Sample records for damage resistant pits

  1. Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Justin E.; Qiu, S. Roger; Stolz, Christopher J.

    2011-03-20

    Femtosecond laser machining is used to create mitigation pits to stabilize nanosecond laser-induced damage in multilayer dielectric mirror coatings on BK7 substrates. In this paper, we characterize features and the artifacts associated with mitigation pits and further investigate the impact of pulse energy and pulse duration on pit quality and damage resistance. Our results show that these mitigation features can double the fluence-handling capability of large-aperture optical multilayer mirror coatings and further demonstrate that femtosecond laser macromachining is a promising means for fabricating mitigation geometry in multilayer coatings to increase mirror performance under high-power laser irradiation.

  2. Non-Standard Gearing as the Possibility of Increasing Resistance to Pitting

    NASA Astrophysics Data System (ADS)

    Kopiláková, Beáta; Bošanský, Miroslav

    2014-12-01

    In this article are shown the influence of the type non-standard gearing to reduce damage to the pitting. The introduction of the article describes a fundamental difference between the involute and non-involute gearing and the influence of some parameters, especially of the slip ratio to damage of gearing. The paper describes the principle of evaluation pitting by makrofoto graphical method, too and also shows the basic results of the experiment, which was executed on two types of gearing (HCR gearing and C-C gearing) on the Niemanńs stend in term of the damage to pitting.

  3. Fabrication of spherical mitigation pit on KH2PO4 crystal by micro-milling and modeling of its induced light intensification.

    PubMed

    Cheng, Jian; Chen, Mingjun; Liao, Wei; Wang, Haijun; Xiao, Yong; Li, Mingquan

    2013-07-15

    Micro-machining is the most promising method for KH(2)PO(4) crystal to mitigate the surface damage growth in high power laser system. In this work, spherical mitigation pit is fabricated by micro-milling with an efficient machining procedure. The light intensification caused by rear surface features before and after mitigation is numerically modeled based on the finite-difference time-domain method. The results indicate that the occurrence of total internal reflections should be responsible for the largest light intensification inside the crystal. For spherical pits after mitigation, the light intensification can be greatly alleviated by preventing the occurrence of total internal reflections. The light intensification caused by spherical mitigation pit is strongly dependent on the width-depth ratio and it is suggested that the width-depth ratio of spherical mitigation pit must be devised to be larger than 5.0 to achieve the minimal light intensification for the mitigation of surface damage growth. Laser damage tests for KH(2)PO(4) crystal validate that the laser damage resistance of initially damaged surface can be retrieved to near the level of ideal surface by replacing initial damage site with predesigned mitigation pit.

  4. Pitting and Stress Corrosion Cracking Susceptibility of Nanostructured Al-Mg Alloys in Natural and Artificial Environments

    NASA Astrophysics Data System (ADS)

    Sharma, Mala M.; Ziemian, Constance W.

    2008-12-01

    The stress corrosion cracking (SCC) behavior of two developmental nanocrystalline 5083 alloys with varied composition and processing conditions was studied. The results were compared to a commercial aluminum AA 5083 (H111) alloy. The pitting densities, size and depths, and residual tensile strengths were measured after alternate immersion in artificial seawater and atmospheric exposure under different loading conditions. Optical and scanning electron microscopy (SEM) with EDX was used to analyze the fracture surfaces of failed specimen after removal at selected intervals and tensile testing. One of the nanostructured Al-Mg alloys exhibited significantly superior pitting resistance when compared to conventional microstructured AA 5083. Under conditions where pitting corrosion showed up as local tunnels toward phase inclusions, transgranular cracking was observed, whereas under conditions when pitting corrosion evolved along grain boundaries, intergranular cracking inside the pit was observed. Pit initiation resistance of the nano alloys appears to be better than that of the conventional alloys. However, long-term pit propagation is a concern and warrants further study. The objective of this investigation was to obtain information regarding the role that ultra-fine microstructures play in their degradation in marine environments and to provide insight into the corrosion mechanisms and damage processes of these alloys.

  5. An investigation of rolling-sliding contact fatigue damage of carburized gear steels

    NASA Astrophysics Data System (ADS)

    Kramer, Patrick C.

    The goal of this study was to evaluate the differences in RSCF performance between vacuum and gas carburized steels as well as to investigate the evolution of damage (wear and microstructure changes) leading to pitting. Vacuum and gas carburizing was performed on two gear steels (4120 and 4320) at 1010°C. The carburized specimens were tested in the as-carburized condition using a RSCF machine designed and built at the Colorado School of Mines. The tests were conducted at 3.2 GPa nominal Hertzian contact stress, based on pure rolling, 100°C, and using a negative twenty percent slide ratio. Tests were conducted to pitting failure for each condition for a comparison of the average fatigue lives. Pure rolling tests were also conducted, and were suspended at the same number of cycles as the average RSCF life for a comparison of fatigue damage developed by RCF and RSCF. Incremental tests were suspended at 1,000, 10,000, 100,000, and 200,000 cycles for the vacuum carburized steels to evaluate the wear and damage developed during the initial cycles of RSCF testing and to relate the wear and damage to pitting resistance. Incremental damage was not investigated for gas carburizing due to the limited number of available specimens. The vacuum carburized samples showed a decreased pitting fatigue resistance over the gas carburized samples, possibly due to the presence of bainite in the vacuum carburized cases. Pitting was observed to initiate from surface micropitting and microcracking. A microstructural change induced by contact fatigue, butterflies, was shown to contribute to micropitting and microcracking. Incremental testing revealed that the formation of a microcrack preceded and was necessary for the formation of the butterfly features, and that the butterfly features developed between 10,000 and 100,000 cycles. The orientation and depth of butterfly formation was shown to be dependent upon the application of traction stresses from sliding. RSCF butterflies formed nearly parallel to the rolling direction at a large range of depths. RCF butterflies formed at about 45° to the rolling direction in a more narrow range of depths. The surface roughness and surface profile were observed to change quickly in the first several thousand cycles of RSCF testing leading to a reduction in contact stress and increase in lambda ratio (ratio of lubricant fluid film thickness to composite surface roughness). The ability of a carburized sample wear track to reach and maintain a steady state morphology (run-in condition) during testing is postulated to translate to increased RSCF resistance.

  6. Rain Erosion Studies of Sapphire, Aluminum Oxynitride, Spinel, Lanthana- Doped Yttria, and TAF Glass

    DTIC Science & Technology

    1990-07-01

    small , there is little change in average scatter for any material in any test. CONCLUSIONS AND DISCUSSION The principal conclusions are 1. ALON...20 Sample broke erosion damage 10 Slight pitting, 20 No change erosion damage 15 Pitting, cratering, 20 Small surface pits erosion damage 15 Pitting...Sample broke 10 No damage 15 Sample pitted, small edge fracture 15 Slight pitting, 1 crater, 20 Sample pitted, erosion damage small edge fracture 15 SUght

  7. Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, A. K.; Cordillot, C.; Fornier, A.

    1998-07-28

    Fused silica windows were artificially contaminated to estimate the resistance of target chamber debris shields against laser damage during NIF operation. Uniform contamination thin films (1 to 5 nm thick) were prepared by sputtering various materials (Au, Al, Cu, and B 4C). The loss of transmission of the samples was first measured. They were then tested at 355 nm in air with an 8-ns Nd:YAG laser. The damage morphologies were characterized by Nomarski optical microscopy and SEM. Both theory and experiments showed that metal contamination for films as thin as 1 nm leads to a substantial loss of transmission. Themore » laser damage resistance dropped very uniformly across the entire surface (e.g. 6 J/cm 2 for 5 nm of Cu). The damage morphology characterization showed that contrary to clean silica, metal coated samples did not produce pits on the surface. B 4C coated silica, on the other hand, led to a higher density of such damage pits. A model for light absorption in the thin film was coupled with a simple heat deposition and diffusion model to perform preliminary theoretical estimates of damage thresholds. The estimates of the loss due to light absorption and reflection pointed out significant .differences between metals (e.g. Al and Au). The damage threshold predictions were in qualitative agreement with experimental measurements.« less

  8. Gear Damage Detection Using Oil Debris Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2001-01-01

    The purpose of this paper was to verify, when using an oil debris sensor, that accumulated mass predicts gear pitting damage and to identify a method to set threshold limits for damaged gears. Oil debris data was collected from 8 experiments with no damage and 8 with pitting damage in the NASA Glenn Spur Gear Fatigue Rig. Oil debris feature analysis was performed on this data. Video images of damage progression were also collected from 6 of the experiments with pitting damage. During each test, data from an oil debris sensor was monitored and recorded for the occurrence of pitting damage. The data measured from the oil debris sensor during experiments with damage and with no damage was used to identify membership functions to build a simple fuzzy logic model. Using fuzzy logic techniques and the oil debris data, threshold limits were defined that discriminate between stages of pitting wear. Results indicate accumulated mass combined with fuzzy logic analysis techniques is a good predictor of pitting damage on spur gears.

  9. ASSOCIATION BETWEEN NON-ENZYMATIC GLYCATION, RESORPTION, AND MICRODAMAGE IN HUMAN TIBIAL CORTICES

    PubMed Central

    Karim, Lamya; Diab, Tamim; Vashishth, Deepak

    2015-01-01

    Purpose/Introduction Changes in the quality of bone material contribute significantly to bone fragility. In order to establish a better understanding of the interaction of the different components of bone quality and their influence on bone fragility we investigated the relationship between non-enzymatic glycation, resorption, and microdamage generated in vivo in cortical bone using bone specimens from the same donors. Methods Total fluorescent advanced glycation end-products (AGEs) were measured in 96 human cortical bone samples from 83 donors. Resorption pit density, average resorption pit area, and percent resorption area were quantified in samples from 48 common donors with AGE measurements. Linear microcrack density and diffuse damage were measured in 21 common donors with AGE and resorption measurements. Correlation analyses were performed between all measured variables to establish the relationships among them and their variation with age. Results We found that average resorption pit area and percent resorption area decreased with increasing AGEs independently of age. Resorption pit density and percent resorption area demonstrated negative age-adjusted correlation with diffuse damage. Furthermore, average resorption pit area, resorption pit density, and percent resorption area were found to decrease significantly with age. Conclusions The current study demonstrated the in vivo interrelationship between the organic constituents, remodeling, and damage formation in cortical bone. In addition to the age-related reduction in resorption, there is a negative correlation between AGEs and resorption independent of age. This inverse relationship indicates that AGEs alter the resorption process and/or accumulate in the tissue as a result of reduced resorption and may lead to bone fragility by adversely affecting fracture resistance through altered bone matrix properties. PMID:25326375

  10. Two cases of distal extremity swelling with pitting oedema in psoriatic arthritis: the different pathological mechanisms.

    PubMed

    Quarta, L; Corrado, A; d'Onofrio, F; Maruotti, N; Cantatore, Francesco Paolo

    2010-08-01

    In psoriatic arthritis, swelling and pitting oedema may be caused by different pathogenic mechanisms: on one hand, the involvement of tenosynovial structures; on the other hand, the involvement of lymphatic vessels, which may be rarely implicated by the inflammatory process. This different involvement is responsible for a different response to therapy and a different clinical outcome. In fact, patients with inflammation of the tenosynovial structures and normal lymphatic drainage have a more favourable clinical outcome and response to pharmacologic treatment, whilst patients affected by psoriatic arthritis with chronic lymphatic vascular damage are characterized usually by resistance of oedema to therapy. In this study, we report two cases of psoriatic arthritis with distal extremity swelling and pitting oedema. In the first patient, the swelling and pitting oedema were associated with lymphatic obstruction, as detected by lymphoscintigraphy. In the second, the predominant involvement of the tenosynovial structures, as shown by magnetic resonance, with normal lymphatic flow, may have been the cause of arthritis with oedema. These different pathogenetic mechanisms were associated with different response to therapy. Nevertheless, oedema was resistant to therapy in both patients probably because of other unknown factors, which influence therapy and clinical outcome.

  11. Optimization of morphological parameters for mitigation pits on rear KDP surface: experiments and numerical modeling.

    PubMed

    Yang, Hao; Cheng, Jian; Chen, Mingjun; Wang, Jian; Liu, Zhichao; An, Chenhui; Zheng, Yi; Hu, Kehui; Liu, Qi

    2017-07-24

    In high power laser systems, precision micro-machining is an effective method to mitigate the laser-induced surface damage growth on potassium dihydrogen phosphate (KDP) crystal. Repaired surfaces with smooth spherical and Gaussian contours can alleviate the light field modulation caused by damage site. To obtain the optimal repairing structure parameters, finite element method (FEM) models for simulating the light intensification caused by the mitigation pits on rear KDP surface were established. The light intensity modulation of these repairing profiles was compared by changing the structure parameters. The results indicate the modulation is mainly caused by the mutual interference between the reflected and incident lights on the rear surface. Owing to the total reflection, the light intensity enhancement factors (LIEFs) of the spherical and Gaussian mitigation pits sharply increase when the width-depth ratios are near 5.28 and 3.88, respectively. To achieve the optimal mitigation effect, the width-depth ratios greater than 5.3 and 4.3 should be applied to the spherical and Gaussian repaired contours. Particularly, for the cases of width-depth ratios greater than 5.3, the spherical repaired contour is preferred to achieve lower light intensification. The laser damage test shows that when the width-depth ratios are larger than 5.3, the spherical repaired contour presents higher laser damage resistance than that of Gaussian repaired contour, which agrees well with the simulation results.

  12. Manual on the Fatigue of Structures. II. Causes and Prevention of Damage. 7. Mechanical Surface Damage,

    DTIC Science & Technology

    1981-06-01

    observed in the fatigue tests on bearings278. Tichler and Scott27’ had noted a correlation between cavitation erosion and rolling contact fatigue resistance...in the case of ball bearing steels. In the cavitation tests the pits appear before the deep craters. Tichler et al.280 investigated chromium steels...during the first period and the true tensile strength o^ . In a subsequent paper when studying 6 chromium steels and 6 Cu-Ni alloys. Tichler et al.281

  13. Torus-margo pits help conifers compete with angiosperms.

    PubMed

    Pittermann, Jarmila; Sperry, John S; Hacke, Uwe G; Wheeler, James K; Sikkema, Elzard H

    2005-12-23

    The unicellular conifer tracheid should have greater flow resistance per length (resistivity) than the multicellular angiosperm vessel, because its high-resistance end-walls are closer together. However, tracheids and vessels had comparable resistivities for the same diameter, despite tracheids being over 10 times shorter. End-wall pits of tracheids averaged 59 times lower flow resistance on an area basis than vessel pits, owing to the unique torus-margo structure of the conifer pit membrane. The evolution of this membrane was as hydraulically important as that of vessels. Without their specialized pits, conifers would have 38 times the flow resistance, making conifer-dominated ecosystems improbable in an angiosperm world.

  14. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter.

    PubMed

    Hayashi, Keiko; Yoshida, Hitoshi

    2009-02-01

    The plant genome contains a large number of disease resistance (R) genes that have evolved through diverse mechanisms. Here, we report that a long terminal repeat (LTR) retrotransposon contributed to the evolution of the rice blast resistance gene Pit. Pit confers race-specific resistance against the fungal pathogen Magnaporthe grisea, and is a member of the nucleotide-binding site leucine-rich repeat (NBS-LRR) family of R genes. Compared with the non-functional allele Pit(Npb), the functional allele Pit(K59) contains four amino acid substitutions, and has the LTR retrotransposon Renovator inserted upstream. Pathogenesis assays using chimeric constructs carrying the various regions of Pit(K59) and Pit(Npb) suggest that amino acid substitutions might have a potential effect in Pit resistance; more importantly, the upregulated promoter activity conferred by the Renovator sequence is essential for Pit function. Our data suggest that transposon-mediated transcriptional activation may play an important role in the refunctionalization of additional 'sleeping' R genes in the plant genome.

  15. Pitting Corrosion Behaviour of New Corrosion-Resistant Reinforcement Bars in Chloride-Containing Concrete Pore Solution

    PubMed Central

    Liu, Yao; Chu, Hong-yan; Wang, Danqian; Ma, Han; Sun, Wei

    2017-01-01

    In this study, the pitting behaviour of a new corrosion-resistant alloy steel (CR) is compared to that of low-carbon steel (LC) in a simulated concrete pore solution with a chloride concentration of 5 mol/L. The electrochemical behaviour of the bars was characterised using linear polarisation resistance (LPR) and electrochemical impedance spectroscopy (EIS). The pitting profiles were detected by reflective digital holographic microscopy (DHM), scanning electron microscopy (SEM), and the chemical components produced in the pitting process were analysed by X-ray energy dispersive spectroscopy (EDS). The results show that the CR bars have a higher resistance to pitting corrosion than the LC bars. This is primarily because of the periodic occurrence of metastable pitting during pitting development. Compared to the pitting process in the LC bars, the pitting depth grows slowly in the CR bars, which greatly reduces the risk of pitting. The possible reason for this result is that the capability of the CR bars to heal the passivation film helps to restore the metastable pits to the passivation state. PMID:28777327

  16. Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding

    PubMed Central

    DELZON, SYLVAIN; DOUTHE, CYRIL; SALA, ANNA; COCHARD, HERVE

    2010-01-01

    Resistance to water-stress induced cavitation is an important indicator of drought tolerance in woody species and is known to be intimately linked to the anatomy of the xylem. However, the actual mechanical properties of the pit membrane are not well known and the exact mode of air-seeding by which cavitation occurs is still uncertain. We examined the relationship between cavitation resistance and bordered pit structure and function in 40 coniferous species. Xylem pressure inducing 50% loss of hydraulic conductance (P50, a proxy for cavitation resistance) varied widely among species, from −2.9 to −11.3 MPa. The valve effect of the pit membrane, measured as a function of margo flexibility and torus overlap, explained more variation in cavitation-resistance than simple anatomical traits such as pit membrane, pit aperture or torus size. Highly cavitation resistant species exhibited both a high flexibility of the margo and a large overlap between the torus and the pit aperture, allowing the torus to tightly seal the pit aperture. Our results support the hypothesis of seal capillary-seeding as the most likely mode of air-seeding, and suggest that the adhesion of the torus to the pit border may be the main determinant of cavitation resistance in conifers. PMID:20636490

  17. Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding.

    PubMed

    Delzon, Sylvain; Douthe, Cyril; Sala, Anna; Cochard, Herve

    2010-12-01

    Resistance to water-stress induced cavitation is an important indicator of drought tolerance in woody species and is known to be intimately linked to the anatomy of the xylem. However, the actual mechanical properties of the pit membrane are not well known and the exact mode of air-seeding by which cavitation occurs is still uncertain. We examined the relationship between cavitation resistance and bordered pit structure and function in 40 coniferous species. Xylem pressure inducing 50% loss of hydraulic conductance (P(50), a proxy for cavitation resistance) varied widely among species, from -2.9 to -11.3 MPa. The valve effect of the pit membrane, measured as a function of margo flexibility and torus overlap, explained more variation in cavitation-resistance than simple anatomical traits such as pit membrane, pit aperture or torus size. Highly cavitation resistant species exhibited both a high flexibility of the margo and a large overlap between the torus and the pit aperture, allowing the torus to tightly seal the pit aperture. Our results support the hypothesis of seal capillary-seeding as the most likely mode of air-seeding, and suggest that the adhesion of the torus to the pit border may be the main determinant of cavitation resistance in conifers. © 2010 Blackwell Publishing Ltd.

  18. Characterizing Hypervelocity Impact (HVI)-Induced Pitting Damage Using Active Guided Ultrasonic Waves: From Linear to Nonlinear

    PubMed Central

    Liu, Menglong; Wang, Kai; Lissenden, Cliff J.; Wang, Qiang; Zhang, Qingming; Long, Renrong; Su, Zhongqing; Cui, Fangsen

    2017-01-01

    Hypervelocity impact (HVI), ubiquitous in low Earth orbit with an impacting velocity in excess of 1 km/s, poses an immense threat to the safety of orbiting spacecraft. Upon penetration of the outer shielding layer of a typical two-layer shielding system, the shattered projectile, together with the jetted materials of the outer shielding material, subsequently impinge the inner shielding layer, to which pitting damage is introduced. The pitting damage includes numerous craters and cracks disorderedly scattered over a wide region. Targeting the quantitative evaluation of this sort of damage (multitudinous damage within a singular inspection region), a characterization strategy, associating linear with nonlinear features of guided ultrasonic waves, is developed. Linear-wise, changes in the signal features in the time domain (e.g., time-of-flight and energy dissipation) are extracted, for detecting gross damage whose characteristic dimensions are comparable to the wavelength of the probing wave; nonlinear-wise, changes in the signal features in the frequency domain (e.g., second harmonic generation), which are proven to be more sensitive than their linear counterparts to small-scale damage, are explored to characterize HVI-induced pitting damage scattered in the inner layer. A numerical simulation, supplemented with experimental validation, quantitatively reveals the accumulation of nonlinearity of the guided waves when the waves traverse the pitting damage, based on which linear and nonlinear damage indices are proposed. A path-based rapid imaging algorithm, in conjunction with the use of the developed linear and nonlinear indices, is developed, whereby the HVI-induced pitting damage is characterized in images in terms of the probability of occurrence. PMID:28772908

  19. Electrochemical and pitting corrosion resistance of AISI 4145 steel subjected to massive laser shock peening treatment with different coverage layers

    NASA Astrophysics Data System (ADS)

    Lu, J. Z.; Han, B.; Cui, C. Y.; Li, C. J.; Luo, K. Y.

    2017-02-01

    The effects of massive laser shock peening (LSP) treatment with different coverage layers on residual stress, pitting morphologies in a standard corrosive solution and electrochemical corrosion resistance of AISI 4145 steel were investigated by pitting corrosion test, potentiodynamic polarisation test, and SEM observations. Results showed massive LSP treatment can effectively cause an obvious improvement of pitting corrosion resistance of AISI 4145 steel, and increased coverage layer can also gradually improve its corrosion resistance. Massive LSP treatment with multiple layers was shown to influence pitting corrosion behaviour in a standard corrosive solution.

  20. Assessment of pit latrines in a peri-urban community in KwaZulu-Natal (South Africa) as a source of antibiotic resistant E. coli strains.

    PubMed

    Beukes, Lorika S; King, Tracy L B; Schmidt, Stefan

    2017-11-01

    Due to the frequent use of antibiotics and recurring illnesses related to multidrug-resistant (MDR) bacteria in South Africa, we determined if MDR Escherichia coli were present in pit latrine fecal sludge samples obtained from a peri-urban community in KwaZulu-Natal, South Africa. The abundance of E. coli in pit latrine samples was established using a most probable number (MPN) method with species confirmation done using biochemical tests and polymerase chain reaction (PCR). Forty-four randomly selected E. coli pit latrine isolates were further characterized, using the European committee on antimicrobial susceptibility testing (EUCAST) disk diffusion method to establish antibiotic resistance profiles for these E. coli isolates. The resulting MPN values for E. coli ranged from one to 6.2 log 10 MPN per gram of fresh pit latrine fecal sludge. While only 3 out of 44 E. coli pit latrine isolates showed no resistance to any of the 12 tested antibiotics, most isolates were resistant to two or more antibiotics. The majority of isolates showed resistance to at least one of the two tested aminoglycosides, one isolate showed resistance to the carbapenem ertapenem, and although resistance was not detected for tigecycline four pit latrine E. coli isolates showed intermediate resistance to this antibiotic. However, about 14% of the E. coli pit latrine isolates were categorized as MDR, all of which showed resistance to four or more antibiotics. The presence of MDR E. coli strains in pit latrine samples demonstrates that these facilities are potential sources for MDR bacteria. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. CAVITATION DAMAGE STUDY VIA A NOVEL REPETITIVE PRESSURE PULSE APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Ren, Fei; Wang, Hong

    2010-01-01

    Cavitation damage can significantly affect system performance. Thus, there is great interest in characterizing cavitation damage and improving materials resistance to cavitation damage. In this paper, we present a novel methodology to simulate cavitation environment. A pulsed laser is utilized to induce optical breakdown in the cavitation media, with the emission of shock wave and the generation of bubbles. The pressure waves induced by the optical breakdown fluctuate/propagate within the media, which enables the cavitation to occur and to further develop cavitation damage at the solid boundary. Using the repetitive pulsed-pressure apparatus developed in the current study, cavitation damage inmore » water media was verified on stainless steel and aluminum samples. Characteristic cavitation damages such as pitting and indentation are observed on sample surfaces using scanning electron microscopy.« less

  2. Acquired pit of the optic nerve: a risk factor for progression of glaucoma.

    PubMed

    Ugurlu, S; Weitzman, M; Nduaguba, C; Caprioli, J

    1998-04-01

    To examine acquired pit of the optic nerve as a risk factor for progression of glaucoma. In a retrospective longitudinal study, 25 open-angle glaucoma patients with acquired pit of the optic nerve were compared with a group of 24 open-angle glaucoma patients without acquired pit of the optic nerve. The patients were matched for age, mean intraocular pressure, baseline ratio of neuroretinal rim area to disk area, visual field damage, and duration of follow-up. Serial optic disk photographs and visual fields of both groups were evaluated by three independent observers for glaucomatous progression. Of 46 acquired pits of the optic nerve in 37 eyes of 25 patients, 36 pits were located inferiorly (76%) and 11 superiorly (24%; P < .001). Progression of optic disk damage occurred in 16 patients (64%) in the group with acquired pit and in three patients (12.5%) in the group without acquired pit (P < .001). Progression of visual field loss occurred in 14 patients (56%) in the group with acquired pit and in six (25%) in the group without pit (P=.04). Bilateral acquired pit of the optic nerve was present in 12 patients (48%). Disk hemorrhages were observed more frequently in the group with acquired pit (10 eyes, 40%) compared with the group without pit (two eyes, 8%; P=.02). Among patients with glaucoma, patients with acquired pit of the optic nerve represent a subgroup who are at increased risk for progressive optic disk damage and visual field loss.

  3. Pitting and stress corrosion cracking of stainless steel

    NASA Astrophysics Data System (ADS)

    Saithala, Janardhan R.

    An investigation has been performed to determine the pitting resistance of stainless steels and stress corrosion cracking of super duplex stainless steels in water containing chloride ions from 25 - 170°C. The steels studied are 12% Cr, FV520B, FV566, 304L, Uranus65, 2205, Ferallium Alloy 255, and Zeron 100. All these commercial materials used in very significant industrial applications and suffer from pitting and stress corrosion failures. The design of a new experimental setup using an autoclave enabled potentiodynamic polarisation experiments and slow strain rate tests in dilute environments to be conducted at elevated temperatures. The corrosion potentials were controlled using a three electrode cell with computer controlled potentiostat.The experimental programme to determine pitting potentials was designed to simulate the service conditions experienced in most industrial plants and develop mathematical model equations to help a design engineer in material selection decision. Stress corrosion resistance of recently developed Zeron100 was evaluated in dilute environments to propose a mechanism in chloride solutions at high' temperatures useful for the nuclear and power generation industry. Results have shown the significance of the composition of alloying elements across a wide range of stainless steels and its influence on pitting. Nitrogen and molybdenum added to modern duplex stainless steels was found to be unstable at higher temperatures. The fractographic results obtained using the scanning electron microscope (SEM) has given insight in the initiation of pitting in modem duplex and super duplex stainless steels. A mathematical model has been proposed to predict pitting in stainless steels based on the effect of environmental factors (temperature, chloride concentration, and chemical composition). An attempt has been made to identify the mechanism of SCC in Zeron100 super duplex stainless steel.The proposed empirical models have shown good correlation between predicted pitting potential values with experimental results. It has been shown that the SCC mechanism in Zeron100 supports the slip assisted anodic dissolution model of SCC. The relationship between pitting and stress corrosion in dilute environments is established and empirical equations have been proposed to determine the damage region for wide range of stainless steels.

  4. The effect of normal pulsed Nd-YAG laser irradiation on pits and fissures in human teeth.

    PubMed

    Bahar, A; Tagomori, S

    1994-01-01

    The effects of normal pulsed Nd-YAG laser irradiation on the acid resistance of human dental enamel of pits and fissures, the cleaning of the pit and fissure contents and fluoride uptake into deep pits and fissures were examined. The acid resistance of the pit and fissure enamel was evaluated by the amount of dissolved calcium per square millimeter of the surface area. The pit and fissure enamel treated with laser irradiation obtained an acid resistance 30% higher than that of the unlased controls. The cleaning effect of laser irradiation on the pit and fissure contents was compared with chemicomechanical and mechanical methods. The laser irradiation was found to clean the pits and fissures to a greater depth without alterating the shape of pits and fissures, compared with the other two methods. The distribution of calcium, phosphorus and fluoride in the enamel of the pits and fissures was then measured by electron probe microanalyzer. At the entrance and in the deep part of the pits and fissures, the fluoride content of the enamel treated with acidulated phosphate fluoride after laser irradiation was higher than that of the enamel treated with acidulated phosphate fluoride alone. These results thus suggest that Nd-YAG laser irradiation might be effective in increasing the acid resistance of the pit and fissure enamel, while removing the pit and fissure debris contents and increasing the fluoride uptake into the pit and fissure enamel.

  5. Spiral Bevel Gear Damage Detection Using Decision Fusion Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Handschuh, Robert F.; Afjeh, Abdollah A.

    2002-01-01

    A diagnostic tool for detecting damage to spiral bevel gears was developed. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spiral Bevel Gear Fatigue Rigs. Data was collected during experiments performed in this test rig when pitting damage occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears.

  6. Initation of pitting corrosion in martensitic stainless steels. [17-4PH; 13-8Mo; Custom 450

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieslak, W.R.; Semarge, R.E.; Bovard, F.S.

    1986-01-01

    The form of localized corrosion known as pitting often initiates preferentially at microstructural inhomogeneities. The pit initiation resistance, therefore, is controlled by the characteristics of the initiation sites, rather than by the bulk material composition. This investigation correlates the pit initiation resistance, as measured by critical pitting potentials, with preferred pit initiation sites for 3 martensitic stainless steels. Pit initiation sites are determined by secondary electron (SE) and backscattered electron (BSE) imaging and energy dispersive and wavelength dispersive spectrometries (EDS and WDS) with a scalling electron microscope (SEM) and an electron probe microanalyzer (EPMA).

  7. Determination on Damage Mechanism of the Planet Gear of Heavy Vehicle Final Drive

    NASA Astrophysics Data System (ADS)

    Ramdan, RD; Setiawan, R.; Sasmita, F.; Suratman, R.; Taufiqulloh

    2018-02-01

    The works focus on the investigation of damage mechanism of fractured in the form of spalling of the planet gears from the final drive assembly of 160-ton heavy vehicles. The objective of this work is to clearly understand the mechanism of damage. The work is the first stage of the on-going research on the remaining life estimation of such gears. The understanding of the damage mechanism is critical in order to provide accurate estimate of the gear’s remaining life with observed initial damage. The analysis was performed based on the metallurgy laboratory works, including visual observation, macro-micro fractography by optical stereo and optical microscope and micro-vickers hardness test. From visual observation it was observed pitting that form lining defect at common position, which is at gear flank position. From spalling sample it was observed ratchet mark at the boundary between macro pitting and the edge of fractured parts. Further observation on the cross-section of the samples by optical microscope confirm that initial micro pitting occur without spalling of the case hardened surface. Spalling occur when pitting achieve certain critical size, and occur at multiple initiation site of crack propagation. From the present research it was concluded that pitting was resulted due to repeated contact fatigue. In addition, development of micro to macro pitting as well as spalling occur at certain direction towards the top of the gear teeth.

  8. Correlation between evolution of inclusions and pitting corrosion in 304 stainless steel with yttrium addition.

    PubMed

    Shi, Weining; Yang, Shufeng; Li, Jingshe

    2018-03-19

    Effects of the evolution of inclusions on the pitting corrosion resistance of 304 stainless steel with different contents of the rare-earth element yttrium (Y) were studied using thermodynamic calculations, accelerated immersion tests, and electrochemical measurements. The experimental results showed that regular Y 2 O 3 inclusions demonstrated the best pitting resistance, followed in sequence by (Al,Mn)O inclusions, the composite inclusions, and irregular Y 2 O 3 inclusions. The pitting resistance first decreased, then increased, and then decreased again with increasing Y content, because sulfide inclusions were easily generated when the Y content was low and YN inclusions were easily generated at higher Y contents. The best pitting corrosion resistance was obtained for 304 stainless steel with addition of 0.019% Y.

  9. Characterization of laser induced damage of HR coatings with picosecond pulses

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Zhao, Yuan'an; Cui, Yun; Wang, Yueliang; Peng, Xiaocong; Shan, Chong; Zhu, Meiping; Wang, Jianguo; Shao, Jianda

    2017-11-01

    The effect of protective layer on the picosecond laser-induced damage behaviors of HfO2/SiO2 high-reflective (HR) coatings are explored. Two kinds of 1064nm HR coatings with and without protective layer are deposited by electron beam evaporation. Laser-induced damage tests are conducted with 1064nm, 30ps S-polarized and P-polarized pulses with different angle of incidence (AOI) to make the electric fields intensity in the HR coatings discrepantly. Damage morphology and cross section of damage sites were characterized by scanning electron microscope (SEM) and focused ion beam (FIB), respectively. It is found that SiO2 protective layer have a certain degree of improvement on laser induced damage threshold (LIDT) for every AOIs. The onset damage initiated very near to the Max peak of e-field, after which forms ripple-like pits. The damage morphology presents as layer delamination at high fluence. The Laser damage resistance is correspond with the maximum E-intensity in the coating stacks.

  10. Dependence of Crystallographic Orientation on Pitting Corrosion Behavior of Ni-Fe-Cr Alloy 028

    NASA Astrophysics Data System (ADS)

    Zhang, LiNa; Szpunar, Jerzy A.; Dong, JianXin; Ojo, Olanrewaju A.; Wang, Xu

    2018-06-01

    The influence of crystallographic orientation on the pitting corrosion behavior of Ni-Fe-Cr alloy 028 was studied using a combination of X-ray diffraction (XRD), electron backscatter diffraction (EBSD), potentiodynamic polarization technique, and atomic force microscopy (AFM). The results show that there is anisotropy of pitting corrosion that strongly depends on crystallographic orientation of the surface plane. The distribution of pit density in a standard stereographic triangle indicates that the crystallographic planes close to {100} are more prone to pitting corrosion compared to planes {110} and {111}. The surface energy calculation of (001) and (111) shows that the plane with a high atomic packing density has a low surface energy with concomitant strong resistance to pitting corrosion. A correlation function between crystallographic orientation and pitting corrosion susceptibility suggests a method that not only predicts the pitting resistance of known textured materials, but also could help to improve corrosion resistance by controlling material texture.

  11. Integrating Oil Debris and Vibration Gear Damage Detection Technologies Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Afjeh, Abdollah A.

    2002-01-01

    A diagnostic tool for detecting damage to spur gears was developed. Two different measurement technologies, wear debris analysis and vibration, were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Test Rig. Experimental data were collected during experiments performed in this test rig with and without pitting. Results show combining the two measurement technologies improves the detection of pitting damage on spur gears.

  12. Investigation of dynamic morphological changes of cancer cells during photoimmuno therapy (PIT) by low-coherence quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Ogawa, Mikako; Yamauchi, Toyohiko; Iwai, Hidenao; Magata, Yasuhiro; Choyke, Peter L.; Kobayashi, Hisataka

    2014-03-01

    We have reported a new molecular-targeted cancer phototherapy, photoimmunotherapy (PIT), which killed implanted tumors in mice without side-effects. To understand the mechanism of cell killing with PIT, three-dimentional dynamic low-coherence quantitative phase microscopy (3D LC-QPM), a device developed by Hamamatsu Photonics K.K, was used to detect morphologic changes in cancer cells during PIT. 3T3/HER2 cells were incubated with anti-HER2 trastuzumab-IR700 (10 μg/mL, 0.1 μM as IR700) for 24 hours, then, three-dimensionally imaged with the LC-QPM during the exposure of two different optically filtered lights for excitation of IR700 (500-780 nm) and imaging (780-950 nm). For comparison with traditional PDT, the same experiments were performed with Photofrin (10 and 1 μM). Serial changes in the cell membrane were readily visualized on 3D LC-QPM. 3T3/HER2 cells began to swell rapidly after exposure to 500-780 nm light excitation. The cell volume reached a maximum within 1 min after continuous exposure, and then the cells appeared to burst. This finding suggests that PIT damages the cell membrane by photo-reaction inducing an influx of water into the cell causing swelling and bursting of the cells. Interestingly, even after only 5 seconds of light exposure, the cells demonstrated swelling and bursting albeit more slowly, implying that sufficient cumulative damage occurs on the cell membrane to induce lethal damage to cells even at minimal light exposure. Similar but non-selective membrane damage was shown in PDT-treated cells Photofrin. Thus, PIT induces sufficient damage to the cell membrane within 5 seconds to induce rapid necrotic cell death which can be observed directly with 3D LC-QPM. Further investigation is needed to evaluate the biochemical mechanisms underlying PIT-induced cellular membrane damage.

  13. Controlled-Release Personal Use Arthropod Repellent Formulation. Phase 2

    DTIC Science & Technology

    1986-09-15

    damage, pitting M - Hypopyon N - Corneal neovascularization P - Pannus R - Unable to visualize due to severe opacity S - Granulation scar tissue POS...M - Hypopyon N - Corneal neovascularization P - Pannus R - Unable to visualize due to severe opacity S - Granulation scar tissue POS -Positive...Corneal epithelial damage, piling L - Corneal epithelial damage, pitting M - Hypopyon N - Corneal neovascularization P - Pannus R - Unable to

  14. A Statistical Study on the Effect of Hydrostatic Pressure on Metastable Pitting Corrosion of X70 Pipeline Steel.

    PubMed

    Yang, Zixuan; Kan, Bo; Li, Jinxu; Qiao, Lijie; Volinsky, Alex A; Su, Yanjing

    2017-11-14

    Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and promote stabilization of metastable pitting growth. Electrochemical impedance spectroscopy (EIS) results indicate that Hydrostatic pressure decreases the charge transfer resistance and increases the dissolution rate within the cavities. Corrosion test results also indicated that pitting initiation and propagation are accelerated by hydrostatic pressure. Result validity was verified by evaluating metastable pitting to predict pitting corrosion resistance.

  15. A Statistical Study on the Effect of Hydrostatic Pressure on Metastable Pitting Corrosion of X70 Pipeline Steel

    PubMed Central

    Yang, Zixuan; Kan, Bo; Li, Jinxu; Su, Yanjing; Qiao, Lijie; Volinsky, Alex A.

    2017-01-01

    Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and promote stabilization of metastable pitting growth. Electrochemical impedance spectroscopy (EIS) results indicate that Hydrostatic pressure decreases the charge transfer resistance and increases the dissolution rate within the cavities. Corrosion test results also indicated that pitting initiation and propagation are accelerated by hydrostatic pressure. Result validity was verified by evaluating metastable pitting to predict pitting corrosion resistance. PMID:29135912

  16. Antibiotic resistance profiles of coagulase-positive and coagulase-negative staphylococci from pit latrine fecal sludge in a peri-urban South African community.

    PubMed

    Beukes, Lorika S; Schmidt, Stefan

    2018-04-16

    The aim of this study was to assess pit latrine samples from a peri-urban community in KwaZulu-Natal (South Africa) for the presence of multidrug-resistant (MDR) Staphylococcus spp. Standard procedures were used to isolate Staphylococcus spp. from pit latrine fecal sludge samples, with confirmation at genus level by polymerase chain reaction (PCR). Sixty-eight randomly selected pit latrine Staphylococcus spp. isolates were further characterized by using established disk diffusion procedures. An average Staphylococcus spp. count of 2.1 × 10 5  CFU per g fecal material was established using two randomly selected pit latrine samples. Of the 68-selected Staphylococcus spp. pit latrine isolates, 49% were identified as coagulase positive, 51% as coagulase negative and 65% (12 coagulase positive, 32 coagulase negative isolates) were categorized as MDR. The majority (66/68) of Staphylococcus spp. isolates displayed resistance to fusidic acid while only 5/68 isolates displayed resistance to chloramphenicol. The pit latrine samples analyzed in this study are a source of MDR Staphylococcus spp., highlighting the need for proper hygiene and sanitation regimes in rural communities using these facilities.

  17. Evaluation of pitting corrosion resistance of high-alloyed stainless steels welds for FGD plants in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, K.K.; Sung, H.J.; Im, C.S.

    1998-12-31

    For successful application of high-alloyed stainless steels for Flue Gas Desulfurization (FGD) plants, pitting corrosion resistance of arc welds of N-added 6%Mo austenitic stainless steels (UNS N 08367) and super duplex stainless steels (UNS S 32550) made with various filler metals were evaluated using the Green Death solution. For Gas Tungsten Arc (GTA) and Gas Metal Arc (GMA) welds of N 08367, Critical Pitting Temperature (CPT) of base metal was 65--70 C, whereas weld made by ERNiCrMo-3 filler metal yielded CPT of 50 C. Welds made by ERNiCrMo-10 or ERNiCrMo-4 filler metals showed CPT of 60--65 C and 65--70C, respectively.more » For GTA and GMA welds of S 32550, CPT of welds made by ERNiCrMo-3 was 45--50 C, indicating that the filler metal can provide pitting corrosion resistance matching the S 32550 alloy. Thus, a proper pitting corrosion resistance of weldments of high-alloy stainless steels can be achieved by selecting filler metals having at least +10 higher Pitting Resistance Equivalent Number (PRE{sub N}) value than the base metal regardless of the type of arc welding process. The over-alloyed filler metals would compensate preferential segregation of Cr, MO along the dendrite boundary, which made the dendrite core more susceptible to pitting. Nitrogen addition to the GTA welds of N 08367 made with ERNiCrMo-3 failed to improve pitting corrosion resistance, which was attributed to the precipitation of nitrogen in the weld metal in the form of Nb-nitride.« less

  18. Pitting corrosion resistance of a novel duplex alloy steel in alkali-activated slag extract in the presence of chloride ions

    NASA Astrophysics Data System (ADS)

    Shi, Jin-jie; Ming, Jing; Liu, Xin

    2017-10-01

    In this study, two types of reinforcing steels (conventional low-carbon steel and a novel duplex alloy steel with Cr and Mo) were exposed to chloride-contaminated extract solutions (ordinary Portland cement (OPC) extract and alkali-activated slag (AAS) extract) to investigate their pitting corrosion resistance. The results confirm that the pitting corrosion resistance of the alloy steel is much higher than that of the low-carbon steel in both extract solutions with various NaCl concentrations. Moreover, for each type of steel, the AAS extract contributes to a higher pitting corrosion resistance compared with the OPC extract in the presence of chloride ions, likely because of the formation of flocculent precipitates on the steel surface.

  19. COPPER PITTING AND PINHOLE LEAK RESEARCH STUDY

    EPA Science Inventory

    Localized copper corrosion or pitting is a significant problem at many water utilities across the United States. Copper pinhole leak problems resulting from extensive pitting are widely under reported. Given the sensitive nature of the problem, extent of damage possible, costs o...

  20. Influence of Step Annealing Temperature on the Microstructure and Pitting Corrosion Resistance of SDSS UNS S32760 Welds

    NASA Astrophysics Data System (ADS)

    Yousefieh, M.; Shamanian, M.; Saatchi, A.

    2011-12-01

    In the present work, the influence of step annealing heat treatment on the microstructure and pitting corrosion resistance of super duplex stainless steel UNS S32760 welds have been investigated. The pitting corrosion resistance in chloride solution was evaluated by potentiostatic measurements. The results showed that step annealing treatments in the temperature ranging from 550 to 1000 °C resulted in a precipitation of sigma phase and Cr2N along the ferrite/austenite and ferrite/ferrite boundaries. At this temperature range, the metastable pits mainly nucleated around the precipitates formed in the grain boundary and ferrite phase. Above 1050 °C, the microstructure contains only austenite and ferrite phases. At this condition, the critical pitting temperature of samples successfully arrived to the highest value obtained in this study.

  1. Cavitation Resistance in Seedless Vascular Plants: The Structure and Function of Interconduit Pit Membranes1[W][OPEN

    PubMed Central

    Brodersen, Craig; Jansen, Steven; Choat, Brendan; Rico, Christopher; Pittermann, Jarmila

    2014-01-01

    Plant water transport occurs through interconnected xylem conduits that are separated by partially digested regions in the cell wall known as pit membranes. These structures have a dual function. Their porous construction facilitates water movement between conduits while limiting the spread of air that may enter the conduits and render them dysfunctional during a drought. Pit membranes have been well studied in woody plants, but very little is known about their function in more ancient lineages such as seedless vascular plants. Here, we examine the relationships between conduit air seeding, pit hydraulic resistance, and pit anatomy in 10 species of ferns (pteridophytes) and two lycophytes. Air seeding pressures ranged from 0.8 ± 0.15 MPa (mean ± sd) in the hydric fern Athyrium filix-femina to 4.9 ± 0.94 MPa in Psilotum nudum, an epiphytic species. Notably, a positive correlation was found between conduit pit area and vulnerability to air seeding, suggesting that the rare-pit hypothesis explains air seeding in early-diverging lineages much as it does in many angiosperms. Pit area resistance was variable but averaged 54.6 MPa s m−1 across all surveyed pteridophytes. End walls contributed 52% to the overall transport resistance, similar to the 56% in angiosperm vessels and 64% in conifer tracheids. Taken together, our data imply that, irrespective of phylogenetic placement, selection acted on transport efficiency in seedless vascular plants and woody plants in equal measure by compensating for shorter conduits in tracheid-bearing plants with more permeable pit membranes. PMID:24777347

  2. Enamel coated steel reinforcement for improved durability and life-cycle performance of concrete structures: microstructure, corrosion, and deterioration

    NASA Astrophysics Data System (ADS)

    Tang, Fujian

    This study is aimed (a) to statistically characterize the corrosion-induced deterioration process of reinforced concrete structures (concrete cracking, steel mass loss, and rebar-concrete bond degradation), and (b) to develop and apply three types of enamel-coated steel bars for improved corrosion resistance of the structures. Commercially available pure enamel, mixed enamel with 50% calcium silicate, and double enamel with an inner layer of pure enamel and an outer layer of mixed enamel were considered as various steel coatings. Electrochemical tests were respectively conducted on steel plates, smooth bars embedded in concrete, and deformed bars with/without concrete cover in 3.5 wt.% NaCl or saturated Ca(OH)2 solution. The effects of enamel microstructure, coating thickness variation, potential damage, mortar protection, and corrosion environment on corrosion resistance of the steel members were investigated. Extensive test results indicated that corrosion-induced concrete cracking can be divided into four stages that gradually become less correlated with corrosion process over time. The coefficient of variation of crack width increases with the increasing level of corrosion. Corrosion changed the cross section area instead of mechanical properties of steel bars. The bond-slip behavior between the corroded bars and concrete depends on the corrosion level and distribution of corrosion pits. Although it can improve the chemical bond with concrete and steel, the mixed enamel coating is the least corrosion resistant. The double enamel coating provides the most consistent corrosion performance and is thus recommended to coat reinforcing steel bars for concrete structures applied in corrosive environments. Corrosion pits in enamel-coated bars are limited around damage locations.

  3. Hydraulics of Asteroxylon mackei, an early Devonian vascular plant, and the early evolution of water transport tissue in terrestrial plants.

    PubMed

    Wilson, J P; Fischer, W W

    2011-03-01

    The core of plant physiology is a set of functional solutions to a tradeoff between CO(2) acquisition and water loss. To provide an important evolutionary perspective on how the earliest land plants met this tradeoff, we constructed a mathematical model (constrained geometrically with measurements of fossils) of the hydraulic resistance of Asteroxylon, an Early Devonian plant. The model results illuminate the water transport physiology of one of the earliest vascular plants. Results show that Asteroxylon's vascular system contains cells with low hydraulic resistances; these resistances are low because cells were covered by scalariform pits, elliptical structures that permit individual cells to have large areas for water to pass from one cell to another. Asteroxylon could move a large amount of water quickly given its large pit areas; however, this would have left these plants particularly vulnerable to damage from excessive evapotranspiration. These results highlight a repeated pattern in plant evolution, wherein the evolution of highly conductive vascular tissue precedes the appearance of adaptations to increase water transport safety. Quantitative insight into the vascular transport of Asteroxylon also allows us to reflect on the quality of CO(2) proxy estimates based on early land plant fossils. Because Asteroxylon's vascular tissue lacked any safety features to prevent permanent damage, it probably used stomatal abundance and behavior to prevent desiccation. If correct, low stomatal frequencies in Asteroxylon reflect the need to limit evapotranspiration, rather than adaptation to high CO(2) concentrations in the atmosphere. More broadly, methods to reveal and understand water transport in extinct plants have a clear use in testing and bolstering fossil plant-based paleoclimate proxies. © 2011 Blackwell Publishing Ltd.

  4. Pit-1 inhibits BRCA1 and sensitizes human breast tumors to cisplatin and vitamin D treatment

    PubMed Central

    Seoane, Samuel; Arias, Efigenia; Sigueiro, Rita; Sendon-Lago, Juan; Martinez-Ordoñez, Anxo; Castelao, Esteban; Eiró, Noemí; Garcia-Caballero, Tomás; Macia, Manuel; Lopez-Lopez, Rafael; Maestro, Miguel; Vizoso, Francisco; Mouriño, Antonio; Perez-Fernandez, Roman

    2015-01-01

    The POU class 1 homeobox 1 (POU1F1, also known as Pit-1), pertaining to the Pit-Oct-Unc (POU) family of transcription factors, has been related to tumor growth and metastasis in breast. However, its role in response to breast cancer therapy is unknown. We found that Pit-1 down-regulated DNA-damage and repair genes, and specifically inhibited BRCA1 gene expression, sensitizing breast cancer cells to DNA-damage agents. Administration of 1α, 25-dihydroxy-3-epi-vitamin D3 (3-Epi, an endogenous low calcemic vitamin D metabolite) reduced Pit-1 expression, and synergized with cisplatin, thus, decreasing cell proliferation and apoptosis in vitro, and reducing tumor growth in vivo. In addition, fifteen primary cultures of human breast tumors showed significantly decreased proliferation when treated with 3-Epi+cisplatin, compared to cisplatin alone. This response positively correlated with Pit-1 levels. Our findings demonstrate that high levels of Pit-1 and reduced BRCA1 levels increase breast cancer cell susceptibility to 3-Epi+cisplatin therapy. PMID:25992773

  5. Spherical microglass particle impingement studies of thermoplastic materials at normal incidence

    NASA Technical Reports Server (NTRS)

    Veerabhadra Rao, P.; Buckley, D. H.

    1984-01-01

    Light optical and scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluoroethylene (PTFE) and ultra-high-molecular-weight-polyethylene (UHMWPE). Erosion was caused by a jet of spherical micro-glass beads at normal impact. During the initial stages of damage, the surfaces of these materials were studied using a profilometer. Material buildup above the original surface was observed on PC and PMMA. As erosion progressed, this buildup disappeared as the pit became deeper. Little or no buildup was observed on PTFE and on UHMWPE. UHMWPE and PTFE are the most resistant materials and PMMA the least. Favorable properties for high erosion resistance seem to be high values of ultimate elongation, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibit incubation, acceleration and steady state periods. A continuously increasing erosion rate period was observed however for PMMA instead of a steady state period. At early stages of damage and at low impact pressure material removal mechanisms appear to be similar to those for metallic materials.

  6. Spherical micro-glass particle impingement studies of thermoplastic materials at normal incidence

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1983-01-01

    Light optical and scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluoroethylene (PTFE) and ultra-high-molecular-weight-polyethylene (UHMWPE). Erosion was caused by a jet of spherical micro-glass beads at normal impact. During the initial stages of damage, the surfaces of these materials were studied using a profilometer. Material buildup above the original surface was observed on PC and PMMA. As erosion progressed, this buildup disappeared as the pit became deeper. Little or no buildup was observed on PTFE and on UHMWPE. UHMWPE and PTFE are the most resistant materials and PMMA the least. Favorable properties for high erosion resistance seem to be high values of ultimate elongation, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibit incubation, acceleration and steady state periods. A continuously increasing erosion rate period was observed however for PMMA instead of a steady state period. At early stages of damage and at low impact pressure material removal mechanisms appear to be similar to those for metallic materials.

  7. Surface Dynamics of Unipolar Arcing

    DTIC Science & Technology

    1989-12-01

    slioising bulk copper deposition. (6.4X)( i10 ) Figure 20. Copper deposition on a steel surface shoiing a cor relation bet’seeni greater pitting...pit’s depth and its width. 1. Arc damage - a heating phenomenon To study the effect of the same laser shot. and the same unipolar arc. on two...between pit depth and diameter for pitting on the copper films. This conclusion comes from the fact that in many cases pits with relatively smaller

  8. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function.

    PubMed

    Choat, Brendan; Cobb, Alexander R; Jansen, Steven

    2008-01-01

    Bordered pits are cavities in the lignified cell walls of xylem conduits (vessels and tracheids) that are essential components in the water-transport system of higher plants. The pit membrane, which lies in the center of each pit, allows water to pass between xylem conduits but limits the spread of embolism and vascular pathogens in the xylem. Averaged across a wide range of species, pits account for > 50% of total xylem hydraulic resistance, indicating that they are an important factor in the overall hydraulic efficiency of plants. The structure of pits varies dramatically across species, with large differences evident in the porosity and thickness of pit membranes. Because greater porosity reduces hydraulic resistance but increases vulnerability to embolism, differences in pit structure are expected to correlate with trade-offs between efficiency and safety of water transport. However, trade-offs in hydraulic function are influenced both by pit-level differences in structure (e.g. average porosity of pit membranes) and by tissue-level changes in conduit allometry (average length, diameter) and the total surface area of pit membranes that connects vessels. In this review we address the impact of variation in pit structure on water transport in plants from the level of individual pits to the whole plant.

  9. Analytical and Experimental Vibration Analysis of a Faulty Gear System.

    DTIC Science & Technology

    1994-10-01

    Wigner - Ville Distribution ( WVD ) was used to give a comprehensive comparison of the predicted and...experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD’s ability to...of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  10. Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal

    2009-01-01

    A study was performed to evaluate fault detection effectiveness as applied to gear tooth pitting fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4) were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters performed average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant amount of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.

  11. A Method of Effective Quarry Water Purifying Using Artificial Filtering Arrays

    NASA Astrophysics Data System (ADS)

    Tyulenev, M.; Garina, E.; Khoreshok, A.; Litvin, O.; Litvin, Y.; Maliukhina, E.

    2017-01-01

    The development of open pit mining in the large coal basins of Russia and other countries increases their negative impact on the environment. Along with the damage of land and air pollution by dust and combustion gases of blasting, coal pits have a significant negative impact on water resources. Polluted quarry water worsens the ecological situation on a much larger area than covered by air pollution and land damage. This significantly worsens the conditions of people living in cities and towns located near the coal pits, and complicates the subsequent restoration of the environment, irreversibly destroying the nature. Therefore, the research of quarry wastewater purifying is becoming an important mater for scholars of technical colleges and universities in the regions with developing open-pit mining. This paper describes the method of determining the basic parameters of the artificial filtering arrays formed on coal pits of Kuzbass (Western Siberia, Russia), and gives recommendations on its application.

  12. Cavitation damage prediction for spallation target vessels by assessment of acoustic vibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futakawa, Masatoshi; Kogawa, Hiroyuki; Hasegawa, Shoichi

    2008-01-01

    Liquid-mercury target systems for MW-class spallation neutron sources are being developed around the world. Proton beams are used to induce the spallation reaction. At the moment the proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. In order to estimate the cavitation erosion, i.e. the pitting damage formed by the collapse of cavitation bubbles, off-beam tests were performed by using an electric magnetic impact testing machine (MIMTM), which can impose equivalentmore » pressure pulses in mercury. The damage potential was defined based on the relationship between the pitting damage and the time-integrated acoustic vibration induced by impact due to the bubble collapses. Additionally, the damage potential was measured in on-beam tests carried out by using the proton beam at WNR (Weapons Neutron Research) facility in Los Alamos Neutron Science Center (LANSCE). In this paper, the concept of the damage potential, the relationship between the pitting damage formation and the damage potential both in off-beam and on-beam tests is shown.« less

  13. Microstructure, Pitting Corrosion Resistance and Impact Toughness of Duplex Stainless Steel Underwater Dry Hyperbaric Flux-Cored Arc Welds

    PubMed Central

    Hu, Yu; Shen, Xiao-Qin; Wang, Zhong-Min

    2017-01-01

    Duplex stainless steel multi-pass welds were made at 0.15 MPa, 0.45 MPa, and 0.75 MPa pressure, simulating underwater dry hyperbaric welding by the flux-cored arc welding (FCAW) method, with welds of normal pressure as a benchmark. The purpose of this work was to estimate the effect of ambient pressure on the microstructure, pitting corrosion resistance and impact toughness of the weld metal. The microstructure measurement revealed that the ferrite content in the weld metal made at 0.45 MPa is the lowest, followed by that of 0.75 MPa and 0.15 MPa. The analysis of potentiodynamic polarization tests at 30 °C and 50 °C demonstrated that the pitting corrosion resistance depends on the phases of the lower pitting resistance equivalent numbers (PREN), secondary austenite and ferrite. The weld metal made at 0.45 MPa had the best resistance to pitting corrosion at 30 °C and 50 °C with the highest PRENs of secondary austenite and ferrite. The weld metal made at 0.15 MPa displayed the lowest pitting corrosion resistance at 30 °C with the lowest PREN of secondary austenite, while the weld metal made at 0.75 MPa was the most seriously eroded after being tested at 50 °C for the lowest PREN of ferrite, with large cluster pits seen in ferrite at 50 °C. The impact tests displayed a typical ductile-brittle transition because of the body-centered cubic (BCC) structure of the ferrite when the test temperature was lowered. All the weld metals met the required value of 34 J at −40 °C according to the ASTM A923. The highest ferrite content corresponded to the worst impact toughness, but the highest toughness value did not correspond to the greatest austenite content. With the decreasing of the test temperature, the drop value of absorbed energy was correlated to the ferrite content. Additionally, in this work, the weld metal made at 0.45 MPa had the best combined properties of pitting resistance and impact toughness. PMID:29258262

  14. Microstructure, Pitting Corrosion Resistance and Impact Toughness of Duplex Stainless Steel Underwater Dry Hyperbaric Flux-Cored Arc Welds.

    PubMed

    Hu, Yu; Shi, Yong-Hua; Shen, Xiao-Qin; Wang, Zhong-Min

    2017-12-18

    Duplex stainless steel multi-pass welds were made at 0.15 MPa, 0.45 MPa, and 0.75 MPa pressure, simulating underwater dry hyperbaric welding by the flux-cored arc welding (FCAW) method, with welds of normal pressure as a benchmark. The purpose of this work was to estimate the effect of ambient pressure on the microstructure, pitting corrosion resistance and impact toughness of the weld metal. The microstructure measurement revealed that the ferrite content in the weld metal made at 0.45 MPa is the lowest, followed by that of 0.75 MPa and 0.15 MPa. The analysis of potentiodynamic polarization tests at 30 °C and 50 °C demonstrated that the pitting corrosion resistance depends on the phases of the lower pitting resistance equivalent numbers (PREN), secondary austenite and ferrite. The weld metal made at 0.45 MPa had the best resistance to pitting corrosion at 30 °C and 50 °C with the highest PRENs of secondary austenite and ferrite. The weld metal made at 0.15 MPa displayed the lowest pitting corrosion resistance at 30 °C with the lowest PREN of secondary austenite, while the weld metal made at 0.75 MPa was the most seriously eroded after being tested at 50 °C for the lowest PREN of ferrite, with large cluster pits seen in ferrite at 50 °C. The impact tests displayed a typical ductile-brittle transition because of the body-centered cubic (BCC) structure of the ferrite when the test temperature was lowered. All the weld metals met the required value of 34 J at -40 °C according to the ASTM A923. The highest ferrite content corresponded to the worst impact toughness, but the highest toughness value did not correspond to the greatest austenite content. With the decreasing of the test temperature, the drop value of absorbed energy was correlated to the ferrite content. Additionally, in this work, the weld metal made at 0.45 MPa had the best combined properties of pitting resistance and impact toughness.

  15. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel

    PubMed Central

    Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik

    2017-01-01

    Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance. PMID:28773067

  16. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel.

    PubMed

    Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik

    2017-06-27

    Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance.

  17. Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhang, Jianli

    2017-02-01

    The influences of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel joints welded by gas tungsten arc welding (GTAW) and flux-cored arc welding (FCAW) with different shielding gas compositions were studied by optical microscopy, electron backscatter diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron probe microanalysis, and potentiostatic and potentiodynamic polarization methods The adding 2% N2 in shielding gas facilitated primary austenite formation in GTAW weld metal (WM) and suppressed Cr2N precipitation in GTAW weld root. In the HAZ, the banded microstructure disappeared while the coarse ferrite grains maintained same orientation as the banded ferrite in the BM. In the WM, the ferrite had one single orientation throughout a grain, whereas several families of austenite appeared. The austenite both in BM and WM enriched in Ni and nitro`gen, while Cr and Mo were concentrated in the ferrite and thus no element showed clear dendritic distribution in the WM (ER2209 and E2209T1). In addition, the secondary austenite had higher Ni content but lower Cr and Mo content than the primary austenite. The N2-supplemented shielding gas promoted nitrogen solid-solution in the primary and secondary austenite. Furthermore, the secondary austenite had relatively lower pitting resistance equivalent number (PREN) than the ferrite and primary austenite, thereby resulting in its preferential corrosion. The Cr2N precipitation led to relatively poor resistance to pitting corrosion in three HAZs and pure Ar shielding GTAW weld root. The N2-supplemented shielding gas improved pitting corrosion resistance of GTAW joint by increasing PREN of secondary austenite and suppressing Cr2N precipitation. In addition, the FCAW WM had much poorer resistance to pitting corrosion than the GTAW WM due to many O-Ti-Si-Mn inclusions. In the BM, since the austenite with lower PREN compared to the ferrite, the pitting corrosion occurred at the ferrite and austenite interface or within the austenite.

  18. Scaling of angiosperm xylem structure with safety and efficiency.

    PubMed

    Hacke, Uwe G; Sperry, John S; Wheeler, James K; Castro, Laura

    2006-06-01

    We tested the hypothesis that greater cavitation resistance correlates with less total inter-vessel pit area per vessel (the pit area hypothesis) and evaluated a trade-off between cavitation safety and transport efficiency. Fourteen species of diverse growth form (vine, ring- and diffuse-porous tree, shrub) and family affinity were added to published data predominately from the Rosaceae (29 species total). Two types of vulnerability-to-cavitation curves were found. Ring-porous trees and vines showed an abrupt drop in hydraulic conductivity with increasing negative pressure, whereas hydraulic conductivity in diffuse-porous species generally decreased gradually. The ring-porous type curve was not an artifact of the centrifuge method because it was obtained also with the air-injection technique. A safety versus efficiency trade-off was evident when curves were compared across species: for a given pressure, there was a limited range of optimal vulnerability curves. The pit area hypothesis was supported by a strong relationship (r2 = 0.77) between increasing cavitation resistance and diminishing pit membrane area per vessel (A(P)). Small A(P) was associated with small vessel surface area and hence narrow vessel diameter (D) and short vessel length (L)--consistent with an increase in vessel flow resistance with cavitation resistance. This trade-off was amplified at the tissue level by an increase in xylem/vessel area ratio with cavitation resistance. Ring-porous species were more efficient than diffuse-porous species on a vessel basis but not on a xylem basis owing to higher xylem/vessel area ratios in ring-porous anatomy. Across four orders of magnitude, lumen and end-wall resistivities maintained a relatively tight proportionality with a near-optimal mean of 56% of the total vessel resistivity residing in the end-wall. This was consistent with an underlying scaling of L to D(3/2) across species. Pit flow resistance did not increase with cavitation safety, suggesting that cavitation pressure was not related to mean pit membrane porosity.

  19. Recent patents on light based therapies: photodynamic therapy, photothermal therapy and photoimmunotherapy.

    PubMed

    Sanchez-Barcelo, Emilio J; Mediavilla, Maria D

    2014-01-01

    This article reviews the more recent patents in three kinds of therapeutic strategies using the application of visible light to irradiate photosensible substances (PSs) of different natures. The light-activation of these PSs is directly responsible for the desired therapeutic effects. This group of light therapies includes photodynamic therapy (PDT), photothermal therapy (PTT) and photoimmunotherapy (PIT). Therapeutic mechanisms triggered by the activation of the PSs depend basically (though not exclusively) on the release of reactive oxygen species (ROS) and the activation of immune responses (PDT and PIT) or the local generation of heat (PTT). The main difference between PIT and PDT is that in PIT, monoclonal antibodies (MABs) are associated to PSs to improve the selective binding of the PSs to the target tissues. All these therapeutic strategies offer the possibility of destroying tumor tissue without damaging the surrounding healthy tissue, which is not achievable with chemotherapy or radiotherapy. PDT is also used as an alternative or adjuvant antimicrobial therapy together with the traditional antibiotic therapy since these organisms are unlikely to develop resistance to the ROS induced by PDT. Furthermore, PDT also induces an immune response against bacterial pathogens. The current challenge in PDT, PIT and PTT is to obtain the highest level of selectivity to act on targeted sick tissues with the minimum effects on the surrounding healthy tissue. The development of new PSs with high affinity for specific tissues, new PSs- MABs conjugates to bind to specific kinds of tumors, and new light-sensible nanoparticles with low toxicity, will increase the clinical utility of these therapies.

  20. Corrosion behavior in high heat input welded heat-affected zone of Ni-free high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Joonoh, E-mail: mjo99@kims.re.kr; Ha, Heon-Young; Lee, Tae-Ho

    2013-08-15

    The pitting corrosion and interphase corrosion behaviors in high heat input welded heat-affected zone (HAZ) of a metastable high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel were explored through electrochemical tests. The HAZs were simulated using Gleeble simulator with high heat input welding condition of 300 kJ/cm and the peak temperature of the HAZs was changed from 1200 °C to 1350 °C, aiming to examine the effect of δ-ferrite formation on corrosion behavior. The electrochemical test results show that both pitting corrosion resistance and interphase corrosion resistance were seriously deteriorated by δ-ferrite formation in the HAZ and their aspects were different with increasingmore » δ-ferrite fraction. The pitting corrosion resistance was decreased by the formation of Cr-depleted zone along δ-ferrite/austenite (γ) interphase resulting from δ-ferrite formation; however it didn't depend on δ-ferrite fraction. The interphase corrosion resistance depends on the total amount of Cr-depleted zone as well as ferrite area and thus continuously decreased with increasing δ-ferrite fraction. The different effects of δ-ferrite fraction on pitting corrosion and interphase corrosion were carefully discussed in terms of alloying elements partitioning in the HAZ based on thermodynamic consideration. - Highlights: • Corrosion behavior in the weld HAZ of high-nitrogen austenitic alloy was studied. • Cr{sub 2}N particle was not precipitated in high heat input welded HAZ of tested alloy. • Pitting corrosion and interphase corrosion show a different behavior. • Pitting corrosion resistance was affected by whether or not δ-ferrite forms. • Interphase corrosion resistance was affected by the total amount of δ-ferrite.« less

  1. Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal

    2010-01-01

    A study was performed to evaluate fault detection effectiveness as applied to gear-tooth-pitting-fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4 [Ed. 's note: See Appendix A-Definitions D were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters perfomu:d average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant 8lDOunt of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.

  2. Effects of heat input on the pitting resistance of Inconel 625 welds by overlay welding

    NASA Astrophysics Data System (ADS)

    Kim, Jun Seok; Park, Young IL; Lee, Hae Woo

    2015-03-01

    The objective of this study was to establish the relationship between the dilution ratio of the weld zone and pitting resistance depending on the heat input to welding of the Inconel alloy. Each specimen was produced by electroslag welding using Inconel 625 as the filler metal. In the weld zone of each specimen, dendrite grains were observed near the fusion line and equiaxed grains were observed on the surface. It was also observed that a melted zone with a high Fe content was formed around the fusion line, which became wider as the welding heat input increased. In order to evaluate the pitting resistance, potentiodynamic polarization tests and CPT tests were conducted. The results of these tests confirmed that there is no difference between the pitting resistances of each specimen, as the structures of the surfaces were identical despite the effect of the differences in the welding heat input for each specimen and the minor dilution effect on the surface.

  3. Nobody’s perfect: can irregularities in pit structure influence vulnerability to cavitation?

    PubMed Central

    Plavcová, Lenka; Jansen, Steven; Klepsch, Matthias; Hacke, Uwe G.

    2013-01-01

    Recent studies have suggested that species-specific pit properties such as pit membrane thickness, pit membrane porosity, torus-to-aperture diameter ratio and pit chamber depth influence xylem vulnerability to cavitation. Despite the indisputable importance of using mean pit characteristics, considerable variability in pit structure within a single species or even within a single pit field should be acknowledged. According to the rare pit hypothesis, a single pit that is more air-permeable than many neighboring pits is sufficient to allow air-seeding. Therefore, any irregularities or morphological abnormalities in pit structure allowing air-seeding should be associated with increased vulnerability to cavitation. Considering the currently proposed models of air-seeding, pit features such as rare, large pores in the pit membrane, torus extensions, and plasmodesmatal pores in a torus can represent potential glitches. These aberrations in pit structure could either result from inherent developmental flaws, or from damage caused to the pit membrane by chemical and physical agents. This suggests the existence of interesting feedbacks between abiotic and biotic stresses in xylem physiology. PMID:24273549

  4. Analytical and experimental vibration analysis of a faulty gear system

    NASA Astrophysics Data System (ADS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-10-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structures. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville Distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  5. Analytical and experimental vibration analysis of a faulty gear system

    NASA Astrophysics Data System (ADS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-10-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  6. Analytical and Experimental Vibration Analysis of a Faulty Gear System

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-01-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  7. A probability distribution model of tooth pits for evaluating time-varying mesh stiffness of pitting gears

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Liu, Zongyao; Wang, Delong; Yang, Xiao; Liu, Huan; Lin, Jing

    2018-06-01

    Tooth damage often causes a reduction in gear mesh stiffness. Thus time-varying mesh stiffness (TVMS) can be treated as an indication of gear health conditions. This study is devoted to investigating the mesh stiffness variations of a pair of external spur gears with tooth pitting, and proposes a new model for describing tooth pitting based on probability distribution. In the model, considering the appearance and development process of tooth pitting, we model the pitting on the surface of spur gear teeth as a series of pits with a uniform distribution in the direction of tooth width and a normal distribution in the direction of tooth height, respectively. In addition, four pitting degrees, from no pitting to severe pitting, are modeled. Finally, influences of tooth pitting on TVMS are analyzed in details and the proposed model is validated by comparing with a finite element model. The comparison results show that the proposed model is effective for the TVMS evaluations of pitting gears.

  8. 7 CFR 987.152 - Exemption from regulations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-pitted dates which meet the grade requirements for DAC dates except for size, or damage due to cutting and pitting. Also, it may permit any handler to sell hand-layered dates in tin, wood, plastic, or...

  9. 7 CFR 987.152 - Exemption from regulations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-pitted dates which meet the grade requirements for DAC dates except for size, or damage due to cutting and pitting. Also, it may permit any handler to sell hand-layered dates in tin, wood, plastic, or...

  10. 7 CFR 987.152 - Exemption from regulations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-pitted dates which meet the grade requirements for DAC dates except for size, or damage due to cutting and pitting. Also, it may permit any handler to sell hand-layered dates in tin, wood, plastic, or...

  11. 7 CFR 987.152 - Exemption from regulations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-pitted dates which meet the grade requirements for DAC dates except for size, or damage due to cutting and pitting. Also, it may permit any handler to sell hand-layered dates in tin, wood, plastic, or...

  12. Preliminary evaluation of cavitation resistance of type 316LN stainless steel in mercury using a vibratory horn

    NASA Astrophysics Data System (ADS)

    Pawel, S. J.; Manneschmidt, E. T.

    2003-05-01

    Type 316LN stainless steel in a variety of conditions (annealed, cold-worked, surface-modified) was exposed to cavitation conditions in stagnant mercury using a vibratory horn. The test conditions included peak-to-peak displacement of the specimen surface of 25 μm at a frequency of 20 kHz and a mercury temperature in the range -5 to 80 °C. Following a brief incubation period in which little or no damage was observed, specimens of annealed 316LN exhibited increasing weight loss and surface roughening with increasing exposure times. Examination of test surfaces with the scanning electron microscope revealed primarily general/uniform wastage in all cases but, for long exposure times, a few randomly oriented 'pits' were also observed. Type 316LN that was 50% cold-worked was considerably more resistant to cavitation erosion damage than annealed material, but the surface modifications (CrN coating, metallic glass coating, laser treatment to form a diamond-like surface) provided little or no protection for the substrate. In addition, the cavitation erosion resistance of other materials - Inconel 718, Nitronic 60, and Stellite 3 - was also compared with that of 316LN for identical screening test conditions.

  13. Pit Latrine Fecal Sludge Resistance Using a Dynamic Cone Penetrometer in Low Income Areas in Mzuzu City, Malawi

    PubMed Central

    Chirwa, Charles F. C.; Hall, Ralph P.; Krometis, Leigh-Anne H.; Vance, Eric A.; Edwards, Adam; Guan, Ting; Holm, Rochelle H.

    2017-01-01

    Pit latrines can provide improved household sanitation, but without effective and inexpensive emptying options, they are often abandoned once full and may pose a public health threat. Emptying techniques can be difficult, as the sludge contents of each pit latrine are different. The design of effective emptying techniques (e.g., pumps) is limited by a lack of data characterizing typical in situ latrine sludge resistance. This investigation aimed to better understand the community education and technical engineering needs necessary to improve pit latrine management. In low income areas within Mzuzu city, Malawi, 300 pit latrines from three distinct areas were assessed using a dynamic cone penetrometer to quantify fecal sludge strength, and household members were surveyed to determine their knowledge of desludging procedures and practices likely to impact fecal sludge characteristics. The results demonstrate that there is a significant difference in sludge strength between lined and unlined pits within a defined area, though sludge hardened with depth, regardless of the pit type or region. There was only limited association between cone penetration depth and household survey data. To promote the adoption of pit emptying, it is recommended that households be provided with information that supports pit emptying, such as latrine construction designs, local pit emptying options, and cost. This study indicates that the use of a penetrometer test in the field prior to pit latrine emptying may facilitate the selection of appropriate pit emptying technology. PMID:28165378

  14. The effect of tempering temperature on pitting corrosion resistance of 420 stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anwar, Moch Syaiful, E-mail: moch026@lipi.go.id; Prifiharni, Siska, E-mail: sisk002@lipi.go.id; Mabruri, Efendi, E-mail: effe004@lipi.go.id

    2016-04-19

    The AISI Type 420 stainless steels are commonly used to steam generators, mixer blades, etc. These stainless steels are most prone to pitting in dissolved Cl{sup −} containing environments. In this paper, the effect of tempering temperature on pitting corrosion resistance of AISI Type 420 stainless steels was studied. The AISI Type 420 stainless steels specimens were heat treated at the temperature of 1050°C for 1 hour to reach austenite stabilization and then quench in the oil. After that, the specimens were tempered at the temperature of 150, 250, 350 and 450°C for 30 minutes and then air cooled tomore » the room temperature. The electrochemical potentiodynamic polarization test was conducted at 3.5% sodium chloride solution to evaluate corrosion rate and pitting corrosion behaviour. The Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) were used to evaluate the pitting corrosion product. The result have shown that highest pitting potential was found in the sample tempered at 250°C and corrosion pits were found to initiate preferentially around chromium carbides.« less

  15. Influence of heat input in electron beam process on microstructure and properties of duplex stainless steel welded interface

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Lv, Xiaoqing; Zhang, Jianyang

    2018-03-01

    The influence of heat input in electron beam (EB) process on microstructure, mechanical properties, and pitting corrosion resistance of duplex stainless steel (DSS) welded interface was investigated. The rapid cooling in EB welding resulted in insufficient austenite formation. The austenite mainly consisted of grain boundary austenite and intragranular austenite, and there was abundant Cr2N precipitation in the ferrite. The Ni, Mo, and Si segregation indicated that the dendritic solidification was primarily ferrite in the weld. The weld exhibited higher hardness, lower toughness, and poorer pitting corrosion resistance than the base metal. The impact fractures of the welds were dominated by the transgranular cleavage failure of the ferrite. The ferrite was selectively attacked because of its lower pitting resistance equivalent number than that of austenite. The Cr2N precipitation accelerated the pitting corrosion. In summary, the optimised heat input slightly increased the austenite content, reduced the segregation degree and ferrite texture intensity, decreased the hardness, and improved the toughness and pitting corrosion resistance. However, the effects were limited. Furthermore, optimising the heat input could not suppress the Cr2N precipitation. Taking into full consideration the microstructure and properties, a heat input of 0.46 kJ/mm is recommended for the EB welding of DSS.

  16. Taguchi Optimization of Pulsed Current GTA Welding Parameters for Improved Corrosion Resistance of 5083 Aluminum Welds

    NASA Astrophysics Data System (ADS)

    Rastkerdar, E.; Shamanian, M.; Saatchi, A.

    2013-04-01

    In this study, the Taguchi method was used as a design of experiment (DOE) technique to optimize the pulsed current gas tungsten arc welding (GTAW) parameters for improved pitting corrosion resistance of AA5083-H18 aluminum alloy welds. A L9 (34) orthogonal array of the Taguchi design was used, which involves nine experiments for four parameters: peak current ( P), base current ( B), percent pulse-on time ( T), and pulse frequency ( F) with three levels was used. Pitting corrosion resistance in 3.5 wt.% NaCl solution was evaluated by anodic polarization tests at room temperature and calculating the width of the passive region (∆ E pit). Analysis of variance (ANOVA) was performed on the measured data and S/ N (signal to noise) ratios. The "bigger is better" was selected as the quality characteristic (QC). The optimum conditions were found as 170 A, 85 A, 40%, and 6 Hz for P, B, T, and F factors, respectively. The study showed that the percent pulse-on time has the highest influence on the pitting corrosion resistance (50.48%) followed by pulse frequency (28.62%), peak current (11.05%) and base current (9.86%). The range of optimum ∆ E pit at optimum conditions with a confidence level of 90% was predicted to be between 174.81 and 177.74 mVSCE. Under optimum conditions, the confirmation test was carried out, and the experimental value of ∆ E pit of 176 mVSCE was in agreement with the predicted value from the Taguchi model. In this regard, the model can be effectively used to predict the ∆ E pit of pulsed current gas tungsten arc welded joints.

  17. The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species.

    PubMed

    Scholz, Alexander; Rabaey, David; Stein, Anke; Cochard, Hervé; Smets, Erik; Jansen, Steven

    2013-07-01

    Various structure-function relationships regarding drought-induced cavitation resistance of secondary xylem have been postulated. These hypotheses were tested on wood of 10 Prunus species showing a range in P50 (i.e., the pressure corresponding to 50% loss of hydraulic conductivity) from -3.54 to -6.27 MPa. Hydraulically relevant wood characters were quantified using light and electron microscopy. A phylogenetic tree was constructed to investigate evolutionary correlations using a phylogenetically independent contrast (PIC) analysis. Vessel-grouping characters were found to be most informative in explaining interspecific variation in P50, with cavitation-resistant species showing more solitary vessels than less resistant species. Co-evolution between vessel-grouping indices and P50 was reported. P50 was weakly correlated with the shape of the intervessel pit aperture, but not with the total intervessel pit membrane area per vessel. A negative correlation was found between P50 and intervessel pit membrane thickness, but this relationship was not supported by the PIC analysis. Cavitation resistance has co-evolved with vessel grouping within Prunus and was mainly influenced by the spatial distribution of the vessel network.

  18. The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: I Damage morphology

    DOE PAGES

    Laurence, T. A.; Ly, S.; Shen, N.; ...

    2017-06-22

    Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multi-photon ionization and avalanche ionization-based ablation with fs pulses to defect-dominated, thermal-based damage with ns pulses. We investigated the morphology of damage for fused silica and silica coatings between 1 ps and 60 ps at 1053 nm. Using calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we show that defects play an important role in laser-induced damage down to 1 ps. Three types of damage are observed: ablation craters, ultra-high density pits, and smooth, circular depressions with central pits.more » For 10 ps and longer, the smooth, circular depressions limit the damage performance of fused silica and silica coatings. The observed high-density pits and material removal down to 3 ps indicate that variations in surface properties limit the laser-induced damage onset to a greater extent than expected below 60 ps. Below 3 ps, damage craters are smoother although there is still evidence as seen by AFM of inhomogeneous laser-induced damage response very near the damage onset. These results show that modeling the damage onset only as a function of pulse width does not capture the convoluted processes leading to laser induced damage with ps pulses. It is necessary to account for the effects of defects on the processes leading to laser-induced damage. In conclusion, the effects of isolated defects or inhomogeneities are most pronounced above 3 ps but are still discernible and possibly important down to the shortest pulse width investigated here.« less

  19. The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: I Damage morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, T. A.; Ly, S.; Shen, N.

    Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multi-photon ionization and avalanche ionization-based ablation with fs pulses to defect-dominated, thermal-based damage with ns pulses. We investigated the morphology of damage for fused silica and silica coatings between 1 ps and 60 ps at 1053 nm. Using calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we show that defects play an important role in laser-induced damage down to 1 ps. Three types of damage are observed: ablation craters, ultra-high density pits, and smooth, circular depressions with central pits.more » For 10 ps and longer, the smooth, circular depressions limit the damage performance of fused silica and silica coatings. The observed high-density pits and material removal down to 3 ps indicate that variations in surface properties limit the laser-induced damage onset to a greater extent than expected below 60 ps. Below 3 ps, damage craters are smoother although there is still evidence as seen by AFM of inhomogeneous laser-induced damage response very near the damage onset. These results show that modeling the damage onset only as a function of pulse width does not capture the convoluted processes leading to laser induced damage with ps pulses. It is necessary to account for the effects of defects on the processes leading to laser-induced damage. In conclusion, the effects of isolated defects or inhomogeneities are most pronounced above 3 ps but are still discernible and possibly important down to the shortest pulse width investigated here.« less

  20. Influence of Postbuild Microstructure on the Electrochemical Behavior of Additively Manufactured 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Stoudt, M. R.; Ricker, R. E.; Lass, E. A.; Levine, L. E.

    2017-03-01

    The additive manufacturing build process produces a segregated microstructure with significant variations in composition and phases that are uncommon in traditional wrought materials. As such, the relationship between the postbuild microstructure and the corrosion resistance is not well understood. Stainless steel alloy 17-4 precipitation hardened (SS17-4PH) is an industrially relevant alloy for applications requiring high strength and good corrosion resistance. A series of potentiodynamic scans conducted in a deaerated 0.5-mol/L NaCl solution evaluated the influence of these microstructural differences on the pitting behavior of SS17-4. The pitting potentials were found to be higher in the samples of additively processed material than in the samples of the alloy in wrought form. This indicates that the additively processed material is more resistant to localized corrosion and pitting in this environment than is the wrought alloy. The results also suggest that after homogenization, the additively produced SS17-4 could be more resistant to pitting than the wrought SS17-4 is in an actual service environment.

  1. The Influence of Post-Build Microstructure on the Electrochemical Behavior of Additively Manufactured 17-4 PH Stainless Steel.

    PubMed

    Stoudt, M R; Ricker, R E; Lass, E A; Levine, L E

    2017-03-01

    The additive manufacturing (AM) build process produces a segregated microstructure with significant variations in composition and phases that are uncommon in traditional wrought materials. As such, the relationship between the post-build microstructure and the corrosion resistance is not well understood. Stainless steel alloy 17-4PH is an industrially-relevant alloy for applications requiring high-strength and good corrosion resistance. A series of potentiodynamic scans conducted in a deaerated 0.5 mol/L NaCl solution evaluated the influence of these microstructural differences on the pitting behavior of SS17-4. The pitting potentials were found to be higher in the samples of additively-processed material than in samples of the alloy in wrought form. This indicates that the additively-processed material is more resistant to localized corrosion and pitting in this environment than the wrought alloy. The results also suggest that after homogenization, the additively-produced SS17-4 could be more resistant to pitting than wrought SS17-4 in an actual service environment.

  2. The Influence of Post-Build Microstructure on the Electrochemical Behavior of Additively Manufactured 17-4 PH Stainless Steel

    PubMed Central

    Stoudt, M. R.; Ricker, R. E.; Lass, E. A.; Levine, L. E.

    2017-01-01

    The additive manufacturing (AM) build process produces a segregated microstructure with significant variations in composition and phases that are uncommon in traditional wrought materials. As such, the relationship between the post-build microstructure and the corrosion resistance is not well understood. Stainless steel alloy 17-4PH is an industrially-relevant alloy for applications requiring high-strength and good corrosion resistance. A series of potentiodynamic scans conducted in a deaerated 0.5 mol/L NaCl solution evaluated the influence of these microstructural differences on the pitting behavior of SS17-4. The pitting potentials were found to be higher in the samples of additively-processed material than in samples of the alloy in wrought form. This indicates that the additively-processed material is more resistant to localized corrosion and pitting in this environment than the wrought alloy. The results also suggest that after homogenization, the additively-produced SS17-4 could be more resistant to pitting than wrought SS17-4 in an actual service environment. PMID:28757787

  3. A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Li, Zhaoxia

    2018-05-01

    A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.

  4. A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Li, Zhaoxia

    2018-04-01

    A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.

  5. A Comparison of Vibration and Oil Debris Gear Damage Detection Methods Applied to Pitting Damage

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2000-01-01

    Helicopter Health Usage Monitoring Systems (HUMS) must provide reliable, real-time performance monitoring of helicopter operating parameters to prevent damage of flight critical components. Helicopter transmission diagnostics are an important part of a helicopter HUMS. In order to improve the reliability of transmission diagnostics, many researchers propose combining two technologies, vibration and oil monitoring, using data fusion and intelligent systems. Some benefits of combining multiple sensors to make decisions include improved detection capabilities and increased probability the event is detected. However, if the sensors are inaccurate, or the features extracted from the sensors are poor predictors of transmission health, integration of these sensors will decrease the accuracy of damage prediction. For this reason, one must verify the individual integrity of vibration and oil analysis methods prior to integrating the two technologies. This research focuses on comparing the capability of two vibration algorithms, FM4 and NA4, and a commercially available on-line oil debris monitor to detect pitting damage on spur gears in the NASA Glenn Research Center Spur Gear Fatigue Test Rig. Results from this research indicate that the rate of change of debris mass measured by the oil debris monitor is comparable to the vibration algorithms in detecting gear pitting damage.

  6. Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy.

    PubMed

    Nair, R B; Arora, H S; Mukherjee, Sundeep; Singh, S; Singh, H; Grewal, H S

    2018-03-01

    Cavitation erosion and corrosion of structural materials are serious concerns for marine and offshore industries. Durability and performance of marine components are severely impaired due to degradation from erosion and corrosion. Utilization of advanced structural materials can play a vital role in limiting such degradation. High entropy alloys (HEAs) are a relatively new class of advanced structural materials with exceptional properties. In the present work, we report on the cavitation erosion behavior of Al 0.1 CoCrFeNi HEA in two different media: distilled water with and without 3.5wt% NaCl. For comparison, conventionally used stainless steel SS316L was also evaluated in identical test conditions. Despite lower hardness and yield strength, the HEA showed significantly longer incubation period and lower erosion-corrosion rate (nearly 1/4th) compared to SS316L steel. Enhanced erosion resistance of HEA was attributed to its high work-hardening behavior and stable passivation film on the surface. The Al 0.1 CoCrFeNi HEA showed lower corrosion current density, high pitting resistance and protection potential compared to SS316L steel. Further, HEA showed no evidence of intergranular corrosion likely due to the absence of secondary precipitates. Although, the degradation mechanisms (formation of pits and fatigue cracks) were similar for both the materials, the damage severity was found to be much higher for SS316L steel compared to HEA. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Investigation of corrosion of welded joints of austenitic and duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Topolska, S.

    2016-08-01

    Investigation of corrosion resistance of materials is one of the most important tests that allow determining their functional properties. Among these tests the special group consist electrochemical investigations, which let to accelerate the course of the process. These investigations allow rapidly estimating corrosion processes occurring in metal elements under the influence of the analysed environment. In the paper are presented results of investigations of the resistance to pitting corrosion of the steel of next grades: austenitic 316L and duplex 2205. It was also analysed the corrosion resistance of welded joints of these grades of steel. The investigations were conducted in two different corrosion environments: in the neutral one (3.5 % sodium chloride) and in the aggressive one (0.1 M sulphuric acid VI). The obtained results indicate different resistance of analysed grades of steel and their welded joints in relation to the corrosion environment. The austenitic 316L steel characterizes by the higher resistance to the pitting corrosion in the aggressive environment then the duplex 2205 steel. In the paper are presented results of potentiodynamic tests. They showed that all the specimens are less resistant to pitting corrosion in the environment of sulphuric acid (VI) than in the sodium chloride one. The 2205 steel has higher corrosion resistance than the 316L stainless steel in 3.5% NaCl. On the other hand, in 0.1 M H2SO4, the 316L steel has a higher corrosion resistance than the 2205 one. The weld has a similar, very good resistance to pitting corrosion like both steels.

  8. The Effect of Surface Patterning on Corrosion Resistance of Biomedical Devices

    NASA Astrophysics Data System (ADS)

    Guo, Mengnan; Toloei, Alisina; Rotermund, Harm H.

    2016-10-01

    In this study, two styles of surface topographies have been created on stainless steel wires to test their corrosion resistance as simulated implanted biomedical devices. Grade 316 LVM stainless steel wire was initially polished to G1500 surface finish before treatment to produce the two different topographies: 1. Unidirectional roughness was created using SiC papers and 2. Various patterns were created with specific hole diameter and inter-hole spacing using focused ion beam (FIB). In order to simulate the environment of implanted biomedical devices, a three-electrode electrochemical cell with 0.9% (by mass) NaCl solution has been used to test the corrosion resistance of the samples by potentiodynamic polarization test method. SEM and EDS analyzed the appearance and chemical composition of different elements including oxygen on the surface. The potential of stable pitting, time related to the initiation of the stable pitting, and the highest corrosion current associated with stable pitting have been compared for samples with the two styles of topography. It was found that surfaces with patterns have a relatively higher pitting potential and it takes longer time to initiate stable pitting than the surface without any patterns.

  9. Chemical precursor to optical damage detected by laser ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estler, R.C.; Nogar, N.S.

    1988-06-27

    Mass spectrometry was used in conjunction with Nomarski microscopy to characterize the initiation of optical damage in selected commercial optics. The reflective optics (351 nm) consisted of Sc/sub 2/O/sub 3//SiO/sub 2/ multilayer coatings on 7940 (glass) substrates. These samples were exposed to loosely focused 1.06 ..mu..m, 10 ns pulses at 10 Hz. At fluences above 100 mJ/cm/sup 2/, transient iron signals were observed at each increasing fluence level, with concomitant appearance of small circular (10 ..mu..m) pits in the surface. The latter was observed by Nomarski microscopy. These small pits were also associated with macroscopic damage features resulting from thresholdmore » damage testing.« less

  10. The effect of oxide film properties on the corrosion behavior of SiC/Al metal-matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golledge, S.L.

    1991-01-01

    Oxide growth on pure aluminum, aluminum alloy 6061, and the aluminum-based metal matrix composite SiC/AA6061 was studied, and the properties of the oxides related to the pit-initiation behavior of the materials. The objectives of the work were to identify the effect of alloying elements and SiC reinforcement on the oxide film, and to better understand how the oxide properties control pit initiation behavior. To this end, electrochemical and optical studies of the materials were carried out in a buffered sodium/boric acid solution at pH values of 8.4 and 7.2. The alloy and metal-matrix composite showed a slightly lesser tendency tomore » pit than pure aluminum, as measured by the pitting potential. The oxide on the composite was less resistant to pit initiation, and was found to exhibit slower repassivation rates than the other materials. The repassivation behavior and resistance to pit initiation were quite similar in the case of the alloy and the pure aluminum. Induction times for pit initiation were consistent with the predictions of Heusler's model for the breakdown of passivity.« less

  11. Environmental-Induced Damage in Tin (Sn) and Aluminum (Al) Alloys

    NASA Astrophysics Data System (ADS)

    Vallabhaneni, Venkata Sathya Sai Renuka

    Sn and Al alloys are widely used in various industries. Environmental-induced damage resulting in whiskering in Sn and corrosion in Al account for numerous failures globally every year. Therefore, for designing materials that can better withstand these failures, a comprehensive study on the characterization of the damage is necessary. This research implements advanced characterization techniques to study the above-mentioned environmental-induced damage in Sn and Al alloys. Tin based films are known to be susceptible to whisker growth resulting in numerous failures. While the mechanisms and factors affecting whisker growth have been studied extensively, not much has been reported on the mechanical properties of tin whiskers themselves. This study focuses on the tensile behavior of tin whiskers. Tensile tests of whiskers were conducted in situ a dual beam focused ion beam (FIB) with a scanning electron microscope (SEM) using a micro electro-mechanical system (MEMS) tensile testing stage. The deformation mechanisms of whiskers were analyzed using transmission electron microscopy (TEM). Due to the heterogenous nature of the microstructure of Al 7075, it is susceptible to corrosion forming corrosion products and pits. These can be sites for cracks nucleation and propagation resulting in stress corrosion cracking (SCC). Therefore, complete understanding of the corrosion damaged region and its effect on the strength of the alloy is necessary. Several studies have been performed to visualize pits and understand their effect on the mechanical performance of Al alloys using two-dimensional (2D) approaches which are often inadequate. To get a thorough understanding of the pits, it is necessary for three-dimensional (3D) studies. In this study, Al 7075 alloys were corroded in 3.5 wt.% NaCl solution and X-ray tomography was used to obtain the 3D microstructure of pits enabling the quantification of their dimensions accurately. Furthermore, microstructure and mechanical property correlations helped in a better understanding of the effect of corrosion. Apart from the pits, a surface corrosion layer also forms on Al. A subsurface damage layer has also been identified that forms due to the aggressive nature of NaCl. Energy dispersive X-ray spectroscopy (EDX) and nanoindentation helped in identifying this region and understanding the variation in properties.

  12. Numerical and experimental investigations on cavitation erosion

    NASA Astrophysics Data System (ADS)

    Fortes Patella, R.; Archer, A.; Flageul, C.

    2012-11-01

    A method is proposed to predict cavitation damage from cavitating flow simulations. For this purpose, a numerical process coupling cavitating flow simulations and erosion models was developed and applied to a two-dimensional (2D) hydrofoil tested at TUD (Darmstadt University of Technology, Germany) [1] and to a NACA 65012 tested at LMH-EPFL (Lausanne Polytechnic School) [2]. Cavitation erosion tests (pitting tests) were carried out and a 3D laser profilometry was used to analyze surfaces damaged by cavitation [3]. The method allows evaluating the pit characteristics, and mainly the volume damage rates. The paper describes the developed erosion model, the technique of cavitation damage measurement and presents some comparisons between experimental results and numerical damage predictions. The extent of cavitation erosion was correctly estimated in both hydrofoil geometries. The simulated qualitative influence of flow velocity, sigma value and gas content on cavitation damage agreed well with experimental observations.

  13. Effect of Annealing Temperature on the Mechanical and Corrosion Behavior of a Newly Developed Novel Lean Duplex Stainless Steel.

    PubMed

    Guo, Yanjun; Hu, Jincheng; Li, Jin; Jiang, Laizhu; Liu, Tianwei; Wu, Yanping

    2014-09-12

    The effect of annealing temperature (1000-1150 °C) on the microstructure evolution, mechanical properties, and pitting corrosion behavior of a newly developed novel lean duplex stainless steel with 20.53Cr-3.45Mn-2.08Ni-0.17N-0.31Mo was studied by means of optical metallographic microscopy (OMM), scanning electron microscopy (SEM), magnetic force microscopy (MFM), scanning Kelvin probe force microscopy (SKPFM), energy dispersive X-ray spectroscopy (EDS), uniaxial tensile tests (UTT), and potentiostatic critical pitting temperature (CPT). The results showed that tensile and yield strength, as well as the pitting corrosion resistance, could be degraded with annealing temperature increasing from 1000 up to 1150 °C. Meanwhile, the elongation at break reached the maximum of 52.7% after annealing at 1050 °C due to the effect of martensite transformation induced plasticity (TRIP). The localized pitting attack preferentially occurred at ferrite phase, indicating that the ferrite phase had inferior pitting corrosion resistance as compared to the austenite phase. With increasing annealing temperature, the pitting resistance equivalent number (PREN) of ferrite phase dropped, while that of the austenite phase rose. Additionally, it was found that ferrite possessed a lower Volta potential than austenite phase. Moreover, the Volta potential difference between ferrite and austenite increased with the annealing temperature, which was well consistent with the difference of PREN.

  14. Effect of Annealing Temperature on the Mechanical and Corrosion Behavior of a Newly Developed Novel Lean Duplex Stainless Steel

    PubMed Central

    Guo, Yanjun; Hu, Jincheng; Li, Jin; Jiang, Laizhu; Liu, Tianwei; Wu, Yanping

    2014-01-01

    The effect of annealing temperature (1000–1150 °C) on the microstructure evolution, mechanical properties, and pitting corrosion behavior of a newly developed novel lean duplex stainless steel with 20.53Cr-3.45Mn-2.08Ni-0.17N-0.31Mo was studied by means of optical metallographic microscopy (OMM), scanning electron microscopy (SEM), magnetic force microscopy (MFM), scanning Kelvin probe force microscopy (SKPFM), energy dispersive X-ray spectroscopy (EDS), uniaxial tensile tests (UTT), and potentiostatic critical pitting temperature (CPT). The results showed that tensile and yield strength, as well as the pitting corrosion resistance, could be degraded with annealing temperature increasing from 1000 up to 1150 °C. Meanwhile, the elongation at break reached the maximum of 52.7% after annealing at 1050 °C due to the effect of martensite transformation induced plasticity (TRIP). The localized pitting attack preferentially occurred at ferrite phase, indicating that the ferrite phase had inferior pitting corrosion resistance as compared to the austenite phase. With increasing annealing temperature, the pitting resistance equivalent number (PREN) of ferrite phase dropped, while that of the austenite phase rose. Additionally, it was found that ferrite possessed a lower Volta potential than austenite phase. Moreover, the Volta potential difference between ferrite and austenite increased with the annealing temperature, which was well consistent with the difference of PREN. PMID:28788201

  15. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    NASA Astrophysics Data System (ADS)

    Bhatt, R. B.; Kamat, H. S.; Ghosal, S. K.; de, P. K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.

  16. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, R.B.; Kamat, H.S.; Ghosal, S.K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improvedmore » pitting corrosion resistance of the weldments of this steel. However, the resistance of pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constituent phases, which are responsible for improved resistance to pitting corrosion.« less

  17. Pitting corrosion resistance of nickel-titanium rotary instruments with different surface treatments in seventeen percent ethylenediaminetetraacetic Acid and sodium chloride solutions.

    PubMed

    Bonaccorso, Antonio; Tripi, Teresa Roberta; Rondelli, Gianni; Condorelli, Guglielmo Guido; Cantatore, Giuseppe; Schäfer, Edgar

    2008-02-01

    This study evaluated the pitting corrosion resistance of nickel-titanium (NiTi) rotary instruments with different surface treatments in 17% ethylenediaminetetraacetic acid (EDTA) and NaCl solutions. Electropolished RaCe instruments were allocated to group A, non-electropolished RaCe instruments to group B, and physical vapor deposition (PVD)-coated Alpha files to group C (10 instruments per group). Electrochemical measurements were carried out by using a potentiostat for galvanic current measurements. On the basis of electrochemical tests, no localized corrosion problems are to be expected in EDTA. In NaCl, pitting potential occurred at higher values for the electropolished and PVD instruments, indicating an increased corrosion resistance. There appears to be a risk of corrosion for NiTi instruments without surface treatments in contact with NaCl. NiTi files with PVD and electropolishing surface treatments showed an increase corrosion resistance.

  18. COPPER PITTING CORROSION: A CASE STUDY

    EPA Science Inventory

    Localized or pitting corrosion of copper pipes used in household drinking-water plumbing is a problem for many water utilities and their customers. Extreme attack can lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. Water quality has b...

  19. THE IMPACT OF PHOSPHATE ON COPPER PITTING CORROSION

    EPA Science Inventory

    Pinhole leaks caused by extensive localized or pitting corrosion of copper pipes is a problem for many homeowners. Pinhole water leaks may result in water damage, mold growth, and costly repairs. A large water system in Florida has been addressing a widespread pinhole leak proble...

  20. Variations in xylem embolism susceptibility under drought between intact saplings of three walnut species.

    PubMed

    Knipfer, Thorsten; Barrios-Masias, Felipe H; Cuneo, Italo F; Bouda, Martin; Albuquerque, Caetano P; Brodersen, Craig R; Kluepfel, Daniel A; McElrone, Andrew J

    2018-05-30

    A germplasm collection containing varied Juglans genotypes holds potential to improve drought resistance of plant materials for commercial production. We used X-ray computed microtomography to evaluate stem xylem embolism susceptibility/repair in relation to vessel anatomical features (size, arrangement, connectivity and pit characteristics) in 2-year-old saplings of three Juglans species. In vivo analysis revealed interspecific variations in embolism susceptibility among Juglans microcarpa, J. hindsii (both native to arid habitats) and J. ailantifolia (native to mesic habitats). Stem xylem of J. microcarpa was more resistant to drought-induced embolism as compared with J. hindsii and J. ailantifolia (differences in embolism susceptibility among older and current year xylem were not detected in any species). Variations in most vessel anatomical traits were negligible among the three species; however, we detected substantial interspecific differences in intervessel pit characteristics. As compared with J. hindsii and J. ailantifolia, low embolism susceptibility in J. microcarpa was associated with smaller pit size in larger diameter vessels, a smaller area of the shared vessel wall occupied by pits, lower pit frequency and no changes in pit characteristics as vessel diameters increased. Changes in amount of embolized vessels following 40 days of re-watering were minor in intact saplings of all three species highlighting that an embolism repair mechanism did not contribute to drought recovery. In conclusion, our data indicate that interspecific variations in drought-induced embolism susceptibility are associated with species-specific pit characteristics, and these traits may provide a future target for breeding efforts aimed at selecting walnut germplasm with improved drought resistance.

  1. Quantitative Correlation of 7B04 Aluminum Alloys Pitting Corrosion Morphology Characteristics with Stress Concentration Factor

    NASA Astrophysics Data System (ADS)

    Liu, Zhiguo; Yan, Guangyao; Mu, Zhitao; Li, Xudong

    2018-01-01

    The accelerated pitting corrosion test of 7B04 aluminum alloy specimen was carried out according to the spectrum which simulated airport environment, and the corresponding pitting corrosion damage was obtained and was defined through three parameters A and B and C which respectively denoted the corrosion pit surface length and width and corrosion pit depth. The ratio between three parameters could determine the morphology characteristics of corrosion pits. On this basis the stress concentration factor of typical corrosion pit morphology under certain load conditions was quantitatively analyzed. The research shows that the corrosion pits gradually incline to be ellipse in surface and moderate in depth, and most value of B/A and C/A lies in 1 between 4 and few maximum exceeds 4; The stress concentration factor Kf of corrosion pits is obviously affected by the its morphology, the value of Kf increases with corrosion pits depth increasement under certain corrosion pits surface geometry. Also, the value of Kf decreases with surface width increasement under certain corrosion pits depth. The research conclusion can set theory basis for corrosion fatigue life analysis of aircraft aluminum alloy structure.

  2. Integrating Oil Debris and Vibration Measurements for Intelligent Machine Health Monitoring. Degree awarded by Toledo Univ., May 2002

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2003-01-01

    A diagnostic tool for detecting damage to gears was developed. Two different measurement technologies, oil debris analysis and vibration were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig. An oil debris sensor and the two vibration algorithms were adapted as the diagnostic tools. An inductance type oil debris sensor was selected for the oil analysis measurement technology. Gear damage data for this type of sensor was limited to data collected in the NASA Glenn test rigs. For this reason, this analysis included development of a parameter for detecting gear pitting damage using this type of sensor. The vibration data was used to calculate two previously available gear vibration diagnostic algorithms. The two vibration algorithms were selected based on their maturity and published success in detecting damage to gears. Oil debris and vibration features were then developed using fuzzy logic analysis techniques, then input into a multi sensor data fusion process. Results show combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spur gears. As a result of this research, this new diagnostic tool has significantly improved detection of gear damage in the NASA Glenn Spur Gear Fatigue Rigs. This research also resulted in several other findings that will improve the development of future health monitoring systems. Oil debris analysis was found to be more reliable than vibration analysis for detecting pitting fatigue failure of gears and is capable of indicating damage progression. Also, some vibration algorithms are as sensitive to operational effects as they are to damage. Another finding was that clear threshold limits must be established for diagnostic tools. Based on additional experimental data obtained from the NASA Glenn Spiral Bevel Gear Fatigue Rig, the methodology developed in this study can be successfully implemented on other geared systems.

  3. The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Hazel, Brian; Mourer, David P.

    2009-01-01

    The effects of hot corrosion pits on low cycle fatigue life and failure modes of the disk superalloy ME3 were investigated. Low cycle fatigue specimens were subjected to hot corrosion exposures producing pits, then tested at low and high temperatures. Fatigue lives and failure initiation points were compared to those of specimens without corrosion pits. Several tests were interrupted to estimate the fraction of fatigue life that fatigue cracks initiated at pits. Corrosion pits significantly reduced fatigue life by 60 to 98 percent. Fatigue cracks initiated at a very small fraction of life for high temperature tests, but initiated at higher fractions in tests at low temperature. Critical pit sizes required to promote fatigue cracking were estimated, based on measurements of pits initiating cracks on fracture surfaces.

  4. COPPER PITTING CORROSION AND PINHOLE LEAKS: A CASE STUDY

    EPA Science Inventory

    Localized corrosion, or "pitting", of copper drinking water pipe continues is a problem for many water utilities and their customers. Extreme attack leads to pinhole leaks that can potentially lead to water damage, mold growth, and costly repairs for the homeowners, as well as th...

  5. Kinetics of Accumulation of Damage in Surface Layers of Lithium-Containing Aluminum Alloys in Fatigue Tests with Rigid Loading Cycle and Corrosive Effect of Environment

    NASA Astrophysics Data System (ADS)

    Morozova, L. V.; Zhegina, I. P.; Grigorenko, V. B.; Fomina, M. A.

    2017-07-01

    High-resolution methods of metal physics research including electron, laser and optical microscopy are used to study the kinetics of the accumulation of slip lines and bands and the corrosion damage in the plastic zone of specimens of aluminum-lithium alloys 1441 and B-1469 in rigid-cycle fatigue tests under the joint action of applied stresses and corrosive environment. The strain parameters (the density of slip bands, the sizes of plastic zones near fracture, the surface roughness in singled-out zones) and the damage parameters (the sizes of pits and the pitting area) are evaluated.

  6. Pitting Corrosion of Copper in Waters with High pH and Low Alkalinity

    EPA Science Inventory

    Localized or pitting corrosion of copper pipes used in household drinking-water plumbing is a problem for many water utilities and their customers. Extreme attack can lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. Water quality has b...

  7. Role of an archaeal PitA transporter in the copper and arsenic resistance of Metallosphaera sedula, an extreme thermoacidophile.

    PubMed

    McCarthy, Samuel; Ai, Chenbing; Wheaton, Garrett; Tevatia, Rahul; Eckrich, Valerie; Kelly, Robert; Blum, Paul

    2014-10-01

    Thermoacidophilic archaea, such as Metallosphaera sedula, are lithoautotrophs that occupy metal-rich environments. In previous studies, an M. sedula mutant lacking the primary copper efflux transporter, CopA, became copper sensitive. In contrast, the basis for supranormal copper resistance remained unclear in the spontaneous M. sedula mutant, CuR1. Here, transcriptomic analysis of copper-shocked cultures indicated that CuR1 had a unique regulatory response to metal challenge corresponding to the upregulation of 55 genes. Genome resequencing identified 17 confirmed mutations unique to CuR1 that were likely to change gene function. Of these, 12 mapped to genes with annotated function associated with transcription, metabolism, or transport. These mutations included 7 nonsynonymous substitutions, 4 insertions, and 1 deletion. One of the insertion mutations mapped to pseudogene Msed_1517 and extended its reading frame an additional 209 amino acids. The extended mutant allele was identified as a homolog of Pho4, a family of phosphate symporters that includes the bacterial PitA proteins. Orthologs of this allele were apparent in related extremely thermoacidophilic species, suggesting M. sedula naturally lacked this gene. Phosphate transport studies combined with physiologic analysis demonstrated M. sedula PitA was a low-affinity, high-velocity secondary transporter implicated in copper resistance and arsenate sensitivity. Genetic analysis demonstrated that spontaneous arsenate-resistant mutants derived from CuR1 all underwent mutation in pitA and nonselectively became copper sensitive. Taken together, these results point to archaeal PitA as a key requirement for the increased metal resistance of strain CuR1 and its accelerated capacity for copper bioleaching. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Role of an Archaeal PitA Transporter in the Copper and Arsenic Resistance of Metallosphaera sedula, an Extreme Thermoacidophile

    PubMed Central

    McCarthy, Samuel; Ai, Chenbing; Wheaton, Garrett; Tevatia, Rahul; Eckrich, Valerie; Kelly, Robert

    2014-01-01

    Thermoacidophilic archaea, such as Metallosphaera sedula, are lithoautotrophs that occupy metal-rich environments. In previous studies, an M. sedula mutant lacking the primary copper efflux transporter, CopA, became copper sensitive. In contrast, the basis for supranormal copper resistance remained unclear in the spontaneous M. sedula mutant, CuR1. Here, transcriptomic analysis of copper-shocked cultures indicated that CuR1 had a unique regulatory response to metal challenge corresponding to the upregulation of 55 genes. Genome resequencing identified 17 confirmed mutations unique to CuR1 that were likely to change gene function. Of these, 12 mapped to genes with annotated function associated with transcription, metabolism, or transport. These mutations included 7 nonsynonymous substitutions, 4 insertions, and 1 deletion. One of the insertion mutations mapped to pseudogene Msed_1517 and extended its reading frame an additional 209 amino acids. The extended mutant allele was identified as a homolog of Pho4, a family of phosphate symporters that includes the bacterial PitA proteins. Orthologs of this allele were apparent in related extremely thermoacidophilic species, suggesting M. sedula naturally lacked this gene. Phosphate transport studies combined with physiologic analysis demonstrated M. sedula PitA was a low-affinity, high-velocity secondary transporter implicated in copper resistance and arsenate sensitivity. Genetic analysis demonstrated that spontaneous arsenate-resistant mutants derived from CuR1 all underwent mutation in pitA and nonselectively became copper sensitive. Taken together, these results point to archaeal PitA as a key requirement for the increased metal resistance of strain CuR1 and its accelerated capacity for copper bioleaching. PMID:25092032

  9. Laser Surface Alloying of Aluminum for Improving Acid Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Jiru, Woldetinsay Gutu; Sankar, Mamilla Ravi; Dixit, Uday Shanker

    2018-04-01

    In the present study, laser surface alloying of aluminum with magnesium, manganese, titanium and zinc, respectively, was carried out to improve acid corrosion resistance. Laser surface alloying was conducted using 1600 and 1800 W power source using CO2 laser. Acid corrosion resistance was tested by dipping the samples in a solution of 2.5% H2SO4 for 200 h. The weight loss due to acid corrosion was reduced by 55% for AlTi, 41% for AlMg alloy, 36% for AlZn and 22% for AlMn alloy. Laser surface alloyed samples offered greater corrosion resistance than the aluminum substrate. It was observed that localized pitting corrosion was the major factor to damage the surface when exposed for a long time. The hardness after laser surface alloying was increased by a factor of 8.7, 3.4, 2.7 and 2 by alloying with Mn, Mg, Ti and Zn, respectively. After corrosion test, hardness was reduced by 51% for AlTi sample, 40% for AlMg sample, 41.4% for AlMn sample and 33% for AlZn sample.

  10. Transmission Bearing Damage Detection Using Decision Fusion Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Lewicki, David G.; Decker, Harry J.

    2004-01-01

    A diagnostic tool was developed for detecting fatigue damage to rolling element bearings in an OH-58 main rotor transmission. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting bearing surface fatigue pitting damage. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from tests performed in the NASA Glenn 500 hp Helicopter Transmission Test Stand. Data was collected during experiments performed in this test rig when two unanticipated bearing failures occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears duplex ball bearings and spiral bevel pinion triplex ball bearings in a main rotor transmission.

  11. Corrosion resistance tests on NiTi shape memory alloy.

    PubMed

    Rondelli, G

    1996-10-01

    The corrosion performances of NiTi shape memory alloys (SMA) in human body simulating fluids were evaluated in comparison with other implant materials. As for the passivity current in potentiostatic conditions, taken as an index of ion release, the values are about three times higher for NiTi than for Ti6Al4V and austenitic stainless steels. Regarding the localized corrosion, while plain potentiodynamic scans indicated for NiTi alloy good resistance to pitting attack similar to Ti6Al4V, tests in which the passive film is abruptly damaged (i.e. potentiostatic scratch test and modified ASTM F746) pointed out that the characteristics of the passive film formed on NiTi alloy (whose strength can be related to the alloy's biocompatibility) are not as good as those on Ti6Al4V but are comparable or inferior to those on austenitic stainless steels.

  12. Pyramidal pits created by single highly charged ions in BaF{sub 2} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Said, A. S.; Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura; Heller, R.

    2010-07-15

    In various insulators, the impact of individual slow highly charged ions (eV-keV) creates surface nanostructures, whose size depends on the deposited potential energy. Here we report on the damage created on a cleaved BaF{sub 2} (111) surface by irradiation with 4.5xq keV highly charged xenon ions from a room-temperature electron-beam ion trap. Up to charge states q=36, no surface topographic changes on the BaF{sub 2} surface are observed by scanning force microscopy. The hidden stored damage, however, can be made visible using the technique of selective chemical etching. Each individual ion impact develops into a pyramidal etch pits, as canmore » be concluded from a comparison of the areal density of observed etch pits with the applied ion fluence (typically 10{sup 8} ions/cm{sup 2}). The dimensional analysis of the measured pits reveals the significance of the deposited potential energy in the creation of lattice distortions/defects in BaF{sub 2}.« less

  13. Effects of heat input on pitting corrosion in super duplex stainless steel weld metals

    NASA Astrophysics Data System (ADS)

    Shin, Yong taek; Shin, Hak soo; Lee, Hae woo

    2012-12-01

    Due to the difference in reheating effects depending on the heat input of subsequent weld passes, the microstructure of the weld metal varies between acicular type austenite and a mixture of polygonal type and grain boundary mixed austenite. These microstructural changes may affect the corrosion properties of duplex stainless steel welds. This result indicates that the pitting resistance of the weld can be strongly influenced by the morphology of the secondary austenite phase. In particular, the ferrite phase adjacent to the acicular type austenite phase shows a lower Pitting Resistance Equivalent (PRE) value of 25.3, due to its lower chromium and molybdenum contents, whereas the secondary austenite phase maintains a higher PRE value of more than 38. Therefore, it can be inferred that the pitting corrosion is mainly due to the formation of ferrite phase with a much lower PRE value.

  14. Mercury Cavitation Phenomenon in Pulsed Spallation Neutron Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futakawa, Masatoshi; Naoe, Takashi; Kawai, Masayoshi

    2008-06-24

    Innovative researches will be performed at Materials and Life Science Experimental Facility in J-PARC, in which a mercury target system will be installed as MW-class pulse spallation neutron sources. Proton beams will be injected into mercury target to induce the spallation reaction. At the moment the intense proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. Localized impacts by micro-jets and/or shock waves which are caused by cavitation bubble collapse imposemore » pitting damage on the vessel wall. The pitting damage which degrades the structural integrity of target vessels is a crucial issue for high power mercury targets. Micro-gas-bubbles injection into mercury may be useful to mitigate the pressure wave and the pitting damage. The visualization of cavitation-bubble and gas-bubble collapse behaviors was carried out by using a high-speed video camera. The differences between them are recognized.« less

  15. Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees.

    Treesearch

    J.C. Domec; B. Lachenbruch; F.C. Meinzer

    2006-01-01

    The air-seeding hypothesis predicts that xylem embolism resistance is linked directly to bordered pit functioning. We tested this prediction in trunks, roots, and branches at different vertical and radial locations in young and old trees of Pseudotsuga menziesii. Dimensions of bordered pits were measured from light and scanning electron micrographs...

  16. Interacting Effects Induced by Two Neighboring Pits Considering Relative Position Parameters and Pit Depth

    PubMed Central

    Huang, Yongfang; Gang, Tieqiang; Chen, Lijie

    2017-01-01

    For pre-corroded aluminum alloy 7075-T6, the interacting effects of two neighboring pits on the stress concentration are comprehensively analyzed by considering various relative position parameters (inclination angle θ and dimensionless spacing parameter λ) and pit depth (d) with the finite element method. According to the severity of the stress concentration, the critical corrosion regions, bearing high susceptibility to fatigue damage, are determined for intersecting and adjacent pits, respectively. A straightforward approach is accordingly proposed to conservatively estimate the combined stress concentration factor induced by two neighboring pits, and a concrete application example is presented. It is found that for intersecting pits, the normalized stress concentration factor Ktnor increases with the increase of θ and λ and always reaches its maximum at θ = 90°, yet for adjacent pits, Ktnor decreases with the increase of λ and the maximum value appears at a slight asymmetric location. The simulations reveal that Ktnor follows a linear and an exponential relationship with the dimensionless depth parameter Rd for intersecting and adjacent cases, respectively. PMID:28772758

  17. Pitting corrosion resistant austenite stainless steel

    DOEpatents

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  18. Measurement of optical scattered power from laser-induced shallow pits on silica

    DOE PAGES

    Feigenbaum, Eyal; Nielsen, Norman; Matthews, Manyalibo J.

    2015-10-01

    We describe a model for far-field scattered power and irradiance by a silica glass slab with a shallow-pitted exit surface and is experimentally validated. The comparison to the model is performed using a precisely micromachined ensemble of ~11 μm wide laser ablated shallow pits producing 1% of the incident beam scatter in a 10 mrad angle. This series of samples with damage initiations and laser-induced shallow pits resulting from 351 nm, 5 ns pulsed laser cleaning of metal microparticles at different fluences between 2 J/cm 2 and 11 J/cm 2 are characterized as well and found in good agreement withmore » model predictions.« less

  19. Seasonality of cavitation and frost fatigue in Acer mono Maxim.

    PubMed

    Zhang, Wen; Feng, Feng; Tyree, Melvin T

    2017-12-08

    Although cavitation is common in plants, it is unknown whether the cavitation resistance of xylem is seasonally constant or variable. We tested the changes in cavitation resistance of Acer mono before and after a controlled cavitation-refilling and freeze-thaw cycles for a whole year. Cavitation resistance was determined from 'vulnerability curves' showing the percent loss of conductivity versus xylem tension. Cavitation fatigue was defined as a reduction of cavitation resistance following a cavitation-refilling cycle, whereas frost fatigue was caused by a freeze-thaw cycle. A. mono developed seasonal changes in native embolisms; values were relatively high during winter but relatively low and constant throughout the growing season. Cavitation fatigue occurred and changed seasonally during the 12-month cycle; the greatest fatigue response occurred during summer and the weakest during winter, and the transitions occurred during spring and autumn. A. mono was highly resistant to frost damage during the relatively mild winter months; however, a quite different situation occurred during the growing season, as the seasonal trend of frost fatigue was strikingly similar to that of cavitation fatigue. Seasonality changes in cavitation resistance may be caused by seasonal changes in the mechanical properties of the pit membranes. © 2017 John Wiley & Sons Ltd.

  20. Investigation of the line arrangement of 2D resistivity surveys for 3D inversion*

    NASA Astrophysics Data System (ADS)

    Inoue, Keisuke; Nakazato, Hiroomi; Takeuchi, Mutsuo; Sugimoto, Yoshihiro; Kim, Hee Joon; Yoshisako, Hiroshi; Konno, Michiaki; Shoda, Daisuke

    2018-03-01

    We have conducted numerical and field experiments to investigate the applicability of electrode configurations and line layouts commonly used for two-dimensional (2D) resistivity surveys to 3D inversion. We examined three kinds of electrode configurations and two types of line arrangements, for 16 resistivity models of a conductive body in a homogeneous half-space. The results of the numerical experiment revealed that the parallel-line arrangement was effective in identifying the approximate location of the conductive body. The orthogonal-line arrangement was optimal for identifying a target body near the line intersection. As a result, we propose that parallel lines are useful to highlight areas of particular interest where further detailed work with an intersecting line could be carried out. In the field experiment, 2D resistivity data were measured on a loam layer with a backfilled pit. The reconstructed resistivity image derived from parallel-line data showed a low-resistivity portion near the backfilled pit. When an orthogonal line was added to the parallel lines, the newly estimated location of the backfilled pit coincided well with the actual location. In a further field application, we collected several 2D resistivity datasets in the Nojima Fault area in Awaji Island. The 3D inversion of these datasets provided a resistivity distribution corresponding to the geological structure. In particular, the Nojima Fault was imaged as the western boundary of a low-resistivity belt, from only two orthogonal lines.

  1. [Cold resistance of four evergreen broad-leaved tree species].

    PubMed

    Wang, Na; Wang, Kui Ling; Liu, Qing Hua; Liu, Qing Chao

    2016-10-01

    The leaves of four evergreen plants, i.e., Fatsia japonica, Nerium indicum, Mahonia bealei and Acer cinnamomifolium were used as the experimental materials. By measuring the changes of in vitro leaf in soluble sugar, soluble protein, free proline, POD activity, chlorophyll content and relative electrolytic conductivity under aritificial simulated low temperature, combining the measurements of SPAD, leaf surface features and anatomical changes in organizational structure in the process of natural wintering, the cold resistance of four evergreen tree species was evaluated comprehensively. The results showed that in the process of artificial low temperature stress, the chlorophyll content of the leaves of four evergreen species decreased, the content of soluble protein pea-ked at -20 ℃, and the soluble sugar, free proline, POD activity and relative electrolytic conductivity showed an overall upward trend. The semilethal temperatures of four species were -8.0, -13.4, -19.4 and -14.8 ℃, respectively. During the winter, the leaf SPAD of the four species changed markedly, reflecting that the change of relative chlorophyll content was related to the change of temperature. Meanwhile, the leaf thickness, cutin layer thickness, stockade tissue thickness and tightness of four species increased and the plasmolysis occurred thereafter. Also the content of starch grains and calcium oxalate cluster crystal increased. The typical stomatal pits and the intensive non-glandular trichome within the pits of N. indicum and the sclerenchyma of M. Bealei could improve the cold resistance of plants to some extent. In addition, the phenomena like the breakage of wax layer in leaf surface, the fracture of epidermal hair and the deformation of palisade tissue indicated that plants were damaged to a certain extent by low temperature.

  2. Corrosion pitting and environmentally assisted small crack growth

    PubMed Central

    Turnbull, Alan

    2014-01-01

    In many applications, corrosion pits act as precursors to cracking, but qualitative and quantitative prediction of damage evolution has been hampered by lack of insights into the process by which a crack develops from a pit. An overview is given of recent breakthroughs in characterization and understanding of the pit-to-crack transition using advanced three-dimensional imaging techniques such as X-ray computed tomography and focused ion beam machining with scanning electron microscopy. These techniques provided novel insights with respect to the location of crack development from a pit, supported by finite-element analysis. This inspired a new concept for the role of pitting in stress corrosion cracking based on the growing pit inducing local dynamic plastic strain, a critical factor in the development of stress corrosion cracks. Challenges in quantifying the subsequent growth rate of the emerging small cracks are then outlined with the potential drop technique being the most viable. A comparison is made with the growth rate for short cracks (through-thickness crack in fracture mechanics specimen) and long cracks and an electrochemical crack size effect invoked to rationalize the data. PMID:25197249

  3. The Microstructure and Pitting Resistance of Weld Joints of 2205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Wu, Mingfang; Liu, Fei; Pu, Juan; Anderson, Neil E.; Li, Leijun; Liu, Dashuang

    2017-11-01

    2205 duplex stainless steel (DSS) was welded by submerged arc welding. The effects of both heat input and groove type on the ferrite/austenite ratio and elemental diffusion of weld joints were investigated. The relationships among welding joint preparation, ferrite/austenite ratio, elemental diffusion, and pitting corrosion resistance of weld joints were analyzed. When the Ni content of the weld wire deposit was at minimum 2-4% higher than that of 2205 DSS base metal, the desired ratio of ferrite/austenite and elemental partitioning between the austenite and ferrite phases were obtained. While the pitting sensitivity of weld metal was higher than that of base metal, the self-healing capability of the passive film of weld metal was better than that of the base metal when a single V-type groove was used. Furthermore, the heat input should be carefully controlled since pitting corrosion occurred readily in the coarse-grained heat-affected zone near the fusion line of welded joints.

  4. Effect of Aging on Precipitation Behavior and Pitting Corrosion Resistance of SAF2906 Super Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Li, Jianchun; Li, Guoping; Liang, Wei; Han, Peide; Wang, Hongxia

    2017-09-01

    The effect of aging temperature and holding time on the precipitation of secondary phases and pitting corrosion resistance of SAF2906 super duplex stainless steel was examined. Chromium nitride and σ phase were observed to preferentially precipitate at the ferrite/austenite interface. An amount of nitrides was also observed within the ferrite grain. The precipitation of chromium nitride occurred before the σ phase. The increase in aging temperature and holding time did not affect the concentration of the nitrides but increased the area fraction of the σ phase at a faster rate. The Cr2N precipitation in SAF2906 is more evident than that of the other duplex stainless steels. The variation tendency of the precipitation concentrations is primarily consistent with the prediction results of Thermo-Calc software. The electrochemical results showed that Cr2N and σ phase significantly reduced the pitting potential. Scanning electron microscope observations revealed that pits appear mainly in regions adjacent to sigma phase and Cr2N.

  5. Pitting and Repair of the Space Shuttle's Inconel(Registered TradeMark) Honeycomb Conical Seal Panel

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.; Gentz, Steven J.; Miller, James B.; MacKay, Rebecca A.; Bright, Mark L.

    2006-01-01

    During return to flight servicing of the rudder speed brake (RSB) for each Space Shuttle Orbiter, inspectors discovered numerous small pits on the surface of the #4 right hand side honeycomb panel that covers the rudder speed brake actuators. Shortly after detection of the problem, concurrent investigations were initiated to determine the extent of damage, the root cause, and to develop a repair plan, since fabrication of a replacement panel is impractical for cost, schedule, and sourcing considerations. This paper describes the approach, findings, conclusions and recommendations associated with the investigation of the conical seal pitting. It documents the cause and contributing factors of the pitting, the means used to isolate each contributor, and the supporting evidence for the primary cause of the pitting. Finally, the selection, development and verification of the repair procedure used to restore the conical seal panel is described with supporting process and metallurgical rationale for selection.

  6. Soft valves in plants

    NASA Astrophysics Data System (ADS)

    Park, Keunhwan; Tixier, Aude; Christensen, Anneline; Arnbjerg-Nielsen, Sif; Zwieniecki, Maciej; Jensen, Kaare

    2017-11-01

    Water and minerals flow from plant roots to leaves in the xylem, an interconnected network of vascular conduits that spans the full length of the organism. When a plant is subjected to drought stress, air pockets can spread inside the xylem, threatening the survival of the plant. Many plants prevent propagation of air by using hydrophobic nano-membranes in the ``pit'' pores that link adjacent xylem cells. This adds considerable resistance to flow. Interestingly, torus-margo pit pores in conifers are open and offer less resistance. To prevent propagation of air, conifers use a soft gating mechanism, which relies on hydrodynamic interactions between the xylem liquid and the elastic pit. However, it is unknown exactly how it is able to combine the seemingly antagonist functions of high permeability and resistance to propagation of air. We conduct experiments on biomimetic pores to elucidate the flow regulation mechanism. The design of plant valves is compared to other natural systems and optimal strategies are discussed. This work was supported by a research Grant (13166) from VILLUM FONDEN.

  7. Sensing technology for damage assessment of sign supports and cantilever poles : final report, August 31, 2010.

    DOT National Transportation Integrated Search

    2010-08-31

    This report presents the results of research activities conducted under Contract No. 519691-PIT 008 on Sensing Technology for : Damage Assessment of Sign Supports and Cantilever Poles between the University of Pittsburgh and the Pennsylvania De...

  8. Antagonism of Taxol Cytotoxicity by Prolactin: Implication for Patient Resistance to Chemotherapy

    DTIC Science & Technology

    2008-03-01

    Perspectives I. Introduction SINCE ITS DISCOVERY in the 1930s as a distinct pituitaryhormone that stimulates milk production in rabbits, prolactin...vitellogenin ERE sequence (GGTCAnnn TGACC), is located at the distal rPRL enhancer next to the 1d Pit-1 site (Fig. 1), enabling physical association between Pit...1 and ER via the AF-2 domain of ER (19). Complex formation between Pit-1 and ER involves coactivators/corepressors, with SRC-1 and GRIP1 stimulating

  9. Effects of chloride ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Li, Hui-yan; Dong, Chao-fang; Xiao, Kui; Li, Xiao-gang; Zhong, Ping

    2016-11-01

    The effects of Cl- ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel (UHSMSS) were investigated by a series of electrochemical tests combined with observations by stereology microscopy and scanning electron microscopy. A critical Cl- ion concentration was found to exist (approximately 0.1wt%), above which pitting occurred. The pitting potential decreased with increasing Cl- ion concentration. A UHSMSS specimen tempered at 600°C exhibited a better pitting corrosion resistance than the one tempered at 400°C. The corrosion current density and passive current density of the UHSMSS tempered at 600°C decreased with increasing pH values of the corrosion solution. The pits developed a shallower dish geometry with increasing polarization potential. A lacy cover on the pits of the UHSMSS tempered at 400°C accelerated pitting, whereas corrosion products deposited in the pits of the UHSMSS tempered at 600°C hindered pitting.

  10. Ozone damage on apples. [Cortland; Red Rome; McIntosh; Red Delicious; Golden Delicious

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, P.M.; Rich, S.

    1968-09-01

    Exposure to high rates of ozone for 3 days produced grey to brown pitted areas around lenticles of Cortland, Red Rome, and McIntosh apples, but not on Red Delicious or Golden Delicious apples. These pits were 1 to 2 mm in diameter with a corky area extending 1 mm into the flesh. Neither light nor relative humidity influenced occurrence of the injury.

  11. High-density polyethylene pipe: A new material for pass-by passive integrated transponder antennas

    USGS Publications Warehouse

    Kazyak, David C.; Zydlewski, Joseph D.

    2012-01-01

    Pass-by passive integrated transponder (PIT) antennas are widely used to study the movements of fish in streams. At many sites, stream conditions make it difficult to maintain antennas and obtain a continuous record of movement. We constructed pass-by PIT antennas by using high-density polyethylene (HDPE) and found them to be robust to high flows and winter ice flows. Costs for HDPE antennas were similar to those of traditional polyvinyl chloride (PVC) antennas, although construction was somewhat more complicated. At sites where PVC antennas are frequently damaged, HDPE is a durable and economical alternative for PIT antenna construction.

  12. Structure and mechanical and corrosion properties of new high-nitrogen Cr-Mn steels containing molybdenum

    NASA Astrophysics Data System (ADS)

    Berezovskaya, V. V.; Savrai, R. A.; Merkushkin, E. A.; Makarov, A. V.

    2012-05-01

    The structure, mechanical properties, and pitting corrosion of nickel-free high-nitrogen (0.8% N) austenitic 06Kh18AG19M2 and 07Kh16AG13M3 steels have been studied in various structural states obtained after hot deformation, quenching, and tempering at 300 and 500°C. Both steels are shown to be resistant to the γ → α and γ → ɛ martensite transformations irrespective of the decomposition of a γ solid solution (06Kh18AG19M2 steel). Austenite of the steel with 19 wt % Mn shows lower resistance to recrystallization, which provides its higher plasticity (δ5) and fracture toughness at a lower strength as compared to the steel with 13 wt % Mn. Electrochemical studies of the steels tempered at 300 and 500°C show that they are in a stable passive state during tests in a 3.5% NaCl solution and have high pitting resistance up to a potential E pf = 1.3-1.4 V, which is higher than that in 12Kh18N10T steel. In the quenched state, the passive state is instable but pitting formation potentials E pf retain their values. In all steels under study, pitting is shown to form predominantly along the grain boundaries of nonrecrystallized austenite. The lowest pitting resistance is demonstrated by the structure with a double grain boundary network that results from incomplete recrystallization at 1100°C and from the existence of initial and recrystallized austenite in the 07Kh16AG13M3 steel. To obtain a set of high mechanical and corrosion properties under given rolling conditions (1200-1150°C), annealing of the steels at temperatures no less than 1150°C (for 1 h) with water quenching and tempering at 500°C for 2 h are recommended.

  13. 7 CFR 51.1221 - Damage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... defect, shall be considered as damage: (a) Bacterial spot, when cracked, or when aggregating more than 3/8 inch in diameter; (b) Scab spots, when cracked, or when aggregating more than 3/8 inch in diameter... diameter; (f) Split pit, when causing any unhealed crack, or when causing any crack which is readily...

  14. Characterization of retroviral infectivity and superinfection resistance during retrovirus-mediated transduction of mammalian cells.

    PubMed

    Liao, J; Wei, Q; Fan, J; Zou, Y; Song, D; Liu, J; Liu, F; Ma, C; Hu, X; Li, L; Yu, Y; Qu, X; Chen, L; Yu, X; Zhang, Z; Zhao, C; Zeng, Z; Zhang, R; Yan, S; Wu, T; Wu, X; Shu, Y; Lei, J; Li, Y; Zhang, W; Wang, J; Reid, R R; Lee, M J; Huang, W; Wolf, J M; He, T-C; Wang, J

    2017-06-01

    Retroviral vectors including lentiviral vectors are commonly used tools to stably express transgenes or RNA molecules in mammalian cells. Their utilities are roughly divided into two categories, stable overexpression of transgenes and RNA molecules, which requires maximal transduction efficiency, or functional selection with retrovirus (RV)-based libraries, which takes advantage of retroviral superinfection resistance. However, the dynamic features of RV-mediated transduction are not well characterized. Here, we engineered two murine stem cell virus-based retroviral vectors expressing dual fluorescence proteins and antibiotic markers, and analyzed virion production efficiency and virion stability, dynamic infectivity and superinfection resistance in different cell types, and strategies to improve transduction efficiency. We found that the highest virion production occurred between 60 and 72 h after transfection. The stability of the collected virion supernatant decreased by >60% after 3 days in storage. We found that RV infectivity varied drastically in the tested human cancer lines, while low transduction efficiency was partially overcome with increased virus titer, prolonged infection duration and/or repeated infections. Furthermore, we demonstrated that RV receptors PIT1 and PIT2 were lowly expressed in the analyzed cells, and that PIT1 and/or PIT2 overexpression significantly improved transduction efficiency in certain cell lines. Thus, our findings provide resourceful information for the optimal conditions of retroviral-mediated gene delivery.

  15. Corrosion behavior of binary titanium aluminide intermetallics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saffarian, H.M.; Gan, Q.; Hadkar, R.

    1996-08-01

    The corrosion behavior of arc-melted binary titanium aluminide intermetallics TiAl, Ti{sub 2}Al, and TiAl{sub 3} in aqueous sodium sulfate and sodium chloride solutions was measured and compared to that of pure Ti and Al. Effects of electrolyte composition (e.g., sulfate [0.25 M SO{sub 4}{sup 2}{sup {minus}}], chloride [0.1 to 1.0 M Cl{sup {minus}}], and pH [3 to 10]) were examined. Anodic polarization of titanium aluminides in aqueous SO{sub 4}{sup 2}{sup {minus}} solutions was similar (showing passive behavior), but no pitting or pitting potential (E{sub pit}) was observed. In aqueous NaCl, however, titanium aluminides were susceptible to pitting, and E{sub pit}more » decreased with increasing Al content (i.e., Ti{sub 3}Al had the highest E{sub pit} and, therefore, a greater resistance to pitting, followed by TiAl and TiAl{sub 3}). For TiAl, E{sub pit} was slightly dependent upon pH or Cl{sup {minus}} concentration. Pit morphology and E{sub pit} values were quite different for TiAl compared to Ti{sub 3}Al. TiAl showed numerous small pits, whereas Ti{sub 3}Al exhibited fewer but larger and deeper pits. The larger pit density for TiAl was associated with Al-rich interdendrite regions. One interesting feature of the anodic polarization curves for Ti{sub 3}Al was a small anodic peak frequently observed at {approximately}1.4 V{sub SCE} to 1.8 V{sub SCE}. Results suggested this peak was associated with pit initiation, since pitting initiated concurrently with the peak or immediately afterward.« less

  16. Enhanced ID Pit Sizing Using Multivariate Regression Algorithm

    NASA Astrophysics Data System (ADS)

    Krzywosz, Kenji

    2007-03-01

    EPRI is funding a program to enhance and improve the reliability of inside diameter (ID) pit sizing for balance-of plant heat exchangers, such as condensers and component cooling water heat exchangers. More traditional approaches to ID pit sizing involve the use of frequency-specific amplitude or phase angles. The enhanced multivariate regression algorithm for ID pit depth sizing incorporates three simultaneous input parameters of frequency, amplitude, and phase angle. A set of calibration data sets consisting of machined pits of various rounded and elongated shapes and depths was acquired in the frequency range of 100 kHz to 1 MHz for stainless steel tubing having nominal wall thickness of 0.028 inch. To add noise to the acquired data set, each test sample was rotated and test data acquired at 3, 6, 9, and 12 o'clock positions. The ID pit depths were estimated using a second order and fourth order regression functions by relying on normalized amplitude and phase angle information from multiple frequencies. Due to unique damage morphology associated with the microbiologically-influenced ID pits, it was necessary to modify the elongated calibration standard-based algorithms by relying on the algorithm developed solely from the destructive sectioning results. This paper presents the use of transformed multivariate regression algorithm to estimate ID pit depths and compare the results with the traditional univariate phase angle analysis. Both estimates were then compared with the destructive sectioning results.

  17. Escape and evade control policies for ensuring the physical security of nonholonomic, ground-based, unattended mobile sensor nodes

    NASA Astrophysics Data System (ADS)

    Mascarenas, David; Stull, Christopher; Farrar, Charles

    2011-06-01

    In order to realize the wide-scale deployment of high-endurance, unattended mobile sensing technologies, it is vital to ensure the self-preservation of the sensing assets. Deployed mobile sensor nodes face a variety of physical security threats including theft, vandalism and physical damage. Unattended mobile sensor nodes must be able to respond to these threats with control policies that facilitate escape and evasion to a low-risk state. In this work the Precision Immobilization Technique (PIT) problem has been considered. The PIT maneuver is a technique that a pursuing, car-like vehicle can use to force a fleeing vehicle to abruptly turn ninety degrees to the direction of travel. The abrupt change in direction generally causes the fleeing driver to lose control and stop. The PIT maneuver was originally developed by law enforcement to end vehicular pursuits in a manner that minimizes damage to the persons and property involved. It is easy to imagine that unattended autonomous convoys could be targets of this type of action by adversarial agents. This effort focused on developing control policies unattended mobile sensor nodes could employ to escape, evade and recover from PIT-maneuver-like attacks. The development of these control policies involved both simulation as well as small-scale experimental testing. The goal of this work is to be a step toward ensuring the physical security of unattended sensor node assets.

  18. Alternatives Analysis Amchitka Island Mud Pit Cap Repair, Amchitka, Alaska January 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darr, Paul S.

    2016-01-01

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) manages the Nevada Offsites program, which includes a series of reclaimed drilling mud impoundments on Amchitka Island, Alaska (Figure 1). Navarro Research and Engineering, Inc. is the Legacy Management Support contractor (the Contractor) for LM. The Contractor has procured Tetra Tech, Inc. to provide engineering support to the Amchitka mud pit reclamation project. The mud pit caps were damaged during a 7.9-magnitude earthquake that occurred in 2014. The goals of the current project are to investigate conditions at the mud pit impoundments, identify feasible alternatives for repair of themore » cover systems and the contents, and estimate relative costs of repair alternatives. This report presents descriptions of the sites and past investigations, existing conditions, summaries of various repair/mitigation alternatives, and direct, unburdened, order-of-magnitude (-15% to +50%) associated costs.« less

  19. Reconnaissance-Pul - Seeking the Path of Least Resistance

    DTIC Science & Technology

    1990-12-15

    Carl von Clausewitz, the great eighteenth century military theorist, also professed pitting friendly strength against enemy weakness. Addressing "the...izortance of reconnaissance, its relation to intelligence, and the advantage of pitting friendly strength against enemy weaknesses. The Soviets use a...64. Ibid. 65. Vasily Gerasimovich Reznichenko, "Taktika" (Tactics), translated by Foreign Broadcast Information Service (Moscow, 1988):p.55. 66

  20. Folliculitis

    MedlinePlus

    ... in the groin area. This condition may leave dark raised scars (keloids). Pityrosporum (pit-ih-ROS-puh- ... furunculosis) Permanent skin damage, such as scarring or dark spots Destruction of hair follicles and permanent hair ...

  1. Ultrasonic cavitation erosion of 316L steel weld joint in liquid Pb-Bi eutectic alloy at 550°C.

    PubMed

    Lei, Yucheng; Chang, Hongxia; Guo, Xiaokai; Li, Tianqing; Xiao, Longren

    2017-11-01

    Liquid lead-bismuth eutectic alloy (LBE) is applied in the Accelerator Driven transmutation System (ADS) as the high-power spallation neutron targets and coolant. A 19.2kHz ultrasonic device was deployed in liquid LBE at 550°C to induce short and long period cavitation erosion damage on the surface of weld joint, SEM and Atomic force microscopy (AFM) were used to map out the surface properties, and Energy Dispersive Spectrometer (EDS) was applied to the qualitative and quantitative analysis of elements in the micro region of the surface. The erosion mechanism for how the cavitation erosion evolved by studying the element changes, their morphology evolution, the surface hardness and the roughness evolution, was proposed. The results showed that the pits, caters and cracks appeared gradually on the erode surface after a period of cavitation. The surface roughness increased along with exposure time. Work hardening by the bubbles impact in the incubation stage strengthened the cavitation resistance efficiently. The dissolution and oxidation corrosion and cavitation erosion that simultaneously happened in liquid LBE accelerated corrosion-erosion process, and these two processes combined to cause more serious damage on the material surface. Contrast to the performance of weld metal, base metal exhibited a much better cavitation resistance. Copyright © 2017. Published by Elsevier B.V.

  2. Studies on microstructure, mechanical and pitting corrosion behaviour of similar and dissimilar stainless steel gas tungsten arc welds

    NASA Astrophysics Data System (ADS)

    Mohammed, Raffi; Dilkush; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    In the present study, an attempt has been made to weld dissimilar alloys of 5mm thick plates i.e., austenitic stainless steel (316L) and duplex stainless steel (2205) and compared with that of similar welds. Welds are made with conventional gas tungsten arc welding (GTAW) process with two different filler wires namely i.e., 309L and 2209. Welds were characterized using optical microscopy to observe the microstructural changes and correlate with mechanical properties using hardness, tensile and impact testing. Potentio-dynamic polarization studies were carried out to observe the pitting corrosion behaviour in different regions of the welds. Results of the present study established that change in filler wire composition resulted in microstructural variation in all the welds with different morphology of ferrite and austenite. Welds made with 2209 filler showed plate like widmanstatten austenite (WA) nucleated at grain boundaries. Compared to similar stainless steel welds inferior mechanical properties was observed in dissimilar stainless steel welds. Pitting corrosion resistance is observed to be low for dissimilar stainless steel welds when compared to similar stainless steel welds. Overall study showed that similar duplex stainless steel welds having favorable microstructure and resulted in better mechanical properties and corrosion resistance. Relatively dissimilar stainless steel welds made with 309L filler obtained optimum combination of mechanical properties and pitting corrosion resistance when compared to 2209 filler and is recommended for industrial practice.

  3. Role of tool marks inside spherical mitigation pit fabricated by micro-milling on repairing quality of damaged KH2PO4 crystal

    PubMed Central

    Chen, Ming-Jun; Cheng, Jian; Yuan, Xiao-Dong; Liao, Wei; Wang, Hai-Jun; Wang, Jing-He; Xiao, Yong; Li, Ming-Quan

    2015-01-01

    Repairing initial slight damage site into stable structures by engineering techniques is the leading strategy to mitigate the damage growth on large-size components used in laser-driven fusion facilities. For KH2PO4 crystals, serving as frequency converter and optoelectronic switch-Pockels cell, micro-milling has been proven the most promising method to fabricate these stable structures. However, tool marks inside repairing pit would be unavoidably introduced due to the wearing of milling cutter in actual repairing process. Here we quantitatively investigate the effect of tool marks on repairing quality of damaged crystal components by simulating its induced light intensification and testing the laser-induced damage threshold. We found that due to the formation of focusing hot spots and interference ripples, the light intensity is strongly enhanced with the presence of tool marks, especially for those on rear surfaces. Besides, the negative effect of tool marks is mark density dependent and multiple tool marks would aggravate the light intensification. Laser damage tests verified the role of tool marks as weak points, reducing the repairing quality. This work offers new criterion to comprehensively evaluate the quality of repaired optical surfaces to alleviate the bottleneck issue of low laser damage threshold for optical components in laser-driven fusion facilities. PMID:26399624

  4. Computational fluid dynamics models of conifer bordered pits show how pit structure affects flow.

    PubMed

    Schulte, Paul J

    2012-02-01

    • The flow of xylem sap through conifer bordered pits, particularly through the pores in the pit membrane, is not well understood, but is critical for an understanding of water transport through trees. • Models solving the Navier-Stokes equation governing fluid flow were based on the geometry of bordered pits in black spruce (Picea mariana) and scanning electron microscopy images showing details of the pores in the margo of the pit membrane. • Solutions showed that the pit canals contributed a relatively small fraction of resistance to flow, whereas the torus and margo pores formed a large fraction, which depended on the structure of the individual pit. The flow through individual pores in the margo was strongly dependent on pore area, but also on the radial location of the pore with respect to the edge of the torus. • Model results suggest that only a few per cent of the pores in the margo account for nearly half of the flow and these pores tend to be located in the inner region of the margo where their contribution will be maximized. A high density of strands in outer portions of the margo (hence narrower pores) may be more significant for mechanical support of the torus. © 2011 The Author. New Phytologist © 2011 New Phytologist Trust.

  5. Localized corrosion of 316L stainless steel with SiO2-CaO films obtained by means of sol-gel treatment.

    PubMed

    Vallet-Regí, M; Izquierdo-Barba, I; Gil, F J

    2003-11-01

    Sol-gel films on austenitic stainless steel (AISI 316L) polished wafer were prepared from sono-sols obtained from tetraethylorthosilane and hydrated calcium nitrate. However, pitting was observed in different places on the stainless steel surfaces. The corrosion resistance was evaluated by the polarization resistance in simulated body fluid environment at 37 degrees C. The critical current density, the passive current density, the corrosion potential, and the critical pitting potential were studied. The austenitic stainless steel 316L treated presents important electrochemical corrosion and consequently its application as endosseous implants is not possible. Copyright 2003 Wiley Periodicals, Inc.

  6. Scanning electron microscopy of antennal sensory organs of the cattle grub, Hypoderma lineatum (Diptera: Oestridae).

    PubMed

    Li, X Y; Liu, X H; Ge, Y Q; Zhang, D

    2015-10-01

    Hypoderma lineatum (Villers, 1789) (Diptera: Oestridae) is a hypodermosis fly that has resulted in great economic losses worldwide. The antennae of cattle grub males and females were examined through stereoscopic microscopy and scanning electron microscopy to reveal the general morphology, combined with distribution, type, size, and ultrastructure of the antennal sensilla. All of the three antennal segments (antennal scape, pedicel, and funiculus) possess microtrichiae on their surface. Mechanoreceptors only exist on the antennal scape and pedicel. The antennal funiculus presents four types of antennal sensilla: trichoid, basiconic, coeloconic, and clavate sensilla. Three distinctive characters of H. lineatum are obvious: (1) the relatively slender, flexible, and equal-height mechanoreceptors; (2) the enlarged antennal pedicel, and numerous antennal sensory pits and pit sensilla on the antennal funiculus; and (3) all types of antennal sensilla clustered in sensory pits, respectively. Additionally, the enlarged antennal pedicel and abundant sensory pits and pit sensilla might facilitate odor detection, enhance olfactory sensitivity and accuracy, and also protect the fragile antennal sensilla from mechanical irritation or damage.

  7. Influence of pitting defects on quality of high power laser light field

    NASA Astrophysics Data System (ADS)

    Ren, Huan; Zhang, Lin; Yang, Yi; Shi, Zhendong; Ma, Hua; Jiang, Hongzhen; Chen, Bo; Yang, XiaoYu; Zheng, Wanguo; Zhu, Rihong

    2018-01-01

    With the split-step-Fourier-transform method for solving the nonlinear paraxial wave equation, the intensity distribution of the light field when the pits diameter or depth change is obtained by using numerical simulation, include the intensity distribution inside optical element, the beam near-field, the different distances behind the element and the beam far-field. Results show that with the increase of pits diameter or depth, the light field peak intensity and the contrast inside of element corresponding enhancement. The contrast of the intensity distribution of the rear surface of the element will increase slightly. The peak intensity produced by a specific location element downstream of thermal effect will continue to increase, the damage probability in optics placed here is greatly increased. For the intensity distribution of the far-field, increase the pitting diameter or depth will cause the focal spot intensity distribution changes, and the energy of the spectrum center region increase constantly. This work provide a basis for quantitative design and inspection for pitting defects, which provides a reference for the design of optical path arrangement.

  8. Near infrared photoimmunotherapy prevents lung cancer metastases in a murine model

    PubMed Central

    Sato, Kazuhide; Nagaya, Tadanobu; Nakamura, Yuko; Harada, Toshiko; Choyke, Peter L.; Kobayashi, Hisataka

    2015-01-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of intravenously injected antibodies with the acute toxicity induced by photosensitizers after exposure to NIR-light. Herein, we evaluate the efficacy of NIR-PIT in preventing lung metastases in a mouse model. Lung is one of the most common sites for developing metastases, but it also has the deepest tissue light penetration. Thus, lung is the ideal site for treating early metastases by using a light-based strategy. In vitro NIR-PIT cytotoxicity was assessed with dead cell staining, luciferase activity, and a decrease in cytoplasmic GFP fluorescence in 3T3/HER2-luc-GFP cells incubated with an anti-HER2 antibody photosensitizer conjugate. Cell-specific killing was demonstrated in mixed 2D/3D cell cultures of 3T3/HER2-luc-GFP (target) and 3T3-RFP (non-target) cells. In vivo NIR-PIT was performed in the left lung in a mouse model of lung metastases, and the number of metastasis nodules, tumor fluorescence, and luciferase activity were all evaluated. All three evaluations demonstrated that the NIR-PIT-treated lung had significant reductions in metastatic disease (*p < 0.0001, Mann-Whitney U-test) and that NIR-PIT did not damage non-target tumors or normal lung tissue. Thus, NIR-PIT can specifically prevent early metastases and is a promising anti-metastatic therapy. PMID:25992770

  9. Comparative Studies on Microstructure, Mechanical and Pitting Corrosion of Post Weld Heat Treated IN718 Superalloy GTA and EB Welds

    NASA Astrophysics Data System (ADS)

    Dilkush; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    In the present study, an attempt has been made to weld Inconel 718 nickel-base superalloy (IN718 alloy) using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Both the weldments were subjected to post-weld heat treatment condition as follows -980°C / 20 min followed by direct aging condition (DA) as 720°C/8 h/FC followed by 620°C/8 h/AC. The GTA and EB welds of IN718 alloy were compared in two conditions as-received and 980STA conditions. Welds were characterized to observe mechanical properties, pitting corrosion resistance by correlating with observed microstructures. The rate of higher cooling ranges, the fusion zone of EBW exhibited discrete and relative finer lave phases whereas the higher niobium existed laves with coarser structure were observed in GTAW. The significant dissolution of laves were observed at 980STA of EBW. Due to these effects, the EBW of IN718 alloy showed the higher mechanical properties than GTAW. The electrochemical potentiostatic etch test was carried out in 3.5wt% sodium chloride (NaCl) solution to study the pitting corrosion behaviour of the welds. Results of the present investigation established that mechanical properties and pitting corrosion behaviour are significantly better in post weld heat treated condition. The comparative studies showed that the better combination of mechanical properties and pitting corrosion resistance were obtained in 980STA condition of EBW than GTAW.

  10. A broad survey of hydraulic and mechanical safety in the xylem of conifers

    PubMed Central

    Bouche, Pauline S.; Larter, Maximilien; Domec, Jean-Christophe; Burlett, Régis; Gasson, Peter; Jansen, Steven; Delzon, Sylvain

    2014-01-01

    Drought-induced forest dieback has been widely reported over the last decades, and the evidence for a direct causal link between survival and hydraulic failure (xylem cavitation) is now well known. Because vulnerability to cavitation is intimately linked to the anatomy of the xylem, the main objective of this study was to better understand the xylem anatomical properties associated with cavitation resistance. An extensive data set of cavitation resistance traits and xylem anatomical properties was developed for 115 conifer species, with special attention given to the micro-morphology of bordered pits. The ratio of torus to pit aperture diameter, so-called torus overlap, increased with increasing cavitation resistance, while the flexibility of the margo does not seem to play a role, suggesting that air-seeding is located at the seal between the aspirated torus and pit aperture. Moreover, punctured tori were reported in various Pinaceae species. Species resistant to cavitation had thicker tracheid walls, while their lumen diameter (conduit size) was only slightly reduced, minimizing the impact on hydraulic conductance. The results also demonstrated (i) the existence of an indirect trade-off between hydraulic safety and mechanical strength; and (ii) a consistency between species distribution and xylem anatomy: species with a wide torus overlap and high valve effects are found in arid environments such as the Mediterranean region. PMID:24916072

  11. Corrosion behavior of ferritic stainless steel with 15wt% chromium for the automobile exhaust system

    NASA Astrophysics Data System (ADS)

    Li, Hua-bing; Jiang, Zhou-hua; Feng, Hao; Zhu, Hong-chun; Sun, Bin-han; Li, Zhen

    2013-09-01

    The effect of chloride ion concentration, pH value, and grain size on the pitting corrosion resistance of a new ferritic stainless steel with 15wt% Cr was investigated using the anodic polarization method. The semiconducting properties of passive films with different chloride ion concentrations were performed using capacitance measurement and Mott-Schottky analysis methods. The aging precipitation and intergranular corrosion behavior were evaluated at 400-900°C. It is found that the pitting potential decreases when the grain size increases. With the increase in chloride ion concentration, the doping density and the flat-bland potential increase but the thickness of the space charge layer decreases. The pitting corrosion resistance increases rapidly with the decrease in pH value. Precipitants is identified as Nb(C,N) and NbC, rather than Cr-carbide. The intergranular corrosion is attributed to the synergistic effects of Nb(C,N) and NbC precipitates and Cr segregation adjacent to the precipitates.

  12. 7 CFR 51.3147 - U.S. No. 1.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... from injury caused by split pit and free from damage caused by bruises, growth cracks, hail, sunburn, sprayburn, scab, bacterial spot, scale, scars, russeting, other disease, insects, or mechanical or other...

  13. 7 CFR 51.3147 - U.S. No. 1.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... from injury caused by split pit and free from damage caused by bruises, growth cracks, hail, sunburn, sprayburn, scab, bacterial spot, scale, scars, russeting, other disease, insects, or mechanical or other...

  14. 7 CFR 51.3148 - U.S. No. 2.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... from decay, broken skins which are not healed, worms, worm holes, and free from serious damage caused by bruises, growth cracks, hail, sunburn, sprayburn, scab, bacterial spot, scale, split pit, scars...

  15. Vibration Therapy Is No More Effective Than the Standard Practice of Massage and Stretching for Promoting Recovery From Muscle Damage After Eccentric Exercise.

    PubMed

    Fuller, Joel T; Thomson, Rebecca L; Howe, Peter R C; Buckley, Jonathan D

    2015-07-01

    The purpose of this study was to determine if vibration therapy is more effective than the standard treatment of stretching and massage for improving recovery of muscle strength and reducing muscle soreness after muscle damage induced by eccentric exercise. A randomized, single-blinded parallel intervention trial design was used. Research laboratory. Fifty untrained men aged 18 to 30 years completed the study. Participants performed 100 maximal eccentric muscle actions (ECCmax) of the right knee extensor muscles. For the next 7 days, 25 participants applied cycloidal vibration therapy to the knee extensors twice daily and 25 participants performed stretching and sports massage (SSM) twice daily. Changes in markers of muscle damage [peak isometric torque (PIT), serum creatine kinase (CK), and serum myoglobin (Mb)], muscle soreness (visual analog scale), and inflammation [serum C-reactive protein (CRP)] were assessed. After ECCmax, there was no difference in recovery of PIT and muscle soreness or serum CK, Mb, and CRP levels between vibration and SSM groups (P > 0.28). Cycloidal vibration therapy is no more effective than the standard practice of stretching and massage to promote muscle recovery after the performance of muscle-damaging exercise. Prescription of vibration therapy after maximal exercise involving eccentric muscle damage did not alleviate signs and symptoms of muscle damage faster than the standard prescription of stretching and massage.

  16. Corrosion of carbon steels, stainless steels, and titanium in aqueous lithium bromide solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guinon, J.L.; Garcia-Anton, J.; Perez-Herranz, V.

    1994-03-01

    Effects of lithium bromide (LiBr) concentration, pH, temperature, exposure time, and the action of some inhibitors on corrosion of several carbon (C) steels, stainless steels (SS), and a titanium (Ti) alloy were studied. Corrosion rates were determined by the polarization resistance method and compared to rates determined by weight-loss measurements. Pitting potentials (E[sub p]) were evaluated in neutral LiBr solution and with different inhibitors. Pit density and average pit depth depended on the metal tested, with lowest values for Ti, the next lowest values for type 316 SS (UNS S31600), and the highest values for UNS G41350 tempered steel.

  17. Proceedings of GeoTech 85: Personal computers in geology conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    This book presents the papers given at a conference which considered the use of microprocessors in the exploration of petroleum and natural gas deposits. Topics covered at the conference included seismic surveys, geochemistry, expert systems, artificial intelligence, data base management systems, a portable exploration work station, open pit planning on a microcomputer, well logging, fracture analysis, production scheduling of open pit mines, resistivity logging, and coal washability.

  18. Understanding effect of 3.5 wt.% NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Fusco, M.; Komarasamy, M.; Mishra, R. S.; Bourham, M.; Murty, K. L.

    2017-11-01

    High entropy alloys are a new class of metallic materials with potential for use in a wide variety of applications including their use in corrosive environment. The present study focused on the corrosion behavior of a single-phase, face-centered cubic high entropy alloy (HEA) Al0.1CoCrFeNi in as-cast condition, and the results are compared with the corrosion behavior of the SS304. The microstructural characterization of the alloys in as-received condition was carried out using optical microscopy, electron backscattered diffraction, energy dispersive spectroscopy, and X-ray diffraction. Corrosion behavior was studied using potentiodynamic polarization test in a 3.5 wt% NaCl solution and electrochemical impedance spectroscopy at room temperature. It was observed that the general corrosion resistance of the HEA was better than that of SS304. Pitting potential of the HEA was found to be superior to that of the SS304. Corrosion pits size was slightly smaller in SS304 than that in the HEA. 3D imaging determined that the pit depths were of the same order in both cases. Overall, the HEA Al0.1CoCrFeNi demonstrated a better resistance to general and pitting corrosion.

  19. Use of Electrochemical Noise (EN) Technique to Study the Effect of sulfate and Chloride Ions on Passivation and Pitting Corrosion Behavior of 316 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Pujar, M. G.; Anita, T.; Shaikh, H.; Dayal, R. K.; Khatak, H. S.

    2007-08-01

    In the present paper, studies were conducted on AISI Type 316 stainless steel (SS) in deaerated solutions of sodium sulfate as well as sodium chloride to establish the effect of sulfate and chloride ions on the electrochemical corrosion behavior of the material. The experiments were conducted in deaerated solutions of 0.5 M sodium sulfate as well as 0.5 M sodium chloride using electrochemical noise (EN) technique at open circuit potential (OCP) to collect the correlated current and potential signals. Visual records of the current and potential, analysis of data to arrive at the statistical parameters, spectral density estimation using the maximum entropy method (MEM) showed that sulfate ions were incorporated in the passive film to strengthen the same. However, the adsorption of chloride ions resulted in pitting corrosion thereby adversely affecting noise resistance ( R N). Distinct current and potential signals were observed for metastable pitting, stable pitting and passive film build-up. Distinct changes in the values of the statistical parameters like R N and the spectral noise resistance at zero frequency ( R°SN) revealed adsorption and incorporation of sulfate and chloride ions on the passive film/solution interface.

  20. 7 CFR 51.3146 - U.S. Extra No. 1.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and free from injury caused by split pit and free from damage caused by bruises, growth cracks, hail, sunburn, sprayburn, scab, bacterial spot, scale, scars, russeting, other disease, insects or mechanical or...

  1. 7 CFR 51.3146 - U.S. Extra No. 1.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and free from injury caused by split pit and free from damage caused by bruises, growth cracks, hail, sunburn, sprayburn, scab, bacterial spot, scale, scars, russeting, other disease, insects or mechanical or...

  2. 7 CFR 51.1521 - U.S. No. 1.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; which are free from decay and sunscald, and free from damage caused by broken skins, heat injury, growth cracks, sunburn, split pits, hail marks, drought spots, gum spots, russeting, scars, other disease...

  3. 7 CFR 51.3147 - U.S. No. 1.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., broken skins which are not healed, worms, worm holes, and free from injury caused by split pit and free from damage caused by bruises, growth cracks, hail, sunburn, sprayburn, scab, bacterial spot, scale...

  4. New Generation Energy Efficient Refractory Application in Soaking Pits of Bhilai Steel Plant, Sail

    NASA Astrophysics Data System (ADS)

    Roy, Indranil; Chintaiah, Perumetla; Bhattacharya, Ajoy Kr.; Garai, Swapan Kr.; Ray Choudhury, Pankaj Kr.; Tiwari, Laksman

    In Bhilai Steel Plant (BSP), soaking pits are used for heating ingots for successive rolling into blooms. Pits are operated at a temperature of around 1350°C. Mixed gas (Mixture of Blast Furnace gas & Coke Oven gas) of calorific value around 2040 kcal/Nm3 is used as fuel. The walls of soaking pits were lined with traditional 38% Al2O3 firebricks and top 500mm was cast with 70% Al2O3 low cement castable (LCC). This type of lining results in frequent damages due to hitting by ingots while being lifted from pit by overhead cranes thus affecting the availability of pit. Life of pits was 2 to 2.5 years in BSP with 3-4 cold repairs and 3-4 hot repairs. Energy loss through the wall is also quite high in this type of lining. To triumph over the limitations of the conventional lining, a lining design was developed for the walls which consist of special 70% Al2O3 LCC having high hot strength (HMOR) in combination with specially design flexible SS-304 anchors. Ceramic fiber blanket and insulation bricks were provided between castable and the metallic shell of the pit to minimize the heat loss. A heating schedule was developed and introduced based on available infrastructure at BSP for proper curing of modified LCC based lining. After introduction of modified lining, pit no. 14/2 is running for more than 2.5 years without any repair. To capitalize the success, two more pits i.e. 12/1 and 9/2 were converted to modified lining. These pits are also running satisfactorily for more than 1.5 years. The modification has resulted in higher availability with substantial increase in production. Shell temperature of the modified pits reduced to 90° - 140°C from 120° - 200°C of conventional pits. This shows reduction in heat loss through walls, resulting less fuel consumption and energy saving of about 18%.

  5. Microscopic observations of X-ray and gamma-ray induced decomposition of ammonium perchlorate crystals

    NASA Technical Reports Server (NTRS)

    Herley, P. J.; Levy, P. W.

    1972-01-01

    The X-ray and gamma-ray induced decomposition of ammonium perchlorate was studied by optical, transmission, and scanning electron microscopy. This material is a commonly used oxidizer in solid propellents which could be employed in deep-space probes, and where they will be subjected to a variety of radiations for as long as ten years. In some respects the radiation-induced damage closely resembles the effects produced by thermal decomposition, but in other respects the results differ markedly. Similar radiation and thermal effects include the following: (1) irregular or ill-defined circular etch pits are formed in both cases; (2) approximately the same size pits are produced; (3) the pit density is similar; (4) the c face is considerably more reactive than the m face; and (5) most importantly, many of the etch pits are aligned in crystallographic directions which are the same for thermal or radiolytic decomposition. Thus, dislocations play an important role in the radiolytic decomposition process.

  6. Chemical etching of stainless steel 301 for improving performance of electrochemical capacitors in aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Jeżowski, P.; Nowicki, M.; Grzeszkowiak, M.; Czajka, R.; Béguin, F.

    2015-04-01

    The main purpose of the study was to increase the surface roughness of stainless steel 301 current collectors by etching, in order to improve the electrochemical performance of electrical double-layer capacitors (EDLC) in 1 mol L-1 lithium sulphate electrolyte. Etching was realized in 1:3:30 (HNO3:HCl:H2O) solution with times varying up to 10 min. For the considered 15 μm thick foil and a mass loss around 0.4 wt.%, pitting was uniform, with diameter of pits ranging from 100 to 300 nm. Atomic force microscopy (AFM) showed an increase of average surface roughness (Ra) from 5 nm for the as-received stainless steel foil to 24 nm for the pitted material. Electrochemical impedance spectroscopy realized on EDLCs with coated electrodes either on as-received or pitted foil in 1 mol L-1 Li2SO4 gave equivalent distributed resistance (EDR) of 8 Ω and 2 Ω, respectively, demonstrating a substantial improvement of collector/electrode interface after pitting. Correlatively, the EDLCs with pitted collector displayed a better charge propagation and low ohmic losses even at relatively high current of 20 A g-1. Hence, chemical pitting of stainless steel current collectors is an appropriate method for optimising the performance of EDLCs in neutral aqueous electrolyte.

  7. Combination of Functional Nanoengineering and Nanosecond Laser Texturing for Design of Superhydrophobic Aluminum Alloy with Exceptional Mechanical and Chemical Properties.

    PubMed

    Boinovich, Ludmila B; Modin, Evgeny B; Sayfutdinova, Adeliya R; Emelyanenko, Kirill A; Vasiliev, Alexander L; Emelyanenko, Alexandre M

    2017-10-24

    Industrial application of metallic materials is hindered by several shortcomings, such as proneness to corrosion, erosion under abrasive loads, damage due to poor cold resistance, or weak resistance to thermal shock stresses, etc. In this study, using the aluminum-magnesium alloy as an example of widely spread metallic materials, we show that a combination of functional nanoengineering and nanosecond laser texturing with the appropriate treatment regimes can be successfully used to transform a metal into a superhydrophobic material with exceptional mechanical and chemical properties. It is demonstrated that laser chemical processing of the surface may be simultaneously used to impart multimodal roughness and to modify the composition and physicochemical properties of a thick surface layer of the substrate itself. Such integration of topographical and physicochemical modification leads to specific surface nanostructures such as nanocavities filled with hydrophobic agent and hard oxynitride nanoinclusions. The combination of superhydrophobic state, nano- and micro features of the hierarchical surface, and the appropriate composition of the surface textured layer allowed us to provide the surface with the outstanding level of resistance of superhydrophobic coatings to external chemical and mechanical impacts. In particular, experimental data presented in this study indicate high resistance of the fabricated coatings to pitting corrosion, superheated water vapor, sand abrasive wear, and rapid temperature cycling from liquid nitrogen to room temperatures, without notable degradation of superhydrophobic performance.

  8. Plastic deformation of a magnesium oxide 001-plane surface produced by cavitation

    NASA Technical Reports Server (NTRS)

    Hattori, S.; Miyoshi, K.; Buckley, D. H.; Okada, T.

    1986-01-01

    An investigation was conducted to examine plastic deformation of a cleaved single-crystal magnesium oxide 001-plane surface exposed to cavitation. Cavitation damage experiments were carried out in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (2 mm) to the surface of the cleaved specimen. The dislocation-etch-pit patterns induced by cavitation were examined and compared with that of microhardness indentations. The results revealed that dislocation-etch-pit patterns around hardness indentations contain both screw and edge dislocations, while the etch-pit patterns on the surface exposed to cavitation contain only screw dislocations. During cavitation, deformation occurred in a thin surface layer, accompanied by work-hardening of the ceramic. The row of screw dislocations underwent a stable growth, which was analyzed crystallographically.

  9. The hardness, microstructure, and pitting resistance of austenitic stainless steel Fe25Ni15Cr with the addition of tungsten, niobium, and vanadium

    NASA Astrophysics Data System (ADS)

    Prifiharni, Siska; Anwar, Moch. Syaiful; Nikitasari, Arini; Mabruri, Efendi

    2018-05-01

    In this work, the effect of 2% W, 1%Nb, and 1% V addition on the hardness, microstructure, and pitting resistance to austenitic stainless steel Fe25Ni15Cr was investigated. The specimens were prepared in induction melting furnace, followed by homogenizing at 1100°C for 24 h. Then, the specimens were solution treated at 975°C for 2 h followed by water quenching and aging at 725°C for 15 h. The hardness was measured by using Rockwell hardness B, and metallographic observation was conducted using optical microscope and SEM-EDS. The results show that the increament of W, Nb, and V in the austenitic stainless steel Fe25Ni15Crby increased the hardness. The metal carbide precipitation occurred at grain boundaries in niobium free alloy. The addition of Nb in the alloy promotes the Laves phase transformation, and addition of V increase Nb content in the Laves phase. Laves phase formation in alloys containing niobium during aging heat treatments lead to an increase in hardness. Addition of W, Nb, and V also increase pitting resistance of the Fe25Ni15Cr austenitic stainless steel. This can be attributed to an increasing level of niobium in the matrix.

  10. Effect of Microstructure on Stress Corrosion Cracking Behaviour of High Nitrogen Stainless Steel Gas Tungsten Arc Welds

    NASA Astrophysics Data System (ADS)

    Mohammed, Raffi; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    Present work is aimed to improve stress corrosion cracking resistance of high nitrogen steel and its welds. An attempt to weld high nitrogen steel of 5 mm thick plate using gas tungsten arc welding (GTAW) with three high strength age hardenable fillers i.e., 11-10 PH filler, PH 13- 8Mo and maraging grade of MDN 250 filler is made. Welds were characterized by optical microscopy and scanning electron microscopy. Vickers hardness testing of the welds was carried out to study the mechanical behaviour of welds. Potentio-dynamic polarization studies were done to determine pitting corrosion resistance in aerated 3.5% NaCl solution. Stress corrosion cracking (SCC) testing was carried out using constant load type machine with applied stress of 50% yield strength and in 45% MgCl2 solution boiling at 155°C. The results of the present investigation established that improvement in resistance to stress corrosion cracking was observed for PH 13- 8Mo GTA welds when compared to 11-10 PH and MDN 250 GTA welds. However, All GTA welds failed in the weld interface region. This may be attributed to relatively lower pitting potential in weld interface which acts as active site and the initiation source of pitting.

  11. In-vitro biodegradation and corrosion-assisted cracking of a coated magnesium alloy in modified-simulated body fluid.

    PubMed

    Jafari, Sajjad; Singh Raman, R K

    2017-09-01

    A calcium phosphate coating was directly synthesized on AZ91D magnesium (Mg) alloy. Resistance of this coating to corrosion in a modified-simulated body fluid (m-SBF) was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Mechanical properties of the bare and coated alloy were investigated using slow strain rate tensile (SSRT) and fatigue testing in air and m-SBF. Very little is reported in the literature on human-body-fluid-assisted cracking of Mg alloys, viz., resistance to corrosion fatigue (CF) and stress corrosion cracking (SCC). This study has a particular emphasis on the effect of bio-compatible coatings on mechanical and electrochemical degradations of Mg alloys for their applications as implants. The results suggest the coating to improve the general as well as pitting corrosion resistance of the alloy. The coating also provides visible improvement in resistance to SCC, but little improvement in CF resistance. This is explained on the basis of pitting behaviour in the presence and absence of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    NASA Astrophysics Data System (ADS)

    Cheng, Feng; Jiang, Shuyun

    2014-02-01

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (-200 V/80 A, labeled DLC-1, and -100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  13. Data-Science Analysis of the Macro-scale Features Governing the Corrosion to Crack Transition in AA7050-T7451

    NASA Astrophysics Data System (ADS)

    Co, Noelle Easter C.; Brown, Donald E.; Burns, James T.

    2018-05-01

    This study applies data science approaches (random forest and logistic regression) to determine the extent to which macro-scale corrosion damage features govern the crack formation behavior in AA7050-T7451. Each corrosion morphology has a set of corresponding predictor variables (pit depth, volume, area, diameter, pit density, total fissure length, surface roughness metrics, etc.) describing the shape of the corrosion damage. The values of the predictor variables are obtained from white light interferometry, x-ray tomography, and scanning electron microscope imaging of the corrosion damage. A permutation test is employed to assess the significance of the logistic and random forest model predictions. Results indicate minimal relationship between the macro-scale corrosion feature predictor variables and fatigue crack initiation. These findings suggest that the macro-scale corrosion features and their interactions do not solely govern the crack formation behavior. While these results do not imply that the macro-features have no impact, they do suggest that additional parameters must be considered to rigorously inform the crack formation location.

  14. Evaluation of 2D resistivity imaging technique for delineating subsurface seepage of hydrocarbon-contaminated water southeast of Karbala city, Iraq.

    PubMed

    Al-Menshed, Firas H; Thabit, Jassim M

    2017-03-01

    2D imaging technique was applied in (8) transects near a pit of contaminated water near contaminated well southeast of Karbala city, Iraq. Each transect was 30 m long with 1 m electrode spacing. Data acquisition was fulfilled by using Wenner electrode array. The resistivity of water-contaminated zone is found less than 3Ω.m and the top dry zone recorded relatively high resistivity (more than 170Ω.m). It is found that the greatest amount of seepage was found moving towards northeast direction coincided with groundwater movement direction, whereas there was no movement towards northwest and southeast directions and restricted on the closest areas to the pit location. The outcomes suggested that the 2D imaging technique is a successful and powerful tool in separating contaminated zone from clear one and in detecting underground seepage depth and moving direction.

  15. Effect of PWHT on Microstructure, Mechanical and Corrosion Behaviour of Gas Tungsten Arc Welds of IN718 Superalloys

    NASA Astrophysics Data System (ADS)

    Dilkush; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work aims to improve corrosion resistance and mechanical behavior of the welds with suitable post weld heat treatment i.e. direct aging and solutionizing treatments (980STA, 1080STA). Gas tungsten arc welding (GTAW) has been performed on Inconel 718 (IN718) nickel based super alloy plates with 3mm thickness. The structural –property relationship of the post weld heat treated samples is judged by correlating the microstructural changes with observed mechanical behavior and pitting corrosion resistance of the welds As-recevied, direct aging (DA), 980STA,1080STA were studied. Welds were characterized for microstructure changes with scanning electron microscopy (SEM) and optical microscopy (OM).Vickers micro- hardness tester was used to measure the hardness of the weldments. Potential-dynamic polarization testing was carried out to study the pitting corrosion resistance in 3.5%NaCl (Sodium chloride) solution at 30°C.Results of the present study established that post weld heat treatments resulted in promoting the element segregation diffusion and resolve them from brittle laves particles in the matrix. Increased precipitation of strengthening phases lead to a significant increase in fusion zone hardness of 1080STA post weld heat treated condition compared to as welded, direct aged, 980STA conditions. Due to significant changes in the microstructural behavior of 1080STA condition resulted in superior pitting corrosion resistance than 980STA, direct aged and as- recevied conditions of IN718 GTA welds

  16. A broad survey of hydraulic and mechanical safety in the xylem of conifers.

    PubMed

    Bouche, Pauline S; Larter, Maximilien; Domec, Jean-Christophe; Burlett, Régis; Gasson, Peter; Jansen, Steven; Delzon, Sylvain

    2014-08-01

    Drought-induced forest dieback has been widely reported over the last decades, and the evidence for a direct causal link between survival and hydraulic failure (xylem cavitation) is now well known. Because vulnerability to cavitation is intimately linked to the anatomy of the xylem, the main objective of this study was to better understand the xylem anatomical properties associated with cavitation resistance. An extensive data set of cavitation resistance traits and xylem anatomical properties was developed for 115 conifer species, with special attention given to the micro-morphology of bordered pits. The ratio of torus to pit aperture diameter, so-called torus overlap, increased with increasing cavitation resistance, while the flexibility of the margo does not seem to play a role, suggesting that air-seeding is located at the seal between the aspirated torus and pit aperture. Moreover, punctured tori were reported in various Pinaceae species. Species resistant to cavitation had thicker tracheid walls, while their lumen diameter (conduit size) was only slightly reduced, minimizing the impact on hydraulic conductance. The results also demonstrated (i) the existence of an indirect trade-off between hydraulic safety and mechanical strength; and (ii) a consistency between species distribution and xylem anatomy: species with a wide torus overlap and high valve effects are found in arid environments such as the Mediterranean region. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Genome sequence of a novel multiple antibiotic resistant member of Erysipelotrichaceae family isolated from a swine manure storage pit

    USDA-ARS?s Scientific Manuscript database

    The swine gastro intestinal (GI) tract and stored manure may serve as reservoirs of antibiotic resistance genes as well as sources of novel bacteria. We report the draft genome sequence of “Cottaibacterium suis” strain MTC7, a novel antibiotic resistant bacterium. The strain was isolated from a swin...

  18. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.

    PubMed

    Tang, Yee-Chin; Katsuma, Shoji; Fujimoto, Shinji; Hiromoto, Sachiko

    2006-11-01

    The electrochemical corrosion behaviour of Type 304 and 316L stainless steels was studied in Hanks' solution, Eagle's minimum essential medium (MEM), serum containing medium (MEM with 10% of fetal bovine serum) without cells, and serum containing medium with cells over a 1-week period. Polarization resistance measurements indicated that the stainless steels were resistant to Hanks' and MEM solutions. Type 304 was more susceptible to pitting corrosion than Type 316L in Hanks' and MEM solutions. The uniform corrosion resistance of stainless steels, determined by R(p), was lower in culturing medium than in Hanks' and MEM. The low corrosion resistance was due to surface passive film with less protective to reveal high anodic dissolution rate. When cells were present, the initial corrosion resistance was low, but gradually increased after 3 days, consistent with the trend of cell coverage. The presence of cells was found to suppress the cathodic reaction, that is, oxygen reduction, and increase the uniform corrosion resistance as a consequence. On the other hand, both Type 304 and 316L stainless steels became more susceptible to pitting corrosion when they were covered with cells.

  19. Pitting Initiation and Propagation of X70 Pipeline Steel Exposed to Chloride-Containing Environments

    PubMed Central

    Yang, Zixuan; Kan, Bo; Li, Jinxu; Su, Yanjing; Qiao, Lijie; Volinsky, Alex A.

    2017-01-01

    Inclusion-induced pitting initiation mechanisms in X70 steel were investigated by scanning electron microscopy, scanning Kelvin probe force microscopy (SKPFM), immersion and electrochemical polarization tests in chloride-containing ion solutions. There are three inclusion types in the X70 steel. Corrosion test results indicated that pitting corrosion resistance of type A inclusion < type C inclusion < type B inclusion, i.e., (Mn, Ca)S < matrix < (Al, Ca)O. SKPFM test results show that the type A inclusion exhibited both lower and higher potentials than the matrix, while the type B inclusion exhibited higher potential than the matrix. The corrosion test and the SKPFM potential test results are consistent. Potentiodynamic polarization results indicate that the type A and C are active inclusions, while the type B is an inactive inclusion. Three kinds of possible mechanisms of inclusion-induced pitting corrosion are established for the X70 steel. PMID:28902156

  20. Application of Hydrophilic Silanol-Based Chemical Grout for Strengthening Damaged Reinforced Concrete Flexural Members

    PubMed Central

    Ju, Hyunjin; Lee, Deuck Hang; Cho, Hae-Chang; Kim, Kang Su; Yoon, Seyoon; Seo, Soo-Yeon

    2014-01-01

    In this study, hydrophilic chemical grout using silanol (HCGS) was adopted to overcome the performance limitations of epoxy materials used for strengthening existing buildings and civil engineering structures. The enhanced material performances of HCGS were introduced, and applied to the section enlargement method, which is one of the typical structural strengthening methods used in practice. To evaluate the excellent structural strengthening performance of the HCGS, structural tests were conducted on reinforced concrete beams, and analyses on the flexural behaviors of test specimens were performed by modified partial interaction theory (PIT). In particular, to improve the constructability of the section enlargement method, an advanced strengthening method was proposed, in which the precast panel was directly attached to the bottom of the damaged structural member by HCGS, and the degree of connection of the test specimens, strengthened by the section enlargement method, were quantitatively evaluated by PIT-based analysis. PMID:28788708

  1. Application of Hydrophilic Silanol-Based Chemical Grout for Strengthening Damaged Reinforced Concrete Flexural Members.

    PubMed

    Ju, Hyunjin; Lee, Deuck Hang; Cho, Hae-Chang; Kim, Kang Su; Yoon, Seyoon; Seo, Soo-Yeon

    2014-06-23

    In this study, hydrophilic chemical grout using silanol (HCGS) was adopted to overcome the performance limitations of epoxy materials used for strengthening existing buildings and civil engineering structures. The enhanced material performances of HCGS were introduced, and applied to the section enlargement method, which is one of the typical structural strengthening methods used in practice. To evaluate the excellent structural strengthening performance of the HCGS, structural tests were conducted on reinforced concrete beams, and analyses on the flexural behaviors of test specimens were performed by modified partial interaction theory (PIT). In particular, to improve the constructability of the section enlargement method, an advanced strengthening method was proposed, in which the precast panel was directly attached to the bottom of the damaged structural member by HCGS, and the degree of connection of the test specimens, strengthened by the section enlargement method, were quantitatively evaluated by PIT-based analysis.

  2. Micropulse laser for persistent optic disc pit maculopathy. A case report.

    PubMed

    Valdés-Lara, Carlos Andrés; Crim, Nicolás; García-Aguirre, Gerardo; Lule, Ismael Ávila; Morales-Cantón, Virgilio

    2018-06-01

    Optic disc pits (ODP) are rare and congenital anomalies of the optic disc, sometimes remaining asymptomatic. However, serous macular detachment or optic disc maculopathy is the most common complication, causing significant visual deterioration, without a current consensus about treatment. We describe a case of ODP maculopathy that was treated successfully with micropulse laser. A patient with ODP maculopathy remained with macular serous detachment after nine months of follow up after pars plana vitrectomy. Subthreshold micropulse laser was used to treat macular serous detachment, achieving a significant improvement in central macular thickness after one session. Subthreshold micropulse laser is designed to stimulate the retinal pigment epithelium without damage to the photoreceptors, resulting in absorption of subretinal and intraretinal fluid. Macular serous detachment in patients with ODP requires a prompt diagnosis and treatment to avoid damage to photoreceptors. Subthreshold micropulse laser is a potential treatment for eyes with ODP and macular serous detachment complication.

  3. Investigation of Gear and Bearing Fatigue Damage Using Debris Particle Distributions

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Lewicki, David G.; Decker, Harry J.

    2004-01-01

    A diagnostic tool was developed for detecting fatigue damage to spur gears, spiral bevel gears, and rolling element bearings. This diagnostic tool was developed and evaluated experimentally by collecting oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig, Spiral Bevel Gear Test Facility, and the 500hp Helicopter Transmission Test Stand. During each test, data from an online, in-line, inductance type oil debris sensor was monitored and recorded for the occurrence of pitting damage. Results indicate oil debris alone cannot discriminate between bearing and gear fatigue damage.

  4. New insights into the mechanisms of water-stress-induced cavitation in conifers.

    PubMed

    Cochard, Hervé; Hölttä, Teemu; Herbette, Stéphane; Delzon, Sylvain; Mencuccini, Maurizio

    2009-10-01

    Cavitation resistance is a key parameter to understand tree drought tolerance but little is known about the mechanisms of air entry into xylem conduits. For conifers three mechanisms have been proposed: (1) a rupture of pit margo microfibrils, (2) a displacement of the pit torus from its normal sealing position over the pit aperture, and (3) a rupture of an air-water menisci in a pore of the pit margo. In this article, we report experimental results on three coniferous species suggesting additional mechanisms. First, when xylem segments were injected with a fluid at a pressure sufficient to aspirate pit tori and well above the pressure for cavitation induction we failed to detect the increase in sample conductance that should have been caused by torus displacement from blocking the pit aperture or by membrane rupture. Second, by injecting xylem samples with different surfactant solutions, we found a linear relation between sample vulnerability to cavitation and fluid surface tension. This suggests that cavitation in conifers could also be provoked by the capillary failure of an air-water meniscus in coherence with the prediction of Young-Laplace's equation. Within the bordered pit membrane, the exact position of this capillary seeding is unknown. The possible Achilles' heel could be the seal between tori and pit walls or holes in the torus. The mechanism of water-stress-induced cavitation in conifers could then be relatively similar to the one currently proposed for angiosperms.

  5. Effect of Minor Alloying Elements on Localized Corrosion Behavior of Aluminum-Copper-Magnesium based Solid Solution Alloys

    NASA Astrophysics Data System (ADS)

    Aburada, Tomohiro

    2011-12-01

    The effects and mechanistic roles of a minor alloying element, Ni, on the localized corrosion behavior were explored by studying (Al75Cu 17Mg8)97Ni3 and Al70Cu 18Mg12 amorphous alloys. To explore the minor alloying element limited to the outer surface layers, the corrosion behavior of Al70Cu 18Mg12 amorphous alloy in solutions with and without Ni 2+ was also studied. Both Ni alloying and Ni2+ in solution improved the localized corrosion resistance of the alloys by ennobling the pitting and repassivation potentials. Pit growth by the selective dissolution of Al and Mg was also suppressed by Ni alloying. Remaining Cu and Ni reorganized into a Cu-rich polycrystalline nanoporous structure with continuous ligaments in pits. The minor Ni alloying and Ni2+ in solution suppressed the coarsening of the ligaments in the dealloyed nanoporous structure. The presence of relatively immobile Ni atoms at the surface suppressed the surface diffusion of Cu, which reduced the coarsening of the nanoporous structure, resulting in the formation of 10 to 30 nm wide Cu ligaments. Two mechanistic roles of minor alloying elements in the improvement of the pitting corrosion resistance of the solid solution alloys are elucidated. The first role is the suppression of active dissolution by altering the atomic structure. Ni in solid solution formed stronger bonds with Al, and reduces the probability of weaker Al-Al bonds. The second role is to hinder dissolution by producing a greater negative shift of the true interfacial potential at the dissolution front under the dealloyed layer due to the greater Ohmic resistance through the finer porous structure. These effects contributed to the elevation of pitting potentials by ennobling the applied potential required to produce enough dissolution for the stabilization of pits. Scientifically, this thesis advances the state of understanding of alloy dissolution, particularly the role of minor alloying elements on preferential oxidation at the atomic, nanometer, and micrometer scales. Technological implementations of the findings of the research are also discussed, including a new route to synthesize nanoporous materials with tunable porosity and new corrosion mitigation strategies for commercial Al-based alloys containing the detrimental Al2CuMg phase.

  6. Seasonal occurrence and impact of Halyomorpha halys (Hemiptera: Pentatomidae) in tree fruit.

    PubMed

    Nielsen, Anne L; Hamilton, George C

    2009-06-01

    Halyomorpha halys is an introduced stink bug species from Asia that is spreading throughout the Mid-Atlantic United States. It is native to South Korea, Japan, and eastern China, where it is an occasional pest of tree fruit, including apple and pear. Cage experiments with adults placed on apple and peach during critical plant growth stages demonstrate that it can cause damage to developing fruit during mid- and late season growth periods and that feeding occurs on all regions of the fruit. Feeding that occurred during pit hardening/mid-season and final swell periods were apparent as damage at harvest, whereas feeding at shuck split/petal fall in peaches and apples caused fruit abscission. Tree fruit at two commercial farms were sampled weekly in 2006-2007 to determine H. halys seasonality. Low densities of nymphs in apple suggest that it is an unsuitable developmental host. Both nymphs and adults were found on pear fruits with peak populations occurring in early July and mid-August, the time when pit hardening/mid-season and swell period damage occurs. At both farms, stink bug damage was greater than 25% damaged fruit per tree. We attribute this to H. halys because population densities were significantly higher than native pentatomids at both locations in both beat samples and blacklight trap captures. The data presented here documents the potential for H. halys to cause damage in orchards throughout the Mid-Atlantic United States and shows the need for development of appropriate control strategies.

  7. Vascular defense responses in rice: peroxidase accumulation in xylem parenchyma cells and xylem wall thickening

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Young, S. A.; Willard, L. H.; McGee, J. D.; Sweat, T.; Chittoor, J. M.; Guikema, J. A.; Leach, J. E.

    2001-01-01

    The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae is a vascular pathogen that elicits a defensive response through interaction with metabolically active rice cells. In leaves of 12-day-old rice seedlings, the exposed pit membrane separating the xylem lumen from the associated parenchyma cells allows contact with bacterial cells. During resistant responses, the xylem secondary walls thicken within 48 h and the pit diameter decreases, effectively reducing the area of pit membrane exposed for access by bacteria. In susceptible interactions and mock-inoculated controls, the xylem walls do not thicken within 48 h. Xylem secondary wall thickening is developmental and, in untreated 65-day-old rice plants, the size of the pit also is reduced. Activity and accumulation of a secreted cationic peroxidase, PO-C1, were previously shown to increase in xylem vessel walls and lumen. Peptide-specific antibodies and immunogold-labeling were used to demonstrate that PO-C1 is produced in the xylem parenchyma and secreted to the xylem lumen and walls. The timing of the accumulation is consistent with vessel secondary wall thickening. The PO-C1 gene is distinct but shares a high level of similarity with previously cloned pathogen-induced peroxidases in rice. PO-C1 gene expression was induced as early as 12 h during resistant interactions and peaked between 18 and 24 h after inoculation. Expression during susceptible interactions was lower than that observed in resistant interactions and was undetectable after infiltration with water, after mechanical wounding, or in mature leaves. These data are consistent with a role for vessel secondary wall thickening and peroxidase PO-C1 accumulation in the defense response in rice to X. oryzae pv. oryzae.

  8. Role of Rhipicephalus microplus cheliceral receptors in gustation and host differentiation.

    PubMed

    Ferreira, Lorena Lopes; Soares, Sara Fernandes; de Oliveira Filho, Jaires Gomes; Oliveira, Thaynara Tatielly; Pérez de León, Adalberto A; Borges, Lígia Miranda Ferreira

    2015-04-01

    Rhipicephalus microplus is considered the most economically important ectoparasite of cattle worldwide. It is known that zebuine breeds of cattle are less susceptible to tick infestation than taurine breeds. Contact chemoreceptors in the cheliceral pit sensilla of ticks respond selectively to phagostimulant compounds, however their role in blood feeding relative to host susceptibility to infestation remains to be fully understood. We addressed this topic by conducting taste electrophysiology experiments with cheliceral pit sensilla preparations of R. microplus females. Solutions of five known ixodid tick phagostimulants were tested at different concentrations: sodium (NaCl), and potassium chloride (KCl) (10(-3)-10(-1)M); glucose (10(-4)-10(-1)M); adenosine triphosphate (ATP) (10(-6)-10(-2)M); and reduced l-glutathione (GSH) (10(-6)-10(-2)M). Serum samples from six susceptible animals of the Girolando breed (5/8 Bos indicus×3/8 B. taurus) and six resistant Nelore bovines (pure B. indicus) were also tested. A dose-dependent response of gustatory neurons associated with the chelicerae sensillum to NaCl, glucose, GSH, and ATP were observed. Responses by the cheliceral inner digit pit sensilla of R. microplus to KCl and glucose were also observed and they are reported here for the first time. In addition to an electrophysiological response to known phagostimulants, chemoreceptors in the chelicera of R. microplus responded differently to serum from cattle susceptible and resistant to infestation. The cheliceral pit neurons were more responsive to serum of R. microplus resistant bovines with a higher mean spike frequency (53.5±2spikess(-1)) than to serum samples from susceptible cattle (40.3±2spikess(-1)). The implications of chemosensation during tick blood feeding are discussed. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III

    NASA Astrophysics Data System (ADS)

    Immer, Christopher; Metzger, Philip; Hintze, Paul E.; Nick, Andrew; Horan, Ryan

    2011-02-01

    Understanding plume impingement by retrorockets on the surface of the Moon is paramount for safe lunar outpost design in NASA's planned return to the Moon for the Constellation Program. Visual inspection, Scanning Electron Microscopy, and surface scanned topology have been used to investigate the damage to the Lunar Surveyor III spacecraft that was caused by the Apollo 12 Lunar Module's close proximity landing. Two parts of the Surveyor III craft returned by the Apollo 12 astronauts, Coupons 2050 and 2051, which faced the Apollo 12 landing site, show that a fine layer of lunar regolith coated the materials and was subsequently removed by the Apollo 12 Lunar Module landing rocket. The coupons were also pitted by the impact of larger soil particles with an average of 103 pits/cm 2. The average entry size of the pits was 83.7 μm (major diameter) × 74.5 μm (minor diameter) and the average estimated penetration depth was 88.4 μm. Pitting in the surface of the coupons correlates to removal of lunar fines and is likely a signature of lunar material imparting localized momentum/energy sufficient to cause cracking of the paint. Comparison with the lunar soil particle size distribution and the optical density of blowing soil during lunar landings indicates that the Surveyor III spacecraft was not exposed to the direct spray of the landing Lunar Module, but instead experienced only the fringes of the spray of soil. Had Surveyor III been exposed to the direct spray, the damage would have been orders of magnitude higher.

  10. Corrosion behavior of stainless steel weldments in physiological solutions

    NASA Astrophysics Data System (ADS)

    Farooq, A.; Azam, M.; Deen, K. M.

    2018-01-01

    In this study corrosion behavior of TIG welded 316L stainless steel plates in simulated biological solutions is investigated. The mechanical testing results showed slight decrease in ductility after welding and the fracture surface represented mixed cleavage and inclusions containing dimple structure. The heat affected and weld zone (WZ) demonstrated higher corrosion potential and relatively large pitting tendency than base metal (BM) in both Hank’s and Ringer’s solution. The formation of delta (δ) ferrite in the heat affected and WZ decreased the corrosion resistance as confirmed from potentiodynamic Tafel scans. The decrease in pitting resistance and lower protection tendency of the WZ compared to BM and heat affected zone was also quantified from the cyclic polarization trends.

  11. Hydrolase treatments help unravel the function of intervessel pits in xylem hydraulics.

    PubMed

    Dusotoit-Coucaud, Anaïs; Brunel, Nicole; Tixier, Aude; Cochard, Hervé; Herbette, Stéphane

    2014-03-01

    Intervessel pits are structures that play a key role in the efficiency and safety functions of xylem hydraulics. However, little is known about the components of the pit membrane (PM) and their role in hydraulic functions, especially in resistance to cavitation. We tested the effect of commercial chemicals including a cellulase, a hemicellulase, a pectolyase, a proteinase and DTT on xylem hydraulic properties: vulnerability to cavitation (VC) and conductance. The effects were tested on branch segments from Fagus sylvatica (where the effects on pit structure were analyzed using TEM) and Populus tremula. Cellulose hydrolysis resulted in a sharp increase in VC and a significant increase in conductance, related to complete breakdown of the PM. Pectin hydrolysis also induced a sharp increase in VC but with no effect on conductance or pit structure observable by TEM. The other treatments with hemicellulase, proteinase or DTT showed no effect. This study brings evidence that cellulose and pectins are critical components underpinning VC, and that PM components may play distinct roles in the xylem hydraulic safety and efficiency. © 2013 Scandinavian Plant Physiology Society.

  12. Study of modulation property to incident laser by surface micro-defects on KH2PO4 crystal

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Jun; Cheng, Jian; Li, Ming-Quan; Xiao, Yong

    2012-06-01

    KH2PO4 crystal is a crucial optical component of inertial confinement fusion. Modulation of an incident laser by surface micro-defects will induce the growth of surface damage, which largely restricts the enhancement of the laser induced damage threshold. The modulation of an incident laser by using different kinds of surface defects are simulated by employing the three-dimensional finite-difference time-domain method. The results indicate that after the modulation of surface defects, the light intensity distribution inside the crystal is badly distorted, with the light intensity enhanced symmetrically. The relations between modulation properties and defect geometries (e.g., width, morphology, and depth of defects) are quite different for different defects. The modulation action is most obvious when the width of surface defects reaches 1.064 μm. For defects with smooth morphology, such as spherical pits, the degree of modulation is the smallest and the light intensity distribution seems relatively uniform. The degree of modulation increases rapidly with the increase of the depth of surface defects and becomes stable when the depth reaches a critical value. The critical depth is 1.064 μm for cuboid pits and radial cracks, while for ellipsoidal pits the value depends on both the width and the length of the defects.

  13. Interference effects in laser-induced plasma emission from surface-bound metal micro-particles

    DOE PAGES

    Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M.; ...

    2017-04-19

    Here, the light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metalmore » micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.« less

  14. Interference effects in laser-induced plasma emission from surface-bound metal micro-particles.

    PubMed

    Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M; Matthews, Manyalibo J

    2017-05-01

    The light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metal micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.

  15. Identification of blast resistance genes for managing rice blast disease

    USDA-ARS?s Scientific Manuscript database

    Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases worldwide. In the present study, an international set of monogenic differentials carrying 24 major blast resistance (R) genes (Pia, Pib, Pii, Pik, Pik-h, Pik-m, Pik-p, Pik-s, Pish, Pit, Pita, Pita2,...

  16. In vitro corrosion resistance of Lotus-type porous Ni-free stainless steels.

    PubMed

    Alvarez, Kelly; Hyun, Soong-Keun; Fujimoto, Shinji; Nakajima, Hideo

    2008-11-01

    The corrosion behavior of three kinds of austenitic high nitrogen Lotus-type porous Ni-free stainless steels was examined in acellular simulated body fluid solutions and compared with type AISI 316L stainless steel. The corrosion resistance was evaluated by electrochemical techniques, the analysis of released metal ions was performed by inductively coupled plasma mass spectrometry (ICP-MS) and the cytotoxicity was investigated in a culture of murine osteoblasts cells. Total immunity to localized corrosion in simulated body fluid (SBF) solutions was exhibited by Lotus-type porous Ni-free stainless steels, while Lotus-type porous AISI 316L showed very low pitting corrosion resistance evidenced by pitting corrosion at a very low breakdown potential. Additionally, Lotus-type porous Ni-free stainless steels showed a quite low metal ion release in SBF solutions. Furthermore, cell culture studies showed that the fabricated materials were non-cytotoxic to mouse osteoblasts cell line. On the basis of these results, it can be concluded that the investigated alloys are biocompatible and corrosion resistant and a promising material for biomedical applications.

  17. Influence of Microstructure and Shot Peening Treatment on Corrosion Resistance of AISI F55-UNS S32760 Super Duplex Stainless Steel.

    PubMed

    Ciuffini, Andrea Francesco; Barella, Silvia; Peral Martínez, Luis Borja; Mapelli, Carlo; Fernández Pariente, Inés

    2018-06-19

    Shot peening is a surface process commonly used in the aeronautic and automotive industries to improve fatigue resistance. Shot peening is proven to be beneficial in the fatigue behavior of components, but rarely has its influence on wear and pitting corrosion resistance been evaluated. In this work, shot peening was performed on AISI F55-UNS S32760 super-duplex stainless steel samples previously submitted to various thermal treatments, to obtain different initial microstructures and properties. Samples have been characterized in terms of microstructure morphology, local chemical composition, microhardness of each constituent phase, and energy dissipation modes. The enhanced properties provided by shot peening has been evaluated through residual stress depth profiles and Full Width at Half Maximum (FWHM) using X-ray diffraction (XRD), surface hardness, surface roughness, and corrosion resistance through salt spray fog tests. The 1400 °C solution thermal treatment was identified as the optimum initial condition, which maximizes the advantages of the shot peening treatment, even pitting corrosion resistance. These results are related to the uniformity of austenite and ferrite in terms of microstructure morphology, micromechanical properties, and alloying elements distribution.

  18. Relationship between Microstructure and Corrosion Behavior of Martensitic High Nitrogen Stainless Steel 30Cr15Mo1N at Different Austenitizing Temperatures.

    PubMed

    Jiang, Zhouhua; Feng, Hao; Li, Huabing; Zhu, Hongchun; Zhang, Shucai; Zhang, Binbin; Han, Yu; Zhang, Tao; Xu, Dake

    2017-07-27

    The relationship between microstructure and corrosion behavior of martensitic high nitrogen stainless steel 30Cr15Mo1N at different austenitizing temperatures was investigated by microscopy observation, electrochemical measurement, X-ray photoelectron spectroscopy analysis and immersion testing. The results indicated that finer Cr-rich M₂N dispersed more homogeneously than coarse M 23 C₆, and the fractions of M 23 C₆ and M₂N both decreased with increasing austenitizing temperature. The Cr-depleted zone around M 23 C₆ was wider and its minimum Cr concentration was lower than M₂N. The metastable pits initiated preferentially around coarse M 23 C₆ which induced severer Cr-depletion, and the pit growth followed the power law. The increasing of austenitizing temperature induced fewer metastable pit initiation sites, more uniform element distribution and higher contents of Cr, Mo and N in the matrix. In addition, the passive film thickened and Cr₂O₃, Cr 3+ and CrN enriched with increasing austenitizing temperature, which enhanced the stability of the passive film and repassivation ability of pits. Therefore, as austenitizing temperature increased, the metastable and stable pitting potentials increased and pit growth rate decreased, revealing less susceptible metastable pit initiation, larger repassivation tendency and higher corrosion resistance. The determining factor of pitting potentials could be divided into three stages: dissolution of M 23 C₆ (below 1000 °C), dissolution of M₂N (from 1000 to 1050 °C) and existence of a few undissolved precipitates and non-metallic inclusions (above 1050 °C).

  19. Corrosion of Type 7075-T73 Aluminum in a 10% HNO3 + Fe2(SO4)3 Deoxidizer Solution

    NASA Astrophysics Data System (ADS)

    Savas, Terence P.; Earthman, James C.

    2009-03-01

    Localized corrosion damage in Type 7075-T73 aluminum was investigated for a HNO3 + Fe2(SO4)3 deoxidizer solution which is frequently used for surface pretreatment prior to anodizing. The corrosion damage was quantified in the time domain using the electrochemical noise resistance ( Rn) and in the frequency domain using the spectral noise impedance ( Rsn). The Rsn was derived from an equivalent electrical circuit model that represented the corrosion cell implemented in the present study. These data are correlated to scanning electron microscopy (SEM) examinations and corresponding statistical analysis based on digital image analysis of the corroded surfaces. Other data used to better understand the corrosion mechanisms include the open circuit potential (OCP) and coupling-current time records. Based on statistical analysis of the pit structures for 600 and 1200 s exposures, the best fit was achieved with a 3-paramater lognormal distribution. It was observed for the 1200 s exposure that a small population of pits continued to grow beyond a threshold critical size of 10 μm. In addition, significant grain boundary attack was observed after 1200 s exposure. These data are in good agreement with the electrochemical data. Specifically, the Rn was computed to be 295 and 96 Ω-cm2 for 600 and 1200 s exposures, respectively. The calculated value of Rsn, theoretically shown to be equal to Rn in the low frequency limit, was higher than Rn for a 1200 s exposure period. However, better agreement between the Rn and Rsn was found for frequencies above 0.01 Hz. Experimental results on the measurement performance for potassium chloride (KCl) saturated double-junction Ag/AgCl and single-junction Hg/Hg2Cl2 reference electrodes in the low-pH deoxidizer solution are also compared.

  20. Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity.

    PubMed

    Ogawa, Mikako; Tomita, Yusuke; Nakamura, Yuko; Lee, Min-Jung; Lee, Sunmin; Tomita, Saori; Nagaya, Tadanobu; Sato, Kazuhide; Yamauchi, Toyohiko; Iwai, Hidenao; Kumar, Abhishek; Haystead, Timothy; Shroff, Hari; Choyke, Peter L; Trepel, Jane B; Kobayashi, Hisataka

    2017-02-07

    Immunogenic cell death (ICD) is a form of cell death that activates an adaptive immune response against dead-cell-associated antigens. Cancer cells killed via ICD can elicit antitumor immunity. ICD is efficiently induced by near-infrared photo-immunotherapy (NIR-PIT) that selectively kills target-cells on which antibody-photoabsorber conjugates bind and are activated by NIR light exposure. Advanced live cell microscopies showed that NIR-PIT caused rapid and irreversible damage to the cell membrane function leading to swelling and bursting, releasing intracellular components due to the influx of water into the cell. The process also induces relocation of ICD bio markers including calreticulin, Hsp70 and Hsp90 to the cell surface and the rapid release of immunogenic signals including ATP and HMGB1 followed by maturation of immature dendritic cells. Thus, NIR-PIT is a therapy that kills tumor cells by ICD, eliciting a host immune response against tumor.

  1. Is the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex important for motor recovery in rats with photochemically induced cortical lesions?

    PubMed

    Takata, Kotaro; Yamauchi, Hideki; Tatsuno, Hisashi; Hashimoto, Keiji; Abo, Masahiro

    2006-01-01

    To determine whether the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex is important for motor recovery after brain damage in the photochemically initiated thrombosis (PIT) model. We induced PIT in the sensorimotor cortex in rats and examined the recovery of motor function using the beam-walking test. In 24 rats, the right sensorimotor cortex was lesioned after 2 days of training for the beam-walking test (group 1). After 10 days, PIT was induced in the left sensorimotor cortex. Eight additional rats (group 2) received 2 days training in beam walking, then underwent the beam-walking test to evaluate function. After 10 days of testing, the left sensorimotor cortex was lesioned and recovery was monitored by the beam-walking test for 8 days. In group 1 animals, left hindlimb function caused by a right sensorimotor cortex lesion recovered within 10 days after the operation. Right hindlimb function caused by the left-side lesion recovered within 6 days. In group 2, right hindlimb function caused by induction of the left-side lesion after a total of 12 days of beam-walking training and testing recovered within 6 days as with the double PIT model. The training effect may be relevant to reorganization and neuromodulation. Motor recovery patterns did not indicate whether motor recovery was dependent on the ipsilateral cortex surrounding the lesion or the cortex of the contralateral side. The results emphasize the need for selection of appropriate programs tailored to the area of cortical damage in order to enhance motor functional recovery in this model. Copyright 2006 S. Karger AG, Basel.

  2. Study of the Rock Mass Failure Process and Mechanisms During the Transformation from Open-Pit to Underground Mining Based on Microseismic Monitoring

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Yang, Tianhong; Bohnhoff, Marco; Zhang, Penghai; Yu, Qinglei; Zhou, Jingren; Liu, Feiyue

    2018-05-01

    To quantitatively understand the failure process and failure mechanism of a rock mass during the transformation from open-pit mining to underground mining, the Shirengou Iron Mine was selected as an engineering project case study. The study area was determined using the rock mass basic quality classification method and the kinematic analysis method. Based on the analysis of the variations in apparent stress and apparent volume over time, the rock mass failure process was analyzed. According to the recent research on the temporal and spatial change of microseismic events in location, energy, apparent stress, and displacement, the migration characteristics of rock mass damage were studied. A hybrid moment tensor inversion method was used to determine the rock mass fracture source mechanisms, the fracture orientations, and fracture scales. The fracture area can be divided into three zones: Zone A, Zone B, and Zone C. A statistical analysis of the orientation information of the fracture planes orientations was carried out, and four dominant fracture planes were obtained. Finally, the slip tendency analysis method was employed, and the unstable fracture planes were obtained. The results show: (1) The microseismic monitoring and hybrid moment tensor analysis can effectively analyze the failure process and failure mechanism of rock mass, (2) during the transformation from open-pit to underground mining, the failure type of rock mass is mainly shear failure and the tensile failure is mostly concentrated in the roof of goafs, and (3) the rock mass of the pit bottom and the upper of goaf No. 18 have the possibility of further damage.

  3. The Edge

    NASA Technical Reports Server (NTRS)

    2006-01-01

    6 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the edge (running diagonally from the lower left to the upper right) of a trough, which is part of a large pit crater complex in Noachis Terra. This type of trough forms through the collapse of surface materials into the subsurface, and often begins as a series of individual pit craters. Over time, continued collapse increases the diameter of individual pits until finally, adjacent pits merge to form a trough such as the one captured in this image. The deep shadowed area is caused in part by an overhang; layered rock beneath this overhang is less resistant to erosion, and thus has retreated tens of meters backward, beneath the overhang. A person could walk up inside this 'cave' formed by the overhanging layered material.

    Location near: 47.0oS, 355.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  4. Characterization of the corrosion resistance of several alloys to dilute biologically active solutions

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1990-01-01

    Sulfate reducing bacteria and acid producing bacteria/fungi detected in hygiene waters increased the corrosion rate in aluminum alloy. Biologically active media enhanced the formation of pits on metal coupons. Direct observation of gas evolved at the corrosion sample, coupled with scanning electron microscopy (SEM) and energy dispersive x-ray analysis of the corrosion products indicates that the corrosion rate is increased because the presence of bacteria favor the reduction of hydrogen as the cathodic reaction through the reaction of oxygen and water. SEM verifies the presence of microbes in a biofilm on the surface of corroding samples. The bacterial consortia are associated with anodic sites on the metal surface, aggressive pitting occurs adjacent to biofilms. Many pits are associated with triple points and inclusions in the aluminum alloy microstructure. Similar bacterial colonization was found on the stainless steel samples. Fourier transform Infrared Spectroscopy confirmed the presence of carbonyl groups in pitted areas of samples exposed to biologically active waters.

  5. Electrochemical Behavior of Al-B4C Metal Matrix Composites in NaCl Solution

    PubMed Central

    Han, Yu-Mei; Chen, X.-Grant

    2015-01-01

    Aluminum based metal matrix composites (MMCs) have received considerable attention in the automotive, aerospace and nuclear industries. One of the main challenges using Al-based MMCs is the influence of the reinforcement particles on the corrosion resistance. In the present study, the corrosion behavior of Al-B4C MMCs in a 3.5 wt.% NaCl solution were investigated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. Results indicated that the corrosion resistance of the composites decreased when increasing the B4C volume fraction. Al-B4C composite was susceptible to pitting corrosion and two types of pits were observed on the composite surface. The corrosion mechanism of the composite in the NaCl solution was primarily controlled by oxygen diffusion in the solution. In addition, the galvanic couples that formed between Al matrix and B4C particles could also be responsible for the lower corrosion resistance of the composites. PMID:28793574

  6. Corrosion behavior and pitting susceptibility of in-situ Ti-based metallic glass matrix composites in 3.5 wt.% NaCl solutions

    NASA Astrophysics Data System (ADS)

    Xu, K. K.; Lan, A. D.; Yang, H. J.; Han, P. D.; Qiao, J. W.

    2017-11-01

    The Ti62Zr12V13Cu4Be9, Ti58Zr16V10Cu4Be12, Ti46Zr20V12Cu5Be17, and Ti40Zr24V12Cu5Be19 metallic glass matrix composites (MGMCs) were prepared by copper mould casting. The corrosion resistance and the pitting susceptibility of Ti-based MGMCs were tested on their cross-sectional areas in 3.5 wt.% NaCl solutions by potentiodynamic polarization measurements. The composites with lower Ti contents (Ti40Zr24V12Cu5Be19 and Ti46Zr20V12Cu5Be17) exhibit a low resistance to the chloride induced pitting and local corrosion. The preferential dissolution of amorphous matrix is explained by the high chemical reactivity of beryllium element compared to that of stable dendrites and by the detected lower Ti and V contents. However, fairly good passivity was found in the composite with higher Ti contents (Ti62Zr12V13Cu4Be9). XPS measurements revealed that protective Ti-enriched oxide film was formed on the composite surface, additionally, lower content of beryllium element in amorphous matrix hinder the selective corrosion of amorphous matrix. The assessment of experimental observation leads to a proposed corrosion mechanism involving selective dissolution of amorphous matrix and chloride induced pitting process.

  7. Geospatial analysis of residential proximity to open-pit coal mining areas in relation to micronuclei frequency, particulate matter concentration, and elemental enrichment factors.

    PubMed

    Espitia-Pérez, Lyda; Arteaga-Pertuz, Marcia; Soto, José Salvador; Espitia-Pérez, Pedro; Salcedo-Arteaga, Shirley; Pastor-Sierra, Karina; Galeano-Páez, Claudia; Brango, Hugo; da Silva, Juliana; Henriques, João A P

    2018-09-01

    During coal surface mining, several activities such as drilling, blasting, loading, and transport produce large quantities of particulate matter (PM) that is directly emitted into the atmosphere. Occupational exposure to this PM has been associated with an increase of DNA damage, but there is a scarcity of data examining the impact of these industrial operations in cytogenetic endpoints frequency and cancer risk of potentially exposed surrounding populations. In this study, we used a Geographic Information Systems (GIS) approach and Inverse Distance Weighting (IDW) methods to perform a spatial and statistical analysis to explore whether exposure to PM 2.5 and PM 10 pollution, and additional factors, including the enrichment of the PM with inorganic elements, contribute to cytogenetic damage in residents living in proximity to an open-pit coal mining area. Results showed a spatial relationship between exposure to elevated concentrations of PM 2.5, PM 10 and micronuclei frequency in binucleated (MNBN) and mononucleated (MNMONO) cells. Active pits, disposal, and storage areas could be identified as the possible emission sources of combustion elements. Mining activities were also correlated with increased concentrations of highly enriched elements like S, Cu and Cr in the atmosphere, corroborating its role in the inorganic elements pollution around coal mines. Elements enriched in the PM 2.5 fraction contributed to increasing of MNBN but seems to be more related to increased MNMONO frequencies and DNA damage accumulated in vivo. The combined use of GIS and IDW methods could represent an important tool for monitoring potential cancer risk associated to dynamically distributed variables like the PM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Selective removal of composite sealants with near-UV laser pulses

    NASA Astrophysics Data System (ADS)

    Louie, Tiffany M.; Jones, Robert S.; Sarma, Anupama V.; Fried, Daniel

    2004-05-01

    It is often necessary to replace pit and fissure sealants and composite restorations. This task is complicated by the necessity for complete removal of the remaining composite to enable suitable adhesion of new composite. Previous studies have shown that lasers pulses from a frequency-tripled Nd:YAG laser (355-nm) can selectively remove residual composite after orthodontic bracket removal on enamel surfaces. UV laser light is preferentially absorbed by polymeric resins and the organic content of the tooth enamel. The objective of this study was to determine if such laser pulses are suitable for selective removal of the old composite from pit and fissure sealants and restorations without damaging surrounding sound tissues. Optical coherence tomography was used to acquire optical cross sections of the occlusal topography and peripheral tooth structure non-destructively before application of the sealants, after sealant application, and after sealant removal with 355-nm laser pulses with intensities ranging from 0-10 J/cm2. Thermocouples were used to monitor the temperature in the pulp chamber during composite removal under clinically relevant ablation rates, i.e., 30 Hz and 30 mJ per laser pulse. At an irradiation intensity of 1.3 J/cm2 pit and fissure sealants were completely removed without visible damage to the underlying enamel. At intensities above 1.5 J/cm2, the laser removes the resin layer while at the same time preferentially etching the surface of the enamel. Temperature excursions in the pulp chamber of extracted teeth was limited to less than 5°C if air-cooling was used during the rapid removal (1-2 min) of sealants, water-cooling was not needed. This is the first presentation of a method for the selective removal of composite restorative materials without damage to the underlying sound tooth structure.

  9. A study on chloride induced depassivation of Fe-P-C-Si and Fe-P-C-Si-N steels in simulated concrete pore solution

    NASA Astrophysics Data System (ADS)

    Mehta, Yashwant; Chaudhari, Gajanan P.; Dabhade, Vikram V.

    2018-03-01

    The corrosion behaviour of high phosphorous steels containing varying amounts of silicon and nitrogen was studied by potentiodynamic polarization, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) measurements. The morphology of a steel specimen tested in chloride containing concrete pore solution was studied using scanning electron microscope (SEM) and the elemental distribution at the pitting corrosion area was investigated using electron dispersive spectroscopy (EDS). The results showed that the capacitance increased and resistance declined with immersion time in Ca(OH)2 solution containing 0.1% chloride for plain carbon steel. The opposite was observed in the case of the high phosphorous steels. The potentiodynamic polarization and LPR results complement the EIS findings. Corrosion behaviour could be described with an equivalent circuit having two time constants. The creation, expansion and degradation of the passive layer were discussed with the help of the equivalent circuit elements. The SEM-EDS studies revealed that MnS inclusions at the surface could have a role in the initiation and growth of pits and that phosphorous was present at the pit free surface of the steel.

  10. Detecting gear tooth fracture in a high contact ratio face gear mesh

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Handschuh, Robert F.; Lewicki, David G.; Decker, Harry J.

    1995-01-01

    This paper summarized the results of a study in which three different vibration diagnostic methods were used to detect gear tooth fracture in a high contact ratio face gear mesh. The NASA spiral bevel gear fatigue test rig was used to produce unseeded fault, natural failures of four face gear specimens. During the fatigue tests, which were run to determine load capacity and primary failure mechanisms for face gears, vibration signals were monitored and recorded for gear diagnostic purposes. Gear tooth bending fatigue and surface pitting were the primary failure modes found in the tests. The damage ranged from partial tooth fracture on a single tooth in one test to heavy wear, severe pitting, and complete tooth fracture of several teeth on another test. Three gear fault detection techniques, FM4, NA4*, and NB4, were applied to the experimental data. These methods use the signal average in both the time and frequency domain. Method NA4* was able to conclusively detect the gear tooth fractures in three out of the four fatigue tests, along with gear tooth surface pitting and heavy wear. For multiple tooth fractures, all of the methods gave a clear indication of the damage. It was also found that due to the high contact ratio of the face gear mesh, single tooth fractures did not significantly affect the vibration signal, making this type of failure difficult to detect.

  11. Validation Testing of a Peridynamic Impact Damage Model Using NASA's Micro-Particle Gun

    NASA Technical Reports Server (NTRS)

    Baber, Forrest E.; Zelinski, Brian J.; Guven, Ibrahim; Gray, Perry

    2017-01-01

    Through a collaborative effort between the Virginia Commonwealth University and Raytheon, a peridynamic model for sand impact damage has been developed1-3. Model development has focused on simulating impacts of sand particles on ZnS traveling at velocities consistent with aircraft take-off and landing speeds. The model reproduces common features of impact damage including pit and radial cracks, and, under some conditions, lateral cracks. This study focuses on a preliminary validation exercise in which simulation results from the peridynamic model are compared to a limited experimental data set generated by NASA's recently developed micro-particle gun (MPG). The MPG facility measures the dimensions and incoming and rebound velocities of the impact particles. It also links each particle to a specific impact site and its associated damage. In this validation exercise parameters of the peridynamic model are adjusted to fit the experimentally observed pit diameter, average length of radial cracks and rebound velocities for 4 impacts of 300 µm glass beads on ZnS. Results indicate that a reasonable fit of these impact characteristics can be obtained by suitable adjustment of the peridynamic input parameters, demonstrating that the MPG can be used effectively as a validation tool for impact modeling and that the peridynamic sand impact model described herein possesses not only a qualitative but also a quantitative ability to simulate sand impact events.

  12. Relationship between Microstructure and Corrosion Behavior of Martensitic High Nitrogen Stainless Steel 30Cr15Mo1N at Different Austenitizing Temperatures

    PubMed Central

    Jiang, Zhouhua; Feng, Hao; Zhu, Hongchun; Zhang, Shucai; Zhang, Binbin; Han, Yu; Zhang, Tao; Xu, Dake

    2017-01-01

    The relationship between microstructure and corrosion behavior of martensitic high nitrogen stainless steel 30Cr15Mo1N at different austenitizing temperatures was investigated by microscopy observation, electrochemical measurement, X-ray photoelectron spectroscopy analysis and immersion testing. The results indicated that finer Cr-rich M2N dispersed more homogeneously than coarse M23C6, and the fractions of M23C6 and M2N both decreased with increasing austenitizing temperature. The Cr-depleted zone around M23C6 was wider and its minimum Cr concentration was lower than M2N. The metastable pits initiated preferentially around coarse M23C6 which induced severer Cr-depletion, and the pit growth followed the power law. The increasing of austenitizing temperature induced fewer metastable pit initiation sites, more uniform element distribution and higher contents of Cr, Mo and N in the matrix. In addition, the passive film thickened and Cr2O3, Cr3+ and CrN enriched with increasing austenitizing temperature, which enhanced the stability of the passive film and repassivation ability of pits. Therefore, as austenitizing temperature increased, the metastable and stable pitting potentials increased and pit growth rate decreased, revealing less susceptible metastable pit initiation, larger repassivation tendency and higher corrosion resistance. The determining factor of pitting potentials could be divided into three stages: dissolution of M23C6 (below 1000 °C), dissolution of M2N (from 1000 to 1050 °C) and existence of a few undissolved precipitates and non-metallic inclusions (above 1050 °C). PMID:28773221

  13. Influence of Sulfur Content on the Corrosion Resistance of 17-4PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Tavares, S. S. M.; Pardal, J. M.; Martins, T. R. B.; da Silva, M. R.

    2017-04-01

    According to specification standards, the basic chemical composition of steel 17-4PH for special and critical applications is 15-17% Cr, 3.0-5.0% Ni, 3.0-5.0% Cu, 0.07% C (max) and 0.15-0.45% (Nb + Ta) (wt.%). The maximum sulfur content is 0.030%. However, as it will be shown in this work, this maximum limit for sulfur is too high for services where high corrosion resistance is necessary. Two samples of 17-4PH steel with similar base compositions, but quite different sulfur contents (0.027% and 0.001%S), were compared with respect to pitting corrosion and sensitization. Both materials were heat treated according to commercial treatments A, H900, H1100, H1150 and H1150D (ASTM A-1082). Two corrosion tests were applied to compare the steels. The first one was the double-loop electrochemical potentiodynamic reactivation (DL-EPR) test in 0.25 M H2SO4 + 0.01 KSCN solution, which is used to measure the degree of sensitization. The second test was the anodic polarization in 3.5%NaCl solution, commonly used to evaluate the pitting corrosion resistance. Detailed microstructural characterization by magnetic measurements, light optical and scanning electron microscopy was performed. As main conclusion, despite that both steels have chemical compositions in accordance with the standards, the steel with higher sulfur was much more susceptible to pitting and sensitization.

  14. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOEpatents

    Hermes, Robert E.

    2002-01-01

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  15. Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses

    PubMed Central

    Sundaresan, Srividya; Kong, Jee-Hyun; Fang, Qing; Salles, Felipe T.; Wangsawihardja, Felix; Ricci, Anthony J.; Mustapha, Mirna

    2016-01-01

    Functional maturation of afferent synaptic connections to inner hair cells (IHCs) involves pruning of excess synapses formed during development, as well as the strengthening and survival of the retained synapses. These events take place during the thyroid hormone (TH)-critical period of cochlear development, which is in the perinatal period for mice and in the third trimester for humans. Here, we used the hypothyroid Snell dwarf mouse (Pit1dw) as a model to study the role of TH in afferent type I synaptic refinement and functional maturation. We observed defects in afferent synaptic pruning and delays in calcium channel clustering in the IHCs of Pit1dw mice. Nevertheless, calcium currents and capacitance reached near normal levels in Pit1dw IHCs by the age of onset of hearing, despite the excess number of retained synapses. We restored normal synaptic pruning in Pit1dw IHCs by supplementing with TH from postnatal day (P)3 to P8, establishing this window as being critical for TH action on this process. Afferent terminals of older Pit1dw IHCs showed evidence of excitotoxic damage accompanied by a concomitant reduction in the levels of the glial glutamate transporter, GLAST. Our results indicate that a lack of TH during a critical period of inner ear development causes defects in pruning and long-term homeostatic maintenance of afferent synapses. PMID:26386265

  16. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J.C.; Van Konynenburg, R.A.; McCright, R.D.

    1988-04-01

    Three iron- to nickel-based austenitic alloys (Types 304L and 316L stainless steels and Alloy 825) are being considered as candidate materials for the fabrication of high-level radioactive-waste containers. Waste will include fuel assemblies from reactors as well as high-level waste in borosilicate glass forms, and will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides in the repository will result in the generation of substantial heat and in fluences of gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including atmospheric oxidation; uniform aqueous phase corrosion; pitting; crevice corrosion;more » sensitization and intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This report is an analysis of data relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of the three austenitic candidate alloys. The candidates are compared in terms of their susceptibilities to these forms of corrosion. Although all three candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these types of localized corrosion (LC); such resistance is important because pits can penetrate the metal and serve as crack initiation sites. Both Types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented in Alloy 825 under comparable conditions. Gamma radiation has been found to enhance SCC in Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while the effects of microbiologically induced corrosion have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. 211 refs., 49 figs., 10 tabs.« less

  17. Autonomous execution of the Precision Immobilization Technique

    NASA Astrophysics Data System (ADS)

    Mascareñas, David D. L.; Stull, Christopher J.; Farrar, Charles R.

    2017-03-01

    Over the course of the last decade great advances have been made in autonomously driving cars. The technology has advanced to the point that driverless car technology is currently being tested on publicly accessed roadways. The introduction of these technologies onto publicly accessed roadways not only raises questions of safety, but also security. Autonomously driving cars are inherently cyber-physical systems and as such will have novel security vulnerabilities that couple both the cyber aspects of the vehicle including the on-board computing and any network data it makes use of, with the physical nature of the vehicle including its sensors, actuators, and the vehicle chassis. Widespread implementation of driverless car technology will require that both the cyber, as well as physical security concerns surrounding these vehicles are addressed. In this work, we specifically developed a control policy to autonomously execute the Precision Immobilization Technique, a.k.a. the PIT maneuver. The PIT maneuver was originally developed by law enforcement to end high-speed vehicular pursuits in a quasi-safe manner. However, there is still a risk of damage/roll-over to both the vehicle executing the PIT maneuver as well as to the vehicle subject to the PIT maneuver. In law enforcement applications, it would be preferable to execute the PIT maneuver using an autonomous vehicle, thus removing the danger to law-enforcement officers. Furthermore, it is entirely possible that unscrupulous individuals could inject code into an autonomously-driving car to use the PIT maneuver to immobilize other vehicles while maintaining anonymity. For these reasons it is useful to know how the PIT maneuver can be implemented on an autonomous car. In this work a simple control policy based on velocity pursuit was developed to autonomously execute the PIT maneuver using only a vision and range measurements that are both commonly collected by contemporary driverless cars. The ability of this control policy to execute the PIT maneuver was demonstrated both in simulation and experimentally. The results of this work can help inform the design of autonomous car with regards to ensuring their cyber-physical security.

  18. Characterization of rice blast resistance genes in rice germplasm with monogenic lines and pathogenicity assays

    USDA-ARS?s Scientific Manuscript database

    Resistance (R) genes have been effectively deployed in preventing rice crop losses due to the fungus Magnaporthe oryzae. In the present study, we studied the interaction between 24 monogenic lines carrying at least one major R gene, Pia, Pib, Pii, Pik, Pik-h, Pik-m, Pik-p, Pik-s, Pish, Pit, Pita, Pi...

  19. The effect of laser surface melting on microstructure and corrosion behavior of friction stir welded aluminum alloy 2219

    NASA Astrophysics Data System (ADS)

    Ma, Shengchong; Zhao, Yong; Zou, Jiasheng; Yan, Keng; Liu, Chuan

    2017-11-01

    This study aimed to explore the electrochemical properties and microstructure of friction stir welds to understand the correlation between their properties and processing. Friction stir welding is a promising solid-state joining process for high-strength aluminum alloys (AA). Although friction stir welding (FSW) eliminates the problems of fusion welding due to the fact that it is performed below Tm, it causes severe plastic deformation in the material. Some AA welded by FSW exhibit relatively poor corrosion resistance. In this research, the corrosion resistance of such welds was enhanced through laser surface melting. A friction stir weld of AA 2219 was laser melted. The melt depth and microstructure were observed using optical and scanning electron microscopy. The melt zone exhibited epitaxially grown columnar grains. The redistribution of elemental composition was analyzed using energy-dispersive spectroscopy. The anticorrosion properties of both laser-melted and original welds were studied in aqueous 3.5% NaCl solution using cyclic potentiodynamic polarization. The results indicated a noticeable increase in the pitting corrosion resistance after the laser treatment on the surface. The repassivation potential was nobler than the corrosion potential after the laser treatment, confirming that the resistance to pitting growth improved.

  20. Real-time electronic monitoring of a pitted and leaking gas gathering pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asperger, R.G.; Hewitt, P.G.

    1986-08-01

    Hydrogen patch, flush electrical resistance, and flush linear polarization proves wre used with flush coupons to monitor corrosion rates in a pitted and leaking sour gas gathering line. Four inhibitors were evaluated in stopping the leaks. Inhibitor residuals and the amount and ratio of water and condensate in the lines were measured at five locations along the line. The best inhibitor reduced reduced the pit-leak frequency by over a factor of 10. Inhibitor usage rate was optimized using the hydrogen patch current as a measure of the instantaneous corrosion rate. Improper pigging was identified as a cause of corrosion transients.more » This problem is discussed in relation to the pigging of pipelines in stratified flow where moving fluids are the carriers for continuously injected corrosion inhibitors.« less

  1. Localized corrosion behaviour in simulated human body fluids of commercial Ni-Ti orthodontic wires.

    PubMed

    Rondelli, G; Vicentini, B

    1999-04-01

    The corrosion performances in simulated human body fluids of commercial equiatomic Ni-Ti orthodontic wires having various shape and size and produced by different manufacturers were evaluated; for comparison purposes wires made of stainless steel and of cobalt-based alloy were also examined. Potentiodynamic tests in artificial saliva at 40 degrees C indicated a sufficient pitting resistance for the Ni-Ti wires, similar to that of cobalt-based alloy wire; the stainless steel wire, instead, exhibited low pitting potential. Potentiodynamic tests at 40 degrees C in isotonic saline solution (0.9% NaCl) showed, for Ni-Ti and stainless steel wires, pitting potential values in the range approximately 200-400 mV and approximately 350 mV versus SCE, respectively: consequently, according to literature data (Hoar TP, Mears DC. Proc Roy Soc A 1996;294:486-510), these materials should be considered potentially susceptible to pitting; only the cobalt-based alloy should be immune from pitting. The localized corrosion potentials determined in the same environment by the ASTM F746 test (approximately 0-200 mV and 130 mV versus SCE for Ni-Ti and stainless steel, respectively) pointed out that for these materials an even higher risk of localized corrosion. Slight differences in localized corrosion behaviour among the various Ni-Ti wires were detected.

  2. Maximum height in a conifer is associated with conflicting requirements for xylem design.

    PubMed

    Domec, Jean-Christophe; Lachenbruch, Barbara; Meinzer, Frederick C; Woodruff, David R; Warren, Jeffrey M; McCulloh, Katherine A

    2008-08-19

    Despite renewed interest in the nature of limitations on maximum tree height, the mechanisms governing ultimate and species-specific height limits are not yet understood, but they likely involve water transport dynamics. Tall trees experience increased risk of xylem embolism from air-seeding because tension in their water column increases with height because of path-length resistance and gravity. We used morphological measurements to estimate the hydraulic properties of the bordered pits between tracheids in Douglas-fir trees along a height gradient of 85 m. With increasing height, the xylem structural modifications that satisfied hydraulic requirements for avoidance of runaway embolism imposed increasing constraints on water transport efficiency. In the branches and trunks, the pit aperture diameter of tracheids decreases steadily with height, whereas torus diameter remains relatively constant. The resulting increase in the ratio of torus to pit aperture diameter allows the pits to withstand higher tensions before air-seeding but at the cost of reduced pit aperture conductance. Extrapolations of vertical trends for trunks and branches show that water transport across pits will approach zero at a heights of 109 m and 138 m, respectively, which is consistent with historic height records of 100-127 m for this species. Likewise, the twig water potential corresponding to the threshold for runaway embolism would be attained at a height of approximately 107 m. Our results suggest that the maximum height of Douglas-fir trees may be limited in part by the conflicting requirements for water transport and water column safety.

  3. Opportunities for collaborative phenotyping for disease resistance traits in a large beef cattle resource population.

    PubMed

    Thallman, R M; Kuehn, L A; Allan, M F; Bennett, G L; Koohmaraie, M

    2008-01-01

    The Germplasm Evaluation (GPE) Project at the US Meat Animal Research Center (USMARC) is planned to produce about 3,000 calves per year in support of the following objectives: identification and validation of genetic polymorphisms related to economically relevant traits (ERT), estimation of breed and heterosis effects among 16 breeds for ERT, and estimation of genetic correlations among ERT and physiological indicator traits (PIT). Opportunities exist for collaboration in the development and collection of PIT phenotypes for disease resistance. Other areas of potential collaboration include detailed diagnosis (identification of disease causing organisms, etc.) of treated animals, collaborative development of epidemiological statistical models that would extract more information from the records of diagnoses and treatments, or pharmacogenetics. Concentrating a variety of different phenotypes and research approaches on the same population makes each component much more valuable than it would be individually.

  4. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm.

    PubMed

    Xia, Jin; Yang, Chunguang; Xu, Dake; Sun, Da; Nan, Li; Sun, Ziqing; Li, Qi; Gu, Tingyue; Yang, Ke

    2015-01-01

    The microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel (2205 Cu-DSS) against an aerobic marine Pseudomonas aeruginosa biofilm was investigated. The electrochemical test results showed that Rp increased and icorr decreased sharply after long-term immersion in the inoculation medium, suggesting that 2205 Cu-DSS possessed excellent MIC resistance to the P. aeruginosa biofilm. Fluorescence microscope images showed that 2205 Cu-DSS possessed a strong antibacterial ability, and its antibacterial efficiency after one and seven days was 7.75% and 96.92%, respectively. The pit morphology comparison after 14 days between 2205 DSS and 2205 Cu-DSS demonstrated that the latter showed a considerably reduced maximum MIC pit depth compared with the former (1.44 μm vs 9.50 μm). The experimental results suggest that inhibition of the biofilm was caused by the copper ions released from the 2205 Cu-DSS, leading to its effective mitigation of MIC by P. aeruginosa.

  5. Loss of trabeculae by mechano-biological means may explain rapid bone loss in osteoporosis.

    PubMed

    Mulvihill, Brianne M; McNamara, Laoise M; Prendergast, Patrick J

    2008-10-06

    Osteoporosis is characterized by rapid and irreversible loss of trabecular bone tissue leading to increased bone fragility. In this study, we hypothesize two causes for rapid loss of bone trabeculae; firstly, the perforation of trabeculae is caused by osteoclasts resorbing a cavity so deep that it cannot be refilled and, secondly, the increases in bone tissue elastic modulus lead to increased propensity for trabecular perforation. These hypotheses were tested using an algorithm that was based on two premises: (i) bone remodelling is a turnover process that repairs damaged bone tissue by resorbing and returning it to a homeostatic strain level and (ii) osteoblast attachment is under biochemical control. It was found that a mechano-biological algorithm based on these premises can simulate the remodelling cycle in a trabecular strut where damaged bone is resorbed to form a pit that is subsequently refilled with new bone. Furthermore, the simulation predicts that there is a depth of resorption cavity deeper than which refilling of the resorption pits is impossible and perforation inevitably occurs. However, perforation does not occur by a single fracture event but by continual removal of microdamage after it forms beneath the resorption pit. The simulation also predicts that perforations would occur more easily in trabeculae that are more highly mineralized (stiffer). Since both increased osteoclast activation rates and increased mineralization have been measured in osteoporotic bone, either or both may contribute to the rapid loss of trabecular bone mass observed in osteoporotic patients.

  6. Fretting wear in titanium, Monel-400, and cobalt 25-percent-molybdenum using scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1972-01-01

    Damage scar volume measurements taken from like metal fretting pairs combined with scanning electron microscopy observations showed that three sequentially operating mechanisms result in the fretting of titanium, Monel-400, and cobalt - 25-percent molybdenum. Initially, adhesion and plastic deformation of the surface played an important role. This was followed after a few hundred cycles by a fatigue mechanism which produced spall-like pits in the damage scar. Finally, a combination of oxidation and abrasion by debris particles became most significant. Damage scar measurements made on several elemental metals after 600,000 fretting cycles suggested that the ratio of oxide hardness to metal hardness was a measure of the susceptibility of a metal to progressive damage by fretting.

  7. Patterns in Soil Electrical Resistivity Across Land Uses in the Calhoun Critical Zone Observatory Landscape

    NASA Astrophysics Data System (ADS)

    Markewitz, D.; Sutter, L.; Richter, D. D., Jr.

    2017-12-01

    Soil Electrical Resistivity Tomography (ERT) was measured across the Calhoun Critical Zone Observatory in relation to land use cover. ERT can help identify patterns in soil and saprolite physical attributes and moisture content through multiple meters. ERT data were generated with an AGI Supersting R8 with a 28 probe dipole-dipole array on a 1.5 meter spacing providing information through the upper 9 m. In Nov/Dec 2016 ten soil pits were dug to 3m depth in agricultural fields, pine forests, and hardwood forests across the CCZO and ERT measures were taken centered on these pits. ERT values ranged from 200 to 2500 Ohm-m. ERT patterns in the agricultural field demonstrated a limited resistivity gradient (200-700 Ohm-m) appearing moist throughout. In contrast, research areas under pine and hardwood forest had stronger resistivity gradients reflecting both moisture and physical attributes (i.e., texture or rock content). For example, research area 2 under pine had an area of higher resistivity that correlated with a band of saprolite that was readily visible in the exposed profile. In research area 7 and 8 that included both pine and hardwood forest resistivity gradients had contradictory patterns of high to low resistivity from top to bottom. In research area 7 resistivity was highest at the surface and decreased with depth, a common pattern when water table is at depth. In research area 8 the inverse was observed with low resistivity above and resistivity increasing with depth, a pattern observed in upper landscape positions on ridges with moist clay above dry saprolite. ERT patterns did reflect a large difference in the measured agricultural fields compared to forest while other difference appeared to reflect landscape position.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. B. Campbell

    The following site closure activities were performed at the 34 Corrective Action Sites (CASs) comprising Corrective Action Unit (CAU) 417 and are documented in this report: (1) No closure action was taken at 13 CASs (17 sites): 58-05-01,58-07-01,58-05-04, 58-09-05 (Mud Pits C and D only), 58-35-01,58-05-02,58-09-06 (Mud Pits A, B, C, and D), 58-10-06,58-19-01,58-35-02,58-44-04,58-05-04, and 58-09-03 (Mud Pit E only). (2) Housekeeping activities, collecting scrap materials, and transporting to approved landfill sites at the NTS were used to close seven CASs: 58-44-01,58-44-02,58-44-05, 58-98-03,58-98-01,58-98-02, and 58-98-04. (3) Two CASs (58-05-03 and 58-99-01) were closed by excavation and removal of USTs. (4)more » Two septic tanks (CASs 58-05-05 and 58-05-06) were closed by backfilling with clean fill. (5) Site posting with above-grade monuments and attached warning signs and land-use restrictions were used to close seven CASs (nine sites): 58-09-02,58-09-05 (Mud Pit E only), 58-09-06 (Mud Pit E only), 58-10-01,58-25-01,58-09-03 (Mud Pits A, B, and D), and 58-10-05. (6) Clean closure by excavation soil with TPH levels greater than the NDEP action level of 100 mg/kg and limited regrading was used to close five CASs: 58-10-03,58-44-06, 58-44-03,58-10-02, and 58-10-04. (7) Construction of engineered covers was used to close in place two CASs: 58-09-01 and 58-09-03 (Mud Pit C only). Following construction, a fence was constructed around each cover to prevent damage to the cover or intrusion by wildlife.« less

  9. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    NASA Astrophysics Data System (ADS)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang

    2017-04-01

    In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  10. Long term monitoring of water basin of an abandoned copper open pit mine

    NASA Astrophysics Data System (ADS)

    Nikolov, H.; Borisova, D.

    2012-04-01

    Nonoperating open pit mines, very often as a matter of fact abandoned, create serious ecological risk for the region of their location especially for the quality of the water since the rainfall fills the bottom of the pit forming water body having different depth. This water as a rule has very high concentration of the metals in it and is highly toxic. One example for such opencast, idle copper mine is Medet located in the central part of Bulgaria who was started for exploitation in 1964 and at that moment being the largest in Europe for production of copper concentrate. In the vicinity of it after autumn and spring rains there are many cases reported for water contamination by heavy metals such as arsenic, copper, cadmium in the rivers running close to this open pit mine. This justifies the need for long term and sustainable monitoring of the area of the water basin of this idle mine in order to estimate its acid drainage and imaging spectroscopy combined with is-situ investigations is proved to provide reliable results about the area of the water table. In the course of this study we have investigated historical data gathered by remote sensing which allowed us to make conclusions about the year behavior of this area. Our expectations are that the results of this research will help in the rehabilitation process of this idle mine and will provide the local authorities engaged in water quality monitoring with a tool to estimate the possible damage caused to the local rivers and springs. With this research we also would like to contribute to the fulfillment of the following EU Directives: Directive 2006/21/°C on the Management of Waste from the Extractive Industries and Directive 2004/35/ °C on Environmental Liability with regard to the Prevention and Remedying of Environmental Damage.

  11. An enhancement to the NA4 gear vibration diagnostic parameter

    NASA Technical Reports Server (NTRS)

    Decker, Harry J.; Handschuh, Robert F.; Zakrajsek, James J.

    1994-01-01

    A new vibration diagnostic parameter for health monitoring of gears, NA4*, is proposed and tested. A recently developed gear vibration diagnostic parameter NA4 outperformed other fault detection methods at indicating the start and initial progression of damage. However, in some cases, as the damage progressed, the sensitivity of the NA4 and FM4 parameters tended to decrease and no longer indicated damage. A new parameter, NA4* was developed by enhancing NA4 to improve the trending of the parameter. This allows for the indication of damage both at initiation and also as the damage progresses. The NA4* parameter was verified and compared to the NA4 and FM4 parameters using experimental data from single mesh spur and spiral bevel gear fatigue rigs. The primary failure mode for the test cases was naturally occurring tooth surface pitting. The NA4* parameter is shown to be a more robust indicator of damage.

  12. THE EFFECT OF PHOSPHATE ON THE MORPHOLOGICAL AND SPECTROSCOPIC PROPERTIES OF COPPER DRINKING WATER PIPES EXPERIENCING LOCALIZED CORROSION

    EPA Science Inventory

    Extensive localized or pitting corrosion of copper pipes used in household drinking-water plumbing can eventually lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. A large water system in Florida has been addressing a widespread pinhole...

  13. The Effect of Phosphate on the Morphological and Spectroscopic Properties of Copper Pipes Experiencing Localized Corrosion

    EPA Science Inventory

    Extensive localized or pitting corrosion of copper pipes used in household drinking-water plumbing can eventually lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. A growing number of problems have been associated with high pH and low ...

  14. 78 FR 40063 - Airworthiness Directives; Erickson Air-Crane Incorporated Helicopters (Type Certificate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... Sikorsky Model S-64E helicopters. The AD requires repetitive checks of the Blade Inspection Method (BIM... and check procedures for BIM blades installed on the Model S-64F helicopters. Several blade spars with a crack emanating from corrosion pits and other damage have been found because of BIM pressure...

  15. Cryotherapy by encapsulation-dehydration is effective for in vitro eradication of latent viruses from ‘Marubakaido’ apple rootstock

    USDA-ARS?s Scientific Manuscript database

    Apple stem pitting virus (ASPV), Apple chlorotic leaf spot virus (ACLSV) and Apple stem grooving virus (ASGV) are several major viral pathogens of apple trees, responsible for substantial damage to the world's apple industry. This study aimed to evaluate the effectiveness of encapsulation-dehydratio...

  16. Effect of component design in retrieved bipolar hip hemiarthroplasty systems.

    PubMed

    Hess, Matthew D; Baker, Erin A; Salisbury, Meagan R; Kaplan, Lige M; Greene, Ryan T; Greene, Perry W

    2013-09-01

    Primary articulation of bipolar hemiarthroplasty systems is at the femoral head-liner interface. The purpose of this study was to compare observed damage modes on 36 retrieved bipolar systems with implant, demographic, intraoperative, and radiographic data to elucidate the effects of component design, specifically locking mechanism, on clinical performance. Retrieved bipolar hip hemiarthroplasty systems of 3 different design types were obtained, disassembled, and evaluated macro- and microscopically for varying modes of wear, including abrasion, burnishing, embedding, scratching, and pitting. Clinical record review and radiographic analysis were performed by a senior orthopedic surgery resident. Average bipolar hip hemiarthroplasty system term of service was 46 months (range, 0.27-187 months). All devices contained wear debris captured within the articulating space between the femoral head and liner. In 31% of patients without infection, lucency was observed on immediate prerevision radiographs. The system with a leaf locking mechanism showed significantly increased radiographically observed osteolysis (P=.03) compared with a system with a stopper ring locking mechanism. In addition, implant design and observed damage modes, including pitting and third-body particle embedding, were significantly associated with radiographically observed osteolysis. Copyright 2013, SLACK Incorporated.

  17. Contrasting hydraulic architecture and function in deep and shallow roots of tree species from a semi-arid habitat

    PubMed Central

    Johnson, Daniel M.; Brodersen, Craig R.; Reed, Mary; Domec, Jean-Christophe; Jackson, Robert B.

    2014-01-01

    Background and Aims Despite the importance of vessels in angiosperm roots for plant water transport, there is little research on the microanatomy of woody plant roots. Vessels in roots can be interconnected networks or nearly solitary, with few vessel–vessel connections. Species with few connections are common in arid habitats, presumably to isolate embolisms. In this study, measurements were made of root vessel pit sizes, vessel air-seeding pressures, pit membrane thicknesses and the degree of vessel interconnectedness in deep (approx. 20 m) and shallow (<10 cm) roots of two co-occurring species, Sideroxylon lanuginosum and Quercus fusiformis. Methods Scanning electron microscopy was used to image pit dimensions and to measure the distance between connected vessels. The number of connected vessels in larger samples was determined by using high-resolution computed tomography and three-dimensional (3-D) image analysis. Individual vessel air-seeding pressures were measured using a microcapillary method. The thickness of pit membranes was measured using transmission electron microscopy. Key Results Vessel pit size varied across both species and rooting depths. Deep Q. fusiformis roots had the largest pits overall (>500 µm) and more large pits than either shallow Q. fusiformis roots or S. lanuginosum roots. Vessel air-seeding pressures were approximately four times greater in Q. fusiformis than in S. lanuginosum and 1·3–1·9 times greater in shallow roots than in deep roots. Sideroxylon lanuginosum had 34–44 % of its vessels interconnected, whereas Q. fusiformis only had 1–6 % of its vessels connected. Vessel air-seeding pressures were unrelated to pit membrane thickness but showed a positive relationship with vessel interconnectedness. Conclusions These data support the hypothesis that species with more vessel–vessel integration are often less resistant to embolism than species with isolated vessels. This study also highlights the usefulness of tomography for vessel network analysis and the important role of 3-D xylem organization in plant hydraulic function. PMID:24363350

  18. Alternative approach for cavitation damage study utilizing repetitive laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Fei; Wang, Jy-An John; Wang, Hong

    2010-01-01

    Cavitation is a common phenomenon in fluid systems that can lead to dramatic degradation of solid materials surface in contact with the cavitating media. Study of cavitation damage has great significance in many engineering fields. Current techniques for cavitation damage study either require large scale equipments or tend to introduce damages from other mechanisms. In this project, we utilized the cavitation phenomenon induced by laser optical breakdown and developed a prototype apparatus for cavitation damage study. In our approach, cavitation was generated by the repetitive pressure waves induced by high-power laser pulses. As proof of principal study, stainless steel andmore » aluminum samples were tested using the novel apparatus. Surface characterization via scanning electron microscopy revealed damages such as indentation and surface pitting, which were similar to those reported in literature using other state-of-the-art techniques. These preliminary results demonstrated the new device was capable of generating cavitation damages and could be used as an alternative method for cavitation damage study.« less

  19. Effect of Welding Process on Microstructure, Mechanical and Pitting Corrosion Behaviour of 2205 Duplex Stainless Steel Welds

    NASA Astrophysics Data System (ADS)

    Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    An attempt has been made to weld 2205 Duplex stainless steel of 6mm thick plate using conventional gas tungsten arc welding (GTAW) and activated gas tungsten arc welding (A- GTAW) process using silica powder as activated flux. Present work is aimed at studying the effect of welding process on depth of penetration, width of weld zone of 2205 duplex stainless steel. It also aims to observe the microstructural changes and its effect on mechanical properties and pitting corrosion resistance of 2205 duplex stainless steel welds. Metallography is done to observe the microstructural changes of the welds using image analyzer attached to the optical microscopy. Hardness studies, tensile and ductility bend tests were evaluated for mechanical properties. Potentio-dynamic polarization studies were carried out using a basic GillAC electro-chemical system in 3.5% NaCl solution to observe the pitting corrosion behaviour. Results of the present investigation established that increased depth of penetration and reduction of weld width in a single pass by activated GTAW with the application of SiO2 flux was observed when compared with conventional GTAW process. It may be attributed to the arc constriction effect. Microstructure of the weld zones for both the welds is observed to be having combination of austenite and delta ferrite. Grain boundary austenite (GBA) with Widmanstatten-type austenite (WA) of plate-like feature was nucleated from the grain boundaries in the weld zone of A-GTAW process. Mechanical properties are relatively low in activated GTAW process and are attributed to changes in microstructural morphology of austenite. Improved pitting corrosion resistance was observed for the welds made with A-GTAW process.

  20. Influence of non-smooth surface on tribological properties of glass fiber-epoxy resin composite sliding against stainless steel under natural seawater lubrication

    NASA Astrophysics Data System (ADS)

    Wu, Shaofeng; Gao, Dianrong; Liang, Yingna; Chen, Bo

    2015-11-01

    With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite (GF/EPR) coupled with stainless steel 316L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study.

  1. 10 CFR 1045.15 - Classification and declassification presumptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... criteria in § 1045.16 indicates otherwise: (1) Basic science: mathematics, chemistry, theoretical and experimental physics, engineering, materials science, biology and medicine; (2) Magnetic confinement fusion...); (5) Fact of use of safety features (e.g., insensitive high explosives, fire resistant pits) to lower...

  2. 10 CFR 1045.15 - Classification and declassification presumptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... criteria in § 1045.16 indicates otherwise: (1) Basic science: mathematics, chemistry, theoretical and experimental physics, engineering, materials science, biology and medicine; (2) Magnetic confinement fusion...); (5) Fact of use of safety features (e.g., insensitive high explosives, fire resistant pits) to lower...

  3. Exposing the Complex III Qo semiquinone radical

    PubMed Central

    Zhang, Haibo; Osyczka, Artur; Dutton, P. L.; Moser, Christopher C.

    2012-01-01

    Complex III Qo site semiquinone has been assigned pivotal roles in productive energy-conversion and destructive superoxide generation. After a 30 year search, a genetic heme bH knockout arrests this transient semiquinone EPR radical, revealing the natural engineering balance pitting energy-conserving, short-circuit minimizing, split electron transfer and catalytic speed against damaging oxygen reduction. PMID:17560537

  4. Chronic dysphagia and trigeminal anesthesia after trichloroethylene exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, W.H.; Partyka, E.K.

    1981-12-01

    A patient is described who inhaled trichloroethylene fumes while working in a closed underground pit. At the time of exposure he developed dysphagia, dysarthria and dyspnea. Assessment of his condition 11 years after the incident indicated major damage of cranial nerves, particularly the trigeminal, chronic involvement of the bulbar cranial nerves, and resultant esophageal and pharnygeal motility impairment. (JMT)

  5. The Effects of Alloy Chemistry on Localized Corrosion of Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Sapiro, David O.

    This study investigated localized corrosion behavior of austenitic stainless steels under stressed and unstressed conditions, as well as corrosion of metallic thin films. While austenitic stainless steels are widely used in corrosive environments, they are vulnerable to pitting and stress corrosion cracking (SCC), particularly in chloride-containing environments. The corrosion resistance of austenitic stainless steels is closely tied to the alloying elements chromium, nickel, and molybdenum. Polarization curves were measured for five commercially available austenitic stainless steels of varying chromium, nickel, and molybdenum content in 3.5 wt.% and 25 wt.% NaCl solutions. The alloys were also tested in tension at slow strain rates in air and in a chloride environment under different polarization conditions to explore the relationship between the extent of pitting corrosion and SCC over a range of alloy content and environment. The influence of alloy composition on corrosion resistance was found to be consistent with the pitting resistance equivalent number (PREN) under some conditions, but there were also conditions under which the model did not hold for certain commercial alloy compositions. Monotonic loading was used to generate SCC in in 300 series stainless steels, and it was possible to control the failure mode through adjusting environmental and polarization conditions. Metallic thin film systems of thickness 10-200 nm are being investigated for use as corrosion sensors and protective coatings, however the corrosion properties of ferrous thin films have not been widely studied. The effects of film thickness and substrate conductivity were examined using potentiodynamic polarization and scanning vibrating electrode technique (SVET) on iron thin films. Thicker films undergo more corrosion than thinner films in the same environment, though the corrosion mechanism is the same. Conductive substrates encourage general corrosion, similar to that of bulk iron, while insulating substrates supported only localized corrosion.

  6. Corrosion resistance of new beta type titanium alloy, Ti-29Nb-13Ta-4.6Zr in artificial saliva solution

    NASA Astrophysics Data System (ADS)

    Gunawarman; Giatmana, D. D.; Ilhamdi; Affi, J.; Fonna, S.; Niinomi, M.; Nakai, M.

    2018-05-01

    The corrosion resistance of Ti-29Nb-13Ta-4.6Zr (TNTZ) and Ti-6Al-4V alloys in oral cavity environment were studied by investigating its corrosion rate in artificial saliva solution. Corrosion measurement was conducted in 600 ml solution of Fusayama-Meyer artificial saliva containing 0.4g NaCl, 0.4g KCl, 0.795g CaCl2.2H2O, 0.69g NaH2PO4, and 1 g urea using a potentiostat controlled by a personal computer. The solution was maintained at pH 5.2 and controlled the temperature of 37°C to imitate oral cavity condition. After corrosion test, specimen surfaces were examined by SEM and EDX. The results show that the average corrosion rate of TNTZ and Ti-6Al-4V is 4,5×10-9 mmy-1 and 6,4×10-8 mmy-1, respectively, indicating that the corrosion resistance of TNTZ is slightly better than Ti-6Al-4V. This is suggested mainly due to the formation of multiple layers of Ti, Nb and Zr oxides in the surface of TNTZ. However, the formation of micro-pitting corrosion is more severe in TNTZ as compared to that of Ti-6Al-4V. The intense pitting corrosion in TNTZ is found strongly corresponded to its high impurities content and wide elemental segregation. It is recommended, therefore, a longer homogenizing process is required in TNTZ for reducing pitting corrosion attack. However, the details of corrosion mechanism are needed to be explored further.

  7. Electrochemical properties of 316L stainless steel with culturing L929 fibroblasts

    PubMed Central

    Hiromoto, Sachiko; Hanawa, Takao

    2005-01-01

    Potentiodynamic polarization and impedance tests were carried out on 316L stainless steel with culturing murine fibroblast L929 cells to elucidate the corrosion behaviour of 316L steel with L929 cells and to understand the electrochemical interface between 316L steel and cells, respectively. Potential step test was carried out on 316L steel with type I collagen coating and culturing L929 cells to compare the effects of collagen and L929 cells. The open-circuit potential of 316L steel slightly shifted in a negative manner and passive current density increased with cells, indicating a decrease in the protective ability of passive oxide film. The pitting potential decreased with cells, indicating a decrease in the pitting corrosion resistance. In addition, a decrease in diffusivity at the interface was indicated from the decrease in the cathodic current density and the increase in the diffusion resistance parameter in the impedance test. The anodic peak current in the potential step test decreased with cells and collagen. Consequently, the corrosion resistance of 316L steel decreases with L929 cells. In addition, collagen coating would provide an environment for anodic reaction similar to that with culturing cells. PMID:16849246

  8. Numerical predictions and experiments for optimizing hidden corrosion detection in aircraft structures using Lamb modes.

    PubMed

    Terrien, N; Royer, D; Lepoutre, F; Déom, A

    2007-06-01

    To increase the sensitivity of Lamb waves to hidden corrosion in aircraft structures, a preliminary step is to understand the phenomena governing this interaction. A hybrid model combining a finite element approach and a modal decomposition method is used to investigate the interaction of Lamb modes with corrosion pits. The finite element mesh is used to describe the region surrounding the corrosion pits while the modal decomposition method permits to determine the waves reflected and transmitted by the damaged area. Simulations make easier the interpretation of some parts of the measured waveform corresponding to superposition of waves diffracted by the corroded area. Numerical results permit to extract significant information from the transmitted waveform and thus to optimize the signal processing for the detection of corrosion at an early stage. Now, we are able to detect corrosion pits down to 80-mum depth distributed randomly on a square centimeter of an aluminum plate. Moreover, thickness variations present on aircraft structures can be discriminated from a slightly corroded area. Finally, using this experimental setup, aircraft structures have been tested.

  9. The effect of heat treatment on the corrosion resistance of 440C stainless steel in 20% HNO3 + 2.5% Na2Cr2O7 solution

    NASA Astrophysics Data System (ADS)

    Savas, Terence P.; Wang, Allen Yi-Lan; Earthman, James C.

    2003-04-01

    The effect of heat treatment on the corrosion resistance of 440C stainless steel was investigated in a 20% HNO3 + 2.5% Na2Cr2O7 solution using electrochemical noise (ECN) measurements, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) examinations. The noise resistance ( Rn), which has been found to be inversely related to the localized corrosion rate, was measured to be 5.7E + 08 Ω-cm2, 4.2E + 08 Ω-cm2, and 3.7E + 04 Ω-cm2 for the oil-quenched, air-quenched, and vacuum furnace cooled (VFC) samples, respectively, after 1200 s exposures. The Rn for all heat treat conditions stabilized within a range of 1.0E + 07 Ω-cm2 to 3.2E + 08 Ω-cm2 after 2 h exposures. The EIS response showed a polarization resistance ( R p) on the order of 6.6E + 04 Ω-cm2, 5.3E + 04 Ω-cm2, and 1.1E + 04 Ω-cm2 for the oil-quenched, air-quenched, and VFC samples, respectively, after 2 h exposures. The EIS data are in good agreement with ECN data and indicate that after longer exposures, general corrosion mechanisms dominate and the corrosion rates are comparable. SEM examinations of specimens subjected to 1200 s exposures revealed that severity of pitting and intergranular corrosion damage was consistent with trends in the Rn data. Specifically, the electrochemical noise data as well as SEM examinations of specimens revealed a higher localized corrosion resistance of the hardened specimens during the early stages of passivation. This greater resistance to localized corrosion can be attributed to an increased stability of the natural passive film resulting from a higher concentration of chromium atoms in solution for the martensite phase.

  10. Evaluation of candidate alloys for the construction of metal flex hoses in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Ontiveros, Cordelia

    1988-01-01

    Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. This study focused on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results of these tests, the most corrosion resistant alloys were found to be (in order) Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of those tested for this application.

  11. Evaluation of candidate alloys for the construction of metal flex hoses in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G., III; Ontiveros, Cordelia

    1988-01-01

    Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made out of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. Nineteen metal alloys were tested. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results, the most corrosion resistant alloys were found to be, in order, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of the alloys tested.

  12. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm

    PubMed Central

    Li, Huabing; Zhou, Enze; Zhang, Dawei; Xu, Dake; Xia, Jin; Yang, Chunguang; Feng, Hao; Jiang, Zhouhua; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2016-01-01

    Microbiologically Influenced Corrosion (MIC) is a serious problem in many industries because it causes huge economic losses. Due to its excellent resistance to chemical corrosion, 2707 hyper duplex stainless steel (2707 HDSS) has been used in the marine environment. However, its resistance to MIC was not experimentally proven. In this study, the MIC behavior of 2707 HDSS caused by the marine aerobe Pseudomonas aeruginosa was investigated. Electrochemical analyses demonstrated a positive shift in the corrosion potential and an increase in the corrosion current density in the presence of the P. aeruginosa biofilm in the 2216E medium. X-ray photoelectron spectroscopy (XPS) analysis results showed a decrease in Cr content on the coupon surface beneath the biofilm. The pit imaging analysis showed that the P. aeruginosa biofilm caused a largest pit depth of 0.69 μm in 14 days of incubation. Although this was quite small, it indicated that 2707 HDSS was not completely immune to MIC by the P. aeruginosa biofilm. PMID:26846970

  13. Wear and corrosion resistance of electroforming layer after WEDM for 7075 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Xu, Jinkai; Qiu, Rongxian; Lian, Zhongxu; Yu, Zhanjiang; Yu, Peng; Ren, Wanfei; Yu, Huadong

    2018-06-01

    In order to investigate the influence of the recast layer obtained by wire electrical discharge machining (WEDM) for 7075 aluminum alloy on the mechanical physical properties of the workpiece, we carried out research on the geometry parameters, microstructure, adhesion, wear resistance and corrosion resistance of the recast layer. The results show that the unit thermal power density decreases, the surface roughness Ra value increases, and the amount of the electric erosion craters and the micro/nano pits decrease with the increase of current and voltage. In the meantime, the thickness and hardness of the recast layer are increased, so the wear resistance and corrosion resistance are significantly improved. In addition, the surface hardness plays a major role in increasing wear resistance.

  14. In-vitro long term and electrochemical corrosion resistance of cold deformed nitrogen containing austenitic stainless steels in simulated body fluid.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2014-07-01

    This work was focused on the evaluation of the corrosion behavior of deformed (10% and 20% cold work) and annealed (at 1050 °C for 15 min followed by water quenching) Ni-free high nitrogen austenitic stainless steels (HNSs) in simulated body fluid at 37°C using weight loss method (long term), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Scanning electron microscopy (SEM) was used to understand the surface morphology of the alloys after polarization test. It has been observed that cold working had a significant influence on the corrosion resistant properties of these alloys. The weight loss and corrosion rates were observed to decrease with increasing degree of cold working and nitrogen content in the alloy. The corrosion resistance of the material is directly related to the resistance of the passive oxide film formed on its surface which was enhanced with cold working and nitrogen content. It was also observed that corrosion current densities were decreased and corrosion potentials were shifted to more positive values. By seeing pit morphology under SEM, shallower and smaller pits were associated with HNSs and cold worked samples, indicating that corrosion resistance increases with increasing nitrogen content and degree of cold deformation. X-ray diffraction profiles of annealed as well as deformed alloys were revealed and there is no evidence for formation of martensite or any other secondary phases. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Corrosion resistance of kolsterised austenitic 304 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abudaia, F. B., E-mail: fabudaia@yahoo.com; Khalil, E. O., E-mail: ekhalil9@yahoo.com; Esehiri, A. F., E-mail: Hope-eseheri@hotmail.co.uk

    2015-03-30

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtainedmore » for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe{sub 2}C{sub 5}. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.« less

  16. Structure-composition-property relationships in 5xxx series aluminum alloys

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.

    Al-Mg alloys are well suited for marine applications due to their low density, ease of fabrication, structural durability, and most notably resistance to corrosion. The purpose of this study is to investigate the effects of alloying additions, mechanical processing and heat treatments on the development of grain boundary phases that have an effect on intergranular corrosion (IGC). Cu, Zn, and Si modified compositions of AA5083 were produced that were subjected to a low and high degree of cold work and various heat treatments. ASTM G67 (NAMLT) intergranular corrosion testing and detailed microstructural characterization for various alloys was carried out. An optimal composition and processing condition that yielded the best intergranular corrosion resistant material was identified based on the ASTM G67 test screening. Further, the outstanding modified AA5083 was selected for further microstructural analysis. This particular alloy with has a magnesium level high enough to make it susceptible to intergranular corrosion is very resistant to IGC. It was found that development of the appropriate sub-structure with some Cu, Si and Zn resulted in a material very resistant to IGC. Formation of many sinks, provided by sub-boundaries, within microstructure is very beneficial since it produces a relatively uniform distribution of Mg in the grain interiors, and this can suppress sensitization of this alloy very successfully. This is a very promising rote for the production of high-strength, and corrosion resistant aluminum alloys. Additionally in this study, TEM sample preparation become very crucial step in grain boundary phase investigation. Focus Ion Beam (FIB) milling was used as a primary TEM sample preparation technique because it enables to extract the samples from desired and very specific locations without dissolving grain boundary phases as it was in conventional electropolishing method. However, other issues specifically relevant to FIB milling of aluminum alloys related to Ga accumulation were discovered, that produce significant microstructural artifacts. It is well known that liquid gallium can cause Liquid Metal Embitterment (LME) aluminum alloys, and gallium readily penetrates aluminum grain boundaries. Low energy Ar ion nanomilling is potentially quite effective at removing gallium from the external and internal surfaces of aluminum thin foils, but can still leave persistent artifacts. Al-Mg alloys can be also susceptible to localized corrosion such as pitting corrosion in the presence of chloride ions. In this study the phases responsible for this type of corrosion were identified. ASSET (ASTM G66) test was used to determine the influence of heat-treatment on pitting corrosion on various modified AA5083 alloys. Additionally, potentiodynamic polarization as well as potentiostatic measurements in conjunction with SEM analysis were carried out to obtain pitting potential (Epit) and to determine the location of metastable pit initiation, respectively.

  17. Oestrogens improve human pancreatic islet transplantation in a mouse model of insulin deficient diabetes.

    PubMed

    Liu, S; Kilic, G; Meyers, M S; Navarro, G; Wang, Y; Oberholzer, J; Mauvais-Jarvis, F

    2013-02-01

    Pancreatic islet transplantation (PIT) offers a physiological treatment for type 1 diabetes, but the failure of islet engraftment hinders its application. The female hormone 17β-oestradiol (E2) favours islet survival and stimulates angiogenesis, raising the possibility that E2 may enhance islet engraftment following PIT. To explore this hypothesis, we used an insulin-deficient model with xenotransplantation of a marginal dose of human islets in nude mice rendered diabetic with streptozotocin. This was followed by 4 weeks of treatment with vehicle, E2, the non-feminising oestrogen 17α-oestradiol (17α-E2), the oestrogen receptor (ER) α agonist propyl-pyrazole-triol (PPT), the ERβ agonist diarylpropionitrile (DPN) or the G protein-coupled oestrogen receptor (GPER) agonist G1. Treatment with E2, 17α-E2, PPT, DPN or G1 acutely improved blood glucose and eventually promoted islet engraftment, thus reversing diabetes. The effects of E2 were retained in the presence of immunosuppression and persisted after discontinuation of E2 treatment. E2 produced an acute decrease in graft hypoxic damage and suppressed beta cell apoptosis. E2 also acutely suppressed hyperglucagonaemia without altering insulin secretion, leading to normalisation of blood glucose. During PIT, E2 synergistic actions contribute to enhancing human islet-graft survival, revascularisation and functional mass. This study identifies E2 as a short-term treatment to improve PIT.

  18. Comparative Performance of Acoustic-tagged and PIT-tagged Juvenile Salmonids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hockersmith, Eric E.; Brown, Richard S.; Liedtke, Theresa L.

    2008-02-01

    Numerous research tools and technologies are currently being used to evaluate fish passage and survival to determine the impacts of the Federal Columbia River Power System (FCRPS) on endangered and threatened juvenile salmonids, including PIT tags, balloon tags, hydroacoustic evaluations, radio telemetry, and acoustic telemetry. Each has advantages and disadvantages, but options are restricted in some situations because of limited capabilities of a specific technology, lack of detection capability downstream, or availability of adequate numbers of fish. However, there remains concern about the comparative effects of the tag or the tagging procedure on fish performance. The recently developed Juvenile Salmonidmore » Acoustic Telemetry System (JSATS) acoustic transmitter is the smallest active acoustic tag currently available. The goal of this study was to determine whether fish tagged with the JSATS acoustic-telemetry tag can provide unbiased estimates of passage behavior and survival within the performance life of the tag. We conducted both field and laboratory studies to assess tag effects. For the field evaluation we released a total of 996 acoustic-tagged fish in conjunction with 21,026 PIT-tagged fish into the tailrace of Lower Granite Dam on 6 and 13 May. Travel times between release and downstream dams were not significantly different for the majority of the reaches between acoustic-tagged and PIT-tagged fish. In addition to the field evaluation, a series of laboratory experiments were conducted to determine if growth and survival of juvenile Chinook salmon surgically implanted with acoustic transmitters is different than untagged or PIT tagged juvenile Chinook salmon. Only yearling fish with integrated and non-integrated transmitters experienced mortalities, and these were low (<4.5%). Mortality among sub-yearling control and PIT-tag treatments ranged up to 7.7% while integrated and non-integrated treatments had slightly higher rates (up to 8.3% and 7.9% respectively). No acoustic transmitters were shed by yearling fish during the course of the 90 day study. Up to 7.8% of subyearling fish expelled transmitters. Tags were expelled from 5 to 63 days post-surgery. The average time to expulsion was 27 days; few fish expelled transmitters within 14 days of implantation or less. Histological results suggest that inflammation associated with implantation of an acoustic transmitter can produce fibrous tissue which can invade and possibly damage internal organs soon after implantation. Reactions severe enough to damage organs however, were limited to only ~20% of subyearling Chinook salmon, all of which were under 101mm and 12g at tagging. The infiltration of the fibrous tissue into organs was observed most often in fish held for 21 days and appeared to decrease in subsequent holding times.« less

  19. Measures of Relative Dentary Strength in Rancho La Brea Smilodon fatalis over Time

    PubMed Central

    Cervantes, Kassaundra S.; Meachen, Julie A.

    2016-01-01

    The late Pleistocene megafaunal extinction of approximately 12,000 years ago, included the demise of Smilodon fatalis, a hypercarnivore from the Rancho La Brea deposits, which has been studied across time by looking at different deposits or pits to determine morphological size and shape changes and trends during this time. To better understand functional aspects of these changes, this study focused on a measure of jaw strength over time, which can give an indication of morphological changes within the jaw that cannot be seen using surface morphometrics. By radiographing dentaries, cortical bone can be seen, which provides an estimate of resistance to bending forces while biting, and can be measured and used as an indicator of jaw strength. Measurements were taken at repeatable locations on the dentary of the depth of the cortical bone, and of a standardized measure of cortical bone, which allows for the comparison between different individuals. Specimens included those of five different pits ranging from about 37 Kybp to 13 Kybp (just before the extinction of S. fatalis). No significant difference was found in the depth of jaws at any of the measurement points from any of the pits. However, significant differences were found in both the actual thickness of cortical bone, and the standardized thickness of cortical bone at the lower P4 between pit 13 (which had the lowest amount of bone) and pit 61/67 (which had the highest). These conclusions support other studies that have shown that individuals in pit 13 were under physiological and perhaps dietary stress, which may be reflected in the deposition of cortical bone, while the opposite trend is seen in the individuals in pit 61/67. Our results further support findings suggesting Smilodon did not appear to be morphologically most vulnerable right before its extinction. PMID:27598462

  20. Chemical passivation as a method of improving the electrochemical corrosion resistance of Co-Cr-based dental alloy.

    PubMed

    Rylska, Dorota; Sokołowski, Grzegorz; Sokołowski, Jerzy; Łukomska-Szymańska, Monika

    2017-01-01

    The purpose of the study was to evaluate corrosion resistance of Wirobond C® alloy after chemical passivation treatment. The alloy surface undergone chemical passivation treatment in four different media. Corrosion studies were carried out by means of electrochemical methods in saline solution. Corrosion effects were determined using SEM. The greatest increase in the alloy polarization resistance was observed for passive layer produced in Na2SO4 solution with graphite. The same layer caused the highest increase in corrosion current. Generally speaking, the alloy passivation in Na2SO4 solution with graphite caused a substantial improvement of the corrosion resistance. The sample after passivation in Na2SO4 solution without graphite, contrary to others, lost its protective properties along with successive anodic polarization cycles. The alloy passivation in Na3PO4 solution with graphite was the only one that caused a decrease in the alloy corrosion properties. The SEM studies of all samples after chemical passivation revealed no pit corrosion - in contrast to the sample without any modification. Every successive polarization cycle in anodic direction of pure Wirobond C® alloy enhances corrosion resistance shifting corrosion potential in the positive direction and decreasing corrosion current value. The chemical passivation in solutions with low pH values decreases susceptibility to electrochemical corrosion of Co-Cr dental alloy. The best protection against corrosion was obtained after chemical passivation of Wirobond C® in Na2SO4 solution with graphite. Passivation with Na2SO4 in solution of high pH does not cause an increase in corrosion resistance of WIROBOND C. Passivation process increases alloy resistance to pit corrosion.

  1. Investigation of Bearing Fatigue Damage Life Prediction Using Oil Debris Monitoring

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Bolander, Nathan; Haynes, Chris; Toms, Allison M.

    2011-01-01

    Research was performed to determine if a diagnostic tool for detecting fatigue damage of helicopter tapered roller bearings can be used to determine remaining useful life (RUL). The taper roller bearings under study were installed on the tail gearbox (TGB) output shaft of UH- 60M helicopters, removed from the helicopters and subsequently installed in a bearing spall propagation test rig. The diagnostic tool was developed and evaluated experimentally by collecting oil debris data during spall progression tests on four bearings. During each test, data from an on-line, in-line, inductance type oil debris sensor was monitored and recorded for the occurrence of pitting damage. Results from the four bearings tested indicate that measuring the debris generated when a bearing outer race begins to spall can be used to indicate bearing damage progression and remaining bearing life.

  2. Synthesis of a fluorine-free polymeric water-repellent agent for creation of superhydrophobic fabrics

    NASA Astrophysics Data System (ADS)

    Shen, Keke; Yu, Miao; Li, Qianqian; Sun, Wei; Zhang, Xiting; Quan, Miao; Liu, Zhengtang; Shi, Suqing; Gong, Yongkuan

    2017-12-01

    A non-fluorinated polymeric alkylsilane, poly(isobutyl methacrylate-co-3-methacryloxypropyltrimethoxysilane) (PIT), is designed and synthesized to replace the commercial long-chain perfluoroalkylsilane (FAS) water-repellent agent. The superhydrophobic polyester fabrics are prepared by anchoring sol-gel derived silica nanoparticles onto alkali-treated polyester fabric surfaces and subsequently hydrophobilizing with PIT, using FAS as control. The surface chemical composition, surface morphology, wetting behavior and durability of the modified polyester fabrics are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectrophotometer (XPS) and video-based contact angle goniometer, respectively. The results show that a porous silica layer could be successfully fabricated onto the surface of polyester fabric through base-catalyzed sol-gel process with tetraethoxysilane (TEOS) as precursor, incorporating additional nanostructured roughness essential for superhydrophobicity. At the same time, such a silica primer layer could provide both secondary reactive moieties (-Si - OH) for the subsequent surface hydrophobization and acceptable adhesion at the silica-polyester fabric interface. When silica modified polyester fabric (SiO2@ fabric) is hydrophobized by PIT solution (10 mg/mL), excellent water-repellency could be obtained. The water contact angle is up to 154° and the sliding angle is about 5°. Compared with small molecule water-repellent agent FAS, PIT modified SiO2@ fabric exhibits greatly improved solvent resistance under ultra-sonication, abrasion and simulated laundering durability. The anti-stain property of PIT-modified SiO2@ fabric is also evaluated by using different aqueous colored solutions.

  3. The influence of surface microstructure and chemical composition on corrosion behaviour in fuel-grade bio-ethanol of low-alloy steel modified by plasma nitro-carburizing and post-oxidizing

    NASA Astrophysics Data System (ADS)

    Boniatti, Rosiana; Bandeira, Aline L.; Crespi, Ângela E.; Aguzzoli, Cesar; Baumvol, Israel J. R.; Figueroa, Carlos A.

    2013-09-01

    The interaction of bio-ethanol on steel surfaces modified by plasma-assisted diffusion technologies is studied for the first time. The influence of surface microstructure and chemical composition on corrosion behaviour of AISI 4140 low-alloy steel in fuel-grade bio-ethanol was investigated. The steel surfaces were modified by plasma nitro-carburizing followed plasma oxidizing. X-ray diffraction, scanning electron microscopy, optical microscopy, X-ray dispersive spectroscopy, and glow-discharge optical emission spectroscopy were used to characterize the modified surface before and after immersion tests in bio-ethanol up to 77 days. The main corrosion mechanism is pit formation. The pit density and pit size were measured in order to quantify the corrosion resistance which was found to depend more strongly on microstructure and morphology of the oxide layer than on its thickness. The best corrosion protection was observed for samples post-oxidized at 480 °C and 90 min.

  4. Influence of the post-weld surface treatment on the corrosion resistance of the duplex stainless steel 1.4062

    NASA Astrophysics Data System (ADS)

    Rosemann, P.; Müller, C.; Baumann, O.; Modersohn, W.; Halle, T.

    2017-03-01

    The duplex stainless steel 1.4062 (X2CrNiN22-2) is used as alternative material to austenitic stainless steels in the construction industry. The corrosion resistance of welded seams is influenced by the base material, the weld filler material, the welding process and also by the final surface treatment. The scale layer next to the weld seam can be removed by grinding, pickling, electro-polished or blasting depending on the application and the requested corrosion resistance. Blasted surfaces are often used in industrial practice due to the easier and cheaper manufacturing process compared to pickled or electro-polished surfaces. Furthermore blasting with corundum-grain is more effective than blasting with glass-beads which also lower the process costs. In recent years, stainless steel surfaces showed an unusually high susceptibility to pitting corrosion after grinding with corundum. For this reason, it is now also questioned critically whether the corrosion resistance is influenced by the applied blasting agent. This question was specifically investigated by comparing grinded, pickled, corundum-grain- and glass-bead-blasted welding seams. Results of the SEM analyses of the blasting agents and the blasted surfaces will be presented and correlated with the different performed corrosion tests (potential measurement, KorroPad-test and pitting potential) on welding seams with different surface treatments.

  5. Effects of resistance form on attachment strength of resin-retained castings.

    PubMed

    Wilkes, P W; Shillingburg, H T; Johnson, D L

    2000-01-01

    This study evaluated the effects of tooth preparation design on resistance to dislodgment of a resin-bonded fixed partial denture (RBFPD). The variations of tooth preparation tested included axial coverage, retentive grooves, and an occlusal rest. Patterns of the tooth preparation designs were prepared and cast in a base metal alloy. Retainer patterns were waxed to refractory casts of metal dies, cast, finished and then bonded to the dies. The complete assemblies were loaded to failure on an Instron mechanical testing machine, and analysis indicated that retainers with occlusal rests were the most resistant. Grooves provided no statistically significant increase in resistance to failure of the cement. Increased axial coverage did not increase resistance to dislodgment. Successful fixed partial dentures (FPDs) depend on cast retainers to resist displacement of the restoration during function. Introduction of resin-bonded restorations opened the possibility of FPDs with minimal reduction of abutments. Specific questions concerning long term success and tooth preparation designs were prominent concerns. The influence of resistance form on overall stability of a restoration was also of particular interest. Buonocore established the foundation for retention of composite resins to acid-pitted enamel. Rochette used this technology to bond perforated cast metal splints to periodontally compromised teeth. A mechanical interlock was created as composite resin engaged these perforations and sustained the cast splint to acid-etched enamel. Howe adapted this design for replacement of anterior teeth by adding porcelain to a metal ceramic framework and then bonding the framework to abutments without tooth preparations. The advantages of these procedures were their conservative nature, esthetics, and ease of rebonding after dislodgment. Livaditis and Thompson adapted the procedure proposed by Tanaka of corrosion-pitting the bonding surface of a base metal alloy. They increased the surface area to be bonded, eliminated the perforations to improve rigidity of the framework, and described tooth preparation modifications of the abutments. They suggested an occlusal rest, establishment of guide planes through axial reduction, and a proximal extension to the facial surface to resist lingual displacement. Simonson, et al., based their anterior tooth preparation design on the configuration suggested by Livaditis which included a slight chamfer finish line plus reduction of the lingual surface to provide a thicker metal framework. Barrack introduced an inlay type tooth preparation for the occlusal rest plus shallow vertical proximal grooves, and Meiers used grooves as an esthetic alternative to proximal extensions. Clinical studies and surveys have identified specific variables involved with success and failure, while in vitro studies have evaluated framework designs, bonding agents, and methods for pitting the metal surface. This study evaluated resistance of RBFPDs to dislodgment of different tooth preparation designs.

  6. Effect of post weld impact treatment (PWIT) on mechanical properties of spot-welded joint

    NASA Astrophysics Data System (ADS)

    Ghazali, F. A.; Salleh, Z.; Hyie, K. M.; Rozlin, N. M. Nik; Hamidi, S. H. Ahmad; Padzi, M. M.

    2017-12-01

    This paper focuses on the study of improvement for spot welding on the tensile shear and hardness by applying post weld impact treatment (PWIT) on the welded joint. The main objective of the research is to characterize and improve the mechanical properties of the joint. The method of PWIT used on the welded joint was Pneumatic Impact Treatment (PIT). The concept of PIT on spot welding is that it improves the mechanical properties of the welded zone. The working sample was undergoing a resistance spot welding of joining two similar in dimension and material of a steel plate before treated. The dimension of both plate are 110 mm × 45 mm × 1.2 mm and the material used were low carbon steel (LCS). All the welded samples were tested for its mechanical properties by performing the tensile-shear and hardness test. Tensile-shear test was conducted on the spot welded, both treated and as-welded samples using crosshead speed of 2 mm/min, while hardness test was performed using 1kgf load via Vickers hardness indenter. The effects of PIT on tensile-shear properties and hardness were evaluated and found that the implementation of PIT has increased tensile shear and hardness significantly.

  7. A new tape product for optical data storage

    NASA Technical Reports Server (NTRS)

    Larsen, T. L.; Woodard, F. E.; Pace, S. J.

    1993-01-01

    A new tape product has been developed for optical data storage. Laser data recording is based on hole or pit formation in a low melting metallic alloy system. The media structure, sputter deposition process, and media characteristics, including write sensitivity, error rates, wear resistance, and archival storage are discussed.

  8. Geological and geophysical investigation of water leakage from two micro-dam reservoirs: Implications for future site selection, northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Berhane, Gebremedhin; Amare, Mogos; Gebreyohannes, Tesfamichael; Walraevens, Kristine

    2017-05-01

    Water resources are essential to human development activities and to eradicate extreme poverty and hunger. Geological problems of two water harvesting Micro-Dam Reservoirs (MDRs) were evaluated from leakage perspectives in the northern part of Ethiopia, East Africa. Conventional geological mapping, discontinuity and weathering descriptions, test pits and geophysical methods were used to characterize the hydrogeological features of the MDRs. Vertical Electrical Sounding (VES) and Electrical Profiling (EP), were executed using Terrameter SAS (signal averaging system) 1000 manufactured by ABEM, Sweden, with Schlumberger and Wenner array configuration respectively. It was concluded that the foundations of both MDRs, except the right abutment for Adishuhu which is partly composed of dolerite, are pervious due to the presence of thin bedding planes, joints, weathered materials and fault. The presence of water in the downstream toe of the MDRs, at depressions, existing test pits and test pits excavated during the present study which lie within the seepage zone demarcated during surface geological mapping, correspond with the electrical resistivity study. The results of the electrical resistivity survey (EP and VES) were merged with the geological and structural mapping and the observation of seepage zones, for the delineation of weak zones responsible for leakage. Monitoring of the leakage (reservoir water and groundwater levels), both manually and using automatic divers, is recommended, along with monitoring of the stability of the embankments and the discharge or flow downstream of the MDRs.

  9. Report on Electrochemcial Corrosion Testing of 241-SY-102 Grab Samples from the 2012 Grab Sampling Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrwas, Richard B.; Lamothe, Margaret E.

    2013-05-30

    This report describes the results of the electrochemical testing performed on tank 241-SY-102 (SY-102) grab samples that were collected in support of corrosion mitigation. The objective of the work presented here was to determine corrosion resistance of tank SY-102 to the grab samples collected using electrochemical methods up to 50°C as well as to satisfy data quality objectives. Grab samples were collected at multiple elevations from Riser 003. The electrochemical corrosion testing was planned to consist of linear polarization resistance testing (LPR) and cyclic potentiodynamic polarization (CPP) testing at 50°C. The temperature would be lowered to 40 °C and themore » test repeated if the CPP curve indicated pitting corrosion at 50°C. Ifno pitting was indicated by the CPP curve, then a duplicate scan would be repeated at 50°C to confirm the first result. The testing would be complete if the duplicate CPP scan was consistent with the first. This report contains the CPP results of the testing of grab sample 2SY-12-03 and 2SY-12-03DUP composite sample tested under these conditions. There was no indication of pitting at 50°C, and the duplicate scan was in agreement with the first scan. Since no further testing was required, a third scan with a shorter rest time was performed and is present in this report.« less

  10. Characteristics of plasma scalds in multilayer dielectric films

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofeng; Zhao, Yuan'an; Li, Dawei; Hu, Guohang; Gao, Yanqi; Fan, Zhengxiu; Shao, Jianda

    2011-07-01

    Plasma scalding is one of the most typical laser damage morphologies induced by a nanosecond laser with a wavelength of 1053nm in HfO2/SiO2 multilayer films. In this paper, the characteristics of plasma scalds are systematically investigated with multiple methods. The scalding behaves as surface discoloration under a microscope. The shape is nearly circular when the laser incidence angle is close to normal incidence and is elliptical at oblique incidence. The nodular-ejection pit is in the center of the scalding region when the laser irradiates at the incidence angle close to normal incidence and in the right of the scalding region when the laser irradiates from left to right at oblique incidence. The maximum damage size of the scalding increases with laser energy. The edge of the scalding is high compared with the unirradiated film surface, and the region tending to the center is concave. Plasma scald is proved to be surface damage. The maximum depth of a scald increases with its size. Tiny pits of nanometer scale can be seen in the scalding film under a scanning electronic microscope at a higher magnification. The absorptions of the surface plasma scalds tend to be approximately the same as the lower absorptions of test sites without laser irradiation. Scalds do not grow during further illumination pulses until 65J/cm2. The formation of surface plasma scalding may be related to the occurrence of the laser-supported detonation wave.

  11. Part I. Corrosion studies of continuous alumina fiber reinforced aluminum-matrix composites. Part II. Galvanic corrosion between continuous alumina fiber reinforced aluminum-matrix composites and 4340 steel

    NASA Astrophysics Data System (ADS)

    Zhu, Jun

    Part I. The corrosion performance of continuous alumina fiber reinforced aluminum-matrix composites (CF-AMCs) was investigated in both the laboratory and field environments by comparing them with their respective monolithic matrix alloys, i.e., pure Al, A1-2wt%Cu T6, and Al 6061 T6. The corrosion initiation sites were identified by monitoring the changes in the surface morphology. Corrosion current densities and pH profiles at localized corrosion sites were measured using the scanning-vibrating electrode technique and the scanning ion-selective electrode technique, respectively. The corrosion damage of the materials immersed in various electrolytes, as well as those exposed in a humidity chamber and outdoor environments, was evaluated. Potentiodynamic polarization behavior was also studied. The corrosion initiation for the composites in 3.15 wt% NaCl occurred primarily around the Fe-rich intermetallic particles, which preferentially existed around the fiber/matrix interface on the composites. The corrosion initiation sites were also caused by physical damage (e.g., localized deformation) to the composite surface. At localized corrosion sites, the buildup of acidity was enhanced by the formation of micro-crevices resulting from fibers left in relief as the matrix corroded. The composites that were tested in exposure experiments exhibited higher corrosion rates than their monolithic alloys. The composites and their monolithic alloys were subjected to pitting corrosion when anodically polarized in the 3.15 wt% NaCl, while they passivated when anodically polarized in 0.5 M Na2SO4. The experimental results indicated that the composites exhibited inferior corrosion resistance compared to their monolithic matrix alloys. Part II. Galvanic corrosion studies were conducted on CF-AMCs coupled to 4340 steel since CF-AMCs have low density and excellent mechanical properties and are being considered as potential jacketing materials for reinforcing steel gun barrels. Coupled and uncoupled coupons were immersed in various electrolytes, exposed to a humidity chamber, and exposed at outdoor test sites. Results showed that the corrosion rates of the CF-AMCs increased, while those of the 4340 steel decreased after being coupled together, in most cases. Crevice corrosion was also observed in these exposure experiments. Zero resistance ammeter (ZRA) experiments were conducted to record the galvanic-corrosion rates and potentials of the couples. The CF-AMCs were found to serve as anodes, while the steel was cathodic, in most test conditions. Galvanic performance predicted by polarization experiments was in close agreement with the ZRA results. Key words. Aluminum, metal-matrix composites, alumina fiber, pitting corrosion, galvanic corrosion.

  12. Corrosion Fatigue

    DTIC Science & Technology

    1981-10-01

    particularly under conditions of cathodic polarization. Sul- fate ion , while less damaging under free corrosion conditions, is equally aggressive at...Editing and Reproduction Ltd Harford 11ouse, 7-9 Charlotte St, London, WIP 1HD I I - PREFACE Failure by fatigue and degradation by corrosion continue to...of halide ions . In the unstressed state, this degrada- tion may be manifested by localized corrosion such as pitting, crevice corrosion or ex

  13. Regeneration in windthrow areas in hemiboreal forests: the influence of microsite on the height growths of different tree species

    Treesearch

    F. Vodde; K. Jõgiste; L. Gruson; T. Ilisson; K. Köster; J.A. Stanturf

    2010-01-01

    Natural regeneration of windthrow areas is an important issue when planning forestry measures after forest disturbances. Seedling recruitment was investigated in storm-damaged hemiboreal mixed forests in eastern Estonia. The establishment and growth of seedlings from natural regeneration was registered for tree species in soil pits and in mounds of uprooted trees in...

  14. Biochemical and pharmacological characterization of Trimersurus malabaricus snake venom.

    PubMed

    Gowda, Raghavendra; Rajaiah, Rajesh; Angaswamy, Nataraj; Krishna, Sharath; Bannikuppe Sannanayak, Vishwanath

    2018-07-01

    Trimeresurus malabaricus is a venomous pit viper species endemic to southwestern part of India. In earlier reports, we have shown that envenomation by T. malabaricus venom leading to strong local tissue damage but the mechanism of action is not clearly revealed. Local tissue damage affected by T. malabaricus venom is of great importance since the poison has serious systemic effects including death in the case of multiple attacks. The present study details the major manifestations of T. malabaricus venom and the induction of local tissue damage, which suggests that most toxins are present in the form of hydrolytic enzymes. Hydrolytic activity of the enzymes was measured and the data indicated that protease and phospholipase A 2 activity was high which is responsible for local tissue damage. Furthermore, the role of hydrolytic enzymes in the induction of pathological events such as hemorrhage, edema, myotoxicity, and blood coagulation examination were assessed through animal models. © 2018 Wiley Periodicals, Inc.

  15. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution.

    PubMed

    Assis, S L; Rogero, S O; Antunes, R A; Padilha, A F; Costa, I

    2005-04-01

    In this study, the in vitro corrosion resistance of a superferritic stainless steel in naturally aerated Hank's solution at 37 degrees C has been determined to evaluate the steel for use as a biomaterial. The potentiodynamic polarization method and electrochemical impedance spectroscopy (EIS) were used to determine the corrosion resistance. The polarization results showed very low current densities at the corrosion potential and electrochemical behavior typical of passive metals. At potentials above 0.75 V (SCE), and up to that of the oxygen evolution reaction, the superferritic steel exhibited transpassive behavior followed by secondary passivation. The superferritic stainless steel exhibited high pitting resistance in Hank's solution. This steel did not reveal pits even after polarization to 3000 mV (SCE). The EIS results indicated high impedance values at low frequencies, supporting the results obtained from the polarization measurements. The results obtained for the superferritic steel have been compared with those of the Ti-13Nb-13Zr alloy and an austenitic stainless steel, as Ti alloys are well known for their high corrosion resistance and biocompatibility, and the austenitic stainless steel is widely used as an implant material. The cytotoxicity tests indicated that the superferritic steel, the austenitic steel, and the Ti-13Nb-13Zr alloy were not toxic. Based on corrosion resistance and cytotoxicity results, the superferritic stainless steel can be considered as a potential biomaterial. (c) 2005 Wiley Periodicals, Inc.

  16. Light intensification effect of trailing indent crack in fused silica subsurface

    NASA Astrophysics Data System (ADS)

    Zhang, ChunLai; Xu, Ming; Wang, ChunDong

    2015-03-01

    A finite-difference time-domain algorithm was applied to solve Maxwell's equations to obtain the redistribution of an electromagnetic plane wave in the vicinity of a trailing indent crack (TIC). The roles of five geometrical parameters playing in light intensification were calculated numerically under the irradiation of a 355-nm normal incidence laser. The results show that the light intensity enhancements between the nearest neighbor pits were remarkable, which may lead to damage. The calculated results reveal that the light intensity enhancement factor ( LIEF) can be up to 11.2 when TIC is on the rear-surface. With the increase of the length as well as the depth of pits, LIEF increased. Conversely, with the increase of the axis of pits, LIEF gradually declined to a stable status. It was observed that there exists an optima width or gap, which enables LIEF to be increased dramatically and then decreased gently. By comparison, results suggest that the worst cases occur when the depth and the length are both very large, especially if the width equals to 2 l and the gap equals the width. This work provides a recommended theoretical criterion for defect inspection and classification.

  17. Electrical Resistance of Ceramic Matrix Composites for Damage Detection and Life-Prediction

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory N.; Xia, Zhenhai

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection or inspection of a component during "down time". The correlation of damage with appropriate failure mechanism can then be applied to accurate life prediction for high-temperature ceramic matrix composites.

  18. Regolith properties under trees and the biomechanical effects caused by tree root systems as recognized by electrical resistivity tomography (ERT)

    NASA Astrophysics Data System (ADS)

    Pawlik, Łukasz; Kasprzak, Marek

    2018-01-01

    Following previous findings regarding the influence of vascular plants (mainly trees) on weathering, soil production and hillslope stability, in this study, we attempted to test a hypothesis regarding significant impacts of tree root systems on soil and regolith properties. Different types of impacts from tree root system (direct and indirect) are commonly gathered under the key term of "biomechanical effects". To add to the discussion of the biomechanical effects of trees, we used a non-invasive geophysical method, electrical resistivity tomography (ERT), to investigate the profiles of four different configurations at three study sites within the Polish section of the Outer Western Carpathians. At each site, one long profile (up to 189 m) of a large section of a hillslope and three short profiles (up to 19.5 m), that is, microsites occupied by trees or their remnants, were made. Short profiles included the tree root zone of a healthy large tree, the tree stump of a decaying tree and the pit-and-mound topography formed after a tree uprooting. The resistivity of regolith and bedrock presented on the long profiles and in comparison with the short profiles through the microsites it can be seen how tree roots impact soil and regolith properties and add to the complexity of the whole soil/regolith profile. Trees change soil and regolith properties directly through root channels and moisture migration and indirectly through the uprooting of trees and the formation of pit-and-mound topography. Within tree stump microsites, the impact of tree root systems, evaluated by a resistivity model, was smaller compared to microsites with living trees or those with pit-and-mound topography but was still visible even several decades after the trees were windbroken or cut down. The ERT method is highly useful for quick evaluation of the impact of tree root systems on soils and regolith. This method, in contrast to traditional soil analyses, offers a continuous dataset for the entire microsite and at depths not normally reached by standard soil excavations. The non-invasive nature of ERT studies is especially important for protected areas as it was shown in the present study.

  19. Aluminum Pitting Corrosion in Halide Media: A Quantum Model and Empirical Evidence

    NASA Astrophysics Data System (ADS)

    Lashgari, Mohsen; Kianpour, Effat; Mohammadi, Esmaeil

    2013-12-01

    The phenomenon of localized damage of aluminum oxide surface in the presence of halide anions was scrutinized at an atomistic level, through the cluster approach and density functional theory. The phenomenon was also investigated empirically through Tafel polarization plots and scanning electron microscopy. A distinct behavior witnessed in the fluoride medium was justified through the hard-soft acid-base principle. The atomistic investigations revealed the greatest potency for chloride entrance into the metal oxide lattice and rationalized to the severity of damage. The interaction of halide anions with the oxide surface causing some displacements on the position of Al atoms provides a mechanistic insight of the phenomenon.

  20. Martian environmental effects on solar cells and solar cell cover glasses

    NASA Technical Reports Server (NTRS)

    Wade, F. A.

    1971-01-01

    The results of a study concerned with the effects of the Martian environment on the performance of solar cells are given. The results indicate that the efficiency of a power system composed of solar cells will be greatly reduced when subjected to dust storms such as may occur on Mars. Two factors are responsible for this, (1) accumulation of dust on the protective covers, and (2) damage to covers by pitting, cracking, and chipping. It is recommended that this type of power system not be used on Mars landing vehicles. Experimental procedures are described and results are summarized and damage assessed.

  1. 7 CFR 58.422 - Brine tank.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Brine tank. 58.422 Section 58.422 Agriculture....422 Brine tank. The brine tank shall be constructed of suitable non-toxic material and should be resistant to corrosion, pitting or flaking. The brine tank shall be operated so as to assure the brine is...

  2. 7 CFR 58.422 - Brine tank.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Brine tank. 58.422 Section 58.422 Agriculture....422 Brine tank. The brine tank shall be constructed of suitable non-toxic material and should be resistant to corrosion, pitting or flaking. The brine tank shall be operated so as to assure the brine is...

  3. 7 CFR 58.422 - Brine tank.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Brine tank. 58.422 Section 58.422 Agriculture....422 Brine tank. The brine tank shall be constructed of suitable non-toxic material and should be resistant to corrosion, pitting or flaking. The brine tank shall be operated so as to assure the brine is...

  4. 7 CFR 58.422 - Brine tank.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Brine tank. 58.422 Section 58.422 Agriculture....422 Brine tank. The brine tank shall be constructed of suitable non-toxic material and should be resistant to corrosion, pitting or flaking. The brine tank shall be operated so as to assure the brine is...

  5. Strongly enhanced current densities in Sr0.6K0.4Fe2As2 + Sn superconducting tapes.

    PubMed

    Lin, He; Yao, Chao; Zhang, Xianping; Zhang, Haitao; Wang, Dongliang; Zhang, Qianjun; Ma, Yanwei; Awaji, Satoshi; Watanabe, Kazuo

    2014-03-25

    Improving transport current has been the primary topic for practical application of superconducting wires and tapes. However, the porous nature of powder-in-tube (PIT) processed iron-based tapes is one of the important reasons for low critical current density (Jc) values. In this work, the superconducting core density of ex-situ Sr0.6K0.4Fe2As2 + Sn tapes, prepared from optimized precursors, was significantly improved by employing a simple hot pressing as an alternative route for final sintering. The resulting samples exhibited optimal critical temperature (Tc), sharp resistive transition, small resistivity and high Vickers hardness (Hv) value. Consequently, the transport Jc reached excellent values of 5.1 × 10(4) A/cm(2) in 10 T and 4.3 × 10(4) A/cm(2) in 14 T at 4.2 K, respectively. Our tapes also exhibited high upper critical field Hc2 and almost field-independent Jc. These results clearly demonstrate that PIT pnictide wire conductors are very promising for high-field magnet applications.

  6. Strongly enhanced current densities in Sr0.6K0.4Fe2As2 + Sn superconducting tapes

    PubMed Central

    Lin, He; Yao, Chao; Zhang, Xianping; Zhang, Haitao; Wang, Dongliang; Zhang, Qianjun; Ma, Yanwei; Awaji, Satoshi; Watanabe, Kazuo

    2014-01-01

    Improving transport current has been the primary topic for practical application of superconducting wires and tapes. However, the porous nature of powder-in-tube (PIT) processed iron-based tapes is one of the important reasons for low critical current density (Jc) values. In this work, the superconducting core density of ex-situ Sr0.6K0.4Fe2As2 + Sn tapes, prepared from optimized precursors, was significantly improved by employing a simple hot pressing as an alternative route for final sintering. The resulting samples exhibited optimal critical temperature (Tc), sharp resistive transition, small resistivity and high Vickers hardness (Hv) value. Consequently, the transport Jc reached excellent values of 5.1 × 104 A/cm2 in 10 T and 4.3 × 104 A/cm2 in 14 T at 4.2 K, respectively. Our tapes also exhibited high upper critical field Hc2 and almost field-independent Jc. These results clearly demonstrate that PIT pnictide wire conductors are very promising for high-field magnet applications. PMID:24663054

  7. Dry texturing of solar cells

    DOEpatents

    Sopori, B.L.

    1994-10-25

    A textured backside of a semiconductor device for increasing light scattering and absorption in a semiconductor substrate is accomplished by applying infrared radiation to the front side of a semiconductor substrate that has a metal layer deposited on its backside in a time-energy profile that first produces pits in the backside surface and then produces a thin, highly reflective, low resistivity, epitaxial alloy layer over the entire area of the interface between the semiconductor substrate and a metal contact layer. The time-energy profile includes ramping up to a first energy level and holding for a period of time to create the desired pit size and density and then rapidly increasing the energy to a second level in which the entire interface area is melted and alloyed quickly. After holding the second energy level for a sufficient time to develop the thin alloy layer over the entire interface area, the energy is ramped down to allow epitaxial crystal growth in the alloy layer. The result is a textured backside on an optically reflective, low resistivity alloy interface between the semiconductor substrate and the metal electrical contact layer. 9 figs.

  8. Dry texturing of solar cells

    DOEpatents

    Sopori, Bhushan L.

    1994-01-01

    A textured backside of a semiconductor device for increasing light scattering and absorption in a semiconductor substrate is accomplished by applying infrared radiation to the front side of a semiconductor substrate that has a metal layer deposited on its backside in a time-energy profile that first produces pits in the backside surface and then produces a thin, highly reflective, low resistivity, epitaxial alloy layer over the entire area of the interface between the semiconductor substrate and a metal contact layer. The time-energy profile includes ramping up to a first energy level and holding for a period of time to create the desired pit size and density and then rapidly increasing the energy to a second level in which the entire interface area is melted and alloyed quickly. After holding the second energy level for a sufficient time to develop the thin alloy layer over the entire interface area, the energy is ramped down to allow epitaxial crystal growth in the alloy layer. The result is a textured backside an optically reflective, low resistivity alloy interface between the semiconductor substrate and the metal electrical contact layer.

  9. Strongly enhanced current densities in Sr0.6K0.4Fe2As2 + Sn superconducting tapes

    NASA Astrophysics Data System (ADS)

    Lin, He; Yao, Chao; Zhang, Xianping; Zhang, Haitao; Wang, Dongliang; Zhang, Qianjun; Ma, Yanwei; Awaji, Satoshi; Watanabe, Kazuo

    2014-03-01

    Improving transport current has been the primary topic for practical application of superconducting wires and tapes. However, the porous nature of powder-in-tube (PIT) processed iron-based tapes is one of the important reasons for low critical current density (Jc) values. In this work, the superconducting core density of ex-situ Sr0.6K0.4Fe2As2 + Sn tapes, prepared from optimized precursors, was significantly improved by employing a simple hot pressing as an alternative route for final sintering. The resulting samples exhibited optimal critical temperature (Tc), sharp resistive transition, small resistivity and high Vickers hardness (Hv) value. Consequently, the transport Jc reached excellent values of 5.1 × 104 A/cm2 in 10 T and 4.3 × 104 A/cm2 in 14 T at 4.2 K, respectively. Our tapes also exhibited high upper critical field Hc2 and almost field-independent Jc. These results clearly demonstrate that PIT pnictide wire conductors are very promising for high-field magnet applications.

  10. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm.

    PubMed

    Xu, Dake; Xia, Jin; Zhou, Enze; Zhang, Dawei; Li, Huabing; Yang, Chunguang; Li, Qi; Lin, Hai; Li, Xiaogang; Yang, Ke

    2017-02-01

    Microbiologically influenced corrosion (MIC) of 2205 duplex stainless steel (DSS) in the presence of Pseudomonas aeruginosa was investigated through electrochemical and surface analyses. The electrochemical results showed that P. aeruginosa significantly reduced the corrosion resistance of 2205 DSS. Confocal laser scanning microscopy (CLSM) images showed that the depths of the largest pits on 2205 DSS with and without P. aeruginosa were 14.0 and 4.9μm, respectively, indicating that the pitting corrosion was accelerated by P. aeruginosa. X-ray photoelectron spectroscopy (XPS) results revealed that CrO 3 and CrN formed on the 2205 DSS surface in the presence of P. aeruginosa. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Corrosion behaviour of Nitinol alloy coated with alkylsilanes and polypyrrole.

    PubMed

    Flamini, D O; Saidman, S B

    2014-11-01

    Nitinol (equiatomic Ni and Ti alloy (NiTi)) substrate was modified using a coating system formed by a self-assembled film of alkylsilane compounds (propyltrichlorosilane (C3H7SiCl3) or octadecyltrichlorosilane (C18H37SiCl3)) and polypyrrole (PPy) doped with sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol OT or AOT). The combination of alkylsilanes and the presence of a voluminous molecule like AOT entrapped into the PPy films improve the pitting corrosion resistance of the substrate in chloride solution. The best performance was achieved with the longest alkylsilane chains, where the PPy film remains adhered to the underlying coating after a pitting corrosion test. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    DOEpatents

    Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Popovich, Dragan; Halloran, Joseph P.; Fulcher, Michael L.; Cook, Randy C.

    2005-12-13

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  13. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    DOEpatents

    Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Popovich, Dragan; Halloran, Joseph P.; Fulcher, Michael L.; Cook, Randy C.

    2009-04-14

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  14. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    DOEpatents

    Rigali, Mark J.; Sutaria, Manish P.; Mulligan, Anthony C.; Popovich, Dragan

    2004-03-23

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  15. Fluorides and Other Preventive Strategies for Tooth Decay.

    PubMed

    Horst, Jeremy A; Tanzer, Jason M; Milgrom, Peter M

    2018-04-01

    We focus on scalable public health interventions that prevent and delay the development of caries and enhance resistance to dental caries lesions. These interventions should occur throughout the life cycle, and need to be age appropriate. Mitigating disease transmission and enhancing resistance are achieved through use of various fluorides, sugar substitutes, mechanical barriers such as pit-and-fissure sealants, and antimicrobials. A key aspect is counseling and other behavioral interventions that are designed to promote use of disease transmission-inhibiting and tooth resistance-enhancing agents. Advocacy for public water fluoridation and sugar taxes is an appropriate dental public health activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The effects of RE and Si on the microstructure and corrosion resistance of Zn-6Al-3Mg hot dip coating

    NASA Astrophysics Data System (ADS)

    Li, Shiwei; Gao, Bo; Yin, Shaohua; Tu, Ganfeng; Zhu, Guanglin; Sun, Shuchen; Zhu, Xiaoping

    2015-12-01

    The effects of Si and RE on the microstructure and corrosion resistance of Zn-6Al-3Mg coating (ZAM) have been investigated. Surface morphology observations of the coating and corrosion products reveal that the additions of Si and rare earth metals (RES) improve the microstructural homogeneity of ZAMSR coating and stability of corrosion products formed on ZAMSR coating. Moreover, only uniform corrosion occurs in ZAMSR coating during the corrosion test, while intergranular corrosion and pitting occur in ZAM. As a result, the corrosion resistance of ZAM coating is improved by the additions of Si and RES.

  17. Durable and mass producible polymer surface structures with different combinations of micro-micro hierarchy

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.

    2016-01-01

    Extensive studies have been performed with the aim of fabricating hierarchical surface structures inspired by nature. However, synthetic hierarchical structures have to sacrifice mechanical resistance to functionality by introducing finer scaled structures. Therefore, surfaces are less durable. Surface micro-micro hierarchy has been proven to be effective in replacing micro-nano hierarchy in the sense of superhydrophobicity. However, less attention has been paid to the combined micro-micro hierarchies with surface pillars and pits incorporated together. The fabrication of this type of hierarchy may be less straightforward, with the possibility of being a complicated multi-step process. In this study, we present a simple yet mass producible fabrication method for hierarchical structures with different combinations of surface pillars and pits. The fabrication was based on only one aluminum (Al) mold with sequential mountings. The fabricated structures exhibit high mechanical durability and structural stabilities with a normal load up to 100 kg. In addition, the theoretical estimation of the wetting state shows a promising way of stabilizing a water droplet on the surface pit structures with a more stable Cassie-Baxter state.

  18. Single crystal silicon filaments fabricated in SOI: A potential IR source for a microfabricated photometric CO2 sensor

    NASA Technical Reports Server (NTRS)

    Tu, Juliana; Smith, Rosemary L.

    1995-01-01

    The objective of this project was to design, fabricate, and test single crystal silicon filaments as potential black body IR sources for a spectrophotometric CO2 sensing microsystem. The design and fabrication of the silicon-on-insulator (SOI) filaments are summarized and figures showing the composite layout of the filament die (which contains four filaments of different lengths -- 500 microns, 1 mm, 1.5 mm and 2 mm -- and equal widths of 15 microns) are presented. The composite includes four mask layers: (1) silicon - defines the filament dimensions and contact pads; (2) release pit - defines the oxide removed from under the filament and hence, the length of the released filament; (3) Pyrex pit - defines the pit etched in the Pyrex cap (not used); and (4) metal - defines a metal pattern on the contact pads or used as a contact hole etch. I/V characteristics testing of the fabricated SOI filaments is described along with the nitride-coating procedures carried out to prevent oxidation and resistance instability.

  19. Evaluating the improvement of corrosion residual strength by adding 1.0 wt.% yttrium into an AZ91D magnesium alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qiang; Liu Yaohui, E-mail: liuyaohui2005@yahoo.com; Fang Shijie

    2010-06-15

    The influence of yttrium on the corrosion residual strength of an AZ91D magnesium alloy was investigated detailedly. Scanning electron microscope was employed to analyze the microstructure and the fractography of the studied alloys. The microstructure of AZ91D magnesium alloy is remarkably refined due to the addition of yttrium. The electrochemical potentiodynamic polarization curve of the studied alloy was performed with a CHI 660b electrochemical station in the three-electrode system. The result reveals that yttrium significantly promotes the overall corrosion resistance of AZ91D magnesium alloy by suppressing the cathodic reaction in corrosion process. However, the nucleation and propagation of corrosion pitsmore » on the surface of the 1.0 wt.% Y modified AZ91D magnesium alloy indicate that pitting corrosion still emerges after the addition of yttrium. Furthermore, stress concentration caused by corrosion pits should be responsible for the drop of corrosion residual strength although the addition of yttrium remarkably weakens the effect of stress concentration at the tip of corrosion pits in loading process.« less

  20. Stone orientation affects the mechanism of failure in artificial kidney stones subject to shock waves

    NASA Astrophysics Data System (ADS)

    van Cauwelaert, Javier; Cleveland, Robin O.

    2003-10-01

    Micro computed tomography (CT) imaging was used to follow the progressive development of cracks in artificial kidney stones. The artificial stones were made from U30 cement with a cylindrical shape (6.5 mm diameter and 8.5 mm long). The stones were held within a polypropylene vial in one of three orientations: vertical, horizontal, and angled at 45 deg. The stones were treated with an electromagnetic lithotripter and the initiation and growth of cracks was observed using microCT. The images show that the orientation of the stones with respect to the shock changes the dominant mechanism for fragmentation. Vertical stones developed a spall-like crack near the distal surface, which propagated from the surface to the interior of the stone. Initiation of a secondary spall-like crack was observed proximal to the first crack. Little surface damage was observed. Horizontal stones presented pitting in the proximal surface and erosion in lateral faces, indicating the action of cavitation. Angled stones presented both spall-like fracture in either the leading or the distal corners and surface damage (pitting) in the proximal surface. Experiments are being performed to follow the development of cracks in human kidney stones. [Work supported by the Whitaker Foundation.

  1. Corrosion Performance of Inconel 625 in High Sulphate Content

    NASA Astrophysics Data System (ADS)

    Ismail, Azzura

    2016-05-01

    Inconel 625 (UNS N06625) is a type of nickel-chromium-molybdenum alloy with excellent corrosion resistance in a wide range of corrosive media, being especially resistant to pitting and crevice corrosion. However, in aggressive environment, Inconel 625 will suffer corrosion attack like other metals. This research compared the corrosion performance of Inconel 625 when exposed to higher sulphate content compared to real seawater. The results reveal that Inconel 625 is excellent in resist the corrosion attack in seawater. However, at increasing temperature, the corrosion resistance of this metal decrease. The performance is same in seawater with high sulphate content at increasing temperature. It can be concluded that sulphate promote perforation on Inconel 625 and become aggressive agents that accelerate the corrosion attack.

  2. Catastrophic failure of contaminated fused silica optics at 355 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genin, F. Y., LLNL

    1996-12-03

    For years, contamination has been known to degrade the performance of optics and to sometimes initiate laser-induced damage to initiate. This study has W to quantify these effects for fused silica windows used at 355 mm Contamination particles (Al, Cu, TiO{sub 2} and ZrO{sub 2}) were artificially deposited onto the surface and damage tests were conducted with a 3 ns NdYAG laser. The damage morphology was characterized by Nomarski optical microscopy. The results showed that the damage morphology for input and output surface contamination is different. For input surface contamination, both input and output surfaces can damage. In particular, themore » particle can induce pitting or drilling of the surface where the beam exits. Such damage usually grows catastrophically. Output surface contamination is usually ablated away on the shot but can also induce catastrophic damage. Plasmas are observed during illumination and seem to play an important role in the damage mechanism. The relationship between fluence and contamination size for which catastrophic damage occurred was plotted for different contamination materials. The results show that particles even as small as 10 {micro}m can substantially decrease the damage threshold of the window and that metallic particles on the input surface have a more negative effect than oxide particles.« less

  3. Stainless steel corrosion by molten nitrates : analysis and lessons learned.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruizenga, Alan Michael

    2011-09-01

    A secondary containment vessel, made of stainless 316, failed due to severe nitrate salt corrosion. Corrosion was in the form of pitting was observed during high temperature, chemical stability experiments. Optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were all used to diagnose the cause of the failure. Failure was caused by potassium oxide that crept into the gap between the primary vessel (alumina) and the stainless steel vessel. Molten nitrate solar salt (89% KNO{sub 3}, 11% NaNO{sub 3} by weight) was used during chemical stability experiments, with an oxygen cover gas, at a salt temperature of 350-700 C.more » Nitrate salt was primarily contained in an alumina vessel; however salt crept into the gap between the alumina and 316 stainless steel. Corrosion occurred over a period of approximately 2000 hours, with the end result of full wall penetration through the stainless steel vessel; see Figures 1 and 2 for images of the corrosion damage to the vessel. Wall thickness was 0.0625 inches, which, based on previous data, should have been adequate to avoid corrosion-induced failure while in direct contact with salt temperature at 677 C (0.081-inch/year). Salt temperatures exceeding 650 C lasted for approximately 14 days. However, previous corrosion data was performed with air as the cover gas. High temperature combined with an oxygen cover gas obviously drove corrosion rates to a much higher value. Corrosion resulted in the form of uniform pitting. Based on SEM and EDS data, pits contained primarily potassium oxide and potassium chromate, reinforcing the link between oxides and severe corrosion. In addition to the pitting corrosion, a large blister formed on the side wall, which was mainly composed of potassium, chromium and oxygen. All data indicated that corrosion initiated internally and moved outward. There was no evidence of intergranular corrosion nor were there any indication of fast pathways along grain boundaries. Much of the pitting occurred near welds; however this was the hottest region in the chamber. Pitting was observed up to two inches above the weld, indicating independence from weld effects.« less

  4. Vibration Signature Analysis of a Faulted Gear Transmission System

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Huang, S.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.

    1994-01-01

    A comprehensive procedure in predicting faults in gear transmission systems under normal operating conditions is presented. Experimental data was obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. Time synchronous averaged vibration data was recorded throughout the test as the fault progressed from a small single pit to severe pitting over several teeth, and finally tooth fracture. A numerical procedure based on the Winger-Ville distribution was used to examine the time averaged vibration data. Results from the Wigner-Ville procedure are compared to results from a variety of signal analysis techniques which include time domain analysis methods and frequency analysis methods. Using photographs of the gear tooth at various stages of damage, the limitations and accuracy of the various techniques are compared and discussed. Conclusions are drawn from the comparison of the different approaches as well as the applicability of the Wigner-Ville method in predicting gear faults.

  5. Spiral-Bevel-Gear Damage Detected Using Decision Fusion Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Handschuh, Robert F.

    2003-01-01

    Helicopter transmission integrity is critical to helicopter safety because helicopters depend on the power train for propulsion, lift, and flight maneuvering. To detect impending transmission failures, the ideal diagnostic tools used in the health-monitoring system would provide real-time health monitoring of the transmission, demonstrate a high level of reliable detection to minimize false alarms, and provide end users with clear information on the health of the system without requiring them to interpret large amounts of sensor data. A diagnostic tool for detecting damage to spiral bevel gears was developed. (Spiral bevel gears are used in helicopter transmissions to transfer power between nonparallel intersecting shafts.) Data fusion was used to integrate two different monitoring technologies, oil debris analysis and vibration, into a health-monitoring system for detecting surface fatigue pitting damage on the gears.

  6. Functional trade-offs in the limb bones of dogs selected for running versus fighting.

    PubMed

    Kemp, T J; Bachus, K N; Nairn, J A; Carrier, D R

    2005-09-01

    The physical demands of rapid and economical running differ from the demands of fighting in ways that may prevent the simultaneous evolution of optimal performance in these two behaviors. Here, we test an hypothesis of functional trade-off in limb bones by measuring mechanical properties of limb bones in two breeds of domestic dog (Canis lupus familiaris L.) that have undergone intense artificial selection for running (greyhound) and fighting (pit bull) performance. The bones were loaded to fracture in three-point static bending. To correct for the effect of shear, we estimated the shear stress in the cross section and added energy due to shear stress to the tensile energy. The proximal limb bones of the pit bulls differed from those of the greyhounds in having relatively larger second moments of area of mid-diaphyseal cross sections and in having more circular cross-sectional shape. The pit bulls exhibited lower stresses at yield, had lower elastic moduli and failed at much higher levels of work. The stiffness of the tissue of the humerus, radius, femur and tibia was 1.5-2.4-fold greater in the greyhounds than in the pit bulls. These bones from the pit bulls absorbed 1.9-2.6-fold more energy before failure than did those of the greyhounds. These differences between breeds were not observed in the long bones of the feet, metacarpals and metatarsals. Nevertheless, the results of this analysis suggest that selection for high-speed running is associated with the evolution of relatively stiff, brittle limb bones, whereas selection for fighting performance leads to the evolution of limb bones with relatively high resistance to failure.

  7. Extinction of specific stimulus-outcome (S-O) associations in Pavlovian learning with an extended CS procedure.

    PubMed

    Delamater, Andrew R; Schneider, Kevin; Derman, Rifka C

    2017-07-01

    Three experiments with male and female rats were conducted to examine the effects of Pavlovian extinction training on Pavlovian-to-instrumental transfer (PIT) in a task in which the unconditioned stimulus (US) was presented at an early time point within an extended conditioned stimulus (CS). Two instrumental responses were trained with different reinforcing outcomes (R1-O1, R2-O2) and then, independently, 2 stimuli were trained with those outcomes (S1-O1, S2-O2). One group then underwent an extinction treatment (S1-, S2-) and a second was merely exposed to the experimental contexts without any stimulus events. Finally, the effects of the 2 stimuli on instrumental responding were assessed in PIT tests. Across experiments we varied the number of Pavlovian training trials prior to extinction (8, 16, or 64 trials) and the length of time following extinction prior to test (i.e., 1 or 21 days, in a test for spontaneous recovery). We observed that outcome-specific PIT was reduced by extinction in all of our training conditions and that this extinction effect was durable, surviving a 3-week spontaneous recovery interval even though conditioned magazine approach spontaneously recovered over this interval. Although extinction reduced the magnitude of PIT, the temporal expression of PIT was mostly unaffected. We found these effects in both male and female rats, though in 1 study females were extinction-resistant. These data suggest that under the conditions studied here Pavlovian extinction may permanently weaken the ability of Pavlovian cues to retrieve a representation of their associated outcomes without impacting the temporal organization of responding. This suggests that different features of learning may be differentially sensitive to extinction. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Hydraulic and mechanical properties of young Norway spruce clones related to growth and wood structure

    PubMed Central

    ROSNER, SABINE; KLEIN, ANDREA; MÜLLER, ULRICH; KARLSSON, BO

    2011-01-01

    Summary Stem segments of eight five-year-old Norway spruce (Picea abies (L.) Karst.) clones differing in growth characteristics were tested for maximum specific hydraulic conductivity (ks100), vulnerability to cavitation and behavior under mechanical stress. The vulnerability of the clones to cavitation was assessed by measuring the applied air pressure required to cause 12 and 50% loss of conductivity (Ψ12, Ψ50) and the percent loss of conductivity at 4 MPa applied air pressure (PLC4MPa). The bending strength and stiffness and the axial compression strength and stiffness of the same stem segments were measured to characterize wood mechanical properties. Growth ring width, wood density, latewood percentage, lumen diameter, cell wall thickness, tracheid length and pit dimensions of earlywood cells, spiral grain and microfibril angles were examined to identify structure–function relationships. High ks100 was strongly and positively related to spiral grain angle, which corresponded positively to tracheid length and pit dimensions. Spiral grain may reduce flow resistance of the bordered pits of the first earlywood tracheids, which are characterized by rounded tips and an equal distribution of pits along the entire length. Wood density was unrelated to hydraulic vulnerability parameters. Traits associated with higher hydraulic vulnerability were long tracheids, high latewood percentage and thick earlywood cell walls. The positive relationship between earlywood cell wall thickness and vulnerability to cavitation suggest that air seeding through the margo of bordered pits may occur in earlywood. There was a positive phenotypic and genotypic relationship between ks100 and PLC4MPa, and both parameters were positively related to tree growth rate. Variability in mechanical properties depended mostly on wood density, but also on the amount of compression wood. Accordingly, hydraulic conductivity and mechanical strength or stiffness showed no tradeoff. PMID:17472942

  9. Temperature Effect of Low Velocity Impact Resistance of Glass/epoxy Laminates

    NASA Astrophysics Data System (ADS)

    Kang, Ki-Weon; Kim, Heung-Seob; Chung, Tae-Jin; Koh, Seung-Kee

    This paper aims to evaluate the effect of temperature on impact damage resistance of glass/epoxy laminates. A series of impact tests were performed using an instrumented impact-testing machine at temperature ranging from -40°C to +80°C. The resulting impact damage was measured using back light method. The impact resistance parameters were employed to understand the damage resistance. It was observed that temperature has a little effect on the impact responses of composite laminates. The damage resistance of glass/epoxy laminates is somewhat deteriorated at two opposite extremes of the studied temperature range and this behavior is likely due to the property change of glass/epoxy laminates under extreme temperatures

  10. RECENT DEVELOPMENTS IN SURGICAL SKIN PLANING

    PubMed Central

    Ayres, Samuel; Wilson, J. Walter; Luikart, Ralph

    1958-01-01

    In surgical skin planing steel wire brushes have been largely replaced by the less hazardous diamond chip burs or “fraises” and serrated steel wheels. In addition to acne pits and wrinkling, multiple actinic (senile) keratoses are an important indication for planing. Planing provides a nonscarring method for the treatment of existing keratoses, as well as a prophylaxis against skin cancer by replacing the sun-damaged, precancerous epidermis with new epidermal cells derived from the cutaneous adnexa (pilosebaceous and sweat gland units). There are clinical landmarks indicating the depth of planing which can serve as a guide to the operator and can be correlated with microscopic findings. The results of experiments on the comparative effects of refrigerants on animal and human skin indicate that human facial skin can tolerate considerable freezing with ethyl chloride or dichlorotetrafluoroethane (Freon 114) but that mixtures containing large proportions of the much colder dichlorodifluoromethane (Freon 12) may be undesirable. Refreezing an area of the skin in order to perform a more adequate planing is not considered hazardous. The regeneration of the skin following planing has three components: Epidermal, adnexal and dermal. The cells of the epidermis and the adnexa are equipotential. A knowledge of the anatomy of the acne pit enables the operator to decide which pits can be benefited by planing and which should be excised before planing. The successful treatment of acne pits of the face by planing in patients having keloids elsewhere on the body is reported. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7. PMID:13500217

  11. Thermal acclimation is not induced by habitat-of-origin, maintenance temperature, or acute exposure to low or high temperatures in a pit-building wormlion (Vermileo sp.).

    PubMed

    Bar-Ziv, Michael A; Scharf, Inon

    2018-05-01

    Wormlions are sit-and-wait insect predators that construct pit-traps to capture arthropod prey. They require loose soil and shelter from direct sun, both common in Mediterranean cities, and explaining their high abundance in urban habitats. We studied different aspects of thermal acclimation in wormlions. We compared chill-coma recovery time (CCRT) and heat-shock recovery time (HSRT) of wormlions from urban, semi-urban and natural habitats, expecting those originating from the urban habitat to be more heat tolerant and less cold tolerant. However, no differences were detected among the three habitats. We then examined whether maintenance temperature affects CCRT and HSRT, and expected beneficial acclimation. However, CCRT was unaffected by maintenance temperature, while temperature affected HSRT in an opposite direction to our prediction: wormlions maintained under the higher temperatures took longer to recover. When testing with two successive thermal shocks, wormlions took longer to recover from both cold and heat shock after applying an initial cold shock. We therefore conclude that cold shock inflicts some damage rather than induces acclimation. Finally, both cold- and heat-shocked wormlions constructed smaller pits than wormlions of a control group. Smaller pits probably translate to a lower likelihood of capturing prey and also limit the size of the prey, indicating a concrete cost of thermal shock. In summary, we found no evidence for thermal acclimation related either to the habitat-of-origin or to maintenance temperatures, but, rather, negative effects of unfavorable temperatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Prophy-Jet: Effect on Surface Roughness and Plaque Accumulation on Restorative Materials.

    DTIC Science & Technology

    1986-01-01

    prophylaxis on orthodontic patients and caused no significant damage to wires or brackets . They recommended the Prophy-Jet for cleaning of occlusal pits...that, considering the advantages, the Prophy-Jet might be the preferred treatment, especially for orthodontic patients. Mishkin et al.(23) compared the...articles suggested that the Prophy-Jet is quite effective on orthodontic patients(12, 22), a split arch study comparing the gingival health of

  13. Failure Analysis of a Helicopter External Fuel-Tank Pylon

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Piascik, Robert S.; Lindenberg, Richard A.

    2002-01-01

    An eight-inch-long (0.2 m) crack was found in an external fuel-tank pylon of a U.S. Coast Guard HH-60 helicopter. The damaged pylon was removed from service and destructively examined at NASA Langley Research Center (LaRC) to determine the cause of the crack. Results of the analysis revealed that crack initiation occurred at corrosion pits in a fastener hole and crack propagation was a result of cyclic loading.

  14. Review and study of physics driven pitting corrosion modeling in 2024-T3 aluminum alloys

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Jata, Kumar V.

    2015-04-01

    Material degradation due to corrosion and corrosion fatigue has been recognized to significantly affect the airworthiness of civilian and military aircraft, especially for the current fleet of airplanes that have served beyond their initial design life. The ability to predict the corrosion damage development in aircraft components and structures, therefore, is of great importance in managing timely maintenance for the aging aircraft vehicles and in assisting the design of new ones. The assessment of aircraft corrosion and its influence on fatigue life relies on appropriate quantitative models that can evaluate the initiation of the corrosion as well as the accumulation during the period of operation. Beyond the aircraft regime, corrosion has also affected the maintenance, safety and reliability of other systems such as nuclear power systems, steam and gas turbines, marine structures and so on. In the work presented in this paper, we reviewed and studied several physics based pitting corrosion models that have been reported in the literature. The classic work of particle induced pitting corrosion by Wei and Harlow is reviewed in detail. Two types of modeling, a power law based simplified model and a microstructure based model, are compared for 2024-T3 alloy. Data from literatures are used as model inputs. The paper ends with conclusions and recommendations for future work.

  15. Fissure sealant materials: Wear resistance of flowable composite resins.

    PubMed

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  16. Fissure sealant materials: Wear resistance of flowable composite resins

    PubMed Central

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics. PMID:27651887

  17. Preliminary Evaluation of Cavitation-Erosion Resistance of Ti-Alloys in Mercury for the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawel, Steven J; Mansur, Louis K

    2010-01-01

    A number of Ti-based alloys in both the mill-annealed and 20% cold-worked conditions were subjected to sonication conditions in Hg using a vibratory horn to assess relative cavitation-erosion resistance. Weight loss as a function of exposure time was roughly proportional to hardness for all alloys/conditions examined, with Ti-6Al-4V (Ti-Grade 5) and Ti-6Al-2Sn-4Zr-2Mo yielding the best resistance to cavitation-erosion as evidenced by low weight losses and little or no tendency to form pits on the exposed surface. Unalloyed Ti (Ti-Grade 4) and Ti-0.12Pd (Ti-Grade 7) exhibited greater weight losses by a factor or about two and about five, respectively, with Ti-0.12Pdmore » particularly prone to pitting development. The mean erosion rates of the best two Ti-alloys examined here were about a factor of three higher than identically tested 316LN stainless steel following a low temperature carburizing treatment, but this difference is considered minor given that the rate for both materials is very low/manageable and represents a through-thickness property for the Ti-alloys. A nitriding surface treatment was also evaluated as a potential method to further increase the cavitation-erosion resistance of these alloys in Hg, but the selected treatment proved largely ineffective. Recommendations for further work to evaluate the efficacy of Ti-based alloys for use in high-powered targets for the Spallation Neutron Source are given.« less

  18. Neoplastic growth: the consequence of evolutionary malignant resistance to chronic damage for survival of cells (review of a new theory of the origin of cancer).

    PubMed

    Monceviciūte-Eringiene, E

    2005-01-01

    In the present review, a new theory that the mechanisms of general evolutionary persistent resistance to damaging factors are closely related to the development of tumour cells is introduced. Evolutionary resistance and its variability have an immense power to drive and control the process of carcinogenesis and the success of microbial and antitumour chemotherapy. First, this phenomenon of adaptation is characteristic of microbial cells whose resistance to antibiotics and other chemotherapeutic drugs is manifested through ATP-dependent transmembrane transporters. The structure and function of some multidrug transporters of resistance are conserved from microorganisms to mammals. When somatic cells are exposed to carcinogens and develop into tumour cells, they also acquire resistance to the toxic effects of carcinogens through these same transmembrane transporters (P-glycoprotein, glutathione S-transferases and other products of evolutionary resistance-related genes arisen for detoxification and exportation of cytotoxic xenobiotics and drugs). Cancerous cells acquire a persistent evolutionary resistance to chemotherapy drugs or irradiation through the same ATP-dependent transporters encountered in prokaryotic and eukaryotic cells. The mechanism of acquired resistance of cells to damaging factors, which becomes manifested during tumorigenic process formation, is a general biological law of primary significance in carcinogenesis. This resistance can be called malignant as, once formed, it does not disappear, as does also a clone of malignant cells. In tumorous cells, the mutagenic processes, morphological and functional modifications are a mechanism of secondary significance in carcinogenesis, contributing to formation of damage-resistant cells. This mechanism characterizes the processes of simplification arising in damage-resistant cells. Such cells acquire parasitic features. To survive under unfavourable conditions, they get adapted as if returning down the evolutionary stairs back to a more primitive stage of atavistic regression, which is characteristic of primitive forms of existence. Therefore they cease obeying the growth-regulating mechanisms in the organism and acquire the potential of unlimited division and accelerated growth (metastases) as do unicellular organisms or their forms resistant to damaging factors in the environment and in the host organism. Thus, cancer is a natural self-protective response of the damaged cells to the biological, physical and chemical damage and oxidative stress. This response has been developed in the process of evolution under the impact of the general biological Darwinian law of nature--to survive through variability and adaptation to the changed environmental conditions. Thus, malignization is the consequence of an evolutionary variety of the general biological resistance of cells to damage and stress in order to survive.

  19. Effect of Translaminar Reinforcements and Hybridization on Damage Resistance and Tolerance of Composite Laminates

    DTIC Science & Technology

    2012-01-01

    REINFORCEMENTS AND HYBRIDIZATION ON DAMAGE RESISTANCE AND TOLERANCE OF COMPOSITE LAMINATES It was shown that the damage resistance and tolerance of... laminated composites can be enhanced by the employment of translaminar reinforcements (TLR) such as stitching, z-pinning and 3D weaving and also by hybrid...Park, NC 27709-2211 Composite Laminates Resistance REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM

  20. Mitigation of laser damage on National Ignition Facility optics in volume production

    NASA Astrophysics Data System (ADS)

    Folta, James; Nostrand, Mike; Honig, John; Wong, Nan; Ravizza, Frank; Geraghty, Paul; Taranowski, Mike; Johnson, Gary; Larkin, Glenn; Ravizza, Doug; Peterson, John; Welday, Brian; Wegner, Paul

    2013-12-01

    The National Ignition Facility has recently achieved the milestone of delivering over 1.8 MJ and 500 TW of 351 nm laser energy and power on target, which required average fluences up to 9 J/cm2 (3 ns equivalent) in the final optics system. Commercial fused silica laser-grade UV optics typically have a maximum operating threshold of 5 J/cm2. We have developed an optics recycling process which enables NIF to operate above the laser damage initiation and growth thresholds. We previously reported a method to mitigate laser damage with laser ablation of the damage site to leave benign cone shaped pits. We have since developed a production facility with four mitigation systems capable of performing the mitigation protocols on full-sized (430 mm) optics in volume production. We have successfully repaired over 700 NIF optics (unique serial numbers), some of which have been recycled as many as 11 times. We describe the mitigation systems, the optics recycle loop process, and optics recycle production data.

  1. Corrosion resistance of a new AL 6013-20 SiC(P) in salt spray chamber

    NASA Astrophysics Data System (ADS)

    Ahmad, Zaki; Aleem, B. J. Abdul

    2000-06-01

    Aluminum 6013 alloy (0.82Si, 0.95Mg, and 0.35Mn) is finding increasing usage in new aircraft designs, automotives, and structural applications due to its good stretch forming character in T4 temper (solution heat treated and naturally aged to a substantially stable conditions) compared to alloy 2024 (4.4Cu, 0.6Mn, 1.5Mg, and balance Al) and Al6061 (Si0.51 to 0.71, Fe0.35, Cu0.15, Mn0.85, Mg0.15, 0.25Cr, 0.15Zn, and balanced Al). The newly developed A1 6013 reinforced with 20 vol.% SiC(P) has a higher strength than its unreinforced counterpart. Whereas the corrosion behavior of A1 6013 has been reported in literature, there is no previous data on A1 6013 reinforced with SiC(P). A knowledge of the corrosion behavior of this alloy is crucial to its applications in aerospace, structural, and automotive industry. The first results of corrosion study of this alloy in 3.5 wt.% Na Cl in a salt spray chamber are presented. Three tempers F (as fabricated), O (annealed), and T4 (age hardened and stabilized at room temperature) of the alloy A1 6013-30 SiC(P) were exposed to environmental chamber in accordance with ASTM recommended practice. The corrosion rate of the alloy showed a decrease with increased exposure period and after 800 h of exposure no appreciable change in the rate of corrosion was observed. The lowest rate of corrosion (4.83 mdd) was shown by temper T4 followed by tempers F and O after 1200 h of exposure in the increasing order of corrosion rate. Fluctuations in the corrosion rate with time are related to the kinetics of growth and dissolution of Al(OH)3 film, which was detected by fourier transformation infrared (FTIR) spectroscopy (FTIS). The film was composed of an inner compact layer and outer bulk layer dependent on the refreshment rate from the bulk solution. Micrograph examination by scanning electron microscopy (SEM) showed the presence of pits covered by aluminum hydroxide gel, which isolates the pit from the bulk solution. The acidic conditions of pits also cause intergranular attack. Pitting was observed to be less pronounced in temper T4 compared to F and O tempers, the former also showing the highest resistance to corrosion. The data generated predict promising application potential of this alloy in environment where resistance to corrosion is also a major consideration.

  2. Transient features and growth behavior of artificial cracks during the initial damage period.

    PubMed

    Ma, Bin; Wang, Ke; Lu, Menglei; Zhang, Li; Zhang, Lei; Zhang, Jinlong; Cheng, Xinbin; Wang, Zhanshan

    2017-02-01

    The laser damage of transmission elements contains a series of complex processes and physical phenomena. The final morphology is a crater structure with different sizes and shapes. The formation and development of the crater are also accompanied by the generation, extension, and submersion of cracks. The growth characteristics of craters and cracks are important in the thermal-mechanism damage research. By using pump-probe detection and an imaging technique with a nanosecond pulsewidth probe laser, we obtained the formation time of the crack structure in the radial and circumferential directions. We carried out statistical analysis in angle, number, and crack length. We further analyzed the relationship between cracks and stress intensity or laser irradiation energy as well as the crack evolution process and the inner link between cracks and pit growth. We used an artificial indentation defect to investigate the time-domain evolution of crack growth, growth speed, transient morphology, and the characteristics of crater expansion. The results can be used to elucidate thermal stress effects on cracks, time-domain evolution of the damage structure, and the damage growth mechanism.

  3. Divergences in hydraulic architecture form an important basis for niche differentiation between diploid and polyploid Betula species in NE China.

    PubMed

    Zhang, Wei-Wei; Song, Jia; Wang, Miao; Liu, Yan-Yan; Li, Na; Zhang, Yong-Jiang; Holbrook, N Michele; Hao, Guang-You

    2017-05-01

    Habitat differentiation between polyploid and diploid plants are frequently observed, with polyploids usually occupying more stressed environments. In woody plants, polyploidization can greatly affect wood characteristics but knowledge of its influences on xylem hydraulics is scarce. The four Betula species in NE China, representing two diploids and two polyploids with obvious habitat differentiation, provide an exceptional study system for investigating the impact of polyploidization on environmental adaptation of trees from the point view of xylem hydraulics. To test the hypothesis that changes in hydraulic architecture play an important role in determining their niche differentiation, we measured wood structural traits at both the tissue and pit levels and quantified xylem water transport efficiency and safety in these species. The two polyploids had significantly larger hydraulic weighted mean vessel diameters than the two diploids (45.1 and 45.5 vs 25.9 and 24.5 μm) although the polyploids are occupying more stressed environments. As indicated by more negative water potentials corresponding to 50% loss of stem hydraulic conductivities, the two polyploids exhibited significantly higher resistance to drought-induced embolism than the two diploids (-5.23 and -5.05 vs -3.86 and -3.13 MPa) despite their larger vessel diameters. This seeming discrepancy is reconciled by distinct characteristics favoring greater embolism resistance at the pit level in the two polyploid species. Our results showed clearly that the two polyploid species have remarkably different pit-level anatomical traits favoring greater hydraulic safety than their congeneric diploid species, which have likely contributed to the abundance of polyploid birches in more stressed habitats; however, less porous inter-conduit pits together with a reduced leaf to sapwood area may have compromised their competitiveness under more favorable conditions. Contrasts in hydraulic architecture between diploid and polyploid Betula species suggest an important functional basis for their clear habitat differentiation along environmental gradients in Changbai Mountain of NE China. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Effect of Post Weld Heat Treatment on Corrosion Behavior of AA2014 Aluminum – Copper Alloy Electron Beam Welds

    NASA Astrophysics Data System (ADS)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work pertains to the study of corrosion behavior of aluminum alloy electron beam welds. The aluminium alloy used in the present study is copper containing AA2014 alloy. Electron Beam Welding (EBW) was used to weld the alloys in annealed (O) condition. Microstructural changes across the welds were recorded and the effect of post weld heat treatment (PWHT) in T4 (Solutionized and naturally aged) condition on pitting corrosion resistance was studied. A software based PAR basic electrochemical system was used for potentio-dynamic polarization tests. From the study it is observed that weld in O condition is prone to more liquation than that of PWHT condition. This may be attributed to re-melting and solidification of excess eutectic present in the O condition of the base metal. It was also observed that slightly higher hardness values are recorded in O condition than that of PWHT condition. The pitting corrosion resistance of the PMZ/HAZ in PWHT condition is better than that of O condition. This is attributed to copper segregation at the grain boundaries of PMZ in O condition.

  5. Application of fault detection techniques to spiral bevel gear fatigue data

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Handschuh, Robert F.; Decker, Harry J.

    1994-01-01

    Results of applying a variety of gear fault detection techniques to experimental data is presented. A spiral bevel gear fatigue rig was used to initiate a naturally occurring fault and propagate the fault to a near catastrophic condition of the test gear pair. The spiral bevel gear fatigue test lasted a total of eighteen hours. At approximately five and a half hours into the test, the rig was stopped to inspect the gears for damage, at which time a small pit was identified on a tooth of the pinion. The test was then stopped an additional seven times throughout the rest of the test in order to observe and document the growth and propagation of the fault. The test was ended when a major portion of a pinion tooth broke off. A personal computer based diagnostic system was developed to obtain vibration data from the test rig, and to perform the on-line gear condition monitoring. A number of gear fault detection techniques, which use the signal average in both the time and frequency domain, were applied to the experimental data. Among the techniques investigated, two of the recently developed methods appeared to be the first to react to the start of tooth damage. These methods continued to react to the damage as the pitted area grew in size to cover approximately 75% of the face width of the pinion tooth. In addition, information gathered from one of the newer methods was found to be a good accumulative damage indicator. An unexpected result of the test showed that although the speed of the rig was held to within a band of six percent of the nominal speed, and the load within eighteen percent of nominal, the resulting speed and load variations substantially affected the performance of all of the gear fault detection techniques investigated.

  6. Stainless steel corrosion scale formed in reclaimed water: Characteristics, model for scale growth and metal element release.

    PubMed

    Cui, Yong; Liu, Shuming; Smith, Kate; Hu, Hongying; Tang, Fusheng; Li, Yuhong; Yu, Kanghua

    2016-10-01

    Stainless steels generally have extremely good corrosion resistance, but are still susceptible to pitting corrosion. As a result, corrosion scales can form on the surface of stainless steel after extended exposure to aggressive aqueous environments. Corrosion scales play an important role in affecting water quality. These research results showed that interior regions of stainless steel corrosion scales have a high percentage of chromium phases. We reveal the morphology, micro-structure and physicochemical characteristics of stainless steel corrosion scales. Stainless steel corrosion scale is identified as a podiform chromite deposit according to these characteristics, which is unlike deposit formed during iron corrosion. A conceptual model to explain the formation and growth of stainless steel corrosion scale is proposed based on its composition and structure. The scale growth process involves pitting corrosion on the stainless steel surface and the consecutive generation and homogeneous deposition of corrosion products, which is governed by a series of chemical and electrochemical reactions. This model shows the role of corrosion scales in the mechanism of iron and chromium release from pitting corroded stainless steel materials. The formation of corrosion scale is strongly related to water quality parameters. The presence of HClO results in higher ferric content inside the scales. Cl - and SO 4 2- ions in reclaimed water play an important role in corrosion pitting of stainless steel and promote the formation of scales. Copyright © 2016. Published by Elsevier B.V.

  7. Impact response of graphite/epoxy fabric structures

    NASA Technical Reports Server (NTRS)

    Lagace, Paul A.; Kraft, Michael J.

    1990-01-01

    The impact damage resistance and damage tolerance of graphite/epoxy fabric plate (coupon) and cylinder structures were investigated and compared in an analytical and experimental study. Hercules A370-5H/3501-6 five-harness satin weave cloth in a quasi-isotropic (0,45)(sub s) laminate configuration was utilized. Specimens were impacted with 12.7 mm diameter steel spheres at velocities ranging from 10 m/s to 100 m/s. Damage resistance of the specimens was determined through the use of dye penetrant enhanced x-radiography, sectioning, epoxy burnoff, and visual methods. Damage tolerance of the flat plate structures was assessed in a residual tensile test while damage tolerance of the cylinder structures was assessed via pressurization tests. Impacted fabric laminates exhibited matrix crushing, fiber breakage, delamination, and fiber bundle disbonds; the latter being a unique damage mode for fabric laminates. Plate delamination and bundle disbonding was found to be more extensive around the central core area of fiber damage in the coupon specimens than in the cylinder specimens which showed a cleaner damage area due to impact. Damage resistance and damage tolerance were predicted by utilizing a five-step analysis approach previously utilized for coupon configurations. Two of the five steps were adapted to account for the effects of the structural configuration of the pressurized cylinder. The damage resistance analysis provided good correlation to the fiber damage region of both the coupon and cylinder specimens. There was little difference in the size of this region in the two specimen types. However, the analysis was not able to predict the distribution of damage through-the-thickness. This was important in assessing the damage tolerance of the cylinders. The damage tolerance analysis was able to predict the residual tensile strength of the coupons. A general methodology to predict the impact damage resistance and damage tolerance of composite structures utilizing coupon data is presented.

  8. Inferring Gear Damage from Oil-Debris and Vibration Data

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula

    2006-01-01

    A system for real-time detection of surface-fatigue-pitting damage to gears for use in a helicopter transmission is based on fuzzy-logic used to fuse data from sensors that measure oil-borne debris, referred to as "oil debris" in the article, and vibration signatures. A system to detect helicopter-transmission gear damage is beneficial because the power train of a helicopter is essential for propulsion, lift, and maneuvering, hence, the integrity of the transmission is critical to helicopter safety. To enable detection of an impending transmission failure, an ideal diagnostic system should provide real-time monitoring of the "health" of the transmission, be capable of a high level of reliable detection (with minimization of false alarms), and provide human users with clear information on the health of the system without making it necessary for them to interpret large amounts of sensor data.

  9. Investigation and simulation on fate and transport of leachate from a livestock mortality burial site

    NASA Astrophysics Data System (ADS)

    Lim, J.-W.; Lee, S.; Kaown, D.; Lee, K.-K.

    2012-04-01

    Leachate released from livestock mortality burial during decomposition of carcasses can be a threat to groundwater quality. Monitoring study of groundwater quality in the vicinity of livestock burial reported that a caution is needed to prevent contamination of both groundwater and soil, especially in case of mortality burial (Glanville, 2000; Ritter and Chirnside, 1995). The average concentration of ammonium-N and chloride is reported to be 12,600 mg/l and 2,600 mg/l respectively, which is 2-4 times higher than leachate from earthen manure storages and landfills (Pratt, 2009). To assess the potential threat of burial leachate to groundwater quality, simulation of leachate transport is performed based on a hydrogeologic model of an actual mortality burial site. At the burial site of this study located at a hill slope, two mortality pits have been constructed along the slope to bury swine during the outbreak of nationwide foot and mouth disease(FMD) in 2011. Though the pits were partially lined with impermeable material, potential threat of leachate leakage is still in concern. Electrical resistivity survey has been performed several times at the burial site and abnormal resistivity zones have been detected which are supposed as leachate leakage from the burial. Subsurface model including unsaturated zone is built since the leakage is supposed to occur mainly in lateral of the burial pits which is in unsaturated zone. When examining leachate transport, main focus is given to a nitrogenous compound and colloidal character of FMD virus. Nitrifying of denitrifying characters of nitrogenous compound and transport of colloidal particles are affected mainly by soil water content in unsaturated zone. Thus, the fate and transport of burial leachate affected by seasonal variation in recharge pattern is investigated.

  10. The effect of pH on the corrosion behavior of intermetallic compounds Ni{sub 3}(Si,Ti) and Ni{sub 3}(Si,Ti) + 2Mo in sodium chloride solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priyotomo, Gadang, E-mail: gada001@lipi.go.id; Nuraini, Lutviasari, E-mail: Lutviasari@gmail.com; Kaneno, Yasuyuki, E-mail: kaneno@mtr.osakafu-u.ac.id

    The corrosion behavior of the intermetallic compounds, Ni{sub 3}(Si,Ti) (L1{sub 2}: single phase) and Ni{sub 3}(Si,Ti) + 2Mo (L1{sub 2} and (L12 + Ni{sub ss}) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EDAX: Energy Dispersive X-ray) in 0.5 kmol/m{sup 3} NaCl solutions at various pH. The corrosion behavior of nickel alloy C-276 was studied under the same experimental conditions as a reference. It was found that the uniform attack was observed on Ni{sub 3}(Si,Ti) for the immersion test at lower pH, while the pitting attack was observedmore » on this compound for this test at neutral solution. Furthermore, Ni{sub 3}(Si,Ti)+2Mo had the preferential dissolution of L1{sub 2} compared to (L1{sub 2} + Ni{sub ss}) mixture region at lower pH, while pitting attack occurred in (L1{sub 2} + Ni{sub ss}) mixture region at neutral solution. For both intermetallic compounds, the magnitude of pitting and uniform attack decrease with increasing pH of solutions. From the immersion test and polarization curves, the corrosion resistance of Ni{sub 3}(Si,Ti)+2Mo is lower than that of Ni{sub 3}(Si,Ti), while the nickel alloy C-276 is the highest one at various pH of solutions. On the other hand, in the lower pH of solutions, the corrosion resistance of tested materials decreased significantly compared to those in neutral and higher pH of solutions.« less

  11. Influence of Welding Process and Post Weld Heat Treatment on Microstructure and Pitting Corrosion Behavior of Dissimilar Aluminium Alloy Welds

    NASA Astrophysics Data System (ADS)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    Welding of dissimilar Aluminum alloy welds is becoming important in aerospace, shipbuilding and defence applications. In the present work, an attempt has been made to weld dissimilar aluminium alloys using conventional gas tungsten arc welding (GTAW) and friction stir welding (FSW) processes. An attempt was also made to study the effect of post weld heat treatment (T4 condition) on microstructure and pitting corrosion behaviour of these welds. Results of the present investigation established the differences in microstructures of the base metals in T4 condition and in annealed conditions. It is evident that the thickness of the PMZ is relatively more on AA2014 side than that of AA6061 side. In FS welds, lamellar like shear bands are well noticed on the top of the stir zone. The concentration profile of dissimilar friction stir weld in T4 condition revealed that no diffusion has taken place at the interface. Poor Hardness is observed in all regions of FS welds compared to that of GTA welds. Pitting corrosion resistance of the dissimilar FS welds in all regions was improved by post weld heat treatment.

  12. Column leaching and sorption experiments to assess the mobility of potentially toxic elements in industrially contaminated land.

    PubMed

    Anderson, P; Davidson, C M; Duncan, A L; Littlejohn, D; Ure, A M; Garden, L M

    2000-06-01

    Made-up ground collected from layers of a trial pit excavated on a former industrial site was treated with artificial rainwater in a series of column leaching and sorption experiments. Metal mobility and the ability of various layers of material obtained from the pit to act as sources or sinks of potentially toxic elements were assessed. Samples from different layers varied in their abilities to raise the pH of rainwater applied at pH 3.5 and 4.3, and this was reflected in the amounts of metals mobilised by the rainwater as it percolated through the soil column. Material from the top two layers of the pit released cadmium, copper, manganese, lead, nickel and zinc to the aqueous phase, but the lower layers, with higher buffering capacity, were able to resist acidification even when the equivalent of 12 months' rainfall (western UK) was applied. Column sorption experiments confirmed the ability of material from layer 4 (48-50 cm) to take up copper, manganese and zinc. Metals were determined in the leachates by flame and electrothermal atomic absorption spectrometry and principle anions by ion chromatography.

  13. Tapered Roller Bearing Damage Detection Using Decision Fusion Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Kreider, Gary; Fichter, Thomas

    2006-01-01

    A diagnostic tool was developed for detecting fatigue damage of tapered roller bearings. Tapered roller bearings are used in helicopter transmissions and have potential for use in high bypass advanced gas turbine aircraft engines. A diagnostic tool was developed and evaluated experimentally by collecting oil debris data from failure progression tests conducted using health monitoring hardware. Failure progression tests were performed with tapered roller bearings under simulated engine load conditions. Tests were performed on one healthy bearing and three pre-damaged bearings. During each test, data from an on-line, in-line, inductance type oil debris sensor and three accelerometers were monitored and recorded for the occurrence of bearing failure. The bearing was removed and inspected periodically for damage progression throughout testing. Using data fusion techniques, two different monitoring technologies, oil debris analysis and vibration, were integrated into a health monitoring system for detecting bearing surface fatigue pitting damage. The data fusion diagnostic tool was evaluated during bearing failure progression tests under simulated engine load conditions. This integrated system showed improved detection of fatigue damage and health assessment of the tapered roller bearings as compared to using individual health monitoring technologies.

  14. Retinal damage caused by air-fluid exchange during pars plana vitrectomy.

    PubMed

    Yang, Sam S; McDonald, H Richard; Everett, A I; Johnson, Robert N; Jumper, J Michael; Fu, Arthur D

    2006-03-01

    To report two cases of retinal damage associated with air infusion during pars plana vitrectomy. Observational case report. The authors reviewed the course of two patients who had retinal damage during par plana vitrectomy and air-fluid exchange for the treatment of macular hole and optic pit-related macular detachment, respectively. The intraoperative observations, postoperative course, and outcomes were reported. As a result of high air infusion flow during air-fluid exchange, retinal damage was created in the area contralateral to the infusion port. In Case 1, an oval area of whitening was noted on the first postoperative day. This area subsequently developed into a large retinal break associated with retinal detachment. In the second case, retinal whitening was noted intraoperatively. This region of pallor resolved quickly during the early postoperative period but resulted in a corresponding inferotemporal visual field defect. High infusion flow during air-fluid exchange in eyes undergoing vitrectomy surgery may result in significant retinal damage. This pressure-induced trauma initially causes retinal whitening that may be seen intraoperatively or during the early postoperative period. The region of damaged retina may develop a retinal break and detachment or a corresponding visual field defect.

  15. Microstructure and corrosion behavior of shielded metal arc-welded dissimilar joints comprising duplex stainless steel and low alloy steel

    NASA Astrophysics Data System (ADS)

    Srinivasan, P. Bala; Muthupandi, V.; Sivan, V.; Srinivasan, P. Bala; Dietzel, W.

    2006-12-01

    This work describes the results of an investigation on a dissimilar weld joint comprising a boiler-grade low alloy steel and duplex stainless steel (DSS). Welds produced by shielded metal arc-welding with two different electrodes (an austenitic and a duplex grade) were examined for their microstructural features and properties. The welds were found to have overmatching mechanical properties. Although the general corrosion resistance of the weld metals was good, their pitting resistance was found to be inferior when compared with the DSS base material.

  16. Nondestructive Evaluation Methods for Characterization of Corrosion: State of the Art Review

    DTIC Science & Technology

    1988-12-01

    form molecules of hydrogen gas damage is characterized by surface discolora- and leave the surface. Under some circum- tion and deep gouges or pits...large electromagnet and low operating granular corrosion without stress-related crack- frequencies resulted in deep penetration of ing can produce a...focus, and then the spray al. (11) showed that thermography was able to and the focus were moved together down the detect 3-mm deep , 50-mm diameter

  17. Evaluation of irradiation effects of near-infrared free-electron-laser of silver alloy for dental application.

    PubMed

    Kuwada-Kusunose, Takao; Kusunose, Alisa; Wakami, Masanobu; Takebayashi, Chikako; Goto, Haruhiko; Aida, Masahiro; Sakai, Takeshi; Nakao, Keisuke; Nogami, Kyoko; Inagaki, Manabu; Hayakawa, Ken; Suzuki, Kunihiro; Sakae, Toshiro

    2017-08-01

    In the application of lasers in dentistry, there is a delicate balance between the benefits gained from laser treatment and the heat-related damage arising from laser irradiation. Hence, it is necessary to understand the different processes associated with the irradiation of lasers on dental materials. To obtain insight for the development of a safe and general-purpose laser for dentistry, the present study examines the physical effects associated with the irradiation of a near-infrared free-electron laser (FEL) on the surface of a commonly used silver dental alloy. The irradiation experiments using a 2900-nm FEL confirmed the formation of a pit in the dental alloy. The pit was formed with one macro-pulse of FEL irradiation, therefore, suggesting the possibility of efficient material processing with an FEL. Additionally, there was only a slight increase in the silver alloy temperature (less than 0.9 °C) despite the long duration of FEL irradiation, thus inferring that fixed prostheses in the oral cavity can be processed by FEL without thermal damage to the surrounding tissue. These results indicate that dental hard tissues and dental materials in the oral cavity can be safely and efficiently processed by the irradiation of a laser, which has the high repetition rate of a femtosecond laser pulse with a wavelength around 2900 nm.

  18. Microscopic effects of predator digestion on the surfaces of bones and teeth.

    PubMed

    Rensberger, J M; Krentz, H B

    1988-09-01

    Concentrations of small fossil mammals are frequently encountered in Cenozoic deposits, but the causes for such accumulations have seldom been determined. In many cases the tooth, jaw, and limb fragments appear to be well-preserved under light microscopy, and it is difficult to differentiate damage due to predator digestion from breakage and abrasion due to physical agents. In order to find more specific evidence of predator digestion, we used a scanning electron microscope (SEM) to examine the surface microstructure of bones and teeth consumed by Bubo virginianus (great horned owl) and Canis latrans (coyote), which prey upon similar species. Effects of digestion were found on all the digested bones and teeth examined. The effects on bone include distinctive sets of pits and fissures, dissolution, and physical polishing. The pits and fissures are apparently caused by solution that commences in canals beneath the surface of the bone. The most conspicuous effects on teeth are island-like pillars of dentin surrounded by deep solution fissures. The effects of digestion by coyote and owl are fundamentally the same but differ in degree of development. Bone digested by the owl shows a greater degree of polishing and rounding of edges but has less extensive fissuring. Wide variation in the degree of surface damage occurs in bones digested by the coyote, even within a single fecal pellet.

  19. Long-Term Empirical and Observational Evidence of Practical Helicoverpa zea Resistance to Cotton With Pyramided Bt Toxins.

    PubMed

    Reisig, Dominic D; Huseth, Anders S; Bacheler, Jack S; Aghaee, Mohammad-Amir; Braswell, Lewis; Burrack, Hannah J; Flanders, Kathy; Greene, Jeremy K; Herbert, D Ames; Jacobson, Alana; Paula-Moraes, Silvana V; Roberts, Phillip; Taylor, Sally V

    2018-04-16

    Evidence of practical resistance of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) to Bt cotton in the United States is debatable, supported with occasional reports of boll damage in the field. Our objective was to provide both empirical and long-term observational evidence of practical resistance by linking both in-season and end-of-season measurements of H. zea damage to pyramided Bt cotton bolls and to provide Cry1Ac diet-based bioassay data in support of these damage estimates. In-season boll damage from H. zea was highly correlated to end-of-season damaged bolls. Across North Carolina, Bt cotton fields with end-of-season bolls damaged by H. zea increased during 2016 compared to previous years. Elevated damage was coupled with an increase in field sprays targeting H. zea during 2016, but not related to an increase in H. zea abundance. Bioassay data indicated that there was a range of Cry1Ac susceptibility across the southeastern United States. Given the range of susceptibility to Cry1Ac across the southeastern United States, it is probable that resistant populations are common. Since H. zea is resistant to cotton expressing pyramided Cry toxins, the adoption of new cotton varieties expressing Vip3Aa will be rapid. Efforts should be made to delay resistance of H. zea to the Vip3Aa toxin to avoid foliar insecticide use.

  20. Strong oviposition preference for Bt over non-Bt maize in Spodoptera frugiperda and its implications for the evolution of resistance.

    PubMed

    Téllez-Rodríguez, Pilar; Raymond, Ben; Morán-Bertot, Ivis; Rodríguez-Cabrera, Lianet; Wright, Denis J; Borroto, Carlos G; Ayra-Pardo, Camilo

    2014-06-16

    Transgenic crops expressing Bt toxins have substantial benefits for growers in terms of reduced synthetic insecticide inputs, area-wide pest management and yield. This valuable technology depends upon delaying the evolution of resistance. The 'high dose/refuge strategy', in which a refuge of non-Bt plants is planted in close proximity to the Bt crop, is the foundation of most existing resistance management. Most theoretical analyses of the high dose/refuge strategy assume random oviposition across refugia and Bt crops. In this study we examined oviposition and survival of Spodoptera frugiperda across conventional and Bt maize and explored the impact of oviposition behavior on the evolution of resistance in simulation models. Over six growing seasons oviposition rates per plant were higher in Bt crops than in refugia. The Cry1F Bt maize variety retained largely undamaged leaves, and oviposition preference was correlated with the level of feeding damage in the refuge. In simulation models, damage-avoiding oviposition accelerated the evolution of resistance and either led to requirements for larger refugia or undermined resistance management altogether. Since larval densities affected oviposition preferences, pest population dynamics affected resistance evolution: larger refugia were weakly beneficial for resistance management if they increased pest population sizes and the concomitant degree of leaf damage. Damaged host plants have reduced attractiveness to many insect pests, and crops expressing Bt toxins are generally less damaged than conventional counterparts. Resistance management strategies should take account of this behavior, as it has the potential to undermine the effectiveness of existing practice, especially in the tropics where many pests are polyvoltinous. Efforts to bring down total pest population sizes and/or increase the attractiveness of damaged conventional plants will have substantial benefits for slowing the evolution of resistance.

  1. Effect of surface passivation on corrosion resistance and antibacterial properties of Cu-bearing 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Zhao, Jinlong; Xu, Dake; Shahzad, M. Babar; Kang, Qiang; Sun, Ying; Sun, Ziqing; Zhang, Shuyuan; Ren, Ling; Yang, Chunguang; Yang, Ke

    2016-11-01

    The resistance for pitting corrosion, passive film stability and antibacterial performance of 316L-Cu SS passivated by nitric acid solution containing certain concentration of copper sulfate, were studied by electrochemical cyclic polarization, electrochemical impedance spectroscopy (EIS) and co-culture with bacteria. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Cu2+ ions release from 316L-Cu SS surface. XPS analysis proved that the enrichment of CuO, Cr2O3 and Cr(OH)3 on the surface of specimen could simultaneously guarantee a better corrosion resistance and stable antibacterial properties. The biocompatibility evaluation determined by RTCA assay also indicated that the 316L-Cu SS after antibacterial passivation was completely biocompatible.

  2. Evaluation damage threshold of optical thin-film using an amplified spontaneous emission source

    NASA Astrophysics Data System (ADS)

    Zhou, Qiong; Sun, Mingying; Zhang, Zhixiang; Yao, Yudong; Peng, Yujie; Liu, Dean; Zhu, Jianqiang

    2014-10-01

    An accurate evaluation method with an amplified spontaneous emission (ASE) as the irradiation source has been developed for testing thin-film damage threshold. The partial coherence of the ASE source results in a very smooth beam profile in the near-field and a uniform intensity distribution of the focal spot in the far-field. ASE is generated by an Nd: glass rod amplifier in SG-II high power laser facility, with pulse duration of 9 ns and spectral width (FWHM) of 1 nm. The damage threshold of the TiO2 high reflection film is 14.4J/cm2 using ASE as the irradiation source, about twice of 7.4 J/cm2 that tested by a laser source with the same pulse duration and central wavelength. The damage area induced by ASE is small with small-scale desquamation and a few pits, corresponding to the defect distribution of samples. Large area desquamation is observed in the area damaged by laser, as the main reason that the non-uniformity of the laser light. The ASE damage threshold leads to more accurate evaluations of the samples damage probability by reducing the influence of hot spots in the irradiation beam. Furthermore, the ASE source has a great potential in the detection of the defect distribution of the optical elements.

  3. The use of common bean (Phaseolus vulgaris) traditional varieties and their mixtures with commercial varieties to manage bean fly (Ophiomyia spp.) infestations in Uganda.

    PubMed

    Ssekandi, W; Mulumba, J W; Colangelo, P; Nankya, R; Fadda, C; Karungi, J; Otim, M; De Santis, P; Jarvis, D I

    The bean fly ( Ophiomyia spp.) is considered the most economically damaging field insect pest of common beans in Uganda. Despite the use of existing pest management approaches, reported damage has remained high. Forty-eight traditional and improved common bean varieties currently grown in farmers' fields were evaluated for resistance against bean fly. Data on bean fly incidence, severity and root damage from bean stem maggot were collected. Generalized linear mixed model (GLMM) revealed significant resistance to bean fly in the Ugandan traditional varieties. A popular resistant traditional variety and a popular susceptible commercial variety were selected from the 48 varieties and evaluated in pure and mixed stands. The incidence of bean fly infestation on both varieties in mixtures with different arrangements (systematic random versus rows), and different proportions within each of the two arrangements, was measured and analysed using GLMMs. The proportion of resistant varieties in a mixture and the arrangement type significantly decreased bean fly damage compared to pure stands, with the highest decrease in damage registered in the systematic random mixture with at least 50 % of resistant variety. The highest reduction in root damage, obvious 21 days after planting, was found in systematic random mixtures with at least 50 % of the resistant variety. Small holder farmers in East Africa and elsewhere in the world have local preferences for growing bean varieties in genetic mixtures. These mixtures can be enhanced by the use of resistant varieties in the mixtures to reduce bean fly damage on susceptible popular varieties.

  4. An Experimental Investigation of Damage Resistances and Damage Tolerance of Composite Materials

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.

    2003-01-01

    The project included three lines of investigation, aimed at a better understanding of the damage resistance and damage tolerance of pultruded composites. The three lines of investigation were: (i) measurement of permanent dent depth after transverse indentation at different load levels, and correlation with other damage parameters such as damage area (from x-radiography) and back surface crack length, (ii) estimation of point stress and average stress characteristic dimensions corresponding to measured damage parameters, and (iii) an attempt to measure the damage area by a reflection photoelastic technique. All the three lines of investigation were pursued.

  5. Passivation Behavior of Fe-Based Amorphous Coatings Prepared by High-Velocity Air/Oxygen Fuel Processes

    NASA Astrophysics Data System (ADS)

    Ma, H. R.; Li, J. W.; Chang, C. T.; Wang, X. M.; Li, R. W.

    2017-12-01

    Corrosion resistance and passivation behavior of Fe63Cr8Mo3.5Ni5P10B4C4Si2.5 amorphous coatings prepared by the activated combustion high-velocity air fuel (AC-HVAF) and high-velocity oxygen fuel (HVOF) processes have been studied in detail by cyclic potentiodynamic polarization, electrochemical impedance spectroscopy, cathodic polarization and Mott-Schottky approach. The AC-HVAF coating shows higher corrosion resistance than the HVOF coating in 3.5 wt.% NaCl solution, as evidenced by its lower corrosion current density and passive current density. It is found that the superior corrosion resistance of the AC-HVAF coating is attributed to the enhanced formation of a dense passive film with less defective structure, higher pitting resistance and passivity stability, as well as stronger repassivity.

  6. Pea weevil damage and chemical characteristics of pea cultivars determining their resistance to Bruchus pisorum L.

    PubMed

    Nikolova, I

    2016-04-01

    Bruchus pisorum (L.) is one of the most intractable pest problems of cultivated pea in Europe. Development of resistant cultivars is very important to environmental protection and would solve this problem to a great extent. Therefore, the resistance of five spring pea cultivars was studied to B. pisorum: Glyans, Modus; Kamerton and Svit and Pleven 4 based on the weevil damage and chemical composition of seeds. The seeds were classified as three types: healthy seeds (type one), damaged seeds with parasitoid emergence holes (type two) and damaged seeds with bruchid emergence holes (type three). From visibly damaged pea seeds by pea weevil B. pisorum was isolated the parasitoid Triaspis thoracica Curtis (Hymenoptera, Braconidae). Modus, followed by Glyans was outlined as resistant cultivars against the pea weevil. They had the lowest total damaged seed degree, loss in weight of damaged seeds (type two and type three) and values of susceptibility coefficients. A strong negative relationship (r = -0.838) between the weight of type one seeds and the proportion of type three seeds was found. Cultivars with lower protein and phosphorus (P) content had a lower level of damage. The crude protein, crude fiber and P content in damaged seeds significantly or no significantly were increased as compared with the healthy seeds due to weevil damage. The P content had the highest significant influence on pea weevil infestation. Use of chemical markers for resistance to the creation of new pea cultivars can be effective method for defense and control against B. pisorum.

  7. Blood meal origins and insecticide susceptibility of Anopheles arabiensis from Chano in South-West Ethiopia.

    PubMed

    Massebo, Fekadu; Balkew, Meshesha; Gebre-Michael, Teshome; Lindtjørn, Bernt

    2013-02-22

    Anopheles arabiensis, the main malaria vector in Ethiopia, shows both anthropophilic and zoophilic behaviours. Insecticide resistance is increasing, and alternative methods of vector control are needed. The objectives of this study were to determine the blood meal origins and the susceptibility to insecticides of An. arabiensis from Chano village near Arba Minch in South-West Ethiopia. Blood meal sources of anopheline mosquitoes collected using Centers for Disease Control and Prevention (CDC) light traps and pyrethrum spray catches (PSC) from human dwellings, and hand-held mouth aspirators from outdoor pit shelters were analysed using a direct enzyme-linked-immunosorbent assay (ELISA). The susceptibility of An. arabiensis to pyrethroid insecticides (alphacypermethrin, lambdacyhalothrin, deltamethrin, and cyfluthrin) and DDT was assessed using females reared from larval and pupal collections from natural breeding sites. The blood meal origins of 2967 freshly fed Anopheles mosquitoes were determined. An. arabiensis was the predominant species (75%), and it fed mainly on cattle. The densities of both freshly fed An. arabiensis and those fed on human blood followed similar seasonal patterns. The overall human blood index (HBI) of An. arabiensis, including mixed blood meals, was 44% and the bovine blood index (BBI) was 69%. The HBI of An. arabiensis from CDC light trap collections was 75% and this was higher than those for PSC (38%) and outdoor pit shelter collections (13%), while the BBI was 65% for PSC, 68% for outdoor pit shelters and 72% for CDC light traps. More freshly fed and human blood-fed An. arabiensis were sampled from houses close to the shore of Lake Abaya (the major breeding site).A high proportion of An. arabiensis was resistant to the pyrethroid insecticides, with a mortality rate of 56% for lambdacyhalothrin, 50% for cyfluthrin and alphacypermethrin, 47% for deltamethrin, and 10% for DDT. Anopheles arabiensis is the predominant species of anopheline mosquito in this region, and cattle are the main source of its blood meals. The greater tendency of this species to feed on cattle justifies the application of insecticides on cattle to control it. However, An. arabiensis has already developed resistance to the available pyrethroid insecticides, and alternative insecticides are needed for malaria vector control.

  8. Irreversible entropy model for damage diagnosis in resistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuadras, Angel, E-mail: angel.cuadras@upc.edu; Crisóstomo, Javier; Ovejas, Victoria J.

    2015-10-28

    We propose a method to characterize electrical resistor damage based on entropy measurements. Irreversible entropy and the rate at which it is generated are more convenient parameters than resistance for describing damage because they are essentially positive in virtue of the second law of thermodynamics, whereas resistance may increase or decrease depending on the degradation mechanism. Commercial resistors were tested in order to characterize the damage induced by power surges. Resistors were biased with constant and pulsed voltage signals, leading to power dissipation in the range of 4–8 W, which is well above the 0.25 W nominal power to initiate failure. Entropymore » was inferred from the added power and temperature evolution. A model is proposed to understand the relationship among resistance, entropy, and damage. The power surge dissipates into heat (Joule effect) and damages the resistor. The results show a correlation between entropy generation rate and resistor failure. We conclude that damage can be conveniently assessed from irreversible entropy generation. Our results for resistors can be easily extrapolated to other systems or machines that can be modeled based on their resistance.« less

  9. Polysaccharide Compositions of Intervessel Pit Membranes Contribute to Pierce’s Disease Resistance of Grapevines1[OA

    PubMed Central

    Sun, Qiang; Greve, L. Carl; Labavitch, John M.

    2011-01-01

    Symptom development of Pierce’s disease (PD) in grapevine (Vitis vinifera) depends largely on the ability of the bacterium Xylella fastidiosa to use cell wall-degrading enzymes (CWDEs) to break up intervessel pit membranes (PMs) and spread through the vessel system. In this study, an immunohistochemical technique was developed to analyze pectic and hemicellulosic polysaccharides of intervessel PMs. Our results indicate that PMs of grapevine genotypes with different PD resistance differed in the composition and structure of homogalacturonans (HGs) and xyloglucans (XyGs), the potential targets of the pathogen’s CWDEs. The PMs of PD-resistant grapevine genotypes lacked fucosylated XyGs and weakly methyl-esterified HGs (ME-HGs), and contained a small amount of heavily ME-HGs. In contrast, PMs of PD-susceptible genotypes all had substantial amounts of fucosylated XyGs and weakly ME-HGs, but lacked heavily ME-HGs. The intervessel PM integrity and the pathogen’s distribution in Xylella-infected grapevines also showed differences among the genotypes. In pathogen-inoculated, PD-resistant genotypes PM integrity was well maintained and Xylella cells were only found close to the inoculation site. However, in inoculated PD-susceptible genotypes, PMs in the vessels associated with bacteria lost their integrity and the systemic presence of the X. fastidiosa pathogen was confirmed. Our analysis also provided a relatively clear understanding of the process by which intervessel PMs are degraded. All of these observations support the conclusion that weakly ME-HGs and fucosylated XyGs are substrates of the pathogen’s CWDEs and their presence in or absence from PMs may contribute to grapevine’s PD susceptibility. PMID:21343427

  10. Damage Characterization in SiC/SiC Composites using Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Xia, Zhenhai

    2011-01-01

    SiC/SiC ceramic matrix composites (CMCs) under creep-rupture loading accumulate damage by means of local matrix cracks that typically form near a stress concentration, such as a 90o fiber tow or large matrix pore, and grow over time. Such damage is difficult to detect through conventional techniques. Electrical resistance changes can be correlated with matrix cracking to provide a means of damage detection. Sylramic-iBN fiber-reinforced SiC composites with both melt infiltrated (MI) and chemical vapor infiltrated (CVI) matrix types are compared here. Results for both systems exhibit an increase in resistance prior to fracture, which can be detected either in situ or post-damage.

  11. Electrical Resistance Based Damage Modeling of Multifunctional Carbon Fiber Reinforced Polymer Matrix Composites

    NASA Astrophysics Data System (ADS)

    Hart, Robert James

    In the current thesis, the 4-probe electrical resistance of carbon fiber-reinforced polymer (CFRP) composites is utilized as a metric for sensing low-velocity impact damage. A robust method has been developed for recovering the directionally dependent electrical resistivities using an experimental line-type 4-probe resistance method. Next, the concept of effective conducting thickness was uniquely applied in the development of a brand new point-type 4-probe method for applications with electrically anisotropic materials. An extensive experimental study was completed to characterize the 4-probe electrical resistance of CFRP specimens using both the traditional line-type and new point-type methods. Leveraging the concept of effective conducting thickness, a novel method was developed for building 4-probe electrical finite element (FE) models in COMSOL. The electrical models were validated against experimental resistance measurements and the FE models demonstrated predictive capabilities when applied to CFRP specimens with varying thickness and layup. These new models demonstrated a significant improvement in accuracy compared to previous literature and could provide a framework for future advancements in FE modeling of electrically anisotropic materials. FE models were then developed in ABAQUS for evaluating the influence of prescribed localized damage on the 4-probe resistance. Experimental data was compiled on the impact response of various CFRP laminates, and was used in the development of quasi- static FE models for predicting presence of impact-induced delamination. The simulation-based delamination predictions were then integrated into the electrical FE models for the purpose of studying the influence of realistic damage patterns on electrical resistance. When the size of the delamination damage was moderate compared to the electrode spacing, the electrical resistance increased by less than 1% due to the delamination damage. However, for a specimen with large delamination extending beyond the electrode locations, the oblique resistance increased by 30%. This result suggests that for damage sensing applications, the spacing of electrodes relative to the size of the delamination is important. Finally CT image data was used to model 3-D void distributions and the electrical response of such specimens were compared to models with no voids. As the void content increased, the electrical resistance increased non-linearly. The relationship between void content and electrical resistance was attributed to a combination of three factors: (i) size and shape, (ii) orientation, and (iii) distribution of voids. As a whole, the current thesis provides a comprehensive framework for developing predictive, resistance-based damage sensing models for CFRP laminates of various layup and thickness.

  12. Hydraulics of high-yield orchard trees: a case study of three Malus domestica cultivars.

    PubMed

    Beikircher, Barbara; De Cesare, Chiara; Mayr, Stefan

    2013-12-01

    The drought tolerance of three economically important apple cultivars, Golden Delicious, Braeburn and Red Delicious, was analysed. The work offers insights into the hydraulics of these high-yield trees and indicates a possible hydraulic limitation of carbon gain. The hydraulic safety and efficiency of branch xylem and leaves were quantified, drought tolerance of living tissues was measured and stomatal regulation, turgor-loss point and osmotic potential at full turgor were analysed. Physiological measurements were correlated with anatomical parameters, such as conduit diameter, cell-wall reinforcement, stomatal density and stomatal pore length. Hydraulic safety differed considerably between the three cultivars with Golden Delicious being significantly less vulnerable to drought-induced embolism than Braeburn and Red Delicious. In Golden Delicious, leaves were less resistant than branch xylem, while in the other cultivars leaves were more resistant than branch xylem. Hydraulic efficiency and xylem anatomical measurements indicate differences in pit properties, which may also be responsible for variations in hydraulic safety. In all three cultivars, full stomatal closure occurred at water potentials where turgor had already been lost and severe loss of hydraulic conductivity as well as damage to living cells had been induced. The consequential negative safety margins pose a risk for hydraulic failure but facilitate carbon gain, which is further improved by the observed high stomatal conductance. Maximal stomatal conductance was clearly seen to be related to stomatal density and size. Based on our results, these three high-yield Malus domestica Borkh. cultivars span a wide range of drought tolerances, appear optimized for maximal carbon gain and, thus, all perform best under well-managed growing conditions.

  13. Tolerance to deer herbivory and resistance to insect herbivores in the common evening primrose (Oenothera biennis).

    PubMed

    Puentes, A; Johnson, M T J

    2016-01-01

    The evolution of plant defence in response to herbivory will depend on the fitness effects of damage, availability of genetic variation and potential ecological and genetic constraints on defence. Here, we examine the potential for evolution of tolerance to deer herbivory in Oenothera biennis while simultaneously considering resistance to natural insect herbivores. We examined (i) the effects of deer damage on fitness, (ii) the presence of genetic variation in tolerance and resistance, (iii) selection on tolerance, (iv) genetic correlations with resistance that could constrain evolution of tolerance and (v) plant traits that might predict defence. In a field experiment, we simulated deer damage occurring early and late in the season, recorded arthropod abundances, flowering phenology and measured growth rate and lifetime reproduction. Our study showed that deer herbivory has a negative effect on fitness, with effects being more pronounced for late-season damage. Selection acted to increase tolerance to deer damage, yet there was low and nonsignificant genetic variation in this trait. In contrast, there was substantial genetic variation in resistance to insect herbivores. Resistance was genetically uncorrelated with tolerance, whereas positive genetic correlations in resistance to insect herbivores suggest there exists diffuse selection on resistance traits. In addition, growth rate and flowering time did not predict variation in tolerance, but flowering phenology was genetically correlated with resistance. Our results suggest that deer damage has the potential to exert selection because browsing reduces plant fitness, but limited standing genetic variation in tolerance is expected to constrain adaptive evolution in O. biennis. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  14. A damage tolerance comparison of IM7/8551 and IM8G/8553 carbon/epoxy composites

    NASA Technical Reports Server (NTRS)

    Lance, D. G.; Nettles, A. T.

    1991-01-01

    A damage tolerance study of two new toughened carbon fiber/epoxy resin systems was undertaken as a continuation of ongoing work into screening new opposites for resistance to foreign object impact. This report is intended to be a supplement to NASA TP 3029 in which four new fiber/resin systems were tested for damage tolerance. Instrumented drop weight impact testing was used to inflict damage to 16-ply quasi-isotropic specimens. Instrumented output data and cross-sectional examinations of the damage zone were utilized to quantify the damage. It was found that the two fiber/resin systems tested in this study were much more impact resistant than an untoughened composite such as T300/934, but were not as impact resistant as other materials previously studied.

  15. Ranking Quantitative Resistance to Septoria tritici Blotch in Elite Wheat Cultivars Using Automated Image Analysis.

    PubMed

    Karisto, Petteri; Hund, Andreas; Yu, Kang; Anderegg, Jonas; Walter, Achim; Mascher, Fabio; McDonald, Bruce A; Mikaberidze, Alexey

    2018-05-01

    Quantitative resistance is likely to be more durable than major gene resistance for controlling Septoria tritici blotch (STB) on wheat. Earlier studies hypothesized that resistance affecting the degree of host damage, as measured by the percentage of leaf area covered by STB lesions, is distinct from resistance that affects pathogen reproduction, as measured by the density of pycnidia produced within lesions. We tested this hypothesis using a collection of 335 elite European winter wheat cultivars that was naturally infected by a diverse population of Zymoseptoria tritici in a replicated field experiment. We used automated image analysis of 21,420 scanned wheat leaves to obtain quantitative measures of conditional STB intensity that were precise, objective, and reproducible. These measures allowed us to explicitly separate resistance affecting host damage from resistance affecting pathogen reproduction, enabling us to confirm that these resistance traits are largely independent. The cultivar rankings based on host damage were different from the rankings based on pathogen reproduction, indicating that the two forms of resistance should be considered separately in breeding programs aiming to increase STB resistance. We hypothesize that these different forms of resistance are under separate genetic control, enabling them to be recombined to form new cultivars that are highly resistant to STB. We found a significant correlation between rankings based on automated image analysis and rankings based on traditional visual scoring, suggesting that image analysis can complement conventional measurements of STB resistance, based largely on host damage, while enabling a much more precise measure of pathogen reproduction. We showed that measures of pathogen reproduction early in the growing season were the best predictors of host damage late in the growing season, illustrating the importance of breeding for resistance that reduces pathogen reproduction in order to minimize yield losses caused by STB. These data can already be used by breeding programs to choose wheat cultivars that are broadly resistant to naturally diverse Z. tritici populations according to the different classes of resistance.

  16. Spall Damage of Concrete Structures

    DTIC Science & Technology

    1988-06-01

    structures prediction Structural response Cased charges Scabbing Tests Concrete walls--testing . emi -hardened Upgrading Conventional weapons Spall Weapon...recording devices in a trailer approximately 750 feet from the test pit. Up to 30 channels were recorded on a Sangamo Model III, 32-channel FM magnetic tape...6.7"’DEEP 23.6" N 21’.6" 0.114? 4000 0 73670636 RATx.000620 RAT%.000520 SHEILD WALL DESTROYED MAIM WALL 0.2611 4000 0.S9001025 RAT-.000S29 RATa.000S20

  17. Damage to dorsolateral prefrontal cortex affects tradeoffs between honesty and self-interest.

    PubMed

    Zhu, Lusha; Jenkins, Adrianna C; Set, Eric; Scabini, Donatella; Knight, Robert T; Chiu, Pearl H; King-Casas, Brooks; Hsu, Ming

    2014-10-01

    Substantial correlational evidence suggests that prefrontal regions are critical to honest and dishonest behavior, but causal evidence specifying the nature of this involvement remains absent. We found that lesions of the human dorsolateral prefrontal cortex (DLPFC) decreased the effect of honesty concerns on behavior in economic games that pit honesty motives against self-interest, but did not affect decisions when honesty concerns were absent. These results point to a causal role for DLPFC in honest behavior.

  18. Method to repair localized amplitude defects in a EUV lithography mask blank

    DOEpatents

    Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.; Chapman, Henry N.

    2005-11-22

    A method and apparatus are provided for the repair of an amplitude defect in a multilayer coating. A significant number of layers underneath the amplitude defect are undamaged. The repair technique restores the local reflectivity of the coating by physically removing the defect and leaving a wide, shallow crater that exposes the underlying intact layers. The particle, pit or scratch is first removed the remaining damaged region is etched away without disturbing the intact underlying layers.

  19. Sodium-dependent phosphate cotransporters and phosphate-induced calcification of vascular smooth muscle cells: Redundant roles for PiT-1 and PiT-2

    PubMed Central

    Crouthamel, Matthew H.; Lau, Wei Ling; Leaf, Elizabeth M.; Chavkin, Nick; Wallingford, Mary C.; Peterson, Danielle F.; Li, Xianwu; Liu, Yonggang; Chin, Michael T.; Levi, Moshe; Giachelli, Cecilia M.

    2014-01-01

    Objective Elevated serum phosphate has emerged as a major risk factor for vascular calcification. The sodium-dependent phosphate cotransporter, PiT-1, was previously shown to be required for phosphate-induced osteogenic differentiation and calcification of cultured human VSMCs, but its importance in vascular calcification in vivo, as well as the potential role of its homologue, PiT-2, have not been determined. We investigated the in vivo requirement for PiT-1 in vascular calcification using a mouse model of chronic kidney disease, and the potential compensatory role of PiT-2 using in vitro knockdown and over-expression strategies. Approach and Results Mice with targeted deletion of PiT-1 in VSMCs were generated (PiT-1Δsm). PiT-1 mRNA levels were undetectable whereas PiT-2 mRNA levels were increased 2 fold in the vascular aortic media of PiT-1Δsm compared to PiT-1flox/flox control. When arterial medial calcification was induced in PiT-1Δsm and PiT-1flox/flox by chronic kidney disease followed by dietary phosphate loading, the degree of aortic calcification was not different between genotypes, suggesting compensation by PiT-2. Consistent with this possibility, VSMCs isolated from PiT-1Δsm mice had no PiT-1 mRNA expression, increased PiT-2 mRNA levels, and no difference in sodium-dependent phosphate uptake or phosphate-induced matrix calcification compared to PiT-1flox/flox VSMCs. Knockdown of PiT-2 decreased phosphate uptake and phosphate-induced calcification of PiT-1Δsm VSMCs. Furthermore, over-expression of PiT-2 restored these parameters in human PiT-1-deficient VSMCs. Conclusions PiT-2 can mediate phosphate uptake and calcification of VSMCs in the absence of PiT-1. Mechanistically, PiT-1 and PiT-2 appear to serve redundant roles in phosphate-induced calcification of vascular smooth muscle cells. PMID:23968976

  20. Resistance to Spodoptera frugiperda (Lepidoptera: Noctuidae) and Euxesta stigmatias (Diptera: Ulidiidae) in sweet corn derived from exogenous and endogenous genetic systems.

    PubMed

    Nuessly, G S; Scully, B T; Hentz, M G; Beiriger, R; Snook, M E; Widstrom, N W

    2007-12-01

    Field trials using Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) and Euxesta stigmatias Loew (Diptera: Ulidiidae) were conducted to evaluate resistance and potential damage interactions between these two primary corn, Zea mays L., pests against Lepidoptera-resistant corn varieties derived from both endogenous and exogenous sources. The endogenous source of resistance was maysin, a C-glycosyl flavone produced in high concentrations in varieties 'Zapalote Chico 2451' and 'Zapalote Chico sh2'. The exogenous resistance source was the Bacillus thuringiensis (Bt)11 gene that expresses Cry1A(b) insecticidal protein found in 'Attribute GSS-0966'. Damage by the two pests was compared among these resistant varieties and the susceptible 'Primetime'. Single-species tests determined that the Zapalote Chico varieties and GSS-0966 effectively reduced S. frugiperda larval damage compared with Primetime. E. stigmatias larval damage was less in the Zapalote Chico varieties than the other varieties in single-species tests. E. stigmatias damage was greater on S. frugiperda-infested versus S. frugiperda-excluded ears. Ears with S. frugiperda damage to husk, silk and kernels had greater E. stigmatias damage than ears with less S. frugiperda damage. Reversed phase high-performance liquid chromatography analysis of nonpollinated corn silk collected from field plots determined that isoorientin, maysin, and apimaysin plus 3'-methoxymaysin concentrations followed the order Zapalote Chico sh2 > Zapalote Chico 2451 > Attribute GSS-0966 = Primetime. Chlorogenic acid concentrations were greatest in Zapalote Chico 2451. The two high maysin Zapalote Chico varieties did as well against fall armyworm as the Bt-enhanced GSS-0966, and they outperformed GSS-0966 against E. stigmatias.

  1. Acquired resistance to rechallenge injury in rats recovered from subclinical renal damage with uranyl acetate-Importance of proliferative activity of tubular cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yuan; Fujigaki, Yoshihide, E-mail: yf0516@hama-med.ac.j; Sakakima, Masanori

    Animals recovered from acute renal failure are resistant to subsequent insult. We investigated whether rats recovered from mild proximal tubule (PT) injury without renal dysfunction (subclinical renal damage) acquire the same resistance. Rats 14 days after recovering from subclinical renal damage, which was induced by 0.2 mg/kg of uranyl acetate (UA) (sub-toxic dose), were rechallenged with 4 mg/kg of UA (nephrotoxic dose). Fate of PT cells and renal function were examined in response to nephrotoxic dose of UA. All divided cells after sub-toxic dose of UA insult were labeled with bromodeoxyuridine (BrdU) for 14 days then the number of PTmore » cells with or without BrdU-labeling was counted following nephrotoxic dose of UA insult. Rats recovered from subclinical renal damage gained resistance to nephrotoxic dose of UA with reduced renal dysfunction, less severity of peak damage (necrotic and TUNEL+ apoptotic cells) and accelerated PT cell proliferation, but with earlier peak of PT damage. The decrease in number of PT cells in the early phase of rechallenge injury with nephrotoxic UA was more in rats pretreated with sub-toxic dose of UA than vehicle pretreated rats. The exaggerated loss of PT cells was mainly caused by the exaggerated loss of BrdU+ divided cells. In contrast, accelerated cell proliferation in rats recovered from sub-toxic dose of UA was observed mainly in BrdU- non-divided cells. The findings suggest that rats recovered from subclinical renal damage showed partial acquired resistance to nephrotoxic insult. Accelerated recovery with increased proliferative activity of non-divided PT cells after subclinical renal damage may mainly contribute to acquired resistance.« less

  2. Credit PSR. This view depicts the southwest and southeast facades ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This view depicts the southwest and southeast facades as seen when looking west southwest (260°). The building consists of a small lean-to control room and a two-story space containing a large casting pit. The pit, which can be seen through the open doors, was never used due to changes in JPL's mission. This steel frame structure is clad in "Transite" board (a fire resistant pressed asbestos composite material) and interior lighting consists of individual explosion proof lamps mounted around the walls. The building was rated for 10,000 pounds (4,545 Kg) of class 2 materials and four personnel. It was licensed 5 June 1989 for ammonium perchlorate (NH4C10,), ammonium nitrate (NH4NO3), and sodium nitrate (NaNO3) - Jet Propulsion Laboratory Edwards Facility, Casting & Curing Building, Edwards Air Force Base, Boron, Kern County, CA

  3. Burner Rig Hot Corrosion of a Single Crystal Ni-48Al-Ti-Hf-Ga Alloy

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Darolia, Ram; Cuy, Michael D.

    1998-01-01

    The hot corrosion resistance of a single crystal Ni-48Al-1Ti-0.5Hf-0.2Ga alloy was examined in a Mach 0.3 burner rig at 900 C for 300 hours. The combustion chamber was doped with 2 ppmw synthetic sea salt. The hot corrosion attack produced a random mound morphology on the surface. Microstructurally, the hot corrosion attack appeared to initiate with oxide-filled pits which were often broad and shallow. At an intermediate stage, the pits increased in size to incorporate unoxidized Ni islands in the corrosion product. The rampant attack stage, which was observed only at sharp sample corners, was characterized by rapid inward growth of alumina in finger-like protrusions incorporating significant amounts of Al-depleted Ni islands. Aluminum consumption in the oxide fingers resulted in the growth of a gamma' layer ahead of the advancing oxide fingers.

  4. Thin film femtosecond laser damage competition

    NASA Astrophysics Data System (ADS)

    Stolz, Christopher J.; Ristau, Detlev; Turowski, Marcus; Blaschke, Holger

    2009-10-01

    In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

  5. BDS thin film damage competition

    NASA Astrophysics Data System (ADS)

    Stolz, Christopher J.; Thomas, Michael D.; Griffin, Andrew J.

    2008-10-01

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  6. Self-healing cable apparatus and methods

    NASA Technical Reports Server (NTRS)

    Huston, Dryver (Inventor); Esser, Brian (Inventor)

    2007-01-01

    Self-healing cable apparatus and methods are disclosed. The cable has a central core surrounded by an adaptive cover that can extend over the entire length of the cable or just one or more portions of the cable. The adaptive cover includes a protective layer having an initial damage resistance, and a reactive layer. When the cable is subjected to a localized damaging force, the reactive layer responds by creating a corresponding localized self-healed region. The self-healed region provides the cable with enhanced damage resistance as compared to the cable's initial damage resistance. Embodiments of the invention utilize conventional epoxies or foaming materials in the reactive layer that are released to form the self-healed region when the damaging force reaches the reactive layer.

  7. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity

    PubMed Central

    Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing

    2016-01-01

    Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on. PMID:26853810

  8. Effect of ageing time and temperature on corrosion behaviour of aluminum alloy 2014

    NASA Astrophysics Data System (ADS)

    Gadpale, Vikas; Banjare, Pragya N.; Manoj, Manoranjan Kumar

    2018-03-01

    In this paper, the effect of corrosion behaviour of aluminium alloy 2014 were studied by potentiodynamic polarization in 1 mole of NaCl solution of aged sample. The experimental testing results concluded that, corrosion resistance of Aluminum alloy 2014 degraded with the increasing the temperature (150°C & 200°C) and time of ageing. Corroded surface of the aged specimens was tested under optical microscopes for microstructures for phase analysis. Optical micrographs of corroded surfaces showed general corrosion and pitting corrosion. The corrosion resistance of lower ageing temperature and lower ageing time is higher because of its fine distribution of precipitates in matrix phase.

  9. Out-of-plane properties

    NASA Technical Reports Server (NTRS)

    Jackson, Wade C.; Portanova, Marc A.

    1995-01-01

    This paper summarizes three areas of research which were performed to characterize out-of-plane properties of composite materials. In the first investigation, a series of tests was run to characterize the through-the-thickness tensile strength for a variety of composites that included 2D braids, 2D and 3D weaves, and prepreg tapes. A new test method based on a curved beam was evaluated. Failures were significantly different between the 2D materials and the 3D weaves. The 2D materials delaminated between layers due to out-of-plane tensile stresses while the 3D weaves failed due to the formation of radial cracks between the surface plies caused by high circumferential stresses along the inner radius. The strength of the 2D textile composites did not increase relative to the tapes. Final failure in the 3D weaves was caused by a circumferential crack similar to the 2D materials and occurred at a lower bending moment than in other materials. The early failures in the 3D weaves were caused by radial crack formation rather than a low through-the-thickness strength. The second investigation focused on the development of a standard impact test method to measure impact damage resistance. The only impact tests that currently exist are compression after impact (CAI) tests which incorporate elements of both damage resistance and damage tolerance. A new impact test method is under development which uses a quasi-static indentation (QSI) test to directly measure damage resistance. Damage resistance is quantified in terms of the contact force to produce a unit of damage where a metric for damage may be area in C-scan, depth of residual dent , penetration, damage growth, etc. A final draft of an impact standard that uses a QSI test method will be presented to the ASTM Impact Task Group on impact. In the third investigation, the impact damage resistance behavior of a variety of textile materials was studied using the QSI test method. In this study, the force where large damage initiates was measured and the delamination size as a function of force was determined. The force to initiate large damage was significantly lower in braids and weaves. The delamination diameter - impact forace relationship was quanitfied using a damage resistance parameter, Q(*), which related delamination diameter to imapct force over a range of delamination sizes. Using this Q(*) parameter to rate the materials, the stitched uniweaves, toughened epoxy tapes, and through-the-thickness orthogonal interlock weave were the most damage resistant.

  10. Strong oviposition preference for Bt over non-Bt maize in Spodoptera frugiperda and its implications for the evolution of resistance

    PubMed Central

    2014-01-01

    Background Transgenic crops expressing Bt toxins have substantial benefits for growers in terms of reduced synthetic insecticide inputs, area-wide pest management and yield. This valuable technology depends upon delaying the evolution of resistance. The ‘high dose/refuge strategy’, in which a refuge of non-Bt plants is planted in close proximity to the Bt crop, is the foundation of most existing resistance management. Most theoretical analyses of the high dose/refuge strategy assume random oviposition across refugia and Bt crops. Results In this study we examined oviposition and survival of Spodoptera frugiperda across conventional and Bt maize and explored the impact of oviposition behavior on the evolution of resistance in simulation models. Over six growing seasons oviposition rates per plant were higher in Bt crops than in refugia. The Cry1F Bt maize variety retained largely undamaged leaves, and oviposition preference was correlated with the level of feeding damage in the refuge. In simulation models, damage-avoiding oviposition accelerated the evolution of resistance and either led to requirements for larger refugia or undermined resistance management altogether. Since larval densities affected oviposition preferences, pest population dynamics affected resistance evolution: larger refugia were weakly beneficial for resistance management if they increased pest population sizes and the concomitant degree of leaf damage. Conclusions Damaged host plants have reduced attractiveness to many insect pests, and crops expressing Bt toxins are generally less damaged than conventional counterparts. Resistance management strategies should take account of this behavior, as it has the potential to undermine the effectiveness of existing practice, especially in the tropics where many pests are polyvoltinous. Efforts to bring down total pest population sizes and/or increase the attractiveness of damaged conventional plants will have substantial benefits for slowing the evolution of resistance. PMID:24935031

  11. Susceptibility of nitinol to localized corrosion.

    PubMed

    Pound, Bruce G

    2006-04-01

    The effect of different conditions on the susceptibility of nitinol to localized corrosion was examined using the cyclic potentiodynamic polarization technique. Tests were performed on mechanically polished (MP) and electropolished (EP) nitinol wire in 0.9 wt % NaCl and phosphate-buffered saline (PBS). A polarization curve was also obtained for an EP stent in the NaCl. Differences between the breakdown potential and the corrosion potential (E(corr)) and between the protection potential and E(corr) were used to evaluate the susceptibility to pitting corrosion and crevice corrosion, respectively. The type of solution and, particularly, the surface condition affected the resistance of nitinol to pitting corrosion. Both EP and MP nitinol were more susceptible to breakdown in the NaCl than in PBS, indicating that the NaCl provides a more severe test environment than does PBS. Electropolishing increased the breakdown resistance of nitinol in PBS and the NaCl, as found in previous studies with Hank's solution. Surface condition, however, did not have a significant effect on the repassivation behavior of nitinol, as is also the case with titanium. The EP wire and stent showed similar breakdown and repassivation behavior in the NaCl, suggesting that the nature of the EP surface was similar in both cases. (c) 2005 Wiley Periodicals, Inc.

  12. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels.

    PubMed

    Le, M K; Zhu, X M

    2001-04-01

    Plasma source ion nitriding has emerged as a low-temperature, low-pressure nitriding approach for low-energy implanting nitrogen ions and then diffusing them into steel and alloy. In this work, a single high nitrogen face-centered-cubic (f.c.c.) phase (gammaN) formed on the 1Cr18Ni9Ti and AISI 316L austenitic stainless steels with a high nitrogen concentration of about 32 at % was characterized using Auger electron spectroscopy, electron probe microanalysis, glancing angle X-ray diffraction, and transmission electron microscopy. The corrosion resistance of the gammaN-phase layer was studied by the electrochemical cyclic polarization measurement in Ringer's solutions buffered to pH from 3.5 to 7.2 at a temperature of 37 degrees C. No pitting corrosion in the Ringer's solutions with pH = 7.2 and 5.5 was detected for the gammaN-phase layers on the two stainless steels. The high pitting potential for the gammaN-phase layers is higher, about 500 and 600 mV, above that of the two original stainless steels, respectively, in the Ringer's solution with pH = 3.5. The corroded surface morphologies of the gammaN-phase layers observed by scanning electron microscopy are consistent with the results of the electrochemical polarization measurement.

  13. Effects of subpressure on the sealing ability of dental sealant in vitro.

    PubMed

    Tian, Y M; Zhuge, R S; Zhang, Z T; Zheng, D X; Ding, N; Li, Y M

    2018-06-06

    Pits and fissures sealing with flowable materials is a popular method for preventing caries in preventive dentistry while there is still microleakage existed. This in vitro study aimed to explore the effects of subpressure technique on the sealing ability of pit and fissure sealant. One hundred and forty-one extracted human premolars were collected in this study and treated with different pressure (atmosphere pressure as group C, -0.04 MPa as group S 4 and -0.08 MPa as group S 8 ). Thermocycling (×5000) was also performed. Penetration percentage, microleakage, cross-sectional microhardness (Knoop, KMH) and mineral loss were evaluated. Kappa tests, Friedman nonparametric and two-way ANOVA were used for data analysis. Penetration percentages of group S 4 and S 8 were significant higher compared to that of group C. Microleakage of groups was similar before thermocycling, while subpressure groups showed lower scale of microleakage after thermocycling. Data of KMH and mineral loss showed significant differences between subpressure and thermocycling groups. Subpressure technique could increase the penetration of pit and fissure sealant, decrease microleakage and increase resistance of demineralization after thermocycling. This novel technique may have great potential for preventing from secondary caries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Corrosion resistance and mechanical properties of titanium nitride plating on orthodontic wires.

    PubMed

    Sugisawa, Haruki; Kitaura, Hideki; Ueda, Kyosuke; Kimura, Keisuke; Ishida, Masahiko; Ochi, Yumiko; Kishikawa, Akiko; Ogawa, Saika; Takano-Yamamoto, Teruko

    2018-03-30

    Titanium nitride (TiN) coating by ion plating has properties such as high hardness, wear resistance, corrosion resistance, and surface lubricity, therefore TiN coating is often used in various dental appliances and materials. In this study, we evaluated the corrosion behaviors and mechanical properties of TiN coated stainless steel (SS) and nickel titanium (Ni-Ti) orthodontic wires prepared by ion plating. TiN coating by ion plating improves the corrosion resistance of orthodontic wires. The corrosion pitting of the TiN coated wire surface become small. The tensile strength and stiffness of SS wire were increased after TiN coating. In contrast, its elastic force, which is a property for Ni-Ti wire, was decreased. In addition, TiN coating provided small friction forces. The low level of friction may increase tooth movement efficiently. Therefore, TiN coated SS wire could be useful for orthodontics treatment.

  15. Mechanical Behavior of Stainless Steel Fiber-Reinforced Composites Exposed to Accelerated Corrosion

    PubMed Central

    O’Brien, Caitlin; McBride, Amanda; E. Zaghi, Arash; Burke, Kelly A.; Hill, Alex

    2017-01-01

    Recent advancements in metal fibers have introduced a promising new type of stainless steel fiber with high stiffness, high failure strain, and a thickness < 100 μm (<0.00394 in.) that can be utilized in a steel fiber-reinforced polymer. However, stainless steel is known to be susceptible to pitting corrosion. The main goal of this study is to compare the impact of corrosion on the mechanical properties of steel fiber-reinforced composites with those of conventional types of stainless steel. By providing experimental evidences, this study may promote the application of steel fiber-reinforced composite as a viable alternative to conventional metals. Samples of steel fiber-reinforced polymer and four different types of stainless steel were subjected to 144 and 288 h of corrosion in ferric chloride solution to simulate accelerated corrosion conditions. The weight losses due to corrosion were recorded. The corroded and control samples were tested under monotonic tensile loading to measure the ultimate stresses and strains. The effect of corrosion on the mechanical properties of the different materials was evaluated. The digital image correlation (DIC) technique was used to investigate the failure mechanism of the corrosion-damaged specimens. Overall, steel fiber-reinforced composites had the greatest corrosion resistance. PMID:28773132

  16. Physiological and molecular alterations promoted by Schizotetranychus oryzae mite infestation in rice leaves

    PubMed Central

    Buffon, Giseli; Blasi, Édina A. R.; Adamski, Janete M.; Ferla, Noeli J.; Berger, Markus; Santi, Lucélia; Lavallée-Adam, Mathieu; Yates, John R.; Beys-da-Silva, Walter O.; Sperotto, Raul A.

    2016-01-01

    Infestation of phytophagous mite Schizotetranychus oryzae in rice causes critical yield losses. To better understand this interaction, we employed Multidimensional Protein Identification Technology (MudPIT) approach to identify differentially expressed proteins. We detected 18 unique proteins in control and 872 in infested leaves, respectively, along with 32 proteins more abundant in control leaves. S. oryzae infestation caused decreased abundance of proteins related to photosynthesis (mostly photosystem II-related), carbon assimilation and energy production, chloroplast detoxification, defense, fatty acid and gibberellin synthesis. On the other hand, infestation caused increased abundance of proteins involved in protein modification and degradation, gene expression at the translation level, protein partitioning to different organelles, lipid metabolism, actin cytoskeleton remodeling, and synthesis of jasmonate, amino acid and molecular chaperones. Our results also suggest that S. oryzae infestation promotes cell wall remodeling and interferes with ethylene biosynthesis in rice leaves. Proteomic data were positively correlated with enzymatic assays and RT-qPCR analysis. Our findings describe the protein expression patterns of infested rice leaves, and suggest that the acceptor side of PSII is probably the major damaged target in the photosynthetic apparatus. These data will be useful in future biotechnological approaches aiming to induce phytophagous mite resistance in rice. PMID:26667653

  17. In-space technology development: Atomic oxygen and orbital debris effects

    NASA Technical Reports Server (NTRS)

    Visentine, James T.; Potter, Andrew E., Jr.

    1989-01-01

    Earlier Shuttle flight experiments have shown atomic oxygen within the orbital environment can interact with many materials to produce surface recession and mass loss and combine catalytically with other constituents to generate visible and infrared glows. In addition to these effects, examinations of returned satellite hardware have shown many spacecraft materials are also susceptible to damage from high velocity impacts with orbital space debris. These effects are of particular concern for large, multi-mission spacecraft, such as Space Station and SDI operational satellites, that will operate in low-Earth orbit (LEO) during the late 1990's. Not only must these spacecraft include materials and exterior coatings that are resistant to atomic oxygen surface interactions, but these materials must also provide adequate protection against erosion and pitting that could result from numerous impacts with small particles (less than 100 microns) of orbital space debris. An overview of these concerns is presented, and activities now underway to develop materials and coatings are outlined that will provide adequate atomic protection for future spacecraft. The report also discusses atomic oxygen and orbital debris flight experiments now under development to expand our limited data base, correlate ground-based measurments with flight results, and develop an orbital debris collision warning system for use by future spacecraft.

  18. Resistance of cabbage (Brassica oleracea capitata group) crops to Mamestra brassicae.

    PubMed

    Cartea, M E; Francisco, M; Lema, M; Soengas, P; Velasco, P

    2010-10-01

    Twenty-one cabbage (Brassica oleracea capitata group) varieties, including 16 local varieties and five commercial hybrids, were screened for resistance to the moth Mamestra brassicae L. under natural and artificial conditions in northwestern Spain. Resistance was assessed as the proportion of damaged plants and damaged leaves, leaf feeding injury, and number of larvae present. Correlation coefficients among damage traits showed that a visual scale (general appearance rating) should be a useful indicator of resistance. Most local varieties were highly susceptible to M. brassicae, whereas the commercial hybrids tested were resistant in terms of head foliage consumption and number of larvae per plant. Performance of varieties was similar under natural and artificial infestation although some of them performed differently at each year. Three local varieties (MBG-BRS0057, MBG-BRS0074, and MBG-BRS0452) were highly susceptible at both natural and artificial infestation conditions being MBG-BRS0074 the most damaged variety. Two local varieties (MBG-BRS0402 and MBG-BRS0535) and commercial hybrids were identified as resistant or moderately resistant to M. brassicae. Among them, 'Corazón de Buey' and 'Cabeza negra' were the most resistant and produced compact heads. These varieties could be useful sources of resistance to obtain resistant varieties to M. brassicae or as donors of resistance to other Brassica crops. The possible role of leaf traits, head compactness, and leaf glucosinolate content in relation to M. brassicae resistance is discussed.

  19. Paleo-Environment and C-14 Dating: The Key to the Depositional Age of the Tha Chang and Related Sand Pits, Northeastern Thailand

    NASA Technical Reports Server (NTRS)

    Putthapiban, P.; Zolensky, M.; Jull, T.; Demartino, M.; Salyapongse, S.

    2012-01-01

    Tha Chang sand pits, Nakhon Ratchasima Province and many other sand pits in the area adjacent to the Mun River are characterized by their fluviatile environment in association with mass wasting deposits, along the paleo-river channel and the flood plain of the Mun River. Sediments of these deposits are characterized by clasts of various rock types especially the resistant ones with frequent big tree trunks, logs and wood fragments in different sizes and various stages of transformation from moldering stage to lignification and petrification. Widespread pyritization of the lower horizon suggests strongly reducing environment during burial. The Tha Chang deposits have been received much attention from geoscientists especially paleontologist communities, as they contain fragments of some distinct vertebrate species such as Stegadon sp., hominoid primate, rhinoceros Aceratherium and others. Based on the associated mammal fauna and hominoid fossils, the late Miocene ( 9 - 6 Ma) was given for the time of deposition of this sand and gravel unit. Some other reports believed that sediments and materials of these sand and gravel quarries (pits) were deposited by high-energy flood pulses contemporaneous with the tektites forming event during mid-Pleistocene at c. 0.8 Ma. Interpretation from Palynostratigraphical study suggested that the lower horizon of Tha Chang sand pit was deposited during Pliocene/Pleistocene period and the upper horizons are Pleistoncene/Holocene. It is crystal clear that all the fluviatile sediments including tektites and almost all fossil fragments being deposited in these sand pits were, likely a multiple times reworked materials. Only some old bamboo trees, some old crowling trees and fossils grasses observed on the old river bank are considered in situ. C-14 dating of 5 old wood specimens from Tha Chang Sand Pits, 15 old wood specimens from Chumpuang Sand Pits and one sample of old pottery from a Chumpuang Sand Pit were carried out in the NSF- Arizona AMS Laboratory. Although, there is no sharp boundary between the unconsolidated sedimentary horizons in the pits, C-14 ages obtained from the Tha Chang vary from 34,340 BP at the middle horizon (approx 10 m below ground zero) to >49,900 BP at the lower horizon with unknown basal formation (highly pyritized zone approx 20 - 25 m below ground zero). The ages for the Chumpuang vary from 41,700 BP, >45,900 BP and >49,900 BP from the upper most to the lower most of a broad horizon (approx 8 m to approx 12 m below ground zero). The C-14 age of the pottery collected from layer approximately 5 m below ground zero is 2,514 BP. The nature of fluviatile together with occasional mass wasting characteristics of all sand pits studies suggest the relatively faster depositional rate of the lower horizon which involved more flooding and mass wasting deposits than those of the upper horizons. The apparent of some mixing of the wood ages may indicate reworking and lag deposits nature of the area. The depositional rate of the upper most sand and soil horizon (5 m thick) is approximately 1 m per 500 years which mean both erosion and deposition had played a significant role during that time period. In term of the true age of the formation, we argue that since most of the materials deposited are reworked materials, all ages obtained from fossil fragments could not be the age of sand and gravel formation. Furthermore, the maximum age of all the tektite bearing horizons cannot be older than 0.8 Ma. The oldest C-14 age of 49,900 BP is interpreted as the minimum age of the Tha Chang and related sand pits formation when geomorphology of the area was a lot more hilly and much higher gradient than that of the present day.

  20. Detecting Damage in Ceramic Matrix Composites Using Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90 deg fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  1. Corrosion resistance of premodeled wires made of stainless steel used for heart electrotherapy leaders

    NASA Astrophysics Data System (ADS)

    Przondziono, J.; Walke, W.; Młynarski, R.; Szatka, W.

    2012-05-01

    The purpose of the study is to evaluate resistance to electrochemical corrosion of wire made of X10CrNi18-8 stainless steel designed for use in cardiology treatment. The influence of strain formed in the premodeling process and methods of wire surface preparation to corrosive resistance in artificial plasma solution were analysed. Wire corrosion tests were carried out in the solution of artificial plasma. Resistance to electrochemical corrosion was evaluated on the ground of recorded curves of anodic polarization by means of potentiodynamic method. Potentiodynamic tests carried out enabled to determine how the resistance to pitting corrosion of wire changes, depending on strain formed in the premodeling process as well as on the method of wire surface preparation. For evaluation of phenomena occurring on the surface of tested steel, electrochemical impedance spectroscopy (EIS) was applied. Deterioration of corrosive properties of wire along with the increase in the formed strain hardening was observed.

  2. Ecohydrologic Investigations of Shallow Lateral Subsurface Flow in Tropical Soils using Time-Lapse Surface Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.; Mojica, A.; Abebe, N. A.; Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project

    2010-12-01

    The hydrologic effects of deforestation and aforestation in the tropics remain an area of active research. Hydrologic predictions of land-use change effects remain elusive. One of the unique features of catchment hydrology in the tropics is the effect of intense, continuous biological activity by insects, shrubs, trees, and small mammals. Sapprolitic soils derived from weathered bedrock cover widespread areas. These soils have low matrix permeabilities on the order of 1 mm/h, are 10 to 20 m in thickness and have relatively low activity because they have been depleted of light cations by annual rainfall over 2000 mm. As part of the Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, we have observed shallow subsurface flow in tropical soils in central Panama using an introduced salinity contrast and surface electrical resistivity tomography (ERT). In 2009 and 2010, experiments were conducted in a 30 year-old secondary succession forest, and in two former pasture sites that were planted with native timber species and teak, respectively, in 2008. At each site, saline water (NaCl tagged with LiBr) was introduced to the soil using two different methods: soil pits and ponded surface applications. Results showed the strongest response in the case of ponded surface applications with observed changes in resistivity between -50% and 50%. In soil pit applications, the change in electrical resistivity varied from -10% to 10%. Results suggest that in the case of surface application, a transient perched water table is created near the bottom of the bioturbation layer that activates the downslope macropore network and results in bulk flow velocities that are significantly higher than observed soil matrix permeabilities. When heavy rainfall occurred during tests, increased mobility of the salinity contrast more clearly showed the active layer where most flow occurred. Time-series ERT observations enabled measurements of downslope bulk flow velocities over 1 m/h, presumably due to the existing downslope macroporosity network. These observations are being used to estimate macroporosity network properties and constrain hydrologic model parameters in different land uses. These results show that these non-invasive tests are a useful tool to determine the distribution of downslope lateral flow generated from pit and surface-applied saline solutions. ERT experimental results from a hillslope-scale experiment in central Panama, showing change in electrical conductivity from 30-minutes to 330-minutes after continuous injection of salinity contrast at x=0.

  3. Influences of passivating elements on the corrosion and biocompatibility of super stainless steels.

    PubMed

    Yoo, Young-Ran; Jang, Soon-Geun; Oh, Keun-Taek; Kim, Jung-Gu; Kim, Young-Sik

    2008-08-01

    Biometals need high corrosion resistance since metallic implants in the body should be biocompatible and metal ion release should be minimized. In this work, we designed three kinds of super stainless steel and adjusted the alloying elements to obtain different microstructures. Super stainless steels contain larger amounts of Cr, Mo, W, and N than commercial alloys. These elements play a very important role in localized corrosion and, thus, their effects can be represented by the "pitting resistance equivalent number (PREN)." This work focused on the behavior which can arise when the bare surface of an implant in the body is exposed during walking, heavy exercise, and so on. Among the experimental alloys examined herein, Alloy Al and 316L stainless steels were mildly cytotoxic, whereas the other super austenitic, duplex, and ferritic stainless steels were noncytotoxic. This behavior is primarily related to the passive current and pitting resistance of the alloys. When the PREN value was increased, the passivation behavior in simulated body solution was totally different from that in acidic chloride solution and, thus, the Cr(2)O(3)/Cr(OH)(3) and [Metal oxide]/[Metal + Metal oxide] ratios of the passive film in the simulated body solution were larger than those in acidic chloride solution. Also, the critical current density in simulated body solution increased and, thus, active dissolution may induce metal ion release into the body when the PREN value and Ni content are increased. This behavior was closely related to the presence of EDTA in the simulated body solution. (c) 2007 Wiley Periodicals, Inc.

  4. Informed herbivore movement and interplant communication determine the effects of induced resistance in an individual-based model.

    PubMed

    Rubin, Ilan N; Ellner, Stephen P; Kessler, André; Morrell, Kimberly A

    2015-09-01

    1. Plant induced resistance to herbivory affects the spatial distribution of herbivores, as well as their performance. In recent years, theories regarding the benefit to plants of induced resistance have shifted from ideas of optimal resource allocation towards a more eclectic set of theories that consider spatial and temporal plant variability and the spatial distribution of herbivores among plants. However, consensus is lacking on whether induced resistance causes increased herbivore aggregation or increased evenness, as both trends have been experimentally documented. 2. We created a spatial individual-based model that can describe many plant-herbivore systems with induced resistance, in order to analyse how different aspects of induced resistance might affect herbivore distribution, and the total damage to a plant population, during a growing season. 3. We analyse the specific effects on herbivore aggregation of informed herbivore movement (preferential movement to less-damaged plants) and of information transfer between plants about herbivore attacks, in order to identify mechanisms driving both aggregation and evenness. We also investigate how the resulting herbivore distributions affect the total damage to plants and aggregation of damage. 4. Even, random and aggregated herbivore distributions can all occur in our model with induced resistance. Highest levels of aggregation occurred in the models with informed herbivore movement, and the most even distributions occurred when the average number of herbivores per plant was low. With constitutive resistance, only random distributions occur. Damage to plants was spatially correlated, unless plants recover very quickly from damage; herbivore spatial autocorrelation was always weak. 5. Our model and results provide a simple explanation for the apparent conflict between experimental results, indicating that both increased aggregation and increased evenness of herbivores can result from induced resistance. We demonstrate that information transfer from plants to herbivores, and from plants to neighbouring plants, can both be major factors in determining non-random herbivore distributions. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  5. Nucleation sites of Ge nanoislands grown on pit-patterned Si substrate prepared by electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Smagina, Zh. V.; Zinovyev, V. A.; Rudin, S. A.; Novikov, P. L.; Rodyakina, E. E.; Dvurechenskii, A. V.

    2018-04-01

    Regular pit-patterned Si(001) substrates were prepared by electron-beam lithography followed by plasma chemical etching. The geometry of the pits was controlled by varying the etching conditions and the electron-beam exposure duration. It was shown that the location of three-dimensional (3D) Ge nanoislands subsequently grown on the pit-patterned Si substrates depends on the shape of the pit bottom. In the case of pits having a sharp bottom, 3D Ge islands nucleate inside the pits. For pits with a wide flat bottom, the 3D Ge island nucleation takes place at the pit periphery. This effect is attributed to the strain relaxation depending not only on the initial pit shape, but also on its evolution during the Ge wetting layer deposition. It was shown by Monte Carlo simulations that in the case of a pit with a pointed bottom, the relaxation is most effective inside the pit, while for a pit with a wide bottom, the most relaxed area migrates during Ge deposition from the pit bottom to its edges, where 3D Ge islands nucleate.

  6. Creatine monohydrate supplementation during eight weeks of progressive resistance training increases strength in as little as two weeks without reducing markers of muscle damage.

    PubMed

    Kaviani, Mojtaba; Abassi, Aboozar; Chilibeck, Philip D

    2018-05-02

    Creatine supplementation (Cr) increases strength during resistance training, but the time course of this strength increase is unclear. The aim was to determine the precise time course by which Cr could increase strength and whether Cr prevents muscle damage during eight weeks of resistance training. Young males were randomized (double blind) to Cr (n=9, 0.07g/kg/d) and placebo (n=9) during 8-weeks of resistance training (3d/week). Strength was assessed across six exercises every two weeks. Venous blood samples obtained at baseline, and 24 and 48 hours after the final resistance training session were assessed for creatine kinase [CK] and lactate dehydrogenase [LDH] as measures of muscle damage. Strength was significantly higher in the Cr versus placebo group (p<0.05) after two weeks of training for three of the six exercises (bench press, leg press, shoulder press). By the end of the eight weeks of training, strength was significantly higher in the Cr versus placebo group (p<0.05) for four of the six exercises (bench press, leg press, shoulder press, and triceps extension, but not biceps curl or lat-pulldown). Creatine supplementation did not prevent muscle damage. Indeed, muscle damage markers increased in the Cr compared to placebo group (p<0.05). Cr increased muscular strength in as little as two weeks during a resistance training program; however, this was not accompanied by decreased muscle damage. Greater muscle damage with Cr may be due to a greater training intensity enabled by Cr supplementation. This might lead to greater protein turnover and enhanced muscle adaptation.

  7. Evaluation of the impact response of textile composites

    NASA Technical Reports Server (NTRS)

    Portanova, M. A.

    1995-01-01

    An evaluation of the impact damage resistance and impact damage tolerance of stitched and unstitched uniweaves, 2-D braids, and 3-D weaves was conducted. Uniweave laminates were tested at four thicknesses to determine the sensitivity of the tests to this parameter. Several braid and weave parameters were also varied to establish their velocity (large mass) impacts and then loaded in tension or compression to measure residual strength. Experimental results indicate that stitching significantly improves the uniweaves' damage resistance. The 2-D braids and 3-D weaves offered less damage resistance than the stitched materials. Stitching also improved the compression after impact (CAI) and tension after impact (TAI) strengths of the uniweave materials.

  8. Martian Central Pit Craters

    NASA Technical Reports Server (NTRS)

    Hillman, E.; Barlow, N. G.

    2005-01-01

    Impact craters containing central pits are rare on the terrestrial planets but common on icy bodies. Mars is the exception among the terrestrial planets, where central pits are seen on crater floors ( floor pits ) as well as on top of central peaks ( summit pits ). Wood et al. [1] proposed that degassing of subsurface volatiles during crater formation produced central pits. Croft [2] argued instead that central pits might form during the impact of volatile-rich comets. Although central pits are seen in impact craters on icy moons such as Ganymede, they do show some significant differences from their martian counterparts: (a) only floor pits are seen on Ganymede, and (b) central pits begin to occur at crater diameters where the peak ring interior morphology begins to appear in terrestrial planet craters [3]. A study of craters containing central pits was conducted by Barlow and Bradley [4] using Viking imagery. They found that 28% of craters displaying an interior morphology on Mars contain central pits. Diameters of craters containing central pits ranged from 16 to 64 km. Barlow and Bradley noted that summit pit craters tended to be smaller than craters containing floor pits. They also noted a correlation of central pit craters with the proposed rings of large impact basins. They argued that basin ring formation fractured the martian crust and allowed subsurface volatiles to concentrate in these locations. They favored the model that degassing of the substrate during crater formation was responsible for central pit formation due to the preferential location of central pit craters along these basin rings.

  9. Impact testing of textile composite materials

    NASA Technical Reports Server (NTRS)

    Portanova, Marc

    1995-01-01

    The objectives of this report were to evaluate the impact damage resistance and damage tolerance of a variety of textile composite materials. Static indentation and impact tests were performed on the stitched and unstitched uniweave composites constructed from AS4/3501-6 Carbon/Epoxy with a fiberglass yarn woven in to hold the fibers together while being stitched. Compression and tension were measured after the tests to determine the damage resistance, residual strength and the damage tolerance of the specimens.

  10. Cytogenetic instability in populations with residential proximity to open-pit coal mine in Northern Colombia in relation to PM10 and PM2.5 levels.

    PubMed

    Espitia-Pérez, Lyda; da Silva, Juliana; Espitia-Pérez, Pedro; Brango, Hugo; Salcedo-Arteaga, Shirley; Hoyos-Giraldo, Luz Stella; de Souza, Claudia T; Dias, Johnny F; Agudelo-Castañeda, Dayana; Valdés Toscano, Ana; Gómez-Pérez, Miguel; Henriques, João A P

    2018-02-01

    Epidemiological studies indicate that living in proximity to coal mines is correlated with numerous diseases including cancer, and that exposure to PM 10 and PM 2.5 components could be associated with this phenomenon. However, the understanding of the mechanisms by which PM exerts its adverse effects is still incomplete and comes mainly from studies in occupationally exposed populations. The aims of this study were to: (1) evaluate DNA damage in lymphocytes assessing the cytokinesis-block micronucleus cytome assay (CBMN-cyt) parameters; (2) identify aneugenic or clastogenic effects in lymphocytes of exposed populations using CREST immunostaining for micronuclei; (3) evaluate multi-elemental composition of atmospheric particulate matter; and (4) verify relation between the DNA damage and PM 2.5 and PM 10 levels around the mining area. Analysis revealed a significant increase in micronuclei frequency in binucleated (MNBN) and mononucleated (MNMONO) cells of individuals with residential proximity to open-pit coal mines compared to residents from non-mining areas. Correlation analysis demonstrated a highly significant association between PM 2.5 levels, MNBN frequencies and CREST+ micronuclei induction in exposed residents. These results suggest that PM 2.5 fraction generated in coal mining activities may induce whole chromosome loss (aneuploidy) preferentially, although there are also chromosome breaks. Analysis of the chemical composition of PM 2.5 by PIXE demonstrated that Si, S, K and Cr concentrations varied significantly between coal mining and reference areas. Enrichment factor values (EF) showed that S, Cr and Cu were highly enriched in the coal mining areas. Compared to reference area, mining regions had also higher concentrations of extractable organic matter (EOM) related to nonpolar and polar compounds. Our results demonstrate that PM 2.5 fraction represents the most important health risk for residents living near open-pit mines, underscoring the need for incorporation of ambient air standards based on PM 2.5 measures in coal mining areas. Copyright © 2017. Published by Elsevier Inc.

  11. Effects of coal mine subsidence in the Sheridan, Wyoming, area

    USGS Publications Warehouse

    Dunrud, C. Richard; Osterwald, Frank W.

    1980-01-01

    Analyses of the surface effects of past underground coal mining in the Sheridan, Wyoming, area suggest that underground mining of strippable coal deposits may damage the environment more over long periods of time than would modern surface mining, provided proper restoration procedures are followed after surface mining. Subsidence depressions and pits are a continuing hazard to the environment and to man's activities in the Sheridan, Wyo., area above abandoned underground mines in weak overburden less than about 60 m thick and where the overburden is less than about 10-15 times the thickness of coal mined. In addition, fires commonly start by spontaneous ignition when water and air enter the abandoned mine workings via subsidence cracks and pits. The fires can then spread to unmined coal as they create more cavities, more subsidence, and more cracks and pits through which air can circulate. In modern surface mining operations the total land surface underlain by minable coal is removed to expose the coal. The coal is removed, the overburden and topsoil are replaced, and the land is regraded and revegetated. The land, although disturbed, can be more easily restored and put back into use than can land underlain by abandoned underground mine workings in areas where the overburden is less than about 60 m thick or less than about 10-15 times the thickness of coal mined. The resource recovery of modern surface mining commonly is much greater than that of underground mining procedures. Although present-day underground mining technology is advanced as compared to that of 25-80 years ago, subsidence resulting from underground mining of thick coal beds beneath overburden less than about 60 m thick can still cause greater damage to surface drainage, ground water, and vegetation than can properly designed surface mining operations. This report discusses (11 the geology and surface and underground effects of former large-scale underground coal mining in a 50-km 2 area 5-20 km north of Sheridan, Wyo., (2) a ground and aerial reconnaissance study of a 5-km^2 coal mining area 8-10 km west of Sheridan, and (31 some environmental consequences and problems caused by coal mining.

  12. Characterization of laser damage performance of fused silica using photothermal absorption technique

    NASA Astrophysics Data System (ADS)

    Wan, Wen; Shi, Feng; Dai, Yifan; Peng, Xiaoqiang

    2017-06-01

    The subsurface damage and metal impurities have been the main laser damage precursors of fused silica while subjected to high power laser irradiation. Light field enhancement and thermal absorption were used to explain the appearance of damage pits while the laser energy is far smaller than the energy that can reach the intrinsic threshold of fused silica. For fused silica optics manufactured by magnetorheological finishing or advanced mitigation process, no scratch-related damage site occurs can be found on the surface. In this work, we implemented a photothermal absorption technique based on thermal lens method to characterize the subsurface defects of fused silica optics. The pump beam is CW 532 nm wavelength laser. The probe beam is a He-Ne laser. They are collinear and focused through the same objective. When pump beam pass through the sample, optical absorption induces the local temperature rise. The lowest absorptance that we can detect is about the order of magnitude of 0.01 ppm. When pump beam pass through the sample, optical absorption induces the local temperature rise. The photothermal absorption value of fused silica samples range from 0.5 to 10 ppm. The damage densities of the samples were plotted. The damage threshold of samples at 8J/cm2 were gived to show laser damage performance of fused silica.The results show that there is a strong correlation between the thermal absorption and laser damage density. The photothermal absorption technique can be used to predict and evaluate the laser damage performance of fused silica optics.

  13. Grain, silage and forage sorghum hybrid resistance to insect and bird damage, 2017

    USDA-ARS?s Scientific Manuscript database

    A total of 32 grain and 30 forage type sorghum hybrids were evaluated for resistance to insect, disease, and bird damage in Tifton, Georgia. These hybrids plus 33 silage type and 5 pearl millet hybrids also were evaluated for sugarcane aphid resistance near Griffin, Georgia. A total of 10 insect pes...

  14. Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life

    PubMed Central

    2011-01-01

    Background The inorganic (Pi) phosphate transporter (PiT) family comprises known and putative Na+- or H+-dependent Pi-transporting proteins with representatives from all kingdoms. The mammalian members are placed in the outer cell membranes and suggested to supply cells with Pi to maintain house-keeping functions. Alignment of protein sequences representing PiT family members from all kingdoms reveals the presence of conserved amino acids and that bacterial phosphate permeases and putative phosphate permeases from archaea lack substantial parts of the protein sequence when compared to the mammalian PiT family members. Besides being Na+-dependent Pi (NaPi) transporters, the mammalian PiT paralogs, PiT1 and PiT2, also are receptors for gamma-retroviruses. We have here exploited the dual-function of PiT1 and PiT2 to study the structure-function relationship of PiT proteins. Results We show that the human PiT2 histidine, H502, and the human PiT1 glutamate, E70, - both conserved in eukaryotic PiT family members - are critical for Pi transport function. Noticeably, human PiT2 H502 is located in the C-terminal PiT family signature sequence, and human PiT1 E70 is located in ProDom domains characteristic for all PiT family members. A human PiT2 truncation mutant, which consists of the predicted 10 transmembrane (TM) domain backbone without a large intracellular domain (human PiT2ΔR254-V483), was found to be a fully functional Pi transporter. Further truncation of the human PiT2 protein by additional removal of two predicted TM domains together with the large intracellular domain created a mutant that resembles a bacterial phosphate permease and an archaeal putative phosphate permease. This human PiT2 truncation mutant (human PiT2ΔL183-V483) did also support Pi transport albeit at very low levels. Conclusions The results suggest that the overall structure of the Pi-transporting unit of the PiT family proteins has remained unchanged during evolution. Moreover, in combination, our studies of the gene structure of the human PiT1 and PiT2 genes (SLC20A1 and SLC20A2, respectively) and alignment of protein sequences of PiT family members from all kingdoms, along with the studies of the dual functions of the human PiT paralogs show that these proteins are excellent as models for studying the evolution of a protein's structure-function relationship. PMID:21586110

  15. Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life.

    PubMed

    Bøttger, Pernille; Pedersen, Lene

    2011-05-17

    The inorganic (Pi) phosphate transporter (PiT) family comprises known and putative Na(+)- or H(+)-dependent Pi-transporting proteins with representatives from all kingdoms. The mammalian members are placed in the outer cell membranes and suggested to supply cells with Pi to maintain house-keeping functions. Alignment of protein sequences representing PiT family members from all kingdoms reveals the presence of conserved amino acids and that bacterial phosphate permeases and putative phosphate permeases from archaea lack substantial parts of the protein sequence when compared to the mammalian PiT family members. Besides being Na(+)-dependent P(i) (NaP(i)) transporters, the mammalian PiT paralogs, PiT1 and PiT2, also are receptors for gamma-retroviruses. We have here exploited the dual-function of PiT1 and PiT2 to study the structure-function relationship of PiT proteins. We show that the human PiT2 histidine, H(502), and the human PiT1 glutamate, E(70),--both conserved in eukaryotic PiT family members--are critical for P(i) transport function. Noticeably, human PiT2 H(502) is located in the C-terminal PiT family signature sequence, and human PiT1 E(70) is located in ProDom domains characteristic for all PiT family members.A human PiT2 truncation mutant, which consists of the predicted 10 transmembrane (TM) domain backbone without a large intracellular domain (human PiT2ΔR(254)-V(483)), was found to be a fully functional P(i) transporter. Further truncation of the human PiT2 protein by additional removal of two predicted TM domains together with the large intracellular domain created a mutant that resembles a bacterial phosphate permease and an archaeal putative phosphate permease. This human PiT2 truncation mutant (human PiT2ΔL(183)-V(483)) did also support P(i) transport albeit at very low levels. The results suggest that the overall structure of the P(i)-transporting unit of the PiT family proteins has remained unchanged during evolution. Moreover, in combination, our studies of the gene structure of the human PiT1 and PiT2 genes (SLC20A1 and SLC20A2, respectively) and alignment of protein sequences of PiT family members from all kingdoms, along with the studies of the dual functions of the human PiT paralogs show that these proteins are excellent as models for studying the evolution of a protein's structure-function relationship. © 2011 Bøttger and Pedersen; licensee BioMed Central Ltd.

  16. The role of DNA repair pathways in cisplatin resistant lung cancer.

    PubMed

    O'Grady, Shane; Finn, Stephen P; Cuffe, Sinead; Richard, Derek J; O'Byrne, Kenneth J; Barr, Martin P

    2014-12-01

    Platinum chemotherapeutic agents such as cisplatin are currently used in the treatment of various malignancies such as lung cancer. However, their efficacy is significantly hindered by the development of resistance during treatment. While a number of factors have been reported that contribute to the onset of this resistance phenotype, alterations in the DNA repair capacity of damaged cells is now recognised as an important factor in mediating this phenomenon. The mode of action of cisplatin has been linked to its ability to crosslink purine bases on the DNA, thereby interfering with DNA repair mechanisms and inducing DNA damage. Following DNA damage, cells respond by activating a DNA-damage response that either leads to repair of the lesion by the cell thereby promoting resistance to the drug, or cell death via activation of the apoptotic response. Therefore, DNA repair is a vital target to improving cancer therapy and reduce the resistance of tumour cells to DNA damaging agents currently used in the treatment of cancer patients. To date, despite the numerous findings that differential expression of components of the various DNA repair pathways correlate with response to cisplatin, translation of such findings in the clinical setting are still warranted. The identification of alterations in specific proteins and pathways that contribute to these unique DNA repair pathways in cisplatin resistant cancer cells may potentially lead to a renewed interest in the development of rational novel therapies for cisplatin resistant cancers, in particular, lung cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Molecular cloning, expression and characterization of albolamin: a type P-IIa snake venom metalloproteinase from green pit viper (Cryptelytrops albolabris).

    PubMed

    Jangprasert, Panchalee; Rojnuckarin, Ponlapat

    2014-03-01

    Snake venom metalloproteinases (SVMPs) can damage vessel wall, degrade clotting factors, inhibit integrins and block platelet functions. Studying them not only gives us deeper insights in pathogenesis of snakebites, but also potentially yields novel therapeutic agents. Here, we discovered a clone of an RGD-containing SVMP from the green pit viper (Cryptelytrops albolabris) venom gland cDNA library. Sequence analysis revealed that it belonged to the P-IIa subclass of SVMP comprising signal peptide, prodomain, metalloproteinase and disintegrin. Compared with other P-II SVMPs, it contained 2 additional conserved cysteines that were predicted to prevent the release of disintegrin from the metalloproteinase domain in the mature protein. The N-terminal histidine-tagged construct of metalloproteinase and disintegrin domains of albolamin was inserted into the pPICZαA vector and expressed in Pichia pastoris. The recombinant protein molecular weight was approximately 35 kDa on Western blot probed with anti-polyhistidine antibody. The recombinant albolamin could digest human type IV collagen starting within 15 min after incubation. In addition, it dose-dependently inhibited collagen-induced platelet aggregation with the IC50 of 1.8 μM. However, there was no effect on ADP-induced platelet aggregation. Therefore, the inhibition mechanism is probably through blocking collagen receptor(s). Albolamin activities probably contributed to pathology of green pit viper bites. Its disintegrin domain deserves further studies for the potential to be a useful agent affecting platelet functions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Influence of laser irradiation on pits and fissures: an in situ study.

    PubMed

    Correa-Afonso, Alessandra M; Pécora, Jesus D; Palma-Dibb, Regina G

    2013-02-01

    The aim of this in situ study was to analyze the influence of the Er:YAG, Nd:YAG, and CO(2) lasers on the enamel acid resistance of pits and fissures. The laser tissue interaction has been studied as a method of preventing occlusal caries. Thirteen volunteers wore palatal acrylic appliances containing human occlusal enamel blocks that were divided into four groups (G1, control; G2, Er:YAG; G3, Nd:YAG; G4, CO(2)). Each palatal acrylic appliance was used in the four studied groups and was used for 14 consecutive days. A sucrose solution was applied to the specimens six times per day. The specimens were then sectioned in half, and a microhardness test was applied. The other halves were analyzed using polarized light microscopy to measure the caries-like lesion areas, and a morphological analysis was conducted using a scanning electron microscope (SEM). For the statistical analysis of the data obtained from the microhardness test (Knoop hardness number. [KHN]) (α=5%), Fisher's exact test was performed, and the group means were as follows: G1, 247±71; G2, 258±70; G3, 272±73; and G4, 298±56. The results demonstrated that the control group was significantly different from G3 and G4, which presented higher microhardness values. The Wilcoxon signed-rank test was used to analyze the data obtained from the caries-lesion area measurements (mm(2)) (α=5%) (G1, 0.01±1.08; G2, 0.13±0.18; G3, 0.05±0.17; and G4, 0.09±0.22). The results no showed significant differences among the groups in this analysis. Based on the results from the present study, it may be concluded that the CO(2) and Nd:YAG lasers increased the enamel acid resistance in pits and fissures.

  19. The three principles of action: a Pavlovian-instrumental transfer hypothesis

    PubMed Central

    Cartoni, Emilio; Puglisi-Allegra, Stefano; Baldassarre, Gianluca

    2013-01-01

    Pavlovian conditioned stimuli can influence instrumental responding, an effect called Pavlovian-instrumental transfer (PIT). During the last decade, PIT has been subdivided into two types: specific PIT and general PIT, each having its own neural substrates. Specific PIT happens when a conditioned stimulus (CS) associated with a reward enhances an instrumental response directed to the same reward. Under general PIT, instead, the CS enhances a response directed to a different reward. While important progress has been made into identifying the neural substrates, the function of specific and general PIT and how they interact with instrumental responses are still not clear. In the experimental paradigm that distinguishes specific and general PIT an effect of PIT inhibition has also been observed and is waiting for an explanation. Here we propose an hypothesis that links these three PIT effects (specific PIT, general PIT and PIT inhibition) to three aspects of action evaluation. These three aspects, which we call “principles of action”, are: context, efficacy, and utility. In goal-directed behavior, an agent has to evaluate if the context is suitable to accomplish the goal, the efficacy of his action in getting the goal, and the utility of the goal itself: we suggest that each of the three PIT effects is related to one of these aspects of action evaluation. In particular, we link specific PIT with the estimation of efficacy, general PIT with the evaluation of utility, and PIT inhibition with the adequacy of context. We also provide a latent cause Bayesian computational model that exemplifies this hypothesis. This hypothesis and the model provide a new framework and new predictions to advance knowledge about PIT functioning and its role in animal adaptation. PMID:24312025

  20. Hydrogen effects in duplex stainless steel welded joints - electrochemical studies

    NASA Astrophysics Data System (ADS)

    Michalska, J.; Łabanowski, J.; Ćwiek, J.

    2012-05-01

    In this work results on the influence of hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel (DSS) welded joints are described. The results were discussed by taking into account three different areas on the welded joint: weld metal (WM), heat-affected zone (HAZ) and parent metal. The corrosion resistance was qualified with the polarization curves registered in a synthetic sea water. The conclusion is that, hydrogen may seriously deteriorate the passive film stability and corrosion resistance to pitting of 2205 DSS welded joints. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen degradation was dependent on the hydrogen charging conditions. WM region has been revealed as the most sensitive to hydrogen action.

  1. Effect of temperature on anodic behavior of 13Cr martensitic steel in CO2 environment

    NASA Astrophysics Data System (ADS)

    Zhao, G. X.; Zheng, M.; Lv, X. H.; Dong, X. H.; Li, H. L.

    2005-04-01

    The corrosion behavior of 13Cr martensitic stainless steel in a CO2 environment in a stimulated oilfield was studied with potentiodynamic polarization and the impedance spectra technique. The results showed that the microstructure of the surface scale clearly changed with temperature. This decreased the sensitivity of pitting corrosion and increased the tendency toward general (or uniform) corrosion. The capacitance, the charge transfer resistance, and the polarization resistance of the corrosion product scale decrease with increasing temperature from 90 to 120 °C, and thus the corrosion is a thermal activation controlled process. Charge transfer through the scale is difficult and the corrosion is controlled by a diffusion process at a temperature of 150 °C. Resistance charge transfer through the corrosion product layer is higher than that in the passive film.

  2. Cisplatin: mode of cytotoxic action and molecular basis of resistance.

    PubMed

    Siddik, Zahid H

    2003-10-20

    Cisplatin is one of the most potent antitumor agents known, displaying clinical activity against a wide variety of solid tumors. Its cytotoxic mode of action is mediated by its interaction with DNA to form DNA adducts, primarily intrastrand crosslink adducts, which activate several signal transduction pathways, including those involving ATR, p53, p73, and MAPK, and culminate in the activation of apoptosis. DNA damage-mediated apoptotic signals, however, can be attenuated, and the resistance that ensues is a major limitation of cisplatin-based chemotherapy. The mechanisms responsible for cisplatin resistance are several, and contribute to the multifactorial nature of the problem. Resistance mechanisms that limit the extent of DNA damage include reduced drug uptake, increased drug inactivation, and increased DNA adduct repair. Origins of these pharmacologic-based mechanisms, however, are at the molecular level. Mechanisms that inhibit propagation of the DNA damage signal to the apoptotic machinery include loss of damage recognition, overexpression of HER-2/neu, activation of the PI3-K/Akt (also known as PI3-K/PKB) pathway, loss of p53 function, overexpression of antiapoptotic bcl-2, and interference in caspase activation. The molecular signature defining the resistant phenotype varies between tumors, and the number of resistance mechanisms activated in response to selection pressures dictates the overall extent of cisplatin resistance.

  3. Anesthetic-resistant spontaneous mutant of Drosophila melanogaster: intensified response to /sup 60/Cobalt radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamo, S.; Nakashima-Tanaka, E.; Megumi, T.

    1985-02-25

    Accumulating evidence suggests that the extent of acute damage by ionizing irradiation is closely related to the state of membrane orderliness. Decreased orderliness apparently protects organisms from ionizing irradiation. Because anesthetics decrease membrane orderliness, anesthesia is expected to affect damages caused by ionizing irradiation. The present study compared the effects of /sup 60/Co irradiation on Drosophila melanogaster between an anesthetic-resistant spontaneous mutant and an anesthetic-sensitive strain. An anesthetic-resistant mutant strain, Eth-29, of Drosophila melanogaster has previously been established. Eth-29 is resistant to diethyl-ether, chloroform and halothane. The anesthetic-resistant strain was found to be radiosensitive when evaluated by survival at themore » eighth day after irradiation or by dyskinesia (knock-down) at the second day. The results indicate that anesthetic resistance may be related to an increase in orderliness. The findings in reciprocal crosses between Eth-29 and the control strain indicate that the mechanism of survival is different from that of knock-down. Presumably, knock-down is the direct sequela of irradiation, and the present result suggests that membrane damage may be involved in inducing knock-down. 18 references, 3 figures.« less

  4. NIR detection of pits and pit fragments in fresh cherries (abstract)

    USDA-ARS?s Scientific Manuscript database

    The feasibility of using near infrared (NIR) diffuse reflectance spectroscopy for the detection of pits and pit fragments in cherries was demonstrated. For detection of whole pits, 300 cherries were obtained locally and pits were removed from half. NIR reflectance spectra were obtained in triplicate...

  5. 7 CFR 52.779 - Freedom from pits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Freedom from pits. 52.779 Section 52.779 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Freedom from pits. (a) General. The factor of freedom from pits refers to the incidence of pits and pit...

  6. The effects of pitting on fatigue crack nucleation in 7075-T6 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Ma, LI; Hoeppner, David W.

    1994-01-01

    A high-strength aluminum alloy, 7075-T6, was studied to quantitatively evaluate chemical pitting effects of its corrosion fatigue life. The study focused on pit nucleation, pit growth, and fatigue crack nucleation. Pitting corrosion fatigue experiments were conducted in 3.5 percent NaCl aqueous solution under constant amplitude sinusoidal loading at two frequencies, 5 and 20 Hz. Smooth and unnotched specimens were used in this investigation. A video recording system was developed to allow in situ observation of the surface changes of the specimens during testing. The results indicated that pitting corrosion considerably reduces the fatigue strength by accelerating fatigue crack nucleation. A metallographic examination was conducted on the specimens to evaluate the nature of corrosion pits. First, the actual shapes of the corrosion pits were evaluated by cross-sectioning the pits. Secondly, the relation between corrosion pits and microstructure was also investigated. Finally, the possibility of another corrosion mechanism that might be involved in pitting was explored in this investigation. The fractography of the tested specimens showed that corner corrosion pits were responsible for fatigue crack nucleation in the material due to the associated stress concentration. The pits exhibited variance of morphology. Fatigue life for the experimental conditions appeared to be strongly dependent on pitting kinetics and the crack nucleation stage.

  7. Blood meal origins and insecticide susceptibility of Anopheles arabiensis from Chano in South-West Ethiopia

    PubMed Central

    2013-01-01

    Background Anopheles arabiensis, the main malaria vector in Ethiopia, shows both anthropophilic and zoophilic behaviours. Insecticide resistance is increasing, and alternative methods of vector control are needed. The objectives of this study were to determine the blood meal origins and the susceptibility to insecticides of An. arabiensis from Chano village near Arba Minch in South-West Ethiopia. Methods Blood meal sources of anopheline mosquitoes collected using Centers for Disease Control and Prevention (CDC) light traps and pyrethrum spray catches (PSC) from human dwellings, and hand-held mouth aspirators from outdoor pit shelters were analysed using a direct enzyme-linked-immunosorbent assay (ELISA). The susceptibility of An. arabiensis to pyrethroid insecticides (alphacypermethrin, lambdacyhalothrin, deltamethrin, and cyfluthrin) and DDT was assessed using females reared from larval and pupal collections from natural breeding sites. Results The blood meal origins of 2967 freshly fed Anopheles mosquitoes were determined. An. arabiensis was the predominant species (75%), and it fed mainly on cattle. The densities of both freshly fed An. arabiensis and those fed on human blood followed similar seasonal patterns. The overall human blood index (HBI) of An. arabiensis, including mixed blood meals, was 44% and the bovine blood index (BBI) was 69%. The HBI of An. arabiensis from CDC light trap collections was 75% and this was higher than those for PSC (38%) and outdoor pit shelter collections (13%), while the BBI was 65% for PSC, 68% for outdoor pit shelters and 72% for CDC light traps. More freshly fed and human blood-fed An. arabiensis were sampled from houses close to the shore of Lake Abaya (the major breeding site). A high proportion of An. arabiensis was resistant to the pyrethroid insecticides, with a mortality rate of 56% for lambdacyhalothrin, 50% for cyfluthrin and alphacypermethrin, 47% for deltamethrin, and 10% for DDT. Conclusion Anopheles arabiensis is the predominant species of anopheline mosquito in this region, and cattle are the main source of its blood meals. The greater tendency of this species to feed on cattle justifies the application of insecticides on cattle to control it. However, An. arabiensis has already developed resistance to the available pyrethroid insecticides, and alternative insecticides are needed for malaria vector control. PMID:23433306

  8. Nano-enhanced aerospace composites for increased damage tolerance and service life damage monitoring

    NASA Astrophysics Data System (ADS)

    Paipetis, A.; Matikas, T. E.; Barkoula, N. M.; Karapappas, P.; Vavouliotis, A.; Kostopoulos, V.

    2009-03-01

    This study deals with new generation composite systems which apart from the primary reinforcement at the typical fiber scale (~10 μm) are also reinforced at the nanoscale. This is performed via incorporation of nano-scale additives in typical aerospace matrix systems, such as epoxies. Carbon Nanotubes (CNTs) are ideal candidates as their extremely high aspect ratio and mechanical properties render them advantageous to other nanoscale materials. The result is the significant increase in the damage tolerance of the novel composite systems even at very low CNT loadings. By monitoring the resistance change of the CNT network, information both on the real time deformation state of the composite is obtained as a reversible change in the bulk resistance of the material, and the damage state of the material as an irreversible change in the bulk resistance of the material. The irreversible monotonic increase of the electrical resistance can be related to internal damage in the hybrid composite system and may be used as an index of the remaining lifetime of a structural component.

  9. The Effect of Higher Than Recommended Protein Feedings Post-Exercise on Recovery Following Downhill Running in Masters Triathletes.

    PubMed

    Doering, Thomas M; Reaburn, Peter R; Borges, Nattai R; Cox, Gregory R; Jenkins, David G

    2017-02-01

    Following exercise-induced muscle damage (EIMD), masters athletes take longer to recover than younger athletes. The purpose of this study was to determine the effect of higher than recommended postexercise protein feedings on the recovery of knee extensor peak isometric torque (PIT), perceptions of recovery, and cycling time trial (TT) performance following EIMD in masters triathletes. Eight masters triathletes (52 ± 2 y, V̇O 2max , 51.8 ± 4.2 ml•kg -1 •min -1 ) completed two trials separated by seven days in a randomized, doubleblind, crossover study. Trials consisted of morning PIT testing and a 30-min downhill run followed by an eight-hour recovery. During recovery, a moderate (MPI; 0.3 g•kg -1 •bolus -1 ) or high (0.6 g•kg -1 •bolus -1 ) protein intake (HPI) was consumed in three bolus feedings at two hour intervals commencing immediately postexercise. PIT testing and a 7 kJ•kg -1 cycling TT were completed postintervention. Perceptions of recovery were assessed pre- and postexercise. The HPI did not significantly improve recovery compared with MPI (p > .05). However, comparison of within-treatment change shows the HPI provided a moderate beneficial effect (d = 0.66), attenuating the loss of afternoon PIT (-3.6%, d = 0.09) compared with the MPI (-8.6%, d = 0.24). The HPI provided a large beneficial effect (d = 0.83), reducing perceived fatigue over the eight-hour recovery (d = 1.25) compared with the MPI (d = 0.22). Despite these effects, cycling performance was unchanged (HPI = 2395 ± 297 s vs. MPI = 2369 ± 278 s; d = 0.09). In conclusion, doubling the recommended postexercise protein intake did not significantly improve recovery in masters athletes; however, HPI provided moderate to large beneficial effects on recovery that may be meaningful following EIMD.

  10. Research on influence of parasitic resistance of InGaAs solar cells under continuous wave laser irradiation

    NASA Astrophysics Data System (ADS)

    Li, Guangji; Zhang, Hongchao; Zhou, Guanglong; Lu, Jian; Zhou, Dayong

    2017-06-01

    InGaAs solar cells were irradiated by 1060-1080nm continuous wave (CW) laser, and studied the laser-electrical conversion and damage experiment with the power density as 97mW/cm2 and 507W/cm2 respectively. The result indicated that there is no obvious damage phenomenon but air layer appeared in the damaged region, and there is no direct relationship between the area and the extent of damage. Moreover, the p-n junction in the damage zone was destroyed, lost the ability of photoelectric conversion. The region acts as a resistance between the two electrodes, resulting in an increase in the leakage current of the solar cells and a decrease in the parallel resistance, which is the main reason leading to the decline of open circuit voltage, short circuit current and conversion efficiency. This paper would provide a reference for wireless energy transmission and the subsequent laser damage of solar cells.

  11. Nonlinear damage analysis: Postulate and evaluation

    NASA Technical Reports Server (NTRS)

    Leis, B. N.; Forte, T. P.

    1983-01-01

    The objective of this program is to assess the viability of a damage postulate which asserts that the fatigue resistance curve of a metal is history dependent due to inelastic action. The study focusses on OFE copper because this simple model material accentuates the inelastic action central to the damage postulate. Data relevant to damage evolution and crack initiation are developed via a study of surface topography. The effects of surface layer residual stresses are explored via comparative testing as were the effects in initial prestraining. The results of the study very clearly show the deformation history dependence of the fatigue resistance of OFE copper. Furthermore the concept of deformation history dependence is shown to qualitatively explain the fatigue resistance of all histories considered. Likewise quantitative predictions for block cycle histories are found to accurately track the observed results. In this respect the assertion that damage per cycle for a given level of the damage parameter is deformation history dependent appears to be physically justified.

  12. Pico-second laser materials interactions: mechanisms, material lifetime and performance optimization Ted Laurence(14-ERD-014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, Ted A.

    2016-12-14

    Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multiphoton ionization- and avalanche ionization-based ablation with fs pulses to defectdominated, thermal-based damage with ns pulses. We investigated the morphology and scaling of damage for commonly used silica and hafnia coatings as well as fused silica. Using carefully calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we showed that defects play an important role in laser-induced damage for pulse durations as short as 1 ps. Three damage morphologies were observed: standard material ablation, ultra-high density pits, and isolated absorbers.more » For 10 ps and longer, the isolated absorbers limited the damage performance of the coating materials. We showed that damage resulting from the isolated absorbers grows dramatically with subsequent pulses for sufficient fluences. For hafnia coatings, we used electric field modeling and experiments to show that isolated absorbers near the surface were affected by the chemical environment (vacuum vs. air) for pulses as short as 10 ps. Coupled with the silica results, these results suggested that improvements in the performance in the 10 -60 ps range have not reached fundamental limits. These findings motivate new efforts, including a new SI LDRD in improving the laser-damage performance of multi-layer dielectric coatings. A damage test facility for ps pulses was developed and automated, and was used for testing production optics for ARC. The resulting software was transferred to other laser test facilities for fs pulses and multiple wavelengths with 30 ps pulses. Additionally, the LDRD supported the retention and promotion of an important staff scientist in high-resolution dynamic microscopy and laser-damage testing.« less

  13. Studying damage accumulation in martensitic corrosion-resistant steel under cold radial reduction

    NASA Astrophysics Data System (ADS)

    Karamyshev, A. P.; Nekrasov, I. I.; Nesterenko, A. V.; Parshin, V. S.; Smirnov, S. V.; Shveikin, V. P.; Fedulov, A. A.

    2017-12-01

    Cold radial reduction of specimens made of the Kh17N2 corrosion-resistant martensitic steel is studied on a lever-type radial-forging machine (RFM). The mechanical properties of the deformed specimens, the "damage accumulation - strain" relation in the specimens are obtained with the application of hydrostatic and fractographic methods for fractured specimens. The damage of the Kh17N2 corrosion-resistant steel is evaluated as a result of an experimental study considering the data of simulation by a complex finite element model of cold deformation on a lever-type RFM.

  14. An addressable conducting network for autonomic structural health management of composite structures

    NASA Astrophysics Data System (ADS)

    Takahashi, Kosuke; Park, Jong Se; Hahn, H. Thomas

    2010-10-01

    The electrical resistance change method (ERCM) has long been an area of interest as an in-service health monitoring system. To apply the ERCM to existing structures, a new concept, the addressable conducting network (ACN), is proposed for autonomic structural health management of graphite/polymer composites. The ACN consists of two sets of conducting lines normal to each other, where one set resides on the top surface of the laminate and the other on the bottom surface. Damage can be detected by monitoring the resistance change 'through the laminate thickness' between two lines. By using a thermally mendable polymer as the matrix, the same conducting lines can be used to supply the electric current needed for resistive heating, thereby allowing the detected damage to be healed. As shown experimentally, the electrical resistance change method using an ACN distinguishes between laminates made of properly and improperly cured prepreg as well as revealing damage generated during three-point bending tests. Finite element analysis was performed to examine the feasibility of the ACN and indicated that the damage can be easily located from the spatial distribution of resistance changes and that the damaged area can be locally heated by supplying a large amount of current to selected conducting lines.

  15. Field screening of experimental corn hybrids and inbred lines for multiple ear-feeding insect resistance.

    PubMed

    Ni, Xinzhi; Xu, Wenwei; Krakowsky, Matthew D; Buntin, G David; Brown, Steve L; Lee, R Dewey; Coy, Anton E

    2007-10-01

    Identifying and using native insect resistance genes is the core of integrated pest management. In this study, 10 experimental corn, Zea mays L., hybrids and 10 inbred lines were screened for resistance to major ear-feeding insects in the southeastern Coastal Plain region of the United States during 2004 and 2005. Ear-feeding insect damage was assessed at harvest by visual damage rating for the corn earworm, Helicoverpa zea (Boddie), and by the percentage of kernels damaged by the maize weevil, Sitophilus zeamais Motschulsky, and stink bugs [combination of Euschistus servus (Say) and southern green stink bug, Nezara viridula (L.)]. Among the eight inbred lines and two control populations examined, C3S1B73-5b was resistant to corn earworm, maize weevil, and stink bugs. In contrast, C3S1B73-4 was resistant to corn earworm and stink bugs, but not to maize weevil. In a similar manner, the corn hybrid S1W*CML343 was resistant to all three ear-feeding insects, whereas hybrid C3S1B73-3*Tx205 was resistant to corn earworm and maize weevil in both growing seasons, but susceptible to stink bugs in 2005. The silk-feeding bioassay showed that corn earworm developed better on corn silk than did fall armyworm. Among all phenotypic traits examined (i.e., corn ear size, husk extension, and husk tightness), only corn ear size was negatively correlated to corn earworm damage in the inbred lines examined, whereas only husk extension (i.e., coverage) was negatively correlated to both corn earworm and maize weevil damage on the experimental hybrids examined. Such information could be used to establish a baseline for developing agronomically elite corn germplasm that confers multiple ear-feeding insect resistance.

  16. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.

    PubMed

    Fletcher, Lloyd; Codrington, John; Parkinson, Ian

    2014-07-01

    As a composite material, cortical bone accumulates fatigue microdamage through the repetitive loading of everyday activity (e.g. walking). The accumulation of fatigue microdamage is thought to contribute to the occurrence of fragility fractures in older people. Therefore it is beneficial to understand the relationship between microcrack accumulation and the fracture resistance of cortical bone. Twenty longitudinally orientated compact tension fracture specimens were machined from a single bovine femur, ten specimens were assigned to both the control and fatigue damaged groups. The damaged group underwent a fatigue loading protocol to induce microdamage which was assessed via fluorescent microscopy. Following fatigue loading, non-linear fracture resistance tests were undertaken on both the control and damaged groups using the J-integral method. The interaction of the crack path with the fatigue induced damage and inherent toughening mechanisms were then observed using fluorescent microscopy. The results of this study show that fatigue induced damage reduces the initiation toughness of cortical bone and the growth toughness within the damage zone by three distinct mechanisms of fatigue-fracture interaction. Further analysis of the J-integral fracture resistance showed both the elastic and plastic component were reduced in the damaged group. For the elastic component this was attributed to a decreased number of ligament bridges in the crack wake while for the plastic component this was attributed to the presence of pre-existing fatigue microcracks preventing energy absorption by the formation of new microcracks.

  17. Chemical characteristics of normal, woolly apple aphid-damaged, and mechanically damaged twigs of six apple cultivars, measured in autumn wood.

    PubMed

    Zhou, Hong-Xu; Wang, Xi-Cun; Yu, Yi; Tan, Xiu-Mei; Cheng, Zai-Quan; Zhang, An-Sheng; Men, Xing-Yuan; Li-Li, Li

    2013-04-01

    Chemical characteristics of normal, woolly apple aphid-damaged, and mechanically damaged twigs of six apple cultivars: Red Fuji, Golden Delicious, Qinguan, Zhaojin 108, Starkrimson, and Red General, were examined in autumn wood to provide abetter understanding of factors related to cultivar resistance to the woolly apple aphid, Eriosoma lanigerum (Hausmann). Chemical measures examined included soluble sugars, soluble proteins and amino acids, total phenolics, and polyphenol oxidase (that enhances the resistance of plants to insects) and superoxide dismutase, peroxidase, and catalase (that degrade waste products in plants). Soluble sugar, protein, and amino acid contents in normal (undamaged) twigs of Red Fuji, aphid-susceptible cultivar, were higher than in mechanically damaged and aphid-damaged twigs. Total phenolic compounds, an important group of defensive compounds against aphids, increased by 30.5 and 6.0% in mechanically damaged twigs of Qinguan and Zhaojin 108, respectively, and decreased by 21.7 and 16.1% in aphid-damaged twigs of Red Fuji and Red General, respectively. Compared with normal twigs, in aphid-damaged twigs, superoxide dismutase, peroxidase, and polyphenol activity all decreased in Red Fuji. The resistance of some apple cultivars to woolly apple aphid during the growth of autumn shoots was related to several of the physiological indices we monitored. The thin epidermis of callus tissue over healed wounds showed increased susceptibility to the attack by woolly apple aphid. Apple cultivar Qinguan with the highest level of resistance to woolly apple aphid in autumn had increased in amino acid, total phenolic compound levels, and enzyme activity after aphid feeding.

  18. Metallurgical and Corrosion Characterization of POST Weld Heat Treated Duplex Stainless Steel (uns S31803) Joints by Friction Welding Process

    NASA Astrophysics Data System (ADS)

    Asif M., Mohammed; Shrikrishna, Kulkarni Anup; Sathiya, P.

    2016-02-01

    The present study focuses on the metallurgical and corrosion characterization of post weld heat treated duplex stainless steel joints. After friction welding, it was confirmed that there is an increase in ferrite content at weld interface due to dynamic recrystallization. This caused the weldments prone to pitting corrosion attack. Hence the post weld heat treatments were performed at three temperatures 1080∘C, 1150∘C and 1200∘C with 15min of aging time. This was followed by water and oil quenching. The volume fraction of ferrite to austenite ratio was balanced and highest pit nucleation resistance were achieved after PWHT at 1080∘C followed by water quench and at 1150∘C followed by oil quench. This had happened exactly at parameter set containing heating pressure (HP):40 heating time (HT):4 upsetting pressure (UP):80 upsetting time (UP):2 (experiment no. 5). Dual phase presence and absence of precipitates were conformed through TEM which follow Kurdjumov-Sachs relationship. PREN of ferrite was decreasing with increase in temperature and that of austenite increased. The equilibrium temperature for water quenching was around 1100∘C and that for oil quenching was around 1140∘C. The pit depths were found to be in the range of 100nm and width of 1.5-2μm.

  19. High efficiency, low cost, thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, Bhushan L.

    2001-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  20. High efficiency low cost thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, Bhushan L.

    1999-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  1. Microbiologically Influenced Corrosion in Copper and Nickel Seawater Piping Systems

    DTIC Science & Technology

    1990-09-01

    Influenced Tipton, D. G. and Kain, R. M. 1980. Effect of temperature onCorosiope in Nuclear Power Plants atudy a Mical Gnuide the resistance to pitting of...Monel alloy 400 in seawater. In:Corrosion in Nuclear Power Plants anda Practical ie fr Proceedings of Corrosion 󈨔. Chicago, Illinois: National...Sons Ltd. 441 pp. Quimica . Verink, E.D. and Pourbaix, M. 1971. Use of electrochemical Pope, D. H., Duquette, D. J., Johannes, A. H., and Wayner

  2. Effect of chlorides on solution corrosivity of methyldiethanolamine (MDEA) solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rooney, P.C.; Bacon, T.R.; DuPart, M.S.

    1997-08-01

    Solution corrosivity of MDEA/water solutions containing added HCl or NaCl have been measured by weight loss coupons at 250 F and by linear polarization resistance (LPR) at 208 F using carbon steel, 304SS, 316SS and 410SS. General corrosion as well as pitting or crevice corrosion tendencies were recorded for each species. Based on these results, recommendations are made for chlorides in MDEA that minimizes corrosion in gas treating operations.

  3. The effects of incomplete annealing on the temperature dependence of sheet resistance and gage factor in aluminum and phosphorus implanted silicon on sapphire

    NASA Technical Reports Server (NTRS)

    Pisciotta, B. P.; Gross, C.

    1976-01-01

    Partial annealing of damage to the crystal lattice during ion implantation reduces the temperature coefficient of resistivity of ion-implanted silicon, while facilitating controlled doping. Reliance on this method for temperature compensation of the resistivity and strain-gage factor is discussed. Implantation conditions and annealing conditions are detailed. The gage factor and its temperature variation are not drastically affected by crystal damage for some crystal orientations. A model is proposed to account for the effects of electron damage on the temperature dependence of resistivity and on silicon piezoresistance. The results are applicable to the design of silicon-on-sapphire strain gages with high gage factors.

  4. Dose-Dependent Dual Role of PIT-1 (POU1F1) in Somatolactotroph Cell Proliferation and Apoptosis

    PubMed Central

    Jullien, Nicolas; Roche, Catherine; Brue, Thierry; Figarella-Branger, Dominique; Graillon, Thomas; Barlier, Anne; Herman, Jean-Paul

    2015-01-01

    To test the role of wtPIT-1 (PITWT) or PIT-1 (R271W) (PIT271) in somatolactotroph cells, we established, using inducible lentiviral vectors, sublines of GH4C1 somatotroph cells that allow the blockade of the expression of endogenous PIT-1 and/or the expression of PITWT or PIT271, a dominant negative mutant of PIT-1 responsible for Combined Pituitary Hormone Deficiency in patients. Blocking expression of endogenous PIT-1 induced a marked decrease of cell proliferation. Overexpressing PITWT twofold led also to a dose-dependent decrease of cell proliferation that was accompanied by cell death. Expression of PIT271 induced a strong dose-dependent decrease of cell proliferation accompanied by a very pronounced cell death. These actions of PIT271 are independent of its interaction/competition with endogenous PIT-1, as they were unchanged when expression of endogenous PIT-1 was blocked. All these actions are specific for somatolactotroph cells, and could not be observed in heterologous cells. Cell death induced by PITWT or by PIT271 was accompanied by DNA fragmentation, but was not inhibited by inhibitors of caspases, autophagy or necrosis, suggesting that this cell death is a caspase-independent apoptosis. Altogether, our results indicate that under normal conditions PIT-1 is important for the maintenance of cell proliferation, while when expressed at supra-normal levels it induces cell death. Through this dual action, PIT-1 may play a role in the expansion/regression cycles of pituitary lactotroph population during and after lactation. Our results also demonstrate that the so-called “dominant-negative” action of PIT271 is independent of its competition with PIT-1 or a blockade of the actions of the latter, and are actions specific to this mutant variant of PIT-1. PMID:25822178

  5. Effects of gaseous nitriding AISI4140 alloy steel on corrosion and hardness properties

    NASA Astrophysics Data System (ADS)

    Tamil Moli, L.; Wahab, N.; Gopinathan, M.; Karmegam, K.; Maniyarasi, M.

    2016-10-01

    Corrosion is one of the major problems in the industry especially on machinery since it weakens the structure of the machinery part and causes the mechanical failure. This will stop the production and increase the maintenance cost. In this study, the corrosion behaviour of gas nitriding on a screw press machine shaft made from AISI 4140 steel was investigated. Pitting corrosion was identified as a major cause of the shaft failure and this study was conducted to improve the corrosion resistance on the AISI 4140 alloy steel shaft by gas nitriding as a surface hardening treatment. Gas nitriding was performed with composition of 15% ammonia and 85% nitrogen at temperatures of 525 °C, 550 °C and 575 °C and with the soaking time of 30, 45 and 60 minutes, respectively. The samples were prepared as rectangular sized of 30mm x 12mm x 3mm for immersion testing. The results showed that corrosion rate of untreated samples was 77% higher compared to the nitrided samples. It was also found that hardness of the nitrided samples was higher than untreated sample. All in all, it can be concluded that gaseous nitriding can significantly improve the surface hardness and the corrosion resistance of the shaft made of AISI 4140 alloy steel, hence reduces the pitting that is the root cause of failure.

  6. Effects of laser remelting on microstructures and immersion corrosion performance of arc sprayed Al coating in 3.5% NaCl solution

    NASA Astrophysics Data System (ADS)

    Sun, Ze; Zhang, Donghui; Yan, Baoxu; Kong, Dejun

    2018-02-01

    An arc sprayed aluminum (Al) coating on S355 steel was processed using a laser remelting (LR). The microstructures, chemical element composition, and phases of the obtained Al coating were analyzed using a field mission scanning electronic microscope (FESEM), energy dispersive spectrometer (EDS), and X-ray diffractometer (XRD), respectively, and the residual stresses were measured using an X-ray diffraction stress tester. The immersion corrosion tests and potentiodynamic polarization of Al coating in 3.5% NaCl solution were performed to investigate the effects of LR on its immersion corrosion behaviors, and the corrosion mechanism of Al coating was also discussed. The results show that the arc sprayed Al coating is composed of Al phase, while that by LR is composed of Al-Fe and AlO4FeO6 phases, and the porosities and cracks in the arc sprayed Al coating are eliminated by LR, The residual stress of arc sprayed Al coating is -5.6 ± 18 MPa, while that after LR is 137.9 ± 12 MPa, which deduces the immersion corrosion resistance of Al coating. The corrosion mechanism of arc sprayed Al coating is pitting corrosion and crevice corrosion, while that by LR is uniform corrosion and pitting corrosion. The corrosion potential of arc sprayed Al coating by LR shifts positively, which improves its immersion corrosion resistance.

  7. Blasting and Passivation Treatments for ASTM F139 Stainless Steel for Biomedical Applications: Effects on Surface Roughness, Hardening, and Localized Corrosion

    NASA Astrophysics Data System (ADS)

    Barboza, Adriana L. Lemos; Kang, Kyung Won; Bonetto, Rita D.; Llorente, Carlos L.; Bilmes, Pablo D.; Gervasi, Claudio A.

    2015-01-01

    Due to the combination of good biofunctionality and biocompatibility at low cost, AISI 316 low carbon vacuum melting (LVM) stainless steel, as considered in ASTM F139 standard, is often the first choice for medical implants, particularly for use in orthopedic surgery. Proper surface finish must be provided to ensure adequate interactions of the alloy with human body tissues that in turn allows the material to deliver the desired performance. Preliminary studies performed in our laboratory on AISI 316LVM stainless steel surfaces modified by glass bead blasting (from industrial supplier) followed by different nitric acid passivation conditions disclosed the necessity to extend parameters of the surface treatments and to further consider roughness, pitting corrosion resistance, and surface and subsurface hardening measurements, all in one, as the most effective characterization strategy. This was the approach adopted in the present work. Roughness assessment was performed by means of amplitude parameters, functional parameters, and an estimator of the fractal dimension that characterizes surface topography. We clearly demonstrate that the blasting treatment should be carried out under controlled conditions in order to obtain similar surface and subsurface properties. Otherwise, a variation in one of the parameters could modify the surface properties, exerting a profound impact on its application as biomaterial. A passivation step is necessary to offset the detrimental effect of blasting on pitting corrosion resistance.

  8. Impact Behavior of Composite Fan Blade Leading Edge Subcomponent with Thermoplastic Polyurethane Interleave

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Roberts, Gary D.; Kohlman, Lee W.; Heimann, Paula J.; Pereira, J. Michael; Ruggeri, Charles R.; Martin, Richard E.; McCorkle, Linda S.

    2015-01-01

    Impact damage tolerance and damage resistance is a critical metric for application of polymer matrix composites where failure caused by impact damage could compromise structural performance and safety. As a result, several materials and/or design approaches to improve impact damage tolerance have been investigated over the past several decades. Many composite toughening methodologies impart a trade-off between increased fracture toughness and compromised in-plane strength and modulus. In large part, mechanical tests to evaluate composite damage tolerance include static methods such as Mode I, Mode II, and mixed mode failures. However, ballistic impact damage resistance does not always correlate with static properties. The intent of this paper is to evaluate the influence of a thermoplastic polyurethane veil interleave on the static and dynamic performance of composite test articles. Static coupon tests included tension, compression, double cantilever beam, and end notch flexure. Measurement of the resistance to ballistic impact damage were made to evaluate the composites response to high speed impact. The interlayer material showed a decrease of in-plane performance with only a moderate improvement to Mode I and Mode II fracture toughness. However, significant benefit to impact damage tolerance was observed through ballistic tests.

  9. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2014-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  10. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  11. Novel use of a Dektak 150 surface profiler unmasks differences in resorption pit profiles between control and Charcot patient osteoclasts.

    PubMed

    Petrova, Nina L; Petrov, Peter K; Edmonds, Michael E; Shanahan, Catherine M

    2014-04-01

    We hypothesized that newly formed osteoclasts from patients with acute Charcot osteoarthropathy can resorb surfaces of bone more extensively compared with controls. Peripheral blood monocytes, isolated from eight Charcot patients and nine controls, were cultured in vitro on 24-well plates and bovine bone discs in duplicate with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast formation was assessed by tartrate-resistant acid phosphatase staining (TRAcP) at day 17. Resorption was measured at day 21 after toluidine blue staining by two methods: (1) area of resorption at the surface by image analysis (%) and (2) area of resorption under the surface (μm(2)) measured by a Dektak 150 Surface Profiler. Ten 1,000 μm-long scans were performed per disc. Pits were classified as unidented, bidented, and multidented according to their shape. Although the number of newly formed TRAcP positive multinucleated cells (>3 nuclei) was similar in M-CSF + RANKL-treated cultures between controls and Charcot patients, the latter exhibited increased resorbing activity. The area of resorption on the surface by image analysis was significantly greater in Charcot patients compared with controls (21.1 % [14.5-26.2] vs. 40.8 % [35.4-46.0], median [25-75th percentile], p < 0.01), as was the area of resorption under the surface (2.7 x 10(3) μm(2) [1.6 x 10(3)- 3.9 x 10(3)] vs. 8.3 x 10(3) μm (2) [5.6 x 10(3)- 10.6 x 10(3), [corrected] p < 0.01) after profilometry. In Charcot patients pits were deeper and wider and more frequently presented as multidented pits. This application of the Dektak 150 Surface Profiler revealed novel differences in resorption pit profile from osteoclasts derived from Charcot patients compared with controls. Resorption in Charcot patients was mediated by highly aggressive newly formed osteoclasts from monocytes eroding large and deep areas of bone.

  12. 3013 DE INNER CONTAINER CLOSURE WELD CORROSION EVALUATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.

    Destructive evaluation (DE) of 3013 containers is one part of the U. S. Department of Energy Integrated Surveillance Program. During standard DE of 3013 containers, visual examinations for pitting and stress corrosion cracking (SCC) are performed on the accessible surfaces of the outer, inner, and convenience containers, which make up the 3013 container. As a result of 3013 DE additional analysis, the area near the inner container closure weld has been identified as being a region of increased corrosion susceptibility, which may provide a pathway for corrosive gases to the outer container. This area has a higher residual stress, anmore » altered microstructure, and less corrosion resistant weld oxides as a result of the welding process as well as a lower temperature than other areas of the container, which may increase the absorption of moisture on the surface. The deposition of moisture in this stressed region could lead to pitting and stress corrosion cracking. During FY2013, the inner container closure weld area was more closely evaluated on several archived samples from DE containers. These containers included FY09 DE2, FY12 DE4, FY12 DE6 and FY12 DE7 and the Hanford High Moisture Container. The additional examinations included visual observations with a stereomicroscope, scanning electron microscopy along with energy dispersive spectroscopy for chemical analysis, and serial metallography of the sidewall and lid that are part of the inner container closure weld region. Pitting was observed in all the samples taken from the closure weld regions of the examined inner containers. This pitting was generally less 20 μm with most less than 5m. These pits were similar in depth to those observed in the vapor exposed surfaces of teardrops in the shelf life corrosion testing. Cracking was not observed on either the vapor-exposed surfaces of the teardrop coupons or the inner container closure weld region. Further testing is necessary to determine if the conditions in the welded inner container could support SCC during the 50 year life time for the 3013 container.« less

  13. [Damage of modern building materials by microscopic fungi].

    PubMed

    Chuenko, A I; Karpenko, Iu V

    2011-01-01

    Resistance of three materials, produced on the basis of concrete compounds to the action of microscopic fungi, isolated from damaged living buildings, has been first investigated. It has been shown that samples of froth-block and thermoeffective block had low fungal resistance, in contrast to samples of cellular polystyrene concrete, which were resistant to fungal action, that can be associated with peculiarities of their component composition.

  14. Phosphate (Pi)-regulated heterodimerization of the high-affinity sodium-dependent Pi transporters PiT1/Slc20a1 and PiT2/Slc20a2 underlies extracellular Pi sensing independently of Pi uptake.

    PubMed

    Bon, Nina; Couasnay, Greig; Bourgine, Annabelle; Sourice, Sophie; Beck-Cormier, Sarah; Guicheux, Jérôme; Beck, Laurent

    2018-02-09

    Extracellular phosphate (P i ) can act as a signaling molecule that directly alters gene expression and cellular physiology. The ability of cells or organisms to detect changes in extracellular P i levels implies the existence of a P i -sensing mechanism that signals to the body or individual cell. However, unlike in prokaryotes, yeasts, and plants, the molecular players involved in P i sensing in mammals remain unknown. In this study, we investigated the involvement of the high-affinity, sodium-dependent P i transporters PiT1 and PiT2 in mediating P i signaling in skeletal cells. We found that deletion of PiT1 or PiT2 blunted the P i -dependent ERK1/2-mediated phosphorylation and subsequent gene up-regulation of the mineralization inhibitors matrix Gla protein and osteopontin. This result suggested that both PiTs are necessary for P i signaling. Moreover, the ERK1/2 phosphorylation could be rescued by overexpressing P i transport-deficient PiT mutants. Using cross-linking and bioluminescence resonance energy transfer approaches, we found that PiT1 and PiT2 form high-abundance homodimers and P i -regulated low-abundance heterodimers. Interestingly, in the absence of sodium-dependent P i transport activity, the PiT1-PiT2 heterodimerization was still regulated by extracellular P i levels. Of note, when two putative P i -binding residues, Ser-128 (in PiT1) and Ser-113 (in PiT2), were substituted with alanine, the PiT1-PiT2 heterodimerization was no longer regulated by extracellular P i These observations suggested that P i binding rather than P i uptake may be the key factor in mediating P i signaling through the PiT proteins. Taken together, these results demonstrate that P i -regulated PiT1-PiT2 heterodimerization mediates P i sensing independently of P i uptake. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Analysis of the bacterial community in aged and aging pit mud of Chinese Luzhou-flavour liquor by combined PCR-DGGE and quantitative PCR assay.

    PubMed

    Liang, Huipeng; Li, Wenfang; Luo, Qingchun; Liu, Chaolan; Wu, Zhengyun; Zhang, Wenxue

    2015-10-01

    The community structure of bacteria in aged and aging pit mud, which was judged according to their sensory and physicochemical characteristics, was analysed using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative real-time PCR (qPCR). The phyla Firmicutes, Actinobacteria, Proteobacteria, Synergistetes and Unclassified Bacteria were detected and the fermentative Firmicutes was predominant in both types of pit mud in the PCR-DGGE analysis. Among Firmicutes, Clostridiales was dominant in aged pit mud while Bacillales and Lactobacillales were dominant in aging pit mud. The diversity of bacterial communities in aged pit mud was higher than that in aging pit mud. In the qPCR analysis the abundance of Clostridium IV in aged pit mud was higher than that in aging pit mud and there were significant differences in the quantity of Clostridium IV between aged and aging pit mud of the same cellar (P < 0.05). There were some significant differences in the microbial community structure between aged and aging pit mud. The differences in the quantity of Clostridium IV might be involved in the distinction that the aged pit mud has a strong aroma while the aging pit mud does not. © 2014 Society of Chemical Industry.

  16. Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm.

    PubMed

    Temple, P A; Lowdermilk, W H; Milam, D

    1982-09-15

    Mechanically polished fused silica surfaces were heated with continuous-wave CO(2) laser radiation. Laser-damage thresholds of the surfaces were measured with 1064-nm 9-nsec pulses focused to small spots and with large-spot, 1064-nm, 1-nsec irradiation. A sharp transition from laser-damage-prone to highly laser-damage-resistant took place over a small range in CO(2) laser power. The transition to high damage resistance occurred at a silica surface temperature where material softening began to take place as evidenced by the onset of residual strain in the CO(2) laser-processed part. The small-spot damage measurements show that some CO(2) laser-treated surfaces have a local damage threshold as high as the bulk damage threshold of SiO(2). On some CO(2) laser-treated surfaces, large-spot damage thresholds were increased by a factor of 3-4 over thresholds of the original mechanically polished surface. These treated parts show no obvious change in surface appearance as seen in bright-field, Nomarski, or total internal reflection microscopy. They also show little change in transmissive figure. Further, antireflection films deposited on CO(2) laser-treated surfaces have thresholds greater than the thresholds of antireflection films on mechanically polished surfaces.

  17. Inheritance of resistance to the bean-pod weevil (Apion godmani Wagner) in common beans from Mexico.

    PubMed

    Garza, R; Cardona, C; Singh, S P

    1996-03-01

    The bean-pod weevil (BPW), Apion godmani Wagner, often causes heavy losses in crops of common bean (Phaseolus vulgaris L.). Farmers need resistant bean cultivars to minimize losses, cut production costs, stabilize seed yield, and reduce pesticide use and consequent health hazards. To design effective breeding methods, breeders need new and better sources of resistance and increased knowledge of their modes of inheritance. We therefore: (1) compared sources of resistance to BPW, (2) studied the inheritance of resistance, and (3) determined whether the sources possess similar or different genes for BPW resistance. The following sources of resistance, originating from the Mexican highlands, were evaluated for 3 years at INIFAP-Santa Lucía de Prias, Texcoco, Mexico: 'Amarillo 153', 'Amarillo 169', 'Hidalgo 58', 'J 117', 'Pinto Texcoco', 'Pinto 168', and 'Puebla 36'. All except 'Puebla 36' were crossed with the susceptible cultivar 'Jamapa'. 'Amarillo 153' and 'Puebla 36' were crossed with another susceptible cultivar, 'Bayo Mex'. The parents, F1 hybrids, and F2 populations were evaluated for BPW damage in 1992. Backcrosses of the F1 of Jamapa/Pinto 168 to the respective susceptible and resistant parents were also evaluated in 1992. All seven resistant accessions were crossed in all possible combinations, excluding reciprocals. The resulting 21 F1 hybrids and 21 F2 populations were evaluated for BPW damage in 1994. 'J 117' had the highest level of resistance to BPW. 'Pinto Texcoco' and 'Puebla 36' had the highest mean damage score of all seven sources of resistance. The F1 hybrids between susceptible parents and resistant sources were generally intermediate. Two genes segregating independently controlled the BPW resistance in each accession. One gene, Agm, has no effect when present alone, whereas the other gene, Agr, alone conferred intermediate resistance. When both genes were present, resistance to BPW was higher. Based on mean BPW damage scores, all 21 F1 hybrids and their F2 populations, derived from crosses among seven resistant accessions, were resistant. However, data from individual plant damage scores in F2 populations of Amarillo 169/Pinto 168 and Pinto Texcoco/Pinto 168 suggested that at least one gene in each of the three accessions was non-allelic. Data also indicated that 'Amarillo 169' had a dominant gene that conferred high levels of BPW resistance, irrespective of the alleles at the other locus; and that 'Pinto Texcoco' and 'Pinto 168' possessed two different genes for intermediate resistance.

  18. Extinction Can Reduce the Impact of Reward Cues on Reward-Seeking Behavior.

    PubMed

    Lovibond, Peter F; Satkunarajah, Michelle; Colagiuri, Ben

    2015-07-01

    Reward-associated cues are thought to promote relapse after treatment of appetitive disorders such as drug-taking, binge eating, and gambling. This process has been modelled in the laboratory using a Pavlovian-instrumental transfer (PIT) design in which Pavlovian cues facilitate instrumental reward-directed action. Attempts to reduce facilitation by cue exposure (extinction) have produced mixed results. We tested the effect of extinction in a recently developed PIT procedure using a natural reward, chocolate, in human participants. Facilitation of instrumental responding was only observed in participants who were aware of the Pavlovian contingencies. Pavlovian extinction successfully reduced, but did not completely eliminate, expectancy of reward and facilitation of instrumental responding. The results indicate that exposure can reduce the ability of cues to promote reward-directed behavior in the laboratory. However, the residual potency of extinguished cues means that additional active strategies may be needed in clinical practice to train patients to resist the impact of these cues in their environment. Copyright © 2015. Published by Elsevier Ltd.

  19. Deformation and fracture of single-crystal and sintered polycrystalline silicon carbide produced by cavitation

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Hattori, Shuji; Okada, Tsunenori; Buckley, Donald H.

    1987-01-01

    An investigation was conducted to examine the deformation and fracture behavior of single-crystal and sintered polycrystalline SiC surfaces exposed to cavitation. Cavitation erosion experiments were conducted in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (1 mm) to the surface of SiC. The horn frequency was 20 kHz, and the double amplitude of the vibrating disk was 50 microns. The results of the investigation indicate that the SiC (0001) surface could be deformed in a plastic manner during cavitation. Dislocation etch pits were formed when the surface was chemically etched. The number of defects, including dislocations in the SiC (0001) surface, increased with increasing exposure time to cavitation. The presence of intrinsic defects such as voids in the surficial layers of the sintered polycrystalline SiC determined the zones at which fractured grains and fracture pits (pores) were generated. Single-crystal SiC had superior erosion resistance to that of sintered polycrystalline SiC.

  20. Deformation and fracture of single-crystal and sintered polycrystalline silicon carbide produced by cavitation

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Hattori, Shuji; Okada, Tsunenori; Buckley, Donald H.

    1989-01-01

    An investigation was conducted to examine the deformation and fracture behavior of single-crystal and sintered polycrystalline SiC surfaces exposed to cavitation. Cavitation erosion experiments were conducted in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (1 mm) to the surface of SiC. The horn frequency was 20 kHz, and the double amplitude of the vibrating disk was 50 microns. The results of the investigation indicate that the SiC (0001) surface could be deformed in a plastic manner during cavitation. Dislocation etch pits were formed when the surface was chemically etched. The number of defects, including dislocations in SiC (0001) surface, increased with increasing exposure time to cavitation. The presence of intrinsic defects such as voids in the surficial layers of the sintered polycrystalline SiC determined the zones at which fractured grains and fracture pits (pores) were generated. Single-crystal SiC had superior erosion resistance to that of sintered polycrystalline SiC.

  1. Corrosion behavior of aluminum-alumina composites in aerated 3.5 percent chloride solution

    NASA Astrophysics Data System (ADS)

    Acevedo Hurtado, Paul Omar

    Aluminum based metal matrix composites are finding many applications in engineering. Of these Al-Al2O3 composites appear to have promise in a number of defense applications because of their mechanical properties. However, their corrosion behavior remains suspect, especially in marine environments. While efforts are being made to improve the corrosion resistance of Al-Al2O3 composites, the mechanism of corrosion is not well known. In this study, the corrosion behavior of powder metallurgy processed Al-Cu alloy reinforced with 10, 15, 20 and 25 vol. % Al2O3 particles (XT 1129, XT 2009, XT 2048, XT 2031) was evaluated in aerated 3.5% NaCl solution using microstructural and electrochemical measurements. AA1100-O and AA2024T4 monolithic alloys were also studied for comparison purposes. The composites and unreinforced alloys were subjected to potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) testing. Addition of 25 vol. % Al2O 3 to the base alloys was found to increase its corrosion resistance considerably. Microstructural studies revealed the presence of intermetallic Al2Cu particles in these composites that appeared to play an important role in the observations. Pitting potential for these composites was near corrosion potential values, and repassivation potential was below the corresponding corrosion potential, indicating that these materials begin to corrode spontaneously as soon as they come in contact with the 3.5 % NaCl solution. EIS measurements indicate the occurrence of adsorption/diffusion phenomena at the interface of the composites which ultimately initiate localized or pitting corrosion. Polarization resistance values were extracted from the EIS data for all the materials tested. Electrically equivalent circuits are proposed to describe and substantiate the corrosive processes occurring in these Al-Al2O 3 composite materials.

  2. PitScan: Computer-Assisted Feature Detection

    NASA Astrophysics Data System (ADS)

    Wagner, R. V.; Robinson, M. S.

    2018-04-01

    We developed PitScan to assist in searching the very large LROC image dataset for pits — unusual <200m wide vertical-walled holes in the Moon's surface. PitScan reduces analysts' workload by pre-filtering images to identify possible pits.

  3. Structures of Bordered Pits Potentially Contributing to Isolation of a Refilled Vessel from Negative Xylem Pressure in Stems of Morus australis Poir.: Testing of the Pit Membrane Osmosis and Pit Valve Hypotheses.

    PubMed

    Ooeda, Hiroki; Terashima, Ichiro; Taneda, Haruhiko

    2017-02-01

    Two hypotheses have been proposed to explain the mechanism preventing the refilling vessel water from being drained to the neighboring functional vessels under negative pressure. The pit membrane osmosis hypothesis proposes that the xylem parenchyma cells release polysaccharides that are impermeable to the intervessel pit membranes into the refilling vessel; this osmotically counteracts the negative pressure, thereby allowing the vessel to refill. The pit valve hypothesis proposes that gas trapped within intervessel bordered pits isolates the refilling vessel water from the surrounding functional vessels. Here, using the single-vessel method, we assessed these hypotheses in shoots of mulberry (Morus australis Poir.). First, we confirmed the occurrence of xylem refilling under negative pressure in the potted mulberry saplings. To examine the pit membrane osmosis hypothesis, we estimated the semi-permeability of pit membranes for molecules of various sizes and found that the pit membranes were not semi-permeable to polyethylene glycol of molecular mass <20,000. For the pit valve hypothesis, we formed pit valves in the intervessel pits in the short stem segments and measured the maximum liquid pressure up to which gases in bordered pits were retained. The threshold pressure ranged from 0.025 to 0.10 MPa. These values matched the theoretical value calculated from the geometry of the pit chamber (0.0692-0.101 MPa). Our results suggest that gas in the pits is retained by surface tension, even under substantial positive pressure to resolve gases in the refilling vessel, whereas the molecule size required for the pit membrane osmosis mechanism in mulberry would be unrealistically large. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Electrochemical behavior and corrosion resistance of Ti-15Mo alloy in naturally-aerated solutions, containing chloride and fluoride ions.

    PubMed

    Rodrigues, A V; Oliveira, N T C; dos Santos, M L; Guastaldi, A C

    2015-01-01

    The electrochemical behavior and corrosion resistance of Ti-15Mo alloy to applications as biomaterials in solutions 0.15 mol L(-1) Ringer, 0.15 mol L(-1) Ringer plus 0.036 mol L(-1) NaF and 0.036 mol L(-1) NaF (containing 1,500 ppm of fluoride ions, F(-)) were investigated using open-circuit potential, cyclic voltammetry, and electrochemical impedance spectroscopy techniques, X-ray photoelectron spectroscopy and scanning electron microscope. Corrosion resistance and electrochemical stability of the Ti-15Mo alloy decreased in solutions containing F(-) ions. In all cases, there were formation and growth of TiO2 and MoO3 (a protector film), not being observed pitting corrosion, which might enable Ti-15Mo alloys to be used as biomedical implant, at least in the studied conditions, since the electrochemical stability and corrosion resistance of the passive films formed are necessary conditions for osseointegration.

  5. Study on the corrosion properties of nanocrystalline nickel electrodepositied by reverse pulse current

    NASA Astrophysics Data System (ADS)

    Cheng, Wen; Ge, Wen; Yang, Qian; Qu, Xinxin

    2013-07-01

    Nanocrystalline nickel coatings were produced by the method of reverse pulse electrodepositing on the surface of steel sheets. The crystallite size of nanocrystalline nickel coatings was determined by X-ray diffraction (XRD). The effect of saccharin concentration on the crystallite size of the coatings was studied. The average crystallite sizes were diminished as a result of increasing saccharin concentration. CHI660C electrochemical workstation was used to determine the Tafel polarization curves and electrochemical impedance spectroscopy (EIS) of the coatings. The value of corrosion potential, natural corrosion current density, polarizaiton resistance and impedance was calculated, the results suggested that smaller grain size led to higher polarization resistance. EIS gave the charge transfer resistance Rct and pore resistance Rpo variation trend from beginning to 30 min. Scanning electron microscopy (SEM) examination showed the surface morphology of the nickel coatings after the neutral salt spray (NSS) test or bathing in 10% HCl. The images indicated that the corrosion behavior of nanocrystalline nickel coatings was pitting corrosion, the mechanism was also discussed.

  6. Parturition pit: the bony imprint of vaginal birth.

    PubMed

    McArthur, Tatum A; Meyer, Isuzu; Jackson, Bradford; Pitt, Michael J; Larrison, Matthew C

    2016-09-01

    To retrospectively evaluate for pits along the dorsum of the pubic body in females and compare the presence/absence of these pits to vaginal birth data. We retrospectively reviewed females with vaginal birth data who underwent pelvic CT. The presence of pits along the dorsum of the pubic body, pit grade (0 = not present; 1 = faintly imperceptible; 2 = present; 3 = prominent), and the presence of osteitis condensans ilii, preauricular sulcus, and sacroiliac joint vacuum phenomenon were assessed on imaging. Musculoskeletal radiologists who were blinded to the birth data evaluated the CTs. 48 males were also evaluated for the presence of pits. 482 female patients underwent CT pelvis and 171 were excluded due to lack of vaginal birth data. Of the 311 study patients, 262 had prior vaginal birth(s) and 194 had pits on CT. Only 7 of the 49 patients without prior vaginal birth had pits. There was a statistically significant association between vaginal birth and presence of pits (p < 0.0001). Patients with more prominent pits (grades 2/3) had a greater number of vaginal births. As vaginal deliveries increased, the odds of having parturition pits greatly increased, adjusting for age and race at CT (p < 0.0001). No males had pits. Our study indicates that parturition pits are associated with prior vaginal birth and should be considered a characteristic of the female pelvis. The lytic appearance of prominent pits on imaging can simulate disease and create a diagnostic dilemma for interpreting radiologists.

  7. Parturition Pit: The Bony Imprint of Vaginal Birth

    PubMed Central

    Meyer, Isuzu; Jackson, Bradford; Pitt, Michael J.; Larrison, Matthew C.

    2017-01-01

    Purpose To retrospectively evaluate for pits along the dorsum of the pubic body in females and compare the presence/absence of these pits to vaginal birth data. Materials and Methods We retrospectively reviewed females with vaginal birth data who underwent pelvic CT. The presence of pits along the dorsum of the pubic body, pit grade (0 = not present; 1 = faintly imperceptible; 2 = present; 3 = prominent), and the presence of osteitis condensans ilii, preauricular sulcus, and sacroiliac joint vacuum phenomenon were assessed on imaging. Musculoskeletal radiologists who were blinded to the birth data evaluated the CTs. 48 males were also evaluated for the presence of pits. Results 482 female patients underwent CT pelvis and 171 were excluded due to lack of vaginal birth data. Of the 311 study patients, 262 had prior vaginal birth(s) and 194 had pits on CT. Only 7 of the 49 patients without prior vaginal birth had pits. There was a statistically significant association between vaginal birth and presence of pits (p<0.0001). Patients with more prominent pits (grades 2/3) had a greater number of vaginal births. As vaginal deliveries increased, the odds of having parturition pits greatly increased, adjusting for age and race at CT (p<0.0001). No males had pits. Conclusion Our study indicates that parturition pits are associated prior vaginal birth and should be considered a characteristic of the female pelvis. The lytic appearance of prominent pits on imaging can simulate disease and create a diagnostic dilemma for interpreting radiologists. PMID:27270921

  8. Vertical electric sounding of selected Arctic and Antarctic soils: advances in express field investigation of the Cryosols

    NASA Astrophysics Data System (ADS)

    Abakumov, Evgeny

    2016-04-01

    Physical properties of the soils of the cold environments are underestimated. Soil and permafrost border and active layer thickness are the key classification indicators for the polar soils. That is why electrophysical research has been conducted with aim to determine the soil-permafrost layer heterogeneity and the depth of the uppermost permafrost layer on examples of selected plots in Antarctic region and Russian Arctic. The electric resistivity (ER) was measured directly in the soil profiles using the vertical electrical sounding (VERS) method, which provides data on the changes in the electrical resistivity throughout the profile from the soil surface without digging pits or drilling. This method allows dividing the soil layer vertically into genetic layers, which are different on main key properties and characteristics Different soil layers have different ER values, that is why the sharp changes in ER values in soil profile can be interpreted as results of transition of one horizon to another. In our study, the resistivity measurements were performed using four-electrode (AB + MN) arrays of the AMNB configuration with use of the Schlumberger geometry. A Landmapper ERM-03 instrument (Landviser, USA) was used for the VES measurements in this study. Electrodes were situated on the soil surface, distance between M and N was fixes, while distance from A to B were changed during the sounding. Vertical Electrical Resistivity Soundings (VERS) using Schlumberger array were carried out at stations, situated on the different plots of terrestrial ecosystems of Arctic and Antarctic. The resistance readings at every VERS point were automatically displayed on the digital readout screen and then written down on the field note book. The soils had been 'sounded' thoroughly and found to vary between 5 cm and 3-5 m in A-B distances. It was shown that use of VES methodology in soil survey is quite useful for identification of the permafrost depth without digging of soil pit. This method allow identify soil heterogeneity, because the ER values are strongly affected by soil properties and intensively changes on the border of different geochemical regimes, i.e. on the border of active layer and permafrost. VES data obtained show that the upper border of the permafrost layer coincides with that border, which were identified in field on the base of soil profile morphology. The VERS method also can used for identification of Gleyic, Histic and Podzolic layers. It has been also shown that permafrost layer is less homogenous in upper part of permafrost, than in lower one. It is caused by number of cracks, channels and other paths of dissolved organic matter and iron containing compounds migration. VES methodology is useful for preliminary soil survey in the regions with permafrost affected soil cover. It is also can be applied for detalization of soil-permafrost layer stratification in field soil pits.

  9. Self-diagnosis of damage in fibrous composites using electrical resistance measurements

    NASA Astrophysics Data System (ADS)

    Kang, Ji Ho; Paty, Spandana; Kim, Ran Y.; Tandon, G. P.

    2006-03-01

    The objective of this research was to develop a practical integrated approach using extracted features from electrical resistance measurements and coupled electromechanical models of damage, for in situ damage detection and sensing in carbon fiber reinforced plastic (CFRP) composite structures. To achieve this objective, we introduced specific known damage (in terms of type, size, and location) into CFRP laminates and established quantitative relationships with the electrical resistance measurements. For processing of numerous measurement data, an autonomous data acquisition system was devised. We also established a specimen preparation procedure and a method for electrode setup. Coupon and panel CFRP laminate specimens with several known damage were tested and post-processed with the measurement data. Coupon specimens with various sizes of artificial delaminations obtained by inserting Teflon film were manufactured and the resistance was measured. The measurement results showed that increase of delamination size led to increase of resistance implying that it is possible to sense the existence and size of delamination. Encouraged by the results of coupon specimens, we implemented the measurement system on panel specimens. Three different quasi-isotropic panels were designed and manufactured: a panel with artificial delamination by inserting Teflon film at the midplane, a panel with artificial delamination by inserting Teflon film between the second and third plies from the surface, and an undamaged panel. The first two panels were designed to determine the feasibility of detecting delamination using the developed measurement system. The third panel had no damage at first, and then three different sizes of holes were drilled at a chosen location. Panels were prepared using the established procedures with six electrode connections on each side making a total of twenty-four electrode connections for a panel. All possible pairs of electrodes were scanned and the resistance was measured for each pair. The measurement results showed the possibility of the established measurement system for an in-situ damage detection method for CFRP composite structures.

  10. Electrical Resistance of SiC/SiC Ceramic Matrix Composites for Damage Detection and Life-Prediction

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory; Xia, Zhenhai

    2009-01-01

    Ceramic matrix composites (CMC) are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems due to their low density high thermal conductivity. The employment of these materials in such applications is limited by the ability to accurately monitor and predict damage evolution. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. CMC is a multifunctional material in which the damage is coupled with the material s electrical resistance, providing the possibility of real-time information about the damage state through monitoring of resistance. Here, resistance measurement of SiC/SiC composites under mechanical load at both room temperature monotonic and high temperature creep conditions, coupled with a modal acoustic emission technique, can relate the effects of temperature, strain, matrix cracks, fiber breaks, and oxidation to the change in electrical resistance. A multiscale model can in turn be developed for life prediction of in-service composites, based on electrical resistance methods. Results of tensile mechanical testing of SiC/SiC composites at room and high temperatures will be discussed. Data relating electrical resistivity to composite constituent content, fiber architecture, temperature, matrix crack formation, and oxidation will be explained, along with progress in modeling such properties.

  11. Pitting corrosion as a mixed system: coupled deterministic-probabilistic simulation of pit growth

    NASA Astrophysics Data System (ADS)

    Ibrahim, Israr B. M.; Fonna, S.; Pidaparti, R.

    2018-05-01

    Stochastic behavior of pitting corrosion poses a unique challenge in its computational analysis. However, it also stems from electrochemical activity causing general corrosion. In this paper, a framework for corrosion pit growth simulation based on the coupling of the Cellular Automaton (CA) and Boundary Element Methods (BEM) is presented. The framework assumes that pitting corrosion is controlled by electrochemical activity inside the pit cavity. The BEM provides the prediction of electrochemical activity given the geometrical data and polarization curves, while the CA is used to simulate the evolution of pit shapes based on electrochemical activity provided by BEM. To demonstrate the methodology, a sample case of local corrosion cells formed in pitting corrosion with varied dimensions and polarization functions is considered. Results show certain shapes tend to grow in certain types of environments. Some pit shapes appear to pose a higher risk by being potentially significant stress raisers or potentially increasing the rate of corrosion under the surface. Furthermore, these pits are comparable to commonly observed pit shapes in general corrosion environments.

  12. Experimental research on micro-pit defects of SUS 430 stainless steel strip in cold rolling process

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Li, Miao; Zhu, Tao; Huo, Gang

    2013-05-01

    In order to improve surface glossiness of stainless steel strip in tandem cold rolling, experimental research on micro-pit defects of SUS 430 ferrite stainless steel was investigated in laboratory. The surface morphology of micro-pit defects was observed by SEM. The effects of micro-pit defects on rolling reduction, roll surface roughness and emulsion parameters were analyzed. With the pass number increasing, the quantity and surface of micro-pit defects were reduced, uneven peak was decreased and gently along rolling direction, micro-pit defects had equally distributed tendency along tranverse direction. The micro-pit defects were increased with the roll surface roughness increase. The defects ratio was declined with larger gradient at pass number 1 to 3, but gentle slope at pass number 4 to 5. The effects of temperature 55° and 63°, concentration 3% and 6% of emulsion on micro-pit effects had not obvious difference. Maintain of micro-pit was effected by rolling oil or air in the micro-pit, the quality of oil was much more than the air in the micro-pit in lubrication rolling.

  13. Distribution, morphology, and origins of Martian pit crater chains

    NASA Astrophysics Data System (ADS)

    Wyrick, Danielle; Ferrill, David A.; Morris, Alan P.; Colton, Shannon L.; Sims, Darrell W.

    2004-06-01

    Pit craters are circular to elliptical depressions found in alignments (chains), which in many cases coalesce into linear troughs. They are common on the surface of Mars and similar to features observed on Earth and other terrestrial bodies. Pit craters lack an elevated rim, ejecta deposits, or lava flows that are associated with impact craters or calderas. It is generally agreed that the pits are formed by collapse into a subsurface cavity or explosive eruption. Hypotheses regarding the formation of pit crater chains require development of a substantial subsurface void to accommodate collapse of the overlying material. Suggested mechanisms of formation include: collapsed lava tubes, dike swarms, collapsed magma chamber, substrate dissolution (analogous to terrestrial karst), fissuring beneath loose material, and dilational faulting. The research described here is intended to constrain current interpretations of pit crater chain formation by analyzing their distribution and morphology. The western hemisphere of Mars was systematically mapped using Mars Orbiter Camera (MOC) images to generate ArcView™ Geographic Information System (GIS) coverages. All visible pit crater chains were mapped, including their orientations and associations with other structures. We found that pit chains commonly occur in areas that show regional extension or local fissuring. There is a strong correlation between pit chains and fault-bounded grabens. Frequently, there are transitions along strike from (1) visible faulting to (2) faults and pits to (3) pits alone. We performed a detailed quantitative analysis of pit crater morphology using MOC narrow angle images, Thermal Emission Imaging System (THEMIS) visual images, and Mars Orbiter Laser Altimeter (MOLA) data. This allowed us to determine a pattern of pit chain evolution and calculate pit depth, slope, and volume. Volumes of approximately 150 pits from five areas were calculated to determine volume size distribution and regional trends. The information collected in the study was then compared with non-Martian examples of pit chains and physical analog models. We evaluated the various mechanisms for pit chain development based on the data collected and conclude that dilational normal faulting and sub-vertical fissuring provide the simplest and most comprehensive mechanisms to explain the regional associations, detailed geometry, and progression of pit chain development.

  14. Closure Report for Corrective Action Unit 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Krauss and Catherine Birney

    2011-05-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 544 are located within Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada National Security Site. Corrective Action Unit 544 comprises the following CASs: • 02-37-08,more » Cellar & Mud Pit • 02-37-09, Cellar & Mud Pit • 07-09-01, Mud Pit • 09-09-46, U-9itsx20 PS #1A Mud Pit • 10-09-01, Mud Pit • 12-09-03, Mud Pit • 19-09-01, Mud Pits (2) • 19-09-03, Mud Pit • 19-09-04, Mud Pit • 19-25-01, Oil Spill • 19-99-06, Waste Spill • 20-09-01, Mud Pits (2) • 20-09-02, Mud Pit • 20-09-03, Mud Pit • 20-09-04, Mud Pits (2) • 20-09-06, Mud Pit • 20-09-07, Mud Pit • 20-09-10, Mud Pit • 20-25-04, Oil Spills • 20-25-05, Oil Spills The purpose of this CR is to provide documentation supporting the completed corrective actions and data confirming that the closure objectives for CASs within CAU 544 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 544 issued by the Nevada Division of Environmental Protection.« less

  15. Thermotolerance, oxidative stress, apoptosis, heat-shock proteins and damages to reproductive cells of insecticide-susceptible and -resistant strains of the diamondback moth Plutella xylostella.

    PubMed

    Zhang, L J; Chen, J L; Yang, B L; Kong, X G; Bourguet, D; Wu, G

    2017-08-01

    In this study, we investigated thermotolerance, several physiological responses and damage to reproductive cells in chlorpyrifos-resistant (Rc) and -susceptible (Sm) strains of the diamondback moth, Plutella xylostella subjected to heat stress. The chlorpyrifos resistance of these strains was mediated by a modified acetylcholinesterase encoded by an allele, ace1R, of the ace1 gene. Adults of the Rc strain were less heat resistant than those of the Sm strain; they also had lower levels of enzymatic activity against oxidative damage, higher reactive oxygen species contents, weaker upregulation of two heat shock protein (hsp) genes (hsp69s and hsp20), and stronger upregulation of two apoptotic genes (caspase-7 and -9). The damage to sperm and ovary cells was greater in Rc adults than in Sm adults and was temperature sensitive. The lower fitness of the resistant strain, compared with the susceptible strain, is probably due to higher levels of oxidative stress and apoptosis, which also have deleterious effects on several life history traits. The greater injury observed in conditions of heat stress may be due to both the stronger upregulation of caspase genes and weaker upregulation of hsp genes in resistant than in susceptible individuals.

  16. Investigating pitting in X65 carbon steel using potentiostatic polarisation

    NASA Astrophysics Data System (ADS)

    Mohammed, Sikiru; Hua, Yong; Barker, R.; Neville, A.

    2017-11-01

    Although pitting corrosion in passive materials is generally well understood, the growth of surface pits in actively-corroding materials has received much less attention to date and remains poorly understood. One of the key challenges which exists is repeatedly and reliably generating surface pits in a practical time-frame in the absence of deformation and/or residual stress so that studies on pit propagation and healing can be performed. Another pertinent issue is how to evaluate pitting while addressing general corrosion in low carbon steel. In this work, potentiostatic polarisation was employed to induce corrosion pits (free from deformation or residual stress) on actively corroding X65 carbon steel. The influence of applied potential (50 mV, 100 mV and 150 mV vs open circuit potential) was investigated over 24 h in a CO2-saturated, 3.5 wt.% NaCl solution at 30 °C and pH 3.8. Scanning electron microscopy (SEM) was utilised to examine pits, while surface profilometry was conducted to measure pit depth as a function of applied potential over the range considered. Analyses of light pitting (up to 120 μm) revealed that pit depth increased linearly with increase in applied potential. This paper relates total pit volume (measured using white light interferometry) to dissipated charge or total mass loss (using the current response for potentiostatic polarisation in conjunction with Faraday's law). By controlling the potential of the surface (anodic) the extent of pitting and general corrosion could be controlled. This allowed pits to be evaluated for their ability to continue to propagate after the potentiostatic technique was employed. Linear growth from a depth of 70 μm at pH 3.8, 80 °C was demonstrated. The technique offers promise for the study of inhibition of pitting.

  17. Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aglan, H.

    2005-08-04

    The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair ofmore » field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test procedure which could lead to the certification of building materials and systems as flood damage resistant.« less

  18. Morphology and Evolution of Sublimation Pits on Pluto

    NASA Astrophysics Data System (ADS)

    Abu-Hashmeh, N.; Conrad, J. W.; Nimmo, F.; Moore, J. M.; Stern, A.; Olkin, C.; Weaver, H. A., Jr.; Ennico Smith, K.; Young, L. A.

    2017-12-01

    Pluto's Sputnik Planitia region hosts a geologically young surface of nitrogen ice that exhibits striking pitted terrain (Moore et al., Science 351, 2016). These pits are most likely formed by sublimation due to incident sunlight, similar to the southern polar cap of Mars (Byrne and Ingersoll, Science 299, 2003); however, their evolution over time has resulted in unique morphological characteristics. Motivated by this, we used the high-resolution mosaic strips captured by New Horizons' Long Range Reconnaissance Imager (LORRI) to map sublimation pits in the southernmost region of Sputnik Planitia. Statistical data shows pit orientations appearing North-South dominant; their morphology also indicates extensional evolution along the major axis caused by further sublimation and contact-coalescence processes. Qualitative analysis of the region yielded indications of an evolutionary path for individual pits that coalesce into each other and exhibit an elongated end-stage. Additionally, densely-pitted regions generally appear to correlate with regions containing longer pits, implying that coalescence may be an important process for elongation. We also model the evolution geometry through competing effects of diffusion (viscous relaxation) and retreat (sublimation) (Buhler and Ingersoll, LPSC Abstract #1746, 2017). The model demonstrates single-pit and coalescing-pit evolutions that influence overall length, as well as a potential ability for the pit center to move in space while the pit morphology evolves.

  19. Moisture-Induced Delayed Alumina Scale Spallation on a Ni(Pt)Al Coating (Preprint)

    DTIC Science & Technology

    2009-04-01

    with increase in p(H2O) [21,35 Janakiraman 1999, Maris- Sida 2003]. However the same effect was not especially evident for the more oxidation resistant...Tolpygo 2007, Maris- sida 2003). Crystallographically aligned surface striations and pits are also evident, presumably an artifact of the CVD...A similar but less severe effect was reported for the same coating on Rene´N5 (35 Maris- Sida , 2003), exhibiting a loss of 1 mg/cm2 in wet air

  20. Iron-aluminum alloys having high room-temperature and method for making same

    DOEpatents

    Sikka, Vinod K.; McKamey, Claudette G.

    1993-01-01

    Iron-aluminum alloys having selectable room-temperature ductilities of greater than 20%, high resistance to oxidation and sulfidation, resistant pitting and corrosion in aqueous solutions, and possessing relatively high yield and ultimate tensile strengths are described. These alloys comprise 8 to 9.5% aluminum, up to 7% chromium, up to 4% molybdenum, up to 0.05% carbon, up to 0.5% of a carbide former such as zirconium, up to 0.1 yttrium, and the balance iron. These alloys in wrought form are annealed at a selected temperature in the range of 700.degree. C. to about 1100.degree. C. for providing the alloys with selected room-temperature ductilities in the range of 20 to about 29%.

  1. Effects of Nitrogen and Tensile Direction on Stress Corrosion Cracking Susceptibility of Ni-Free FeCrMnC-Based Duplex Stainless Steels

    PubMed Central

    Ha, Heon-Young; Lee, Chang-Hoon; Lee, Tae-Ho; Kim, Sangshik

    2017-01-01

    Stress corrosion cracking (SCC) behavior of Ni-free duplex stainless steels containing N and C (Febalance-19Cr-8Mn-0.25C-(0.03, 0.21)N, in wt %) was investigated by using a slow strain rate test (SSRT) in air and aqueous NaCl solution with different tensile directions, including parallel (longitudinal) and perpendicular (transverse) to the rolling direction. It was found that alloying N was effective in increasing the resistance to SCC, while it was higher along the longitudinal direction than the transverse direction. The SCC susceptibility of the two alloys was assessed based on the electrochemical resistance to pitting corrosion, the corrosion morphology, and the fractographic analysis. PMID:28772651

  2. Effect of Niobium on Phase Transformations, Mechanical Properties and Corrosion of Supermartensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    de Oliveira, Mariana Perez; Calderón-Hernández, José Wilmar; Magnabosco, Rodrigo; Hincapie-Ladino, Duberney; Alonso-Falleiros, Neusa

    2017-04-01

    The influence of niobium addition in a supermartensitic stainless steel with 13Cr-5Ni-2Mo has been studied. The steel with Nb tempered at 600 °C for 2 h showed improved mechanical resistance properties and lower degree of sensitization, without compromising elongation and pitting corrosion resistance, when compared to the reference steel. In order to understand the Nb effect in such steel, mainly regarding phase transformation, different tempering time intervals have been studied. The better performance of the SM2MoNb is attributed to the hindering effect that Nb has in the kinetics of the phase transformations during tempering, delaying the precipitation start and coarsening stages of the present phases.

  3. Impact resistance of fiber composite blades used in aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Friedrich, L. A.; Preston, J. L., Jr.

    1973-01-01

    Resistance of advanced fiber reinforced epoxy matrix composite materials to ballistic impact was investigated as a function of impacting projectile characteristics, and composite material properties. Ballistic impact damage due to normal impacts, was classified as transverse (stress wave delamination and splitting), penetrative, or structural (gross failure). Steel projectiles were found to be gelatin ice projectiles in causing penetrative damage leading to reduced tensile strength. Gelatin and ice projectiles caused either transverse or structural damage, depending upon projectile mass and velocity. Improved composite transverse tensile strength, use of dispersed ply lay-ups, and inclusion of PRD-49-1 or S-glass fibers correlated with improved resistance of composite materials to transverse damage. In non-normal impacts against simulated blade shapes, the normal velocity component of the impact was used to correlate damage results with normal impact results. Stiffening the leading edge of simulated blade specimens led to reduced ballistic damage, while addition of a metallic leading edge provided nearly complete protection against 0.64 cm diameter steel, and 1.27 cm diameter ice and gelatin projectiles, and partial protection against 2.54 cm diameter projectiles of ice and gelatin.

  4. Fragmentation, Cost and Environmental Effects of Plaster Stemming Method for Blasting at A Basalt Quarry

    NASA Astrophysics Data System (ADS)

    Cevizci, Halim

    2014-10-01

    In this study, the plaster stemming application for blasting at a basalt quarry is studied. Drill cuttings are generally used in open pits and quarries as the most common stemming material since these are most readily available at blast sites. However, dry drill cuttings eject very easily from blastholes without offering much resistance to blast energy. The plaster stemming method has been found to be better than the drill cuttings stemming method due to increased confinement inside the hole and better utilization of blast explosive energy in the rock. The main advantage of the new stemming method is the reduction in the cost of blasting. At a basalt quarry, blasting costs per unit volume of rock were reduced to 15% by increasing burden and spacing distances. In addition, better fragmentation was obtained by using the plaster stemming method. Blast trials showed that plaster stemming produced finer material. In the same blast tests, +30 cm size fragments were reduced to 47.3% of the total, compared to 32.6% in the conventional method of drill cuttings stemming. With this method of stemming, vibration and air shock values increased slightly due to more blast energy being available for rock breakage but generally these increased values were small and stayed under the permitted limit for blast damage criteria unless measuring distance is too close.

  5. On the corrosion behavior of zircaloy-4 in spent fuel pools under accidental conditions

    NASA Astrophysics Data System (ADS)

    Lavigne, O.; Shoji, T.; Sakaguchi, K.

    2012-07-01

    After zircaloy cladding tubes have been subjected to irradiation in the reactor core, they are stored temporarily in spent fuel pools. In case of an accident, the integrity of the pool may be affected and the composition of the coolant may change drastically. This was the case in Fukushima Daiichi in March 2011. Successive incidents have led to an increase in the pH of the coolant and to chloride contamination. Moreover, water radiolysis may occur owing to the remnant radioactivity of the spent fuel. In this study, we propose to evaluate the corrosion behavior of oxidized Zr-4 (in autoclave at 288 °C for 32 days) in function of the pH and the presence of chloride and radical forms. The generation of radicals is achieved by the sonolysis of the solution. It appears that the increase in pH and the presence of radicals lead to an increase in current densities. However, the current densities remain quite low (depending on the conditions, between 1 and 10 μA cm-2). The critical parameter is the presence of chloride ions. The chloride ions widely decrease the passive range of the oxidized samples (the pitting potential is measured around +0.6 V (vs. SCE)). Moreover, if the oxide layer is scratched or damaged (which is likely under accidental conditions), the pitting potential of the oxidized sample reaches the pitting potential of the non-oxidized sample (around +0.16 V (vs. SCE)), leaving a shorter stable passive range for the Zr-4 cladding tubes.

  6. Evaluation of sonic IR for NDE at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, W O

    2001-02-01

    Sonic IR was evaluated as an NDE technique at LLNL using a commercial ThermoSoniX system from Indigo Systems Corp. The main effort was to detect small cracks in aluminum oxide, a dense stiff ceramic. Test coupons were made containing 0.2-mm cracks by surface grinding, 1-mm cracks by compression with a Vickers bit, and 4-mm cracks by 3-point bending. Only the 3-point bend cracks produced thermal images. Several parts shattered during testing, perhaps by being forced at resonance by the 20-kHz acoustic probe. Tests on damaged carbon composite coupons produced thermal images that were in excellent agreement with ultrasonic inspection. Themore » composite results also showed some dependence on contact location of the acoustic probe, and on the method of support. Tests on glass with surface damage produced weak images at the pits. Tests on metal ballistic targets produced thermal images at the impact sites. Modal analyses suggest that the input frequency should be matched to the desired response, and also that forced resonance damaged some parts.« less

  7. Corrosion monitoring using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  8. DNA damage responsive miR-33b-3p promoted lung cancer cells survival and cisplatin resistance by targeting p21WAF1/CIP1.

    PubMed

    Xu, Shun; Huang, Haijiao; Chen, Yu-Ning; Deng, Yun-Ting; Zhang, Bing; Xiong, Xing-Dong; Yuan, Yuan; Zhu, Yanmei; Huang, Haiyong; Xie, Luoyijun; Liu, Xinguang

    2016-11-01

    Cisplatin is the most potent and widespread used chemotherapy drug for lung cancer treatment. However, the development of resistance to cisplatin is a major obstacle in clinical therapy. The principal mechanism of cisplatin is the induction of DNA damage, thus the capability of DNA damage response (DDR) is a key factor that influences the cisplatin sensitivity of cancer cells. Recent advances have demonstrated that miRNAs (microRNAs) exerted critical roles in DNA damage response; nonetheless, the association between DNA damage responsive miRNAs and cisplatin resistance and its underlying molecular mechanism still require further investigation. The present study has attempted to identify differentially expressed miRNAs in cisplatin induced DNA damage response in lung cancer cells, and probe into the effects of the misexpressed miRNAs on cisplatin sensitivity. Deep sequencing showed that miR-33b-3p was dramatically down-regulated in cisplatin-induced DNA damage response in A549 cells; and ectopic expression of miR-33b-3p endowed the lung cancer cells with enhanced survival and decreased γH2A.X expression level under cisplatin treatment. Consistently, silencing of miR-33b-3p in the cisplatin-resistant A549/DDP cells evidently sensitized the cells to cisplatin. Furthermore, we identified CDKN1A (p21) as a functional target of miR-33b-3p, a critical regulator of G1/S checkpoint, which potentially mediated the protection effects of miR-33b-3p against cisplatin. In aggregate, our results suggested that miR-33b-3p modulated the cisplatin sensitivity of cancer cells might probably through impairing the DNA damage response. And the knowledge of the drug resistance conferred by miR-33b-3p has great clinical implications for improving the efficacy of chemotherapies for treating lung cancers.

  9. Surface plasmon resonance-enabled antibacterial digital versatile discs

    NASA Astrophysics Data System (ADS)

    Dou, Xuan; Chung, Pei-Yu; Jiang, Peng; Dai, Jianli

    2012-02-01

    We report the achievement of effective sterilization of exemplary bacteria including Escherichia coli and Geobacillus stearothermophilus spores on a digital versatile disc (DVD). The spiral arrangement of aluminum-covered pits generates strong surface plasmon resonance (SPR) absorption of near-infrared light, leading to high surface temperature that could even damage the DVD plastics. Localized protein denaturation and high sterilization efficiency have been demonstrated by using a fluorescence microscope and cell cultures. Numerical simulations have also been conducted to model the SPR properties and the surface temperature distribution of DVDs under laser illumination. The theoretical predictions agree reasonably well with the experimental results.

  10. Burn Pit Emissions Exposure and Respiratory and Cardiovascular Conditions Among Airborne Hazards and Open Burn Pit Registry Participants.

    PubMed

    Liu, Jason; Lezama, Nicholas; Gasper, Joseph; Kawata, Jennifer; Morley, Sybil; Helmer, Drew; Ciminera, Paul

    2016-07-01

    The aim of this study was to determine how burn pit emissions exposure is associated with the incidence of respiratory and cardiovascular conditions. We examined the associations between assumed geographic and self-reported burn pit emissions exposure and respiratory and cardiovascular outcomes in participants of the Airborne Hazards and Open Burn Pit Registry. We found significant dose-response associations for higher risk of self-reported emphysema, chronic bronchitis, or chronic obstructive pulmonary disease with increased days of deployment within 2 miles of selected burn pits (P-trend = 0.01) and self-reported burn pit smoke exposure (P-trend = 0.0005). We found associations between burn pit emissions exposure and higher incidence of post-deployment self-reported respiratory and cardiovascular conditions, but these findings should be interpreted with caution because the surrogate measurements of burn pit emissions exposure in this analysis may not reflect individual exposure levels.

  11. Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution

    PubMed Central

    Platz, T.; Schorghofer, N.; Prettyman, T. H.; De Sanctis, M. C.; Crown, D. A.; Schmedemann, N.; Neesemann, A.; Kneissl, T.; Marchi, S.; Schenk, P. M.; Bland, M. T.; Schmidt, B. E.; Hughson, K. H. G.; Tosi, F.; Zambon, F.; Mest, S. C.; Yingst, R. A.; Williams, D. A.; Russell, C. T.; Raymond, C. A.

    2017-01-01

    Abstract Prior to the arrival of the Dawn spacecraft at Ceres, the dwarf planet was anticipated to be ice‐rich. Searches for morphological features related to ice have been ongoing during Dawn's mission at Ceres. Here we report the identification of pitted terrains associated with fresh Cerean impact craters. The Cerean pitted terrains exhibit strong morphological similarities to pitted materials previously identified on Mars (where ice is implicated in pit development) and Vesta (where the presence of ice is debated). We employ numerical models to investigate the formation of pitted materials on Ceres and discuss the relative importance of water ice and other volatiles in pit development there. We conclude that water ice likely plays an important role in pit development on Ceres. Similar pitted terrains may be common in the asteroid belt and may be of interest to future missions motivated by both astrobiology and in situ resource utilization. PMID:28989206

  12. Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution.

    PubMed

    Sizemore, H G; Platz, T; Schorghofer, N; Prettyman, T H; De Sanctis, M C; Crown, D A; Schmedemann, N; Neesemann, A; Kneissl, T; Marchi, S; Schenk, P M; Bland, M T; Schmidt, B E; Hughson, K H G; Tosi, F; Zambon, F; Mest, S C; Yingst, R A; Williams, D A; Russell, C T; Raymond, C A

    2017-07-16

    Prior to the arrival of the Dawn spacecraft at Ceres, the dwarf planet was anticipated to be ice-rich. Searches for morphological features related to ice have been ongoing during Dawn's mission at Ceres. Here we report the identification of pitted terrains associated with fresh Cerean impact craters. The Cerean pitted terrains exhibit strong morphological similarities to pitted materials previously identified on Mars (where ice is implicated in pit development) and Vesta (where the presence of ice is debated). We employ numerical models to investigate the formation of pitted materials on Ceres and discuss the relative importance of water ice and other volatiles in pit development there. We conclude that water ice likely plays an important role in pit development on Ceres. Similar pitted terrains may be common in the asteroid belt and may be of interest to future missions motivated by both astrobiology and in situ resource utilization.

  13. Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution

    USGS Publications Warehouse

    Sizemore, H.G.; Platz, Thomas; Schorghofer, Norbert; Prettyman, Thomas; De Sanctis, Maria Christina; Crown, David A.; Schmedemann, Nico; Nessemann, Andeas; Kneissl, Thomas; Simone Marchi,; Schenk, Paul M.; Bland, Michael T.; Schmidt, B.E.; Hughson, Kynan H.G.; Tosi, F.; Zambon, F; Mest, S.C.; Yingst, R.A.; Williams, D.A.; Russell, C.T.; Raymond, C.A.

    2017-01-01

    Prior to the arrival of the Dawn spacecraft at Ceres, the dwarf planet was anticipated to be ice-rich. Searches for morphological features related to ice have been ongoing during Dawn's mission at Ceres. Here we report the identification of pitted terrains associated with fresh Cerean impact craters. The Cerean pitted terrains exhibit strong morphological similarities to pitted materials previously identified on Mars (where ice is implicated in pit development) and Vesta (where the presence of ice is debated). We employ numerical models to investigate the formation of pitted materials on Ceres and discuss the relative importance of water ice and other volatiles in pit development there. We conclude that water ice likely plays an important role in pit development on Ceres. Similar pitted terrains may be common in the asteroid belt and may be of interest to future missions motivated by both astrobiology and in situ resource utilization.

  14. Force-displacement measurements of earlywood bordered pits using a mesomechanical tester.

    PubMed

    Zelinka, Samuel L; Bourne, Keith J; Hermanson, John C; Glass, Samuel V; Costa, Adriana; Wiedenhoeft, Alex C

    2015-10-01

    The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force-displacement measurements for pit membranes of circular bordered pits, collected on a mesomechanical testing system. The system consists of a quartz microprobe attached to a microforce sensor that is positioned and advanced with a micromanipulator mounted on an inverted microscope. Membrane displacement is measured from digital image analysis. Unaspirated pits from earlywood of never-dried wood of Larix and Pinus and aspirated pits from earlywood of dried wood of Larix were tested to generate force-displacement curves up to the point of membrane failure. Two failure modes were observed: rupture or tearing of the pit membrane by the microprobe tip, and the stretching of the pit membrane until the torus was forced out of the pit chamber through the pit aperture without rupture, a condition we refer to as torus prolapse. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  15. Self-Healing of Proton Damage in Lithium Niobite LiNbO2

    NASA Astrophysics Data System (ADS)

    Shank, Joshua C.; Tellekamp, M. Brooks; Zhang, En Xia; Bennett, W. Geoff; McCurdy, Michael W.; Fleetwood, Daniel M.; Alles, Michael L.; Schrimpf, Ronald D.; Doolittle, W. Alan

    2015-04-01

    Proton radiation damage and short-term annealing are investigated for lithium niobite (LiNbO2) mixed electronic-ionic memristors. Radiation damage and short-term annealing were characterized using Electrochemical Impedance Spectroscopy (EIS) to determine changes in the device resistance and the lithium ion mobility. The radiation damage resulted in a 0.48% change in the resistance at a fluence of 1014 cm-2. In-situ short-term annealing at room temperature reduced the net detrimental effect of the damage with a time constant of about 9 minutes. The radiation damage mechanism is attributed predominantly to displacement damage at the niobium and oxygen sites trapping lithium ions that are responsible for induced polarization within the material. Short term annealing is attributed to room temperature thermal annealing of these defects, freeing the highly mobile lithium ions.

  16. Effect of optical damage resistant dopants on the dielectric properties of LiNbO3: Insight from broadband impedance spectroscopy and Raman scattering

    NASA Astrophysics Data System (ADS)

    Cochard, Charlotte; Guennou, Mael; Spielmann, Thiemo; van Hoof, Niels; Halpin, Alexei; Granzow, Torsten

    2018-04-01

    Optical damage limits the application range of congruent LiNbO3. This problem is commonly overcome by adding optical-damage-resistant cations. Here, the influence of doping with optical-damage-resistant Mg and Zn on the ionic and piezoelectric contributions to the dielectric permittivity is investigated in a broad frequency range (1 mHz-2 THz). It is shown that the two dopants have radically different influences on the variation of ionic permittivity with doping, in spite of their similarities with respect to the crystallographic structure. Raman spectroscopy reveals that the difference in permittivity can be traced to the effect of Mg and Zn doping on the susceptibility of the phonon modes. Both observations point to differences in the defect incorporation mechanisms.

  17. Stability Study on Steel Structural Columns with Initial Blast Damage under High Temperatures

    NASA Astrophysics Data System (ADS)

    Baoxin, Qi; Yan, Shi; Li, Peng

    2018-03-01

    Blast may bring light-weight steel columns with initial damages, resulting in lowering its critical fire-resistance temperature whose reduced amplitude is relevant to the form and degree of the damages. Finite element analysis software ANSYS was used in the paper to analyze the issue of the fire-resistance temperature of the column with the blast damages, and the coupling method for heat and structure was applied during the simulation. The emphasis was laid on parametric factors of axial compression ratio, the form and the degree of the initial damages, as well as the confined condition at the ends of the columns. The numerical results showed that the fire-resistance temperature will lower as increasing of the axial compression ratio, the form and the degree of the initial damages and it will be also affected by the restraint conditions at the ends of the columns. The critical stress formula with initial bending damage under elevated temperature was set up under flexural small deformation condition, then the stability coefficient was determined and the method for evaluating the limit temperature of the column was put forward. The theoretical result was also compared with that of the finite element method (FEM). The results both showed that the stability capacity for the damaged columns was dramatically reduced as increasing the temperature and the initial damage level.

  18. Impact damage resistance and damage suppression properties of shape memory alloys in hybrid composites—a review

    NASA Astrophysics Data System (ADS)

    Angioni, S. L.; Meo, M.; Foreman, A.

    2011-01-01

    Composite materials are known to have a poor resistance to through-the-thickness impact loading. There are various methods for improving their impact damage tolerance, such as fiber toughening, matrix toughening, interface toughening, through-the-thickness reinforcements, and selective interlayers and hybrids. Hybrid composites with improved impact resistance are particularly useful in military and commercial civil applications. Hybridizing composites using shape memory alloys (SMA) is one solution since SMA materials can absorb the energy of the impact through superelastic deformation or recovery stress, reducing the effects of the impact on the composite structure. The SMA material may be embedded in the hybrid composites (SMAHC) in many different forms and also the characteristics of the fiber reinforcements may vary, such as SMA wires in woven laminates or SMA foils in unidirectional laminates, only to cite two examples. We will review the state of the art of SMAHC for the purpose of damage suppression. Both the active and passive damage suppression mechanisms will be considered.

  19. Elevated Rate of Genome Rearrangements in Radiation-Resistant Bacteria.

    PubMed

    Repar, Jelena; Supek, Fran; Klanjscek, Tin; Warnecke, Tobias; Zahradka, Ksenija; Zahradka, Davor

    2017-04-01

    A number of bacterial, archaeal, and eukaryotic species are known for their resistance to ionizing radiation. One of the challenges these species face is a potent environmental source of DNA double-strand breaks, potential drivers of genome structure evolution. Efficient and accurate DNA double-strand break repair systems have been demonstrated in several unrelated radiation-resistant species and are putative adaptations to the DNA damaging environment. Such adaptations are expected to compensate for the genome-destabilizing effect of environmental DNA damage and may be expected to result in a more conserved gene order in radiation-resistant species. However, here we show that rates of genome rearrangements, measured as loss of gene order conservation with time, are higher in radiation-resistant species in multiple, phylogenetically independent groups of bacteria. Comparison of indicators of selection for genome organization between radiation-resistant and phylogenetically matched, nonresistant species argues against tolerance to disruption of genome structure as a strategy for radiation resistance. Interestingly, an important mechanism affecting genome rearrangements in prokaryotes, the symmetrical inversions around the origin of DNA replication, shapes genome structure of both radiation-resistant and nonresistant species. In conclusion, the opposing effects of environmental DNA damage and DNA repair result in elevated rates of genome rearrangements in radiation-resistant bacteria. Copyright © 2017 Repar et al.

  20. Least tern and piping plover nesting at sand pits in Nebraska

    USGS Publications Warehouse

    Sidle, John G.; Kirsch, E.M.

    1993-01-01

    Endangered Least Terns (Sterna antillarum) and threatened Piping Plovers (Charadrius melodus) nest at commercial sand and gravel mining operations (sand pits) along the Platte River system in Nebraska. Sandbar habitat has been disappearing since the early 1900's along the Platte River system, but numbers of sand pits have increased. We hypothesized that birds would more fully utilize sand pits where suitable sandbar habitat was limited. We inventoried sand pits and censused terns and plovers on both habitats along the Loup River, part of the North Loup River, and most of the Platte River during 1988-1991. Using aircraft, we also quantified features of suitable sand pits present on the central Platte in 1988 and lower Platte in 1990, and related features to abundance and presence of birds. We found 225 sand pits of which 78 were suitable and 187 were unsuitable for nesting. Along the central Platte, where sandbar habitat is severely degraded, birds nested at 81% of the suitable sand pits (N = 32) at least once during 1988-1991, and most birds (61-94%) nested on sand pits. Along the lower Platte, where both sandbar and sand pit habitat are plentiful, birds nested at 60% of the suitable sand pits (N = 35) at least once during 1988-1991, and most birds (60-86%) nested on sandbars. Numbers of terns and plovers were more weakly correlated with features of sand pits on the central Platte than on the lower Platte. Least Terns and Piping Plovers seem to use more of the suitable sand pit habitat on the central Platte than on the lower Platte. Sand pits probably have influenced the birds' distribution by providing alternative nesting habitat along rivers where suitable sandbars are rare or absent.

  1. Efficacy of UV-Pit-light traps for discerning micro-habitat-specific beetle and ant species related with different oil palm age stands and tropical annual seasons for accurate ecology and diversity interpretations

    NASA Astrophysics Data System (ADS)

    Ahmad Bukhary, A. K.; Ruslan, M. Y.; Mohd. Fauzi, M. M.; Nicholas, S.; Muhamad Fahmi, M. H.; Izfa Riza, H.; Idris, A. B.

    2015-09-01

    A newly innovated and efficient UV-Pit-light Trap is described and the results of the experiments on its efficacy that were carried out within different oil palm age stands of the year 2013 were evaluated and compared with previous study year of 2010, with out the implementation of the UV-Pit-light Trap. In 2013 the UV-Pit-light Traps, the Malaise Traps, and the Pit-fall Traps were employed, while in 2010, the conventional canopy-height UV-Light Traps, Malaise Traps, and the Pit-fall Traps were employed. The UV-Pit-light traps caught more beetle and ant families, morpho-species, and individuals per species compared with the passive Pit-fall traps. The UV-Pit-light Trap targets different subsets of the oil palm beetles and ants' communities, specifying on epigaeic-related micro-habitats, with different oil palm age stands have different compositions of micro-habitats. The UV-Pit-light Traps have the dual quality for satisfying both the biological and statistical data requirements and evaluations. There were no significant difference between the UV-Pit-light Traps and the passive Pit-fall Traps, while the trapping difference with the Malaise traps for different seasons of the year 2013. The UV-Pit-light Traps and the Malaise Traps were complementary to each other, detecting the activities of beetles and ants around the epigaeic-related micro-habitats or having active flight activities respectively according to annual seasons. The UV-Pit-light Trap is an oil-palm specific type of passive trapping system, focusing on the insect species dwelling the upper-ground/epigaeic micro-habitats.

  2. One dimensional Linescan x-ray detection of pits in fresh cherries

    USDA-ARS?s Scientific Manuscript database

    The presence of pits in processed cherries is a concern for both processors and consumers, in many cases causing injury and potential lawsuits. While machines used for pitting cherries are extremely efficient, if one or more plungers in a pitting head become misaligned, a large number of pits may p...

  3. Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse.

    PubMed

    Vincent, Jean-Baptiste; Bodewits, Dennis; Besse, Sébastien; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; Agarwal, Jessica; A'Hearn, Michael F; Auger, Anne-Thérèse; Barucci, M Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Capanna, Claire; Cremonese, Gabriele; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; El-Maarry, Mohamed Ramy; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Giacomini, Lorenza; Groussin, Olivier; Guilbert-Lepoutre, Aurélie; Gutierrez-Marques, P; Gutiérrez, Pedro J; Güttler, Carsten; Hoekzema, Nick; Höfner, Sebastian; Hviid, Stubbe F; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kovacs, Gabor; Kramm, Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M; Lazzarin, Monica; Lee, Vicky; Leyrat, Cédric; Lin, Zhong-Yi; Lopez Moreno, Josè J; Lowry, Stephen; Magrin, Sara; Maquet, Lucie; Marchi, Simone; Marzari, Francesco; Massironi, Matteo; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Preusker, Frank; Scholten, Frank; Thomas, Nicolas; Toth, Imre; Tubiana, Cecilia

    2015-07-02

    Pits have been observed on many cometary nuclei mapped by spacecraft. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments and models cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts. Alternative mechanisms like explosive activity have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov-Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface.

  4. Unraveling Fungal Radiation Resistance Regulatory Networks through the Genome-Wide Transcriptome and Genetic Analyses of Cryptococcus neoformans.

    PubMed

    Jung, Kwang-Woo; Yang, Dong-Hoon; Kim, Min-Kyu; Seo, Ho Seong; Lim, Sangyong; Bahn, Yong-Sun

    2016-11-29

    The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms underlying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A variety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resistance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation exposure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leucine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling expression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique molecular mechanism of the radiation-resistant fungus C. neoformans IMPORTANCE: Although there are no natural environments under intense radiation, some living organisms have been found to show high radiation resistance. Organisms harboring the ability of radiation resistance have unique regulatory networks to overcome this stress. Cryptococcus neoformans is one of the radiation-resistant fungi and is found in highly radioactive environments. However, it remains elusive how radiation-resistant eukaryotic microorganisms work differentially from radiation-sensitive ones. Here, we performed transcriptome analysis of C. neoformans to explore gene expression profiles after gamma radiation exposure and functionally characterized some of identified radiation resistance genes. Notably, we identified a novel regulator of radiation resistance, named Bdr1 (a bZIP TF for DNA damage response 1), which is a transcription factor (TF) that is not closely homologous to any known TF and is transcriptionally controlled by the Rad53 kinase. Therefore, our work could shed light on understanding not only the radiation response but also the radiation resistance mechanism of C. neoformans. Copyright © 2016 Jung et al.

  5. Detecting Cracks in Ceramic Matrix Composites by Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90o fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  6. Light scattering from laser induced pit ensembles on high power laser optics

    DOE PAGES

    Feigenbaum, Eyal; Elhadj, Selim; Matthews, Manyalibo J.

    2015-01-01

    Far-field light scattering characteristics from randomly arranged shallow Gaussian-like shaped laser induced pits, found on optics exposed to high energy laser pulses, is studied. Closed-form expressions for the far-field intensity distribution and scattered power are derived for individual pits and validated using numerical calculations of both Fourier optics and FDTD solutions to Maxwell’s equations. It is found that the scattered power is proportional to the square of the pit width and approximately also to the square of the pit depth, with the proportionality factor scaling with pit depth. As a result, the power scattered from shallow pitted optics is expectedmore » to be substantially lower than assuming complete scattering from the total visible footprint of the pits.« less

  7. Pit-1/growth hormone factor 1 splice variant expression in the rhesus monkey pituitary gland and the rhesus and human placenta.

    PubMed

    Schanke, J T; Conwell, C M; Durning, M; Fisher, J M; Golos, T G

    1997-03-01

    We have examined the expression of Pit-1 messenger RNA (mRNA) splice variants in the nonhuman primate pituitary and in rhesus and human placenta. Full-length complementary DNAs (cDNAs) representing Pit-1 and the Pit-1 beta splice variants were cloned from a rhesus monkey pituitary cDNA library and were readily detectable by RT-PCR with rhesus pituitary gland RNA. The Pit-1T variant previously reported in mouse pituitary tumor cell lines was not detectable in normal rhesus pituitary tissue, although two novel splice variants were detected. A cDNA approximating the rat Pit-1 delta 4 variant was cloned but coded for a truncated and presumably nonfunctional protein. Only by using a nested RT-PCR approach were Pit-1 and Pit-1 beta variants consistently detectable in both human and rhesus placental tissue. The Pit-1 beta variant mRNA was not detectable in JEG-3 choriocarcinoma cells unless the cells were stimulated with 8-Br-cAMP. Immunoblot studies with nuclear extracts from primary rhesus syncytiotrophoblast cultures or JEG-3 choriocarcinoma cells indicated that although mRNA levels were very low, Pit-1 protein was detectable in differentiated cytotrophoblasts, and levels increased after treatment with 8-Br-cAMP. Two major species of Pit-1 protein were detected that corresponded to the two major bands in rat pituitary GH3 cell nuclear extracts. Low levels of slightly larger bands also were seen, which may represent Pit-1 beta protein or phosphorylated species. We conclude that Pit-1 splice variants expressed in the primate pituitary gland differ from those in the rodent gland and that the Pit-1 and Pit-1 beta mRNAs expressed in the placenta give rise to a pattern of protein expression similar to that seen in pituitary cells, which is inducible by treatment with 8-Br-cAMP.

  8. Advantages and limitations for users of double pit pour-flush latrines: a qualitative study in rural Bangladesh.

    PubMed

    Hussain, Faruqe; Clasen, Thomas; Akter, Shahinoor; Bawel, Victoria; Luby, Stephen P; Leontsini, Elli; Unicomb, Leanne; Barua, Milan Kanti; Thomas, Brittany; Winch, Peter J

    2017-05-25

    In rural Bangladesh, India and elsewhere, pour-flush pit latrines are the most common sanitation system. When a single pit latrine becomes full, users must empty it themselves and risk exposure to fresh feces, pay an emptying service to remove pit contents or build a new latrine. Double pit pour-flush latrines may serve as a long-term sanitation option including high water table areas because the pits do not need to be emptied immediately and the excreta decomposes into reusable soil. Double pit pour-flush latrines were implemented in rural Bangladesh for 'hardcore poor' households by a national NGO, BRAC. We conducted interviews, focus groups, and spot checks in two low-income, rural areas of Bangladesh to explore the advantages and limitations of using double pit latrines compared to single pit latrines. The rural households accepted the double pit pour-flush latrine model and considered it feasible to use and maintain. This latrine design increased accessibility of a sanitation facility for these low-income residents and provided privacy, convenience and comfort, compared to open defecation. Although a double pit latrine is more costly and requires more space than a single pit latrine the households perceived this sanitation system to save resources, because households did not need to hire service workers to empty pits or remove decomposed contents themselves. In addition, the excreta decomposition process produced a reusable soil product that some households used in homestead gardening. The durability of the latrine superstructures was a problem, as most of the bamboo-pole superstructure broke after 6-18 months of use. Double pit pour-flush latrines are a long-term improved sanitation option that offers users several important advantages over single pit pour-flush latrines like in rural Bangladesh which can also be used in areas with high water table. Further research can provide an understanding of the comparative health impacts and effectiveness of the model in preventing human excreta from entering the environment.

  9. Involvement of the pituitary-specific transcription factor pit-1 in somatolactotrope cell growth and death: an approach using dominant-negative pit-1 mutants.

    PubMed

    Pellegrini, Isabelle; Roche, Cathy; Quentien, Marie-Helene; Ferrand, Mireille; Gunz, Ginette; Thirion, Sylvie; Bagnis, Claude; Enjalbert, Alain; Franc, Jean-Louis

    2006-12-01

    The anterior pituitary-specific transcription factor Pit-1 was initially identified and cloned as a transactivator of the prolactin (PRL) and GH genes and later as a regulator of the TSHb gene. It was found to be a major developmental regulator, because natural Pit-1 gene mutations cause a dwarf phenotype in mice and cause combined pituitary hormone deficiency associated with pituitary hypoplasia in humans. To further investigate the growth-promoting effects of Pit-1, we used a strategy based on the use of dominant-negative Pit-1 mutants as an alternative means of inactivating endogenous Pit-1 functions. R271W, a Pit-1 mutant identified in one allele in patients with severe combined pituitary hormone deficiency, and Pit-1Delta1-123, a deletion mutant in which only the DNA binding domain of Pit-1 is conserved, were generated, and their ability to abolish the effects of the endogenous native Pit-1 in the differentiated proliferating somatolactotrope GH4C1 cell line was investigated. Enforced expression of the dominant-negative mutants in GH4C1 cells using recombinant lentiviral vectors decreased the levels of expression of known Pit-1 target genes such as PRL and GH, abolished the hormone release, and reduced cell viability by decreasing the growth rate and inducing apoptosis via a caspase-independent pathway. These results show for the first time that the growth-promoting effects of Pit-1 are at least partly due to the fact that this transcription factor prevents apoptotic cell death.

  10. Force-displacement measurements of earlywood bordered pits using a mesomechanical tester

    Treesearch

    Samuel L. Zelinka; Keith J. Bourne; John C. Hermanson; Samuel V. Glass; Adriana Costa; Alex C. Wiedenhoeft

    2015-01-01

    The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force–displacement measurements for pit membranes of circular bordered pits, collected on a...

  11. High efficiency low cost thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, B.L.

    1999-04-27

    A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.

  12. A Modified MuDPIT Separation Identified 4,488 Proteins in a System Wide Analysis of Quiescence in Yeast

    PubMed Central

    Webb, Kristofor J.; Xu, Tao; Park, Sung Kyu; Yates, John R.

    2013-01-01

    A modified multidimensional protein identification technology (MudPIT) separation was coupled to an LTQ Orbitrap Velos mass spectrometer and used to rapidly identify the near complete yeast proteome from a whole cell tryptic digest. This modified on-line two dimensional liquid chromatography separation consists of 39 strong cation exchange steps followed by a short 18.5 min reversed-phase (RP) gradient. A total of 4,269 protein identifications were made from 4,189 distinguishable protein families from yeast during log phase growth. The “Micro” MudPIT separation performed as well as a standard MudPIT separation in 40% less gradient time. The majority of the yeast proteome can now be routinely covered in less than a days’ time with high reproducibility and sensitivity. The newly devised separation method was used to detect changes in protein expression during cellular quiescence in yeast. An enrichment in the GO annotations ‘oxidation reduction’, ‘catabolic processing’ and ‘cellular response to oxidative stress’ was seen in the quiescent cellular fraction, consistent with their long lived stress resistant phenotypes. Heterogeneity was observed in the stationary phase fraction with a less dense cell population showing reductions in KEGG pathway categories of ‘Ribosome’ and ‘Proteasome’, further defining the complex nature of yeast populations present during stationary phase growth. In total 4,488 distinguishable protein families were identified in all cellular conditions tested. PMID:23540446

  13. Effects of strain variations on aging response and corrosion properties of third generation Al-Li alloys

    NASA Astrophysics Data System (ADS)

    Wright, Ellen E.

    Due to their high specific strength (strength/density) and specific stiffness (elastic modulus/density), Al-Li alloys are attractive alloys for structural aircraft applications. To produce contoured aircraft components from Al-Li wrought products, stretch forming prior to aging is a common manufacturing technique. The effects of different amounts of tensile straining (0-9%) on the mechanical, microstructural, and corrosion properties of two third generation Al-Li alloys (2099 and 2196) were investigated. In addition to typical characterization techniques, electron backscatter diffraction (EBSD), 2D micro-digital image correlation (DIC), and scanning Kelvin probe force microscopy (SKPFM) were used to examine site-specific effects of orientation, micro-strain evolution during straining, and surface potential on corrosion, respectively. Tapping mode atomic force microscopy (AFM) was also performed to study galvanic corrosion in artificial seawater (3.5% NaCl) as it occurred in-situ. There was evidence of intergranular corrosion for 0% strain conditions, but the dominant form of corrosion was localized pitting for all specimens except Alloy 2196 strained 0%. Pitting initiated at grain boundaries and triple points. In many cases, pitting extended into particular grains and was elongated in the extrusion direction. Regions of high micro-strain preferentially corroded, and large, recrystallized grains in mostly unrecrystallized microstructures were detrimental to corrosion properties. Recommendations for improved thermomechanical processing and/or alloying to promote corrosion resistance of 2XXX series Al-Li alloys were investigated.

  14. Ursolic acid supplementation decreases markers of skeletal muscle damage during resistance training in resistance-trained men: a pilot study

    PubMed Central

    Bang, Hyun Seok; Seo, Dae Yun; Chung, Young Min; Kim, Do Hyung; Lee, Sam-Jun; Lee, Sung Ryul; Kwak, Hyo-Bum; Kim, Tae Nyun; Kim, Min; Oh, Kyoung-Mo; Son, Young Jin; Kim, Sanghyun

    2017-01-01

    Ursolic acid (UA) supplementation was previously shown to improve skeletal muscle function in resistance-trained men. This study aimed to determine, using the same experimental paradigm, whether UA also has beneficial effects on exercise-induced skeletal muscle damage markers including the levels of cortisol, B-type natriuretic peptide (BNP), myoglobin, creatine kinase (CK), creatine kinase-myocardial band (CK-MB), and lactate dehydrogenase (LDH) in resistance-trained men. Sixteen healthy participants were randomly assigned to resistance training (RT) or RT+UA groups (n=8 per group). Participants were trained according to the RT program (60~80% of 1 repetition, 6 times/week), and the UA group was additionally given UA supplementation (450 mg/day) for 8 weeks. Blood samples were obtained before and after intervention, and cortisol, BNP, myoglobin, CK, CK-MB, and LDH levels were analyzed. Subjects who underwent RT alone showed no significant change in body composition and markers of skeletal muscle damage, whereas RT+UA group showed slightly decreased body weight and body fat percentage and slightly increased lean body mass, but without statistical significance. In addition, UA supplementation significantly decreased the BNP, CK, CK-MB, and LDH levels (p<0.05). In conclusion, UA supplementation alleviates increased skeletal muscle damage markers after RT. This finding provides evidence for a potential new therapy for resistance-trained men. PMID:29200908

  15. Manipulation of nanoscale V-pits to optimize internal quantum efficiency of InGaN multiple quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chiao-Yun; Li, Heng; Shih, Yang-Ta

    2015-03-02

    We systematically investigated the influence of nanoscale V-pits on the internal quantum efficiency (IQE) of InGaN multiple quantum wells (MQWs) by adjusting the underlying superlattices (SLS). The analysis indicated that high barrier energy of sidewall MQWs on V-pits and long diffusion distance between the threading dislocation (TD) center and V-pit boundary were crucial to effectively passivate the non-radiative centers of TDs. For a larger V-pit, the thicker sidewall MQW on V-pit would decrease the barrier energy. On the contrary, a shorter distance between the TD center and V-pit boundary would be observed in a smaller V-pit, which could increase themore » carrier capturing capability of TDs. An optimized V-pit size of approximately 200–250 nm in our experiment could be concluded for MQWs with 15 pairs SLS, which exhibited an IQE value of 70%.« less

  16. Combined advanced finishing and UV laser conditioning process for producing damage resistant optics

    DOEpatents

    Menapace, Joseph A.; Peterson, John E.; Penetrante, Bernardino M.; Miller, Philip E.; Parham, Thomas G.; Nichols, Michael A.

    2005-07-26

    A method for reducing the density of sites on the surface of fused silica optics that are prone to the initiation of laser-induced damage, resulting in optics which have far fewer catastrophic defects, and are better capable of resisting optical deterioration upon exposure to a high-power laser beam.

  17. Tolerance to insect defoliation: biocenotic aspects

    Treesearch

    Andrey A. Pleshanov; Victor I. Voronin; Elena S. Khlimankova; Valentina I. Epova

    1991-01-01

    Woody plant resistance to insect damage is of great importance in forest protection, and tree tolerance is an important element of this resistance. The compensating mechanisms responsible for tolerance are nonspecific as a rule and develop after damage has been caused by phytophagous animals or other unfavorable effects. Beyond that, plant tolerance depends on duration...

  18. A Damage Resistance Comparison Between Candidate Polymer Matrix Composite Feedline Materials

    NASA Technical Reports Server (NTRS)

    Nettles, A. T

    2000-01-01

    As part of NASAs focused technology programs for future reusable launch vehicles, a task is underway to study the feasibility of using the polymer matrix composite feedlines instead of metal ones on propulsion systems. This is desirable to reduce weight and manufacturing costs. The task consists of comparing several prototype composite feedlines made by various methods. These methods are electron-beam curing, standard hand lay-up and autoclave cure, solvent assisted resin transfer molding, and thermoplastic tape laying. One of the critical technology drivers for composite components is resistance to foreign objects damage. This paper presents results of an experimental study of the damage resistance of the candidate materials that the prototype feedlines are manufactured from. The materials examined all have a 5-harness weave of IM7 as the fiber constituent (except for the thermoplastic, which is unidirectional tape laid up in a bidirectional configuration). The resin tested were 977-6, PR 520, SE-SA-1, RS-E3 (e-beam curable), Cycom 823 and PEEK. The results showed that the 977-6 and PEEK were the most damage resistant in all tested cases.

  19. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-08-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process.

  20. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    PubMed Central

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-01-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process. PMID:27484188

Top