitro phosphatase assays showed that Tax can enhance Wip1 activity on a γH2AX peptide target by 2-fold. Thus, loss of γH2AX in vivo could be due, in part, to increased expression and activity of WIP1 in the presence of Tax. siRNA knockdown of WIP1 in Tax-expressing cells rescued γH2AX in response to damage, confirming the role of WIP1 in the DDR. These studies demonstrate that Tax can disengage the G1/S checkpoint by enhancing WIP1 activity, resulting in reduced DDR. Premature G1 exit of Tax-expressing cells in the presence of DNA lesions creates an environment that tolerates incorporation of random mutations into the host genome. PMID:23405243
Gasser, Stephan; Zhang, Wendy Y L; Tan, Nikki Yi Jie; Tripathi, Shubhita; Suter, Manuel A; Chew, Zhi Huan; Khatoo, Muznah; Ngeow, Joanne; Cheung, Florence S G
2017-07-01
The presence of damaged and microbial DNA can pose a threat to the survival of organisms. Cells express various sensors that recognize specific aspects of such potentially dangerous DNA. Recognition of damaged or microbial DNA by sensors induces cellular processes that are important for DNA repair and inflammation. Here, we review recent evidence that the cellular response to DNA damage and microbial DNA are tightly intertwined. We also discuss insights into the parameters that enable DNA sensors to distinguish damaged and microbial DNA from DNA present in healthy cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A voxel-based lesion study on facial emotion recognition after penetrating brain injury
Dal Monte, Olga; Solomon, Jeffrey M.; Schintu, Selene; Knutson, Kristine M.; Strenziok, Maren; Pardini, Matteo; Leopold, Anne; Raymont, Vanessa; Grafman, Jordan
2013-01-01
The ability to read emotions in the face of another person is an important social skill that can be impaired in subjects with traumatic brain injury (TBI). To determine the brain regions that modulate facial emotion recognition, we conducted a whole-brain analysis using a well-validated facial emotion recognition task and voxel-based lesion symptom mapping (VLSM) in a large sample of patients with focal penetrating TBIs (pTBIs). Our results revealed that individuals with pTBI performed significantly worse than normal controls in recognizing unpleasant emotions. VLSM mapping results showed that impairment in facial emotion recognition was due to damage in a bilateral fronto-temporo-limbic network, including medial prefrontal cortex (PFC), anterior cingulate cortex, left insula and temporal areas. Beside those common areas, damage to the bilateral and anterior regions of PFC led to impairment in recognizing unpleasant emotions, whereas bilateral posterior PFC and left temporal areas led to impairment in recognizing pleasant emotions. Our findings add empirical evidence that the ability to read pleasant and unpleasant emotions in other people's faces is a complex process involving not only a common network that includes bilateral fronto-temporo-limbic lobes, but also other regions depending on emotional valence. PMID:22496440
Attenuated sensitivity to the emotions of others by insular lesion
Terasawa, Yuri; Kurosaki, Yoshiko; Ibata, Yukio; Moriguchi, Yoshiya; Umeda, Satoshi
2015-01-01
The insular cortex has been considered to be the neural base of visceral sensation for many years. Previous studies in psychology and cognitive neuroscience have accumulated evidence indicating that interoception is an essential factor in the subjective feeling of emotion. Recent neuroimaging studies have demonstrated that anterior insular cortex activation is associated with accessing interoceptive information and underpinning the subjective experience of emotional state. Only a small number of studies have focused on the influence of insular damage on emotion processing and interoceptive awareness. Moreover, disparate hypotheses have been proposed for the alteration of emotion processing by insular lesions. Some studies show that insular lesions yield an inability for understanding and representing disgust exclusively, but other studies suggest that such lesions modulate arousal and valence judgments for both positive and negative emotions. In this study, we examined the alteration in emotion recognition in three right insular and adjacent area damaged cases with well-preserved higher cognitive function. Participants performed an experimental task using morphed photos that ranged between neutral and emotional facial expressions (i.e., anger, sadness, disgust, and happiness). Recognition rates of particular emotions were calculated to measure emotional sensitivity. In addition, they performed heartbeat perception task for measuring interoceptive accuracy. The cases identified emotions that have high arousal level (e.g., anger) as less aroused emotions (e.g., sadness) and a case showed remarkably low interoceptive accuracy. The current results show that insular lesions lead to attenuated emotional sensitivity across emotions, rather than category-specific impairments such as to disgust. Despite the small number of cases, our findings suggest that the insular cortex modulates recognition of emotional saliency and mediates interoceptive and emotional awareness. PMID:26388817
Barakat, Radwa; Lin, Po-Ching; Park, Chan Jin; Best-Popescu, Catherine; Bakery, Hatem H; Abosalum, Mohamed E; Abdelaleem, Nabila M; Flaws, Jodi A; Ko, CheMyong
2018-04-23
Phthalates are a family of synthetic chemicals that are used in producing a variety of consumer products. Di-(2-ethylhexyl) phthalate (DEHP) is an widely used phthalate and poses a public health concern. Prenatal exposure to DEHP has been shown to induce premature reproductive senescence in animal studies. In this study, we tested the hypothesis that prenatal exposure to DEHP impairs neurobehavior and recognition memory in her male offspring and we investigated one possible mechanism-oxidative damage in the hippocampus. Pregnant CD-1 female mice were orally administered 200μg, 500mg, or 750mg/kg/day DEHP or vehicle from gestational day 11 until birth. The neurobehavioral impact of the prenatal DEHP exposure was assessed at the ages of 16 to 22 months. Elevated plus maze and open field tests were used to measure anxiety levels. Y-maze and novel object recognition tests were employed to measure memory function. The oxidative damage in the hippocampus was measured by the levels of oxidative DNA damage and by SLIM microscopic counting of hippocampal neurons. Adult male mice that were prenatally exposed to DEHP exhibited anxious behaviors and impaired spatial and short-term recognition memory. The number of hippocampal pyramidal neurons was significantly decreased in the DEHP mice. Furthermore, DEHP mice expressed remarkably high levels of cyclooxygenase-2, 8-hydroxyguanine, and thymidine glycol in their hippocampal neurons. DEHP mice also had lower circulating testosterone concentrations and displayed a weaker immunoreactivity than the control mice to androgen receptor expression in the brain. This study found that prenatal exposure to DEHP caused elevated anxiety behavior and impaired recognition memory. These behavioral changes may originate from neurodegeneration caused by oxidative damage and inflammation in the hippocampus. Decreased circulating testosterone concentrations and decreased expression of androgen receptor in the brain also may be factors contributing to the impaired neurobehavior in the DEHP mice.
Chakraborty, Sagnik; Steinbach, Peter J; Paul, Debamita; Mu, Hong; Broyde, Suse
2018-01-01
Abstract Rad4/XPC recognizes diverse DNA lesions including ultraviolet-photolesions and carcinogen-DNA adducts, initiating nucleotide excision repair. Studies have suggested that Rad4/XPC senses lesion-induced helix-destabilization to flip out nucleotides from damaged DNA sites. However, characterizing how DNA deformability and/or distortions impact recognition has been challenging. Here, using fluorescence lifetime measurements empowered by a maximum entropy algorithm, we mapped the conformational heterogeneities of artificially destabilized mismatched DNA substrates of varying Rad4-binding specificities. The conformational distributions, as probed by FRET between a cytosine-analog pair exquisitely sensitive to DNA twisting/bending, reveal a direct connection between intrinsic DNA deformability and Rad4 recognition. High-specificity CCC/CCC mismatch, free in solution, sampled a strikingly broad range of conformations from B-DNA-like to highly distorted conformations that resembled those observed with Rad4 bound; the extent of these distortions increased with bound Rad4 and with temperature. Conversely, the non-specific TAT/TAT mismatch had a homogeneous, B-DNA-like conformation. Molecular dynamics simulations also revealed a wide distribution of conformations for CCC/CCC, complementing experimental findings. We propose that intrinsic deformability promotes Rad4 damage recognition, perhaps by stalling a diffusing protein and/or facilitating ‘conformational capture’ of pre-distorted damaged sites. Surprisingly, even mismatched DNA specifically bound to Rad4 remains highly dynamic, a feature that may reflect the versatility of Rad4/XPC to recognize many structurally dissimilar lesions. PMID:29267981
Nissan, Jack; Abrahams, Sharon; Sala, Sergio Della
2013-01-01
It is a common finding in tests of false recognition that amnesic patients recognize fewer related lures than healthy controls, and this has led to assumptions that gist memory is damaged in these patients (Schacter, Verfaellie, & Anes, 1997, Neuropsychology, 11; Schacter, Verfaellie, Anes, & Racine, 1998, Journal of Cognitive Neuroscience, 10; Schacter, Verfaellie, & Pradere, 1996, Journal of Memory and Language, 35). However, clinical observations find that amnesic patients typically hold meaningful conversations and make relevant remarks, and there is some experimental evidence highlighting preserved immediate recall of prose (Baddeley & Wilson, 2002, Neuropsychologia, 40; Gooding, Isaac, & Mayes, 2005, Neuropsychologia, 43; Rosenbaum, Gilboa, Levine, Winocur, & Moscovitch, 2009, Neuropsychologia, 47), which suggests that amnesiacs can get the gist. The present experiment used false recognition paradigms to assess whether the reduced rate of false recognition found in amnesic patients may be a consequence of their impaired item-specific memory. It examined the effect of increasing the item-specific memory of amnesic patient DA by bringing her to criterion on relevant study-lists and compared her performance on a false recognition paradigm with a group of 32 healthy young adults. Results indicated that when DA's item-specific memory was increased she was more able to gist and her performance was no different to the healthy young adults. Previous assumptions that gist memory is necessarily damaged in amnesia might therefore be revisited, since the reduced rate of false recognition could be caused by impaired item-specific memory. The experiment also highlights a positive relationship between item-specific and gist memory which has not previously been accounted for in false-recognition experiments.
Inflammasomes and Their Role in Innate Immunity of Sexually Transmitted Infections
Verma, Vivek; Dhanda, Rakesh Singh; Møller, Niels Frimodt; Yadav, Manisha
2016-01-01
Inflammasomes are multiprotein complexes present in the cytosol as pattern recognition receptors or as sensors of damage-associated molecular patterns. After recognition of microbe-associated molecular patterns or host-derived danger signals, nucleotide oligomerization domain-like receptors oligomerize to form inflammasomes. The activation of inflammasomes results in an alarm, which is raised to alert adjacent cells through the processing and release of a number of other substrates present in the cytosol. A wide array of inflammasomes and their adapter molecules have been identified in the host’s innate immune system in response to various pathogens. Components of specific pathogens activate different inflammasomes, which once activated in response to pathogen-induced infection, induce the activation of caspases, and the release of mature forms of interleukin-1β (IL-1β) and IL-18. Identifying the mechanisms underlying pathogen-induced inflammasome activation is important if we are to develop novel therapeutic strategies to target sexually transmitted infections (STIs) related pathogens. This information is currently lacking in literature. In this review, we have discussed the role of various inflammasomes in sensing different STIs, as well as the beneficial or detrimental effects of inflammasome signaling in host resistance. Additionally, we have discussed both canonical and non-canonical processing of IL-1β induced with respect to particular infections. Overall, these findings transform our understanding of both the basic biology and clinical relevance of inflammasomes. PMID:27994587
Nematode Damage Functions: The Problems of Experimental and Sampling Error
Ferris, H.
1984-01-01
The development and use of pest damage functions involves measurement and experimental errors associated with cultural, environmental, and distributional factors. Damage predictions are more valuable if considered with associated probability. Collapsing population densities into a geometric series of population classes allows a pseudo-replication removal of experimental and sampling error in damage function development. Recognition of the nature of sampling error for aggregated populations allows assessment of probability associated with the population estimate. The product of the probabilities incorporated in the damage function and in the population estimate provides a basis for risk analysis of the yield loss prediction and the ensuing management decision. PMID:19295865
Steinke, W R; Cuddy, L L; Jakobson, L S
2001-07-01
This study describes an amateur musician, KB, who became amusic following a right-hemisphere stroke. A series of assessments conducted post-stroke revealed that KB functioned in the normal range for most verbal skills. However, compared with controls matched in age and music training, KB showed severe loss of pitch and rhythmic processing abilities. His ability to recognise and identify familiar instrumental melodies was also lost. Despite these deficits, KB performed remarkably well when asked to recognise and identify familiar song melodies presented without accompanying lyrics. This dissociation between the ability to recognise/identify song vs. instrumental melodies was replicated across different sets of musical materials, including newly learned melodies. Analyses of the acoustical and musical features of song and instrumental melodies discounted an explanation of the dissociation based on these features alone. Rather, the results suggest a functional dissociation resulting from a focal brain lesion. We propose that, in the case of song melodies, there remains sufficient activation in KB's melody analysis system to coactivate an intact representation of both associative information and the lyrics in the speech lexicon, making recognition and identification possible. In the case of instrumental melodies, no such associative processes exist; thus recognition and identification do not occur.
Survey of patient knowledge related to acetaminophen recognition, dosing, and toxicity.
Hornsby, Lori B; Whitley, Heather P; Hester, E Kelly; Thompson, Melissa; Donaldson, Amy
2010-01-01
To assess patient knowledge regarding acetaminophen dosing, toxicity, and recognition of acetaminophen-containing products. Descriptive, nonexperimental, cross-sectional study. Alabama, January 2007 to February 2008. 284 patients at four outpatient medical facilities. 12-item investigator-administered questionnaire. Degree of patient knowledge regarding acetaminophen safety, dosing recommendations, toxicity, alternative names and abbreviations, and products. Two-thirds of the 284 patients completing the survey reported current or recent use of pain, cold, or allergy medication. Of these, 25% reported knowing the active ingredient. Of patients, 46% and 13% knew that "acetaminophen" and "APAP," respectively, were synonymous with "Tylenol." Several patients (12%) believed that ingesting a harmful amount of acetaminophen was difficult or impossible. One-third of patients correctly identified the maximum daily dose, 10% reported a dose greater than 4 g, 25% were unsure of the dose, and 7% were unsure whether a maximum dose existed. One-half recognized liver damage as the primary toxicity. Results were similar between acetaminophen users and nonusers. Deficiencies were found in patient knowledge regarding acetaminophen recognition, dosing, and potential for toxicity. The development of effective educational initiatives is warranted to ensure patient awareness and limit the potential for acetaminophen overdose.
Astrocytic expression of HIV-1 Nef impairs spatial and recognition memory
Chompre, Gladys; Cruz, Emmanuel; Maldonado, Lucianette; Rivera-Amill, Vanessa; Porter, James T.; Noel, Richard J.
2012-01-01
Despite the widespread use of antiretroviral therapy that effectively limits viral replication, memory impairment remains a dilemma for HIV infected people. In the CNS, HIV infection of astrocytes leads to the production of the HIV-1 Nef protein without viral replication. Post mortem studies have found Nef expression in hippocampal astrocytes of people with HIV associated dementia suggesting that astrocytic Nef may contribute to HIV associated cognitive impairment even when viral replication is suppressed. To test whether astrocytic expression of Nef is sufficient to induce cognitive deficits, we examined the effect of implanting primary rat astrocytes expressing Nef into the hippocampus on spatial and recognition memory. Rats implanted unilaterally with astrocytes expressing Nef showed impaired novel location and novel object recognition in comparison with controls implanted with astrocytes expressing green fluorescent protein (GFP). This impairment was correlated with an increase in chemokine ligand 2 (CCL2) expression and the infiltration of peripheral macrophages into the hippocampus at the site of injection. Furthermore, the Nef exposed rats exhibited a bilateral loss of CA3 neurons. These results suggest that Nef protein expressed by the implanted astrocytes activates the immune system leading to neuronal damage and spatial and recognition memory deficits. Therefore, the continued expression of Nef by astrocytes in the absence of viral replication has the potential to contribute to HIV associated cognitive impairment. PMID:22926191
Bidirectional Modulation of Recognition Memory
Ho, Jonathan W.; Poeta, Devon L.; Jacobson, Tara K.; Zolnik, Timothy A.; Neske, Garrett T.; Connors, Barry W.
2015-01-01
Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects. For example, animals and humans with perirhinal damage are unable to distinguish familiar from novel objects in recognition memory tasks. In the normal brain, perirhinal neurons respond to novelty and familiarity by increasing or decreasing firing rates. Recent work also implicates oscillatory activity in the low-beta and low-gamma frequency bands in sensory detection, perception, and recognition. Using optogenetic methods in a spontaneous object exploration (SOR) task, we altered recognition memory performance in rats. In the SOR task, normal rats preferentially explore novel images over familiar ones. We modulated exploratory behavior in this task by optically stimulating channelrhodopsin-expressing perirhinal neurons at various frequencies while rats looked at novel or familiar 2D images. Stimulation at 30–40 Hz during looking caused rats to treat a familiar image as if it were novel by increasing time looking at the image. Stimulation at 30–40 Hz was not effective in increasing exploration of novel images. Stimulation at 10–15 Hz caused animals to treat a novel image as familiar by decreasing time looking at the image, but did not affect looking times for images that were already familiar. We conclude that optical stimulation of PER at different frequencies can alter visual recognition memory bidirectionally. SIGNIFICANCE STATEMENT Recognition of novelty and familiarity are important for learning, memory, and decision making. Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects, but how novelty and familiarity are encoded and transmitted in the brain is not known. Perirhinal neurons respond to novelty and familiarity by changing firing rates, but recent work suggests that brain oscillations may also be important for recognition. In this study, we showed that stimulation of the PER could increase or decrease exploration of novel and familiar images depending on the frequency of stimulation. Our findings suggest that optical stimulation of PER at specific frequencies can predictably alter recognition memory. PMID:26424881
Ponce, Hiram; Martínez-Villaseñor, María de Lourdes; Miralles-Pechuán, Luis
2016-07-05
Human activity recognition has gained more interest in several research communities given that understanding user activities and behavior helps to deliver proactive and personalized services. There are many examples of health systems improved by human activity recognition. Nevertheless, the human activity recognition classification process is not an easy task. Different types of noise in wearable sensors data frequently hamper the human activity recognition classification process. In order to develop a successful activity recognition system, it is necessary to use stable and robust machine learning techniques capable of dealing with noisy data. In this paper, we presented the artificial hydrocarbon networks (AHN) technique to the human activity recognition community. Our artificial hydrocarbon networks novel approach is suitable for physical activity recognition, noise tolerance of corrupted data sensors and robust in terms of different issues on data sensors. We proved that the AHN classifier is very competitive for physical activity recognition and is very robust in comparison with other well-known machine learning methods.
Neves, Ben-Hur; Menezes, Jefferson; Souza, Mauren Assis; Mello-Carpes, Pâmela B
2015-12-01
It is known from previous research that physical exercise prevents long-term memory deficits induced by maternal deprivation in rats. But we could not assume similar effects of physical exercise on short-term memory, as short- and long-term memories are known to result from some different memory consolidation processes. Here we demonstrated that, in addition to long-term memory deficit, the short-term memory deficit resultant from maternal deprivation in object recognition and aversive memory tasks is also prevented by physical exercise. Additionally, one of the mechanisms by which the physical exercise influences the memory processes involves its effects attenuating the oxidative damage in the maternal deprived rats' hippocampus and prefrontal cortex.
Screening for modulators of cisplatin sensitivity: unbiased screens reveal common themes.
Nijwening, Jeroen H; Kuiken, Hendrik J; Beijersbergen, Roderick L
2011-02-01
Cisplatin is a widely used chemotherapeutic agent to treat a variety of solid tumors. The cytotoxic mode of action of cisplatin is mediated by inducing conformational changes in DNA including intra- and inter-strand crosslink adducts. Recognition of these adducts results in the activation of the DNA damage response resulting in cell cycle arrest, repair, and potentially, apoptosis. Despite the clinical efficacy of cisplatin, many tumors are either intrinsically resistant or acquire resistance during treatment. The identification of cisplatin drug response modulators can help us understand these resistance mechanisms, provide biomarkers for treatment strategies, or provide drug targets for combination therapy. Here we discuss functional genetic screens, including one performed by us, set up to identify genes whose inhibition results in increased sensitivity to cisplatin. In summary, the validated genes identified in these screens mainly operate in DNA damage response including nucleotide excision repair, translesion synthesis, and homologous recombination.
Value of MRI in diagnostics and evaluation of myositis.
Pipitone, Nicolò
2016-11-01
This review aims at covering the role of muscle MRI in supporting the diagnosis of myositis, in aiding to differentiate it from other muscle disorders, and in monitoring myositis patients over time by assessing response to treatment and by discriminating between muscle inflammation and chronic damage. MRI can assist in 'pattern recognition' of muscle involvement across numerous myopathies, including myositis. Novel applications of magnetic resonance such as cardiac MRI, MR elastography and blood oxigenation level-dependent magnetic resonance can shed light on different aspects of myositis and usefully complement conventional MRI in assessing patients with myositis. MRI can guide therapy by determining whether muscle weakness is related to edema (active inflammation) or muscle atrophy/fat replacement (chronic damage). There is a need to better standardize the assessment of MRI findings in myositis to provide defined outcome measures for use in clinical trials. VIDEO ABSTRACT.
Does Infection-Induced Immune Activation Contribute to Dementia?
Barichello, Tatiana; Generoso, Jaqueline S; Goularte, Jessica A; Collodel, Allan; Pitcher, Meagan R; Simões, Lutiana R; Quevedo, João; Dal-Pizzol, Felipe
2015-01-01
The central nervous system (CNS) is protected by a complex blood-brain barrier system; however, a broad diversity of virus, bacteria, fungi, and protozoa can gain access and cause illness. As pathogens replicate, they release molecules that can be recognized by innate immune cells. These molecules are pathogen-associated molecular patterns (PAMP) and they are identified by pattern-recognition receptors (PRR) expressed on antigen-presenting cells. Examples of PRR include toll-like receptors (TLR), receptors for advanced glycation endproducts (RAGE), nucleotide binding oligomerisation domain (NOD)-like receptors (NLR), c-type lectin receptors (CLR), RIG-I-like receptors (RLR), and intra-cytosolic DNA sensors. The reciprocal action between PAMP and PRR triggers the release of inflammatory mediators that regulate the elimination of invasive pathogens. Damage-associated molecular patterns (DAMP) are endogenous constituents released from damaged cells that also have the ability to activate the innate immune response. An increase of RAGE expression levels on neurons, astrocytes, microglia, and endothelial cells could be responsible for the accumulation of αβ-amyloid in dementia and related to the chronic inflammatory state that is found in neurodegenerative disorders. PMID:26425389
Complement factor H in host defense and immune evasion.
Parente, Raffaella; Clark, Simon J; Inforzato, Antonio; Day, Anthony J
2017-05-01
Complement is the major humoral component of the innate immune system. It recognizes pathogen- and damage-associated molecular patterns, and initiates the immune response in coordination with innate and adaptive immunity. When activated, the complement system unleashes powerful cytotoxic and inflammatory mechanisms, and thus its tight control is crucial to prevent damage to host tissues and allow restoration of immune homeostasis. Factor H is the major soluble inhibitor of complement, where its binding to self markers (i.e., particular glycan structures) prevents complement activation and amplification on host surfaces. Not surprisingly, mutations and polymorphisms that affect recognition of self by factor H are associated with diseases of complement dysregulation, such as age-related macular degeneration and atypical haemolytic uremic syndrome. In addition, pathogens (i.e., non-self) and cancer cells (i.e., altered-self) can hijack factor H to evade the immune response. Here we review recent (and not so recent) literature on the structure and function of factor H, including the emerging roles of this protein in the pathophysiology of infectious diseases and cancer.
MDC1: The art of keeping things in focus.
Jungmichel, Stephanie; Stucki, Manuel
2010-08-01
The chromatin structure is important for recognition and repair of DNA damage. Many DNA damage response proteins accumulate in large chromatin domains flanking sites of DNA double-strand breaks. The assembly of these structures-usually termed DNA damage foci-is primarily regulated by MDC1, a large nuclear mediator/adaptor protein that is composed of several distinct structural and functional domains. Here, we are summarizing the latest discoveries about the mechanisms by which MDC1 mediates DNA damage foci formation, and we are reviewing the considerable efforts taken to understand the functional implication of these structures.
NASA Astrophysics Data System (ADS)
An, L.; Zhang, J.; Gong, L.
2018-04-01
Playing an important role in gathering information of social infrastructure damage, Synthetic Aperture Radar (SAR) remote sensing is a useful tool for monitoring earthquake disasters. With the wide application of this technique, a standard method, comparing post-seismic to pre-seismic data, become common. However, multi-temporal SAR processes, are not always achievable. To develop a post-seismic data only method for building damage detection, is of great importance. In this paper, the authors are now initiating experimental investigation to establish an object-based feature analysing classification method for building damage recognition.
Karen, Kasey A.; Hearing, Patrick
2011-01-01
Adenovirus has a linear, double-stranded DNA genome that is perceived by the cellular Mre11-Rad50-Nbs1 (MRN) DNA repair complex as a double-strand break. If unabated, MRN elicits a double-strand break repair response that blocks viral DNA replication and ligates the viral genomes into concatemers. There are two sets of early viral proteins that inhibit the MRN complex. The E1B-55K/E4-ORF6 complex recruits an E3 ubiquitin ligase and targets MRN proteins for proteasome-dependent degradation. The E4-ORF3 protein inhibits MRN through sequestration. The mechanism that prevents MRN recognition of the viral genome prior to the expression of these early proteins was previously unknown. Here we show a temporal correlation between the loss of viral core protein VII from the adenovirus genome and a gain of checkpoint signaling due to the double-strand break repair response. While checkpoint signaling corresponds to the recognition of the viral genome, core protein VII binding to and checkpoint signaling at viral genomes are largely mutually exclusive. Transcription is known to release protein VII from the genome, and the inhibition of transcription shows a decrease in checkpoint signaling. Finally, we show that the nuclease activity of Mre11 is dispensable for the inhibition of viral DNA replication during a DNA damage response. These results support a model involving the protection of the incoming viral genome from checkpoint signaling by core protein VII and suggest that the induction of an MRN-dependent DNA damage response may inhibit adenovirus replication by physically masking the origins of DNA replication rather than altering their integrity. PMID:21345950
Unsolved Mysteries in NLR Biology
Lupfer, Christopher; Kanneganti, Thirumala-Devi
2013-01-01
NOD-like receptors (NLRs) are a class of cytoplasmic pattern-recognition receptors. Although most NLRs play some role in immunity, their functions range from regulating antigen presentation (NLRC5, CIITA) to pathogen/damage sensing (NLRP1, NLRP3, NLRC1/2, NLRC4) to suppression or modulation of inflammation (NLRC3, NLRP6, NLRP12, NLRX1). However, NLRP2, NLRP5, and NLRP7 are also involved in non-immune pathways such as embryonic development. In this review, we highlight some of the least well-understood aspects of NLRs, including the mechanisms by which they sense pathogens or damage. NLRP3 recognizes a diverse range of stimuli and numerous publications have presented potential unifying models for NLRP3 activation, but no single mechanism proposed thus far appears to account for all possible NLRP3 activators. Additionally, NLRC3, NLRP6, and NLRP12 inhibit NF-κB activation, but whether direct ligand sensing is a requirement for this function is not known. Herein, we review the various mechanisms of sensing and activation proposed for NLRP3 and other inflammasome activators. We also discuss the role of NLRC3, NLRP6, NLRP12, and NLRX1 as inhibitors and how they are activated and function in their roles to limit inflammation. Finally, we present an overview of the emerging roles that NLRP2, NLRP5, and NLRP7 play during embryonic development and postulate on the potential pathways involved. PMID:24062750
The toll of the gridiron: damage-associated molecular patterns and hypertension in American football
McCarthy, Cameron G.; Webb, R. Clinton
2016-01-01
American football has unequivocally been linked to elevations in blood pressure and hypertension, especially in linemen. However, the mechanisms of this increase cannot be attributed solely to increased body weight and associated cardiometabolic risk factors (e.g.,dyslipidemia or hyperglycemia). Therefore, understanding the etiology of football-associated hypertension is essential for improving the quality of life in this mostly young population, as well as for lowering the potential for chronic disease in the future. We propose that inflammatogenic damage–associated molecular patterns (DAMPs) released into the circulation from football-induced musculoskeletal trauma activate pattern-recognition receptors of the innate immune system—specifically, high mobility group box 1 protein (HMGB1) and mitochondrial (mt)DNA which activate Toll-like receptor (TLR)4 and -9, respectively. Previously, we observed that circulating levels of these 2 DAMPs are increased in hypertension, and activation of TLR4 and -9 causes endothelial dysfunction and hypertension. Therefore, our novel hypothesis is that musculoskeletal injury from repeated hits in football players, particularly in linemen, leads to elevated circulating HMGB1 and mtDNA to activate TLRs on endothelial cells leading to impaired endothelium-dependent vasodilation, increased vascular tone, and hypertension.—McCarthy, C. G., Webb, R. C. The toll of the gridiron: damage-associated molecular patterns and hypertension in American football. PMID:26316270
NASA Astrophysics Data System (ADS)
Lyu, Mindong; Liu, Tao; Wang, Zixi; Yan, Shaoze; Jia, Xiaohong; Wang, Yuming
2018-05-01
Touchdown can make active magnetic bearings (AMB) unable to work, and bring severe damages to touchdown bearings (TDB). To resolve it, we presents a novel re-levitation method consisting of two operations, i.e., orbit response recognition and rotor re-levitation. In the operation of orbit response recognition, the three orbit responses (pendulum vibration, combined rub and bouncing, and full rub) can be identified by the expectation of radial displacement of rotor and expectation of instantaneous frequency (IF) of rotor motion in the sampling period. In the rotor re-levitation operation, a decentralized PID control algorithm is employed for pendulum vibration and combined rub and bouncing, and the decentralized PID control algorithm and another whirl damping algorithm, in which the weighting factor is determined by the whirl frequency, are jointly executed for the full rub. The method has been demonstrated by the simulation results of an AMB model. The results reveal that the method is effective in actively suppressing the whirl motion and promptly re-levitating the rotor. As the PID control algorithm and the simple operations of signal processing are employed, the algorithm has a low computation intensity, which makes it more easily realized in practical applications.
DNA Oxidation Profiles of Copper Phenanthrene Chemical Nucleases
NASA Astrophysics Data System (ADS)
Molphy, Zara; Slator, Creina; Chatgilialoglu, Chryssostomos; Kellett, Andrew
2015-04-01
The deleterious effects of metal-catalyzed reactive oxygen species (ROS) in biological systems can be seen in a wide variety of pathological conditions including cancer, cardiovascular disease, ageing, and neurodegenerative disorder. On the other hand however, targeted ROS production in the vicinity of nucleic acids - as demonstrated by metal-activated bleomycin - has paved the way for ROS-active chemotherapeutic drug development. Herein we report mechanistic investigations into the oxidative nuclease activity and redox properties of copper(II) developmental therapeutics [Cu(DPQ)(phen)]2+ (Cu-DPQ-Phen), [Cu(DPPZ)(phen)]2+ (Cu-DPPZ-Phen), and [{Cu(phen)2}2(μ-terph)](terph) (Cu-Terph), with results being compared directly to Sigman’s reagent [Cu(phen)2]2+ throughout (phen = 1,10-phenanthroline; DPQ = dipyridoquinoxaline; DPPZ = dipyridophenazine). Oxidative DNA damage was identified at the minor groove through use of surface bound recognition elements of methyl green, netropsin, and [Co(NH3)6]Cl3 that functioned to control complex accessibility at selected regions. ROS-specific scavengers and stabilisers were employed to identify the cleavage process, the results of which infer hydrogen peroxide produced metal-hydroxo or free hydroxyl radicals (•OH) as the predominant species. The extent of DNA damage owing to these radicals was then quantified through 8-oxo-2'-deoxyguanosine (8-oxo-dG) lesion detection under ELISA protocol with the overall trend following Cu-DPQ-Phen > Cu-Terph > Cu-Phen > Cu-DPPZ. Finally, the effects of oxidative damage on DNA replication processes were investigated using the polymerase chain reaction (PCR) where amplification of 120 base pair DNA sequences of varying base content were inhibited - particularly along A-T rich chains - through oxidative damage of the template strands.
Coorens, Maarten; Schneider, Viktoria A. F.; Meijerink, Marjolein; Wells, Jerry M.; Scheenstra, Maaike R.
2017-01-01
Activation of the immune system needs to be tightly regulated to provide protection against infections and, at the same time, to prevent excessive inflammation to limit collateral damage to the host. This tight regulation includes regulating the activation of TLRs, which are key players in the recognition of invading microbes. A group of short cationic antimicrobial peptides, called cathelicidins, have previously been shown to modulate TLR activation by synthetic or purified TLR ligands and may play an important role in the regulation of inflammation during infections. However, little is known about how these cathelicidins affect TLR activation in the context of complete and viable bacteria. In this article, we show that chicken cathelicidin-2 kills Escherichia coli in an immunogenically silent fashion. Our results show that chicken cathelicidin-2 kills E. coli by permeabilizing the bacterial inner membrane and subsequently binds the outer membrane–derived lipoproteins and LPS to inhibit TLR2 and TLR4 activation, respectively. In addition, other cathelicidins, including human, mouse, pig, and dog cathelicidins, which lack antimicrobial activity under cell culture conditions, only inhibit macrophage activation by nonviable E. coli. In total, this study shows that cathelicidins do not affect immune activation by viable bacteria and only inhibit inflammation when bacterial viability is lost. Therefore, cathelicidins provide a novel mechanism by which the immune system can discriminate between viable and nonviable Gram-negative bacteria to tune the immune response, thereby limiting collateral damage to the host and the risk for sepsis. PMID:28710255
Identification, recognition and misidentification syndromes: a psychoanalytical perspective
Thibierge, Stéphane; Morin, Catherine
2013-01-01
Misidentification syndromes are currently often understood as cognitive disorders of either the “sense of uniqueness” (Margariti and Kontaxakis, 2006) or the recognition of people (Ellis and Lewis, 2001). It is however, necessary to consider how a normal “sense of uniqueness” or normal person recognition are acquired by normal or neurotic subjects. It will be shown here that the normal conditions of cognition can be considered as one of the possible forms of a complex structure and not as just a setting for our sense and perception data. The consistency and the permanency of the body image in neurosis is what permits the recognition of other people and ourselves as unique beings. This consistency and permanency are related to object repression, as shown by neurological disorders of body image (somatoparaphrenia), which cause the object to come to the foreground in the patient’s words (Thibierge and Morin, 2010). In misidentification syndromes, as in other psychotic syndromes, one can also observe damage to the specular image as well as an absence of object repression. This leads us to question whether, in the psychiatric disorders related to a damaged specular image, disorders of cognition can be studied and managed using the same methods as for neurotic patients. PMID:24298262
Migo, Ellen; Montaldi, Daniela; Norman, Kenneth A.; Quamme, Joel; Mayes, Andrew
2010-01-01
Patient Y.R., who suffered hippocampal damage that disrupted recollection but not familiarity, was impaired on a yes/no (YN) object recognition memory test with similar foils. However, she was not impaired on a forced-choice corresponding (FCC) version of the test that paired targets with corresponding similar foils (Holdstock et al. 2002). This dissociation is explained by the Complementary Learning Systems (CLS) neural-network model (Norman & O'Reilly 2003) if recollection is impaired but familiarity is preserved. The CLS model also predicts that participants relying exclusively on familiarity should be impaired on forced-choice non-corresponding (FCNC) tests, where targets are presented with foils similar to other targets. The present study tests these predictions for all three test formats (YN, FCC, FCNC) in normal participants using two variants of the remember/know procedure. As predicted, performance using familiarity alone was significantly worse than standard recognition on the YN and FCNC tests, but not on the FCC test. Recollection in the form of recall-to-reject was the major process driving YN recognition. This adds support to the interpretation of patient data according to which, hippocampal damage causes a recollection deficit that leads to poor performance on the YN test relative to FCC. PMID:19096990
Complement in the Initiation and Evolution of Rheumatoid Arthritis
Holers, V. Michael; Banda, Nirmal K.
2018-01-01
The complement system is a major component of the immune system and plays a central role in many protective immune processes, including circulating immune complex processing and clearance, recognition of foreign antigens, modulation of humoral and cellular immunity, removal of apoptotic and dead cells, and engagement of injury resolving and tissue regeneration processes. In stark contrast to these beneficial roles, however, inadequately controlled complement activation underlies the pathogenesis of human inflammatory and autoimmune diseases, including rheumatoid arthritis (RA) where the cartilage, bone, and synovium are targeted. Recent studies of this disease have demonstrated that the autoimmune response evolves over time in an asymptomatic preclinical phase that is associated with mucosal inflammation. Notably, experimental models of this disease have demonstrated that each of the three major complement activation pathways plays an important role in recognition of injured joint tissue, although the lectin and amplification pathways exhibit particularly impactful roles in the initiation and amplification of damage. Herein, we review the complement system and focus on its multi-factorial role in human patients with RA and experimental murine models. This understanding will be important to the successful integration of the emerging complement therapeutics pipeline into clinical care for patients with RA. PMID:29892280
Innate Immune Regulations and Liver Ischemia Reperfusion Injury
Lu, Ling; Zhou, Haoming; Ni, Ming; Wang, Xuehao; Busuttil, Ronald; Kupiec-Weglinski, Jerzy; Zhai, Yuan
2016-01-01
Liver ischemia reperfusion activates innate immune system to drive the full development of inflammatory hepatocellular injury. Damage-associated molecular patterns (DAMPs) stimulate myeloid and dendritic cells via pattern recognition receptors (PRRs) to initiate the immune response. Complex intracellular signaling network transduces inflammatory signaling to regulate both innate immune cell activation and parenchymal cell death. Recent studies have revealed that DAMPs may trigger not only proinflammatory, but also immune regulatory responses by activating different PRRs or distinctive intracellular signaling pathways or in special cell populations. Additionally, tissue injury milieu activates PRR-independent receptors which also regulate inflammatory disease processes. Thus, the innate immune mechanism of liver IRI involves diverse molecular and cellular interactions, subjected to both endogenous and exogenous regulation in different cells. A better understanding of these complicated regulatory pathways/network is imperative for us in designing safe and effective therapeutic strategy to ameliorate liver IRI in patients. PMID:27861288
Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies.
Iurescia, Sandra; Fioretti, Daniela; Rinaldi, Monica
2018-01-01
The innate immune system provides the first line of defense against pathogen infection though also influences pathways involved in cancer immunosurveillance. The innate immune system relies on a limited set of germ line-encoded sensors termed pattern recognition receptors (PRRs), signaling proteins and immune response factors. Cytosolic receptors mediate recognition of danger damage-associated molecular patterns (DAMPs) signals. Once activated, these sensors trigger multiple signaling cascades, converging on the production of type I interferons and proinflammatory cytokines. Recent studies revealed that PRRs respond to nucleic acids (NA) released by dying, damaged, cancer cells, as danger DAMPs signals, and presence of signaling proteins across cancer types suggests that these signaling mechanisms may be involved in cancer biology. DAMPs play important roles in shaping adaptive immune responses through the activation of innate immune cells and immunological response to danger DAMPs signals is crucial for the host response to cancer and tumor rejection. Furthermore, PRRs mediate the response to NA in several vaccination strategies, including DNA immunization. As route of double-strand DNA intracellular entry, DNA immunization leads to expression of key components of cytosolic NA-sensing pathways. The involvement of NA-sensing mechanisms in the antitumor response makes these pathways attractive drug targets. Natural and synthetic agonists of NA-sensing pathways can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8 + T cells, and NK cells, into the tumor microenvironment and are being explored as promising adjuvants in cancer immunotherapies. In this minireview, we discuss how cGAS-STING and RIG-I-MAVS pathways have been targeted for cancer treatment in preclinical translational researches. In addition, we present a targeted selection of recent clinical trials employing agonists of cytosolic NA-sensing pathways showing how these pathways are currently being targeted for clinical application in oncology.
The roles of categorical and coordinate spatial relations in recognizing buildings.
Palermo, Liana; Piccardi, Laura; Nori, Raffaella; Giusberti, Fiorella; Guariglia, Cecilia
2012-11-01
Categorical spatial information is considered more useful for recognizing objects, and coordinate spatial information for guiding actions--for example, during navigation or grasping. In contrast with this assumption, we hypothesized that buildings, unlike other categories of objects, require both categorical and coordinate spatial information in order to be recognized. This hypothesis arose from evidence that right-brain-damaged patients have deficits in both coordinate judgments and recognition of buildings and from the fact that buildings are very useful for guiding navigation in urban environments. To test this hypothesis, we assessed 210 healthy college students while they performed four different tasks that required categorical and coordinate judgments and the recognition of common objects and buildings. Our results showed that both categorical and coordinate spatial representations are necessary to recognize a building, whereas only categorical representations are necessary to recognize an object. We discuss our data in view of a recent neural framework for visuospatial processing, suggesting that recognizing buildings may specifically activate the parieto-medial-temporal pathway.
Zhou, Zhi-Bin; Yang, Xiao-Yu; Yuan, Bao-Long; Niu, Li-Jun; Zhou, Xue; Huang, Wen-Qi; Feng, Xia; Zhou, Li-Hua
2015-05-01
Cumulative evidence indicates that early childhood anesthesia can alter a child's future behavioral performance. Animal researchers have found that sevoflurane, the most commonly used anesthetic for children, can produce damage in the neonatal brains of rodents. To further investigate this phenomenon, we focused on the influence of sevoflurane anesthesia on the development of juvenile social behavioral abilities and the pro-social proteins oxytocin (OT) and arginine vasopressin (AVP) in the neonatal hippocampus. A single 6-h sevoflurane exposure for postnatal day 5 mice resulted in decreased OT and AVP messenger RNA (mRNA) and protein levels in the hippocampus. OT and AVP proteins became sparsely distributed in the dorsal hippocampus after the exposure to sevoflurane. Compared with the air-treated group, mice in the sevoflurane-treated group showed signs of impairment in social recognition memory formation and social discrimination ability. Sevoflurane anesthesia reduces OT and AVP activities in the neonatal hippocampus and impairs social recognition memory formation and social discrimination ability in juvenile mice.
Tang, Jialin; Soua, Slim; Mares, Cristinel; Gan, Tat-Hean
2017-01-01
The identification of particular types of damage in wind turbine blades using acoustic emission (AE) techniques is a significant emerging field. In this work, a 45.7-m turbine blade was subjected to flap-wise fatigue loading for 21 days, during which AE was measured by internally mounted piezoelectric sensors. This paper focuses on using unsupervised pattern recognition methods to characterize different AE activities corresponding to different fracture mechanisms. A sequential feature selection method based on a k-means clustering algorithm is used to achieve a fine classification accuracy. The visualization of clusters in peak frequency−frequency centroid features is used to correlate the clustering results with failure modes. The positions of these clusters in time domain features, average frequency−MARSE, and average frequency−peak amplitude are also presented in this paper (where MARSE represents the Measured Area under Rectified Signal Envelope). The results show that these parameters are representative for the classification of the failure modes. PMID:29104245
Tang, Jialin; Soua, Slim; Mares, Cristinel; Gan, Tat-Hean
2017-11-01
The identification of particular types of damage in wind turbine blades using acoustic emission (AE) techniques is a significant emerging field. In this work, a 45.7-m turbine blade was subjected to flap-wise fatigue loading for 21 days, during which AE was measured by internally mounted piezoelectric sensors. This paper focuses on using unsupervised pattern recognition methods to characterize different AE activities corresponding to different fracture mechanisms. A sequential feature selection method based on a k-means clustering algorithm is used to achieve a fine classification accuracy. The visualization of clusters in peak frequency-frequency centroid features is used to correlate the clustering results with failure modes. The positions of these clusters in time domain features, average frequency-MARSE, and average frequency-peak amplitude are also presented in this paper (where MARSE represents the Measured Area under Rectified Signal Envelope). The results show that these parameters are representative for the classification of the failure modes.
Mehta, Sonya; Inoue, Kayo; Rudrauf, David; Damasio, Hanna; Tranel, Daniel; Grabowski, Thomas
2016-02-01
Lesion-deficit studies support the hypothesis that the left anterior temporal lobe (ATL) plays a critical role in retrieving names of concrete entities. They further suggest that different regions of the left ATL process different conceptual categories. Here we test the specificity of these relationships and whether the anatomical segregation is related to the underlying organization of white matter connections. We reanalyzed data from a previous lesion study of naming and recognition across five categories of concrete entities. In voxelwise logistic regressions of lesion-deficit associations, we formally incorporated measures of disconnection of long-range association fiber tracts (FTs) and covaried for recognition and non-category-specific naming deficits. We also performed fiber tractwise analyses to assess whether damage to specific FTs was preferentially associated with category-selective naming deficits. Damage to the basolateral ATL was associated with naming deficits for both unique (famous faces) and non-unique entities, whereas the damage to the temporal pole was associated with naming deficits for unique entities only. This segregation pattern remained after accounting for comorbid recognition deficits or naming deficits in other categories. The tractwise analyses showed that damage to the uncinate fasciculus (UNC) was associated with naming impairments for unique entities, while damage to the inferior longitudinal fasciculus (ILF) was associated with naming impairments for non-unique entities. Covarying for FT transection in voxelwise analyses rendered the cortical association for unique entities more focal. These results are consistent with the partial segregation of brain system support for name retrieval of unique and non-unique entities at both the level of cortical components and underlying white matter fiber bundles. Our study reconciles theoretic accounts of the functional organization of the left ATL by revealing both category-related processing and semantic hub sectors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bilotti, Katharina; Kennedy, Erin E; Li, Chuxuan; Delaney, Sarah
2017-11-01
If unrepaired, damage to genomic DNA can cause mutations and/or be cytotoxic. Single base lesions are repaired via the base excision repair (BER) pathway. The first step in BER is the recognition and removal of the nucleobase lesion by a glycosylase enzyme. For example, human oxoguanine glycosylase 1 (hOGG1) is responsible for removal of the prototypic oxidatively damaged nucleobase, 8-oxo-7,8-dihydroguanine (8-oxoG). To date, most studies of glycosylases have used free duplex DNA substrates. However, cellular DNA is packaged as repeating nucleosome units, with 145 base pair segments of DNA wrapped around histone protein octamers. Previous studies revealed inhibition of hOGG1 at the nucleosome dyad axis and in the absence of chromatin remodelers. In this study, we reveal that even in the absence of chromatin remodelers or external cofactors, hOGG1 can initiate BER at positions off the dyad axis and that this activity is facilitated by spontaneous and transient unwrapping of DNA from the histones. Additionally, we find that solution accessibility as determined by hydroxyl radical footprinting is not fully predictive of glycosylase activity and that histone tails can suppress hOGG1 activity. We therefore suggest that local nuances in the nucleosome environment and histone-DNA interactions can impact glycosylase activity. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sierra-Pérez, Julián; Torres-Arredondo, M.-A.; Alvarez-Montoya, Joham
2018-01-01
Structural health monitoring consists of using sensors integrated within structures together with algorithms to perform load monitoring, damage detection, damage location, damage size and severity, and prognosis. One possibility is to use strain sensors to infer structural integrity by comparing patterns in the strain field between the pristine and damaged conditions. In previous works, the authors have demonstrated that it is possible to detect small defects based on strain field pattern recognition by using robust machine learning techniques. They have focused on methodologies based on principal component analysis (PCA) and on the development of several unfolding and standardization techniques, which allow dealing with multiple load conditions. However, before a real implementation of this approach in engineering structures, changes in the strain field due to conditions different from damage occurrence need to be isolated. Since load conditions may vary in most engineering structures and promote significant changes in the strain field, it is necessary to implement novel techniques for uncoupling such changes from those produced by damage occurrence. A damage detection methodology based on optimal baseline selection (OBS) by means of clustering techniques is presented. The methodology includes the use of hierarchical nonlinear PCA as a nonlinear modeling technique in conjunction with Q and nonlinear-T 2 damage indices. The methodology is experimentally validated using strain measurements obtained by 32 fiber Bragg grating sensors bonded to an aluminum beam under dynamic bending loads and simultaneously submitted to variations in its pitch angle. The results demonstrated the capability of the methodology for clustering data according to 13 different load conditions (pitch angles), performing the OBS and detecting six different damages induced in a cumulative way. The proposed methodology showed a true positive rate of 100% and a false positive rate of 1.28% for a 99% of confidence.
Variability in the impairment of recognition memory in patients with frontal lobe lesions.
Bastin, Christine; Van der Linden, Martial; Lekeu, Françoise; Andrés, Pilar; Salmon, Eric
2006-10-01
Fourteen patients with frontal lobe lesions and 14 normal subjects were tested on a recognition memory task that required discriminating between target words, new words that are synonyms of the targets and unrelated distractors. A deficit was found in 12 of the patients. Moreover, three different patterns of recognition impairment were identified: (I) poor memory for targets, (II) normal hits but increased false recognitions for both types of distractors, (III) normal hit rates, but increased false recognitions for synonyms only. Differences in terms of location of the damage and behavioral characteristics between these subgroups were examined. An encoding deficit was proposed to explain the performance of patients in subgroup I. The behavioral patterns of the patients in subgroups II and III could be interpreted as deficient post-retrieval verification processes and an inability to recollect item-specific information, respectively.
Transfer Learning for Activity Recognition: A Survey
Cook, Diane; Feuz, Kyle D.; Krishnan, Narayanan C.
2013-01-01
Many intelligent systems that focus on the needs of a human require information about the activities being performed by the human. At the core of this capability is activity recognition, which is a challenging and well-researched problem. Activity recognition algorithms require substantial amounts of labeled training data yet need to perform well under very diverse circumstances. As a result, researchers have been designing methods to identify and utilize subtle connections between activity recognition datasets, or to perform transfer-based activity recognition. In this paper we survey the literature to highlight recent advances in transfer learning for activity recognition. We characterize existing approaches to transfer-based activity recognition by sensor modality, by differences between source and target environments, by data availability, and by type of information that is transferred. Finally, we present some grand challenges for the community to consider as this field is further developed. PMID:24039326
McMurray, Cynthia T
2008-07-01
Mammalian cells have evolved sophisticated DNA repair systems to correct mispaired or damaged bases and extrahelical loops. Emerging evidence suggests that, in some cases, the normal DNA repair machinery is "hijacked" to become a causative factor in mutation and disease, rather than act as a safeguard of genomic integrity. In this review, we consider two cases in which active MMR leads to mutation or to cell death. There may be similar mechanisms by which uncoupling of normal MMR recognition from downstream repair allows triplet expansions underlying human neurodegenerative disease, or cell death in response to chemical lesion.
Neutrophils come of age in chronic inflammation
Caielli, Simone; Banchereau, Jacques; Pascual, Virginia
2013-01-01
Neutrophils have long been known to participate in acute inflammation, but a role in chronic inflammatory and autoimmune diseases is now emerging. These cells are key players in the recognition and elimination of pathogens, but they also sense self components, including nucleic acids and products of sterile tissue damage. While this normally contributes to tissue repair, it can also lead to the release of highly immunogenic products that can trigger and/or amplify autoimmune pathogenic loops. Understanding the mechanisms that underlie neutrophil activation, migration, survival and their various forms of death in health and disease might provide us with new approaches to treat chronic inflammatory conditions. PMID:23127555
A sensor and video based ontology for activity recognition in smart environments.
Mitchell, D; Morrow, Philip J; Nugent, Chris D
2014-01-01
Activity recognition is used in a wide range of applications including healthcare and security. In a smart environment activity recognition can be used to monitor and support the activities of a user. There have been a range of methods used in activity recognition including sensor-based approaches, vision-based approaches and ontological approaches. This paper presents a novel approach to activity recognition in a smart home environment which combines sensor and video data through an ontological framework. The ontology describes the relationships and interactions between activities, the user, objects, sensors and video data.
Association of a Platinum Complex to a G-Quadruplex Ligand Enhances Telomere Disruption.
Charif, Razan; Granotier-Beckers, Christine; Bertrand, Hélène Charlotte; Poupon, Joël; Ségal-Bendirdjian, Evelyne; Teulade-Fichou, Marie-Paule; Boussin, François D; Bombard, Sophie
2017-08-21
Telomeres protect the ends of chromosomes against illegitimate recombination and repair. They can be targets for G-quadruplex ligands and platinum complexes due to their repeated G-rich sequences. Protection of telomeres is ensured by a complex of six proteins, including TRF2, which inhibits the DNA damage response pathway. We analyzed telomere modifications induced in cancer cells by the experimental hybrid platinum complex, Pt-MPQ, comprising both an ethylene diamine monofunctional platinum complex and a G-quadruplex recognition moiety (MPQ). Pt-MPQ promotes the displacement of two telomeric proteins (TRF2 and TRF1) from telomeres, as well as the formation of telomere damage and telomere sister losses, whereas the control compound MPQ does not. This suggests that the platinum moiety potentiates the targeting of the G-quadruplex ligand to telomeres, opening a new perspective for telomere biology and anticancer therapy. Interestingly, the chemotherapy drug cisplatin, which has no specific affinity for G-quadruplex structures, partially induces the TRF2 delocalization from telomeres but produces less telomeric DNA damage, suggesting that this TRF2 displacement could be independent of G-quadruplex recognition.
[Computer diagnosis of traumatic impact by hepatic lesion].
Kimbar, V I; Sevankeev, V V
2007-01-01
A method of computer-assisted diagnosis of traumatic affection by liver damage (HEPAR-test program) is described. The program is based on calculated diagnostic coefficients using Bayes' probability method with Wald's recognition procedure.
Impairment of recollection but not familiarity in a case of developmental amnesia.
Brandt, Karen R; Gardiner, John M; Vargha-Khadem, Faraneh; Baddeley, Alan D; Mishkin, Mortimer
2008-01-01
In a re-examination of the recognition memory of Jon, a young adult with developmental amnesia due to perinatal hippocampal damage, we used a test procedure that provides estimates of the separate contributions to recognition of recollection and familiarity. Comparison between Jon and his controls revealed that, whereas he was unimpaired in the familiarity process, he showed abnormally low levels of recollection, supporting the view that the hippocampus mediates the latter process selectively.
Machine recognition of navel orange worm damage in x-ray images of pistachio nuts
NASA Astrophysics Data System (ADS)
Keagy, Pamela M.; Parvin, Bahram; Schatzki, Thomas F.
1995-01-01
Insect infestation increases the probability of aflatoxin contamination in pistachio nuts. A non- destructive test is currently not available to determine the insect content of pistachio nuts. This paper uses film X-ray images of various types of pistachio nuts to assess the possibility of machine recognition of insect infested nuts. Histogram parameters of four derived images are used in discriminant functions to select insect infested nuts from specific processing streams.
Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation
NASA Technical Reports Server (NTRS)
Jorgensen, Charles; Wheeler, Kevin; Stepniewski, Slawomir; Norvig, Peter (Technical Monitor)
2000-01-01
This paper presents results of a recent experiment in fine grain Electromyographic (EMG) signal recognition, We demonstrate bioelectric flight control of 757 class simulation aircraft landing at San Francisco International Airport. The physical instrumentality of a pilot control stick is not used. A pilot closes a fist in empty air and performs control movements which are captured by a dry electrode array on the arm, analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. A Vision Dome immersive display is used to create a VR world for the aircraft body mechanics and flight changes to pilot movements. Inner loop surfaces and differential aircraft thrust is controlled using a hybrid neural network architecture that combines a damage adaptive controller (Jorgensen 1998, Totah 1998) with a propulsion only based control system (Bull & Kaneshige 1997). Thus the 757 aircraft is not only being flown bioelectrically at the pilot level but also demonstrates damage adaptive neural network control permitting adaptation to severe changes in the physical flight characteristics of the aircraft at the inner loop level. To compensate for accident scenarios, the aircraft uses remaining control surface authority and differential thrust from the engines. To the best of our knowledge this is the first time real time bioelectric fine-grained control, differential thrust based control, and neural network damage adaptive control have been integrated into a single flight demonstration. The paper describes the EMG pattern recognition system and the bioelectric pattern recognition methodology.
Markin, Craig J; Xiao, Wei; Spyracopoulos, Leo
2010-08-18
RAP80 plays a key role in signal transduction in the DNA damage response by recruiting proteins to DNA damage foci by binding K63-polyubiquitin chains with two tandem ubiquitin-interacting motifs (tUIM). It is generally recognized that the typically weak interaction between ubiquitin (Ub) and various recognition motifs is intensified by themes such as tandem recognition motifs and Ub polymerization to achieve biological relevance. However, it remains an intricate problem to develop a detailed molecular mechanism to describe the process that leads to amplification of the Ub signal. A battery of solution-state NMR methods and molecular dynamics simulations were used to demonstrate that RAP80-tUIM employs mono- and multivalent interactions with polyUb chains to achieve enhanced affinity in comparison to monoUb interactions for signal amplification. The enhanced affinity is balanced by unfavorable entropic effects that include partial quenching of rapid reorientation between individual UIM domains and individual Ub domains in the bound state. For the RAP80-tUIM-polyUb interaction, increases in affinity with increasing chain length are a result of increased numbers of mono- and multivalent binding sites in the longer polyUb chains. The mono- and multivalent interactions are characterized by intrinsically weak binding and fast off-rates; these weak interactions with fast kinetics may be an important factor underlying the transient nature of protein-protein interactions that comprise DNA damage foci.
Ronca, Richard D; Myers, Alyssa M; Ganea, Doina; Tuma, Ronald F; Walker, Ellen A; Ward, Sara Jane
2015-10-01
We have recently demonstrated that treatment with a cannabinoid CB2 agonist was protective in a mouse middle cerebral artery occlusion model of cerebral ischemia/reperfusion injury. The present study aimed to determine whether these protective effects of CB2 agonism would extend to a mouse photoinjury model of permanent ischemia and determine associated alterations in cognition and infarct size. Mice received three injections of the CB2 selective agonist O-1966 or vehicle 1h prior to and 2 and 5days following induction of stroke. Infarct size was assessed at 1, 3, or 7days post-injury and learning and memory effects of injury and O-1966 treatment were assessed on days 6 and 7 using a novel object recognition task and an operant acquisition and retention procedure. O-1966 treated mice had significantly smaller infarct volumes compared with vehicle treated mice. Photoinjury was also associated with a significant memory impairment on day 7 post-injury, and this deficit was reversed with O-1966 treatment. Surprisingly, sham-operated mice receiving O-1966 treatment showed a significant learning deficit in both the recognition and operant tasks compared with vehicle treated sham mice. We conclude that CB2 activation is protective against cognitive deficits and tissue damage following permanent ischemia, but may dysregulate glial or neuronal function of learning and memory circuits in the absence of injury and/or inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.
Three-dimensional fingerprint recognition by using convolution neural network
NASA Astrophysics Data System (ADS)
Tian, Qianyu; Gao, Nan; Zhang, Zonghua
2018-01-01
With the development of science and technology and the improvement of social information, fingerprint recognition technology has become a hot research direction and been widely applied in many actual fields because of its feasibility and reliability. The traditional two-dimensional (2D) fingerprint recognition method relies on matching feature points. This method is not only time-consuming, but also lost three-dimensional (3D) information of fingerprint, with the fingerprint rotation, scaling, damage and other issues, a serious decline in robustness. To solve these problems, 3D fingerprint has been used to recognize human being. Because it is a new research field, there are still lots of challenging problems in 3D fingerprint recognition. This paper presents a new 3D fingerprint recognition method by using a convolution neural network (CNN). By combining 2D fingerprint and fingerprint depth map into CNN, and then through another CNN feature fusion, the characteristics of the fusion complete 3D fingerprint recognition after classification. This method not only can preserve 3D information of fingerprints, but also solves the problem of CNN input. Moreover, the recognition process is simpler than traditional feature point matching algorithm. 3D fingerprint recognition rate by using CNN is compared with other fingerprint recognition algorithms. The experimental results show that the proposed 3D fingerprint recognition method has good recognition rate and robustness.
Vitola, Jaime; Pozo, Francesc; Tibaduiza, Diego A.; Anaya, Maribel
2017-01-01
Civil and military structures are susceptible and vulnerable to damage due to the environmental and operational conditions. Therefore, the implementation of technology to provide robust solutions in damage identification (by using signals acquired directly from the structure) is a requirement to reduce operational and maintenance costs. In this sense, the use of sensors permanently attached to the structures has demonstrated a great versatility and benefit since the inspection system can be automated. This automation is carried out with signal processing tasks with the aim of a pattern recognition analysis. This work presents the detailed description of a structural health monitoring (SHM) system based on the use of a piezoelectric (PZT) active system. The SHM system includes: (i) the use of a piezoelectric sensor network to excite the structure and collect the measured dynamic response, in several actuation phases; (ii) data organization; (iii) advanced signal processing techniques to define the feature vectors; and finally; (iv) the nearest neighbor algorithm as a machine learning approach to classify different kinds of damage. A description of the experimental setup, the experimental validation and a discussion of the results from two different structures are included and analyzed. PMID:28230796
Vitola, Jaime; Pozo, Francesc; Tibaduiza, Diego A; Anaya, Maribel
2017-02-21
Civil and military structures are susceptible and vulnerable to damage due to the environmental and operational conditions. Therefore, the implementation of technology to provide robust solutions in damage identification (by using signals acquired directly from the structure) is a requirement to reduce operational and maintenance costs. In this sense, the use of sensors permanently attached to the structures has demonstrated a great versatility and benefit since the inspection system can be automated. This automation is carried out with signal processing tasks with the aim of a pattern recognition analysis. This work presents the detailed description of a structural health monitoring (SHM) system based on the use of a piezoelectric (PZT) active system. The SHM system includes: (i) the use of a piezoelectric sensor network to excite the structure and collect the measured dynamic response, in several actuation phases; (ii) data organization; (iii) advanced signal processing techniques to define the feature vectors; and finally; (iv) the nearest neighbor algorithm as a machine learning approach to classify different kinds of damage. A description of the experimental setup, the experimental validation and a discussion of the results from two different structures are included and analyzed.
In situ analysis of DNA damage response and repair using laser microirradiation.
Kim, Jong-Soo; Heale, Jason T; Zeng, Weihua; Kong, Xiangduo; Krasieva, Tatiana B; Ball, Alexander R; Yokomori, Kyoko
2007-01-01
A proper response to DNA damage is critical for the maintenance of genome integrity. However, it is difficult to study the in vivo kinetics and factor requirements of the damage recognition process in mammalian cells. In order to address how the cell reacts to DNA damage, we utilized a second harmonic (532 nm) pulsed Nd:YAG laser to induce highly concentrated damage in a small area in interphase cell nuclei and cytologically analyzed both protein recruitment and modification. Our results revealed for the first time the sequential recruitment of factors involved in two major DNA double-strand break (DSB) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR), and the cell cycle-specific recruitment of the sister chromatid cohesion complex cohesin to the damage site. In this chapter, the strategy developed to study the DNA damage response using the 532-nm Nd:YAG laser will be summarized.
NASA Astrophysics Data System (ADS)
de Lautour, Oliver R.; Omenzetter, Piotr
2010-07-01
Developed for studying long sequences of regularly sampled data, time series analysis methods are being increasingly investigated for the use of Structural Health Monitoring (SHM). In this research, Autoregressive (AR) models were used to fit the acceleration time histories obtained from two experimental structures: a 3-storey bookshelf structure and the ASCE Phase II Experimental SHM Benchmark Structure, in undamaged and limited number of damaged states. The coefficients of the AR models were considered to be damage-sensitive features and used as input into an Artificial Neural Network (ANN). The ANN was trained to classify damage cases or estimate remaining structural stiffness. The results showed that the combination of AR models and ANNs are efficient tools for damage classification and estimation, and perform well using small number of damage-sensitive features and limited sensors.
Simons, Michelle; Diffin, Fiona M.; Szczelkun, Mark D.
2014-01-01
We investigated how Escherichia coli ClpXP targets the helicase-nuclease (HsdR) subunit of the bacterial Type I restriction–modification enzyme EcoKI during restriction alleviation (RA). RA is a temporary reduction in endonuclease activity that occurs when Type I enzymes bind unmodified recognition sites on the host genome. These conditions arise upon acquisition of a new system by a naïve host, upon generation of new sites by genome rearrangement/mutation or during homologous recombination between hemimethylated DNA. Using recombinant DNA and proteins in vitro, we demonstrate that ClpXP targets EcoKI HsdR during dsDNA translocation on circular DNA but not on linear DNA. Protein roadblocks did not activate HsdR proteolysis. We suggest that DNA translocation lifetime, which is elevated on circular DNA relative to linear DNA, is important to RA. To identify the ClpX degradation tag (degron) in HsdR, we used bioinformatics and biochemical assays to design N- and C-terminal mutations that were analysed in vitro and in vivo. None of the mutants produced a phenotype consistent with loss of the degron, suggesting an as-yet-unidentified recognition pathway. We note that an EcoKI nuclease mutant still produces cell death in a clpx− strain, consistent with DNA damage induced by unregulated motor activity. PMID:25260590
Wolf, Richard C; Pujara, Maia; Baskaya, Mustafa K; Koenigs, Michael
2016-09-01
Facial emotion recognition is a critical aspect of human communication. Since abnormalities in facial emotion recognition are associated with social and affective impairment in a variety of psychiatric and neurological conditions, identifying the neural substrates and psychological processes underlying facial emotion recognition will help advance basic and translational research on social-affective function. Ventromedial prefrontal cortex (vmPFC) has recently been implicated in deploying visual attention to the eyes of emotional faces, although there is mixed evidence regarding the importance of this brain region for recognition accuracy. In the present study of neurological patients with vmPFC damage, we used an emotion recognition task with morphed facial expressions of varying intensities to determine (1) whether vmPFC is essential for emotion recognition accuracy, and (2) whether instructed attention to the eyes of faces would be sufficient to improve any accuracy deficits. We found that vmPFC lesion patients are impaired, relative to neurologically healthy adults, at recognizing moderate intensity expressions of anger and that recognition accuracy can be improved by providing instructions of where to fixate. These results suggest that vmPFC may be important for the recognition of facial emotion through a role in guiding visual attention to emotionally salient regions of faces. Copyright © 2016 Elsevier Ltd. All rights reserved.
Activity recognition from minimal distinguishing subsequence mining
NASA Astrophysics Data System (ADS)
Iqbal, Mohammad; Pao, Hsing-Kuo
2017-08-01
Human activity recognition is one of the most important research topics in the era of Internet of Things. To separate different activities given sensory data, we utilize a Minimal Distinguishing Subsequence (MDS) mining approach to efficiently find distinguishing patterns among different activities. We first transform the sensory data into a series of sensor triggering events and operate the MDS mining procedure afterwards. The gap constraints are also considered in the MDS mining. Given the multi-class nature of most activity recognition tasks, we modify the MDS mining approach from a binary case to a multi-class one to fit the need for multiple activity recognition. We also study how to select the best parameter set including the minimal and the maximal support thresholds in finding the MDSs for effective activity recognition. Overall, the prediction accuracy is 86.59% on the van Kasteren dataset which consists of four different activities for recognition.
A Lightweight Hierarchical Activity Recognition Framework Using Smartphone Sensors
Han, Manhyung; Bang, Jae Hun; Nugent, Chris; McClean, Sally; Lee, Sungyoung
2014-01-01
Activity recognition for the purposes of recognizing a user's intentions using multimodal sensors is becoming a widely researched topic largely based on the prevalence of the smartphone. Previous studies have reported the difficulty in recognizing life-logs by only using a smartphone due to the challenges with activity modeling and real-time recognition. In addition, recognizing life-logs is difficult due to the absence of an established framework which enables the use of different sources of sensor data. In this paper, we propose a smartphone-based Hierarchical Activity Recognition Framework which extends the Naïve Bayes approach for the processing of activity modeling and real-time activity recognition. The proposed algorithm demonstrates higher accuracy than the Naïve Bayes approach and also enables the recognition of a user's activities within a mobile environment. The proposed algorithm has the ability to classify fifteen activities with an average classification accuracy of 92.96%. PMID:25184486
Progressive damage and rupture in polymers
NASA Astrophysics Data System (ADS)
Talamini, Brandon; Mao, Yunwei; Anand, Lallit
2018-02-01
Progressive damage, which eventually leads to failure, is ubiquitous in biological and synthetic polymers. The simplest case to consider is that of elastomeric materials which can undergo large reversible deformations with negligible rate dependence. In this paper we develop a theory for modeling progressive damage and rupture of such materials. We extend the phase-field method, which is widely used to describe the damage and fracture of brittle materials, to elastomeric materials undergoing large deformations. A central feature of our theory is the recognition that the free energy of elastomers is not entirely entropic in nature - there is also an energetic contribution from the deformation of the bonds in the chains. It is the energetic part in the free energy which is the driving force for progressive damage and fracture.
Machine recognition of navel orange worm damage in X-ray images of pistachio nuts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keagy, P.M.; Schatzki, T.F.; Parvin, B.
Insect infestation increases the probability of aflatoxin contamination in pistachio nuts. A non-destructive test is currently not available to determine the insect content of pistachio nuts. This paper presents the use of film X-ray images of various types of pistachio nuts to assess the possibility of machine recognition of insect infested nuts. Histogram parameters of four derived images are used in discriminant functions to select insect infested nuts from specific processing streams.
Wingenbach, Tanja S. H.; Brosnan, Mark; Pfaltz, Monique C.; Plichta, Michael M.; Ashwin, Chris
2018-01-01
According to embodied cognition accounts, viewing others’ facial emotion can elicit the respective emotion representation in observers which entails simulations of sensory, motor, and contextual experiences. In line with that, published research found viewing others’ facial emotion to elicit automatic matched facial muscle activation, which was further found to facilitate emotion recognition. Perhaps making congruent facial muscle activity explicit produces an even greater recognition advantage. If there is conflicting sensory information, i.e., incongruent facial muscle activity, this might impede recognition. The effects of actively manipulating facial muscle activity on facial emotion recognition from videos were investigated across three experimental conditions: (a) explicit imitation of viewed facial emotional expressions (stimulus-congruent condition), (b) pen-holding with the lips (stimulus-incongruent condition), and (c) passive viewing (control condition). It was hypothesised that (1) experimental condition (a) and (b) result in greater facial muscle activity than (c), (2) experimental condition (a) increases emotion recognition accuracy from others’ faces compared to (c), (3) experimental condition (b) lowers recognition accuracy for expressions with a salient facial feature in the lower, but not the upper face area, compared to (c). Participants (42 males, 42 females) underwent a facial emotion recognition experiment (ADFES-BIV) while electromyography (EMG) was recorded from five facial muscle sites. The experimental conditions’ order was counter-balanced. Pen-holding caused stimulus-incongruent facial muscle activity for expressions with facial feature saliency in the lower face region, which reduced recognition of lower face region emotions. Explicit imitation caused stimulus-congruent facial muscle activity without modulating recognition. Methodological implications are discussed. PMID:29928240
Wingenbach, Tanja S H; Brosnan, Mark; Pfaltz, Monique C; Plichta, Michael M; Ashwin, Chris
2018-01-01
According to embodied cognition accounts, viewing others' facial emotion can elicit the respective emotion representation in observers which entails simulations of sensory, motor, and contextual experiences. In line with that, published research found viewing others' facial emotion to elicit automatic matched facial muscle activation, which was further found to facilitate emotion recognition. Perhaps making congruent facial muscle activity explicit produces an even greater recognition advantage. If there is conflicting sensory information, i.e., incongruent facial muscle activity, this might impede recognition. The effects of actively manipulating facial muscle activity on facial emotion recognition from videos were investigated across three experimental conditions: (a) explicit imitation of viewed facial emotional expressions (stimulus-congruent condition), (b) pen-holding with the lips (stimulus-incongruent condition), and (c) passive viewing (control condition). It was hypothesised that (1) experimental condition (a) and (b) result in greater facial muscle activity than (c), (2) experimental condition (a) increases emotion recognition accuracy from others' faces compared to (c), (3) experimental condition (b) lowers recognition accuracy for expressions with a salient facial feature in the lower, but not the upper face area, compared to (c). Participants (42 males, 42 females) underwent a facial emotion recognition experiment (ADFES-BIV) while electromyography (EMG) was recorded from five facial muscle sites. The experimental conditions' order was counter-balanced. Pen-holding caused stimulus-incongruent facial muscle activity for expressions with facial feature saliency in the lower face region, which reduced recognition of lower face region emotions. Explicit imitation caused stimulus-congruent facial muscle activity without modulating recognition. Methodological implications are discussed.
Chaperone-Mediated Autophagy in the Kidney: The Road More Traveled
Franch, Harold A.
2014-01-01
Summary Chaperone-mediated autophagy (CMA) is a lysosomal proteolytic pathway in which cytosolic substrate proteins contain specific chaperone recognition sequences required for degradation and are translocated directly across the lysosomal membrane for destruction. CMA proteolytic activity has a reciprocal relationship with macroautophagy: CMA is most active in cells in which macroautophagy is least active. Normal renal proximal tubular cells have low levels of macroautophagy, but high basal levels of CMA activity. CMA activity is regulated by starvation, growth factors, oxidative stress, lipids, aging, and retinoic acid signaling. The physiological consequences of changes in CMA activity depend on the substrate proteins present in a given cell type. In the proximal tubule, increased CMA results from protein or calorie starvation and from oxidative stress. Overactivity of CMA can be associated with tubular lysosomal pathology and certain cancers. Reduced CMA activity contributes to protein accumulation in renal tubular hypertrophy, but may contribute to oxidative tissue damage in diabetes and aging. Although there are more questions than answers about the role of high basal CMA activity, this remarkable feature of tubular protein metabolism appears to influence a variety of chronic diseases. PMID:24485032
Semantic and visual determinants of face recognition in a prosopagnosic patient.
Dixon, M J; Bub, D N; Arguin, M
1998-05-01
Prosopagnosia is the neuropathological inability to recognize familiar people by their faces. It can occur in isolation or can coincide with recognition deficits for other nonface objects. Often, patients whose prosopagnosia is accompanied by object recognition difficulties have more trouble identifying certain categories of objects relative to others. In previous research, we demonstrated that objects that shared multiple visual features and were semantically close posed severe recognition difficulties for a patient with temporal lobe damage. We now demonstrate that this patient's face recognition is constrained by these same parameters. The prosopagnosic patient ELM had difficulties pairing faces to names when the faces shared visual features and the names were semantically related (e.g., Tonya Harding, Nancy Kerrigan, and Josee Chouinard -three ice skaters). He made tenfold fewer errors when the exact same faces were associated with semantically unrelated people (e.g., singer Celine Dion, actress Betty Grable, and First Lady Hillary Clinton). We conclude that prosopagnosia and co-occurring category-specific recognition problems both stem from difficulties disambiguating the stored representations of objects that share multiple visual features and refer to semantically close identities or concepts.
Self/nonself perception in plants in innate immunity and defense
Sanabria, Natasha M; Huang, Ju-Chi
2010-01-01
The ability to distinguish ‘self’ from ‘nonself’ is the most fundamental aspect of any immune system. The evolutionary solution in plants to the problems of perceiving and responding to pathogens involves surveillance of nonself, damaged-self and altered-self as danger signals. This is reflected in basal resistance or non-host resistance, which is the innate immune response that protects plants against the majority of pathogens. In the case of surveillance of nonself, plants utilize receptor-like proteins or -kinases (RLP/Ks) as pattern recognition receptors (PRRs), which can detect conserved pathogen/microbe-associated molecular pattern (P/MAMP) molecules. P/MAMP detection serves as an early warning system for the presence of a wide range of potential pathogens and the timely activation of plant defense mechanisms. However, adapted microbes express a suite of effector proteins that often interfere or act as suppressors of these defenses. In response, plants have evolved a second line of defense that includes intracellular nucleotide binding leucine-rich repeat (NB-LRR)-containing resistance proteins, which recognize isolate-specific pathogen effectors once the cell wall has been compromised. This host-immunity acts within the species level and is controlled by polymorphic host genes, where resistance protein-mediated activation of defense is based on an ‘altered-self’ recognition mechanism. PMID:21559176
Amicuzi, Ileana; Stortini, Massimo; Petrarca, Maurizio; Di Giulio, Paola; Di Rosa, Giuseppe; Fariello, Giuseppe; Longo, Daniela; Cannatà, Vittorio; Genovese, Elisabetta; Castelli, Enrico
2006-10-01
We report the case of a 4.6-year-old girl born pre-term with early bilateral occipital damage. It was revealed that the child had non-severely impaired basic visual abilities and ocular motility, a selective perceptual deficit of figure-ground segregation, impaired visual recognition and abnormal navigating through space. Even if the child's visual functioning was not optimal, this was the expression of adaptive anatomic and functional brain modifications that occurred following the early lesion. Anatomic brain structure was studied with anatomic MRI and Diffusor Tensor Imaging (DTI)-MRI. This behavioral study may provide an important contribution to understanding the impact of an early lesion of the visual system on the development of visual functions and on the immature brain's potential for reorganisation related to when the damage occurred.
Facial emotion recognition in patients with focal and diffuse axonal injury.
Yassin, Walid; Callahan, Brandy L; Ubukata, Shiho; Sugihara, Genichi; Murai, Toshiya; Ueda, Keita
2017-01-01
Facial emotion recognition impairment has been well documented in patients with traumatic brain injury. Studies exploring the neural substrates involved in such deficits have implicated specific grey matter structures (e.g. orbitofrontal regions), as well as diffuse white matter damage. Our study aims to clarify whether different types of injuries (i.e. focal vs. diffuse) will lead to different types of impairments on facial emotion recognition tasks, as no study has directly compared these patients. The present study examined performance and response patterns on a facial emotion recognition task in 14 participants with diffuse axonal injury (DAI), 14 with focal injury (FI) and 22 healthy controls. We found that, overall, participants with FI and DAI performed more poorly than controls on the facial emotion recognition task. Further, we observed comparable emotion recognition performance in participants with FI and DAI, despite differences in the nature and distribution of their lesions. However, the rating response pattern between the patient groups was different. This is the first study to show that pure DAI, without gross focal lesions, can independently lead to facial emotion recognition deficits and that rating patterns differ depending on the type and location of trauma.
Anti-amnesic effects of Ganoderma species: A possible cholinergic and antioxidant mechanism.
Kaur, Ravneet; Singh, Varinder; Shri, Richa
2017-08-01
Mushrooms are valued for their nutritional as well as medicinal properties. Ganoderma species are used traditionally to treat neurological disorders but scientific evidence for this is insufficient. The present study was designed to systematically evaluate the anti-amnesic effect of selected Ganoderma species i.e. G. mediosinense and G. ramosissimum. Extracts of selected mushroom species were evaluated for their antioxidant activity and acetylcholinesterase (AChE) inhibition using in-vitro assays (DPPH and Ellman tests respectively). The anti-amnesic potential of the most active extract (i.e. 70% methanol extract of G. mediosinense) was confirmed using mouse model of scopolamine-induced amnesia. Mice were treated with bioactive extract and donepezil once orally before the induction of amnesia. Cognitive functions were evaluated using passive shock avoidance (PSA) and novel object recognition (NOR) tests. The effect on brain AChE activity, brain oxidative stress (TBARS level) and neuronal damage (H & E staining) were also assessed. In-vitro results showed strong antioxidant and AChE inhibitory activities by G. mediosinense extract (GME). Therefore, it was selected for in-vivo studies. GME pre-treatment (800mg/kg, p.o.) reversed the effect of scopolamine in mice, evident by significant decrease (p <0.05) in the transfer latency time and increase in object recognition index in PSA and NOR, respectively. GME significantly reduced the brain AChE activity and oxidative stress. Histopathological examination of brain tissues showed decrease in vacuolated cytoplasm and increase in pyramidal cells in brain hippocampal and cortical regions. GME exerts anti-amnesic effect through AChE inhibition and antioxidant mechanisms. Copyright © 2017. Published by Elsevier Masson SAS.
Kuznetsov, N A; Kiryutin, A S; Kuznetsova, A A; Panov, M S; Barsukova, M O; Yurkovskaya, A V; Fedorova, O S
2017-04-01
Human alkyladenine DNA glycosylase (AAG) protects DNA from alkylated and deaminated purine lesions. AAG flips out the damaged nucleotide from the double helix of DNA and catalyzes the hydrolysis of the N-glycosidic bond to release the damaged base. To understand better, how the step of nucleotide eversion influences the overall catalytic process, we performed a pre-steady-state kinetic analysis of AAG interaction with specific DNA-substrates, 13-base pair duplexes containing in the 7th position 1-N6-ethenoadenine (εA), hypoxanthine (Hx), and the stable product analogue tetrahydrofuran (F). The combination of the fluorescence of tryptophan, 2-aminopurine, and 1-N6-ethenoadenine was used to record conformational changes of the enzyme and DNA during the processes of DNA lesion recognition, damaged base eversion, excision of the N-glycosidic bond, and product release. The thermal stability of the duplexes characterized by the temperature of melting, T m , and the rates of spontaneous opening of individual nucleotide base pairs were determined by NMR spectroscopy. The data show that the relative thermal stability of duplexes containing a particular base pair in position 7, (T m (F/T) < T m (εA/T) < T m (Hx/T) < T m (A/T)) correlates with the rate of reversible spontaneous opening of the base pair. However, in contrast to that, the catalytic lesion excision rate is two orders of magnitude higher for Hx-containing substrates than for substrates containing εA, proving that catalytic activity is not correlated with the stability of the damaged base pair. Our study reveals that the formation of the catalytically competent enzyme-substrate complex is not the bottleneck controlling the catalytic activity of AAG.
Rapid DNA double-strand breaks resulting from processing of Cr-DNA cross-links by both MutS dimers.
Reynolds, Mindy F; Peterson-Roth, Elizabeth C; Bespalov, Ivan A; Johnston, Tatiana; Gurel, Volkan M; Menard, Haley L; Zhitkovich, Anatoly
2009-02-01
Mismatch repair (MMR) strongly enhances cyto- and genotoxicity of several chemotherapeutic agents and environmental carcinogens. DNA double-strand breaks (DSB) formed after two replication cycles play a major role in MMR-dependent cell death by DNA alkylating drugs. Here, we examined DNA damage detection and the mechanisms of the unusually rapid induction of DSB by MMR proteins in response to carcinogenic chromium(VI). We found that MSH2-MSH6 (MutSalpha) dimer effectively bound DNA probes containing ascorbate-Cr-DNA and cysteine-Cr-DNA cross-links. Binary Cr-DNA adducts, the most abundant form of Cr-DNA damage, were poor substrates for MSH2-MSH6, and their toxicity in cells was weak and MMR independent. Although not involved in the initial recognition of Cr-DNA damage, MSH2-MSH3 (MutSbeta) complex was essential for the induction of DSB, micronuclei, and apoptosis in human cells by chromate. In situ fractionation of Cr-treated cells revealed MSH6 and MSH3 chromatin foci that originated in late S phase and did not require replication of damaged DNA. Formation of MSH3 foci was MSH6 and MLH1 dependent, whereas MSH6 foci were unaffected by MSH3 status. DSB production was associated with progression of cells from S into G(2) phase and was completely blocked by the DNA synthesis inhibitor aphidicolin. Interestingly, chromosome 3 transfer into MSH3-null HCT116 cells activated an alternative, MSH3-like activity that restored dinucleotide repeat stability and sensitivity to chromate. Thus, sequential recruitment and unprecedented cooperation of MutSalpha and MutSbeta branches of MMR in processing of Cr-DNA cross-links is the main cause of DSB and chromosomal breakage at low and moderate Cr(VI) doses.
Improving activity recognition using temporal coherence.
Ataya, Abbas; Jallon, Pierre; Bianchi, Pascal; Doron, Maeva
2013-01-01
Assessment of daily physical activity using data from wearable sensors has recently become a prominent research area in the biomedical engineering field and a substantial application for pattern recognition. In this paper, we present an accelerometer-based activity recognition scheme on the basis of a hierarchical structured classifier. A first step consists of distinguishing static activities from dynamic ones in order to extract relevant features for each activity type. Next, a separate classifier is applied to detect more specific activities of the same type. On top of our activity recognition system, we introduce a novel approach to take into account the temporal coherence of activities. Inter-activity transition information is modeled by a directed graph Markov chain. Confidence measures in activity classes are then evaluated from conventional classifier's outputs and coupled with the graph to reinforce activity estimation. Accurate results and significant improvement of activity detection are obtained when applying our system for the recognition of 9 activities for 48 subjects.
Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei
2014-09-01
In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
The role of the hippocampus in recognition memory.
Bird, Chris M
2017-08-01
Many theories of declarative memory propose that it is supported by partially separable processes underpinned by different brain structures. The hippocampus plays a critical role in binding together item and contextual information together and processing the relationships between individual items. By contrast, the processing of individual items and their later recognition can be supported by extrahippocampal regions of the medial temporal lobes (MTL), particularly when recognition is based on feelings of familiarity without the retrieval of any associated information. These theories are domain-general in that "items" might be words, faces, objects, scenes, etc. However, there is mixed evidence that item recognition does not require the hippocampus, or that familiarity-based recognition can be supported by extrahippocampal regions. By contrast, there is compelling evidence that in humans, hippocampal damage does not affect recognition memory for unfamiliar faces, whilst recognition memory for several other stimulus classes is impaired. I propose that regions outside of the hippocampus can support recognition of unfamiliar faces because they are perceived as discrete items and have no prior conceptual associations. Conversely, extrahippocampal processes are inadequate for recognition of items which (a) have been previously experienced, (b) are conceptually meaningful, or (c) are perceived as being comprised of individual elements. This account reconciles findings from primate and human studies of recognition memory. Furthermore, it suggests that while the hippocampus is critical for binding and relational processing, these processes are required for item recognition memory in most situations. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Neural mechanisms of facial recognition].
Nagai, Chiyoko
2007-01-01
We review recent researches in neural mechanisms of facial recognition in the light of three aspects: facial discrimination and identification, recognition of facial expressions, and face perception in itself. First, it has been demonstrated that the fusiform gyrus has a main role of facial discrimination and identification. However, whether the FFA (fusiform face area) is really a special area for facial processing or not is controversial; some researchers insist that the FFA is related to 'becoming an expert' for some kinds of visual objects, including faces. Neural mechanisms of prosopagnosia would be deeply concerned to this issue. Second, the amygdala seems to be very concerned to recognition of facial expressions, especially fear. The amygdala, connected with the superior temporal sulcus and the orbitofrontal cortex, appears to operate the cortical function. The amygdala and the superior temporal sulcus are related to gaze recognition, which explains why a patient with bilateral amygdala damage could not recognize only a fear expression; the information from eyes is necessary for fear recognition. Finally, even a newborn infant can recognize a face as a face, which is congruent with the innate hypothesis of facial recognition. Some researchers speculate that the neural basis of such face perception is the subcortical network, comprised of the amygdala, the superior colliculus, and the pulvinar. This network would relate to covert recognition that prosopagnosic patients have.
Toll-like receptor 2 and type 2 diabetes.
Sepehri, Zahra; Kiani, Zohre; Nasiri, Ali Akbar; Kohan, Farhad
2016-01-01
Innate immunity plays a crucial role in the pathogenesis of type 2 diabetes and related complications. Since the toll-like receptors (TLRs) are central to innate immunity, it appears that they are important participants in the development and pathogenesis of the disease. Previous investigations demonstrated that TLR2 homodimers and TLR2 heterodimers with TLR1 or TLR6 activate innate immunity upon recognition of damage-associated molecular patterns (DAMPs). Several DAMPs are released during type 2 diabetes, so it may be hypothesized that TLR2 is significantly involved in its progression. Here, we review recent data on the important roles and status of TLR2 in type 2 diabetes and related complications.
Higher-order assembly of BRCC36–KIAA0157 is required for DUB activity and biological function
Zeqiraj, Elton; Tian, Lei; Piggott, Christopher A.; ...
2015-09-03
BRCC36 is a Zn 2+-dependent deubiquitinating enzyme (DUB) that hydrolyzes lysine-63-linked ubiquitin chains as part of distinct macromolecular complexes that participate in either interferon signaling or DNA-damage recognition. The MPN + domain protein BRCC36 associates with pseudo DUB MPN– proteins KIAA0157 or Abraxas, which are essential for BRCC36 enzymatic activity. Here, to understand the basis for BRCC36 regulation, we have solved the structure of an active BRCC36-KIAA0157 heterodimer and an inactive BRCC36 homodimer. Structural and functional characterizations show how BRCC36 is switched to an active conformation by contacts with KIAA0157. Higher-order association of BRCC36 and KIAA0157 into a dimer ofmore » heterodimers (super dimers) was required for DUB activity and interaction with targeting proteins SHMT2 and RAP80. Lastly, these data provide an explanation of how an inactive pseudo DUB allosterically activates a cognate DUB partner and implicates super dimerization as a new regulatory mechanism underlying BRCC36 DUB activity, subcellular localization, and biological function.« less
Bicknell, Louise S; Walker, Sarah; Klingseisen, Anna; Stiff, Tom; Leitch, Andrea; Kerzendorfer, Claudia; Martin, Carol-Anne; Yeyati, Patricia; Al Sanna, Nouriya; Bober, Michael; Johnson, Diana; Wise, Carol; Jackson, Andrew P; O'Driscoll, Mark; Jeggo, Penny A
2011-02-27
Studies into disorders of extreme growth failure (for example, Seckel syndrome and Majewski osteodysplastic primordial dwarfism type II) have implicated fundamental cellular processes of DNA damage response signaling and centrosome function in the regulation of human growth. Here we report that mutations in ORC1, encoding a subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. We establish that these mutations disrupt known ORC1 functions including pre-replicative complex formation and origin activation. ORC1 deficiency perturbs S-phase entry and S-phase progression. Additionally, we show that Orc1 depletion in zebrafish is sufficient to markedly reduce body size during rapid embryonic growth. Our data suggest a model in which ORC1 mutations impair replication licensing, slowing cell cycle progression and consequently impeding growth during development, particularly at times of rapid proliferation. These findings establish a novel mechanism for the pathogenesis of microcephalic dwarfism and show a surprising but important developmental impact of impaired origin licensing.
DNA Glycosylases Search for and Remove Oxidized DNA Bases
Wallace, Susan S.
2014-01-01
The following mini review summarizes recent research from the Author’s laboratory as presented to the Environmental Mutagen Society in October 2012. It provides an overview of the DNA glycosylases that recognize oxidized DNA bases using the Fpg/Nei family of DNA glycosylases as models for how structure can inform function. For example, even though human NEIL1 and the plant and fungal orthologs lack the zinc finger shown to be required for binding, DNA crystal structures revealed a “zincless finger” with the same properties. Also the “lesion recognition loop” is not involved in lesion recognition rather stabilization of 8-oxoG in the active site pocket. Unlike the other Fpg/Nei family members, Neil3 lacks two of the three void-filling residues that stabilize the duplex and interact with the opposite strand which may account for its preference for lesions in single stranded DNA. We also showed, using single molecule approaches, that DNA glycosylases search for their substrates in a sea of undamaged DNA by using a wedge residue that is inserted into the DNA helix to probe for the presence of damage. PMID:24123395
Item-location binding in working memory: is it hippocampus-dependent?
Allen, Richard J; Vargha-Khadem, Faraneh; Baddeley, Alan D
2014-07-01
A general consensus is emerging that the hippocampus has an important and active role in the creation of new long-term memory representations of associations or bindings between elements. However, it is less clear whether this contribution can be extended to the creation of temporary bound representations in working memory, involving the retention of small numbers of items over short delays. We examined this by administering a series of recognition and recall tests of working memory for colour-location binding and object-location binding to a patient with highly selective hippocampal damage (Jon), and groups of control participants. Jon achieved high levels of accuracy in all working memory tests of recognition and recall binding across retention intervals of up to 10s. In contrast, Jon performed at chance on an unexpected delayed test of the same object-location binding information. These findings indicate a clear dissociation between working memory and long-term memory, with no evidence for a critical hippocampal contribution to item-location binding in working memory. Copyright © 2014 Elsevier Ltd. All rights reserved.
Helminth Infections: Recognition and Modulation of the Immune Response by Innate Immune Cells
Motran, Claudia Cristina; Silvane, Leonardo; Chiapello, Laura Silvina; Theumer, Martin Gustavo; Ambrosio, Laura Fernanda; Volpini, Ximena; Celias, Daiana Pamela; Cervi, Laura
2018-01-01
The survival of helminths in the host over long periods of time is the result of a process of adaptation or dynamic co-evolution between the host and the parasite. However, infection with helminth parasites causes damage to the host tissues producing the release of danger signals that induce the recruitment of various cells, including innate immune cells such as macrophages (Mo), dendritic cells (DCs), eosinophils, basophils, and mast cells. In this scenario, these cells are able to secrete soluble factors, which orchestrate immune effector mechanisms that depend on the different niches these parasites inhabit. Here, we focus on recent advances in the knowledge of excretory-secretory products (ESP), resulting from helminth recognition by DCs and Mo. Phagocytes and other cells types such as innate lymphocyte T cells 2 (ILC2), when activated by ESP, participate in an intricate cytokine network to generate innate and adaptive Th2 responses. In this review, we also discuss the mechanisms of innate immune cell-induced parasite killing and the tissue repair necessary to assure helminth survival over long periods of time. PMID:29670630
Physical environment virtualization for human activities recognition
NASA Astrophysics Data System (ADS)
Poshtkar, Azin; Elangovan, Vinayak; Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen
2015-05-01
Human activity recognition research relies heavily on extensive datasets to verify and validate performance of activity recognition algorithms. However, obtaining real datasets are expensive and highly time consuming. A physics-based virtual simulation can accelerate the development of context based human activity recognition algorithms and techniques by generating relevant training and testing videos simulating diverse operational scenarios. In this paper, we discuss in detail the requisite capabilities of a virtual environment to aid as a test bed for evaluating and enhancing activity recognition algorithms. To demonstrate the numerous advantages of virtual environment development, a newly developed virtual environment simulation modeling (VESM) environment is presented here to generate calibrated multisource imagery datasets suitable for development and testing of recognition algorithms for context-based human activities. The VESM environment serves as a versatile test bed to generate a vast amount of realistic data for training and testing of sensor processing algorithms. To demonstrate the effectiveness of VESM environment, we present various simulated scenarios and processed results to infer proper semantic annotations from the high fidelity imagery data for human-vehicle activity recognition under different operational contexts.
A survey of online activity recognition using mobile phones.
Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J M
2015-01-19
Physical activity recognition using embedded sensors has enabled many context-aware applications in different areas, such as healthcare. Initially, one or more dedicated wearable sensors were used for such applications. However, recently, many researchers started using mobile phones for this purpose, since these ubiquitous devices are equipped with various sensors, ranging from accelerometers to magnetic field sensors. In most of the current studies, sensor data collected for activity recognition are analyzed offline using machine learning tools. However, there is now a trend towards implementing activity recognition systems on these devices in an online manner, since modern mobile phones have become more powerful in terms of available resources, such as CPU, memory and battery. The research on offline activity recognition has been reviewed in several earlier studies in detail. However, work done on online activity recognition is still in its infancy and is yet to be reviewed. In this paper, we review the studies done so far that implement activity recognition systems on mobile phones and use only their on-board sensors. We discuss various aspects of these studies. Moreover, we discuss their limitations and present various recommendations for future research.
Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V C; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R
2015-01-01
Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage.
Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V. C.; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R.
2015-01-01
Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage. PMID:25992718
Structural health monitoring feature design by genetic programming
NASA Astrophysics Data System (ADS)
Harvey, Dustin Y.; Todd, Michael D.
2014-09-01
Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.
Recognition and Quantification of Area Damaged by Oligonychus Perseae in Avocado Leaves
NASA Astrophysics Data System (ADS)
Díaz, Gloria; Romero, Eduardo; Boyero, Juan R.; Malpica, Norberto
The measure of leaf damage is a basic tool in plant epidemiology research. Measuring the area of a great number of leaves is subjective and time consuming. We investigate the use of machine learning approaches for the objective segmentation and quantification of leaf area damaged by mites in avocado leaves. After extraction of the leaf veins, pixels are labeled with a look-up table generated using a Support Vector Machine with a polynomial kernel of degree 3, on the chrominance components of YCrCb color space. Spatial information is included in the segmentation process by rating the degree of membership to a certain class and the homogeneity of the classified region. Results are presented on real images with different degrees of damage.
Deep Learning for Image-Based Cassava Disease Detection.
Ramcharan, Amanda; Baranowski, Kelsee; McCloskey, Peter; Ahmed, Babuali; Legg, James; Hughes, David P
2017-01-01
Cassava is the third largest source of carbohydrates for human food in the world but is vulnerable to virus diseases, which threaten to destabilize food security in sub-Saharan Africa. Novel methods of cassava disease detection are needed to support improved control which will prevent this crisis. Image recognition offers both a cost effective and scalable technology for disease detection. New deep learning models offer an avenue for this technology to be easily deployed on mobile devices. Using a dataset of cassava disease images taken in the field in Tanzania, we applied transfer learning to train a deep convolutional neural network to identify three diseases and two types of pest damage (or lack thereof). The best trained model accuracies were 98% for brown leaf spot (BLS), 96% for red mite damage (RMD), 95% for green mite damage (GMD), 98% for cassava brown streak disease (CBSD), and 96% for cassava mosaic disease (CMD). The best model achieved an overall accuracy of 93% for data not used in the training process. Our results show that the transfer learning approach for image recognition of field images offers a fast, affordable, and easily deployable strategy for digital plant disease detection.
Analysis on the Intention to Purchase Weather Index Insurance and Development Agenda
NASA Astrophysics Data System (ADS)
Park, K.; Jung, J.; Shin, J.; Kim, B.
2013-12-01
The purpose of this paper is to analyze how to revitalize weather insurance. Current state of weather insurance market is firstly described, and the necessity of insurance products and intention to purchase are analyzed based on the recognition survey regarding weather insurance focusing on the weather index insurance. The result of intention to purchase insurance products were examined with Ordered Logit Analysis (OLA), indicating that the amount of damages, the impacts of weather change, and experience of damage and loss have a positive relationship with the intention to purchase weather insurance. In addition, recognition of the amount of acceptable payment for insurance (i.e. willingness to pay) was analyzed for both the group who wants to purchase insurance (Group 1) and the group who does not want to (Group 2). The results demonstrate that Group 1 shows statistically higher significance than Group 2. Based on the results above with the increase in abnormal weather phenomena, we could predict that the amount of damages and losses will be rapidly increasing. The portion of weather insurance market is also expected to consistently develop and expand. This study could be a cornerstone for drawing a plan to revitalize weather insurance.
The recognition of emotional expression in prosopagnosia: decoding whole and part faces.
Stephan, Blossom Christa Maree; Breen, Nora; Caine, Diana
2006-11-01
Prosopagnosia is currently viewed within the constraints of two competing theories of face recognition, one highlighting the analysis of features, the other focusing on configural processing of the whole face. This study investigated the role of feature analysis versus whole face configural processing in the recognition of facial expression. A prosopagnosic patient, SC made expression decisions from whole and incomplete (eyes-only and mouth-only) faces where features had been obscured. SC was impaired at recognizing some (e.g., anger, sadness, and fear), but not all (e.g., happiness) emotional expressions from the whole face. Analyses of his performance on incomplete faces indicated that his recognition of some expressions actually improved relative to his performance on the whole face condition. We argue that in SC interference from damaged configural processes seem to override an intact ability to utilize part-based or local feature cues.
NASA Astrophysics Data System (ADS)
Shohei, N.; Nakamura, H.; Fujiwara, H.; Naoichi, M.; Hiromitsu, T.
2017-12-01
It is important to get schematic information of the damage situation immediately after the earthquake utilizing photographs shot from an airplane in terms of the investigation and the decision-making for authorities. In case of the 2016 Kumamoto earthquake, we have acquired more than 1,800 orthographic projection photographs adjacent to damaged areas. These photos have taken between April 16th and 19th by airplanes, then we have distinguished damages of all buildings with 4 levels, and organized as approximately 296,000 GIS data corresponding to the fundamental Geospatial data published by Geospatial Information Authority of Japan. These data have organized by effort of hundreds of engineers. However, it is not considered practical for more extensive disasters like the Nankai Trough earthquake by only human powers. So, we have been developing the automatic damage identification method utilizing image recognition and machine learning techniques. First, we have extracted training data of more than 10,000 buildings which have equally damage levels divided in 4 grades. With these training data, we have been raster scanning in each scanning ranges of entire images, then clipping patch images which represents damage levels each. By utilizing these patch images, we have been developing discriminant models by two ways. One is a model using the Support Vector Machine (SVM). First, extract a feature quantity of each patch images. Then, with these vector values, calculate the histogram density as a method of Bag of Visual Words (BoVW), then classify borders with each damage grades by SVM. The other one is a model using the multi-layered Neural Network. First, design a multi-layered Neural Network. Second, input patch images and damage levels based on a visual judgement, and then, optimize learning parameters with error backpropagation method. By use of both discriminant models, we are going to discriminate damage levels in each patches, then create the image that shows building damage situations. It would be helpful for more prompt and widespread damage detection than visual judgement. Acknowledgment: This work was supported by CSTI through the Cross-ministerial Strategic Innovation Promotion Program (SIP), titled "Enhancement of societal resiliency against natural disasters"(Funding agency: JST).
Chromosome territories reposition during DNA damage-repair response
2013-01-01
Background Local higher-order chromatin structure, dynamics and composition of the DNA are known to determine double-strand break frequencies and the efficiency of repair. However, how DNA damage response affects the spatial organization of chromosome territories is still unexplored. Results Our report investigates the effect of DNA damage on the spatial organization of chromosome territories within interphase nuclei of human cells. We show that DNA damage induces a large-scale spatial repositioning of chromosome territories that are relatively gene dense. This response is dose dependent, and involves territories moving from the nuclear interior to the periphery and vice versa. Furthermore, we have found that chromosome territory repositioning is contingent upon double-strand break recognition and damage sensing. Importantly, our results suggest that this is a reversible process where, following repair, chromosome territories re-occupy positions similar to those in undamaged control cells. Conclusions Thus, our report for the first time highlights DNA damage-dependent spatial reorganization of whole chromosomes, which might be an integral aspect of cellular damage response. PMID:24330859
Syed, Salahuddin; Desler, Claus; Rasmussen, Lene J; Schmidt, Kristina H
2016-12-01
In response to replication stress cells activate the intra-S checkpoint, induce DNA repair pathways, increase nucleotide levels, and inhibit origin firing. Here, we report that Rrm3 associates with a subset of replication origins and controls DNA synthesis during replication stress. The N-terminal domain required for control of DNA synthesis maps to residues 186-212 that are also critical for binding Orc5 of the origin recognition complex. Deletion of this domain is lethal to cells lacking the replication checkpoint mediator Mrc1 and leads to mutations upon exposure to the replication stressor hydroxyurea. This novel Rrm3 function is independent of its established role as an ATPase/helicase in facilitating replication fork progression through polymerase blocking obstacles. Using quantitative mass spectrometry and genetic analyses, we find that the homologous recombination factor Rdh54 and Rad5-dependent error-free DNA damage bypass act as independent mechanisms on DNA lesions that arise when Rrm3 catalytic activity is disrupted whereas these mechanisms are dispensable for DNA damage tolerance when the replication function is disrupted, indicating that the DNA lesions generated by the loss of each Rrm3 function are distinct. Although both lesion types activate the DNA-damage checkpoint, we find that the resultant increase in nucleotide levels is not sufficient for continued DNA synthesis under replication stress. Together, our findings suggest a role of Rrm3, via its Orc5-binding domain, in restricting DNA synthesis that is genetically and physically separable from its established catalytic role in facilitating fork progression through replication blocks.
Syed, Salahuddin; Desler, Claus; Rasmussen, Lene J.; Schmidt, Kristina H.
2016-01-01
In response to replication stress cells activate the intra-S checkpoint, induce DNA repair pathways, increase nucleotide levels, and inhibit origin firing. Here, we report that Rrm3 associates with a subset of replication origins and controls DNA synthesis during replication stress. The N-terminal domain required for control of DNA synthesis maps to residues 186–212 that are also critical for binding Orc5 of the origin recognition complex. Deletion of this domain is lethal to cells lacking the replication checkpoint mediator Mrc1 and leads to mutations upon exposure to the replication stressor hydroxyurea. This novel Rrm3 function is independent of its established role as an ATPase/helicase in facilitating replication fork progression through polymerase blocking obstacles. Using quantitative mass spectrometry and genetic analyses, we find that the homologous recombination factor Rdh54 and Rad5-dependent error-free DNA damage bypass act as independent mechanisms on DNA lesions that arise when Rrm3 catalytic activity is disrupted whereas these mechanisms are dispensable for DNA damage tolerance when the replication function is disrupted, indicating that the DNA lesions generated by the loss of each Rrm3 function are distinct. Although both lesion types activate the DNA-damage checkpoint, we find that the resultant increase in nucleotide levels is not sufficient for continued DNA synthesis under replication stress. Together, our findings suggest a role of Rrm3, via its Orc5-binding domain, in restricting DNA synthesis that is genetically and physically separable from its established catalytic role in facilitating fork progression through replication blocks. PMID:27923055
A Flexible Approach for Human Activity Recognition Using Artificial Hydrocarbon Networks
Ponce, Hiram; Miralles-Pechuán, Luis; Martínez-Villaseñor, María de Lourdes
2016-01-01
Physical activity recognition based on sensors is a growing area of interest given the great advances in wearable sensors. Applications in various domains are taking advantage of the ease of obtaining data to monitor personal activities and behavior in order to deliver proactive and personalized services. Although many activity recognition systems have been developed for more than two decades, there are still open issues to be tackled with new techniques. We address in this paper one of the main challenges of human activity recognition: Flexibility. Our goal in this work is to present artificial hydrocarbon networks as a novel flexible approach in a human activity recognition system. In order to evaluate the performance of artificial hydrocarbon networks based classifier, experimentation was designed for user-independent, and also for user-dependent case scenarios. Our results demonstrate that artificial hydrocarbon networks classifier is flexible enough to be used when building a human activity recognition system with either user-dependent or user-independent approaches. PMID:27792136
A Flexible Approach for Human Activity Recognition Using Artificial Hydrocarbon Networks.
Ponce, Hiram; Miralles-Pechuán, Luis; Martínez-Villaseñor, María de Lourdes
2016-10-25
Physical activity recognition based on sensors is a growing area of interest given the great advances in wearable sensors. Applications in various domains are taking advantage of the ease of obtaining data to monitor personal activities and behavior in order to deliver proactive and personalized services. Although many activity recognition systems have been developed for more than two decades, there are still open issues to be tackled with new techniques. We address in this paper one of the main challenges of human activity recognition: Flexibility. Our goal in this work is to present artificial hydrocarbon networks as a novel flexible approach in a human activity recognition system. In order to evaluate the performance of artificial hydrocarbon networks based classifier, experimentation was designed for user-independent, and also for user-dependent case scenarios. Our results demonstrate that artificial hydrocarbon networks classifier is flexible enough to be used when building a human activity recognition system with either user-dependent or user-independent approaches.
Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung Y; Kim, Tae-Seong
2010-09-01
Physical-activity recognition via wearable sensors can provide valuable information regarding an individual's degree of functional ability and lifestyle. In this paper, we present an accelerometer sensor-based approach for human-activity recognition. Our proposed recognition method uses a hierarchical scheme. At the lower level, the state to which an activity belongs, i.e., static, transition, or dynamic, is recognized by means of statistical signal features and artificial-neural nets (ANNs). The upper level recognition uses the autoregressive (AR) modeling of the acceleration signals, thus, incorporating the derived AR-coefficients along with the signal-magnitude area and tilt angle to form an augmented-feature vector. The resulting feature vector is further processed by the linear-discriminant analysis and ANNs to recognize a particular human activity. Our proposed activity-recognition method recognizes three states and 15 activities with an average accuracy of 97.9% using only a single triaxial accelerometer attached to the subject's chest.
Chuang, Christine Y; Degendorfer, Georg; Hammer, Astrid; Whitelock, John M; Malle, Ernst; Davies, Michael J
2014-04-15
ECM (extracellular matrix) materials, such as laminin, perlecan, type IV collagen and fibronectin, play a key role in determining the structure of the arterial wall and the properties of cells that interact with the ECM. The aim of the present study was to investigate the effect of peroxynitrous acid, an oxidant generated by activated macrophages, on the structure and function of the ECM laid down by HCAECs (human coronary artery endothelial cells) in vitro and in vivo. We show that exposure of HCAEC-derived native matrix components to peroxynitrous acid (but not decomposed oxidant) at concentrations >1 μM results in a loss of antibody recognition of perlecan, collagen IV, and cell-binding sites on laminin and fibronectin. Loss of recognition was accompanied by decreased HCAEC adhesion. Real-time PCR showed up-regulation of inflammation-associated genes, including MMP7 (matrix metalloproteinase 7) and MMP13, as well as down-regulation of the laminin α2 chain, in HCAECs cultured on peroxynitrous acid-treated matrix compared with native matrix. Immunohistochemical studies provided evidence of co-localization of laminin with 3-nitrotyrosine, a biomarker of peroxynitrous acid damage, in type II-III/IV human atherosclerotic lesions, consistent with matrix damage occurring during disease development in vivo. The results of the present study suggest a mechanism through which peroxynitrous acid modifies endothelial cell-derived native ECM proteins of the arterial basement membrane in atherosclerotic lesions. These changes to ECM and particularly perlecan and laminin may be important in inducing cellular dysfunction and contribute to atherogenesis.
Potential Collaborative Research topics with Korea’s Agency for Defense Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, Charles R.; Todd, Michael D.
2012-08-23
This presentation provides a high level summary of current research activities at the Los Alamos National Laboratory (LANL)-University of California Jacobs School of Engineering (UCSD) Engineering Institute that will be presented at Korea's Agency for Defense Development (ADD). These research activities are at the basic engineering science level with different level of maturity ranging from initial concepts to field proof-of-concept demonstrations. We believe that all of these activities are appropriate for collaborative research activities with ADD subject to approval by each institution. All the activities summarized herein have the common theme that they are multi-disciplinary in nature and typically involvedmore » the integration of high-fidelity predictive modeling, advanced sensing technologies and new development in information technology. These activities include: Wireless Sensor Systems, Swarming Robot sensor systems, Advanced signal processing (compressed sensing) and pattern recognition, Model Verification and Validation, Optimal/robust sensor system design, Haptic systems for large-scale data processing, Cyber-physical security for robots, Multi-source energy harvesting, Reliability-based approaches to damage prognosis, SHMTools software development, and Cyber-physical systems advanced study institute.« less
How cortical neurons help us see: visual recognition in the human brain
Blumberg, Julie; Kreiman, Gabriel
2010-01-01
Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us understand the computations performed by visual cortex. PMID:20811161
Grabiec, Aleksander M; Hussell, Tracy
2016-07-01
Acute and chronic inflammatory responses in the lung are associated with the accumulation of large quantities of immune and structural cells undergoing apoptosis, which need to be engulfed by phagocytes in a process called 'efferocytosis'. Apoptotic cell recognition and removal from the lung is mediated predominantly by airway macrophages, though immature dendritic cells and non-professional phagocytes, such as epithelial cells and mesenchymal cells, can also display this function. Efficient clearance of apoptotic cells from the airways is essential for successful resolution of inflammation and the return to lung homeostasis. Disruption of this process leads to secondary necrosis of accumulating apoptotic cells, release of necrotic cell debris and subsequent uncontrolled inflammatory activation of the innate immune system by the released 'damage associated molecular patterns' (DAMPS). To control the duration of the immune response and prevent autoimmune reactions, anti-inflammatory signalling cascades are initiated in the phagocyte upon apoptotic cell uptake, mediated by a range of receptors that recognise specific phospholipids or proteins externalised on, or secreted by, the apoptotic cell. However, prolonged activation of apoptotic cell recognition receptors, such as the family of receptor tyrosine kinases Tyro3, Axl and MerTK (TAM), may delay or prevent inflammatory responses to subsequent infections. In this review, we will discuss recent advances in our understanding of the mechanism controlling apoptotic cell recognition and removal from the lung in homeostasis and during inflammation, the contribution of defective efferocytosis to chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease, asthma and cystic fibrosis, and implications of the signals triggered by apoptotic cells in the susceptibility to pulmonary microbial infections.
A Survey of Online Activity Recognition Using Mobile Phones
Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J.M.
2015-01-01
Physical activity recognition using embedded sensors has enabled many context-aware applications in different areas, such as healthcare. Initially, one or more dedicated wearable sensors were used for such applications. However, recently, many researchers started using mobile phones for this purpose, since these ubiquitous devices are equipped with various sensors, ranging from accelerometers to magnetic field sensors. In most of the current studies, sensor data collected for activity recognition are analyzed offline using machine learning tools. However, there is now a trend towards implementing activity recognition systems on these devices in an online manner, since modern mobile phones have become more powerful in terms of available resources, such as CPU, memory and battery. The research on offline activity recognition has been reviewed in several earlier studies in detail. However, work done on online activity recognition is still in its infancy and is yet to be reviewed. In this paper, we review the studies done so far that implement activity recognition systems on mobile phones and use only their on-board sensors. We discuss various aspects of these studies. Moreover, we discuss their limitations and present various recommendations for future research. PMID:25608213
Semantic and episodic memory of music are subserved by distinct neural networks.
Platel, Hervé; Baron, Jean-Claude; Desgranges, Béatrice; Bernard, Frédéric; Eustache, Francis
2003-09-01
Numerous functional imaging studies have shown that retrieval from semantic and episodic memory is subserved by distinct neural networks. However, these results were essentially obtained with verbal and visuospatial material. The aim of this work was to determine the neural substrates underlying the semantic and episodic components of music using familiar and nonfamiliar melodic tunes. To study musical semantic memory, we designed a task in which the instruction was to judge whether or not the musical extract was felt as "familiar." To study musical episodic memory, we constructed two delayed recognition tasks, one containing only familiar and the other only nonfamiliar items. For each recognition task, half of the extracts (targets) were presented in the prior semantic task. The episodic and semantic tasks were to be contrasted by a comparison to two perceptive control tasks and to one another. Cerebral blood flow was assessed by means of the oxygen-15-labeled water injection method, using high-resolution PET. Distinct patterns of activations were found. First, regarding the episodic memory condition, bilateral activations of the middle and superior frontal gyri and precuneus (more prominent on the right side) were observed. Second, the semantic memory condition disclosed extensive activations in the medial and orbital frontal cortex bilaterally, the left angular gyrus, and predominantly the left anterior part of the middle temporal gyri. The findings from this study are discussed in light of the available neuropsychological data obtained in brain-damaged subjects and functional neuroimaging studies.
An adaptive Hidden Markov Model for activity recognition based on a wearable multi-sensor device
USDA-ARS?s Scientific Manuscript database
Human activity recognition is important in the study of personal health, wellness and lifestyle. In order to acquire human activity information from the personal space, many wearable multi-sensor devices have been developed. In this paper, a novel technique for automatic activity recognition based o...
Usability of aerial video footage for 3-D scene reconstruction and structural damage assessment
NASA Astrophysics Data System (ADS)
Cusicanqui, Johnny; Kerle, Norman; Nex, Francesco
2018-06-01
Remote sensing has evolved into the most efficient approach to assess post-disaster structural damage, in extensively affected areas through the use of spaceborne data. For smaller, and in particular, complex urban disaster scenes, multi-perspective aerial imagery obtained with unmanned aerial vehicles and derived dense color 3-D models are increasingly being used. These type of data allow the direct and automated recognition of damage-related features, supporting an effective post-disaster structural damage assessment. However, the rapid collection and sharing of multi-perspective aerial imagery is still limited due to tight or lacking regulations and legal frameworks. A potential alternative is aerial video footage, which is typically acquired and shared by civil protection institutions or news media and which tends to be the first type of airborne data available. Nevertheless, inherent artifacts and the lack of suitable processing means have long limited its potential use in structural damage assessment and other post-disaster activities. In this research the usability of modern aerial video data was evaluated based on a comparative quality and application analysis of video data and multi-perspective imagery (photos), and their derivative 3-D point clouds created using current photogrammetric techniques. Additionally, the effects of external factors, such as topography and the presence of smoke and moving objects, were determined by analyzing two different earthquake-affected sites: Tainan (Taiwan) and Pescara del Tronto (Italy). Results demonstrated similar usabilities for video and photos. This is shown by the short 2 cm of difference between the accuracies of video- and photo-based 3-D point clouds. Despite the low video resolution, the usability of these data was compensated for by a small ground sampling distance. Instead of video characteristics, low quality and application resulted from non-data-related factors, such as changes in the scene, lack of texture, or moving objects. We conclude that not only are current video data more rapidly available than photos, but they also have a comparable ability to assist in image-based structural damage assessment and other post-disaster activities.
A Novel Energy-Efficient Approach for Human Activity Recognition.
Zheng, Lingxiang; Wu, Dihong; Ruan, Xiaoyang; Weng, Shaolin; Peng, Ao; Tang, Biyu; Lu, Hai; Shi, Haibin; Zheng, Huiru
2017-09-08
In this paper, we propose a novel energy-efficient approach for mobile activity recognition system (ARS) to detect human activities. The proposed energy-efficient ARS, using low sampling rates, can achieve high recognition accuracy and low energy consumption. A novel classifier that integrates hierarchical support vector machine and context-based classification (HSVMCC) is presented to achieve a high accuracy of activity recognition when the sampling rate is less than the activity frequency, i.e., the Nyquist sampling theorem is not satisfied. We tested the proposed energy-efficient approach with the data collected from 20 volunteers (14 males and six females) and the average recognition accuracy of around 96.0% was achieved. Results show that using a low sampling rate of 1Hz can save 17.3% and 59.6% of energy compared with the sampling rates of 5 Hz and 50 Hz. The proposed low sampling rate approach can greatly reduce the power consumption while maintaining high activity recognition accuracy. The composition of power consumption in online ARS is also investigated in this paper.
Health Monitoring System for Composite Structures
NASA Technical Reports Server (NTRS)
Tang, S. S.; Riccardella, P. C.; Andrews, R. J.; Grady, J. E.; Mucciaradi, A. N.
1996-01-01
An automated system was developed to monitor the health status of composites. It uses the vibration characteristics of composites to identify a component's damage condition. The vibration responses are characterized by a set of signal features defined in the time, frequency and spatial domains. The identification of these changes in the vibration characteristics corresponding to different health conditions was performed using pattern recognition principles. This allows efficient data reduction and interpretation of vast amounts of information. Test components were manufactured from isogrid panels to evaluate performance of the monitoring system. The components were damaged by impact to simulate different health conditions. Free vibration response was induced by a tap test on the test components. The monitoring system was trained using these free vibration responses to identify three different health conditions. They are undamaged vs. damaged, damage location and damage zone size. High reliability in identifying the correct component health condition was achieved by the monitoring system.
Toll-Like Receptor Signaling in Burn Wound Healing and Scarring
D'Arpa, Peter; Leung, Kai P.
2017-01-01
Significance: Damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) emanate from burn-injured tissue and enter systemic circulation. Locally and systemically, they activate pattern-recognition receptors, including toll-like receptors (TLRs), to stimulate cytokine secretion, which in the severest burns typically results in extreme systemic cytokine levels, a dysfunctioning immune system, infection, impaired healing, and excessive scarring. This system-wide disruption of homeostasis can advance to life-threatening, multiorgan dysfunction syndrome. Knowledge of DAMP- and PAMP-TLR signaling may lead to treatments that ameliorate local and systemic inflammation and reduce scarring and other burn injury sequela. Recent Advances: Many PAMPs and DAMPs, the TLRs they activate, and their downstream signaling molecules have been shown to contribute to local and systemic inflammation and tissue damage following burn injury. Critical Issues: Whether TLR-pathway-targeting treatments applied at different times postburn injury might improve scarring remains an open question. The evaluation of this question requires the use of appropriate preclinical and clinical burn models carried out until after mature scar has formed. Future Directions: After TLR-pathway-targeting treatments are evaluated in porcine burn wound models and their safety is demonstrated, they can be tested in proof-of-concept clinical burn wound models. PMID:29062590
Tropic lightning: myth or menace?
McCarthy, John
2014-11-01
Lightning is one of the leading causes of death related to environmental disaster. Of all lightning fatalities documented between 2006 and 2012, leisure activities contributed the largest proportion of deaths, with water-associated, sports, and camping being the most common. Despite the prevalence of these activities throughout the islands, Hawai'i has had zero documented lightning fatalities since weather data tracking was initiated in 1959. There is a common misconception that lightning does not strike the ground in Hawai'i. This myth may contribute to a potentially dangerous false sense of security, and recognition of warning signs and risk factor modification remain the most important prevention strategies. Lightning damage occurs on a spectrum, from minor burns to multi-organ dysfunction. After injury, initial treatment should focus on "reverse triage" and immediate cardiopulmonary resuscitation when indicated, followed by transfer to a healthcare facility. Definitive treatment entails monitoring and management of potential sequelae, to include cardiovascular, neurologic, dermatologic, ophthalmologic, audiovestibular, and psychiatric complications.
Cross, Laura; Brown, Malcolm W; Aggleton, John P; Warburton, E Clea
2012-12-21
In humans recognition memory deficits, a typical feature of diencephalic amnesia, have been tentatively linked to mediodorsal thalamic nucleus (MD) damage. Animal studies have occasionally investigated the role of the MD in single-item recognition, but have not systematically analyzed its involvement in other recognition memory processes. In Experiment 1 rats with bilateral excitotoxic lesions in the MD or the medial prefrontal cortex (mPFC) were tested in tasks that assessed single-item recognition (novel object preference), associative recognition memory (object-in-place), and recency discrimination (recency memory task). Experiment 2 examined the functional importance of the interactions between the MD and mPFC using disconnection techniques. Unilateral excitotoxic lesions were placed in both the MD and the mPFC in either the same (MD + mPFC Ipsi) or opposite hemispheres (MD + mPFC Contra group). Bilateral lesions in the MD or mPFC impaired object-in-place and recency memory tasks, but had no effect on novel object preference. In Experiment 2 the MD + mPFC Contra group was significantly impaired in the object-in-place and recency memory tasks compared with the MD + mPFC Ipsi group, but novel object preference was intact. Thus, connections between the MD and mPFC are critical for recognition memory when the discriminations involve associative or recency information. However, the rodent MD is not necessary for single-item recognition memory.
Buratto, Luciano Grüdtner; Zimmermann, Nicolle; Ferré, Perrine; Joanette, Yves; Fonseca, Rochele Paz; Stein, Lilian Milnitsky
2014-10-01
Previous research has attributed to the right hemisphere (RH) a key role in eliciting false memories to visual emotional stimuli. These results have been explained in terms of two right-hemisphere properties: (i) that emotional stimuli are preferentially processed in the RH and (ii) that visual stimuli are represented more coarsely in the RH. According to this account, false emotional memories are preferentially produced in the RH because emotional stimuli are both more strongly and more diffusely activated during encoding, leaving a memory trace that can be erroneously reactivated by similar but unstudied emotional items at test. If this right-hemisphere hypothesis is correct, then RH damage should result in a reduction in false memories to emotional stimuli relative to left-hemisphere lesions. To investigate this possibility, groups of right-brain-damaged (RBD, N=15), left-brain-damaged (LBD, N=15) and healthy (HC, N=30) participants took part in a recognition memory experiment with emotional (negative and positive) and non-emotional pictures. False memories were operationalized as incorrect responses to unstudied pictures that were similar to studied ones. Both RBD and LBD participants showed similar reductions in false memories for negative pictures relative to controls. For positive pictures, however, false memories were reduced only in RBD patients. The results provide only partial support for the right-hemisphere hypothesis and suggest that inter-hemispheric cooperation models may be necessary to fully account for false emotional memories. Copyright © 2014 Elsevier Inc. All rights reserved.
Neuroanatomical substrates involved in unrelated false facial recognition.
Ronzon-Gonzalez, Eliane; Hernandez-Castillo, Carlos R; Pasaye, Erick H; Vaca-Palomares, Israel; Fernandez-Ruiz, Juan
2017-11-22
Identifying faces is a process central for social interaction and a relevant factor in eyewitness theory. False recognition is a critical mistake during an eyewitness's identification scenario because it can lead to a wrongful conviction. Previous studies have described neural areas related to false facial recognition using the standard Deese/Roediger-McDermott (DRM) paradigm, triggering related false recognition. Nonetheless, misidentification of faces without trying to elicit false memories (unrelated false recognition) in a police lineup could involve different cognitive processes, and distinct neural areas. To delve into the neural circuitry of unrelated false recognition, we evaluated the memory and response confidence of participants while watching faces photographs in an fMRI task. Functional activations of unrelated false recognition were identified by contrasting the activation on this condition vs. the activations related to recognition (hits) and correct rejections. The results identified the right precentral and cingulate gyri as areas with distinctive activations during false recognition events suggesting a conflict resulting in a dysfunction during memory retrieval. High confidence suggested that about 50% of misidentifications may be related to an unconscious process. These findings add to our understanding of the construction of facial memories and its biological basis, and the fallibility of the eyewitness testimony.
Technologies for developing an advanced intelligent ATM with self-defence capabilities
NASA Astrophysics Data System (ADS)
Sako, Hiroshi
2010-01-01
We have developed several technologies for protecting automated teller machines. These technologies are based mainly on pattern recognition and are used to implement various self-defence functions. They include (i) banknote recognition and information retrieval for preventing machines from accepting counterfeit and damaged banknotes and for retrieving information about detected counterfeits from a relational database, (ii) form processing and character recognition for preventing machines from accepting remittance forms without due dates and/or insufficient payment, (iii) person identification to prevent machines from transacting with non-customers, and (iv) object recognition to guard machines against foreign objects such as spy cams that might be surreptitiously attached to them and to protect users against someone attempting to peek at their user information such as their personal identification number. The person identification technology has been implemented in most ATMs in Japan, and field tests have demonstrated that the banknote recognition technology can recognise more then 200 types of banknote from 30 different countries. We are developing an "advanced intelligent ATM" that incorporates all of these technologies.
Response-related fMRI of veridical and false recognition of words.
Heun, Reinhard; Jessen, Frank; Klose, Uwe; Erb, Michael; Granath, Dirk-Oliver; Grodd, Wolfgang
2004-02-01
Studies on the relation between local cerebral activation and retrieval success usually compared high and low performance conditions, and thus showed performance-related activation of different brain areas. Only a few studies directly compared signal intensities of different response categories during retrieval. During verbal recognition, we recently observed increased parieto-occipital activation related to false alarms. The present study intends to replicate and extend this observation by investigating common and differential activation by veridical and false recognition. Fifteen healthy volunteers performed a verbal recognition paradigm using 160 learned target and 160 new distractor words. The subjects had to indicate whether they had learned the word before or not. Echo-planar MRI of blood-oxygen-level-dependent signal changes was performed during this recognition task. Words were classified post hoc according to the subjects' responses, i.e. hits, false alarms, correct rejections and misses. Response-related fMRI-analysis was used to compare activation associated with the subjects' recognition success, i.e. signal intensities related to the presentation of words were compared by the above-mentioned four response types. During recognition, all word categories showed increased bilateral activation of the inferior frontal gyrus, the inferior temporal gyrus, the occipital lobe and the brainstem in comparison with the control condition. Hits and false alarms activated several areas including the left medial and lateral parieto-occipital cortex in comparison with subjectively unknown items, i.e. correct rejections and misses. Hits showed more pronounced activation in the medial, false alarms in the lateral parts of the left parieto-occipital cortex. Veridical and false recognition show common as well as different areas of cerebral activation in the left parieto-occipital lobe: increased activation of the medial parietal cortex by hits may correspond to true recognition, increased activation of the parieto-occipital cortex by false alarms may correspond to familiarity decisions. Further studies are needed to investigate the reasons for false decisions in healthy subjects and patients with memory problems.
NASA Astrophysics Data System (ADS)
Kushwaha, Alok Kumar Singh; Srivastava, Rajeev
2015-09-01
An efficient view invariant framework for the recognition of human activities from an input video sequence is presented. The proposed framework is composed of three consecutive modules: (i) detect and locate people by background subtraction, (ii) view invariant spatiotemporal template creation for different activities, (iii) and finally, template matching is performed for view invariant activity recognition. The foreground objects present in a scene are extracted using change detection and background modeling. The view invariant templates are constructed using the motion history images and object shape information for different human activities in a video sequence. For matching the spatiotemporal templates for various activities, the moment invariants and Mahalanobis distance are used. The proposed approach is tested successfully on our own viewpoint dataset, KTH action recognition dataset, i3DPost multiview dataset, MSR viewpoint action dataset, VideoWeb multiview dataset, and WVU multiview human action recognition dataset. From the experimental results and analysis over the chosen datasets, it is observed that the proposed framework is robust, flexible, and efficient with respect to multiple views activity recognition, scale, and phase variations.
Model and algorithmic framework for detection and correction of cognitive errors.
Feki, Mohamed Ali; Biswas, Jit; Tolstikov, Andrei
2009-01-01
This paper outlines an approach that we are taking for elder-care applications in the smart home, involving cognitive errors and their compensation. Our approach involves high level modeling of daily activities of the elderly by breaking down these activities into smaller units, which can then be automatically recognized at a low level by collections of sensors placed in the homes of the elderly. This separation allows us to employ plan recognition algorithms and systems at a high level, while developing stand-alone activity recognition algorithms and systems at a low level. It also allows the mixing and matching of multi-modality sensors of various kinds that go to support the same high level requirement. Currently our plan recognition algorithms are still at a conceptual stage, whereas a number of low level activity recognition algorithms and systems have been developed. Herein we present our model for plan recognition, providing a brief survey of the background literature. We also present some concrete results that we have achieved for activity recognition, emphasizing how these results are incorporated into the overall plan recognition system.
The cingulo-opercular network provides word-recognition benefit.
Vaden, Kenneth I; Kuchinsky, Stefanie E; Cute, Stephanie L; Ahlstrom, Jayne B; Dubno, Judy R; Eckert, Mark A
2013-11-27
Recognizing speech in difficult listening conditions requires considerable focus of attention that is often demonstrated by elevated activity in putative attention systems, including the cingulo-opercular network. We tested the prediction that elevated cingulo-opercular activity provides word-recognition benefit on a subsequent trial. Eighteen healthy, normal-hearing adults (10 females; aged 20-38 years) performed word recognition (120 trials) in multi-talker babble at +3 and +10 dB signal-to-noise ratios during a sparse sampling functional magnetic resonance imaging (fMRI) experiment. Blood oxygen level-dependent (BOLD) contrast was elevated in the anterior cingulate cortex, anterior insula, and frontal operculum in response to poorer speech intelligibility and response errors. These brain regions exhibited significantly greater correlated activity during word recognition compared with rest, supporting the premise that word-recognition demands increased the coherence of cingulo-opercular network activity. Consistent with an adaptive control network explanation, general linear mixed model analyses demonstrated that increased magnitude and extent of cingulo-opercular network activity was significantly associated with correct word recognition on subsequent trials. These results indicate that elevated cingulo-opercular network activity is not simply a reflection of poor performance or error but also supports word recognition in difficult listening conditions.
Monitoring Mount Baker Volcano
Malone, S.D.; Frank, D.
1976-01-01
Hisotrically active volcanoes in the conterminous United States are restricted to the Cascade Range and extend to the Cascade Range and extend from Mount Baker near the Canadian border to Lassen Peak in northern California. Since 1800 A.D, most eruptive activity has been on a relatively small scale and has not caused loss of life or significant property damage. However, future volcanism predictably will have more serious effects because of greatly increased use of land near volcanoes during the present century. (See "Appraising Volcanic Hazards of the Cascade Range of the Northwestern United States," Earthquake Inf. Bull., Sept.-Oct. 1974.) The recognition an impending eruption is highly important in order to minimize the potential hazard to people and property. Thus, a substantial increase in hydrothermal activity at Mount Baker in March 1975 ( see "Mount Baker Heating Up," July-Aug. 1975 issue) was regarded as a possible first signal that an eruption might occur, and an intensive monitoring program was undertaken.
Nonhuman TRIM5 Variants Enhance Recognition of HIV-1-Infected Cells by CD8+ T Cells
Jimenez-Moyano, Esther; Ruiz, Alba; Kløverpris, Henrik N.; Rodriguez-Plata, Maria T.; Peña, Ruth; Blondeau, Caroline; Selwood, David L.; Izquierdo-Useros, Nuria; Moris, Arnaud; Clotet, Bonaventura; Goulder, Philip; Towers, Greg J.
2016-01-01
ABSTRACT Tripartite motif-containing protein 5 (TRIM5) restricts human immunodeficiency virus type 1 (HIV-1) in a species-specific manner by uncoating viral particles while activating early innate responses. Although the contribution of TRIM5 proteins to cellular immunity has not yet been studied, their interactions with the incoming viral capsid and the cellular proteasome led us to hypothesize a role for them. Here, we investigate whether the expression of two nonhuman TRIM5 orthologs, rhesus TRIM5α (RhT5) and TRIM-cyclophilin A (TCyp), both of which are potent restrictors of HIV-1, could enhance immune recognition of infected cells by CD8+ T cells. We illustrate how TRIM5 restriction improves CD8+ T-cell-mediated HIV-1 inhibition. Moreover, when TRIM5 activity was blocked by the nonimmunosuppressive analog of cyclosporine (CsA), sarcosine-3(4-methylbenzoate)–CsA (SmBz-CsA), we found a significant reduction in CD107a/MIP-1β expression in HIV-1-specific CD8+ T cells. This finding underscores the direct link between TRIM5 restriction and activation of CD8+ T-cell responses. Interestingly, cells expressing RhT5 induced stronger CD8+ T-cell responses through the specific recognition of the HIV-1 capsid by the immune system. The underlying mechanism of this process may involve TRIM5-specific capsid recruitment to cellular proteasomes and increase peptide availability for loading and presentation of HLA class I antigens. In summary, we identified a novel function for nonhuman TRIM5 variants in cellular immunity. We hypothesize that TRIM5 can couple innate viral sensing and CD8+ T-cell activation to increase species barriers against retrovirus infection. IMPORTANCE New therapeutics to tackle HIV-1 infection should aim to combine rapid innate viral sensing and cellular immune recognition. Such strategies could prevent seeding of the viral reservoir and the immune damage that occurs during acute infection. The nonhuman TRIM5 variants, rhesus TRIM5α (RhT5) and TRIM-cyclophilin A (TCyp), are attractive candidates owing to their potency in sensing HIV-1 and blocking its activity. Here, we show that expression of RhT5 and TCyp in HIV-1-infected cells improves CD8+ T-cell-mediated inhibition through the direct activation of HIV-1-specific CD8+ T-cell responses. We found that the potency in CD8+ activation was stronger for RhT5 variants and capsid-specific CD8+ T cells in a mechanism that relies on TRIM5-dependent particle recruitment to cellular proteasomes. This novel mechanism couples innate viral sensing with cellular immunity in a single protein and could be exploited to develop innovative therapeutics for control of HIV-1 infection. PMID:27440884
Extent of hippocampal atrophy predicts degree of deficit in recall
Patai, Eva Zita; Gadian, David G.; Cooper, Janine M.; Dzieciol, Anna M.; Mishkin, Mortimer; Vargha-Khadem, Faraneh
2015-01-01
Which specific memory functions are dependent on the hippocampus is still debated. The availability of a large cohort of patients who had sustained relatively selective hippocampal damage early in life enabled us to determine which type of mnemonic deficit showed a correlation with extent of hippocampal injury. We assessed our patient cohort on a test that provides measures of recognition and recall that are equated for difficulty and found that the patients' performance on the recall tests correlated significantly with their hippocampal volumes, whereas their performance on the equally difficult recognition tests did not and, indeed, was largely unaffected regardless of extent of hippocampal atrophy. The results provide new evidence in favor of the view that the hippocampus is essential for recall but not for recognition. PMID:26417089
Extent of hippocampal atrophy predicts degree of deficit in recall.
Patai, Eva Zita; Gadian, David G; Cooper, Janine M; Dzieciol, Anna M; Mishkin, Mortimer; Vargha-Khadem, Faraneh
2015-10-13
Which specific memory functions are dependent on the hippocampus is still debated. The availability of a large cohort of patients who had sustained relatively selective hippocampal damage early in life enabled us to determine which type of mnemonic deficit showed a correlation with extent of hippocampal injury. We assessed our patient cohort on a test that provides measures of recognition and recall that are equated for difficulty and found that the patients' performance on the recall tests correlated significantly with their hippocampal volumes, whereas their performance on the equally difficult recognition tests did not and, indeed, was largely unaffected regardless of extent of hippocampal atrophy. The results provide new evidence in favor of the view that the hippocampus is essential for recall but not for recognition.
Maltseva, E A; Krasikova, Y S; Naegeli, H; Lavrik, O I; Rechkunova, N I
2014-06-01
Xeroderma pigmentosum factor A (XPA) is one of the key proteins in the nucleotide excision repair (NER) process. The effects of point substitutions in the DNA-binding domain of XPA (positively charged lysine residues replaced by negatively charged glutamate residues: XPA K204E, K179E, K141E, and tandem mutant K141E/K179E) on the interaction of the protein with DNA structures modeling intermediates of the damage recognition and pre-incision stages in NER were analyzed. All these mutations decreased the affinity of the protein to DNA, the effect depending on the substitution and the DNA structure. The mutant as well as wild-type proteins bind with highest efficiency partly open damaged DNA duplex, and the affinity of the mutants to this DNA is reduced in the order: K204E > K179E > K141E = K141/179E. For all the mutants, decrease in DNA binding efficiency was more pronounced in the case of full duplex and single-stranded DNA than with bubble-DNA structure, the difference between protein affinities to different DNA structures increasing as DNA binding activity of the mutant decreased. No effect of the studied XPA mutations on the location of the protein on the partially open DNA duplex was observed using photoinduced crosslinking with 5-I-dUMP in different positions of the damaged DNA strand. These results combined with earlier published data suggest no direct correlation between DNA binding and activity in NER for these XPA mutants.
Zhou, Zhen; Li, Dianbin; Zhou, Hua; Lin, Xiaoli; Li, Censing; Tang, Mingfeng; Feng, Zhou; Li, Ming
2015-06-01
This article reviews the current progress and research indications in the application of natural plant compounds with the potential for the treatment of cardiovascular diseases. Our understanding of how to apply natural plant compounds to enhance mechanisms of inherited cardiac regeneration, which is physiologically pertinent to myocyte turnover or minor cardiac repair, for substantial cardiac regeneration to repair pathological heart injuries is discussed. Although significant progress has been made in the application of natural plant compounds for therapy of heart diseases, the understanding or the application of these compounds specifically for enhancing mechanisms of inherited cardiac regeneration for the treatment of cardiovascular diseases is little. Recent recognition of some natural plant compounds that can repair damaged myocardial tissues through enhancing mechanisms of inherited cardiac regeneration has offered an alternative for clinical translation. Application of natural plant compounds, which show the activity of manipulating gene expressions in such a way to enhance mechanisms of inherited cardiac regeneration for cardiac repair, may provide a promising strategy for the reconstruction of damaged cardiac tissues due to cardiovascular diseases. Georg Thieme Verlag KG Stuttgart · New York.
DOT National Transportation Integrated Search
2005-01-01
The rapid increase in animal-vehicle collisions on U.S. roadways is a growing concern in terms of human safety, property damage and injury costs, and viability of wildlife populations. Wildlife crossing structures are gaining national recognition by ...
Adaptability to Changes in Temporal Structure Is Fornix-Dependent
ERIC Educational Resources Information Center
Kwok, Sze Chai; Mitchell, Anna S.; Buckley, Mark J.
2015-01-01
Recognition memory deficits, even after short delays, are sometimes observed following hippocampal damage. One hypothesis links the hippocampus with processes in updating contextual memory representation. Here, we used fornix transection, which partially disconnects the hippocampal system, and compares the performance of fornix-transected monkeys…
Adaptability to Changes Intemporal Structure Is Fornix-Dependent
ERIC Educational Resources Information Center
Kwok, Sze Chai; Mitchell, Anna S.; Buckley, Mark J.
2015-01-01
Recognition memory deficits, even after short delays, are sometimes observed following hippocampal damage. One hypothesis links the hippocampus with processes in updating contextual memory representation. Here, we used fornix transection, which partially disconnects the hippocampal system, and compares the performance of fornix-transected monkeys…
Report on the Sixth Workshop on Chinese Linguistics.
ERIC Educational Resources Information Center
Shen, Zhongwei
1987-01-01
Summarizes 10 presentations made at the workshop on a variety of topics including: classification of Chinese dialects; the importance of semantic units in tone sandhi; insights on Chinese character recognition among brain-damaged patients; and a cognitive approach to the study of Chinese grammar. (TR)
Human Activity Recognition from Body Sensor Data using Deep Learning.
Hassan, Mohammad Mehedi; Huda, Shamsul; Uddin, Md Zia; Almogren, Ahmad; Alrubaian, Majed
2018-04-16
In recent years, human activity recognition from body sensor data or wearable sensor data has become a considerable research attention from academia and health industry. This research can be useful for various e-health applications such as monitoring elderly and physical impaired people at Smart home to improve their rehabilitation processes. However, it is not easy to accurately and automatically recognize physical human activity through wearable sensors due to the complexity and variety of body activities. In this paper, we address the human activity recognition problem as a classification problem using wearable body sensor data. In particular, we propose to utilize a Deep Belief Network (DBN) model for successful human activity recognition. First, we extract the important initial features from the raw body sensor data. Then, a kernel principal component analysis (KPCA) and linear discriminant analysis (LDA) are performed to further process the features and make them more robust to be useful for fast activity recognition. Finally, the DBN is trained by these features. Various experiments were performed on a real-world wearable sensor dataset to verify the effectiveness of the deep learning algorithm. The results show that the proposed DBN outperformed other algorithms and achieves satisfactory activity recognition performance.
The involvement of emotion recognition in affective theory of mind.
Mier, Daniela; Lis, Stefanie; Neuthe, Kerstin; Sauer, Carina; Esslinger, Christine; Gallhofer, Bernd; Kirsch, Peter
2010-11-01
This study was conducted to explore the relationship between emotion recognition and affective Theory of Mind (ToM). Forty subjects performed a facial emotion recognition and an emotional intention recognition task (affective ToM) in an event-related fMRI study. Conjunction analysis revealed overlapping activation during both tasks. Activation in some of these conjunctly activated regions was even stronger during affective ToM than during emotion recognition, namely in the inferior frontal gyrus, the superior temporal sulcus, the temporal pole, and the amygdala. In contrast to previous studies investigating ToM, we found no activation in the anterior cingulate, commonly assumed as the key region for ToM. The results point to a close relationship of emotion recognition and affective ToM and can be interpreted as evidence for the assumption that at least basal forms of ToM occur by an embodied, non-cognitive process. Copyright © 2010 Society for Psychophysiological Research.
A Novel Energy-Efficient Approach for Human Activity Recognition
Zheng, Lingxiang; Wu, Dihong; Ruan, Xiaoyang; Weng, Shaolin; Tang, Biyu; Lu, Hai; Shi, Haibin
2017-01-01
In this paper, we propose a novel energy-efficient approach for mobile activity recognition system (ARS) to detect human activities. The proposed energy-efficient ARS, using low sampling rates, can achieve high recognition accuracy and low energy consumption. A novel classifier that integrates hierarchical support vector machine and context-based classification (HSVMCC) is presented to achieve a high accuracy of activity recognition when the sampling rate is less than the activity frequency, i.e., the Nyquist sampling theorem is not satisfied. We tested the proposed energy-efficient approach with the data collected from 20 volunteers (14 males and six females) and the average recognition accuracy of around 96.0% was achieved. Results show that using a low sampling rate of 1Hz can save 17.3% and 59.6% of energy compared with the sampling rates of 5 Hz and 50 Hz. The proposed low sampling rate approach can greatly reduce the power consumption while maintaining high activity recognition accuracy. The composition of power consumption in online ARS is also investigated in this paper. PMID:28885560
NASA Astrophysics Data System (ADS)
Lin, Y. Q.; Ren, W. X.; Fang, S. E.
2011-11-01
Although most vibration-based damage detection methods can acquire satisfactory verification on analytical or numerical structures, most of them may encounter problems when applied to real-world structures under varying environments. The damage detection methods that directly extract damage features from the periodically sampled dynamic time history response measurements are desirable but relevant research and field application verification are still lacking. In this second part of a two-part paper, the robustness and performance of the statistics-based damage index using the forward innovation model by stochastic subspace identification of a vibrating structure proposed in the first part have been investigated against two prestressed reinforced concrete (RC) beams tested in the laboratory and a full-scale RC arch bridge tested in the field under varying environments. Experimental verification is focused on temperature effects. It is demonstrated that the proposed statistics-based damage index is insensitive to temperature variations but sensitive to the structural deterioration or state alteration. This makes it possible to detect the structural damage for the real-scale structures experiencing ambient excitations and varying environmental conditions.
A multi-approach feature extractions for iris recognition
NASA Astrophysics Data System (ADS)
Sanpachai, H.; Settapong, M.
2014-04-01
Biometrics is a promising technique that is used to identify individual traits and characteristics. Iris recognition is one of the most reliable biometric methods. As iris texture and color is fully developed within a year of birth, it remains unchanged throughout a person's life. Contrary to fingerprint, which can be altered due to several aspects including accidental damage, dry or oily skin and dust. Although iris recognition has been studied for more than a decade, there are limited commercial products available due to its arduous requirement such as camera resolution, hardware size, expensive equipment and computational complexity. However, at the present time, technology has overcome these obstacles. Iris recognition can be done through several sequential steps which include pre-processing, features extractions, post-processing, and matching stage. In this paper, we adopted the directional high-low pass filter for feature extraction. A box-counting fractal dimension and Iris code have been proposed as feature representations. Our approach has been tested on CASIA Iris Image database and the results are considered successful.
Neumann, Dawn; McDonald, Brenna C; West, John; Keiski, Michelle A; Wang, Yang
2016-06-01
The neurobiological mechanisms that underlie facial affect recognition deficits after traumatic brain injury (TBI) have not yet been identified. Using functional magnetic resonance imaging (fMRI), study aims were to 1) determine if there are differences in brain activation during facial affect processing in people with TBI who have facial affect recognition impairments (TBI-I) relative to people with TBI and healthy controls who do not have facial affect recognition impairments (TBI-N and HC, respectively); and 2) identify relationships between neural activity and facial affect recognition performance. A facial affect recognition screening task performed outside the scanner was used to determine group classification; TBI patients who performed greater than one standard deviation below normal performance scores were classified as TBI-I, while TBI patients with normal scores were classified as TBI-N. An fMRI facial recognition paradigm was then performed within the 3T environment. Results from 35 participants are reported (TBI-I = 11, TBI-N = 12, and HC = 12). For the fMRI task, TBI-I and TBI-N groups scored significantly lower than the HC group. Blood oxygenation level-dependent (BOLD) signals for facial affect recognition compared to a baseline condition of viewing a scrambled face, revealed lower neural activation in the right fusiform gyrus (FG) in the TBI-I group than the HC group. Right fusiform gyrus activity correlated with accuracy on the facial affect recognition tasks (both within and outside the scanner). Decreased FG activity suggests facial affect recognition deficits after TBI may be the result of impaired holistic face processing. Future directions and clinical implications are discussed.
Decoding Tuckerellidae and Tenuipalpidae
USDA-ARS?s Scientific Manuscript database
Flat and peacock mites are pests on crops, ornamental plants, and forest and fruit trees. They are very small and some have been associated with severe leaf damage or the spread of plant viruses. Artifacts from mounting media and type of microscope used are complicating the recognition of the key c...
Category-Specificity in Visual Object Recognition
ERIC Educational Resources Information Center
Gerlach, Christian
2009-01-01
Are all categories of objects recognized in the same manner visually? Evidence from neuropsychology suggests they are not: some brain damaged patients are more impaired in recognizing natural objects than artefacts whereas others show the opposite impairment. Category-effects have also been demonstrated in neurologically intact subjects, but the…
How We Recognize Our Own Actions
NASA Astrophysics Data System (ADS)
Blakemore, Sarah-Jayne
This chapter first describes how predicting the sensory consequences of action contributes to the recognition of one's own actions. Second, the chapter discusses three symptoms in which this prediction mechanism is proposed to be impaired: the consequences of parietal lobe damage, passivity experiences associated with schizophrenia, and phantom limbs.
Protection of host cells by complement regulators.
Schmidt, Christoph Q; Lambris, John D; Ricklin, Daniel
2016-11-01
The complement cascade is an ancient immune-surveillance system that not only provides protection from pathogen invasion but has also evolved to participate in physiological processes to maintain tissue homeostasis. The alternative pathway (AP) of complement activation is the evolutionarily oldest part of this innate immune cascade. It is unique in that it is continuously activated at a low level and arbitrarily probes foreign, modified-self, and also unaltered self-structures. This indiscriminate activation necessitates the presence of preformed regulators on autologous surfaces to spare self-cells from the undirected nature of AP activation. Although the other two canonical complement activation routes, the classical and lectin pathways, initiate the cascade more specifically through pattern recognition, their activity still needs to be tightly controlled to avoid excessive reactivity. It is the perpetual duty of complement regulators to protect the self from damage inflicted by inadequate complement activation. Here, we review the role of complement regulators as preformed mediators of defense, explain their common and specialized functions, and discuss selected cases in which alterations in complement regulators lead to disease. Finally, rational engineering approaches using natural complement inhibitors as potential therapeutics are highlighted. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hall, Jonathan R; Bereman, Michael S; Nepomuceno, Angelito I; Thompson, Elizabeth A; Muddiman, David C; Smart, Robert C
2014-01-01
The bZIP transcription factor, C/EBPα is highly inducible by UVB and other DNA damaging agents in keratinocytes. C/EBPα-deficient keratinocytes fail to undergo cell cycle arrest in G1 in response to UVB-induced DNA damage and mice lacking epidermal C/EBPα are highly susceptible to UVB-induced skin cancer. The mechanism through which C/EBPα regulates the cell cycle checkpoint in response to DNA damage is unknown. Here we report untreated C/EBPα-deficient keratinocytes have normal levels of the cyclin-dependent kinase inhibitor, p21, however, UVB-treated C/EBPα-deficient keratinocytes fail to up-regulate nuclear p21 protein levels despite normal up-regulation of Cdkn1a mRNA levels. UVB-treated C/EBPα-deficient keratinocytes displayed a 4-fold decrease in nuclear p21 protein half-life due to the increased proteasomal degradation of p21 via the E3 ubiquitin ligase CRL4Cdt2. Cdt2 is the substrate recognition subunit of CRL4Cdt2 and Cdt2 mRNA and protein levels were up-regulated in UVB-treated C/EBPα-deficient keratinocytes. Knockdown of Cdt2 restored p21 protein levels in UVB-treated C/EBPα-deficient keratinocytes. Lastly, the failure to accumulate p21 in response to UVB in C/EBPα-deficient keratinocytes resulted in decreased p21 interactions with critical cell cycle regulatory proteins, increased CDK2 activity, and inappropriate entry into S-phase. These findings reveal C/EBPα regulates G1/S cell cycle arrest in response to DNA damage via the control of CRL4Cdt2 mediated degradation of p21. PMID:25483090
An Investigation of the Role of Grapheme Units in Word Recognition
ERIC Educational Resources Information Center
Lupker, Stephen J.; Acha, Joana; Davis, Colin J.; Perea, Manuel
2012-01-01
In most current models of word recognition, the word recognition process is assumed to be driven by the activation of letter units (i.e., that letters are the perceptual units in reading). An alternative possibility is that the word recognition process is driven by the activation of grapheme units, that is, that graphemes, rather than letters, are…
The Role of Active Exploration of 3D Face Stimuli on Recognition Memory of Facial Information
ERIC Educational Resources Information Center
Liu, Chang Hong; Ward, James; Markall, Helena
2007-01-01
Research on face recognition has mainly relied on methods in which observers are relatively passive viewers of face stimuli. This study investigated whether active exploration of three-dimensional (3D) face stimuli could facilitate recognition memory. A standard recognition task and a sequential matching task were employed in a yoked design.…
Oral candidosis in relation to oral immunity.
Feller, L; Khammissa, R A G; Chandran, R; Altini, M; Lemmer, J
2014-09-01
Symptomatic oral infection with Candida albicans is characterized by invasion of the oral epithelium by virulent hyphae that cause tissue damage releasing the inflammatory mediators that initiate and sustain local inflammation. Candida albicans triggers pattern-recognition receptors of keratinocytes, macrophages, monocytes and dendritic cells, stimulating the production of IL-1β, IL-6 and IL-23. These cytokines induce the differentiation of Th17 cells and the generation of IL-17- and/or IL-22-mediated antifungal protective immuno-inflammatory responses in infected mucosa. Some immune cells including NKT cells, γδ T cells and lymphoid cells that are innate to the oral mucosa have the capacity to produce large quantities of IL-17 in response to C. albicans, sufficient to mediate effective protective immunity against C. albicans. On the other hand, molecular structures of commensal C. albicans blastoconidia, although detected by pattern-recognition receptors, are avirulent, do not invade the oral epithelium, do not elicit inflammatory responses in a healthy host, but induce regulatory immune responses that maintain tissue tolerance to the commensal fungi. The type, specificity and sensitivity of the protective immune response towards C. albicans is determined by the outcome of the integrated interactions between the intracellular signalling pathways of specific combinations of activated pattern-recognition receptors (TLR2, TLR4, Dectin-1 and Dectin-2). IL-17-mediated protective immune response is essential for oral mucosal immunity to C. albicans infection. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Drummond, J T
1999-01-01
Mismatch recognition in human cells is mediated by two heterodimers, MutS alpha and MutS beta. MutS alpha appears to shoulder primary responsibility for mismatch correction during replication, based on its relative abundance and ability to recognize a broad spectrum of base-base and base-insertion mismatches. Because MutS alpha and MutS beta share a common component, MSH2, conditions that influence the expression or degradation of MSH3 or MSH6 can redistribute the profile of mismatch recognition and repair. MSH3 is linked by a shared promoter with DHFR, connecting two pathways with key roles in DNA metabolism. In a classic example of gene amplification, the DHFR (and MSH3) locus can become amplified to several hundred copies in the presence of methotrexate. Under these conditions, MutS beta forms at the expense of MutS alpha, and the mutation rate in these tumor cells rises more than 100-fold. The implications for cancer chemotherapy include a potential increase in mutability when tumors are treated with methotrexate, which could increase the frequency of subsequent mutations that influence the tumor's drug sensitivity or aggressiveness. Because processing certain types of DNA damage by the mismatch repair pathway has also been implicated in tumor sensitivity to agents such as cisplatin, changes in expression at the DHFR/MSH3 locus may have further relevance to the outcome of multi-drug treatment regimens.
Heilmann, Romy M; Allenspach, Karin
2017-11-01
Pattern-recognition receptors (PRRs) are expressed by innate immune cells and recognize pathogen-associated molecular patterns (PAMPs) as well as endogenous damage-associated molecular pattern (DAMP) molecules. With a large potential for synergism or convergence between their signaling pathways, PRRs orchestrate a complex interplay of cellular mediators and transcription factors, and thus play a central role in homeostasis and host defense. Aberrant activation of PRR signaling, mutations of the receptors and/or their downstream signaling molecules, and/or DAMP/PAMP complex-mediated receptor signaling can potentially lead to chronic auto-inflammatory diseases or development of cancer. PRR signaling pathways appear to also present an interesting new avenue for the modulation of inflammatory responses and to serve as potential novel therapeutic targets. Evidence for a dysregulation of the PRR toll-like receptor (TLR)2, TLR4, TLR5, and TLR9, nucleotide-binding oligomerization domain-containing protein (NOD)2, and the receptor of advanced glycation end products (RAGE) exists in dogs with chronic enteropathies. We describe the TLR, NOD2, and RAGE signaling pathways and evaluate the current veterinary literature-in comparison to human medicine-to determine the role of TLRs, NOD2, and RAGE in canine chronic enteropathies.
Emerging technologies with potential for objectively evaluating speech recognition skills.
Rawool, Vishakha Waman
2016-01-01
Work-related exposure to noise and other ototoxins can cause damage to the cochlea, synapses between the inner hair cells, the auditory nerve fibers, and higher auditory pathways, leading to difficulties in recognizing speech. Procedures designed to determine speech recognition scores (SRS) in an objective manner can be helpful in disability compensation cases where the worker claims to have poor speech perception due to exposure to noise or ototoxins. Such measures can also be helpful in determining SRS in individuals who cannot provide reliable responses to speech stimuli, including patients with Alzheimer's disease, traumatic brain injuries, and infants with and without hearing loss. Cost-effective neural monitoring hardware and software is being rapidly refined due to the high demand for neurogaming (games involving the use of brain-computer interfaces), health, and other applications. More specifically, two related advances in neuro-technology include relative ease in recording neural activity and availability of sophisticated analysing techniques. These techniques are reviewed in the current article and their applications for developing objective SRS procedures are proposed. Issues related to neuroaudioethics (ethics related to collection of neural data evoked by auditory stimuli including speech) and neurosecurity (preservation of a person's neural mechanisms and free will) are also discussed.
Toll-Like Receptors in Secondary Obstructive Cholangiopathy
Miranda-Díaz, A. G.; Alonso-Martínez, H.; Hernández-Ojeda, J.; Arias-Carvajal, O.; Rodríguez-Carrizalez, A. D.; Román-Pintos, L. M.
2011-01-01
Secondary obstructive cholangiopathy is characterized by intra- or extrahepatic bile tract obstruction. Liver inflammation and structural alterations develop due to progressive bile stagnation. Most frequent etiologies are biliary atresia in children, and hepatolithiasis, postcholecystectomy bile duct injury, and biliary primary cirrhosis in adults, which causes chronic biliary cholangitis. Bile ectasia predisposes to multiple pathogens: viral infections in biliary atresia; Gram-positive and/or Gram-negative bacteria cholangitis found in hepatolithiasis and postcholecystectomy bile duct injury. Transmembrane toll-like receptors (TLRs) are activated by virus, bacteria, fungi, and parasite stimuli. Even though TLR-2 and TLR-4 are the most studied receptors related to liver infectious diseases, other TLRs play an important role in response to microorganism damage. Acquired immune response is not vertically transmitted and reflects the infectious diseases history of individuals; in contrast, innate immunity is based on antigen recognition by specific receptors designated as pattern recognition receptors and is transmitted vertically through the germ cells. Understanding the mechanisms for bile duct inflammation is essential for the future development of therapeutic alternatives in order to avoid immune-mediated destruction on secondary obstructive cholangiopathy. The role of TLRs in biliary atresia, hepatolithiasis, bile duct injury, and primary biliary cirrhosis is described in this paper. PMID:22114589
The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullins, Elwood A.; Shi, Rongxin; Parsons, Zachary D.
Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. In this paper, we present the first, to ourmore » knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge–dipole and CH–π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Finally and hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hang, Bo; Rodriguez, Ben; Yang, Yanu
Benzene, a ubiquitous human carcinogen, forms DNA adducts through its metabolites such as p-benzoquinone (p-BQ) and hydroquinone (HQ). N(2)-(4-Hydroxyphenyl)-2'-deoxyguanosine (N(2)-4-HOPh-dG) is the principal adduct identified in vivo by (32)P-postlabeling in cells or animals treated with p-BQ or HQ. To study its effect on repair specificity and replication fidelity, we recently synthesized defined oligonucleotides containing a site-specific adduct using phosphoramidite chemistry. We here report the repair of this adduct by Escherichia coli UvrABC complex, which performs the initial damage recognition and incision steps in the nucleotide excision repair (NER) pathway. We first showed that the p-BQ-treated plasmid was efficiently cleaved bymore » the complex, indicating the formation of DNA lesions that are substrates for NER. Using a 40-mer substrate, we found that UvrABC incises the DNA strand containing N(2)-4-HOPh-dG in a dose- and time-dependent manner. The specificity of such repair was also compared with that of DNA glycosylases and damage-specific endonucleases of E. coli, both of which were found to have no detectable activity toward N(2)-4-HOPh-dG. To understand why this adduct is specifically recognized and processed by UvrABC, molecular modeling studies were performed. Analysis of molecular dynamics trajectories showed that stable G:C-like hydrogen bonding patterns of all three Watson-Crick hydrogen bonds are present within the N(2)-4-HOPh-G:C base pair, with the hydroxyphenyl ring at an almost planar position. In addition, N(2)-4-HOPh-dG has a tendency to form more stable stacking interactions than a normal G in B-type DNA. These conformational properties may be critical in differential recognition of this adduct by specific repair enzymes.« less
The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions
Mullins, Elwood A.; Shi, Rongxin; Parsons, Zachary D.; ...
2015-10-28
Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. In this paper, we present the first, to ourmore » knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge–dipole and CH–π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Finally and hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.« less
Paul, Rajib; Borah, Anupom
2017-12-20
There exists an intricate relationship between hypercholesterolemia (elevated plasma cholesterol) and brain functions. The present study aims to understand the impact of hypercholesterolemia on pathological consequences in mouse brain. A chronic mouse model of hypercholesterolemia was induced by giving high-cholesterol diet for 12 weeks. The hypercholesterolemic mice developed cognitive impairment as evident from object recognition memory test. Cholesterol accumulation was observed in four discrete brain regions, such as cortex, striatum, hippocampus and substantia nigra along with significantly damaged blood-brain barrier by hypercholesterolemia. The crucial finding is the loss of acetylcholinesterase activity with mitochondrial dysfunction globally in the brain of hypercholesterolemic mice, which is related to the levels of cholesterol. Moreover, the levels of hydroxyl radical were elevated in the regions of brain where the activity of mitochondrial complexes was found to be reduced. Intriguingly, elevations of inflammatory stress markers in the cholesterol-rich brain regions were observed. As cognitive impairment, diminished brain acetylcholinesterase activity, mitochondrial dysfunctions, and inflammation are the prima facie pathologies of neurodegenerative diseases, the findings impose hypercholesterolemia as potential risk factor towards brain dysfunction.
Omar, Rohani; Henley, Susie M.D.; Bartlett, Jonathan W.; Hailstone, Julia C.; Gordon, Elizabeth; Sauter, Disa A.; Frost, Chris; Scott, Sophie K.; Warren, Jason D.
2011-01-01
Despite growing clinical and neurobiological interest in the brain mechanisms that process emotion in music, these mechanisms remain incompletely understood. Patients with frontotemporal lobar degeneration (FTLD) frequently exhibit clinical syndromes that illustrate the effects of breakdown in emotional and social functioning. Here we investigated the neuroanatomical substrate for recognition of musical emotion in a cohort of 26 patients with FTLD (16 with behavioural variant frontotemporal dementia, bvFTD, 10 with semantic dementia, SemD) using voxel-based morphometry. On neuropsychological evaluation, patients with FTLD showed deficient recognition of canonical emotions (happiness, sadness, anger and fear) from music as well as faces and voices compared with healthy control subjects. Impaired recognition of emotions from music was specifically associated with grey matter loss in a distributed cerebral network including insula, orbitofrontal cortex, anterior cingulate and medial prefrontal cortex, anterior temporal and more posterior temporal and parietal cortices, amygdala and the subcortical mesolimbic system. This network constitutes an essential brain substrate for recognition of musical emotion that overlaps with brain regions previously implicated in coding emotional value, behavioural context, conceptual knowledge and theory of mind. Musical emotion recognition may probe the interface of these processes, delineating a profile of brain damage that is essential for the abstraction of complex social emotions. PMID:21385617
Anodal tDCS targeting the right orbitofrontal cortex enhances facial expression recognition
Murphy, Jillian M.; Ridley, Nicole J.; Vercammen, Ans
2015-01-01
The orbitofrontal cortex (OFC) has been implicated in the capacity to accurately recognise facial expressions. The aim of the current study was to determine if anodal transcranial direct current stimulation (tDCS) targeting the right OFC in healthy adults would enhance facial expression recognition, compared with a sham condition. Across two counterbalanced sessions of tDCS (i.e. anodal and sham), 20 undergraduate participants (18 female) completed a facial expression labelling task comprising angry, disgusted, fearful, happy, sad and neutral expressions, and a control (social judgement) task comprising the same expressions. Responses on the labelling task were scored for accuracy, median reaction time and overall efficiency (i.e. combined accuracy and reaction time). Anodal tDCS targeting the right OFC enhanced facial expression recognition, reflected in greater efficiency and speed of recognition across emotions, relative to the sham condition. In contrast, there was no effect of tDCS to responses on the control task. This is the first study to demonstrate that anodal tDCS targeting the right OFC boosts facial expression recognition. This finding provides a solid foundation for future research to examine the efficacy of this technique as a means to treat facial expression recognition deficits, particularly in individuals with OFC damage or dysfunction. PMID:25971602
Omar, Rohani; Henley, Susie M D; Bartlett, Jonathan W; Hailstone, Julia C; Gordon, Elizabeth; Sauter, Disa A; Frost, Chris; Scott, Sophie K; Warren, Jason D
2011-06-01
Despite growing clinical and neurobiological interest in the brain mechanisms that process emotion in music, these mechanisms remain incompletely understood. Patients with frontotemporal lobar degeneration (FTLD) frequently exhibit clinical syndromes that illustrate the effects of breakdown in emotional and social functioning. Here we investigated the neuroanatomical substrate for recognition of musical emotion in a cohort of 26 patients with FTLD (16 with behavioural variant frontotemporal dementia, bvFTD, 10 with semantic dementia, SemD) using voxel-based morphometry. On neuropsychological evaluation, patients with FTLD showed deficient recognition of canonical emotions (happiness, sadness, anger and fear) from music as well as faces and voices compared with healthy control subjects. Impaired recognition of emotions from music was specifically associated with grey matter loss in a distributed cerebral network including insula, orbitofrontal cortex, anterior cingulate and medial prefrontal cortex, anterior temporal and more posterior temporal and parietal cortices, amygdala and the subcortical mesolimbic system. This network constitutes an essential brain substrate for recognition of musical emotion that overlaps with brain regions previously implicated in coding emotional value, behavioural context, conceptual knowledge and theory of mind. Musical emotion recognition may probe the interface of these processes, delineating a profile of brain damage that is essential for the abstraction of complex social emotions. Copyright © 2011 Elsevier Inc. All rights reserved.
[Recognition of facial expression of emotions in Parkinson's disease: a theoretical review].
Alonso-Recio, L; Serrano-Rodriguez, J M; Carvajal-Molina, F; Loeches-Alonso, A; Martin-Plasencia, P
2012-04-16
Emotional facial expression is a basic guide during social interaction and, therefore, alterations in their expression or recognition are important limitations for communication. To examine facial expression recognition abilities and their possible impairment in Parkinson's disease. First, we review the studies on this topic which have not found entirely similar results. Second, we analyze the factors that may explain these discrepancies and, in particular, as third objective, we consider the relationship between emotional recognition problems and cognitive impairment associated with the disease. Finally, we propose alternatives strategies for the development of studies that could clarify the state of these abilities in Parkinson's disease. Most studies suggest deficits in facial expression recognition, especially in those with negative emotional content. However, it is possible that these alterations are related to those that also appear in the course of the disease in other perceptual and executive processes. To advance in this issue, we consider necessary to design emotional recognition studies implicating differentially the executive or visuospatial processes, and/or contrasting cognitive abilities with facial expressions and non emotional stimuli. The precision of the status of these abilities, as well as increase our knowledge of the functional consequences of the characteristic brain damage in the disease, may indicate if we should pay special attention in their rehabilitation inside the programs implemented.
A Robust and Device-Free System for the Recognition and Classification of Elderly Activities.
Li, Fangmin; Al-Qaness, Mohammed Abdulaziz Aide; Zhang, Yong; Zhao, Bihai; Luan, Xidao
2016-12-01
Human activity recognition, tracking and classification is an essential trend in assisted living systems that can help support elderly people with their daily activities. Traditional activity recognition approaches depend on vision-based or sensor-based techniques. Nowadays, a novel promising technique has obtained more attention, namely device-free human activity recognition that neither requires the target object to wear or carry a device nor install cameras in a perceived area. The device-free technique for activity recognition uses only the signals of common wireless local area network (WLAN) devices available everywhere. In this paper, we present a novel elderly activities recognition system by leveraging the fluctuation of the wireless signals caused by human motion. We present an efficient method to select the correct data from the Channel State Information (CSI) streams that were neglected in previous approaches. We apply a Principle Component Analysis method that exposes the useful information from raw CSI. Thereafter, Forest Decision (FD) is adopted to classify the proposed activities and has gained a high accuracy rate. Extensive experiments have been conducted in an indoor environment to test the feasibility of the proposed system with a total of five volunteer users. The evaluation shows that the proposed system is applicable and robust to electromagnetic noise.
Ghose, Soumya; Mitra, Jhimli; Karunanithi, Mohan; Dowling, Jason
2015-01-01
Home monitoring of chronically ill or elderly patient can reduce frequent hospitalisations and hence provide improved quality of care at a reduced cost to the community, therefore reducing the burden on the healthcare system. Activity recognition of such patients is of high importance in such a design. In this work, a system for automatic human physical activity recognition from smart-phone inertial sensors data is proposed. An ensemble of decision trees framework is adopted to train and predict the multi-class human activity system. A comparison of our proposed method with a multi-class traditional support vector machine shows significant improvement in activity recognition accuracies.
Exploring Techniques for Vision Based Human Activity Recognition: Methods, Systems, and Evaluation
Xu, Xin; Tang, Jinshan; Zhang, Xiaolong; Liu, Xiaoming; Zhang, Hong; Qiu, Yimin
2013-01-01
With the wide applications of vision based intelligent systems, image and video analysis technologies have attracted the attention of researchers in the computer vision field. In image and video analysis, human activity recognition is an important research direction. By interpreting and understanding human activities, we can recognize and predict the occurrence of crimes and help the police or other agencies react immediately. In the past, a large number of papers have been published on human activity recognition in video and image sequences. In this paper, we provide a comprehensive survey of the recent development of the techniques, including methods, systems, and quantitative evaluation of the performance of human activity recognition. PMID:23353144
Ni, Qin; Patterson, Timothy; Cleland, Ian; Nugent, Chris
2016-08-01
Activity recognition is an intrinsic component of many pervasive computing and ambient intelligent solutions. This has been facilitated by an explosion of technological developments in the area of wireless sensor network, wearable and mobile computing. Yet, delivering robust activity recognition, which could be deployed at scale in a real world environment, still remains an active research challenge. Much of the existing literature to date has focused on applying machine learning techniques to pre-segmented data collected in controlled laboratory environments. Whilst this approach can provide valuable ground truth information from which to build recognition models, these techniques often do not function well when implemented in near real time applications. This paper presents the application of a multivariate online change detection algorithm to dynamically detect the starting position of windows for the purposes of activity recognition. Copyright © 2016 Elsevier Inc. All rights reserved.
Verfaellie, Mieke; Rapcsak, Steven Z; Keane, Margaret M; Alexander, Michael P
2004-01-01
This study examined verbal recognition memory in amnesic patients with frontal lesions (AF), nonamnesic patients with frontal lesions (NAF), and amnesic patients with medial temporal lesions (MT). To examine susceptibility to false alarms, the number of studied words drawn from various categories was varied. The AF and MT groups demonstrated reduced hits and increased false alarms. False alarms were especially elevated when item-specific recollection was strongest in control participants. The NAF group performed indistinguishably from control participants, but several patients showed excessive false alarms in the context of normal hit rates. These patients exhibited impaired monitoring and verification processes. The findings demonstrate that elevated false recognition is not characteristic of all frontal patients and may result from more than 1 underlying mechanism. ((c) 2004 APA, all rights reserved)
USDA-ARS?s Scientific Manuscript database
Overexpression of plant pattern-recognition receptors (PRRs) by genetic engineering provides a novel approach to enhance plant immunity and broad-spectrum disease resistance. The citrus canker disease associated with Xanthomonas citri is one of the important diseases damaging citrus production world...
45 CFR 2552.46 - What cost reimbursements are provided to Foster Grandparents?
Code of Federal Regulations, 2012 CFR
2012-10-01
... assigned children, for earned leave, and for attendance at official project events. (b) Insurance. A Foster... property damage. (ii) Foster Grandparents who drive their personal vehicles to or on assignments or project... provide supportive service without injury to themselves or the children served. (e) Meals and recognition...
45 CFR 2552.46 - What cost reimbursements are provided to Foster Grandparents?
Code of Federal Regulations, 2014 CFR
2014-10-01
... assigned children, for earned leave, and for attendance at official project events. (b) Insurance. A Foster... property damage. (ii) Foster Grandparents who drive their personal vehicles to or on assignments or project... provide supportive service without injury to themselves or the children served. (e) Meals and recognition...
45 CFR 2552.46 - What cost reimbursements are provided to Foster Grandparents?
Code of Federal Regulations, 2013 CFR
2013-10-01
... assigned children, for earned leave, and for attendance at official project events. (b) Insurance. A Foster... property damage. (ii) Foster Grandparents who drive their personal vehicles to or on assignments or project... provide supportive service without injury to themselves or the children served. (e) Meals and recognition...
A New Semantic List Learning Task to Probe Functioning of the Papez Circuit
Schallmo, Michael-Paul; Kassel, Michelle T.; Weisenbach, Sara L.; Walker, Sara J.; Guidotti-Breting, Leslie M.; Rao, Julia A.; Hazlett, Kathleen E.; Considine, Ciaran M.; Sethi, Gurpriya; Vats, Naalti; Pecina, Marta; Welsh, Robert C.; Starkman, Monica N.; Giordani, Bruno; Langenecker, Scott A.
2016-01-01
Introduction List learning tasks are powerful clinical tools for studying memory, yet have been relatively underutilized within the functional imaging literature. This limits understanding of regions such as the Papez circuit which support memory performance in healthy, non-demented adults. Method The current study characterized list learning performance in 40 adults who completed a Semantic List Learning Task (SLLT) with a Brown-Peterson manipulation during functional MRI (fMRI). Cued recall with semantic cues, and recognition memory were assessed after imaging. Internal reliability and convergent and discriminant validity were evaluated. Results Subjects averaged 38% accuracy in recall (62% for recognition), with primacy but no recency effects observed. Validity and reliability were demonstrated by showing that the SLLT was correlated with the California Verbal Learning test (CVLT), but not with executive functioning tests, and high intraclass correlation coefficient across lists for recall (.91). fMRI measurements during Encoding (vs. Silent Rehearsal) revealed significant activation in bilateral hippocampus, parahippocampus, and bilateral anterior and posterior cingulate cortex. Post-hoc analyses showed increased activation in anterior and middle hippocampus, subgenual cingulate, and mammillary bodies specific to Encoding. In addition, increasing age was positively associated with increased activation in a diffuse network, particularly frontal cortex and specific Papez regions for correctly recalled words. Gender differences were specific to left inferior and superior frontal cortex. Conclusions This is a clinically relevant list learning task that can be used in studies of groups for which the Papez circuit is damaged or disrupted, in mixed or crossover studies at imaging and clinical sites. PMID:26313512
Orhan, I; Küpeli, E; Aslan, M; Kartal, M; Yesilada, E
2006-04-21
The ethanolic and aqueous extracts prepared from different parts of Pistacia vera L. (Anacardiaceae) as well as its oleoresin were evaluated for their in vivo anti-inflammatory and antinociceptive activities. Among the extracts screened, only the oleoresin was shown to possess a marked anti-inflammatory activity against carrageenan-induced hind paw edema model in mice without inducing any gastric damage at both 250 and 500 mg/kg doses whereas the rest of the extracts were totally inactive. While the oleoresin was found to display significant antinociceptive activity at 500 mg/kg dose, the ethanolic and aqueous extracts belonging to fruit, leaf, branch and peduncle of Pistacia vera did not exhibit any noticeable antinociception in p-benzoquinone-induced abdominal contractions in mice. Fractionation of the oleoresin indicated the n-hexane fraction to be active, which further led to recognition of some monoterpenes, mainly alpha-pinene (77.5%) by capillary gas chromatography-mass spectrometry (GC-MS) as well as the oleoresin itself. alpha-Pinene was also assessed for its antinociceptive and anti-inflammatory activities in the same manner and exerted a moderate anti-inflammatory effect at 500 mg/kg dose.
ERIC Educational Resources Information Center
Morford, Jill P.; Kroll, Judith F.; Piñar, Pilar; Wilkinson, Erin
2014-01-01
Recent evidence demonstrates that American Sign Language (ASL) signs are active during print word recognition in deaf bilinguals who are highly proficient in both ASL and English. In the present study, we investigate whether signs are active during print word recognition in two groups of unbalanced bilinguals: deaf ASL-dominant and hearing…
A system for activity recognition using multi-sensor fusion.
Gao, Lei; Bourke, Alan K; Nelson, John
2011-01-01
This paper proposes a system for activity recognition using multi-sensor fusion. In this system, four sensors are attached to the waist, chest, thigh, and side of the body. In the study we present two solutions for factors that affect the activity recognition accuracy: the calibration drift and the sensor orientation changing. The datasets used to evaluate this system were collected from 8 subjects who were asked to perform 8 scripted normal activities of daily living (ADL), three times each. The Naïve Bayes classifier using multi-sensor fusion is adopted and achieves 70.88%-97.66% recognition accuracies for 1-4 sensors.
Sadeh, Talya; Maril, Anat; Goshen-Gottstein, Yonatan
2012-07-01
The subsequent-memory (SM) paradigm uncovers brain mechanisms that are associated with mnemonic activity during encoding by measuring participants' neural activity during encoding and classifying the encoding trials according to performance in the subsequent retrieval phase. The majority of these studies have converged on the notion that the mechanism supporting recognition is mediated by familiarity and recollection. The process of recollection is often assumed to be a recall-like process, implying that the active search for the memory trace is similar, if not identical, for recall and recognition. Here we challenge this assumption and hypothesize - based on previous findings obtained in our lab - that the recollective processes underlying recall and recognition might show dissociative patterns of encoding-related brain activity. To this end, our design controlled for familiarity, thereby focusing on contextual, recollective processes. We found evidence for dissociative neurocognitive encoding mechanisms supporting subsequent-recall and subsequent-recognition. Specifically, the contrast of subsequent-recognition versus subsequent-recall revealed activation in the Parahippocampal cortex (PHc) and the posterior hippocampus--regions associated with contextual processing. Implications of our findings and their relation to current cognitive models of recollection are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Filippoupolitis, Avgoustinos; Oliff, William; Takand, Babak; Loukas, George
2017-05-27
Activity recognition in indoor spaces benefits context awareness and improves the efficiency of applications related to personalised health monitoring, building energy management, security and safety. The majority of activity recognition frameworks, however, employ a network of specialised building sensors or a network of body-worn sensors. As this approach suffers with respect to practicality, we propose the use of commercial off-the-shelf devices. In this work, we design and evaluate an activity recognition system composed of a smart watch, which is enhanced with location information coming from Bluetooth Low Energy (BLE) beacons. We evaluate the performance of this approach for a variety of activities performed in an indoor laboratory environment, using four supervised machine learning algorithms. Our experimental results indicate that our location-enhanced activity recognition system is able to reach a classification accuracy ranging from 92% to 100%, while without location information classification accuracy it can drop to as low as 50% in some cases, depending on the window size chosen for data segmentation.
Human activities recognition by head movement using partial recurrent neural network
NASA Astrophysics Data System (ADS)
Tan, Henry C. C.; Jia, Kui; De Silva, Liyanage C.
2003-06-01
Traditionally, human activities recognition has been achieved mainly by the statistical pattern recognition methods or the Hidden Markov Model (HMM). In this paper, we propose a novel use of the connectionist approach for the recognition of ten simple human activities: walking, sitting down, getting up, squatting down and standing up, in both lateral and frontal views, in an office environment. By means of tracking the head movement of the subjects over consecutive frames from a database of different color image sequences, and incorporating the Elman model of the partial recurrent neural network (RNN) that learns the sequential patterns of relative change of the head location in the images, the proposed system is able to robustly classify all the ten activities performed by unseen subjects from both sexes, of different race and physique, with a recognition rate as high as 92.5%. This demonstrates the potential of employing partial RNN to recognize complex activities in the increasingly popular human-activities-based applications.
Role of fusiform and anterior temporal cortical areas in facial recognition.
Nasr, Shahin; Tootell, Roger B H
2012-11-15
Recent fMRI studies suggest that cortical face processing extends well beyond the fusiform face area (FFA), including unspecified portions of the anterior temporal lobe. However, the exact location of such anterior temporal region(s), and their role during active face recognition, remain unclear. Here we demonstrate that (in addition to FFA) a small bilateral site in the anterior tip of the collateral sulcus ('AT'; the anterior temporal face patch) is selectively activated during recognition of faces but not houses (a non-face object). In contrast to the psychophysical prediction that inverted and contrast reversed faces are processed like other non-face objects, both FFA and AT (but not other visual areas) were also activated during recognition of inverted and contrast reversed faces. However, response accuracy was better correlated to recognition-driven activity in AT, compared to FFA. These data support a segregated, hierarchical model of face recognition processing, extending to the anterior temporal cortex. Copyright © 2012 Elsevier Inc. All rights reserved.
Role of Fusiform and Anterior Temporal Cortical Areas in Facial Recognition
Nasr, Shahin; Tootell, Roger BH
2012-01-01
Recent FMRI studies suggest that cortical face processing extends well beyond the fusiform face area (FFA), including unspecified portions of the anterior temporal lobe. However, the exact location of such anterior temporal region(s), and their role during active face recognition, remain unclear. Here we demonstrate that (in addition to FFA) a small bilateral site in the anterior tip of the collateral sulcus (‘AT’; the anterior temporal face patch) is selectively activated during recognition of faces but not houses (a non-face object). In contrast to the psychophysical prediction that inverted and contrast reversed faces are processed like other non-face objects, both FFA and AT (but not other visual areas) were also activated during recognition of inverted and contrast reversed faces. However, response accuracy was better correlated to recognition-driven activity in AT, compared to FFA. These data support a segregated, hierarchical model of face recognition processing, extending to the anterior temporal cortex. PMID:23034518
NASA Astrophysics Data System (ADS)
Iqtait, M.; Mohamad, F. S.; Mamat, M.
2018-03-01
Biometric is a pattern recognition system which is used for automatic recognition of persons based on characteristics and features of an individual. Face recognition with high recognition rate is still a challenging task and usually accomplished in three phases consisting of face detection, feature extraction, and expression classification. Precise and strong location of trait point is a complicated and difficult issue in face recognition. Cootes proposed a Multi Resolution Active Shape Models (ASM) algorithm, which could extract specified shape accurately and efficiently. Furthermore, as the improvement of ASM, Active Appearance Models algorithm (AAM) is proposed to extracts both shape and texture of specified object simultaneously. In this paper we give more details about the two algorithms and give the results of experiments, testing their performance on one dataset of faces. We found that the ASM is faster and gains more accurate trait point location than the AAM, but the AAM gains a better match to the texture.
Sikka, Ritu; Cuddy, Lola L.; Johnsrude, Ingrid S.; Vanstone, Ashley D.
2015-01-01
Several studies of semantic memory in non-musical domains involving recognition of items from long-term memory have shown an age-related shift from the medial temporal lobe structures to the frontal lobe. However, the effects of aging on musical semantic memory remain unexamined. We compared activation associated with recognition of familiar melodies in younger and older adults. Recognition follows successful retrieval from the musical lexicon that comprises a lifetime of learned musical phrases. We used the sparse-sampling technique in fMRI to determine the neural correlates of melody recognition by comparing activation when listening to familiar vs. unfamiliar melodies, and to identify age differences. Recognition-related cortical activation was detected in the right superior temporal, bilateral inferior and superior frontal, left middle orbitofrontal, bilateral precentral, and left supramarginal gyri. Region-of-interest analysis showed greater activation for younger adults in the left superior temporal gyrus and for older adults in the left superior frontal, left angular, and bilateral superior parietal regions. Our study provides powerful evidence for these musical memory networks due to a large sample (N = 40) that includes older adults. This study is the first to investigate the neural basis of melody recognition in older adults and to compare the findings to younger adults. PMID:26500480
Incorporating Duration Information in Activity Recognition
NASA Astrophysics Data System (ADS)
Chaurasia, Priyanka; Scotney, Bryan; McClean, Sally; Zhang, Shuai; Nugent, Chris
Activity recognition has become a key issue in smart home environments. The problem involves learning high level activities from low level sensor data. Activity recognition can depend on several variables; one such variable is duration of engagement with sensorised items or duration of intervals between sensor activations that can provide useful information about personal behaviour. In this paper a probabilistic learning algorithm is proposed that incorporates episode, time and duration information to determine inhabitant identity and the activity being undertaken from low level sensor data. Our results verify that incorporating duration information consistently improves the accuracy.
Karentz, Deneb
2015-01-01
The ability to repair DNA is a ubiquitous characteristic of life on Earth and all organisms possess similar mechanisms for dealing with DNA damage, an indication of a very early evolutionary origin for repair processes. James E. Cleaver's career (initiated in the early 1960s) has been devoted to the study of mammalian ultraviolet radiation (UVR) photobiology, specifically the molecular genetics of xeroderma pigmentosum and other human diseases caused by defects in DNA damage recognition and repair. This work by Jim and others has influenced the study of DNA damage and repair in a variety of taxa. Today, the field of DNA repair is enhancing our understanding of not only how to treat and prevent human disease, but is providing insights on the evolutionary history of life on Earth and how natural populations are coping with UVR-induced DNA damage from anthropogenic changes in the environment such as ozone depletion. © 2014 The American Society of Photobiology.
Colado, Enrique; Paíno, Teresa; Maiso, Patricia; Ocio, Enrique M.; Chen, Xi; Álvarez-Fernández, Stela; Gutiérrez, Norma C.; Martín-Sánchez, Jesús; Flores-Montero, Juan; San Segundo, Laura; Garayoa, Mercedes; Fernández-Lázaro, Diego; Vidriales, Maria-Belen; Galmarini, Carlos M.; Avilés, Pablo; Cuevas, Carmen; Pandiella, Atanasio; San-Miguel, Jesús F.
2011-01-01
Background Although the majority of patients with acute myeloid leukemia initially respond to conventional chemotherapy, relapse is still the leading cause of death, probably because of the presence of leukemic stem cells that are insensitive to current therapies. We investigated the antileukemic activity and mechanism of action of zalypsis, a novel alkaloid of marine origin. Design and Methods The activity of zalypsis was studied in four acute myeloid leukemia cell lines and in freshly isolated blasts taken from patients with acute myeloid leukemia before they started therapy. Zalypsis-induced apoptosis of both malignant and normal cells was measured using flow cytometry techniques. Gene expression profiling and western blot studies were performed to assess the mechanism of action of the alkaloid. Results Zalypsis showed a very potent antileukemic activity in all the cell lines tested and potentiated the effect of conventional antileukemic drugs such as cytarabine, fludarabine and daunorubicin. Interestingly, zalypsis showed remarkable ex vivo potency, including activity against the most immature blast cells (CD34+ CD38− Lin−) which include leukemic stem cells. Zalypsis-induced apoptosis was the result of an important deregulation of genes involved in the recognition of double-strand DNA breaks, such as Fanconi anemia genes and BRCA1, but also genes implicated in the repair of double-strand DNA breaks, such as RAD51 and RAD54. These gene findings were confirmed by an increase in several proteins involved in the pathway (pCHK1, pCHK2 and pH2AX). Conclusions The potent and selective antileukemic effect of zalypsis on DNA damage response mechanisms observed in acute myeloid leukemia cell lines and in patients’ samples provides the rationale for the investigation of this compound in clinical trials. PMID:21330323
Low energy physical activity recognition system on smartphones.
Soria Morillo, Luis Miguel; Gonzalez-Abril, Luis; Ortega Ramirez, Juan Antonio; de la Concepcion, Miguel Angel Alvarez
2015-03-03
An innovative approach to physical activity recognition based on the use of discrete variables obtained from accelerometer sensors is presented. The system first performs a discretization process for each variable, which allows efficient recognition of activities performed by users using as little energy as possible. To this end, an innovative discretization and classification technique is presented based on the χ2 distribution. Furthermore, the entire recognition process is executed on the smartphone, which determines not only the activity performed, but also the frequency at which it is carried out. These techniques and the new classification system presented reduce energy consumption caused by the activity monitoring system. The energy saved increases smartphone usage time to more than 27 h without recharging while maintaining accuracy.
Plasma spectrum peak extraction algorithm of laser film damage
NASA Astrophysics Data System (ADS)
Zhao, Dan; Su, Jun-hong; Xu, Jun-qi
2012-10-01
The plasma spectrometry is an emerging method to distinguish the thin-film laser damage. Laser irradiation film surface occurrence of flash, using the spectrometer receives the flash spectrum, extracting the spectral peak, and by means of the spectra of the thin-film materials and the atmosphere has determine the difference, as a standard to determine the film damage. Plasma spectrometry can eliminate the miscarriage of justice which caused by atmospheric flashes, and distinguish high accuracy. Plasma spectra extraction algorithm is the key technology of Plasma spectrometry. Firstly, data de noising and smoothing filter is introduced in this paper, and then during the peak is detecting, the data packet is proposed, and this method can increase the stability and accuracy of the spectral peak recognition. Such algorithm makes simultaneous measurement of Plasma spectrometry to detect thin film laser damage, and greatly improves work efficiency.
Fabry disease: Review and experience during newborn screening.
Hsu, Ting-Rong; Niu, Dau-Ming
2018-05-01
Fabry disease (FD) is an X-linked lysosomal storage disease and is the result of mutation in the α-Galactosidase A gene; such mutations cause a deficiency in α-Galactosidase A enzyme and an accumulation of glycosphingolipid in tissue. Affected males with classic FD have little or no enzyme activity and have an early onset of symptoms and signs, including acroparesthesias, hypohidrosis, angiokeratomas, gastrointestinal dysfunction and/or a characteristic corneal dystrophy during childhood/adolescence. Males with late-onset FD who have residual enzyme activity develop progressive multi-systemic involvement that leads to renal failure and hypertrophic cardiomyopathy, as well as cerebrovascular disease; these events mostly occur during the fourth to seventh decades of life. Heterozygous females can develop vital organ damage that in turn causes severe morbidity and mortality; these symptoms may be as severe as those in affected males. For the treatable disease, this review aims to raise awareness of early recognition and further management of FD based on newborn screening. As newborn screening for FD has been implemented worldwide, it allows the early detection of individuals with Fabry mutations. Based on screening studies, the prevalence of the later-onset type FD is much higher than that of classical type FD. Newborn screening studies have also revealed that patients with FD may develop insidious but ongoing irreversible organ damage. The timing of enzyme replacement therapy, which is able to stabilize the progression of disease, is important in order to prevent irreversible organ damage. Therapies that may become available in the future include pharmacological chaperones and substrate reduction therapy, both of which are still under investigation as ways of improving the health of individuals with FD. Copyright © 2017 Elsevier Inc. All rights reserved.
Behavioral pattern identification for structural health monitoring in complex systems
NASA Astrophysics Data System (ADS)
Gupta, Shalabh
Estimation of structural damage and quantification of structural integrity are critical for safe and reliable operation of human-engineered complex systems, such as electromechanical, thermofluid, and petrochemical systems. Damage due to fatigue crack is one of the most commonly encountered sources of structural degradation in mechanical systems. Early detection of fatigue damage is essential because the resulting structural degradation could potentially cause catastrophic failures, leading to loss of expensive equipment and human life. Therefore, for reliable operation and enhanced availability, it is necessary to develop capabilities for prognosis and estimation of impending failures, such as the onset of wide-spread fatigue crack damage in mechanical structures. This dissertation presents information-based online sensing of fatigue damage using the analytical tools of symbolic time series analysis ( STSA). Anomaly detection using STSA is a pattern recognition method that has been recently developed based upon a fixed-structure, fixed-order Markov chain. The analysis procedure is built upon the principles of Symbolic Dynamics, Information Theory and Statistical Pattern Recognition. The dissertation demonstrates real-time fatigue damage monitoring based on time series data of ultrasonic signals. Statistical pattern changes are measured using STSA to monitor the evolution of fatigue damage. Real-time anomaly detection is presented as a solution to the forward (analysis) problem and the inverse (synthesis) problem. (1) the forward problem - The primary objective of the forward problem is identification of the statistical changes in the time series data of ultrasonic signals due to gradual evolution of fatigue damage. (2) the inverse problem - The objective of the inverse problem is to infer the anomalies from the observed time series data in real time based on the statistical information generated during the forward problem. A computer-controlled special-purpose fatigue test apparatus, equipped with multiple sensing devices (e.g., ultrasonics and optical microscope) for damage analysis, has been used to experimentally validate the STSA method for early detection of anomalous behavior. The sensor information is integrated with a software module consisting of the STSA algorithm for real-time monitoring of fatigue damage. Experiments have been conducted under different loading conditions on specimens constructed from the ductile aluminium alloy 7075 - T6. The dissertation has also investigated the application of the STSA method for early detection of anomalies in other engineering disciplines. Two primary applications include combustion instability in a generic thermal pulse combustor model and whirling phenomenon in a typical misaligned shaft.
NASA Astrophysics Data System (ADS)
Tibaduiza-Burgos, Diego Alexander; Torres-Arredondo, Miguel Angel
2015-08-01
Aeronautical structures are subjected to damage during their service raising the necessity for periodic inspection and maintenance of their components so that structural integrity and safe operation can be guaranteed. Cost reduction related to minimizing the out-of-service time of the aircraft, together with the advantages offered by real-time and safe-life service monitoring, have led to a boom in the design of inexpensive and structurally integrated transducer networks comprising actuators, sensors, signal processing units and controllers. These kinds of automated systems are normally referred to as smart structures and offer a multitude of new solutions to engineering problems and multi-functional capabilities. It is thus expected that structural health monitoring (SHM) systems will become one of the leading technologies for assessing and assuring the structural integrity of future aircraft. This study is devoted to the development and experimental investigation of an SHM methodology for the detection of damage in real scale complex aeronautical structures. The work focuses on each aspect of the SHM system and highlights the potentialities of the health monitoring technique based on acousto-ultrasonics and data-driven modelling within the concepts of sensor data fusion, feature extraction and pattern recognition. The methodology is experimentally demonstrated on an aircraft skin panel and fuselage panel for which several damage scenarios are analysed. The detection performance in both structures is quantified and presented.
Emotional memory and perception in temporal lobectomy patients with amygdala damage.
Brierley, B; Medford, N; Shaw, P; David, A S
2004-04-01
The human amygdala is implicated in the formation of emotional memories and the perception of emotional stimuli--particularly fear--across various modalities. To discern the extent to which these functions are related. 28 patients who had anterior temporal lobectomy (13 left and 15 right) for intractable epilepsy were recruited. Structural magnetic resonance imaging showed that three of them had atrophy of their remaining amygdala. All participants were given tests of affect perception from facial and vocal expressions and of emotional memory, using a standard narrative test and a novel test of word recognition. The results were standardised against matched healthy controls. Performance on all emotion tasks in patients with unilateral lobectomy ranged from unimpaired to moderately impaired. Perception of emotions in faces and voices was (with exceptions) significantly positively correlated, indicating multimodal emotional processing. However, there was no correlation between the subjects' performance on tests of emotional memory and perception. Several subjects showed strong emotional memory enhancement but poor fear perception. Patients with bilateral amygdala damage had greater impairment, particularly on the narrative test of emotional memory, one showing superior fear recognition but absent memory enhancement. Bilateral amygdala damage is particularly disruptive of emotional memory processes in comparison with unilateral temporal lobectomy. On a cognitive level, the pattern of results implies that perception of emotional expressions and emotional memory are supported by separate processing systems or streams.
[Neurological disease and facial recognition].
Kawamura, Mitsuru; Sugimoto, Azusa; Kobayakawa, Mutsutaka; Tsuruya, Natsuko
2012-07-01
To discuss the neurological basis of facial recognition, we present our case reports of impaired recognition and a review of previous literature. First, we present a case of infarction and discuss prosopagnosia, which has had a large impact on face recognition research. From a study of patient symptoms, we assume that prosopagnosia may be caused by unilateral right occipitotemporal lesion and right cerebral dominance of facial recognition. Further, circumscribed lesion and degenerative disease may also cause progressive prosopagnosia. Apperceptive prosopagnosia is observed in patients with posterior cortical atrophy (PCA), pathologically considered as Alzheimer's disease, and associative prosopagnosia in frontotemporal lobar degeneration (FTLD). Second, we discuss face recognition as part of communication. Patients with Parkinson disease show social cognitive impairments, such as difficulty in facial expression recognition and deficits in theory of mind as detected by the reading the mind in the eyes test. Pathological and functional imaging studies indicate that social cognitive impairment in Parkinson disease is possibly related to damages in the amygdalae and surrounding limbic system. The social cognitive deficits can be observed in the early stages of Parkinson disease, and even in the prodromal stage, for example, patients with rapid eye movement (REM) sleep behavior disorder (RBD) show impairment in facial expression recognition. Further, patients with myotonic dystrophy type 1 (DM 1), which is a multisystem disease that mainly affects the muscles, show social cognitive impairment similar to that of Parkinson disease. Our previous study showed that facial expression recognition impairment of DM 1 patients is associated with lesion in the amygdalae and insulae. Our study results indicate that behaviors and personality traits in DM 1 patients, which are revealed by social cognitive impairment, are attributable to dysfunction of the limbic system.
Scene recognition based on integrating active learning with dictionary learning
NASA Astrophysics Data System (ADS)
Wang, Chengxi; Yin, Xueyan; Yang, Lin; Gong, Chengrong; Zheng, Caixia; Yi, Yugen
2018-04-01
Scene recognition is a significant topic in the field of computer vision. Most of the existing scene recognition models require a large amount of labeled training samples to achieve a good performance. However, labeling image manually is a time consuming task and often unrealistic in practice. In order to gain satisfying recognition results when labeled samples are insufficient, this paper proposed a scene recognition algorithm named Integrating Active Learning and Dictionary Leaning (IALDL). IALDL adopts projective dictionary pair learning (DPL) as classifier and introduces active learning mechanism into DPL for improving its performance. When constructing sampling criterion in active learning, IALDL considers both the uncertainty and representativeness as the sampling criteria to effectively select the useful unlabeled samples from a given sample set for expanding the training dataset. Experiment results on three standard databases demonstrate the feasibility and validity of the proposed IALDL.
Activating the critical lure during study is unnecessary for false recognition.
Zeelenberg, René; Boot, Inge; Pecher, Diane
2005-06-01
Participants studied lists of nonwords (e.g., froost, floost, stoost, etc.) that were orthographic-phonologically similar to a nonpresented critical lure, which was also a nonword (e.g., ploost). Experiment 1 showed a high level of false recognition for the critical lure. Experiment 2 showed that the false recognition effect was also present for forewarned participants who were informed about the nature of the false recognition effect and told to avoid making false recognition judgments. The present results show that false recognition effects can be obtained even when the critical lure itself is not stored during study. This finding is problematic for accounts that attribute false memories to implicit associative responses or spreading activation but is easily explained by global familiarity models of recognition memory.
A Human Activity Recognition System Using Skeleton Data from RGBD Sensors.
Cippitelli, Enea; Gasparrini, Samuele; Gambi, Ennio; Spinsante, Susanna
2016-01-01
The aim of Active and Assisted Living is to develop tools to promote the ageing in place of elderly people, and human activity recognition algorithms can help to monitor aged people in home environments. Different types of sensors can be used to address this task and the RGBD sensors, especially the ones used for gaming, are cost-effective and provide much information about the environment. This work aims to propose an activity recognition algorithm exploiting skeleton data extracted by RGBD sensors. The system is based on the extraction of key poses to compose a feature vector, and a multiclass Support Vector Machine to perform classification. Computation and association of key poses are carried out using a clustering algorithm, without the need of a learning algorithm. The proposed approach is evaluated on five publicly available datasets for activity recognition, showing promising results especially when applied for the recognition of AAL related actions. Finally, the current applicability of this solution in AAL scenarios and the future improvements needed are discussed.
Foot-mounted inertial measurement unit for activity classification.
Ghobadi, Mostafa; Esfahani, Ehsan T
2014-01-01
This paper proposes a classification technique for daily base activity recognition for human monitoring during physical therapy in home. The proposed method estimates the foot motion using single inertial measurement unit, then segments the motion into steps classify them by template-matching as walking, stairs up or stairs down steps. The results show a high accuracy of activity recognition. Unlike previous works which are limited to activity recognition, the proposed approach is more qualitative by providing similarity index of any activity to its desired template which can be used to assess subjects improvement.
Multiple view image analysis of freefalling U.S. wheat grains for damage assessment
USDA-ARS?s Scientific Manuscript database
Currently, inspection of wheat in the United States for grade and class is performed by human visual analysis. This is a time consuming operation typically taking several minutes for each sample. Digital imaging research has addressed this issue over the past two decades, with success in recognition...
USDA-ARS?s Scientific Manuscript database
Plants recognize a variety of stimuli that invoke defenses against attacking pathogens and herbivores. This recognition primes the plant to mount defenses against herbivory and disease. These stimuli include molecules called damage-associated molecular patterns or DAMPs, among them signaling peptide...
Consuming Conventions: Sustainable Consumption, Ecological Citizenship and the Worlds of Worth
ERIC Educational Resources Information Center
Evans, David
2011-01-01
In light of the recognition that current patterns of consumption in the developed world are environmentally damaging, the question of sustainable consumption has become increasingly prominent in public and policy discourse. This paper joins an emerging body of work that critiques the behaviorist perspectives that currently dominate the field and…
Jarry, Christophe; Osiurak, François; Besnard, Jérémy; Baumard, Josselin; Lesourd, Mathieu; Croisile, Bernard; Etcharry-Bouyx, Frédérique; Chauviré, Valérie; Le Gall, Didier
2016-03-01
Tool use disorders are usually associated with difficulties in retrieving function and manipulation knowledge. Here, we investigate tool use (Real Tool Use, RTU), function (Functional Association, FA) and manipulation knowledge (Gesture Recognition, GR) in 17 left-brain-damaged (LBD) patients and 14 AD patients (Alzheimer disease). LBD group exhibited predicted deficit on RTU but not on FA and GR while AD patients showed deficits on GR and FA with preserved tool use skills. These findings question the role played by function and manipulation knowledge in actual tool use. © 2016 The British Psychological Society.
Complexity of Danger: The Diverse Nature of Damage-associated Molecular Patterns*
Schaefer, Liliana
2014-01-01
In reply to internal or external danger stimuli, the body orchestrates an inflammatory response. The endogenous triggers of this process are the damage-associated molecular patterns (DAMPs). DAMPs represent a heterogeneous group of molecules that draw their origin either from inside the various compartments of the cell or from the extracellular space. Following interaction with pattern recognition receptors in cross-talk with various non-immune receptors, DAMPs determine the downstream signaling outcome of septic and aseptic inflammatory responses. In this review, the diverse nature, structural characteristics, and signaling pathways elicited by DAMPs will be critically evaluated. PMID:25391648
Spiers, H J; Maguire, E A; Burgess, N
2001-01-01
This article reviews 147 cases of amnesia following damage including the hippocampus or fornix as reported in 179 publications. The aetiology, mnestic abilities and reference(s) are tabulated for each case. Consistent findings across cases include the association of bilateral hippocampal damage with a deficit in anterograde episodic memory combined with spared procedural and working memory. The limited nature of retrograde amnesia following lesions to the fornix is also noted. Less consistent and thus more controversial findings, include effects of lesion size or laterality, deficits in semantic memory or familiarity-based recognition and the extent of retrograde amnesia. The evidence concerning these issues is reviewed across cases.
Paradoxical false memory for objects after brain damage.
McTighe, Stephanie M; Cowell, Rosemary A; Winters, Boyer D; Bussey, Timothy J; Saksida, Lisa M
2010-12-03
Poor memory after brain damage is usually considered to be a result of information being lost or rendered inaccessible. It is assumed that such memory impairment must be due to the incorrect interpretation of previously encountered information as being novel. In object recognition memory experiments with rats, we found that memory impairment can take the opposite form: a tendency to treat novel experiences as familiar. This impairment could be rescued with the use of a visual-restriction procedure that reduces interference. Such a pattern of data can be explained in terms of a recent representational-hierarchical view of cognition.
Automatic building identification under bomb damage conditions
NASA Astrophysics Data System (ADS)
Woodley, Robert; Noll, Warren; Barker, Joseph; Wunsch, Donald C., II
2009-05-01
Given the vast amount of image intelligence utilized in support of planning and executing military operations, a passive automated image processing capability for target identification is urgently required. Furthermore, transmitting large image streams from remote locations would quickly use available band width (BW) precipitating the need for processing to occur at the sensor location. This paper addresses the problem of automatic target recognition for battle damage assessment (BDA). We utilize an Adaptive Resonance Theory approach to cluster templates of target buildings. The results show that the network successfully classifies targets from non-targets in a virtual test bed environment.
A computer vision system for the recognition of trees in aerial photographs
NASA Technical Reports Server (NTRS)
Pinz, Axel J.
1991-01-01
Increasing problems of forest damage in Central Europe set the demand for an appropriate forest damage assessment tool. The Vision Expert System (VES) is presented which is capable of finding trees in color infrared aerial photographs. Concept and architecture of VES are discussed briefly. The system is applied to a multisource test data set. The processing of this multisource data set leads to a multiple interpretation result for one scene. An integration of these results will provide a better scene description by the vision system. This is achieved by an implementation of Steven's correlation algorithm.
PINK1 is degraded through the N-end rule pathway
Yamano, Koji; Youle, Richard J
2013-01-01
PINK1, a mitochondrial serine/threonine kinase, is the product of a gene mutated in an autosomal recessive form of Parkinson disease. PINK1 is constitutively degraded by an unknown mechanism and stabilized selectively on damaged mitochondria where it can recruit the E3 ligase PARK2/PARKIN to induce mitophagy. Here, we show that, under steady-state conditions, endogenous PINK1 is constitutively and rapidly degraded by E3 ubiquitin ligases UBR1, UBR2 and UBR4 through the N-end rule pathway. Following precursor import into mitochondria, PINK1 is cleaved in the transmembrane segment by a mitochondrial intramembrane protease PARL generating an N-terminal destabilizing amino acid and then retrotranslocates from mitochondria to the cytosol for N-end recognition and proteasomal degradation. Thus, sequential actions of mitochondrial import, PARL-processing, retrotranslocation and recognition by N-end rule E3 enzymes for the ubiquitin proteosomal degradation defines the rapid PINK1 turnover. PINK1 steady-state elimination by the N-end rule identifies a novel organelle to cytoplasm turnover pathway that yields a mechanism to flag damaged mitochondria for autophagic elimination. PMID:24121706
Kishiyama, M M; Yonelinas, A P; Lazzara, M M
2004-01-01
The ability to detect novelty is a characteristic of all mammalian nervous systems (Sokolov, 1963), and it plays a critical role in memory in the sense that items that are novel, or distinctive, are remembered better than those that are less distinct (von Restorff, 1933). Although several brain areas are sensitive to stimulus novelty, it is not yet known which regions play a role in producing novelty-related effects on memory. In the current study, we investigated novelty effects on recognition memory in amnesic patients and healthy control subjects. The control subjects demonstrated better recognition for items that were novel (i.e., presented in an infrequent color), and this effect was found for both recollection and familiarity-based responses. However, the novelty advantage was effectively eliminated in patients with extensive medial temporal lobe damage, mild hypoxic patients expected to have relatively selective hippocampal damage, and in a patient with thalamic lesions. The results indicate that the human medial temporal lobes play a critical role in producing normal novelty effects in memory.
Activity Recognition in Social Media
2015-12-29
AFRL-AFOSR-JP-TR-2016-0044 Activity Recognition in Social Media Subhasis Chaudhuri INDIAN INSTITUTE OF TECHNOLOGY BOMBAY Final Report 05/09/2016...DATES COVERED (From - To) 12 Aug 2013 to 30 Sep 2015 4. TITLE AND SUBTITLE Activity Recognition in Social Media 5a. CONTRACT NUMBER 5b. GRANT NUMBER...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) INDIAN INSTITUTE OF TECHNOLOGY BOMBAY POWAI MUMBAI, 400076 IN 8. PERFORMING ORGANIZATION REPORT NUMBER
The cost to successfully apply for level 3 medical home recognition
Mottus, Kathleen; Reiter, Kristin; Mitchell, C. Madeline; Donahue, Katrina E.; Gabbard, Wilson M.; Gush, Kimberly
2016-01-01
BACKGROUND The NCQA Patient Centered Medical Home (PCMH) recognition program provides practices an opportunity to implement Medical home activities. Understanding the costs to apply for recognition may enable practices to plan their work. METHODS Practice coaches identified 5 exemplar practices that received level 3 recognition (3 pediatric and 2 family medicine practices). This analysis focuses on 4 that received 2011 recognition. Clinical, informatics and administrative staff participated in 2–3 hour interviews. We collected the time required to develop, implement and maintain required activities. We categorized costs as: 1) non-personnel, 2) developmental 3) those to implement activities 4) those to maintain activities, 5) those to document the work and 6) consultant costs. Only incremental costs were included and are presented as costs per full-time equivalent provider (pFTE) RESULTS Practice size ranged from 2.5 – 10.5 pFTE’s, payer mixes from 7–43 % Medicaid. There was variation in the distribution of costs by activity by practice; but the costs to apply were remarkably similar ($11,453–$15,977 pFTE). CONCLUSION The costs to apply for 2011 recognition were noteworthy. Work to enhance care coordination and close loops were highly valued. Financial incentives were key motivators. Future efforts to minimize the burden of low value activities could benefit practices. PMID:26769879
Pergola, Giulio; Ranft, Alexander; Mathias, Klaus; Suchan, Boris
2013-07-01
The present functional imaging study aimed at investigating the contribution of the mediodorsal nucleus and the anterior nuclei of the thalamus with their related cortical networks to recognition memory and recall. Eighteen subjects performed associative picture encoding followed by a single item recognition test during the functional magnetic resonance imaging session. After scanning, subjects performed a cued recall test using the formerly recognized pictures as cues. This post-scanning test served to classify recognition trials according to subsequent recall performance. In general, single item recognition accompanied by successful recall of the associations elicited stronger activation in the mediodorsal nucleus of the thalamus and in the prefrontal cortices both during encoding and retrieval compared to recognition without recall. In contrast, the anterior nuclei of the thalamus were selectively active during the retrieval phase of recognition followed by recall. A correlational analysis showed that activation of the anterior thalamus during retrieval as assessed by measuring the percent signal changes predicted lower rates of recognition without recall. These findings show that the thalamus is critical for recognition accompanied by recall, and provide the first evidence of a functional segregation of the thalamic nuclei with respect to the memory retrieval phase. In particular, the mediodorsal thalamic-prefrontal cortical network is activated during successful encoding and retrieval of associations, which suggests a role of this system in recall and recollection. The activity of the anterior thalamic-temporal network selectively during retrieval predicts better memory performances across subjects and this confirms the paramount role of this network in recall and recollection. Copyright © 2013 Elsevier Inc. All rights reserved.
The effect of word concreteness on recognition memory.
Fliessbach, K; Weis, S; Klaver, P; Elger, C E; Weber, B
2006-09-01
Concrete words that are readily imagined are better remembered than abstract words. Theoretical explanations for this effect either claim a dual coding of concrete words in the form of both a verbal and a sensory code (dual-coding theory), or a more accessible semantic network for concrete words than for abstract words (context-availability theory). However, the neural mechanisms of improved memory for concrete versus abstract words are poorly understood. Here, we investigated the processing of concrete and abstract words during encoding and retrieval in a recognition memory task using event-related functional magnetic resonance imaging (fMRI). As predicted, memory performance was significantly better for concrete words than for abstract words. Abstract words elicited stronger activations of the left inferior frontal cortex both during encoding and recognition than did concrete words. Stronger activation of this area was also associated with successful encoding for both abstract and concrete words. Concrete words elicited stronger activations bilaterally in the posterior inferior parietal lobe during recognition. The left parietal activation was associated with correct identification of old stimuli. The anterior precuneus, left cerebellar hemisphere and the posterior and anterior cingulate cortex showed activations both for successful recognition of concrete words and for online processing of concrete words during encoding. Additionally, we observed a correlation across subjects between brain activity in the left anterior fusiform gyrus and hippocampus during recognition of learned words and the strength of the concreteness effect. These findings support the idea of specific brain processes for concrete words, which are reactivated during successful recognition.
Wilkinson, Caroline
2014-12-01
The recognition of a decedent by a family member is commonplace in forensic investigation and is often employed as identity confirmation. However, it is recognised that misidentification from facial recognition is also common and faces of the dead may be extremely difficult to recognise due to decomposition or external damage, and even immediate post-mortem changes may be significant enough to confuse an observer. The depiction of faces of the dead can be a useful tool for promoting recognition leading to identification and post-mortem facial depiction is described as the interpretation of human remains in order to suggest the living appearance of an individual. This paper provides an historical context relating to the changing view of society to the presentation and publication of post-mortem facial depictions and discusses the current ethical, practical and academic challenges associated with these images. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Fungal Strategies to Evade the Host Immune Recognition.
Hernández-Chávez, Marco J; Pérez-García, Luis A; Niño-Vega, Gustavo A; Mora-Montes, Héctor M
2017-09-23
The recognition of fungal cells by the host immune system is key during the establishment of a protective anti-fungal response. Even though the immune system has evolved a vast number of processes to control these organisms, they have developed strategies to fight back, avoiding the proper recognition by immune components and thus interfering with the host protective mechanisms. Therefore, the strategies to evade the immune system are as important as the virulence factors and attributes that damage the host tissues and cells. Here, we performed a thorough revision of the main fungal tactics to escape from the host immunosurveillance processes. These include the composition and organization of the cell wall, the fungal capsule, the formation of titan cells, biofilms, and asteroid bodies; the ability to undergo dimorphism; and the escape from nutritional immunity, extracellular traps, phagocytosis, and the action of humoral immune effectors.
Influence of time and length size feature selections for human activity sequences recognition.
Fang, Hongqing; Chen, Long; Srinivasan, Raghavendiran
2014-01-01
In this paper, Viterbi algorithm based on a hidden Markov model is applied to recognize activity sequences from observed sensors events. Alternative features selections of time feature values of sensors events and activity length size feature values are tested, respectively, and then the results of activity sequences recognition performances of Viterbi algorithm are evaluated. The results show that the selection of larger time feature values of sensor events and/or smaller activity length size feature values will generate relatively better results on the activity sequences recognition performances. © 2013 ISA Published by ISA All rights reserved.
Jatobá, Luciana C; Grossmann, Ulrich; Kunze, Chistophe; Ottenbacher, Jörg; Stork, Wilhelm
2008-01-01
There are various applications of physical activity monitoring for medical purposes, such as therapeutic rehabilitation, fitness enhancement or the use of physical activity as context information for evaluation of other vital data. Physical activity can be estimated using acceleration sensor-systems fixed on a person's body. By means of pattern recognition methods, it is possible to identify with certain accuracy which movement is being performed. This work presents a comparison of different methods for recognition of daily-life activities, which will serve as basis for the development of an online activity monitoring system.
NASA Astrophysics Data System (ADS)
Levchuk, Georgiy; Bobick, Aaron; Jones, Eric
2010-04-01
In this paper, we describe results from experimental analysis of a model designed to recognize activities and functions of moving and static objects from low-resolution wide-area video inputs. Our model is based on representing the activities and functions using three variables: (i) time; (ii) space; and (iii) structures. The activity and function recognition is achieved by imposing lexical, syntactic, and semantic constraints on the lower-level event sequences. In the reported research, we have evaluated the utility and sensitivity of several algorithms derived from natural language processing and pattern recognition domains. We achieved high recognition accuracy for a wide range of activity and function types in the experiments using Electro-Optical (EO) imagery collected by Wide Area Airborne Surveillance (WAAS) platform.
Fatima, Iram; Fahim, Muhammad; Lee, Young-Koo; Lee, Sungyoung
2013-01-01
In recent years, activity recognition in smart homes is an active research area due to its applicability in many applications, such as assistive living and healthcare. Besides activity recognition, the information collected from smart homes has great potential for other application domains like lifestyle analysis, security and surveillance, and interaction monitoring. Therefore, discovery of users common behaviors and prediction of future actions from past behaviors become an important step towards allowing an environment to provide personalized service. In this paper, we develop a unified framework for activity recognition-based behavior analysis and action prediction. For this purpose, first we propose kernel fusion method for accurate activity recognition and then identify the significant sequential behaviors of inhabitants from recognized activities of their daily routines. Moreover, behaviors patterns are further utilized to predict the future actions from past activities. To evaluate the proposed framework, we performed experiments on two real datasets. The results show a remarkable improvement of 13.82% in the accuracy on average of recognized activities along with the extraction of significant behavioral patterns and precise activity predictions with 6.76% increase in F-measure. All this collectively help in understanding the users” actions to gain knowledge about their habits and preferences. PMID:23435057
Neural correlates of incidental memory in mild cognitive impairment: an fMRI study.
Mandzia, Jennifer L; McAndrews, Mary Pat; Grady, Cheryl L; Graham, Simon J; Black, Sandra E
2009-05-01
Behaviour and fMRI brain activation patterns were compared during encoding and recognition tasks in mild cognitive impairment (MCI) (n=14) and normal controls (NC) (n=14). Deep (natural vs. man-made) and shallow (color vs. black and white) decisions were made at encoding and pictures from each condition were presented for yes/no recognition 20 min later. MCI showed less inferior frontal activation during deep (left only) and superficial encoding (bilaterally) and in both medial temporal lobes (MTL). When performance was equivalent (recognition of words encoded superficially), MTL activation was similar for the two groups, but during recognition testing of deeply encoded items NC showed more activation in both prefrontal and left MTL region. In a region of interest analysis, the extent of activation during deep encoding in the parahippocampi bilaterally and in left hippocampus correlated with subsequent recognition accuracy for those items in controls but not in MCI, which may reflect the heterogeneity of activation responses in conjunction with different degrees of pathology burden and progression status in the MCI group.
Filippoupolitis, Avgoustinos; Oliff, William; Takand, Babak; Loukas, George
2017-01-01
Activity recognition in indoor spaces benefits context awareness and improves the efficiency of applications related to personalised health monitoring, building energy management, security and safety. The majority of activity recognition frameworks, however, employ a network of specialised building sensors or a network of body-worn sensors. As this approach suffers with respect to practicality, we propose the use of commercial off-the-shelf devices. In this work, we design and evaluate an activity recognition system composed of a smart watch, which is enhanced with location information coming from Bluetooth Low Energy (BLE) beacons. We evaluate the performance of this approach for a variety of activities performed in an indoor laboratory environment, using four supervised machine learning algorithms. Our experimental results indicate that our location-enhanced activity recognition system is able to reach a classification accuracy ranging from 92% to 100%, while without location information classification accuracy it can drop to as low as 50% in some cases, depending on the window size chosen for data segmentation. PMID:28555022
Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.
Yurtman, Aras; Barshan, Billur
2017-08-09
Most activity recognition studies that employ wearable sensors assume that the sensors are attached at pre-determined positions and orientations that do not change over time. Since this is not the case in practice, it is of interest to develop wearable systems that operate invariantly to sensor position and orientation. We focus on invariance to sensor orientation and develop two alternative transformations to remove the effect of absolute sensor orientation from the raw sensor data. We test the proposed methodology in activity recognition with four state-of-the-art classifiers using five publicly available datasets containing various types of human activities acquired by different sensor configurations. While the ordinary activity recognition system cannot handle incorrectly oriented sensors, the proposed transformations allow the sensors to be worn at any orientation at a given position on the body, and achieve nearly the same activity recognition performance as the ordinary system for which the sensor units are not rotatable. The proposed techniques can be applied to existing wearable systems without much effort, by simply transforming the time-domain sensor data at the pre-processing stage.
Hippocampal contributions to recollection in retrograde and anterograde amnesia.
Gilboa, Asaf; Winocur, Gordon; Rosenbaum, R Shayna; Poreh, Amir; Gao, Fuqiang; Black, Sandra E; Westmacott, Robyn; Moscovitch, Morris
2006-01-01
Lesions restricted to the hippocampal formation and/or extended hippocampal system (hippocampal formation, fornix, mammillary bodies, and anterior thalamic nuclei) can disrupt conscious recollection in anterograde amnesia, while leaving familiarity-based memory relatively intact. Familiarity may be supported by extra-hippocampal medial temporal lobe (MTL) structures. Within-task dissociations in recognition memory best exemplify this distinction in anterograde amnesia. The authors report for the first time comparable dissociations within recognition memory in retrograde amnesia. An amnesic patient (A.D.) with bilateral fornix and septal nuclei lesions failed to recognize details pertaining to personal past events only when recollection was required, during recognition of episodic details. His intact recognition of generic and semantic details pertaining to the same events was ascribed to intact familiarity processes. Recollective processes in the controls were reflected by asymmetrical Receiver's Operating Characteristic curves, whereas the patient's Receiver's Operating Characteristic was symmetrical, suggesting that his inferior recognition performance on episodic details was reliant on familiarity processes. Anterograde and retrograde memories were equally affected, with no temporal gradient for retrograde memories. By comparison, another amnesic person (K.C.) with extensive MTL damage (involving extra-hippocampal MTL structures in addition to hippocampal and fornix lesions) had very poor recognition and no recollection of either episodic or generic/semantic details. These data suggest that the extended hippocampal system is required to support recollection for both anterograde and retrograde memories, regardless of their age.
Recognition and identification of famous faces in patients with unilateral temporal lobe epilepsy.
Seidenberg, Michael; Griffith, Randall; Sabsevitz, David; Moran, Maria; Haltiner, Alan; Bell, Brian; Swanson, Sara; Hammeke, Thomas; Hermann, Bruce
2002-01-01
We examined the performance of 21 patients with unilateral temporal lobe epilepsy (TLE) and hippocampal damage (10 lefts, and 11 rights) and 10 age-matched controls on the recognition and identification (name and occupation) of well-known faces. Famous face stimuli were selected from four time periods; 1970s, 1980s, 1990-1994, and 1995-1996. Differential patterns of performance were observed for the left and right TLE group across distinct face processing components. The left TLE group showed a selective impairment in naming famous faces while they performed similar to the controls in face recognition and semantic identification (i.e. occupation). In contrast, the right TLE group was impaired across all components of face memory; face recognition, semantic identification, and face naming. Face naming impairment in the left TLE group was characterized by a temporal gradient with better naming performance for famous faces from more distant time periods. Findings are discussed in terms of the role of the temporal lobe system for the acquisition, retention, and retrieval of face semantic networks, and the differential effects of lateralized temporal lobe lesions in this process.
Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J
2000-04-01
Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.
Face Encoding and Recognition in the Human Brain
NASA Astrophysics Data System (ADS)
Haxby, James V.; Ungerleider, Leslie G.; Horwitz, Barry; Maisog, Jose Ma.; Rapoport, Stanley I.; Grady, Cheryl L.
1996-01-01
A dissociation between human neural systems that participate in the encoding and later recognition of new memories for faces was demonstrated by measuring memory task-related changes in regional cerebral blood flow with positron emission tomography. There was almost no overlap between the brain structures associated with these memory functions. A region in the right hippocampus and adjacent cortex was activated during memory encoding but not during recognition. The most striking finding in neocortex was the lateralization of prefrontal participation. Encoding activated left prefrontal cortex, whereas recognition activated right prefrontal cortex. These results indicate that the hippocampus and adjacent cortex participate in memory function primarily at the time of new memory encoding. Moreover, face recognition is not mediated simply by recapitulation of operations performed at the time of encoding but, rather, involves anatomically dissociable operations.
Modeling Interval Temporal Dependencies for Complex Activities Understanding
2013-10-11
ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Human activity modeling...computer vision applications: human activity recognition and facial activity recognition. The results demonstrate the superior performance of the
Mitochondrial dysfunction as a trigger of innate immune responses and inflammation.
West, A Phillip
2017-11-01
A growing literature indicates that mitochondria are key participants in innate immune pathways, functioning as both signaling platforms and contributing to effector responses. In addition to regulating antiviral signaling and antibacterial immunity, mitochondria are also important drivers of inflammation caused by sterile injury. Much research on mitochondrial control of immunity now centers on understanding how mitochondrial constituents released during cellular damage simulate the innate immune system. When mitochondrial integrity is compromised, mitochondrial damage-associated molecular patterns engage pattern recognition receptors, trigger inflammation, and promote pathology in an expanding list of diseases. Here, I review the emerging knowledge of mitochondrial dysfunction in innate immune responses and discuss how environmental exposures may induce mitochondrial damage to potentiate inflammation and human disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Engineering a Cell-surface Aptamer Circuit for Targeted and Amplified Photodynamic Cancer Therapy
Han, Da; Zhu, Guizhi; Wu, Cuichen; Zhu, Zhi; Chen, Tao; Zhang, Xiaobing
2013-01-01
Photodynamic therapy (PDT) is one of the most promising and noninvasive methods for clinical treatment of different malignant diseases. Here, we present a novel strategy of designing an aptamer-based DNA nanocircuit capable of the selective recognition of cancer cells, controllable activation of photosensitizer and amplification of photodynamic therapeutic effect. The aptamers can selectively recognize target cancer cells and bind to the specific proteins on cell membranes. Then the overhanging catalyst sequence on aptamer can trigger a toehold-mediated catalytic strand displacement to activate photosensitizer and achieve amplified therapeutic effect. The specific binding-induced activation allows the DNA circuit to distinguish diseased cells from healthy cells, reducing damage to nearby healthy cells. Moreover, the catalytic amplification reaction will only take place close to the target cancer cells, resulting in a high local concentration of singlet oxygen to selectively kill the target cells. The principle employed in this study demonstrated the feasibility of assembling a DNA circuit on cell membranes and could further broaden the utility of DNA circuits for applications in biology, biotechnology, and biomedicine. PMID:23397942
Insulin Resistance in Alzheimer Disease: p53 and MicroRNAs as Important Players.
Gasiorowski, Kazimierz; Brokos, Barbara; Leszek, Jerzy; Tarasov, Vadim V; Ashraf, Ghulam Md; Aliev, Gjumrakch
2017-01-01
Glucose homeostasis is crucial for neuronal survival, synaptic plasticity, and is indispensable for learning and memory. Reduced sensitivity of cells to insulin and impaired insulin signaling in brain neurons participate in the pathogenesis of Alzheimer disease (AD). The tumor suppressor protein p53 coordinates with multiple cellular pathways in response to DNA damage and cellular stresses. However, prolonged stress conditions unveil deleterious effects of p53-evoked insulin resistance in neurons; enhancement of transcription of pro-oxidant factors, accumulation of toxic metabolites (e.g. ceramide and products of advanced glycation) and ROS-modified cellular components, together with the activation of proapoptotic genes, could finally induce a suicide death program of autophagy/apoptosis in neurons. Recent studies reveal the impact of p53 on expression and processing of several microRNAs (miRs) under DNA damage-inducing conditions. Additionally, the role of miRs in promotion of insulin resistance and type 2 diabetes mellitus has been well documented. Detailed recognition of the role of p53/miRs crosstalk in driving insulin resistance in AD brains could improve the disease diagnostics and aid future therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Del Rosso, James Q.; Levin, Jacqueline
2011-01-01
It has been recognized for approximately 50 years that the stratum corneum exhibits biological properties that contribute directly to maintaining and sustaining healthy skin. Continued basic science and clinical research coupled with keen clinical observation has led to more recent recognition and general acceptance that the stratum corneum completes many vital “barrier” tasks, including but not limited to regulating epidermal water content and the magnitude of water loss; mitigating exogenous oxidants that can damage components of skin via an innate antioxidant system; preventing or limiting cutaneous infection via multiple antimicrobial peptides; responding via innate immune mechanisms to “cutaneous invaders” of many origins, including microbes, true allergens, and other antigens; and protecting its neighboring cutaneous cells and structures that lie beneath from damaging effects of ultraviolet radiation. Additionally, specific abnormalities of the stratum corneum are associated with the clinical expression of certain disease states. This article provides a thorough “primer” for the clinician, reviewing the multiple normal homeostatic functions of the stratum corneum and the cutaneous challenges that arise when individual functions of this thin yet very active epidermal layer are compromised by exogenous and/or endogenous factors. PMID:21938268
Modulation of DNA Damage and Repair Pathways by Human Tumour Viruses
Hollingworth, Robert; Grand, Roger J
2015-01-01
With between 10% and 15% of human cancers attributable to viral infection, there is great interest, from both a scientific and clinical viewpoint, as to how these pathogens modulate host cell functions. Seven human tumour viruses have been identified as being involved in the development of specific malignancies. It has long been known that the introduction of chromosomal aberrations is a common feature of viral infections. Intensive research over the past two decades has subsequently revealed that viruses specifically interact with cellular mechanisms responsible for the recognition and repair of DNA lesions, collectively known as the DNA damage response (DDR). These interactions can involve activation and deactivation of individual DDR pathways as well as the recruitment of specific proteins to sites of viral replication. Since the DDR has evolved to protect the genome from the accumulation of deleterious mutations, deregulation is inevitably associated with an increased risk of tumour formation. This review summarises the current literature regarding the complex relationship between known human tumour viruses and the DDR and aims to shed light on how these interactions can contribute to genomic instability and ultimately the development of human cancers. PMID:26008701
Hallahan, D E; Virudachalam, S; Kuchibhotla, J; Kufe, D W; Weichselbaum, R R
1994-01-01
Cells adapt to adverse environmental conditions through a wide range of responses that are conserved throughout evolution. Physical agents such as ionizing radiation are known to initiate a stress response that is triggered by the recognition of DNA damage. We have identified a signaling pathway involving the activation of phospholipase A2 and protein kinase C in human cells that confers x-ray induction of the tumor necrosis factor alpha gene. Treatment of human cells with ionizing radiation or H2O2 was associated with the production of arachidonic acid. Inhibition of phospholipase A2 abolished radiation-mediated arachidonate production as well as the subsequent activation of protein kinase C and tumor necrosis factor alpha gene expression. These findings demonstrate that ionizing radiation-mediated gene expression in human cells is regulated in part by extranuclear signal transduction. One practical application of phospholipase A2 inhibitors is to ameliorate the adverse effects of radiotherapy associated with tumor necrosis factor alpha production. Images PMID:8197153
Recognition of β-Strand Motifs by RseB Is Required for σE Activity in Escherichia coli ▿
Kulp, Adam; Kuehn, Meta J.
2011-01-01
Gram-negative bacteria react to misfolded proteins in the envelope through a myriad of different stress response pathways. This cohort of pathways allows the bacteria to specifically respond to different types of damage, and many of these have been discovered to have key roles in the virulence of bacterial pathogens. Misfolded outer membrane proteins (OMPs) are typically recognized by the σE pathway, a highly conserved envelope stress response pathway. We examined the features of misfolded OMPs with respect to their ability to generate envelope stress responses. We determined that the secondary structure, particularly the potential to form β strands, is critical to inducing the σE response in an RseB-dependent manner. The sequence of the potential β-strand motif modulates the strength of the σE response generated by the constructs. By understanding the details of how such stress response pathways are activated, we can gain a greater understanding of how bacteria survive in harsh environments. PMID:21908666
[Immune response in cervical cancer. Strategies for the development of therapeutic vaccines].
Mora-García, María Lourdes; Monroy-García, Alberto
2015-01-01
High-risk human papillomaviruses (HR-HPV), as HPV-16, evade immune recognition through the inactivation of cells of the innate immune response. HPV-16 E6 and E7 genes down-regulate type I interferon response. They do not produce viremia or cell death; therefore, they do not cause inflammation or damage signal that alerts the immune system. Virus-like particles (VLPs), consisting of structural proteins (L1 and L2) of the main HR-HPV types that infect the genitourinary tract, are the most effective prophylactic vaccines against HR-HPV infection. While for the high grade neoplastic lesions, therapeutic vaccines based on viral vectors, peptides, DNA or complete HR-HPV E6 and E7 proteins as antigens, have had limited effectiveness. Chimeric virus-like particles (cVLPs) that carry immunogenic peptides derived from E6 and E7 viral proteins, capable to induce activation of specific cytotoxic T lymphocytes, emerge as an important alternative to provide prophylactic and therapeutic activity against HR-HPV infection and cervical cancer.
Tropic Lightning: Myth or Menace?
2014-01-01
Lightning is one of the leading causes of death related to environmental disaster. Of all lightning fatalities documented between 2006 and 2012, leisure activities contributed the largest proportion of deaths, with water-associated, sports, and camping being the most common. Despite the prevalence of these activities throughout the islands, Hawai‘i has had zero documented lightning fatalities since weather data tracking was initiated in 1959. There is a common misconception that lightning does not strike the ground in Hawai‘i. This myth may contribute to a potentially dangerous false sense of security, and recognition of warning signs and risk factor modification remain the most important prevention strategies. Lightning damage occurs on a spectrum, from minor burns to multi-organ dysfunction. After injury, initial treatment should focus on “reverse triage” and immediate cardiopulmonary resuscitation when indicated, followed by transfer to a healthcare facility. Definitive treatment entails monitoring and management of potential sequelae, to include cardiovascular, neurologic, dermatologic, ophthalmologic, audiovestibular, and psychiatric complications. PMID:25478304
Activity Recognition for Personal Time Management
NASA Astrophysics Data System (ADS)
Prekopcsák, Zoltán; Soha, Sugárka; Henk, Tamás; Gáspár-Papanek, Csaba
We describe an accelerometer based activity recognition system for mobile phones with a special focus on personal time management. We compare several data mining algorithms for the automatic recognition task in the case of single user and multiuser scenario, and improve accuracy with heuristics and advanced data mining methods. The results show that daily activities can be recognized with high accuracy and the integration with the RescueTime software can give good insights for personal time management.
Mala, S.; Latha, K.
2014-01-01
Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition. PMID:25574185
Mala, S; Latha, K
2014-01-01
Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition.
A Random Forest-based ensemble method for activity recognition.
Feng, Zengtao; Mo, Lingfei; Li, Meng
2015-01-01
This paper presents a multi-sensor ensemble approach to human physical activity (PA) recognition, using random forest. We designed an ensemble learning algorithm, which integrates several independent Random Forest classifiers based on different sensor feature sets to build a more stable, more accurate and faster classifier for human activity recognition. To evaluate the algorithm, PA data collected from the PAMAP (Physical Activity Monitoring for Aging People), which is a standard, publicly available database, was utilized to train and test. The experimental results show that the algorithm is able to correctly recognize 19 PA types with an accuracy of 93.44%, while the training is faster than others. The ensemble classifier system based on the RF (Random Forest) algorithm can achieve high recognition accuracy and fast calculation.
NASA Astrophysics Data System (ADS)
Levchuk, Georgiy; Shabarekh, Charlotte; Furjanic, Caitlin
2011-06-01
In this paper, we present results of adversarial activity recognition using data collected in the Empire Challenge (EC 09) exercise. The EC09 experiment provided an opportunity to evaluate our probabilistic spatiotemporal mission recognition algorithms using the data from live air-born and ground sensors. Using ambiguous and noisy data about locations of entities and motion events on the ground, the algorithms inferred the types and locations of OPFOR activities, including reconnaissance, cache runs, IED emplacements, logistics, and planning meetings. In this paper, we present detailed summary of the validation study and recognition accuracy results. Our algorithms were able to detect locations and types of over 75% of hostile activities in EC09 while producing 25% false alarms.
Automatic recognition of postural allocations.
Sazonov, Edward; Krishnamurthy, Vidya; Makeyev, Oleksandr; Browning, Ray; Schutz, Yves; Hill, James
2007-01-01
A significant part of daily energy expenditure may be attributed to non-exercise activity thermogenesis and exercise activity thermogenesis. Automatic recognition of postural allocations such as standing or sitting can be used in behavioral modification programs aimed at minimizing static postures. In this paper we propose a shoe-based device and related pattern recognition methodology for recognition of postural allocations. Inexpensive technology allows implementation of this methodology as a part of footwear. The experimental results suggest high efficiency and reliability of the proposed approach.
Hippocampal damage equally impairs memory for single items and memory for conjunctions.
Stark, Craig E L; Squire, Larry R
2003-01-01
In a prior study of continuous recognition performance, data were reported in support of the hypothesis that the hippocampus is not needed to remember the individual components of a stimulus but is important for remembering associations between its components (Kroll et al. 1996. J Mem Lang 35:176-196). Patients with left hippocampal damage were able to endorse recently encountered words and to reject novel words, as well as disyllabic words in which one of the syllables had been previously encountered. However, they failed to reject words in which both syllables had been encountered independently in different words. We present data from five experiments designed to examine this finding in more detail. In each experiment, five patients with bilateral hippocampal damage and eight controls were tested using the same protocol as Kroll et al. (1996). On each trial, a two-component stimulus was presented. Stimuli could be entirely novel, novel with one previously encountered (repeated) component, novel but with both components repeated, or a true repetition. The first experiment was a direct replication using the same disyllabic words as Kroll et al. (1996). The second experiment used pseudo-words, constructed of two monosyllabic words (e.g., jambark). The third experiment used the same pairs of monosyllabic words, but presented separately on the screen to encourage participants to treat each component independently. The fourth experiment used pairs of objects, and the fifth experiment used face-house pairs. In all five experiments, patients with hippocampal damage exhibited impaired recognition memory. The impairment extended across all trial types with no evidence that hippocampal damage selectively (or disproportionately) impaired the associative or conjunctive component of memory. We discuss our findings in the light of the work by Kroll et al. (1996) and other recent neuropsychological, electrophysiological, and neuroimaging studies of hippocampal function and single-item and associative memory.
2010-01-01
Background There is increasing recognition that many of today's diseases are due to the "oxidative stress" that results from an imbalance between the formation and neutralization of reactive molecules such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), which can be removed with antioxidants. The main objective of the present study was to evaluate the antioxidant activity of plants routinely used in the Unani system of medicine. Several plants were screened for radical scavenging activity, and the ten that showed promising results were selected for further evaluation. Methods Methanol (50%) extracts were prepared from ten Unani plants, namely Cleome icosandra, Rosa damascena, Cyperus scariosus, Gardenia gummifera, Abies pindrow, Valeriana wallichii, Holarrhena antidysenterica, Anacyclus pyrethrum, Asphodelus tenuifolius and Cyperus scariosus, and were used to determine their total phenolic, flavonoid and ascorbic acid contents, in vitro scavenging of DPPH·, ABTS·+, NO, ·OH, O2.- and ONOO-, and capacity to prevent oxidative DNA damage. Cytotoxic activity was also determined against the U937 cell line. Results IC50 values for scavenging DPPH·, ABTS·+, NO, ·OH, O2.- and ONOO- were in the ranges 0.007 ± 0.0001 - 2.006 ± 0.002 mg/ml, 2.54 ± 0.04 - 156.94 ± 5.28 μg/ml, 152.23 ± 3.51 - 286.59 ± 3.89 μg/ml, 18.23 ± 0.03 - 50.13 ± 0.04 μg/ml, 28.85 ± 0.23 - 537.87 ± 93 μg/ml and 0.532 ± 0.015 - 3.39 ± 0.032 mg/ml, respectively. The total phenolic, flavonoid and ascorbic acid contents were in the ranges 62.89 ± 0.43 - 166.13 ± 0.56 mg gallic acid equivalent (GAE)/g extract, 38.89 ± 0.52 - 172.23 ± 0.08 mg quercetin equivalent (QEE)/g extract and 0.14 ± 0.09 - 0.98 ± 0.21 mg AA/g extract. The activities of the different plant extracts against oxidative DNA damage were in the range 0.13-1.60 μg/ml. Of the ten selected plant extracts studied here, seven - C. icosandra, R. damascena, C. scariosus, G. gummifera, A. pindrow, V. wallichii and H. antidysenterica - showed moderate antioxidant activity. Finally, potentially significant oxidative DNA damage preventive activity and antioxidant activity were noted in three plant extracts: C. icosandra, R. damascena and C. scariosus. These three plant extracts showed no cytotoxic activity against U937 cells. Conclusions The 50% methanolic extracts obtained from different plant parts contained significant amounts of polyphenols with superior antioxidant activity as evidenced by the scavenging of DPPH·, ABTS·+, NO, ·OH, O2.- and ONOO-. C. icosandra, R. damascena and C. scariosus showed significant potential for preventing oxidative DNA damage and radical scavenging activity, and the G. gummifera, A. pindrow, V. wallichii, H. antidysenterica, A. pyrethrum, A. tenuifolius and O. mascula extracts showed moderate activity. The extracts of C. icosandra, R. damascena and C. scariosus showed no cytotoxicity against U937 cells. In conclusion, these routinely used Unani plants, especially C. icosandra, R. damascena and C. scariosus, which are reported to have significant activity against several human ailments, could be exploited as potential sources of natural antioxidants for plant-based pharmaceutical industries. PMID:21159207
Body knowledge in brain-damaged children: a double-dissociation in self and other's body processing.
Frassinetti, Francesca; Fiori, Simona; D'Angelo, Valentina; Magnani, Barbara; Guzzetta, Andrea; Brizzolara, Daniela; Cioni, Giovanni
2012-01-01
Bodies are important element for self-recognition. In this respect, in adults it has been recently shown a self vs other advantage when small parts of the subjects' body are visible. This advantage is lost following a right brain lesion underlying a role of the right hemisphere in self body-parts processing. In order to investigate the bodily-self processing in children and the development of its neuronal bases, 57 typically developing healthy subjects and 17 subjects with unilateral brain damage (5 right and 12 left sided), aged 4-17 years, were submitted to a matching-to-sample task. In this task, three stimuli vertically aligned were simultaneously presented at the centre of the computer screen. Subjects were required which of two stimuli (the upper or the lower one) matched the central target stimulus, half stimuli representing self and half stimuli representing other people's body-parts and face-parts. The results showed that corporeal self recognition is present since at least 4 years of age and that self and others' body parts processing are different and sustained by separate cerebral substrates. Indeed, a double dissociation was found: right brain damaged patients were impaired in self but not in other people's body parts, showing a self-disadvantage, whereas left brain damaged patients were impaired in others' but not in self body parts processing. Finally, since the double dissociation self/other was found for body-parts but not for face parts, the corporal self seems to be dissociated for body and face-parts. This opens the possibility of independent and lateralized functional modules for the processing of self and other body parts during development. Copyright © 2011 Elsevier Ltd. All rights reserved.
Deng, Lingquan; Bensing, Barbara A; Thamadilok, Supaporn; Yu, Hai; Lau, Kam; Chen, Xi; Ruhl, Stefan; Sullam, Paul M; Varki, Ajit
2014-12-01
Damaged cardiac valves attract blood-borne bacteria, and infective endocarditis is often caused by viridans group streptococci. While such bacteria use multiple adhesins to maintain their normal oral commensal state, recognition of platelet sialoglycans provides an intermediary for binding to damaged valvular endocardium. We use a customized sialoglycan microarray to explore the varied binding properties of phylogenetically related serine-rich repeat adhesins, the GspB, Hsa, and SrpA homologs from Streptococcus gordonii and Streptococcus sanguinis species, which belong to a highly conserved family of glycoproteins that contribute to virulence for a broad range of Gram-positive pathogens. Binding profiles of recombinant soluble homologs containing novel sialic acid-recognizing Siglec-like domains correlate well with binding of corresponding whole bacteria to arrays. These bacteria show multiple modes of glycan, protein, or divalent cation-dependent binding to synthetic glycoconjugates and isolated glycoproteins in vitro. However, endogenous asialoglycan-recognizing clearance receptors are known to ensure that only fully sialylated glycans dominate in the endovascular system, wherein we find these particular streptococci become primarily dependent on their Siglec-like adhesins for glycan-mediated recognition events. Remarkably, despite an excess of alternate sialoglycan ligands in cellular and soluble blood components, these adhesins selectively target intact bacteria to sialylated ligands on platelets, within human whole blood. These preferred interactions are inhibited by corresponding recombinant soluble adhesins, which also preferentially recognize platelets. Our data indicate that circulating platelets may act as inadvertent Trojan horse carriers of oral streptococci to the site of damaged endocardium, and provide an explanation why it is that among innumerable microbes that gain occasional access to the bloodstream, certain viridans group streptococci have a selective advantage in colonizing damaged cardiac valves and cause infective endocarditis.
Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J
2015-08-18
Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent examples from our laboratory and collaborations in which applications of chemical probes reveal that labile copper contributes to various physiologies. The first example shows that copper is an endogenous regulator of neuronal activity, the second illustrates cellular prioritization of mitochondrial copper homeostasis, and the third identifies the "cuprosome" as a new copper storage compartment in Chlamydomonas reinhardtii green algae. Indeed, recognition- and reactivity-based fluorescent probes have helped to uncover new biological roles for labile transition metals, and the further development of fluorescent probes, including ones with varied Kd values and new reaction triggers and recognition receptors, will continue to reveal exciting and new biological roles for labile transition metals.
Guo, Junqi; Zhou, Xi; Sun, Yunchuan; Ping, Gong; Zhao, Guoxing; Li, Zhuorong
2016-06-01
Smartphone based activity recognition has recently received remarkable attention in various applications of mobile health such as safety monitoring, fitness tracking, and disease prediction. To achieve more accurate and simplified medical monitoring, this paper proposes a self-learning scheme for patients' activity recognition, in which a patient only needs to carry an ordinary smartphone that contains common motion sensors. After the real-time data collection though this smartphone, we preprocess the data using coordinate system transformation to eliminate phone orientation influence. A set of robust and effective features are then extracted from the preprocessed data. Because a patient may inevitably perform various unpredictable activities that have no apriori knowledge in the training dataset, we propose a self-learning activity recognition scheme. The scheme determines whether there are apriori training samples and labeled categories in training pools that well match with unpredictable activity data. If not, it automatically assembles these unpredictable samples into different clusters and gives them new category labels. These clustered samples combined with the acquired new category labels are then merged into the training dataset to reinforce recognition ability of the self-learning model. In experiments, we evaluate our scheme using the data collected from two postoperative patient volunteers, including six labeled daily activities as the initial apriori categories in the training pool. Experimental results demonstrate that the proposed self-learning scheme for activity recognition works very well for most cases. When there exist several types of unseen activities without any apriori information, the accuracy reaches above 80 % after the self-learning process converges.
Gutiérrez-López-Franca, Carlos; Hervás, Ramón; Johnson, Esperanza
2018-01-01
This paper aims to improve activity recognition systems based on skeletal tracking through the study of two different strategies (and its combination): (a) specialized body parts analysis and (b) stricter restrictions for the most easily detectable activities. The study was performed using the Extended Body-Angles Algorithm, which is able to analyze activities using only a single key sample. This system allows to select, for each considered activity, which are its relevant joints, which makes it possible to monitor the body of the user selecting only a subset of the same. But this feature of the system has both advantages and disadvantages. As a consequence, in the past we had some difficulties with the recognition of activities that only have a small subset of the joints of the body as relevant. The goal of this work, therefore, is to analyze the effect produced by the application of several strategies on the results of an activity recognition system based on skeletal tracking joint oriented devices. Strategies that we applied with the purpose of improve the recognition rates of the activities with a small subset of relevant joints. Through the results of this work, we aim to give the scientific community some first indications about which considered strategy is better. PMID:29789478
The Cost to Successfully Apply for Level 3 Medical Home Recognition.
Halladay, Jacqueline R; Mottus, Kathleen; Reiter, Kristin; Mitchell, C Madeline; Donahue, Katrina E; Gabbard, Wilson M; Gush, Kimberly
2016-01-01
The National Committee for Quality Assurance patient-centered medical home recognition program provides practices an opportunity to implement medical home activities. Understanding the costs to apply for recognition may enable practices to plan their work. Practice coaches identified 5 exemplar practices (3 pediatric and 2 family medicine practices) that received level 3 recognition. This analysis focuses on 4 that received recognition in 2011. Clinical, informatics, and administrative staff participated in 2- to 3-hour interviews. We determined the time required to develop, implement, and maintain required activities. We categorized costs as (1) nonpersonnel, (2) developmental, (3) those used to implement activities, (4) those used to maintain activities, (5) those to document the work, and (6) consultant costs. Only incremental costs were included and are presented as costs per full-time equivalent (pFTE) provider. Practice size ranged from 2.5 to 10.5 pFTE providers, and payer mixes ranged from 7% to 43% Medicaid. There was variation in the distribution of costs by activity by practice, but the costs to apply were remarkably similar ($11,453-15,977 pFTE provider). The costs to apply for 2011 recognition were noteworthy. Work to enhance care coordination and close loops were highly valued. Financial incentives were key motivators. Future efforts to minimize the burden of low-value activities could benefit practices. © Copyright 2016 by the American Board of Family Medicine.
On the Design of Smart Homes: A Framework for Activity Recognition in Home Environment.
Cicirelli, Franco; Fortino, Giancarlo; Giordano, Andrea; Guerrieri, Antonio; Spezzano, Giandomenico; Vinci, Andrea
2016-09-01
A smart home is a home environment enriched with sensing, actuation, communication and computation capabilities which permits to adapt it to inhabitants preferences and requirements. Establishing a proper strategy of actuation on the home environment can require complex computational tasks on the sensed data. This is the case of activity recognition, which consists in retrieving high-level knowledge about what occurs in the home environment and about the behaviour of the inhabitants. The inherent complexity of this application domain asks for tools able to properly support the design and implementation phases. This paper proposes a framework for the design and implementation of smart home applications focused on activity recognition in home environments. The framework mainly relies on the Cloud-assisted Agent-based Smart home Environment (CASE) architecture offering basic abstraction entities which easily allow to design and implement Smart Home applications. CASE is a three layered architecture which exploits the distributed multi-agent paradigm and the cloud technology for offering analytics services. Details about how to implement activity recognition onto the CASE architecture are supplied focusing on the low-level technological issues as well as the algorithms and the methodologies useful for the activity recognition. The effectiveness of the framework is shown through a case study consisting of a daily activity recognition of a person in a home environment.
Active Multimodal Sensor System for Target Recognition and Tracking
Zhang, Guirong; Zou, Zhaofan; Liu, Ziyue; Mao, Jiansen
2017-01-01
High accuracy target recognition and tracking systems using a single sensor or a passive multisensor set are susceptible to external interferences and exhibit environmental dependencies. These difficulties stem mainly from limitations to the available imaging frequency bands, and a general lack of coherent diversity of the available target-related data. This paper proposes an active multimodal sensor system for target recognition and tracking, consisting of a visible, an infrared, and a hyperspectral sensor. The system makes full use of its multisensor information collection abilities; furthermore, it can actively control different sensors to collect additional data, according to the needs of the real-time target recognition and tracking processes. This level of integration between hardware collection control and data processing is experimentally shown to effectively improve the accuracy and robustness of the target recognition and tracking system. PMID:28657609
Pattern activation/recognition theory of mind
du Castel, Bertrand
2015-01-01
In his 2012 book How to Create a Mind, Ray Kurzweil defines a “Pattern Recognition Theory of Mind” that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call “Pattern Activation/Recognition Theory of Mind.” While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation. PMID:26236228
Pattern activation/recognition theory of mind.
du Castel, Bertrand
2015-01-01
In his 2012 book How to Create a Mind, Ray Kurzweil defines a "Pattern Recognition Theory of Mind" that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call "Pattern Activation/Recognition Theory of Mind." While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation.
Chen, Yu-Yuan; Chen, Jiann-Chu; Lin, Yong-Chin; Kitikiew, Suwaree; Li, Hui-Fang; Bai, Jia-Chin; Tseng, Kuei-Chi; Lin, Bo-Wei; Liu, Po-Chun; Shi, Yin-Ze; Kuo, Yi-Hsuan; Chang, Yu-Hsuan
2014-01-01
Invertebrates rely on an innate immune system to combat invading pathogens. The system is initiated in the presence of cell wall components from microbes like lipopolysaccharide (LPS), β-1,3-glucan (βG) and peptidoglycan (PG), altogether known as pathogen-associated molecular patterns (PAMPs), via a recognition of pattern recognition protein (PRP) or receptor (PRR) through complicated reactions. We show herein that shrimp hemocytes incubated with LPS, βG, and PG caused necrosis and released endogenous molecules (EMs), namely EM-L, EM-β, and EM-P, and found that shrimp hemocytes incubated with EM-L, EM-β, and EM-P caused changes in cell viability, degranulation and necrosis of hemocytes, and increased phenoloxidase (PO) activity and respiratory burst (RB) indicating activation of immunity in vitro. We found that shrimp receiving EM-L, EM-β, and EM-P had increases in hemocyte count and other immune parameters as well as higher phagocytic activity toward a Vibrio pathogen, and found that shrimp receiving EM-L had increases in proliferation cell ratio and mitotic index of hematopoietic tissues (HPTs). We identified proteins of EMs deduced from SDS-PAGE and LC-ESI-MS/MS analyses. EM-L and EM-P contained damage-associated molecular patterns (DAMPs) including HMGBa, HMGBb, histone 2A (H2A), H2B, and H4, and other proteins including proPO, Rab 7 GPTase, and Rab 11 GPTase, which were not observed in controls (EM-C, hemocytes incubated in shrimp salt solution). We concluded that EMs induced by PAMPs contain DAMPs and other immune molecules, and they could elicit innate immunity in shrimp. Further research is needed to identify which individual molecule or combined molecules of EMs cause the results, and determine the mechanism of action in innate immunity. PMID:25517999
Expression and the Peculiar Enzymatic Behavior of the Trypanosoma cruzi NTH1 DNA Glycosylase
Ormeño, Fernando; Barrientos, Camila; Ramirez, Santiago; Ponce, Iván; Valenzuela, Lucía; Sepúlveda, Sofía; Bitar, Mainá; Kemmerling, Ulrike; Machado, Carlos Renato; Cabrera, Gonzalo; Galanti, Norbel
2016-01-01
Trypanosoma cruzi, the etiological agent of Chagas’ disease, presents three cellular forms (trypomastigotes, epimastigotes and amastigotes), all of which are submitted to oxidative species in its hosts. However, T. cruzi is able to resist oxidative stress suggesting a high efficiency of its DNA repair machinery.The Base Excision Repair (BER) pathway is one of the main DNA repair mechanisms in other eukaryotes and in T. cruzi as well. DNA glycosylases are enzymes involved in the recognition of oxidative DNA damage and in the removal of oxidized bases, constituting the first step of the BER pathway. Here, we describe the presence and activity of TcNTH1, a nuclear T. cruzi DNA glycosylase. Surprisingly, purified recombinant TcNTH1 does not remove the thymine glycol base, but catalyzes the cleavage of a probe showing an AP site. The same activity was found in epimastigote and trypomastigote homogenates suggesting that the BER pathway is not involved in thymine glycol DNA repair. TcNTH1 DNA-binding properties assayed in silico are in agreement with the absence of a thymine glycol removing function of that parasite enzyme. Over expression of TcNTH1 decrease parasite viability when transfected epimastigotes are submitted to a sustained production of H2O2.Therefore, TcNTH1 is the only known NTH1 orthologous unable to eliminate thymine glycol derivatives but that recognizes and cuts an AP site, most probably by a beta-elimination mechanism. We cannot discard that TcNTH1 presents DNA glycosylase activity on other DNA base lesions. Accordingly, a different DNA repair mechanism should be expected leading to eliminate thymine glycol from oxidized parasite DNA. Furthermore, TcNTH1 may play a role in the AP site recognition and processing. PMID:27284968
Dealing with the Effects of Sensor Displacement in Wearable Activity Recognition
Banos, Oresti; Toth, Mate Attila; Damas, Miguel; Pomares, Hector; Rojas, Ignacio
2014-01-01
Most wearable activity recognition systems assume a predefined sensor deployment that remains unchanged during runtime. However, this assumption does not reflect real-life conditions. During the normal use of such systems, users may place the sensors in a position different from the predefined sensor placement. Also, sensors may move from their original location to a different one, due to a loose attachment. Activity recognition systems trained on activity patterns characteristic of a given sensor deployment may likely fail due to sensor displacements. In this work, we innovatively explore the effects of sensor displacement induced by both the intentional misplacement of sensors and self-placement by the user. The effects of sensor displacement are analyzed for standard activity recognition techniques, as well as for an alternate robust sensor fusion method proposed in a previous work. While classical recognition models show little tolerance to sensor displacement, the proposed method is proven to have notable capabilities to assimilate the changes introduced in the sensor position due to self-placement and provides considerable improvements for large misplacements. PMID:24915181
Regulation of the Prostate Cancer Tumor Microenvironment
2015-04-01
growth can be altered through modulating the composition of TILs through innate immunity . Body Pathogens or cancerous cells alike can produce danger... innate immunity , including Toll-like receptors (TLRs). Thirteen mammalian TLRs have been identified to date with ligands ranging from...damage-associated molecular patterns (DAMPs) released by the tumor stimulate the innate immune pathways through pattern recognition receptors (PRRs
Therapeutic Groupwork with Young Children and Mothers Who Have Experienced Domestic Abuse
ERIC Educational Resources Information Center
Dodd, Lynda Warren
2009-01-01
There is mounting recognition that exposure to domestic abuse causes far-reaching damage to children's lives, development and psychological well-being. Studies estimate 10% to 20% of children are at risk of exposure to domestic abuse--thus domestic abuse must be seen as a crucial issue for educational psychologists (EPs). This study investigates…
Speculation about Behavior, Brain Damage, and Self-Organization: The Other Way to Herd a Cat
ERIC Educational Resources Information Center
Colangelo, Annette; Holden, John G.; Buchanan, Lori; Van Orden, Guy C.
2004-01-01
This article contrasts aphasic patients' performance of word naming and lexical decision with that of intact college-aged readers. We discuss this contrast within a framework of self-organization; word recognition by aphasic patients is destabilized relative to intact performance. Less stable performance shows itself as an increase in the…
Possibilities of the Positive Following Violence and Trauma: Informing the Coming Decade of Research
ERIC Educational Resources Information Center
Ai, Amy L.; Park, Crystal L.
2005-01-01
The effects of trauma and violence may be better understood by taking a broader perspective that includes resilience and recovery as well as damage and symptomatology. Based on this broader view, this article describes three interrelated, cutting-edge trends in mental health research: (a) the positive psychology movement, (b) the recognition of…
PrEFiNe Plan: Strategic plan for Fabry diseases in Nephrology.
Del Pino, M D; Ortiz, A; Torra, R; Hernandez, D
2016-01-01
Renal failure is one of the main causes of death in patients with Fabry disease (FD). Due to the low prevalence of FD, delayed diagnosis and misdiagnosis, often the correct diagnosis is made when organ damage is already present. Early recognition of the disease would allow the prevention of severe complications and the premature death of patients with FD. We present here the PrEFiNE project, which includes a wide spectrum of activities with the aim of improve knowledge and diagnosis of FD. The project is sponsored by Shire Iberia (http://shireiberica.com/) From January 2016 to the end of 2017 several activities will be carried out, starting with a survey to evaluate current FD knowledge among nephrologists; in addition some studies to assess prevalence of this disease will be performed. One study will include patients receiving dialysis, another study will cover kidney transplant patients, and a pilot study in chronic kidney disease in stage 3-5 predialysis. Also planned is a pharmacoeconomic study to focus on burden of FD. At the same time medical education activities will be conducted both on line and on site. Plan for dissemination will include medical publications and diffusion to media. PrEFiNE Project will finish with the publication of a compilation book on FD in Nephrology including all planned activities and proposing recommendations based on results and detected unmet needs. PrEfiNE Plan will be coordinated by severa scientific committees, one at national level and 10 other regionals comittees, tha will be responsible to ensure the maximum scientific quality of proposed activities. An advisory board will supervise the project. PrEfiNE project will evaluate an action plan focused on improving FD knowledge to make necessary recommendations for an early recognition of the disease. In addition will generate a plan to improve previously undetected needs. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
The effect of encoding strategy on the neural correlates of memory for faces.
Bernstein, Lori J; Beig, Sania; Siegenthaler, Amy L; Grady, Cheryl L
2002-01-01
Encoding and recognition of unfamiliar faces in young adults were examined using positron emission tomography to determine whether different encoding strategies would lead to encoding/retrieval differences in brain activity. Three types of encoding were compared: a 'deep' task (judging pleasantness/unpleasantness), a 'shallow' task (judging right/left orientation), and an intentional learning task in which subjects were instructed to learn the faces for a subsequent memory test but were not provided with a specific strategy. Memory for all faces was tested with an old/new recognition test. A modest behavioral effect was obtained, with deeply-encoded faces being recognized more accurately than shallowly-encoded or intentionally-learned faces. Regardless of encoding strategy, encoding activated a primarily ventral system including bilateral temporal and fusiform regions and left prefrontal cortices, whereas recognition activated a primarily dorsal set of regions including right prefrontal and parietal areas. Within encoding, the type of strategy produced different brain activity patterns, with deep encoding being characterized by left amygdala and left anterior cingulate activation. There was no effect of encoding strategy on brain activity during the recognition conditions. Posterior fusiform gyrus activation was related to better recognition accuracy in those conditions encouraging perceptual strategies, whereas activity in left frontal and temporal areas correlated with better performance during the 'deep' condition. Results highlight three important aspects of face memory: (1) the effect of encoding strategy was seen only at encoding and not at recognition; (2) left inferior prefrontal cortex was engaged during encoding of faces regardless of strategy; and (3) differential activity in fusiform gyrus was found, suggesting that activity in this area is not only a result of automatic face processing but is modulated by controlled processes.
A triboelectric motion sensor in wearable body sensor network for human activity recognition.
Hui Huang; Xian Li; Ye Sun
2016-08-01
The goal of this study is to design a novel triboelectric motion sensor in wearable body sensor network for human activity recognition. Physical activity recognition is widely used in well-being management, medical diagnosis and rehabilitation. Other than traditional accelerometers, we design a novel wearable sensor system based on triboelectrification. The triboelectric motion sensor can be easily attached to human body and collect motion signals caused by physical activities. The experiments are conducted to collect five common activity data: sitting and standing, walking, climbing upstairs, downstairs, and running. The k-Nearest Neighbor (kNN) clustering algorithm is adopted to recognize these activities and validate the feasibility of this new approach. The results show that our system can perform physical activity recognition with a successful rate over 80% for walking, sitting and standing. The triboelectric structure can also be used as an energy harvester for motion harvesting due to its high output voltage in random low-frequency motion.
NASA Astrophysics Data System (ADS)
Hashimoto, Manabu; Fujino, Yozo
Image sensing technologies are expected as useful and effective way to suppress damages by criminals and disasters in highly safe and relieved society. In this paper, we describe current important subjects, required functions, technical trends, and a couple of real examples of developed system. As for the video surveillance, recognition of human trajectory and human behavior using image processing techniques are introduced with real examples about the violence detection for elevators. In the field of facility monitoring technologies as civil engineering, useful machine vision applications such as automatic detection of concrete cracks on walls of a building or recognition of crowded people on bridge for effective guidance in emergency are shown.
ERIC Educational Resources Information Center
Meade, Michelle L.; Watson, Jason M.; Balota, David A.; Roediger, Henry L., III
2007-01-01
The nature of persisting spreading activation from list presentation in eliciting false recognition in the Deese-Roediger-McDermott (DRM) paradigm was examined in two experiments. We compared the time course of semantic priming in the lexical decision task (LDT) and false alarms in speeded recognition under identical study and test conditions. The…
Liu, Jian; Johnson, Anne C.; Woruba, Deane N.; Kirchhof, Gunnar; Fujinuma, Ryosuke; Sirabis, William; Jeffery, Yapo; Akkinapally, Ramakrishna
2016-01-01
Sweetpotato (Ipomea batatans) is a food crop of global significance. The storage roots and foliage of crop are attacked by a wide range of pests and diseases. Whilst these are generally well controlled in developed countries using approaches such as clean planting material and monitoring with pheromone traps to guide insecticide use, research into methods suitable for developing countries has lagged. In Papua New Guinea (PNG), sweetpotato is grown extensively as a subsistence crop and commercial production as a cash crop is developing. We report results from a survey of 33 smallholder producers located in the Highlands of PNG where the crop is of particular importance. Surveys of interviewees’ crops showed high levels of pest and disease impact to foliage, stems and storage roots, especially in crops that were several years old. Weevils (Curculionidae) were reportedly the most damaging pests and scab (caused by the fungus Elisnoe batatus) the most damaging disease. Most producers reported root damage from the former and foliar damage from the latter but the general level of knowledge of pest and disease types was low. Despite the apparency of pest and disease signs and symptoms and recognition of their importance by farmers, a large majority of producers reported practiced no active pest or disease management. This was despite low numbers of farmers reporting use of traditional cultural practices including phytosanitary measures and insecticidal plants that had the scope for far wider use. Only one respondent reported use of insecticide though pesticides were available in nearby cities. This low level of pest and disease management in most cases, likely due to paucity in biological and technical knowledge among growers, hampers efforts to establish food security and constrains the development of sweetpotato as a cash crop. PMID:27957387
Gurr, Geoff M; Liu, Jian; Johnson, Anne C; Woruba, Deane N; Kirchhof, Gunnar; Fujinuma, Ryosuke; Sirabis, William; Jeffery, Yapo; Akkinapally, Ramakrishna
2016-01-01
Sweetpotato ( Ipomea batatans ) is a food crop of global significance. The storage roots and foliage of crop are attacked by a wide range of pests and diseases. Whilst these are generally well controlled in developed countries using approaches such as clean planting material and monitoring with pheromone traps to guide insecticide use, research into methods suitable for developing countries has lagged. In Papua New Guinea (PNG), sweetpotato is grown extensively as a subsistence crop and commercial production as a cash crop is developing. We report results from a survey of 33 smallholder producers located in the Highlands of PNG where the crop is of particular importance. Surveys of interviewees' crops showed high levels of pest and disease impact to foliage, stems and storage roots, especially in crops that were several years old. Weevils (Curculionidae) were reportedly the most damaging pests and scab (caused by the fungus Elisnoe batatus ) the most damaging disease. Most producers reported root damage from the former and foliar damage from the latter but the general level of knowledge of pest and disease types was low. Despite the apparency of pest and disease signs and symptoms and recognition of their importance by farmers, a large majority of producers reported practiced no active pest or disease management. This was despite low numbers of farmers reporting use of traditional cultural practices including phytosanitary measures and insecticidal plants that had the scope for far wider use. Only one respondent reported use of insecticide though pesticides were available in nearby cities. This low level of pest and disease management in most cases, likely due to paucity in biological and technical knowledge among growers, hampers efforts to establish food security and constrains the development of sweetpotato as a cash crop.
Parietal cortex and episodic memory retrieval in schizophrenia.
Lepage, Martin; Pelletier, Marc; Achim, Amélie; Montoya, Alonso; Menear, Matthew; Lal, Sam
2010-06-30
People with schizophrenia consistently show memory impairment on varying tasks including item recognition memory. Relative to the correct rejection of distracter items, the correct recognition of studied items consistently produces an effect termed the old/new effect that is characterized by increased activity in parietal and frontal cortical regions. This effect has received only scant attention in schizophrenia. We examined the old/new effect in 15 people with schizophrenia and 18 controls during an item recognition test, and neural activity was examined with event-related functional magnetic resonance imaging. Both groups performed equally well during the recognition test and showed increased activity in a left dorsolateral prefrontal region and in the precuneus bilaterally during the successful recognition of old items relative to the correct rejection of new items. The control group also exhibited increased activity in the dorsal left parietal cortex. This region has been implicated in the top-down modulation of memory which involves control processes that support memory-retrieval search, monitoring and verification. Although these processes may not be of paramount importance in item recognition memory performance, the present findings suggest that people with schizophrenia may have difficulty with such top-down modulation, a finding consistent with many other studies in information processing.
fMRI characterization of visual working memory recognition.
Rahm, Benjamin; Kaiser, Jochen; Unterrainer, Josef M; Simon, Juliane; Bledowski, Christoph
2014-04-15
Encoding and maintenance of information in visual working memory have been extensively studied, highlighting the crucial and capacity-limiting role of fronto-parietal regions. In contrast, the neural basis of recognition in visual working memory has remained largely unspecified. Cognitive models suggest that recognition relies on a matching process that compares sensory information with the mental representations held in memory. To characterize the neural basis of recognition we varied both the need for recognition and the degree of similarity between the probe item and the memory contents, while independently manipulating memory load to produce load-related fronto-parietal activations. fMRI revealed a fractionation of working memory functions across four distributed networks. First, fronto-parietal regions were activated independent of the need for recognition. Second, anterior parts of load-related parietal regions contributed to recognition but their activations were independent of the difficulty of matching in terms of sample-probe similarity. These results argue against a key role of the fronto-parietal attention network in recognition. Rather the third group of regions including bilateral temporo-parietal junction, posterior cingulate cortex and superior frontal sulcus reflected demands on matching both in terms of sample-probe-similarity and the number of items to be compared. Also, fourth, bilateral motor regions and right superior parietal cortex showed higher activation when matching provided clear evidence for a decision. Together, the segregation between the well-known fronto-parietal activations attributed to attentional operations in working memory from those regions involved in matching supports the theoretical view of separable attentional and mnemonic contributions to working memory. Yet, the close theoretical and empirical correspondence to perceptual decision making may call for an explicit consideration of decision making mechanisms in conceptions of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Straussman, Sharon; Levitsky, Lynne L
2010-02-01
Hypoglycemia in the newborn may be associated with both acute decompensation and long-term neuronal loss. Studies of the cause of hypoglycemic brain damage and the relationship of hypoglycemia to disorders associated with hyperinsulinism have aided in our understanding of this common clinical finding. A recent consensus workshop concluded that there has been little progress toward a precise numerical definition of neonatal hypoglycemia. Nonetheless, newer brain imaging modalities have provided insight into the relationship between neuronal energy deficiency and central nervous system damage. Laboratory studies have begun to reveal the mechanism of hypoglycemic damage. In addition, there is new information about hyperinsulinemic hypoglycemia of genetic, environmental, and iatrogenic origin. The quantitative definition of hypoglycemia in the newborn remains elusive because it is a surrogate marker for central nervous system energy deficiency. Nonetheless, the recognition that hyperinsulinemic hypoglycemia, which produces profound central nervous system energy deficiency, is most likely to lead to long-term central nervous system damage, has altered management of children with hypoglycemia. In addition, imaging studies on neonates and laboratory evaluation in animal models have provided insight into the mechanism of neuronal damage.
Faces are special but not too special: Spared face recognition in amnesia is based on familiarity
Aly, Mariam; Knight, Robert T.; Yonelinas, Andrew P.
2014-01-01
Most current theories of human memory are material-general in the sense that they assume that the medial temporal lobe (MTL) is important for retrieving the details of prior events, regardless of the specific type of materials. Recent studies of amnesia have challenged the material-general assumption by suggesting that the MTL may be necessary for remembering words, but is not involved in remembering faces. We examined recognition memory for faces and words in a group of amnesic patients, which included hypoxic patients and patients with extensive left or right MTL lesions. Recognition confidence judgments were used to plot receiver operating characteristics (ROCs) in order to more fully quantify recognition performance and to estimate the contributions of recollection and familiarity. Consistent with the extant literature, an analysis of overall recognition accuracy showed that the patients were impaired at word memory but had spared face memory. However, the ROC analysis indicated that the patients were generally impaired at high confidence recognition responses for faces and words, and they exhibited significant recollection impairments for both types of materials. Familiarity for faces was preserved in all patients, but extensive left MTL damage impaired familiarity for words. These results suggest that face recognition may appear to be spared because performance tends to rely heavily on familiarity, a process that is relatively well preserved in amnesia. The findings challenge material-general theories of memory, and suggest that both material and process are important determinants of memory performance in amnesia, and different types of materials may depend more or less on recollection and familiarity. PMID:20833190
NASA Astrophysics Data System (ADS)
Omenzetter, Piotr; de Lautour, Oliver R.
2010-04-01
Developed for studying long, periodic records of various measured quantities, time series analysis methods are inherently suited and offer interesting possibilities for Structural Health Monitoring (SHM) applications. However, their use in SHM can still be regarded as an emerging application and deserves more studies. In this research, Autoregressive (AR) models were used to fit experimental acceleration time histories from two experimental structural systems, a 3- storey bookshelf-type laboratory structure and the ASCE Phase II SHM Benchmark Structure, in healthy and several damaged states. The coefficients of the AR models were chosen as damage sensitive features. Preliminary visual inspection of the large, multidimensional sets of AR coefficients to check the presence of clusters corresponding to different damage severities was achieved using Sammon mapping - an efficient nonlinear data compression technique. Systematic classification of damage into states based on the analysis of the AR coefficients was achieved using two supervised classification techniques: Nearest Neighbor Classification (NNC) and Learning Vector Quantization (LVQ), and one unsupervised technique: Self-organizing Maps (SOM). This paper discusses the performance of AR coefficients as damage sensitive features and compares the efficiency of the three classification techniques using experimental data.
Towards discrete wavelet transform-based human activity recognition
NASA Astrophysics Data System (ADS)
Khare, Manish; Jeon, Moongu
2017-06-01
Providing accurate recognition of human activities is a challenging problem for visual surveillance applications. In this paper, we present a simple and efficient algorithm for human activity recognition based on a wavelet transform. We adopt discrete wavelet transform (DWT) coefficients as a feature of human objects to obtain advantages of its multiresolution approach. The proposed method is tested on multiple levels of DWT. Experiments are carried out on different standard action datasets including KTH and i3D Post. The proposed method is compared with other state-of-the-art methods in terms of different quantitative performance measures. The proposed method is found to have better recognition accuracy in comparison to the state-of-the-art methods.
Kaundal, Madhu; Deshmukh, Rahul; Akhtar, Mohd
2018-06-01
The purpose of the study was to explore the therapeutic potential of Betulinic acid (BA) in streptozotocin (STZ) induced memory damage in experimental rats. STZ (3mg/kg bilaterally) as intracerebroventrical (icv) route was administered on day 1 and 3 in rats. Donepezil (5mg/kg/day po), used as standard, and BA (5, 10 and 15mg/kg/day po) were administered after 1h of 1st STZ infusion up to 21days. Object recognition task (ORT) for non-spatial, Morris water maze (MWM) for spatial and locomotor activity were performed to evaluate behavioral changes in rats. On 22nd day, animals were decapitated and hippocampus was separated to perform biochemical (AChE, LPO, GSH, nitrite), neuroinflammatory (TNF-α, IL-1β, and IL-6), neurotransmitters (NTs) (dopamine, norepinephrine and serotonin) analysis. STZ infusion significantly impaired memory as observed in MWM and ORT, increased oxidative stress, pro-inflammatory cytokine's level and altered NTs level. Moreover, BA demonstrated a neuroprotective effect in a dose-dependent manner. BA dose dependently (5, 10 and 15mg/kg) significantly restore STZ induced memory changes and pathological abnormalities in rat brain. The findings of the current study suggests that BA protect rat brain from STZ induced neuronal damage via acting through multiple mechanisms and would be used to curb cognitive decline associated with neurodegenerative disorders especially AD. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Ma, Xue-Qin; Li, Guo-Shan; Fu, Xue-Yan; Ma, Jing-Zu
2011-03-01
To investigate CD molecular recognition technology applied in active constituents extracted and isolated from traditional Chinese medicine--Aconitum pendulum. The inclusion constant and form probability of the inclusion complex of Aconitum pendulum with p-CD was calculated by UV spectra method. The active constituents of Aconitum pendulum were extracted and isolated by molecular recognition technology. The inclusion complex was identified by UV. The chemical constituents of Aconitum pendulum and inclusion complex was determined by HPLC. The analgesic effects of inclusion complex was investigated by experiment of intraperitoneal injection of acetic acid in rats. The inclusion complex was identified and confirmed by UV spectra method, the chemical components of inclusion complex were simple, and the content of active constituents increased significantly, the analgesic effects of inclusion complex was well. The molecular recognition technology can be used for extracting and isolating active constituents of Aconitum pendulum, and the effects are obvious.
NASA Astrophysics Data System (ADS)
Lin, Juqiang; Zeng, Shaoqun; Luo, Qingming; Rong, Chen; Zhang, Zhihong
2007-11-01
Caspase-2 is important for the engagement of the mitochondrial apoptotic pathway, in the presence of DNA-damaging agents, such as cisplatin; however, the mechanism by which caspase-2 executes apoptosis remains obscure. In this study, we carried out the measurements of the dynamics of caspase-2 activation in a single living cell by a FRET (fluorescence resonance energy transfer) probe. A FRET probe was constructed that encoded a CRS (caspase-2 recognition site) fused with a cyan fluorescent protein (CFP) and a red fluorescent protein (DsRed) (CFP-CRS-DsRed). Using this probe, we found that during TRAIL-induced apoptosis, caspase-2 was not activated, and caspase-2 activation occurred in etoposide and cisplatin treated cells. However, during cisplatin-induced apoptosis caspase-2 activation was initiated much earlier than that of etoposide. Cisplatin and etoposide is one of the most broadly used drugs in the Clinical applications of cancer chemotherapy, and TRAIL, which belongs to the TNF family proteins, can selectively induce apoptosis in many transformed cells but not in normal cells. Most of anticancer drugs can induce apoptosis mediated by the activation of caspase pathway. Thus, the perfect synergistic effect group of multi-drug can be selected by using our FRET probe.
Hagenbeek, R E; Rombouts, S A R B; Veltman, D J; Van Strien, J W; Witter, M P; Scheltens, P; Barkhof, F
2007-10-01
Changes in brain activation as a function of continuous multiparametric word recognition have not been studied before by using functional MR imaging (fMRI), to our knowledge. Our aim was to identify linear changes in brain activation and, what is more interesting, nonlinear changes in brain activation as a function of extended word repetition. Fifteen healthy young right-handed individuals participated in this study. An event-related extended continuous word-recognition task with 30 target words was used to study the parametric effect of word recognition on brain activation. Word-recognition-related brain activation was studied as a function of 9 word repetitions. fMRI data were analyzed with a general linear model with regressors for linearly changing signal intensity and nonlinearly changing signal intensity, according to group average reaction time (RT) and individual RTs. A network generally associated with episodic memory recognition showed either constant or linearly decreasing brain activation as a function of word repetition. Furthermore, both anterior and posterior cingulate cortices and the left middle frontal gyrus followed the nonlinear curve of the group RT, whereas the anterior cingulate cortex was also associated with individual RT. Linear alteration in brain activation as a function of word repetition explained most changes in blood oxygen level-dependent signal intensity. Using a hierarchically orthogonalized model, we found evidence for nonlinear activation associated with both group and individual RTs.
PKC-epsilon activation is required for recognition memory in the rat.
Zisopoulou, Styliani; Asimaki, Olga; Leondaritis, George; Vasilaki, Anna; Sakellaridis, Nikos; Pitsikas, Nikolaos; Mangoura, Dimitra
2013-09-15
Activation of PKCɛ, an abundant and developmentally regulated PKC isoform in the brain, has been implicated in memory throughout life and across species. Yet, direct evidence for a mechanistic role for PKCɛ in memory is still lacking. Hence, we sought to evaluate this in rats, using short-term treatments with two PKCɛ-selective peptides, the inhibitory ɛV1-2 and the activating ψɛRACK, and the novel object recognition task (NORT). Our results show that the PKCɛ-selective activator ψɛRACK, did not have a significant effect on recognition memory. In the short time frames used, however, inhibition of PKCɛ activation with the peptide inhibitor ɛV1-2 significantly impaired recognition memory. Moreover, when we addressed at the molecular level the immediate proximal signalling events of PKCɛ activation in acutely dissected rat hippocampi, we found that ψɛRACK increased in a time-dependent manner phosphorylation of MARCKS and activation of Src, Raf, and finally ERK1/2, whereas ɛV1-2 inhibited all basal activity of this pathway. Taken together, these findings present the first direct evidence that PKCɛ activation is an essential molecular component of recognition memory and point toward the use of systemically administered PKCɛ-regulating peptides as memory study tools and putative therapeutic agents. Copyright © 2013 Elsevier B.V. All rights reserved.
Jalal, Ahmad; Kamal, Shaharyar; Kim, Daijin
2014-07-02
Recent advancements in depth video sensors technologies have made human activity recognition (HAR) realizable for elderly monitoring applications. Although conventional HAR utilizes RGB video sensors, HAR could be greatly improved with depth video sensors which produce depth or distance information. In this paper, a depth-based life logging HAR system is designed to recognize the daily activities of elderly people and turn these environments into an intelligent living space. Initially, a depth imaging sensor is used to capture depth silhouettes. Based on these silhouettes, human skeletons with joint information are produced which are further used for activity recognition and generating their life logs. The life-logging system is divided into two processes. Firstly, the training system includes data collection using a depth camera, feature extraction and training for each activity via Hidden Markov Models. Secondly, after training, the recognition engine starts to recognize the learned activities and produces life logs. The system was evaluated using life logging features against principal component and independent component features and achieved satisfactory recognition rates against the conventional approaches. Experiments conducted on the smart indoor activity datasets and the MSRDailyActivity3D dataset show promising results. The proposed system is directly applicable to any elderly monitoring system, such as monitoring healthcare problems for elderly people, or examining the indoor activities of people at home, office or hospital.
Jalal, Ahmad; Kamal, Shaharyar; Kim, Daijin
2014-01-01
Recent advancements in depth video sensors technologies have made human activity recognition (HAR) realizable for elderly monitoring applications. Although conventional HAR utilizes RGB video sensors, HAR could be greatly improved with depth video sensors which produce depth or distance information. In this paper, a depth-based life logging HAR system is designed to recognize the daily activities of elderly people and turn these environments into an intelligent living space. Initially, a depth imaging sensor is used to capture depth silhouettes. Based on these silhouettes, human skeletons with joint information are produced which are further used for activity recognition and generating their life logs. The life-logging system is divided into two processes. Firstly, the training system includes data collection using a depth camera, feature extraction and training for each activity via Hidden Markov Models. Secondly, after training, the recognition engine starts to recognize the learned activities and produces life logs. The system was evaluated using life logging features against principal component and independent component features and achieved satisfactory recognition rates against the conventional approaches. Experiments conducted on the smart indoor activity datasets and the MSRDailyActivity3D dataset show promising results. The proposed system is directly applicable to any elderly monitoring system, such as monitoring healthcare problems for elderly people, or examining the indoor activities of people at home, office or hospital. PMID:24991942
UV damage-specific DNA-binding protein in xeroderma pigmentosum complementation group E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kataoka, H.; Fujiwara, Y.
1991-03-29
The gel mobility shift assay method revealed a specifically ultraviolet (UV) damage recognizing, DNA-binding protein in nuclear extracts of normal human cells. The resulted DNA/protein complexes caused the two retarded mobility shifts. Four xeroderma pigmentosum complementation group E (XPE) fibroblast strains derived from unrelated Japanese families were not deficient in such a DNA damage recognition/binding protein because of the normal complex formation and gel mobility shifts, although we confirmed the reported lack of the protein in the European XPE (XP2RO and XP3RO) cells. Thus, the absence of this binding protein is not always commonly observed in all the XPE strains,more » and the partially repair-deficient and intermediately UV-hypersensitive phenotype of XPE cells are much similar whether or not they lack the protein.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Shisuo; Bouquet, Sophie; Lo, Chen-Hao
2015-01-01
Purpose: To determine whether transforming growth factor (TGF)-β inhibition increases the response to radiation therapy in human and mouse non–small-cell lung carcinoma (NSCLC) cells in vitro and in vivo. Methods and Materials: TGF-β–mediated growth response and pathway activation were examined in human NSCLC NCI-H1299, NCI-H292, and A549 cell lines and murine Lewis lung cancer (LLC) cells. Cells were treated in vitro with LY364947, a small-molecule inhibitor of the TGF-β type 1 receptor kinase, or with the pan-isoform TGF-β neutralizing monoclonal antibody 1D11 before radiation exposure. The DNA damage response was assessed by ataxia telangiectasia mutated (ATM) or Trp53 protein phosphorylation, γH2AX foci formation,more » or comet assay in irradiated cells. Radiation sensitivity was determined by clonogenic assay. Mice bearing syngeneic subcutaneous LLC tumors were treated with 5 fractions of 6 Gy and/or neutralizing or control antibody. Results: The NCI-H1299, A549, and LLC NSCLC cell lines pretreated with LY364947 before radiation exposure exhibited compromised DNA damage response, indicated by decreased ATM and p53 phosphorylation, reduced γH2AX foci, and increased radiosensitivity. The NCI-H292 cells were unresponsive. Transforming growth factor-β signaling inhibition in irradiated LLC cells resulted in unresolved DNA damage. Subcutaneous LLC tumors in mice treated with TGF-β neutralizing antibody exhibited fewer γH2AX foci after irradiation and significantly greater tumor growth delay in combination with fractionated radiation. Conclusions: Inhibition of TGF-β before radiation attenuated DNA damage recognition and increased radiosensitivity in most NSCLC cells in vitro and promoted radiation-induced tumor control in vivo. These data support the rationale for concurrent TGF-β inhibition and RT to provide therapeutic benefit in NSCLC.« less
Clustering-Based Ensemble Learning for Activity Recognition in Smart Homes
Jurek, Anna; Nugent, Chris; Bi, Yaxin; Wu, Shengli
2014-01-01
Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks. PMID:25014095
Clustering-based ensemble learning for activity recognition in smart homes.
Jurek, Anna; Nugent, Chris; Bi, Yaxin; Wu, Shengli
2014-07-10
Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks.
Activity Recognition on Streaming Sensor Data.
Krishnan, Narayanan C; Cook, Diane J
2014-02-01
Many real-world applications that focus on addressing needs of a human, require information about the activities being performed by the human in real-time. While advances in pervasive computing have lead to the development of wireless and non-intrusive sensors that can capture the necessary activity information, current activity recognition approaches have so far experimented on either a scripted or pre-segmented sequence of sensor events related to activities. In this paper we propose and evaluate a sliding window based approach to perform activity recognition in an on line or streaming fashion; recognizing activities as and when new sensor events are recorded. To account for the fact that different activities can be best characterized by different window lengths of sensor events, we incorporate the time decay and mutual information based weighting of sensor events within a window. Additional contextual information in the form of the previous activity and the activity of the previous window is also appended to the feature describing a sensor window. The experiments conducted to evaluate these techniques on real-world smart home datasets suggests that combining mutual information based weighting of sensor events and adding past contextual information into the feature leads to best performance for streaming activity recognition.
NLR-Dependent Regulation of Inflammation in Multiple Sclerosis
Gharagozloo, Marjan; Gris, Katsiaryna V.; Mahvelati, Tara; Amrani, Abdelaziz; Lukens, John R.; Gris, Denis
2018-01-01
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) associated with inappropriate activation of lymphocytes, hyperinflammatory responses, demyelination, and neuronal damage. In the past decade, a number of biological immunomodulators have been developed that suppress the peripheral immune responses and slow down the progression of the disease. However, once the inflammation of the CNS has commenced, it can cause serious permanent neuronal damage. Therefore, there is a need for developing novel therapeutic approaches that control and regulate inflammatory responses within the CNS. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are intracellular regulators of inflammation expressed by many cell types within the CNS. They redirect multiple signaling pathways initiated by pathogens and molecules released by injured tissues. NLR family members include positive regulators of inflammation, such as NLRP3 and NLRC4 and anti-inflammatory NLRs, such as NLRX1 and NLRP12. They exert immunomodulatory effect at the level of peripheral immune responses, including antigen recognition and lymphocyte activation and differentiation. Also, NLRs regulate tissue inflammatory responses. Understanding the molecular mechanisms that are placed at the crossroad of innate and adaptive immune responses, such as NLR-dependent pathways, could lead to the discovery of new therapeutic targets. In this review, we provide a summary of the role of NLRs in the pathogenesis of MS. We also summarize how anti-inflammatory NLRs regulate the immune response within the CNS. Finally, we speculate the therapeutic potential of targeting NLRs in MS. PMID:29403486
Fusion of smartphone motion sensors for physical activity recognition.
Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J M
2014-06-10
For physical activity recognition, smartphone sensors, such as an accelerometer and a gyroscope, are being utilized in many research studies. So far, particularly, the accelerometer has been extensively studied. In a few recent studies, a combination of a gyroscope, a magnetometer (in a supporting role) and an accelerometer (in a lead role) has been used with the aim to improve the recognition performance. How and when are various motion sensors, which are available on a smartphone, best used for better recognition performance, either individually or in combination? This is yet to be explored. In order to investigate this question, in this paper, we explore how these various motion sensors behave in different situations in the activity recognition process. For this purpose, we designed a data collection experiment where ten participants performed seven different activities carrying smart phones at different positions. Based on the analysis of this data set, we show that these sensors, except the magnetometer, are each capable of taking the lead roles individually, depending on the type of activity being recognized, the body position, the used data features and the classification method employed (personalized or generalized). We also show that their combination only improves the overall recognition performance when their individual performances are not very high, so that there is room for performance improvement. We have made our data set and our data collection application publicly available, thereby making our experiments reproducible.
The Necessity of Public Relations for Sustainable Mining Activities
NASA Astrophysics Data System (ADS)
Lee, Hyunbock; Ji, Sangwoo
2015-04-01
This paper reports research about the necessity of image making for sustainable mine developments in the Republic of Korea. One of the big risks in mining activities is mining area residents opposing mine developments and operations. Analysis of the media reports on disputes between mining companies and residents can determine causes of opposing mine developments, dispute process, and influences of disputes on processes of mining projects. To do this, civil complaints from 2009 to 2012 and 24 media reports since 2000 on opposing mining activities are analyzed. And, to analyze difficulties of mining companies, the survey is conducted to target to mining companies. 57 representatives of mining companies are participated in the survey. The result of analysis cited that the major reasons of anti-mining activities are environmental degradation and reduced agricultural productivity. And specifically because of water pollution (50%), crop damages (33%), and mining dust pollution (21%), communities of mining area are against mine developments and operations. However, 25% of residents have experience of the damage caused by mining activities and the remaining 75% of residents opposing mining activities simply have anxiety about mining pollution. In the past, construction-oriented, environment-unfriendly mining projects had lasted. And while mine reclamation had been postponed in abandoned mines, mining area residents had suffered from mining pollution. So, mining area residents are highly influenced by the prejudice that mining activities are harmful to mining area communities. Current mining projects in South Korea, unlike the past mining activity, focus on minimizing environmental damage and contributing to mining area communities financially. But, in many case of disputes between mining companies and mining area residents, the both cannot reach an agreements because of the negative prejudice. Moreover, some communities categorically refuse any mining activity. On the other hand, in the survey to determine what the greatest difficulties of the current mining activities, 54% of mining companies chose environmental regulations, 26% of mining companies chose conflicts between mine area residents and mining companies. Environmental regulations are may defined as the greatest difficulty of current mining activities. But most of environmental regulation's problems are caused by frictions with residents, because all of South Korean mines are very close to villages. So, the biggest difficulty of mining activities can be defined conflicts between residents and mining companies. Moreover, general people in South Korea including some mining engineers recognize the mining industry as a declined and pollution industry. Without clear understanding of mining activities, any mine developments and policies related to mining activities cannot be made by rational discussions. And, if their recognition is not formed in a rational way, it will be turned to extreme fear or blind hatred. Therefore, to understand mining activities correctly, the effective public relations strategy is necessary such as corporate advertisements or public advertisements.
Self-Face and Self-Body Recognition in Autism
ERIC Educational Resources Information Center
Gessaroli, Erica; Andreini, Veronica; Pellegri, Elena; Frassinetti, Francesca
2013-01-01
The advantage in responding to self vs. others' body and face-parts (the so called self-advantage) is considered to reflect the implicit access to the bodily self representation and has been studied in healthy and brain-damaged adults in previous studies. If the distinction of the self from others is a key aspect of social behaviour and is a…
Roberts, Daniel J; Woollams, Anna M; Kim, Esther; Beeson, Pelagie M; Rapcsak, Steven Z; Lambon Ralph, Matthew A
2013-11-01
Recent visual neuroscience investigations suggest that ventral occipito-temporal cortex is retinotopically organized, with high acuity foveal input projecting primarily to the posterior fusiform gyrus (pFG), making this region crucial for coding high spatial frequency information. Because high spatial frequencies are critical for fine-grained visual discrimination, we hypothesized that damage to the left pFG should have an adverse effect not only on efficient reading, as observed in pure alexia, but also on the processing of complex non-orthographic visual stimuli. Consistent with this hypothesis, we obtained evidence that a large case series (n = 20) of patients with lesions centered on left pFG: 1) Exhibited reduced sensitivity to high spatial frequencies; 2) demonstrated prolonged response latencies both in reading (pure alexia) and object naming; and 3) were especially sensitive to visual complexity and similarity when discriminating between novel visual patterns. These results suggest that the patients' dual reading and non-orthographic recognition impairments have a common underlying mechanism and reflect the loss of high spatial frequency visual information normally coded in the left pFG.
On damage diagnosis for a wind turbine blade using pattern recognition
NASA Astrophysics Data System (ADS)
Dervilis, N.; Choi, M.; Taylor, S. G.; Barthorpe, R. J.; Park, G.; Farrar, C. R.; Worden, K.
2014-03-01
With the increased interest in implementation of wind turbine power plants in remote areas, structural health monitoring (SHM) will be one of the key cards in the efficient establishment of wind turbines in the energy arena. Detection of blade damage at an early stage is a critical problem, as blade failure can lead to a catastrophic outcome for the entire wind turbine system. Experimental measurements from vibration analysis were extracted from a 9 m CX-100 blade by researchers at Los Alamos National Laboratory (LANL) throughout a full-scale fatigue test conducted at the National Renewable Energy Laboratory (NREL) and National Wind Technology Center (NWTC). The blade was harmonically excited at its first natural frequency using a Universal Resonant EXcitation (UREX) system. In the current study, machine learning algorithms based on Artificial Neural Networks (ANNs), including an Auto-Associative Neural Network (AANN) based on a standard ANN form and a novel approach to auto-association with Radial Basis Functions (RBFs) networks are used, which are optimised for fast and efficient runs. This paper introduces such pattern recognition methods into the wind energy field and attempts to address the effectiveness of such methods by combining vibration response data with novelty detection techniques.
Williams, Gregory E; Daros, Alexander R; Graves, Bryanna; McMain, Shelley F; Links, Paul S; Ruocco, Anthony C
2015-04-01
Risk for potentially lethal self-injurious behavior in borderline personality disorder (BPD) may be associated with deficits in neuropsychological functions and social cognition. In particular, individuals with BPD engaging in more medically damaging self-injurious behaviors may have more severe executive function deficits and altered emotion perception as compared to patients engaging in less lethal acts. In the current study, 58 patients with BPD reporting a lifetime history of self-injurious behavior were administered neuropsychological measures of response inhibition, planning and problem-solving,and tests of facial emotion recognition and discrimination. Patients who engaged in more medically lethal self-injurious behaviors reported engaging in impulsive behaviors more frequently and displayed neuropsychological deficits in problem-solving and response inhibition. They were also less accurate in recognizing happy facial expressions and in discerning subtle differences in emotional intensity in sad facial expressions. These findings suggest that patients with BPD that engage in more physically damaging self-injurious behaviors may have greater difficulties with behavioral control and employ less efficient problem-solving strategies. Problems in facial emotion recognition and discrimination may contribute to interpersonal difficulties in patients with BPD who self-injure. (c) 2015 APA, all rights reserved).
Acute and chronic ethanol intake: effects on spatial and non-spatial memory in rats.
García-Moreno, Luis M; Cimadevilla, Jose M
2012-12-01
Abusive alcohol consumption produces neuronal damage and biochemical alterations in the mammal brain followed by cognitive disturbances. In this work rats receiving chronic and acute alcohol intake were evaluated in a spontaneous delayed non-matching to sample/position test. Chronic alcohol-treated rats had free access to an aqueous ethanol solution as the only available liquid source from the postnatal day 21 to the end of experiment (postnatal day 90). Acute alcoholic animals received an injection of 2 g/kg ethanol solution once per week. Subjects were evaluated in two tests (object recognition and spatial recognition) based on the spontaneous delayed non-matching to sample or to position paradigm using delays of 1 min, 15 min and 60 min. Results showed that chronic and acute alcohol intake impairs the rats' performance in both tests. Moreover, chronic alcohol-treated rats were more altered than acute treated animals in both tasks. Our results support the idea that chronic and acute alcohol administration during postnatal development caused widespread brain damage resulting in behavioral disturbances and learning disabilities. Copyright © 2012 Elsevier Inc. All rights reserved.
Mirman, Daniel; Zhang, Yongsheng; Wang, Ze; Coslett, H. Branch; Schwartz, Myrna F.
2015-01-01
Theories about the architecture of language processing differ with regard to whether verbal and nonverbal comprehension share a functional and neural substrate and how meaning extraction in comprehension relates to the ability to use meaning to drive verbal production. We (re-)evaluate data from 17 cognitive-linguistic performance measures of 99 participants with chronic aphasia using factor analysis to establish functional components and support vector regression-based lesion-symptom mapping to determine the neural correlates of deficits on these functional components. The results are highly consistent with our previous findings: production of semantic errors is behaviorally and neuroanatomically distinct from verbal and nonverbal comprehension. Semantic errors were most strongly associated with left ATL damage whereas deficits on tests of verbal and non-verbal semantic recognition were most strongly associated with damage to deep white matter underlying the frontal lobe at the confluence of multiple tracts, including the inferior fronto-occipital fasciculus, the uncinate fasciculus, and the anterior thalamic radiations. These results suggest that traditional views based on grey matter hub(s) for semantic processing are incomplete and that the role of white matter in semantic cognition has been underappreciated. PMID:25681739
Onojima, Takayuki; Kitajo, Keiichi; Mizuhara, Hiroaki
2017-01-01
Neural oscillation is attracting attention as an underlying mechanism for speech recognition. Speech intelligibility is enhanced by the synchronization of speech rhythms and slow neural oscillation, which is typically observed as human scalp electroencephalography (EEG). In addition to the effect of neural oscillation, it has been proposed that speech recognition is enhanced by the identification of a speaker's motor signals, which are used for speech production. To verify the relationship between the effect of neural oscillation and motor cortical activity, we measured scalp EEG, and simultaneous EEG and functional magnetic resonance imaging (fMRI) during a speech recognition task in which participants were required to recognize spoken words embedded in noise sound. We proposed an index to quantitatively evaluate the EEG phase effect on behavioral performance. The results showed that the delta and theta EEG phase before speech inputs modulated the participant's response time when conducting speech recognition tasks. The simultaneous EEG-fMRI experiment showed that slow EEG activity was correlated with motor cortical activity. These results suggested that the effect of the slow oscillatory phase was associated with the activity of the motor cortex during speech recognition.
Is there a positive bias in false recognition? Evidence from confabulating amnesia patients.
Alkathiri, Nura H; Morris, Robin G; Kopelman, Michael D
2015-10-01
Although there is some evidence for a positive emotional bias in the content of confabulations in brain damaged patients, findings have been inconsistent. The present study used the semantic-associates procedure to induce false recall and false recognition in order to examine whether a positive bias would be found in confabulating amnesic patients, relative to non-confabulating amnesic patients and healthy controls. Lists of positive, negative and neutral words were presented in order to induce false recall or false recognition of non-presented (but semantically associated) words. The latter were termed 'critical intrusions'. Thirteen confabulating amnesic patients, 13 non-confabulating amnesic patients and 13 healthy controls were investigated. Confabulating patients falsely recognised a higher proportion of positive (but unrelated) words, compared with non-confabulating patients and healthy controls. No differences were found for recall memory. Signal detection analysis, however, indicated that the positive bias for false recognition memory might reflect weaker memory in the confabulating amnesic group. This suggested that amnesia patients with weaker memory are more likely to confabulate and the content of these confabulations are more likely to be positive. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huberle, Elisabeth; Karnath, Hans-Otto
2006-01-01
Simultanagnosia is a rare deficit that impairs individuals in perceiving several objects at the same time. It is usually observed following bilateral parieto-occipital brain damage. Despite the restrictions in perceiving the global aspect of a scene, processing of individual objects remains unaffected. The mechanisms underlying simultanagnosia are not well understood. Previous findings indicated that the integration of multiple objects into a holistic representation of the environment is not impossible per se, but might depend on the spatial relationship between individual objects. The present study examined the influence of inter-element distances between individual objects on the recognition of global shapes in two patients with simultanagnosia. We presented Navon hierarchical letter stimuli with different inter-element distances between letters at the Local Scale. Improved recognition at the Global Scale was observed in both patients by reducing the inter-element distance. Global shape recognition in simultanagnosia thus seems to be modulated by the spatial distance of local elements and does not appear to be an all-or-nothing phenomenon depending on spatial continuity. The findings seem to argue against a deficit in visual working memory capacity as the primary deficit in simultanagnosia. However, further research is necessary to investigate alternative interpretations.
Ji, E; Weickert, C S; Lenroot, R; Kindler, J; Skilleter, A J; Vercammen, A; White, C; Gur, R E; Weickert, T W
2016-05-03
Estrogen has been implicated in the development and course of schizophrenia with most evidence suggesting a neuroprotective effect. Treatment with raloxifene, a selective estrogen receptor modulator, can reduce symptom severity, improve cognition and normalize brain activity during learning in schizophrenia. People with schizophrenia are especially impaired in the identification of negative facial emotions. The present study was designed to determine the extent to which adjunctive raloxifene treatment would alter abnormal neural activity during angry facial emotion recognition in schizophrenia. Twenty people with schizophrenia (12 men, 8 women) participated in a 13-week, randomized, double-blind, placebo-controlled, crossover trial of adjunctive raloxifene treatment (120 mg per day orally) and performed a facial emotion recognition task during functional magnetic resonance imaging after each treatment phase. Two-sample t-tests in regions of interest selected a priori were performed to assess activation differences between raloxifene and placebo conditions during the recognition of angry faces. Adjunctive raloxifene significantly increased activation in the right hippocampus and left inferior frontal gyrus compared with the placebo condition (family-wise error, P<0.05). There was no significant difference in performance accuracy or reaction time between active and placebo conditions. To the best of our knowledge, this study provides the first evidence suggesting that adjunctive raloxifene treatment changes neural activity in brain regions associated with facial emotion recognition in schizophrenia. These findings support the hypothesis that estrogen plays a modifying role in schizophrenia and shows that adjunctive raloxifene treatment may reverse abnormal neural activity during facial emotion recognition, which is relevant to impaired social functioning in men and women with schizophrenia.
Novelty preference in patients with developmental amnesia.
Munoz, M; Chadwick, M; Perez-Hernandez, E; Vargha-Khadem, F; Mishkin, M
2011-12-01
To re-examine whether or not selective hippocampal damage reduces novelty preference in visual paired comparison (VPC), we presented two different versions of the task to a group of patients with developmental amnesia (DA), each of whom sustained this form of pathology early in life. Compared with normal control participants, the DA group showed a delay-dependent reduction in novelty preference on one version of the task and an overall reduction on both versions combined. Because VPC is widely considered to be a measure of incidental recognition, the results appear to support the view that the hippocampus contributes to recognition memory. A difficulty for this conclusion, however, is that according to one current view the hippocampal contribution to recognition is limited to task conditions that encourage recollection of an item in some associated context, and according to another current view, to recognition of an item with the high confidence judgment that reflects a strong memory. By contrast, VPC, throughout which the participant remains entirely uninstructed other than to view the stimuli, would seem to lack such task conditions and so would likely lead to recognition based on familiarity rather than recollection or, alternatively, weak memories rather than strong. However, before concluding that the VPC impairment therefore contradicts both current views regarding the role of the hippocampus in recognition memory, two possibilities that would resolve this issue need to be investigated. One is that some variable in VPC, such as the extended period of stimulus encoding during familiarization, overrides its incidental nature, and, because this condition promotes either recollection- or strength-based recognition, renders the task hippocampal-dependent. The other possibility is that VPC, rather than providing a measure of incidental recognition, actually assesses an implicit, information-gathering process modulated by habituation, for which the hippocampus is also partly responsible, independent of its role in recognition. Copyright © 2010 Wiley Periodicals, Inc.
La Corte, Valentina; Dalla Barba, Gianfranco; Lemaréchal, Jean-Didier; Garnero, Line; George, Nathalie
2012-10-01
The relationship between episodic and semantic memory systems has long been debated. Some authors argue that episodic memory is contingent on semantic memory (Tulving 1984), while others postulate that both systems are independent since they can be selectively damaged (Squire 1987). The interaction between these memory systems is particularly important in the elderly, since the dissociation of episodic and semantic memory defects characterize different aging-related pathologies. Here, we investigated the interaction between semantic knowledge and episodic memory processes associated with faces in elderly subjects using an experimental paradigm where the semantic encoding of famous and unknown faces was compared to their episodic recognition. Results showed that the level of semantic awareness of items affected the recognition of those items in the episodic memory task. Event-related magnetic fields confirmed this interaction between episodic and semantic memory: ERFs related to the old/new effect during the episodic task were markedly different for famous and unknown faces. The old/new effect for famous faces involved sustained activities maximal over right temporal sensors, showing a spatio-temporal pattern partly similar to that found for famous versus unknown faces during the semantic task. By contrast, an old/new effect for unknown faces was observed on left parieto-occipital sensors. These findings suggest that the episodic memory for famous faces activated the retrieval of stored semantic information, whereas it was based on items' perceptual features for unknown faces. Overall, our results show that semantic information interfered markedly with episodic memory processes and suggested that the neural substrates of these two memory systems overlap.
Estrela, Fernanda Neves; Rabelo, Letícia Martins; Vaz, Boniek Gontijo; de Oliveira Costa, Denys Ribeiro; Pereira, Igor; de Lima Rodrigues, Aline Sueli; Malafaia, Guilherme
2017-10-01
The accumulated organic residues in tannery-plant courtyards are an eating attraction to small rodents; however, the contact of these animals with these residues may change their social behavior. Thus, the aim of the present study is to investigate whether the exposure to tannery effluent (TE) can damage the social recognition memory of female Swiss mice, as well as to assess whether vitamin C supplementation could provide information about how TE constituents can damage these animals' memory. We have observed that resident females exposed to TE (without vitamin supplementation) did not explore the anogenital region, their body or chased intruding females for shorter time or with lower frequency during the retest session of the social recognition test, fact that indicates social recognition memory deficit in these animals. Such finding is reinforced by the confirmation that there was no change in the animals' olfactory function during the buried food test, or locomotor changes in females exposed to the pollutant. Since no behavioral change was observed in the females exposed to TE and treated with vitamin C (before or after the exposure), it is possible saying that these social cognitive impairments seem to be directly related to the imbalance between the cellular production of reactive oxygen species and the counteracting antioxidant mechanisms (oxidative stress) in female mice exposed to the pollutant (without vitamin supplementation). Therefore, the present study evidences that the direct contact with tannery effluent, even for a short period-of-time, may cause short-term social memory deficits in adult female Swiss mice. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cremer, A; Amraoui, F; Lip, G Y H; Morales, E; Rubin, S; Segura, J; Van den Born, B J; Gosse, P
2016-08-01
The prevalence of malignant hypertension has clearly fallen with the advent of anti-hypertensive medication but has remained stable over the past 30-40 years in spite of progress in diagnosis and management of hypertension. A diagnosis of malignant hypertension is usually based on the association of severely elevated blood pressure with a Keith and Wagener stage III or IV retinopathy. We believe that this definition can be reconsidered for several reasons. Although simple and pragmatic, this definition corresponds to a time when there were few techniques for assessment of hypertensive target organ involvement, and does not take into account involvement of kidney, brain and heart; whereas the overall prognosis largely depends on how much they are affected. On the contrary, the acute blood pressure level and especially diastolic should not be a hard diagnostic criterion as it does not itself constitute the prognosis of the condition. We propose to consider that malignant hypertension with retinopathy is only one of a number of possible presentation(s) of acute hypertension with multi organ damage (hypertension multi organ damage (MOD)) and that the recognition of these hypertensive emergencies, when retinopathy is lacking, be based on acute elevation of BP associated with impairment of at least three different target organs. The objective of a new and expanded definition is to facilitate recognition of these true emergencies. The condition is more common than usually perceived and would have a much worse prognosis than the usual forms of hypertension. Early recognition and management of hypertension-MOD are fundamental to any improvement in prognosis.
Muscillo, Rossana; Conforto, Silvia; Schmid, Maurizio; Caselli, Paolo; D'Alessio, Tommaso
2007-01-01
In the context of tele-monitoring, great interest is presently devoted to physical activity, mainly of elderly or people with disabilities. In this context, many researchers studied the recognition of activities of daily living by using accelerometers. The present work proposes a novel algorithm for activity recognition that considers the variability in movement speed, by using dynamic programming. This objective is realized by means of a matching and recognition technique that determines the distance between the signal input and a set of previously defined templates. Two different approaches are here presented, one based on Dynamic Time Warping (DTW) and the other based on the Derivative Dynamic Time Warping (DDTW). The algorithm was applied to the recognition of gait, climbing and descending stairs, using a biaxial accelerometer placed on the shin. The results on DDTW, obtained by using only one sensor channel on the shin showed an average recognition score of 95%, higher than the values obtained with DTW (around 85%). Both DTW and DDTW consistently show higher classification rate than classical Linear Time Warping (LTW).
Patterns recognition of electric brain activity using artificial neural networks
NASA Astrophysics Data System (ADS)
Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.
2017-04-01
An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.
Enemy at the gates: traffic at the plant cell pathogen interface.
Hoefle, Caroline; Hückelhoven, Ralph
2008-12-01
The plant apoplast constitutes a space for early recognition of potentially harmful non-self. Basal pathogen recognition operates via dynamic sensing of conserved microbial patterns by pattern recognition receptors or of elicitor-active molecules released from plant cell walls during infection. Recognition elicits defence reactions depending on cellular export via SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex-mediated vesicle fusion or plasma membrane transporter activity. Lipid rafts appear also involved in focusing immunity-associated proteins to the site of pathogen contact. Simultaneously, pathogen effectors target recognition, apoplastic host proteins and transport for cell wall-associated defence. This microreview highlights most recent reports on the arms race for plant disease and immunity at the cell surface.
A case of tactile agnosia with a lesion restricted to the post-central gyrus.
Estañol, Bruno; Baizabal-Carvallo, José Fidel; Sentíes-Madrid, Horacio
2008-01-01
Tactile agnosia has been described after lesions of the primary sensory cortex but the exact location and extension of those lesions is not clear. We report the clinical features and imaging findings in a patient with an acute ischemic stroke restricted to the primary sensory area (S1). A 73-year-old man had a sudden onset of a left alien hand, without left hemiparesis. Neurological examination showed intact primary sensory functions, but impaired recognition of shape, size (macrogeometrical) and texture (microgeometrical) of objects; damage confined to the post-central gyrus, sparing the posterior parietal cortex was demonstrated on MRI. An embolic occlusion of the anterior parietal artery was suspected as mechanism of stroke. Tactile agnosia with impaired microgeometrical and macrogeometrical features' recognition can result from a single lesion in the primary sensory cortex (S1) in the right parietal hemisphere, sparing other regions of the cerebral cortex which presumably participate in tactile object recognition.
Parallel language activation and cognitive control during spoken word recognition in bilinguals
Blumenfeld, Henrike K.; Marian, Viorica
2013-01-01
Accounts of bilingual cognitive advantages suggest an associative link between cross-linguistic competition and inhibitory control. We investigate this link by examining English-Spanish bilinguals’ parallel language activation during auditory word recognition and nonlinguistic Stroop performance. Thirty-one English-Spanish bilinguals and 30 English monolinguals participated in an eye-tracking study. Participants heard words in English (e.g., comb) and identified corresponding pictures from a display that included pictures of a Spanish competitor (e.g., conejo, English rabbit). Bilinguals with higher Spanish proficiency showed more parallel language activation and smaller Stroop effects than bilinguals with lower Spanish proficiency. Across all bilinguals, stronger parallel language activation between 300–500ms after word onset was associated with smaller Stroop effects; between 633–767ms, reduced parallel language activation was associated with smaller Stroop effects. Results suggest that bilinguals who perform well on the Stroop task show increased cross-linguistic competitor activation during early stages of word recognition and decreased competitor activation during later stages of word recognition. Findings support the hypothesis that cross-linguistic competition impacts domain-general inhibition. PMID:24244842
Mori Folium and Mori Fructus Mixture Attenuates High-Fat Diet-Induced Cognitive Deficits in Mice
Jeong, Hyun Uk; Park, Gunhyuk; Kim, Hocheol; Lim, Yunsook; Oh, Myung Sook
2015-01-01
Obesity has become a global health problem, contributing to various diseases including diabetes, hypertension, cancer, and dementia. Increasing evidence suggests that obesity can also cause neuronal damage, long-term memory loss, and cognitive impairment. The leaves and the fruits of Morus alba L., containing active phytochemicals, have been shown to possess antiobesity and hypolipidemic properties. Thus, in the present study, we assessed their effects on cognitive functioning in mice fed a high-fat diet by performing immunohistochemistry, using antibodies against c-Fos, synaptophysin, and postsynaptic density protein 95 and a behavioral test. C57BL/6 mice fed a high-fat diet for 21 weeks exhibited increased body weight, but mice coadministered an optimized Mori Folium and Mori Fructus extract mixture (2 : 1; MFE) for the final 12 weeks exhibited significant body weight loss. Additionally, obese mice exhibited not only reduced neural activity, but also decreased presynaptic and postsynaptic activities, while MFE-treated mice exhibited recovery of these activities. Finally, cognitive deficits induced by the high-fat diet were recovered by cotreatment with MFE in the novel object recognition test. Our findings suggest that the antiobesity effects of MFE resulted in recovery of the cognitive deficits induced by the high-fat diet by regulation of neural and synaptic activities. PMID:25945108
Mori folium and mori fructus mixture attenuates high-fat diet-induced cognitive deficits in mice.
Kim, Hyo Geun; Jeong, Hyun Uk; Park, Gunhyuk; Kim, Hocheol; Lim, Yunsook; Oh, Myung Sook
2015-01-01
Obesity has become a global health problem, contributing to various diseases including diabetes, hypertension, cancer, and dementia. Increasing evidence suggests that obesity can also cause neuronal damage, long-term memory loss, and cognitive impairment. The leaves and the fruits of Morus alba L., containing active phytochemicals, have been shown to possess antiobesity and hypolipidemic properties. Thus, in the present study, we assessed their effects on cognitive functioning in mice fed a high-fat diet by performing immunohistochemistry, using antibodies against c-Fos, synaptophysin, and postsynaptic density protein 95 and a behavioral test. C57BL/6 mice fed a high-fat diet for 21 weeks exhibited increased body weight, but mice coadministered an optimized Mori Folium and Mori Fructus extract mixture (2 : 1; MFE) for the final 12 weeks exhibited significant body weight loss. Additionally, obese mice exhibited not only reduced neural activity, but also decreased presynaptic and postsynaptic activities, while MFE-treated mice exhibited recovery of these activities. Finally, cognitive deficits induced by the high-fat diet were recovered by cotreatment with MFE in the novel object recognition test. Our findings suggest that the antiobesity effects of MFE resulted in recovery of the cognitive deficits induced by the high-fat diet by regulation of neural and synaptic activities.
Cytosolic sensing of immuno-stimulatory DNA, the enemy within.
Dhanwani, Rekha; Takahashi, Mariko; Sharma, Sonia
2018-02-01
In the cytoplasm, DNA is sensed as a universal danger signal by the innate immune system. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor/enzyme that catalyzes formation of 2'-5'-cGAMP, an atypical cyclic di-nucleotide second messenger that binds and activates the Stimulator of Interferon Genes (STING), resulting in recruitment of Tank Binding Kinase 1 (TBK1), activation of the transcription factor Interferon Regulatory Factor 3 (IRF3), and trans-activation of innate immune response genes, including type I Interferon cytokines (IFN-I). Activation of the pro-inflammatory cGAS-STING-IRF3 response is triggered by direct recognition of the DNA genomes of bacteria and viruses, but also during RNA virus infection, neoplastic transformation, tumor immunotherapy and systemic auto-inflammatory diseases. In these circumstances, the source of immuno-stimulatory DNA has often represented a fundamental yet poorly understood aspect of the response. This review focuses on recent findings related to cGAS activation by an array of self-derived DNA substrates, including endogenous retroviral elements, mitochondrial DNA (mtDNA) and micronuclei generated as a result of genotoxic stress and DNA damage. These findings emphasize the role of the cGAS axis as a cell-intrinsic innate immune response to a wide variety of genomic insults. Copyright © 2017. Published by Elsevier Ltd.
Guevara-Guzmán, R; Arriaga, V; Kendrick, K M; Bernal, C; Vega, X; Mercado-Gómez, O F; Rivas-Arancibia, S
2009-03-31
There is increasing concern about the neurodegenerative and behavioral consequences of ozone pollution in industrialized urban centers throughout the world and that women may be more susceptible to brain neurodegenerative disorders. In the present study we have investigated the effects of chronic (30 or 60 days) exposure to ozone on olfactory perception and memory and on levels of lipid peroxidation, alpha and beta estrogen receptors and dopamine beta-hydroxylase in the olfactory bulb in ovariectomized female rats. The ability of 17beta-estradiol to prevent these effects was then assessed. Results showed that ozone exposure for 30 or 60 days impaired formation/retention of a selective olfactory recognition memory 120 min after exposure to a juvenile stimulus animal with the effect at 60 days being significantly greater than at 30 days. They also showed impaired speed in locating a buried chocolate reward after 60 days of ozone exposure indicating some loss of olfactory perception. These functional impairments could all be prevented by coincident estradiol treatment. In the olfactory bulb, levels of lipid peroxidation were increased at both 30- and 60-day time-points and numbers of cells with immunohistochemical staining for alpha and beta estrogen receptors, and dopamine beta-hydroxylase were reduced as were alpha and beta estrogen receptor protein levels. These effects were prevented by estradiol treatment. Oxidative stress damage caused by chronic exposure to ozone does therefore impair olfactory perception and social recognition memory and may do so by reducing noradrenergic and estrogen receptor activity in the olfactory bulb. That these effects can be prevented by estradiol treatment suggests increased susceptibility to neurodegenerative disorders in aging women may be contributed to by reduced estrogen levels post-menopause.
Activity inference for Ambient Intelligence through handling artifacts in a healthcare environment.
Martínez-Pérez, Francisco E; González-Fraga, Jose Ángel; Cuevas-Tello, Juan C; Rodríguez, Marcela D
2012-01-01
Human activity inference is not a simple process due to distinct ways of performing it. Our proposal presents the SCAN framework for activity inference. SCAN is divided into three modules: (1) artifact recognition, (2) activity inference, and (3) activity representation, integrating three important elements of Ambient Intelligence (AmI) (artifact-behavior modeling, event interpretation and context extraction). The framework extends the roaming beat (RB) concept by obtaining the representation using three kinds of technologies for activity inference. The RB is based on both analysis and recognition from artifact behavior for activity inference. A practical case is shown in a nursing home where a system affording 91.35% effectiveness was implemented in situ. Three examples are shown using RB representation for activity representation. Framework description, RB description and CALog system overcome distinct problems such as the feasibility to implement AmI systems, and to show the feasibility for accomplishing the challenges related to activity recognition based on artifact recognition. We discuss how the use of RBs might positively impact the problems faced by designers and developers for recovering information in an easier manner and thus they can develop tools focused on the user.
Activity Inference for Ambient Intelligence Through Handling Artifacts in a Healthcare Environment
Martínez-Pérez, Francisco E.; González-Fraga, Jose Ángel; Cuevas-Tello, Juan C.; Rodríguez, Marcela D.
2012-01-01
Human activity inference is not a simple process due to distinct ways of performing it. Our proposal presents the SCAN framework for activity inference. SCAN is divided into three modules: (1) artifact recognition, (2) activity inference, and (3) activity representation, integrating three important elements of Ambient Intelligence (AmI) (artifact-behavior modeling, event interpretation and context extraction). The framework extends the roaming beat (RB) concept by obtaining the representation using three kinds of technologies for activity inference. The RB is based on both analysis and recognition from artifact behavior for activity inference. A practical case is shown in a nursing home where a system affording 91.35% effectiveness was implemented in situ. Three examples are shown using RB representation for activity representation. Framework description, RB description and CALog system overcome distinct problems such as the feasibility to implement AmI systems, and to show the feasibility for accomplishing the challenges related to activity recognition based on artifact recognition. We discuss how the use of RBs might positively impact the problems faced by designers and developers for recovering information in an easier manner and thus they can develop tools focused on the user. PMID:22368512
Jemel, Boutheina; Schuller, Anne-Marie; Goffaux, Valérie
2010-10-01
Although it is generally acknowledged that familiar face recognition is fast, mandatory, and proceeds outside conscious control, it is still unclear whether processes leading to familiar face recognition occur in a linear (i.e., gradual) or a nonlinear (i.e., all-or-none) manner. To test these two alternative accounts, we recorded scalp ERPs while participants indicated whether they recognize as familiar the faces of famous and unfamiliar persons gradually revealed in a descending sequence of frames, from the noisier to the least noisy. This presentation procedure allowed us to characterize the changes in scalp ERP responses occurring prior to and up to overt recognition. Our main finding is that gradual and all-or-none processes are possibly involved during overt recognition of familiar faces. Although the N170 and the N250 face-sensitive responses displayed an abrupt activity change at the moment of overt recognition of famous faces, later ERPs encompassing the N400 and late positive component exhibited an incremental increase in amplitude as the point of recognition approached. In addition, famous faces that were not overtly recognized at one trial before recognition elicited larger ERP potentials than unfamiliar faces, probably reflecting a covert recognition process. Overall, these findings present evidence that recognition of familiar faces implicates spatio-temporally complex neural processes exhibiting differential pattern activity changes as a function of recognition state.
Long, Chengjiang; Hua, Gang; Kapoor, Ashish
2015-01-01
We present a noise resilient probabilistic model for active learning of a Gaussian process classifier from crowds, i.e., a set of noisy labelers. It explicitly models both the overall label noise and the expertise level of each individual labeler with two levels of flip models. Expectation propagation is adopted for efficient approximate Bayesian inference of our probabilistic model for classification, based on which, a generalized EM algorithm is derived to estimate both the global label noise and the expertise of each individual labeler. The probabilistic nature of our model immediately allows the adoption of the prediction entropy for active selection of data samples to be labeled, and active selection of high quality labelers based on their estimated expertise to label the data. We apply the proposed model for four visual recognition tasks, i.e., object category recognition, multi-modal activity recognition, gender recognition, and fine-grained classification, on four datasets with real crowd-sourced labels from the Amazon Mechanical Turk. The experiments clearly demonstrate the efficacy of the proposed model. In addition, we extend the proposed model with the Predictive Active Set Selection Method to speed up the active learning system, whose efficacy is verified by conducting experiments on the first three datasets. The results show our extended model can not only preserve a higher accuracy, but also achieve a higher efficiency. PMID:26924892
Recognition and reading aloud of kana and kanji word: an fMRI study.
Ino, Tadashi; Nakai, Ryusuke; Azuma, Takashi; Kimura, Toru; Fukuyama, Hidenao
2009-03-16
It has been proposed that different brain regions are recruited for processing two Japanese writing systems, namely, kanji (morphograms) and kana (syllabograms). However, this difference may depend upon what type of word was used and also on what type of task was performed. Using fMRI, we investigated brain activation for processing kanji and kana words with similar high familiarity in two tasks: word recognition and reading aloud. During both tasks, words and non-words were presented side by side, and the subjects were required to press a button corresponding to the real word in the word recognition task and were required to read aloud the real word in the reading aloud task. Brain activations were similar between kanji and kana during reading aloud task, whereas during word recognition task in which accurate identification and selection were required, kanji relative to kana activated regions of bilateral frontal, parietal and occipitotemporal cortices, all of which were related mainly to visual word-form analysis and visuospatial attention. Concerning the difference of brain activity between two tasks, differential activation was found only in the regions associated with task-specific sensorimotor processing for kana, whereas visuospatial attention network also showed greater activation during word recognition task than during reading aloud task for kanji. We conclude that the differences in brain activation between kanji and kana depend on the interaction between the script characteristics and the task demands.
Codebook-based electrooculography data analysis towards cognitive activity recognition.
Lagodzinski, P; Shirahama, K; Grzegorzek, M
2018-04-01
With the advancement in mobile/wearable technology, people started to use a variety of sensing devices to track their daily activities as well as health and fitness conditions in order to improve the quality of life. This work addresses an idea of eye movement analysis, which due to the strong correlation with cognitive tasks can be successfully utilized in activity recognition. Eye movements are recorded using an electrooculographic (EOG) system built into the frames of glasses, which can be worn more unobtrusively and comfortably than other devices. Since the obtained information is low-level sensor data expressed as a sequence representing values in constant intervals (100 Hz), the cognitive activity recognition problem is formulated as sequence classification. However, it is unclear what kind of features are useful for accurate cognitive activity recognition. Thus, a machine learning algorithm like a codebook approach is applied, which instead of focusing on feature engineering is using a distribution of characteristic subsequences (codewords) to describe sequences of recorded EOG data, where the codewords are obtained by clustering a large number of subsequences. Further, statistical analysis of the codeword distribution results in discovering features which are characteristic to a certain activity class. Experimental results demonstrate good accuracy of the codebook-based cognitive activity recognition reflecting the effective usage of the codewords. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alterations in Resting-State Activity Relate to Performance in a Verbal Recognition Task
López Zunini, Rocío A.; Thivierge, Jean-Philippe; Kousaie, Shanna; Sheppard, Christine; Taler, Vanessa
2013-01-01
In the brain, resting-state activity refers to non-random patterns of intrinsic activity occurring when participants are not actively engaged in a task. We monitored resting-state activity using electroencephalogram (EEG) both before and after a verbal recognition task. We show a strong positive correlation between accuracy in verbal recognition and pre-task resting-state alpha power at posterior sites. We further characterized this effect by examining resting-state post-task activity. We found marked alterations in resting-state alpha power when comparing pre- and post-task periods, with more pronounced alterations in participants that attained higher task accuracy. These findings support a dynamical view of cognitive processes where patterns of ongoing brain activity can facilitate –or interfere– with optimal task performance. PMID:23785436
Collegial Activity Learning between Heterogeneous Sensors.
Feuz, Kyle D; Cook, Diane J
2017-11-01
Activity recognition algorithms have matured and become more ubiquitous in recent years. However, these algorithms are typically customized for a particular sensor platform. In this paper we introduce PECO, a Personalized activity ECOsystem, that transfers learned activity information seamlessly between sensor platforms in real time so that any available sensor can continue to track activities without requiring its own extensive labeled training data. We introduce a multi-view transfer learning algorithm that facilitates this information handoff between sensor platforms and provide theoretical performance bounds for the algorithm. In addition, we empirically evaluate PECO using datasets that utilize heterogeneous sensor platforms to perform activity recognition. These results indicate that not only can activity recognition algorithms transfer important information to new sensor platforms, but any number of platforms can work together as colleagues to boost performance.
Clipperton-Allen, Amy E.; Lee, Anna W.; Reyes, Anny; Devidze, Nino; Phan, Anna; Pfaff, Donald W.; Choleris, Elena
2012-01-01
Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85–100%) and low (40–60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice. PMID:22079582
Further evidence that amygdala and hippocampus contribute equally to recognition memory.
Saunders, R C; Murray, E A; Mishkin, M
1984-01-01
The medial temporal neuropathology found in an amnesic neurosurgical patient [17] was simulated in monkeys in an attempt to determine whether the patient's mnemonic disorder, which had been ascribed to bilateral hippocampal destruction, may have also been due in part to unilateral amygdaloid removal. For this purpose, monkeys were prepared with bilateral hippocampectomy combined with unilateral amygdalectomy, and (as a control) bilateral amygdalectomy combined with unilateral hippocampectomy. The animals were trained both before and after surgery on a one-trial visual recognition task requiring memory of single objects for 10 sec each and then given a postoperative performance test in which their one-trial recognition ability was taxed with longer delays (up to 2 min) and longer lists (up to 10 objects). The two groups, which did not differ reliably at any stage, obtained average scores on the performance test 75 and 80%, respectively. Comparison with the results of an earlier experiment [8] indicates that this performance level lies approximately midway between that of monkeys with amygdaloid or hippocampal removals alone (91%) and that of monkeys with combined amygdalo-hippocampal removals (60%). The results point to a direct quantitative relationship between degree of recognition impairment and amount of conjoint damage to the amygdala and hippocampus irrespective of the specific structure involved. Evidence from neurosurgical cases tested in visual recognition [21] indicates that the same conclusion may apply to man.
Towards Smart Homes Using Low Level Sensory Data
Khattak, Asad Masood; Truc, Phan Tran Ho; Hung, Le Xuan; Vinh, La The; Dang, Viet-Hung; Guan, Donghai; Pervez, Zeeshan; Han, Manhyung; Lee, Sungyoung; Lee, Young-Koo
2011-01-01
Ubiquitous Life Care (u-Life care) is receiving attention because it provides high quality and low cost care services. To provide spontaneous and robust healthcare services, knowledge of a patient’s real-time daily life activities is required. Context information with real-time daily life activities can help to provide better services and to improve healthcare delivery. The performance and accuracy of existing life care systems is not reliable, even with a limited number of services. This paper presents a Human Activity Recognition Engine (HARE) that monitors human health as well as activities using heterogeneous sensor technology and processes these activities intelligently on a Cloud platform for providing improved care at low cost. We focus on activity recognition using video-based, wearable sensor-based, and location-based activity recognition engines and then use intelligent processing to analyze the context of the activities performed. The experimental results of all the components showed good accuracy against existing techniques. The system is deployed on Cloud for Alzheimer’s disease patients (as a case study) with four activity recognition engines to identify low level activity from the raw data captured by sensors. These are then manipulated using ontology to infer higher level activities and make decisions about a patient’s activity using patient profile information and customized rules. PMID:22247682
Liu, Chung-Tse; Chan, Chia-Tai
2016-08-19
Sufficient physical activity can reduce many adverse conditions and contribute to a healthy life. Nevertheless, inactivity is prevalent on an international scale. Improving physical activity is an essential concern for public health. Reminders that help people change their health behaviors are widely applied in health care services. However, timed-based reminders deliver periodic prompts suffer from flexibility and dependency issues which may decrease prompt effectiveness. We propose a fuzzy logic prompting mechanism, Accumulated Activity Effective Index Reminder (AAEIReminder), based on pattern recognition and activity effective analysis to manage physical activity. AAEIReminder recognizes activity levels using a smartphone-embedded sensor for pattern recognition and analyzing the amount of physical activity in activity effective analysis. AAEIReminder can infer activity situations such as the amount of physical activity and days spent exercising through fuzzy logic, and decides whether a prompt should be delivered to a user. This prompting system was implemented in smartphones and was used in a short-term real-world trial by seventeenth participants for validation. The results demonstrated that the AAEIReminder is feasible. The fuzzy logic prompting mechanism can deliver prompts automatically based on pattern recognition and activity effective analysis. AAEIReminder provides flexibility which may increase the prompts' efficiency.
Impaired event memory and recollection in a case of developmental amnesia.
Rosenbaum, R S; Carson, N; Abraham, N; Bowles, B; Kwan, D; Köhler, S; Svoboda, E; Levine, B; Richards, B
2011-10-01
A current debate in the literature is whether all declarative memories and associated memory processes rely on the same neural substrate. Here, we show that H.C., a developmental amnesic person with selective bilateral hippocampal volume loss, has a mild deficit in personal episodic memory, and a more pronounced deficit in public event memory; semantic memory for personal and general knowledge was unimpaired. This was accompanied by a subtle difference in impairment between recollection and familiarity on lab-based tests of recognition memory. Strikingly, H.C.'s recognition did not benefit from a levels-of-processing manipulation. Thus, not all types of declarative memory and related processes can exist independently of the hippocampus even if it is damaged early in life.
Ashford, Nicholas A; Castleman, Barry; Frank, Arthur L; Giannasi, Fernanda; Goldman, Lynn R; Greenberg, Morris; Huff, James; Joshi, Kant Tushar; LaDou, Joseph; Lemen, Richard A; Maltoni, Cesare; O'Neil, Rory; Richter, Elihu; Silbergeld, Ellen K; Teitelbaum, Daniel T; Thebaud-Mony, Annie; Tomatis, Lorenzo; Watterson, Andrew
2002-01-01
The ICOH has played a key role in the development of some scientific documents and policy recommendations, but it has not always been scientifically objective, particularly in regard to asbestos and other fibers and some chemicals and pesticides. Many ICOH members are employees of corporations or consultants to industry, serving multinational corporate interests to influence public health policy in the guise of a professional scientific organization. ICOH members' conflicts of interest with the public health dominate the organization and damage the standing of the ICOH. Official recognition of the ICOH compromises the credibility of the WHO and the ILO. It is inappropriate for the ICOH to continue to receive WHO and ILO recognition unless the ICOH is recognized as an industry organization.
Robust Indoor Human Activity Recognition Using Wireless Signals.
Wang, Yi; Jiang, Xinli; Cao, Rongyu; Wang, Xiyang
2015-07-15
Wireless signals-based activity detection and recognition technology may be complementary to the existing vision-based methods, especially under the circumstance of occlusions, viewpoint change, complex background, lighting condition change, and so on. This paper explores the properties of the channel state information (CSI) of Wi-Fi signals, and presents a robust indoor daily human activity recognition framework with only one pair of transmission points (TP) and access points (AP). First of all, some indoor human actions are selected as primitive actions forming a training set. Then, an online filtering method is designed to make actions' CSI curves smooth and allow them to contain enough pattern information. Each primitive action pattern can be segmented from the outliers of its multi-input multi-output (MIMO) signals by a proposed segmentation method. Lastly, in online activities recognition, by selecting proper features and Support Vector Machine (SVM) based multi-classification, activities constituted by primitive actions can be recognized insensitive to the locations, orientations, and speeds.
Fast and Famous: Looking for the Fastest Speed at Which a Face Can be Recognized
Barragan-Jason, Gladys; Besson, Gabriel; Ceccaldi, Mathieu; Barbeau, Emmanuel J.
2012-01-01
Face recognition is supposed to be fast. However, the actual speed at which faces can be recognized remains unknown. To address this issue, we report two experiments run with speed constraints. In both experiments, famous faces had to be recognized among unknown ones using a large set of stimuli to prevent pre-activation of features which would speed up recognition. In the first experiment (31 participants), recognition of famous faces was investigated using a rapid go/no-go task. In the second experiment, 101 participants performed a highly time constrained recognition task using the Speed and Accuracy Boosting procedure. Results indicate that the fastest speed at which a face can be recognized is around 360–390 ms. Such latencies are about 100 ms longer than the latencies recorded in similar tasks in which subjects have to detect faces among other stimuli. We discuss which model of activation of the visual ventral stream could account for such latencies. These latencies are not consistent with a purely feed-forward pass of activity throughout the visual ventral stream. An alternative is that face recognition relies on the core network underlying face processing identified in fMRI studies (OFA, FFA, and pSTS) and reentrant loops to refine face representation. However, the model of activation favored is that of an activation of the whole visual ventral stream up to anterior areas, such as the perirhinal cortex, combined with parallel and feed-back processes. Further studies are needed to assess which of these three models of activation can best account for face recognition. PMID:23460051
Pärkkä, Juha; Cluitmans, Luc; Ermes, Miikka
2010-09-01
Inactive and sedentary lifestyle is a major problem in many industrialized countries today. Automatic recognition of type of physical activity can be used to show the user the distribution of his daily activities and to motivate him into more active lifestyle. In this study, an automatic activity-recognition system consisting of wireless motion bands and a PDA is evaluated. The system classifies raw sensor data into activity types online. It uses a decision tree classifier, which has low computational cost and low battery consumption. The classifier parameters can be personalized online by performing a short bout of an activity and by telling the system which activity is being performed. Data were collected with seven volunteers during five everyday activities: lying, sitting/standing, walking, running, and cycling. The online system can detect these activities with overall 86.6% accuracy and with 94.0% accuracy after classifier personalization.
Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong
2010-12-01
Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.
Fida, Benish; Bernabucci, Ivan; Bibbo, Daniele; Conforto, Silvia; Schmid, Maurizio
2015-07-01
Accuracy of systems able to recognize in real time daily living activities heavily depends on the processing step for signal segmentation. So far, windowing approaches are used to segment data and the window size is usually chosen based on previous studies. However, literature is vague on the investigation of its effect on the obtained activity recognition accuracy, if both short and long duration activities are considered. In this work, we present the impact of window size on the recognition of daily living activities, where transitions between different activities are also taken into account. The study was conducted on nine participants who wore a tri-axial accelerometer on their waist and performed some short (sitting, standing, and transitions between activities) and long (walking, stair descending and stair ascending) duration activities. Five different classifiers were tested, and among the different window sizes, it was found that 1.5 s window size represents the best trade-off in recognition among activities, with an obtained accuracy well above 90%. Differences in recognition accuracy for each activity highlight the utility of developing adaptive segmentation criteria, based on the duration of the activities. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Jolivet-Reynaud, C; Launay, J M; Alouf, J E
1988-04-01
The lytic effect of Clostridium perfringens delta toxin was investigated on goat, human, rabbit, and guinea pig platelets. In contrast to erythrocytes from the latter three species, which are insensitive to the toxin, the platelets were equally lysed by the same amount of toxin. These results suggest the presence of GM2 or GM2-like ganglioside(s) as a specific recognition site of the toxin on platelet plasmic membrane as previously established for sensitive erythrocytes. Plasmic membrane damage of human platelets was evidenced by the release of entrapped alpha-[14C]aminoisobutyric acid used as a cytoplasmic marker. The specific binding of hemolytically active 125I-delta toxin by human and rabbit platelets was practically identical, dose dependent, and inhibitable by GM2. Labeled toxin was also bound by various subcellular organelles separated from rabbit platelets except the 5-hydroxytryptamine (5-HT)-containing dense bodies, suggesting the absence or inaccessibility of GM2 on the surface of the latter organelles. This result correlates with the low amounts of 5-[3H]HT liberated after platelet challenge with delta toxin whereas this mediator was massively liberated upon lysis by the sulfhydryl-activated toxin alveolysin. The levels of M and P forms of phenol sulfotransferase (PST), involved in 5-HT catabolism, were determined in human platelet lysates after challenge with delta toxin, alveolysin, and other disruptive treatments. The low PST-M activities detected after lysis by delta toxin suggest that this isoenzyme is very likely associated to dense bodies in contrast to PST-P which is cytoplasmic. Platelet lysis by the toxin allows easy separation of these organelles.
Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.
Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio
2018-02-01
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Ayala-Sumuano, Jorge-Tonatiuh; Téllez-López, Victor M.; Domínguez-Robles, M. del Carmen; Shibayama-Salas, Mineko; Meza, Isaura
2013-01-01
Background Entamoeba histolytica, a protozoan parasite of humans, produces dysenteric diarrhea, intestinal mucosa damage and extraintestinal infection. It has been proposed that the intestinal microbiota composition could be an important regulatory factor of amebic virulence and tissue invasion, particularly if pathogenic bacteria are present. Recent in vitro studies have shown that Entamoeba histolytica trophozoites induced human colonic CaCo2 cells to synthesize TLR-2 and TLR-4 and proinflammatory cytokines after binding to the amebic Gal/GalNac lectin carbohydrate recognition domain. The magnitude of the inflammatory response induced by trophozoites and the subsequent cell damage were synergized when cells had previously been exposed to pathogenic bacteria. Methodology/Principal Findings We show here that E. histolytica activation of the classic TLR pathway in CaCo2 cells is required to induce β defensin-2 (HBD2) mRNA expression and production of a 5-kDa cationic peptide with similar properties to the antimicrobial HBD2 expressed by CaCo2 cells exposed to enterotoxigenic Escherichia coli. The induced peptide showed capacity to permeabilize membranes of bacteria and live trophozoites. This activity was abrogated by inhibition of TLR2/4-NFκB pathway or by neutralization with an anti-HBD2 antibody. Conclusions/Significance Entamoeba histolytica trophozoites bind to human intestinal cells and induce expression of HBD2; an antimicrobial molecule with capacity to destroy pathogenic bacteria and trophozoites. HDB2's possible role as a modulator of the course of intestinal infections, particularly in mixed ameba/bacteria infections, is discussed. PMID:23469306
Evaluation of a Home Biomonitoring Autonomous Mobile Robot.
Dorronzoro Zubiete, Enrique; Nakahata, Keigo; Imamoglu, Nevrez; Sekine, Masashi; Sun, Guanghao; Gomez, Isabel; Yu, Wenwei
2016-01-01
Increasing population age demands more services in healthcare domain. It has been shown that mobile robots could be a potential solution to home biomonitoring for the elderly. Through our previous studies, a mobile robot system that is able to track a subject and identify his daily living activities has been developed. However, the system has not been tested in any home living scenarios. In this study we did a series of experiments to investigate the accuracy of activity recognition of the mobile robot in a home living scenario. The daily activities tested in the evaluation experiment include watching TV and sleeping. A dataset recorded by a distributed distance-measuring sensor network was used as a reference to the activity recognition results. It was shown that the accuracy is not consistent for all the activities; that is, mobile robot could achieve a high success rate in some activities but a poor success rate in others. It was found that the observation position of the mobile robot and subject surroundings have high impact on the accuracy of the activity recognition, due to the variability of the home living daily activities and their transitional process. The possibility of improvement of recognition accuracy has been shown too.
Selective autophagy: ubiquitin-mediated recognition and beyond.
Kraft, Claudine; Peter, Matthias; Hofmann, Kay
2010-09-01
Eukaryotic cells use autophagy and the ubiquitin-proteasome system as their major protein degradation pathways. Whereas the ubiquitin-proteasome system is involved in the rapid degradation of proteins, autophagy pathways can selectively remove protein aggregates and damaged or excess organelles. Proteasome-mediated degradation requires previous ubiquitylation of the cargo, which is then recognized by ubiquitin receptors directing it to 26S proteasomes. Although autophagy has long been viewed as a random cytoplasmic degradation system, the involvement of ubiquitin as a specificity factor for selective autophagy is rapidly emerging. Recent evidence also suggests active crosstalk between proteasome-mediated degradation and selective autophagy. Here, we discuss the molecular mechanisms that link autophagy and the proteasome system, as well as the emerging roles of ubiquitin and ubiquitin-binding proteins in selective autophagy. On the basis of the evolutionary history of autophagic ubiquitin receptors, we propose a common origin for metazoan ubiquitin-dependent autophagy and the cytoplasm-to-vacuole targeting pathway of yeast.
Uterine diseases in cattle after parturition
Sheldon, I. Martin; Williams, Erin J.; Miller, Aleisha N.A.; Nash, Deborah M.; Herath, Shan
2008-01-01
Bacterial contamination of the uterine lumen is common in cattle after parturition, often leading to infection and uterine disease. Clinical disease can be diagnosed and scored by examination of the vaginal mucus, which reflects the presence of pathogenic bacteria such as Escherichia coli and Arcanobacterium pyogenes. Viruses may also cause uterine disease and bovine herpesvirus 4 (BoHV-4) is tropic for endometrial cells, causing a rapid cytopathic effect. The elimination of pathogens by the innate immune system is dependent on pattern recognition receptors binding pathogen-associated molecules. Uterine epithelial and stromal cells express receptors such as Toll-like Receptor 4 that binds E. coli lipopolysaccharide. The infertility associated with uterine disease is caused by damage to the endometrium and disruption of ovarian cyclic activity. Bacteria modulate endometrial prostaglandin secretion, and perturb ovarian follicle growth and function. Understanding the molecular basis of uterine disease will lead to novel approaches to treating infertility. PMID:18329302
A symbolic/subsymbolic interface protocol for cognitive modeling
Simen, Patrick; Polk, Thad
2009-01-01
Researchers studying complex cognition have grown increasingly interested in mapping symbolic cognitive architectures onto subsymbolic brain models. Such a mapping seems essential for understanding cognition under all but the most extreme viewpoints (namely, that cognition consists exclusively of digitally implemented rules; or instead, involves no rules whatsoever). Making this mapping reduces to specifying an interface between symbolic and subsymbolic descriptions of brain activity. To that end, we propose parameterization techniques for building cognitive models as programmable, structured, recurrent neural networks. Feedback strength in these models determines whether their components implement classically subsymbolic neural network functions (e.g., pattern recognition), or instead, logical rules and digital memory. These techniques support the implementation of limited production systems. Though inherently sequential and symbolic, these neural production systems can exploit principles of parallel, analog processing from decision-making models in psychology and neuroscience to explain the effects of brain damage on problem solving behavior. PMID:20711520
Jordan, Natasha; D’Cruz, David
2015-01-01
Systemic lupus erythematous (SLE) is a chronic multisystem disease with significant associated morbidity and mortality. A deeper understanding of the pathogenesis of SLE has led to the development of biologic agents, primarily targeting B cells and others inhibiting costimulatory molecules, type I interferons and cytokines such as interleukin-6. Several of these agents have been studied in clinical trials; some have shown promise while others have yielded disappointing results. Economic and regulatory issues continue to hamper the availability of such therapies for SLE patients. With increasing recognition that recurrent flares of disease activity lead to long-term damage accrual, one of the most important recent developments in patient management has been the concept of treat-to-target in SLE while minimizing patient exposure to excessive corticosteroid and other immunosuppressive therapy. This article reviews these key issues in SLE management, outlining recent developments and clinical implications for patients. PMID:26622325
(CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition.
Owen, Barbara A L; Yang, Zungyoon; Lai, Maoyi; Gajec, Maciej; Gajek, Maciez; Badger, John D; Hayes, Jeffrey J; Edelmann, Winfried; Kucherlapati, Raju; Wilson, Teresa M; McMurray, Cynthia T
2005-08-01
Cells have evolved sophisticated DNA repair systems to correct damaged DNA. However, the human DNA mismatch repair protein Msh2-Msh3 is involved in the process of trinucleotide (CNG) DNA expansion rather than repair. Using purified protein and synthetic DNA substrates, we show that Msh2-Msh3 binds to CAG-hairpin DNA, a prime candidate for an expansion intermediate. CAG-hairpin binding inhibits the ATPase activity of Msh2-Msh3 and alters both nucleotide (ADP and ATP) affinity and binding interfaces between protein and DNA. These changes in Msh2-Msh3 function depend on the presence of A.A mispaired bases in the stem of the hairpin and on the hairpin DNA structure per se. These studies identify critical functional defects in the Msh2-Msh3-CAG hairpin complex that could misdirect the DNA repair process.
Corridoni, Daniele; Chapman, Thomas; Ambrose, Tim; Simmons, Alison
2018-01-01
Activation of the innate immune system through pattern-recognition receptor (PRR) signaling plays a pivotal role in the early induction of host defense following exposure to pathogens. Loss of intestinal innate immune regulation leading aberrant immune responses has been implicated in the pathogenesis of inflammatory bowel disease (IBD). The precise role of PRRs in gut inflammation is not well understood, but considering their role as bacterial sensors and their genetic association with IBD, they likely contribute to dysregulated immune responses to the commensal microbiota. The purpose of this review is to evaluate the emerging functions of PRRs including their functional cross-talk, how they respond to mitochondrial damage, induce mitophagy or autophagy, and influence adaptive immune responses by interacting with the antigen presentation machinery. The review also summarizes some of the recent attempts to harness these pathways for therapeutic approaches in intestinal inflammation. PMID:29515999
Cancer treatment by photodynamic therapy combined with NK-cell-line-based adoptive immunotherapy
NASA Astrophysics Data System (ADS)
Korbelik, Mladen; Sun, Jinghai
1998-05-01
Treatment of solid cancers by photodynamic therapy (PDT) triggers a strong acute inflammatory reaction localized to the illuminated malignant tissue. This event is regulated by a massive release of various potent mediators which have a profound effect not only on local host cell populations, but also attract different types of immune cells to the treated tumor. Phagocytosis of PDT-damaged cancerous cells by antigen presenting cells, such as activated tumor associated macrophages, enables the recognition of even poorly immunogenic tumors by specific immune effector cells and the generation of immune memory populations. Because of its inflammatory/immune character, PDT is exceptionally responsive to adjuvant treatments with various types of immunotherapy. Combining PDT with immuneactivators, such as cytokines or other specific or non-specific immune agents, rendered marked improvements in tumor cures with various cancer models. Another clinically attractive strategy is adoptive immunotherapy, and the prospects of its use in conjunction with PDT are outlined.
Plant-to-plant communication triggered by systemin primes anti-herbivore resistance in tomato.
Coppola, Mariangela; Cascone, Pasquale; Madonna, Valentina; Di Lelio, Ilaria; Esposito, Francesco; Avitabile, Concetta; Romanelli, Alessandra; Guerrieri, Emilio; Vitiello, Alessia; Pennacchio, Francesco; Rao, Rosa; Corrado, Giandomenico
2017-11-14
Plants actively respond to herbivory by inducing various defense mechanisms in both damaged (locally) and non-damaged tissues (systemically). In addition, it is currently widely accepted that plant-to-plant communication allows specific neighbors to be warned of likely incoming stress (defense priming). Systemin is a plant peptide hormone promoting the systemic response to herbivory in tomato. This 18-aa peptide is also able to induce the release of bioactive Volatile Organic Compounds, thus also promoting the interaction between the tomato and the third trophic level (e.g. predators and parasitoids of insect pests). In this work, using a combination of gene expression (RNA-Seq and qRT-PCR), behavioral and chemical approaches, we demonstrate that systemin triggers metabolic changes of the plant that are capable of inducing a primed state in neighboring unchallenged plants. At the molecular level, the primed state is mainly associated with an elevated transcription of pattern -recognition receptors, signaling enzymes and transcription factors. Compared to naïve plants, systemin-primed plants were significantly more resistant to herbivorous pests, more attractive to parasitoids and showed an increased response to wounding. Small peptides are nowadays considered fundamental signaling molecules in many plant processes and this work extends the range of downstream effects of this class of molecules to intraspecific plant-to-plant communication.
NASA Technical Reports Server (NTRS)
2012-01-01
One of the characteristics of an effective safety program is the recognition and control of hazards before mishaps or failures occur. Conducting potentially hazardous tests necessitates a thorough hazard analysis in order to protect our personnel from injury and our equipment from damage. The purpose of this hazard analysis is to define and address the potential hazards and controls associated with the Z1 Suit Port Test in Chamber B located in building 32, and to provide the applicable team of personnel with the documented results. It is imperative that each member of the team be familiar with the hazards and controls associated with his/her particular tasks, assignments, and activities while interfacing with facility test systems, equipment, and hardware. The goal of this hazard analysis is to identify all hazards that have the potential to harm personnel and/or damage facility equipment, flight hardware, property, or harm the environment. This analysis may also assess the significance and risk, when applicable, of lost test objectives when substantial monetary value is involved. The hazards, causes, controls, verifications, and risk assessment codes have been documented on the hazard analysis work sheets in appendix A of this document. The preparation and development of this report is in accordance with JPR 1700.1, JSC Safety and Health Handbook.
Distinct Functional Domains of Ubc9 Dictate Cell Survival and Resistance to Genotoxic Stress
van Waardenburg, Robert C. A. M.; Duda, David M.; Lancaster, Cynthia S.; Schulman, Brenda A.; Bjornsti, Mary-Ann
2006-01-01
Covalent modification with SUMO alters protein function, intracellular localization, or protein-protein interactions. Target recognition is determined, in part, by the SUMO E2 enzyme, Ubc9, while Siz/Pias E3 ligases may facilitate select interactions by acting as substrate adaptors. A yeast conditional Ubc9P123L mutant was viable at 36°C yet exhibited enhanced sensitivity to DNA damage. To define functional domains in Ubc9 that dictate cellular responses to genotoxic stress versus those necessary for cell viability, a 1.75-Å structure of yeast Ubc9 that demonstrated considerable conservation of backbone architecture with human Ubc9 was solved. Nevertheless, differences in side chain geometry/charge guided the design of human/yeast chimeras, where swapping domains implicated in (i) binding residues within substrates that flank canonical SUMOylation sites, (ii) interactions with the RanBP2 E3 ligase, and (iii) binding of the heterodimeric E1 and SUMO had distinct effects on cell growth and resistance to DNA-damaging agents. Our findings establish a functional interaction between N-terminal and substrate-binding domains of Ubc9 and distinguish the activities of E3 ligases Siz1 and Siz2 in regulating cellular responses to genotoxic stress. PMID:16782883
The Immune Interplay between the Host and the Pathogen in Aspergillus fumigatus Lung Infection
Sales-Campos, Helioswilton; Tonani, Ludmilla; Cardoso, Cristina Ribeiro Barros; Kress, Márcia Regina Von Zeska
2013-01-01
The interplay between Aspergillus fumigatus and the host immune response in lung infection has been subject of studies over the last years due to its importance in immunocompromised patients. The multifactorial virulence factors of A. fumigatus are related to the fungus biological characteristics, for example, structure, ability to grow and adapt to high temperatures and stress conditions, besides capability of evading the immune system and causing damage to the host. In this context, the fungus recognition by the host innate immunity occurs when the pathogen disrupts the natural and chemical barriers followed by the activation of acquired immunity. It seems clear that a Th1 response has a protective role, whereas Th2 reactions are often associated with higher fungal burden, and Th17 response is still controversial. Furthermore, a fine regulation of the effector immunity is required to avoid excessive tissue damage associated with fungal clearance, and this role could be attributed to regulatory T cells. Finally, in this work we reviewed the aspects involved in the complex interplay between the host immune response and the pathogen virulence factors, highlighting the immunological issues and the importance of its better understanding to the development of novel therapeutic approaches for invasive lung aspergillosis. PMID:23984400
An Aromatic Sensor with Aversion to Damaged Strands Confers Versatility to DNA Repair
Maillard, Olivier; Solyom, Szilvia; Naegeli, Hanspeter
2007-01-01
It was not known how xeroderma pigmentosum group C (XPC) protein, the primary initiator of global nucleotide excision repair, achieves its outstanding substrate versatility. Here, we analyzed the molecular pathology of a unique Trp690Ser substitution, which is the only reported missense mutation in xeroderma patients mapping to the evolutionary conserved region of XPC protein. The function of this critical residue and neighboring conserved aromatics was tested by site-directed mutagenesis followed by screening for excision activity and DNA binding. This comparison demonstrated that Trp690 and Phe733 drive the preferential recruitment of XPC protein to repair substrates by mediating an exquisite affinity for single-stranded sites. Such a dual deployment of aromatic side chains is the distinctive feature of functional oligonucleotide/oligosaccharide-binding folds and, indeed, sequence homologies with replication protein A and breast cancer susceptibility 2 protein indicate that XPC displays a monomeric variant of this recurrent interaction motif. An aversion to associate with damaged oligonucleotides implies that XPC protein avoids direct contacts with base adducts. These results reveal for the first time, to our knowledge, an entirely inverted mechanism of substrate recognition that relies on the detection of single-stranded configurations in the undamaged complementary sequence of the double helix. PMID:17355181
Short, Jeffrey W
2017-07-01
Scientific studies of the environmental effects of oil spills in the United States have produced a steady stream of unexpected discoveries countering prior and often simplistic assumptions. In this brief review, I present how major discoveries from scientific studies of oil spill effects on marine ecosystems and environments, beginning with the 1989 Exxon Valdez, have led to a more informed appreciation for the complexity and the severity of the damage that major spills can do to marine ecosystems and to an increasing recognition that our ability to evaluate those damages is very limited, resulting in a structural bias toward underestimation of adverse environmental effects.
Dyakonova, Elena S; Koval, Vladimir V; Lomzov, Alexander A; Ishchenko, Alexander A; Fedorova, Olga S
2015-06-01
The apurinic/apyrimidinic (AP) endonuclease Apn1 from Saccharomyces cerevisiae is a key enzyme involved in the base excision repair (BER) at the cleavage stage of abasic sites (AP sites) in DNA. The crystal structure of Apn1 from S. cerevisiae is unresolved. Based on its high amino acid homology to Escherichia coli Endo IV, His-83 is believed to coordinate one of three Zn2+ ions in Apn1's active site similar to His-69 in Endo IV. Substituting His-83 with Ala is proposed to decrease the AP endonuclease activity of Apn1 owing to weak coordination of Zn2+ ions involved in enzymatic catalysis. The kinetics of recognition, binding, and incision of DNA substrates with the H83A Apn1 mutant was investigated. The stopped-flow method detecting fluorescence intensity changes of 2-aminopurine (2-aPu) was used to monitor the conformational dynamics of DNA at pre-steady-state conditions. We found substituting His-83 with Ala influenced catalytic complex formation and further incision of the damaged DNA strand. The H83A Apn1 catalysis depends not only on the location of the mismatch relative to the abasic site in DNA, but also on the nature of damage. We consider His-83 properly coordinates the active site Zn2+ ion playing a crucial role in catalytic incision stage. Our data prove suppressed enzymatic activity of H83A Apn1 results from the reduced number of active site Zn2+ ions. Our study provides insights into mechanistic specialty of AP site repair by yeast AP endonuclease Apn1 of Endo IV family, which members are not found in mammals, but are present in many microorganisms. The results will provide useful guidelines for design of new anti-fungal and anti-malarial agents. Copyright © 2015 Elsevier B.V. All rights reserved.
RIG-I in RNA virus recognition
Kell, Alison M.; Gale, Michael
2015-01-01
Antiviral immunity is initiated upon host recognition of viral products via non-self molecular patterns known as pathogen-associated molecular patterns (PAMPs). Such recognition initiates signaling cascades that induce intracellular innate immune defenses and an inflammatory response that facilitates development of the acquired immune response. The retinoic acid-inducible gene I (RIG-I) and the RIG-I-like receptor (RLR) protein family are key cytoplasmic pathogen recognition receptors that are implicated in the recognition of viruses across genera and virus families, including functioning as major sensors of RNA viruses, and promoting recognition of some DNA viruses. RIG-I, the charter member of the RLR family, is activated upon binding to PAMP RNA. Activated RIG-I signals by interacting with the adapter protein MAVS leading to a signaling cascade that activates the transcription factors IRF3 and NF-κB. These actions induce the expression of antiviral gene products and the production of type I and III interferons that lead to an antiviral state in the infected cell and surrounding tissue. RIG-I signaling is essential for the control of infection by many RNA viruses. Recently, RIG-I crosstalk with other pathogen recognition receptors and components of the inflammasome has been described. In this review, we discuss the current knowledge regarding the role of RIG-I in recognition of a variety of virus families and its role in programming the adaptive immune response through cross-talk with parallel arms of the innate immune system, including how RIG-I can be leveraged for antiviral therapy. PMID:25749629
Soni, Kapil; Parle, Milind
2017-05-01
The present study was designed to explore the beneficial effects of successive 10 days administration of Trachyspermum ammi seed's powder (TASP) along with diet (at the dose of 0.5%, 1.0% and 2.0% w/w) on learning and memory of mice. A total of 306 mice divided in 51 equal groups were employed in the study. Passive avoidance paradigm (PAP) and Object recognition Task (ORT) were employed as exteroceptive models. The brain acetylcholinesterase activity (AChE), serum cholesterol, brain monoaldehyde (MDA), brain reduced glutathione (GSH) and brain nitrite were estimated and Alprazolam, Scopolamine and Electroshock induced amnesia was employed to describe the actions. Treatment of TASP significantly increased step down latency of PAA and significantly increased discrimination index of ORT in groups with or without amnesia when compared to respective control groups. Furthermore, TASP administration resulted in significant fall in brain AChE activity, brain MDA level and brain nitrite level with simultaneous rise in brain GSH level, thereby decreased oxidative damage. A significant decrease in serum cholesterol was also observed. Ajowan supplementation may prove a remedy for the management of cognitive disorders owing to have pro-cholinergic, antioxidant and hypo-lipidemic activities.
Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection
Kumaresan, Pappanaicken R.; Manuri, Pallavi R.; Albert, Nathaniel D.; Maiti, Sourindra; Singh, Harjeet; Mi, Tiejuan; Roszik, Jason; Rabinovich, Brian; Olivares, Simon; Krishnamurthy, Janani; Zhang, Ling; Najjar, Amer M.; Huls, M. Helen; Lee, Dean A.; Champlin, Richard E.; Kontoyiannis, Dimitrios P.; Cooper, Laurence J. N.
2014-01-01
Clinical-grade T cells are genetically modified ex vivo to express chimeric antigen receptors (CARs) to redirect their specificity to target tumor-associated antigens in vivo. We now have developed this molecular strategy to render cytotoxic T cells specific for fungi. We adapted the pattern-recognition receptor Dectin-1 to activate T cells via chimeric CD28 and CD3-ζ (designated “D-CAR”) upon binding with carbohydrate in the cell wall of Aspergillus germlings. T cells genetically modified with the Sleeping Beauty system to express D-CAR stably were propagated selectively on artificial activating and propagating cells using an approach similar to that approved by the Food and Drug Administration for manufacturing CD19-specific CAR+ T cells for clinical trials. The D-CAR+ T cells exhibited specificity for β-glucan which led to damage and inhibition of hyphal growth of Aspergillus in vitro and in vivo. Treatment of D-CAR+ T cells with steroids did not compromise antifungal activity significantly. These data support the targeting of carbohydrate antigens by CAR+ T cells and provide a clinically appealing strategy to enhance immunity for opportunistic fungal infections using T-cell gene therapy. PMID:25002471
Feng, You; Maity, Ranjan; Whitelegge, Julian P.; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T.; Bedford, Mark T.; Masson, Jean-Yves; Clarke, Steven G.
2013-01-01
The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7. PMID:24247247
Feng, You; Maity, Ranjan; Whitelegge, Julian P; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T; Bedford, Mark T; Masson, Jean-Yves; Clarke, Steven G
2013-12-27
The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7.
Cerebellar degeneration following neuroleptic malignant syndrome.
Lal, V.; Sardana, V.; Thussu, A.; Sawhney, I. M.; Prabhakar, S.
1997-01-01
A 55-year-old woman with a history of bipolar affective disorder developed hyperpyrexia, rigidity and depressed consciousness (neuroleptic malignant syndrome) after commencing neuroleptic therapy. On regaining consciousness, she was mute and had signs suggesting pancerebellar involvement. Hyperpyrexia, which is a cardinal feature of neuroleptic malignant syndrome, may have caused cerebellar damage. Neuroleptic malignant syndrome needs both early recognition and prompt treatment to obviate devastating complications. PMID:9519191
Orthopedic injuries from the Andover, Kansas, tornado.
Rosenfield, A L; McQueen, D A; Lucas, G L
1994-05-01
Devastating tornados struck the state of Kansas on Friday, April 26, 1991. Twenty lives were lost and many people were injured. Property damage was extensive. Overall, the outcome of those admitted to the various hospitals was good, with few orthopedic-related complications. The low complication rate can be attributed to thorough open wound management and suspicion and recognition of other potential orthopedic complications such as compartment syndrome.
Body Knowledge in Brain-Damaged Children: A Double-Dissociation in Self and Other's Body Processing
ERIC Educational Resources Information Center
Frassinetti, Francesca; Fiori, Simona; D'Angelo, Valentina; Magnani, Barbara; Guzzetta, Andrea; Brizzolara, Daniela; Cioni, Giovanni
2012-01-01
Bodies are important element for self-recognition. In this respect, in adults it has been recently shown a self vs other advantage when small parts of the subjects' body are visible. This advantage is lost following a right brain lesion underlying a role of the right hemisphere in self body-parts processing. In order to investigate the bodily-self…
NASA Astrophysics Data System (ADS)
Salehi, Hadi; Das, Saptarshi; Chakrabartty, Shantanu; Biswas, Subir; Burgueño, Rigoberto
2017-04-01
This study proposes a novel strategy for damage identification in aircraft structures. The strategy was evaluated based on the simulation of the binary data generated from self-powered wireless sensors employing a pulse switching architecture. The energy-aware pulse switching communication protocol uses single pulses instead of multi-bit packets for information delivery resulting in discrete binary data. A system employing this energy-efficient technology requires dealing with time-delayed binary data due to the management of power budgets for sensing and communication. This paper presents an intelligent machine-learning framework based on combination of the low-rank matrix decomposition and pattern recognition (PR) methods. Further, data fusion is employed as part of the machine-learning framework to take into account the effect of data time delay on its interpretation. Simulated time-delayed binary data from self-powered sensors was used to determine damage indicator variables. Performance and accuracy of the damage detection strategy was examined and tested for the case of an aircraft horizontal stabilizer. Damage states were simulated on a finite element model by reducing stiffness in a region of the stabilizer's skin. The proposed strategy shows satisfactory performance to identify the presence and location of the damage, even with noisy and incomplete data. It is concluded that PR is a promising machine-learning algorithm for damage detection for time-delayed binary data from novel self-powered wireless sensors.
NASA Astrophysics Data System (ADS)
Pchelintseva, Svetlana V.; Runnova, Anastasia E.; Musatov, Vyacheslav Yu.; Hramov, Alexander E.
2017-03-01
In the paper we study the problem of recognition type of the observed object, depending on the generated pattern and the registered EEG data. EEG recorded at the time of displaying cube Necker characterizes appropriate state of brain activity. As an image we use bistable image Necker cube. Subject selects the type of cube and interpret it either as aleft cube or as the right cube. To solve the problem of recognition, we use artificial neural networks. In our paper to create a classifier we have considered a multilayer perceptron. We examine the structure of the artificial neural network and define cubes recognition accuracy.
NASA Astrophysics Data System (ADS)
Grossman, Barry G.; Gonzalez, Frank S.; Blatt, Joel H.; Hooker, Jeffery A.
1992-03-01
The development of efficient high speed techniques to recognize, locate, and quantify damage is vitally important for successful automated inspection systems such as ones used for the inspection of undersea pipelines. Two critical problems must be solved to achieve these goals: the reduction of nonuseful information present in the video image and automatic recognition and quantification of extent and location of damage. Artificial neural network processed moire profilometry appears to be a promising technique to accomplish this. Real time video moire techniques have been developed which clearly distinguish damaged and undamaged areas on structures, thus reducing the amount of extraneous information input into an inspection system. Artificial neural networks have demonstrated advantages for image processing, since they can learn the desired response to a given input and are inherently fast when implemented in hardware due to their parallel computing architecture. Video moire images of pipes with dents of different depths were used to train a neural network, with the desired output being the location and severity of the damage. The system was then successfully tested with a second series of moire images. The techniques employed and the results obtained are discussed.
Singh, Anju; Periasamy, Sivakumar; Malik, Meenakshi; Bakshi, Chandra Shekhar; Stephen, Laurie; Ault, Jeffrey G; Mannella, Carmen A; Sellati, Timothy J
2017-01-01
Infection with Francisella tularensis ssp. tularensis ( Ft ) strain SchuS4 causes an often lethal disease known as tularemia in rodents, non-human primates, and humans. Ft subverts host cell death programs to facilitate their exponential replication within macrophages and other cell types during early respiratory infection (⩽72 h). The mechanism(s) by which cell death is triggered remains incompletely defined, as does the impact of Ft on mitochondria, the host cell's organellar 'canary in a coal mine'. Herein, we reveal that Ft infection of host cells, particularly macrophages and polymorphonuclear leukocytes, drives necroptosis via a receptor-interacting protein kinase 1/3-mediated mechanism. During necroptosis mitochondria and other organelles become damaged. Ft -induced mitochondrial damage is characterized by: (i) a decrease in membrane potential and consequent mitochondrial oncosis or swelling, (ii) increased generation of superoxide radicals, and (iii) release of intact or damaged mitochondria into the lung parenchyma. Host cell recognition of and response to released mitochondria and other damage-associated molecular patterns engenders a sepsis-like syndrome typified by production of TNF, IL-1 β , IL-6, IL-12p70, and IFN- γ during late-phase tularemia (⩾72 h), but are absent early during infection.
Immune-Mediated Heart Disease.
Generali, Elena; Folci, Marco; Selmi, Carlo; Riboldi, Piersandro
2017-01-01
The heart involvement in systemic autoimmune diseases represents a growing burden for patients and health systems. Cardiac function can be impaired as a consequence of systemic conditions and manifests with threatening clinical pictures or chronic myocardial damage. Direct injuries are mediated by the presence of inflammatory infiltrate which, even though unusual, is one of the most danger manifestations requiring prompt recognition and treatment. On the other hand, a not well-managed inflammatory status leads to accelerated atherosclerosis that precipitates ischemic disease. All cardiac structures may be damaged with different grades of intensity; moreover, lesions can appear simultaneously or more frequently at a short distance from each other leading to the onset of varied clinical pictures. The pathogenesis of heart damages in systemic autoimmune conditions is not yet completely understood for the great part of situations, even if several mechanisms have been investigated. The principal biochemical circuits refer to the damaging role of autoantibodies on cardiac tissues and the precipitation of immune complexes on endocardium. These events are finally responsible of inflammatory infiltration which leads to subsequent worsening of the previous damage. For these reasons, it appears of paramount importance a regular and deepened cardiovascular assessment to prevent a progressive evolution toward heart failure in patient affected by autoimmune diseases.
Segmentation and Recognition of Continuous Human Activity
2001-01-01
This paper presents a methodology for automatic segmentation and recognition of continuous human activity . We segment a continuous human activity into...commencement or termination. We use single action sequences for the training data set. The test sequences, on the other hand, are continuous sequences of human ... activity that consist of three or more actions in succession. The system has been tested on continuous activity sequences containing actions such as
Visser-Keizer, Annemarie C.; Westerhof-Evers, Herma J.; Gerritsen, Marleen J. J.; van der Naalt, Joukje; Spikman, Jacoba M.
2016-01-01
Fear is an important emotional reaction that guides decision making in situations of ambiguity or uncertainty. Both recognition of facial expressions of fear and decision making ability can be impaired after traumatic brain injury (TBI), in particular when the frontal lobe is damaged. So far, it has not been investigated how recognition of fear influences risk behavior in healthy subjects and TBI patients. The ability to recognize fear is thought to be related to the ability to experience fear and to use it as a warning signal to guide decision making. We hypothesized that a better ability to recognize fear would be related to a better regulation of risk behavior, with healthy controls outperforming TBI patients. To investigate this, 59 healthy subjects and 49 TBI patients were assessed with a test for emotion recognition (Facial Expression of Emotion: Stimuli and Tests) and a gambling task (Iowa Gambling Task (IGT)). The results showed that, regardless of post traumatic amnesia duration or the presence of frontal lesions, patients were more impaired than healthy controls on both fear recognition and decision making. In both groups, a significant relationship was found between better fear recognition, the development of an advantageous strategy across the IGT and less risk behavior in the last blocks of the IGT. Educational level moderated this relationship in the final block of the IGT. This study has important clinical implications, indicating that impaired decision making and risk behavior after TBI can be preceded by deficits in the processing of fear. PMID:27870900
Visser-Keizer, Annemarie C; Westerhof-Evers, Herma J; Gerritsen, Marleen J J; van der Naalt, Joukje; Spikman, Jacoba M
2016-01-01
Fear is an important emotional reaction that guides decision making in situations of ambiguity or uncertainty. Both recognition of facial expressions of fear and decision making ability can be impaired after traumatic brain injury (TBI), in particular when the frontal lobe is damaged. So far, it has not been investigated how recognition of fear influences risk behavior in healthy subjects and TBI patients. The ability to recognize fear is thought to be related to the ability to experience fear and to use it as a warning signal to guide decision making. We hypothesized that a better ability to recognize fear would be related to a better regulation of risk behavior, with healthy controls outperforming TBI patients. To investigate this, 59 healthy subjects and 49 TBI patients were assessed with a test for emotion recognition (Facial Expression of Emotion: Stimuli and Tests) and a gambling task (Iowa Gambling Task (IGT)). The results showed that, regardless of post traumatic amnesia duration or the presence of frontal lesions, patients were more impaired than healthy controls on both fear recognition and decision making. In both groups, a significant relationship was found between better fear recognition, the development of an advantageous strategy across the IGT and less risk behavior in the last blocks of the IGT. Educational level moderated this relationship in the final block of the IGT. This study has important clinical implications, indicating that impaired decision making and risk behavior after TBI can be preceded by deficits in the processing of fear.
Dalrymple, Kirsten A.; Fletcher, Kimberley; Corrow, Sherryse; Nair, Roshan das; Barton, Jason J. S.; Yonas, Albert; Duchaine, Brad
2014-01-01
Objective Individuals with developmental prosopagnosia (‘face blindness’) have severe face recognition difficulties due to a failure to develop the necessary visual mechanisms for recognizing faces. These difficulties occur in the absence of brain damage and despite normal low-level vision and intellect. Adults with developmental prosopagnosia report serious personal and emotional consequences from their inability to recognize faces, but little is known about the psychosocial consequences in childhood. Given the importance of face recognition in daily life, and the potential for unique social consequences of impaired face recognition in childhood, we sought to evaluate the impact of developmental prosopagnosia on children and their families. Methods We conducted semi-structured interviews with 8 children with developmental prosopagnosia and their parents. A battery of face recognition tests was used to confirm the face recognition impairment reported by the parents of each child. We used thematic analysis to develop common themes among the psychosocial experiences of the children and their parents. Results Three themes were developed from the child reports: 1) awareness of their difficulties, 2) coping strategies, such as using non-facial cues to identify others, and 3) social implications, such as discomfort in, and avoidance of, social situations. These themes were paralleled by the parent reports and highlight the unique social and practical challenges associated with childhood developmental prosopagnosia. Conclusion Our findings indicate a need for increased awareness and treatment of developmental prosopagnosia to help these children manage their face recognition difficulties and to promote their social and emotional wellbeing. PMID:25077856
Implementation study of wearable sensors for activity recognition systems.
Rezaie, Hamed; Ghassemian, Mona
2015-08-01
This Letter investigates and reports on a number of activity recognition methods for a wearable sensor system. The authors apply three methods for data transmission, namely 'stream-based', 'feature-based' and 'threshold-based' scenarios to study the accuracy against energy efficiency of transmission and processing power that affects the mote's battery lifetime. They also report on the impact of variation of sampling frequency and data transmission rate on energy consumption of motes for each method. This study leads us to propose a cross-layer optimisation of an activity recognition system for provisioning acceptable levels of accuracy and energy efficiency.
Petrulis, A; Alvarez, P; Eichenbaum, H
2005-01-01
Recognition of individual conspecifics is important for social behavior and requires the formation of memories for individually distinctive social signals. Individual recognition is often mediated by olfactory cues in mammals, especially nocturnal rodents such as golden hamsters. In hamsters, this form of recognition requires main olfactory system input to the lateral entorhinal cortex (LEnt). Here, we tested whether neurons in LEnt and the nearby ventral subiculum (VS) would show cellular correlates of this natural form of recognition memory. Two hundred ninety single neurons were recorded from both superficial (SE) and deep layers of LEnt (DE) and VS while male hamsters investigated volatile odorants from female vaginal secretions. Many neurons encoded differences between female's odors with many discriminating between odors from different individual females but not between different odor samples from the same female. Other neurons discriminated between odor samples from one female and generalized across collections from other females. LEnt and VS neurons showed enhanced or suppressed cellular activity during investigation of previously presented odors and in response to novel odors. A majority of SE neurons decreased firing to odor repetition and increased activity to novel odors. In contrast, DE neurons often showed suppressed activity in response to novel odors. Thus, neurons in LEnt and VS of male hamsters encode information that is critical for the identification and recognition of individual females by odor cues. This study reveals cellular mechanisms in LEnt and VS that may mediate a natural form of recognition memory in hamsters. These neuronal responses were similar to those observed in rats and monkeys during performance in standard recognition memory tasks. Consequently, the present data extend our understanding of the cellular basis for recognition memory and suggest that individual recognition requires similar neural mechanisms as those employed in laboratory tests of recognition memory.
Baldominos, Alejandro; Saez, Yago; Isasi, Pedro
2018-04-23
Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures.
2018-01-01
Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures. PMID:29690587
Human Activity Recognition in AAL Environments Using Random Projections.
Damaševičius, Robertas; Vasiljevas, Mindaugas; Šalkevičius, Justas; Woźniak, Marcin
2016-01-01
Automatic human activity recognition systems aim to capture the state of the user and its environment by exploiting heterogeneous sensors attached to the subject's body and permit continuous monitoring of numerous physiological signals reflecting the state of human actions. Successful identification of human activities can be immensely useful in healthcare applications for Ambient Assisted Living (AAL), for automatic and intelligent activity monitoring systems developed for elderly and disabled people. In this paper, we propose the method for activity recognition and subject identification based on random projections from high-dimensional feature space to low-dimensional projection space, where the classes are separated using the Jaccard distance between probability density functions of projected data. Two HAR domain tasks are considered: activity identification and subject identification. The experimental results using the proposed method with Human Activity Dataset (HAD) data are presented.
Human Activity Recognition in AAL Environments Using Random Projections
Damaševičius, Robertas; Vasiljevas, Mindaugas; Šalkevičius, Justas; Woźniak, Marcin
2016-01-01
Automatic human activity recognition systems aim to capture the state of the user and its environment by exploiting heterogeneous sensors attached to the subject's body and permit continuous monitoring of numerous physiological signals reflecting the state of human actions. Successful identification of human activities can be immensely useful in healthcare applications for Ambient Assisted Living (AAL), for automatic and intelligent activity monitoring systems developed for elderly and disabled people. In this paper, we propose the method for activity recognition and subject identification based on random projections from high-dimensional feature space to low-dimensional projection space, where the classes are separated using the Jaccard distance between probability density functions of projected data. Two HAR domain tasks are considered: activity identification and subject identification. The experimental results using the proposed method with Human Activity Dataset (HAD) data are presented. PMID:27413392
2011-01-01
remote sensing , such as Fourier-transform infrared spectroscopy, has limited recognition specificity because of atmospheric pressure broadening. Active interrogation techniques promise much greater chemical recognition that can overcome the limits imposed by atmospheric pressure broadening. Here we introduce infrared - terahertz (IR/THz) double resonance spectroscopy as an active means of chemical remote sensing that retains recognition specificity through rare, molecule-unique coincidences between IR molecular absorption and a line-tunable CO2
Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
Gao, Lei; Bourke, A K; Nelson, John
2014-06-01
Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with "light-weight" signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Yamaguchi, Koji; Yamada, Kenta; Kawasaki, Tsutomu
2013-10-01
Innate immunity is generally initiated with recognition of conserved pathogen-associated molecular patterns (PAMPs). PAMPs are perceived by pattern recognition receptors (PRRs), leading to activation of a series of immune responses, including the expression of defense genes, ROS production and activation of MAP kinase. Recent progress has indicated that receptor-like cytoplasmic kinases (RLCKs) are directly activated by ligand-activated PRRs and initiate pattern-triggered immunity (PTI) in both Arabidopsis and rice. To suppress PTI, pathogens inhibit the RLCKs by many types of effectors, including AvrAC, AvrPphB and Xoo1488. In this review, we summarize recent advances in RLCK-mediated PTI in plants.
Architecture and DNA Recognition Elements of the Fanconi Anemia FANCM-FAAP24 Complex
Coulthard, Rachel; Deans, Andrew J.; Swuec, Paolo; Bowles, Maureen; Costa, Alessandro; West, Stephen C.; McDonald, Neil Q.
2013-01-01
Summary Fanconi anemia (FA) is a disorder associated with a failure in DNA repair. FANCM (defective in FA complementation group M) and its partner FAAP24 target other FA proteins to sites of DNA damage. FANCM-FAAP24 is related to XPF/MUS81 endonucleases but lacks endonucleolytic activity. We report a structure of an FANCM C-terminal fragment (FANCMCTD) bound to FAAP24 and DNA. This S-shaped structure reveals the FANCM (HhH)2 domain is buried, whereas the FAAP24 (HhH)2 domain engages DNA. We identify a second DNA contact and a metal center within the FANCM pseudo-nuclease domain and demonstrate that mutations in either region impair double-stranded DNA binding in vitro and FANCM-FAAP24 function in vivo. We show the FANCM translocase domain lies in proximity to FANCMCTD by electron microscopy and that binding fork DNA structures stimulate its ATPase activity. This suggests a tracking model for FANCM-FAAP24 until an encounter with a stalled replication fork triggers ATPase-mediated fork remodeling. PMID:23932590
Adaptive hidden Markov model with anomaly States for price manipulation detection.
Cao, Yi; Li, Yuhua; Coleman, Sonya; Belatreche, Ammar; McGinnity, Thomas Martin
2015-02-01
Price manipulation refers to the activities of those traders who use carefully designed trading behaviors to manually push up or down the underlying equity prices for making profits. With increasing volumes and frequency of trading, price manipulation can be extremely damaging to the proper functioning and integrity of capital markets. The existing literature focuses on either empirical studies of market abuse cases or analysis of particular manipulation types based on certain assumptions. Effective approaches for analyzing and detecting price manipulation in real time are yet to be developed. This paper proposes a novel approach, called adaptive hidden Markov model with anomaly states (AHMMAS) for modeling and detecting price manipulation activities. Together with wavelet transformations and gradients as the feature extraction methods, the AHMMAS model caters to price manipulation detection and basic manipulation type recognition. The evaluation experiments conducted on seven stock tick data from NASDAQ and the London Stock Exchange and 10 simulated stock prices by stochastic differential equation show that the proposed AHMMAS model can effectively detect price manipulation patterns and outperforms the selected benchmark models.
Tseng, Hsiang-Chien; Wang, Mao-Hsien; Soung, Hung-Sheng; Chang, Yi; Chang, Kuo-Chi
2015-12-01
Reserpine has been confirmed to induce cognitive dysfunction and increase brain neural oxidative stress. Green tea catechins, particularly (-)epigallocatechin-3-gallate (EGCG), have strong antioxidative properties and can protect against numerous oxidative damages. In this study, we examined the possible protective effects of EGCG on reserpine-induced impairment of short-term memory in rats. Reserpine (1 mg/kg, intraperitoneal)-induced memory impairment was assessed using the social recognition task method; locomotor activity and the olfactory discrimination ability were not altered as measured by an open-field test and an olfactory discrimination test, respectively. EGCG treatment (100 and 300 mg/kg, intraperitoneal, for 7 days, starting 6 days before the reserpine injection) could improve the worsened social memory of reserpine-treated rats. Also, EGCG treatment reduced reserpine-induced lipid peroxidation and enhanced the antioxidation power in the hippocampi of reserpine-treated rats. These results suggest a protective effect of EGCG in treating reserpine-induced impairment of memory, most probably through its powerful antioxidative activities. Accordingly, EGCG may hold a clinically relevant value in preventing reserpine-induced cognitive dysfunction.
RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA.
Wolf, Christine; Rapp, Alexander; Berndt, Nicole; Staroske, Wolfgang; Schuster, Max; Dobrick-Mattheuer, Manuela; Kretschmer, Stefanie; König, Nadja; Kurth, Thomas; Wieczorek, Dagmar; Kast, Karin; Cardoso, M Cristina; Günther, Claudia; Lee-Kirsch, Min Ae
2016-05-27
Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA.
Fatemi, Ahmad; Kazemi, Ahmad; Kashiri, Meysam; Safa, Majid
2015-01-01
Recognition of the molecular mechanisms of cAMP action against DNA damage-induced apoptosis can be useful to improve the efficacy of DNA damaging therapeutic agents. Considering the critical role of bcl-2-associated death promoter (BAD) and p53 proteins in DNA damage -induced apoptosis, the aim of this study was to assess the effect of cAMP-elevating agents on these proteins in doxorubicin-treated pre-B acute lymphoblastic leukemia (pre-B ALL) NALM-6 cells.The pre-B ALL cell line NALM-6 was cultured and treated with doxorubicin in combination with or without cAMP-elevating agents forskolin and 3-isobutyl-1-methylxanthine (IBMX). Cell viability was measured by trypan blue staining and MTT assay. For evaluation of apoptosis, annexin-V staining by flow cytometry and caspase-3 activity assay were used. Protein expression of p53, BAD and phoshorylated BAD was detected by western blotting analysis.cAMP-increasing agents diminished the doxorubicin-mediated cytotoxicity in NALM-6 cells as indicated by the viability assays. Annexin-V apoptosis assay showed that the cAMP-elevating agents decreased doxorubicin-induced apoptosis. Moreover, doxorubicin-induced caspase-3 activity was attenuated in the presence of cAMP-increasing agents. Western blot results revealed the reduced expression of p53 protein in cells treated with combination of cAMP-elevating agents and doxorubicin in contrast to cells treated with doxorubicin alone. Expression of total BAD protein was not affected by doxorubicin and cAMP-elevating agents. However, phosphorylation of BAD protein was induced in the presence of cAMP-elevating agents. Our study suggests that elevated cAMP levels inhibit doxorubicin-induced apoptosis in pre-B ALL cells through induction of BAD phosphorylation and abrogation of p53 accumulation.
Histone deacetylases (HDACs) in XPC gene silencing and bladder cancer
2011-01-01
Bladder cancer is one of the most common malignancies and causes hundreds of thousands of deaths worldwide each year. Bladder cancer is strongly associated with exposure to environmental carcinogens. It is believed that DNA damage generated by environmental carcinogens and their metabolites causes development of bladder cancer. Nucleotide excision repair (NER) is the major DNA repair pathway for repairing bulk DNA damage generated by most environmental carcinogens, and XPC is a DNA damage recognition protein required for initiation of the NER process. Recent studies demonstrate reduced levels of XPC protein in tumors for a majority of bladder cancer patients. In this work we investigated the role of histone deacetylases (HDACs) in XPC gene silencing and bladder cancer development. The results of our HDAC inhibition study revealed that the treatment of HTB4 and HTB9 bladder cancer cells with the HDAC inhibitor valproic acid (VPA) caused an increase in transcription of the XPC gene in these cells. The results of our chromatin immunoprecipitation (ChIP) studies indicated that the VPA treatment caused increased binding of both CREB1 and Sp1 transcription factors at the promoter region of the XPC gene for both HTB4 and HTB9 cells. The results of our immunohistochemistry (IHC) staining studies further revealed a strong correlation between the over-expression of HDAC4 and increased bladder cancer occurrence (p < 0.001) as well as a marginal significance of increasing incidence of HDAC4 positivity seen with an increase in severity of bladder cancer (p = 0.08). In addition, the results of our caspase 3 activation studies demonstrated that prior treatment with VPA increased the anticancer drug cisplatin-induced activation of caspase 3 in both HTB4 and HTB9 cells. All of these results suggest that the HDACs negatively regulate transcription of the XPC gene in bladder cancer cells and contribute to the severity of bladder tumors. PMID:21507255
Soravia, Leila M; Witmer, Joëlle S; Schwab, Simon; Nakataki, Masahito; Dierks, Thomas; Wiest, Roland; Henke, Katharina; Federspiel, Andrea; Jann, Kay
2016-03-01
Low self-referential thoughts are associated with better concentration, which leads to deeper encoding and increases learning and subsequent retrieval. There is evidence that being engaged in externally rather than internally focused tasks is related to low neural activity in the default mode network (DMN) promoting open mind and the deep elaboration of new information. Thus, reduced DMN activity should lead to enhanced concentration, comprehensive stimulus evaluation including emotional categorization, deeper stimulus processing, and better long-term retention over one whole week. In this fMRI study, we investigated brain activation preceding and during incidental encoding of emotional pictures and on subsequent recognition performance. During fMRI, 24 subjects were exposed to 80 pictures of different emotional valence and subsequently asked to complete an online recognition task one week later. Results indicate that neural activity within the medial temporal lobes during encoding predicts subsequent memory performance. Moreover, a low activity of the default mode network preceding incidental encoding leads to slightly better recognition performance independent of the emotional perception of a picture. The findings indicate that the suppression of internally-oriented thoughts leads to a more comprehensive and thorough evaluation of a stimulus and its emotional valence. Reduced activation of the DMN prior to stimulus onset is associated with deeper encoding and enhanced consolidation and retrieval performance even one week later. Even small prestimulus lapses of attention influence consolidation and subsequent recognition performance. © 2015 Wiley Periodicals, Inc.
Hur, Taeho; Bang, Jaehun; Kim, Dohyeong; Banos, Oresti; Lee, Sungyoung
2017-04-23
Activity recognition through smartphones has been proposed for a variety of applications. The orientation of the smartphone has a significant effect on the recognition accuracy; thus, researchers generally propose using features invariant to orientation or displacement to achieve this goal. However, those features reduce the capability of the recognition system to differentiate among some specific commuting activities (e.g., bus and subway) that normally involve similar postures. In this work, we recognize those activities by analyzing the vibrations of the vehicle in which the user is traveling. We extract natural vibration features of buses and subways to distinguish between them and address the confusion that can arise because the activities are both static in terms of user movement. We use the gyroscope to fix the accelerometer to the direction of gravity to achieve an orientation-free use of the sensor. We also propose a correction algorithm to increase the accuracy when used in free living conditions and a battery saving algorithm to consume less power without reducing performance. Our experimental results show that the proposed system can adequately recognize each activity, yielding better accuracy in the detection of bus and subway activities than existing methods.
Hur, Taeho; Bang, Jaehun; Kim, Dohyeong; Banos, Oresti; Lee, Sungyoung
2017-01-01
Activity recognition through smartphones has been proposed for a variety of applications. The orientation of the smartphone has a significant effect on the recognition accuracy; thus, researchers generally propose using features invariant to orientation or displacement to achieve this goal. However, those features reduce the capability of the recognition system to differentiate among some specific commuting activities (e.g., bus and subway) that normally involve similar postures. In this work, we recognize those activities by analyzing the vibrations of the vehicle in which the user is traveling. We extract natural vibration features of buses and subways to distinguish between them and address the confusion that can arise because the activities are both static in terms of user movement. We use the gyroscope to fix the accelerometer to the direction of gravity to achieve an orientation-free use of the sensor. We also propose a correction algorithm to increase the accuracy when used in free living conditions and a battery saving algorithm to consume less power without reducing performance. Our experimental results show that the proposed system can adequately recognize each activity, yielding better accuracy in the detection of bus and subway activities than existing methods. PMID:28441743
Choi, Ji Yeon; Cho, Eun Ju; Lee, Hae Song; Lee, Jeong Min; Yoon, Young-Ho; Lee, Sanghyun
2013-03-01
Protective effects of Tartary buckwheat (TB) and common buckwheat (CB) on amyloid beta (Aβ)-induced impairment of cognition and memory function were investigated in vivo in order to identify potential therapeutic agents against Alzheimer's disease (AD) and its associated progressive memory deficits, cognitive impairment, and personality changes. An in vivo mouse model of AD was created by injecting the brains of ICR mice with Aβ(25-35), a fragment of the full-length Aβ protein. Damage of mice recognition ability through following Aβ(25-35) brain injections was confirmed using the T-maze test, the object recognition test, and the Morris water maze test. Results of behavior tests in AD model showed that oral administration of the methanol (MeOH) extracts of TB and CB improved cognition and memory function following Aβ(25-35) injections. Furthermore, in groups receiving the MeOH extracts of TB and CB, lipid peroxidation was significantly inhibited, and nitric oxide levels in tissue, which are elevated by injection of Aβ(25-35), were also decrease. In particular, the MeOH extract of TB exerted a stronger protective activity than CB against Aβ(25-35)-induced memory and cognition impairment. The results indicate that TB may play a promising role in preventing or reversing memory and cognition loss associated with Aβ(25-35)-induced AD. Copyright © 2012 Elsevier Ltd. All rights reserved.
Atkinson, Anthony P.; Heberlein, Andrea S.; Adolphs, Ralph
2007-01-01
Bilateral amygdala lesions impair the ability to identify certain emotions, especially fear, from facial expressions, and neuroimaging studies have demonstrated differential amygdala activation as a function of the emotional expression of faces, even under conditions of subliminal presentation, and again especially for fear. Yet the amygdala's role in processing emotion from other classes of stimuli remains poorly understood. On the basis of its known connectivity as well as prior studies in humans and animals, we hypothesised that the amygdala would be important also for the recognition of fear from body expressions. To test this hypothesis, we assessed a patient (S.M.) with complete bilateral amygdala lesions who is known to be severely impaired at recognising fear from faces. S.M. completed a battery of tasks involving forced-choice labelling and rating of the emotions in two sets of dynamic body movement stimuli, as well as in a set of static body postures. Unexpectedly, S.M.'s performance was completely normal. We replicated the finding in a second rare subject with bilateral lesions entirely confined to the amygdala. Compared to healthy comparison subjects, neither of the amygdala lesion subjects was impaired in identifying fear from any of these displays. Thus, whatever the role of the amygdala in processing whole-body fear cues, it is apparently not necessary for the normal recognition of fear from either static or dynamic body expressions. PMID:17561172
Murakami, Yoto; Fujino, Takayuki; Kurachi, Ryotaro; Hasegawa, Toshiki; Usui, Teruyuki; Hayase, Fumitaka; Watanabe, Hirohito
2018-05-26
Advanced glycation end-products (AGEs) elicit inflammatory responses via the receptor for AGEs (RAGE) and participate in the pathogenesis of diabetic complications. An earlier study showed that 3-hydroxypyridinium (3-HP), a common moiety of toxic AGEs such as glyceraldehyde-derived pyridinium (GLAP) and GA-pyridine, is essential for the interaction with RAGE. However, the physiological significance of 3-HP recognition by RAGE remains unclear. We hypothesized that pyridinoline (Pyr), a collagen crosslink containing the 3-HP moiety, could have agonist activity with RAGE. To test this hypothesis, we purified Pyr from bovine achilles tendons and examined its cytotoxicity to rat neuronal PC12 cells. Pyr elicited toxicity to PC12 cells in a concentration-dependent manner, and this effect was attenuated in the presence of either the anti-RAGE antibody or the soluble form of RAGE. Moreover, surface plasmon resonance-based analysis showed specific binding of Pyr to RAGE. These data indicate that Pyr is an intrinsic ligand for RAGE. AGEs: advanced glycation end-products; RAGE: receptor for advanced glycation end-products; DAMPs: damage-associated molecular patterns; PRR: pattern recognition receptor; TLR: toll-like receptor; GLAP: glyceraldehyde-derived pyridinium; 3-HP: 3-hydroxypyridinium; Pyr: pyridinoline; HFBA: heptafluorobutyric acid; GST: glutathione S-transferase; SPR: surface plasmon resonance; ECM: extracellular matrix; EMT: epithelial to mesenchymal transition.
Clipperton-Allen, Amy E; Lee, Anna W; Reyes, Anny; Devidze, Nino; Phan, Anna; Pfaff, Donald W; Choleris, Elena
2012-02-28
Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85-100%) and low (40-60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice. Copyright © 2011 Elsevier Inc. All rights reserved.
Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation
Wagener, Jeanette; Malireddi, R. K. Subbarao; Lenardon, Megan D.; Köberle, Martin; Vautier, Simon; MacCallum, Donna M.; Biedermann, Tilo; Schaller, Martin; Netea, Mihai G.; Kanneganti, Thirumala-Devi; Brown, Gordon D.; Brown, Alistair J. P.; Gow, Neil A. R.
2014-01-01
Chitin is an essential structural polysaccharide of fungal pathogens and parasites, but its role in human immune responses remains largely unknown. It is the second most abundant polysaccharide in nature after cellulose and its derivatives today are widely used for medical and industrial purposes. We analysed the immunological properties of purified chitin particles derived from the opportunistic human fungal pathogen Candida albicans, which led to the selective secretion of the anti-inflammatory cytokine IL-10. We identified NOD2, TLR9 and the mannose receptor as essential fungal chitin-recognition receptors for the induction of this response. Chitin reduced LPS-induced inflammation in vivo and may therefore contribute to the resolution of the immune response once the pathogen has been defeated. Fungal chitin also induced eosinophilia in vivo, underpinning its ability to induce asthma. Polymorphisms in the identified chitin receptors, NOD2 and TLR9, predispose individuals to inflammatory conditions and dysregulated expression of chitinases and chitinase-like binding proteins, whose activity is essential to generate IL-10-inducing fungal chitin particles in vitro, have also been linked to inflammatory conditions and asthma. Chitin recognition is therefore critical for immune homeostasis and is likely to have a significant role in infectious and allergic disease. Authors Summary Chitin is the second most abundant polysaccharide in nature after cellulose and an essential component of the cell wall of all fungal pathogens. The discovery of human chitinases and chitinase-like binding proteins indicates that fungal chitin is recognised by cells of the human immune system, shaping the immune response towards the invading pathogen. We show that three immune cell receptors– the mannose receptor, NOD2 and TLR9 recognise chitin and act together to mediate an anti-inflammatory response via secretion of the cytokine IL-10. This mechanism may prevent inflammation-based damage during fungal infection and restore immune balance after an infection has been cleared. By increasing the chitin content in the cell wall pathogenic fungi may influence the immune system in their favour, by down-regulating protective inflammatory immune responses. Furthermore, gene mutations and dysregulated enzyme activity in the described chitin recognition pathway are implicated in inflammatory conditions such as Crohn's Disease and asthma, highlighting the importance of the discovered mechanism in human health. PMID:24722226
Dissociations in cognitive memory: the syndrome of developmental amnesia.
Vargha-Khadem, F; Gadian, D G; Mishkin, M
2001-09-29
The dearth of studies on amnesia in children has led to the assumption that when damage to the medial temporal lobe system occurs early in life, the compensatory capacity of the immature brain rescues memory functions. An alternative view is that such damage so interferes with the development of learning and memory that it results not in selective cognitive impairments but in general mental retardation. Data will be presented to counter both of these arguments. Results obtained from a series of 11 amnesic patients with a history of hypoxic ischaemic damage sustained perinatally or during childhood indicate that regardless of age at onset of hippocampal pathology, there is a pronounced dissociation between episodic memory, which is severely impaired, and semantic memory, which is relatively preserved. A second dissociation is characterized by markedly impaired recall and relatively spared recognition leading to a distinction between recollection-based versus familiarity-based judgements. These findings are discussed in terms of the locus and extent of neuropathology associated with hypoxic ischaemic damage, the neural basis of 'remembering' versus 'knowing', and a hierarchical model of cognitive memory.
Recognition memory for vibrotactile rhythms: an fMRI study in blind and sighted individuals.
Sinclair, Robert J; Dixit, Sachin; Burton, Harold
2011-01-01
Calcarine sulcal cortex possibly contributes to semantic recognition memory in early blind (EB). We assessed a recognition memory role using vibrotactile rhythms and a retrieval success paradigm involving learned "old" and "new" rhythms in EB and sighted. EB showed no activation differences in occipital cortex indicating retrieval success but replicated findings of somatosensory processing. Both groups showed retrieval success in primary somatosensory, precuneus, and orbitofrontal cortex. The S1 activity might indicate generic sensory memory processes.
Recognition memory for vibrotactile rhythms: An fMRI study in blind and sighted individuals
SINCLAIR, ROBERT J.; DIXIT, SACHIN; BURTON, HAROLD
2014-01-01
Calcarine sulcal cortex possibly contributes to semantic recognition memory in early blind (EB). We assessed a recognition memory role using vibrotactile rhythms and a retrieval success paradigm involving learned “old” and “new” rhythms in EB and sighted. EB showed no activation differences in occipital cortex indicating retrieval success but replicated findings of somatosensory processing. Both groups showed retrieval success in primary somatosensory, precuneus, and orbitofrontal cortex. The S1 activity might indicate generic sensory memory processes. PMID:21846300
A dynamical pattern recognition model of gamma activity in auditory cortex
Zavaglia, M.; Canolty, R.T.; Schofield, T.M.; Leff, A.P.; Ursino, M.; Knight, R.T.; Penny, W.D.
2012-01-01
This paper describes a dynamical process which serves both as a model of temporal pattern recognition in the brain and as a forward model of neuroimaging data. This process is considered at two separate levels of analysis: the algorithmic and implementation levels. At an algorithmic level, recognition is based on the use of Occurrence Time features. Using a speech digit database we show that for noisy recognition environments, these features rival standard cepstral coefficient features. At an implementation level, the model is defined using a Weakly Coupled Oscillator (WCO) framework and uses a transient synchronization mechanism to signal a recognition event. In a second set of experiments, we use the strength of the synchronization event to predict the high gamma (75–150 Hz) activity produced by the brain in response to word versus non-word stimuli. Quantitative model fits allow us to make inferences about parameters governing pattern recognition dynamics in the brain. PMID:22327049
Event-related theta synchronization predicts deficit in facial affect recognition in schizophrenia.
Csukly, Gábor; Stefanics, Gábor; Komlósi, Sarolta; Czigler, István; Czobor, Pál
2014-02-01
Growing evidence suggests that abnormalities in the synchronized oscillatory activity of neurons in schizophrenia may lead to impaired neural activation and temporal coding and thus lead to neurocognitive dysfunctions, such as deficits in facial affect recognition. To gain an insight into the neurobiological processes linked to facial affect recognition, we investigated both induced and evoked oscillatory activity by calculating the Event Related Spectral Perturbation (ERSP) and the Inter Trial Coherence (ITC) during facial affect recognition. Fearful and neutral faces as well as nonface patches were presented to 24 patients with schizophrenia and 24 matched healthy controls while EEG was recorded. The participants' task was to recognize facial expressions. Because previous findings with healthy controls showed that facial feature decoding was associated primarily with oscillatory activity in the theta band, we analyzed ERSP and ITC in this frequency band in the time interval of 140-200 ms, which corresponds to the N170 component. Event-related theta activity and phase-locking to facial expressions, but not to nonface patches, predicted emotion recognition performance in both controls and patients. Event-related changes in theta amplitude and phase-locking were found to be significantly weaker in patients compared with healthy controls, which is in line with previous investigations showing decreased neural synchronization in the low frequency bands in patients with schizophrenia. Neural synchrony is thought to underlie distributed information processing. Our results indicate a less effective functioning in the recognition process of facial features, which may contribute to a less effective social cognition in schizophrenia. PsycINFO Database Record (c) 2014 APA, all rights reserved.
REM sleep and emotional face memory in typically-developing children and children with autism.
Tessier, Sophie; Lambert, Andréane; Scherzer, Peter; Jemel, Boutheina; Godbout, Roger
2015-09-01
Relationship between REM sleep and memory was assessed in 13 neurotypical and 13 children with Autistic Spectrum Disorder (ASD). A neutral/positive/negative face recognition task was administered the evening before (learning and immediate recognition) and the morning after (delayed recognition) sleep. The number of rapid eye movements (REMs), beta and theta EEG activity over the visual areas were measured during REM sleep. Compared to neurotypical children, children with ASD showed more theta activity and longer reaction time (RT) for correct responses in delayed recognition of neutral faces. Both groups showed a positive correlation between sleep and performance but different patterns emerged: in neurotypical children, accuracy for recalling neutral faces and overall RT improvement overnight was correlated with EEG activity and REMs; in children with ASD, overnight RT improvement for positive and negative faces correlated with theta and beta activity, respectively. These results suggest that neurotypical and children with ASD use different sleep-related brain networks to process faces. Copyright © 2015 Elsevier B.V. All rights reserved.
Hand gesture recognition in confined spaces with partial observability and occultation constraints
NASA Astrophysics Data System (ADS)
Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen
2016-05-01
Human activity detection and recognition capabilities have broad applications for military and homeland security. These tasks are very complicated, however, especially when multiple persons are performing concurrent activities in confined spaces that impose significant obstruction, occultation, and observability uncertainty. In this paper, our primary contribution is to present a dedicated taxonomy and kinematic ontology that are developed for in-vehicle group human activities (IVGA). Secondly, we describe a set of hand-observable patterns that represents certain IVGA examples. Thirdly, we propose two classifiers for hand gesture recognition and compare their performance individually and jointly. Finally, we present a variant of Hidden Markov Model for Bayesian tracking, recognition, and annotation of hand motions, which enables spatiotemporal inference to human group activity perception and understanding. To validate our approach, synthetic (graphical data from virtual environment) and real physical environment video imagery are employed to verify the performance of these hand gesture classifiers, while measuring their efficiency and effectiveness based on the proposed Hidden Markov Model for tracking and interpreting dynamic spatiotemporal IVGA scenarios.
NASA Astrophysics Data System (ADS)
Zainudin, M. N. Shah; Sulaiman, Md Nasir; Mustapha, Norwati; Perumal, Thinagaran
2017-10-01
Prior knowledge in pervasive computing recently garnered a lot of attention due to its high demand in various application domains. Human activity recognition (HAR) considered as the applications that are widely explored by the expertise that provides valuable information to the human. Accelerometer sensor-based approach is utilized as devices to undergo the research in HAR since their small in size and this sensor already build-in in the various type of smartphones. However, the existence of high inter-class similarities among the class tends to degrade the recognition performance. Hence, this work presents the method for activity recognition using our proposed features from combinational of spectral analysis with statistical descriptors that able to tackle the issue of differentiating stationary and locomotion activities. The noise signal is filtered using Fourier Transform before it will be extracted using two different groups of features, spectral frequency analysis, and statistical descriptors. Extracted signal later will be classified using random forest ensemble classifier models. The recognition results show the good accuracy performance for stationary and locomotion activities based on USC HAD datasets.
Yoshimi, Noriko; Futamura, Takashi; Hashimoto, Kenji
2015-03-01
Cognitive impairment, including impaired social cognition, is largely responsible for the deterioration in social life suffered by patients with psychiatric disorders, such as schizophrenia and major depressive disorder (MDD). Brexpiprazole (7-{4-[4-(1-benzothiophen-4-yl)piperazin-1-yl]butoxy}quinolin-2(1H)-one), a novel serotonin-dopamine activity modulator, was developed to offer efficacious and tolerable therapy for different psychiatric disorders, including schizophrenia and adjunctive treatment of MDD. In this study, we investigated whether brexpiprazole could improve social recognition deficits (one of social cognition deficits) in mice, after administration of the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 (dizocilpine). Dosing with dizocilpine (0.1mg/kg) induced significant impairment of social recognition in mice. Brexpiprazole (0.01, 0.03, 0.1mg/kg, p.o.) significantly ameliorated dizocilpine-induced social recognition deficits, without sedation or a reduction of exploratory behavior. In addition, brexpiprazole alone had no effect on social recognition in untreated control mice. By contrast, neither risperidone (0.03mg/kg, p.o.) nor olanzapine (0.03mg/kg, p.o.) altered dizocilpine-induced social recognition deficits. Finally, the effect of brexpiprazole on dizocilpine-induced social recognition deficits was antagonized by WAY-100,635, a selective serotonin 5-HT1A antagonist. These results suggest that brexpiprazole could improve dizocilpine-induced social recognition deficits via 5-HT1A receptor activation in mice. Therefore, brexpiprazole may confer a beneficial effect on social cognition deficits in patients with psychiatric disorders. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Carlesimo, Giovanni A; Bonanni, Rita; Caltagirone, Carlo
2003-05-01
This study investigated the hypothesis that brain damaged patients with memory disorder are poorer at remembering the semantic than the perceptual attributes of information. Eight patients with memory impairment of different etiology and 24 patients with chronic consequences of severe closed-head injury were compared to similarly sized age- and literacy-matched normal control groups on recognition tests for the physical aspect and the semantic identity of words and pictures lists. In order to avoid interpretative problems deriving from different absolute levels of performance, study conditions were manipulated across subjects to obtain comparable accuracy on the perceptual recognition tests in the memory disordered and control groups. The results of the Picture Recognition test were consistent with the hypothesis. Indeed, having more time for the stimulus encoding, the two memory disordered groups performed at the same level as the normal subjects on the perceptual test but significantly lower on the semantic test. Instead, on the Word Recognition test, following study condition manipulation, patients and controls performed similarly on both the perceptual and the semantic tests. These data only partially support the hypothesis of the study; rather they suggest that in memory disordered patients there is a reduction of the advantage, exhibited by normal controls, of retrieving pictures over words (picture superiority effect).
[Visual Texture Agnosia in Humans].
Suzuki, Kyoko
2015-06-01
Visual object recognition requires the processing of both geometric and surface properties. Patients with occipital lesions may have visual agnosia, which is impairment in the recognition and identification of visually presented objects primarily through their geometric features. An analogous condition involving the failure to recognize an object by its texture may exist, which can be called visual texture agnosia. Here we present two cases with visual texture agnosia. Case 1 had left homonymous hemianopia and right upper quadrantanopia, along with achromatopsia, prosopagnosia, and texture agnosia, because of damage to his left ventromedial occipitotemporal cortex and right lateral occipito-temporo-parietal cortex due to multiple cerebral embolisms. Although he showed difficulty matching and naming textures of real materials, he could readily name visually presented objects by their contours. Case 2 had right lower quadrantanopia, along with impairment in stereopsis and recognition of texture in 2D images, because of subcortical hemorrhage in the left occipitotemporal region. He failed to recognize shapes based on texture information, whereas shape recognition based on contours was well preserved. Our findings, along with those of three reported cases with texture agnosia, indicate that there are separate channels for processing texture, color, and geometric features, and that the regions around the left collateral sulcus are crucial for texture processing.
Evolutionary Convergence and Divergence in NLR Function and Structure.
Meunier, Etienne; Broz, Petr
2017-10-01
The recognition of cellular damage caused by either pathogens or abiotic stress is essential for host defense in all forms of life in the plant and animal kingdoms. The NOD-like receptors (NLRs) represent a large family of multidomain proteins that were initially discovered for their role in host defense in plants and vertebrates. Over recent years the wide distribution of NLRs among metazoans has become apparent and their origins have begun to emerge. Moreover, intense study of NLR function has shown that they play essential roles beyond pathogen recognition - in the regulation of antigen presentation, cell death, inflammation, and even in embryonic development. We summarize here the latest insights into NLR biology and discuss examples of converging and diverging evolution of NLR function and structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Implementation study of wearable sensors for activity recognition systems
Ghassemian, Mona
2015-01-01
This Letter investigates and reports on a number of activity recognition methods for a wearable sensor system. The authors apply three methods for data transmission, namely ‘stream-based’, ‘feature-based’ and ‘threshold-based’ scenarios to study the accuracy against energy efficiency of transmission and processing power that affects the mote's battery lifetime. They also report on the impact of variation of sampling frequency and data transmission rate on energy consumption of motes for each method. This study leads us to propose a cross-layer optimisation of an activity recognition system for provisioning acceptable levels of accuracy and energy efficiency. PMID:26609413
NASA Astrophysics Data System (ADS)
Marra, Kyle; Graham, Brett; Carouso, Samantha; Cox, David
2012-02-01
While the application of local cortical cooling has recently become a focus of neurological research, extended localized deactivation deep within brain structures is still unexplored. Using a wirelessly controlled thermoelectric (Peltier) device and water-based heat sink, we have achieved inactivating temperatures (<20 C) at greater depths (>8 mm) than previously reported. After implanting the device into Long Evans rats' basolateral amygdala (BLA), an inhibitory brain center that controls anxiety and fear, we ran an open field test during which anxiety-driven behavioral tendencies were observed to decrease during cooling, thus confirming the device's effect on behavior. Our device will next be implanted in the rats' temporal association cortex (TeA) and recordings from our signal-tracing multichannel microelectrodes will measure and compare activated and deactivated neuronal activity so as to isolate and study the TeA signals responsible for object recognition. Having already achieved a top performing computational face-recognition system, the lab will utilize this TeA activity data to generalize its computational efforts of face recognition to achieve general object recognition.
NASA Astrophysics Data System (ADS)
Yu, Lingyu; Bao, Jingjing; Giurgiutiu, Victor
2004-07-01
Embedded ultrasonic structural radar (EUSR) algorithm is developed for using piezoelectric wafer active sensor (PWAS) array to detect defects within a large area of a thin-plate specimen. Signal processing techniques are used to extract the time of flight of the wave packages, and thereby to determine the location of the defects with the EUSR algorithm. In our research, the transient tone-burst wave propagation signals are generated and collected by the embedded PWAS. Then, with signal processing, the frequency contents of the signals and the time of flight of individual frequencies are determined. This paper starts with an introduction of embedded ultrasonic structural radar algorithm. Then we will describe the signal processing methods used to extract the time of flight of the wave packages. The signal processing methods being used include the wavelet denoising, the cross correlation, and Hilbert transform. Though hardware device can provide averaging function to eliminate the noise coming from the signal collection process, wavelet denoising is included to ensure better signal quality for the application in real severe environment. For better recognition of time of flight, cross correlation method is used. Hilbert transform is applied to the signals after cross correlation in order to extract the envelope of the signals. Signal processing and EUSR are both implemented by developing a graphical user-friendly interface program in LabView. We conclude with a description of our vision for applying EUSR signal analysis to structural health monitoring and embedded nondestructive evaluation. To this end, we envisage an automatic damage detection application utilizing embedded PWAS, EUSR, and advanced signal processing.
Gabrielse, Carrie; Miller, Charles T.; McConnell, Kristopher H.; DeWard, Aaron; Fox, Catherine A.; Weinreich, Michael
2006-01-01
Dbf4p is an essential regulatory subunit of the Cdc7p kinase required for the initiation of DNA replication. Cdc7p and Dbf4p orthologs have also been shown to function in the response to DNA damage. A previous Dbf4p multiple sequence alignment identified a conserved ∼40-residue N-terminal region with similarity to the BRCA1 C-terminal (BRCT) motif called “motif N.” BRCT motifs encode ∼100-amino-acid domains involved in the DNA damage response. We have identified an expanded and conserved ∼100-residue N-terminal region of Dbf4p that includes motif N but is capable of encoding a single BRCT-like domain. Dbf4p orthologs diverge from the BRCT motif at the C terminus but may encode a similar secondary structure in this region. We have therefore called this the BRCT and DBF4 similarity (BRDF) motif. The principal role of this Dbf4p motif was in the response to replication fork (RF) arrest; however, it was not required for cell cycle progression, activation of Cdc7p kinase activity, or interaction with the origin recognition complex (ORC) postulated to recruit Cdc7p–Dbf4p to origins. Rad53p likely directly phosphorylated Dbf4p in response to RF arrest and Dbf4p was required for Rad53p abundance. Rad53p and Dbf4p therefore cooperated to coordinate a robust cellular response to RF arrest. PMID:16547092