Science.gov

Sample records for damage threshold prediction

  1. Predicting threshold and location of laser damage on optical surfaces

    DOEpatents

    Siekhaus, Wigbert

    1987-01-01

    An apparatus useful in the prediction of the damage threshold of various optical devices, the location of weak spots on such devices and the location, identification, and elimination of optical surface impurities comprising, a focused and pulsed laser, an photo electric detector/imaging means, and a timer. The weak spots emit photoelectrons when subjected to laser intensities that are less than the intensity actually required to produce the damage. The weak spots may be eliminated by sustained exposure to the laser beam.

  2. Predicting threshold and location of laser damage on optical surfaces

    DOEpatents

    Siekhaus, W.

    1985-02-04

    Disclosed is an apparatus useful in the prediction of the damage threshold of various optical devices, the location of weak spots on such devices and the location, identification, and elimination of optical surface impurities. The apparatus comprises a focused and pulsed laser, a photo electric detector/imaging means, and a timer. The weak spots emit photoelectrons when subjected to laser intensities that are less than the intensity actually required to produce the damage. The weak spots may be eliminated by sustained exposure to the laser beam.

  3. Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy

    SciTech Connect

    Papandrew, A B; Stolz, C J; Wu, Z L; Loomis, G E; Falabella, S

    2000-12-11

    Laser conditioning has been shown to improve the laser damage threshold of some optical coatings by greater than 2x. Debate continues within the damage community regarding laser-conditioning mechanisms, but it is clear that nodular ejection is one of the byproducts of the laser conditioning process. To better understand why laser conditioning is so effective, photothermal microscopy was used to measure absorption of coating defects before and after laser exposure. Although a modest absorption reduction was expected due to the lower electric field peaks within a pit and the absence of potentially absorbing nodular seeds, surprisingly, absorption reductions up to 150x were observed. Photothermal microscopy has also been successfully used to correlate laser-induced damage threshold and absorption of defects in hafnia/silica multilayer optical coatings. Defects with high absorption, as indicated by high photothermal signal, have low damage thresholds. Previously a linear correlation of damage threshold and defect photothermal signal was established with films designed and damage tested at 1{omega} (1053 nm) and Brewster's angle (56.4{sup o}), but characterized by photothermal microscopy at 514.5 nm and near-normal angle of incidence (10{sup o}). In this study coatings designed, characterized by photothermal microscopy, and damage tested at the same wavelength, incident angle, and polarization did not have a correlation between defect photothermal signal and absorption.

  4. Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Papandrew, A. B.; Stolz, Christopher J.; Wu, Zhouling; Loomis, Gary E.; Falabella, Steven

    2001-04-01

    Laser conditioning has been shown to improve the laser damage threshold of some optical coatings by greater than 2x. Debate continues within the damage community regarding laser-conditioning mechanisms, but it is clear that nodular ejection is one of the byproducts of the laser conditioning process. To better understand why laser conditioning is so effective, photothermal microscopy was used to measure absorption of coating defects before and after laser exposure. Although a modest absorption reduction was expected due to the lower electric field peaks within a pit and the absence of potentially absorbing nodular seeds, surprisingly, absorption reductions up to 150x were observed. Photothermal microscopy has also been successfully used to correlate laser-induced damage threshold and absorption of defects in hafnia/silica multilayer optical coatings. Defects with high absorption, as indicated by high photothermal signal, have low damage thresholds. Previously a linear correlation of damage threshold and defect photothermal signal was established with films designed and damage tested at 1(omega) (1053 nm) and Brewster's angle (56.4 degree(s)), but characterized by photothermal microscopy at 514.5 nm and near-normal angle of incidence (10 degree(s)). In this study coatings designed, characterized by photothermal microscopy, and damage tested at the same wavelength, incident angle, and polarization did not have a correlation between defect photothermal signal and absorption.

  5. Femtosecond damage threshold of multilayer metal films

    NASA Astrophysics Data System (ADS)

    Ibrahim, Wael M. G.; Elsayed-Ali, Hani E.; Shinn, Michelle D.; Bonner, Carl E.

    2003-05-01

    With the availability of terawatt laser systems with subpicosecond pulses, laser damage to optical components has become the limiting factor for further increases in the output peak power. Evaluation of different material structures in accordance to their suitability for high-power laser systems is essential. Multi-shot damage experiments, using 110 fs laser pulses at 800 nm, on polycrystalline single layer gold films and multi-layer (gold-vanadium, and gold-titanium) films were conducted. The laser incident fluence was varied, in both cases, from 0.1 to 0.6 J/cm2. No evidence of surface damage was apparent in the gold sample up to a fluence of 0.3 J/cm2. The multilayer sample experienced the onset of surface damage at the lowest fluence value used of 0.1 J/cm2. Damage results are in contrast with the time resolved ultrafast thermoreflectivity measurements that revealed a reduction of the thermoreflectivity signal for the multilayer films. This decrease in the thermoreflectivity signal signifies a reduction in the surface electron temperature that should translate in a lower lattice temperature at the later stage. Hence, one should expect a higher damage threshold for the multilayer samples. Comparison of the experimental results with the predictions of the Two-Temperature Model (TTM) is presented. The damage threshold of the single layer gold film corresponds to the melting threshold predicted by the model. In contrast to the single layer gold film, the multi-layer sample damaged at almost one third the damage threshold predicted by the TTM model. Possible damage mechanisms leading to the early onset of damage for the multilayer films are discussed.

  6. Thermal pulse damage thresholds in cadmium telluride.

    PubMed

    Slattery, J E; Thompson, J S; Schroeder, J B

    1975-09-01

    A model is presented for predicting the temperature rise in an opaque material during the absorption of a moderately short pulse of energy. Experimental verification of the model employing a pulsed ruby laser and a cadmium telluride plate is described. Two distinct damage thresholds were noted: (1) at modest energy levels plastic deformation occurred, and (2) the higher energies resulted in surface melting.

  7. Predictive dosimetry for threshold phototoxicity in photodynamic therapy on normal skin: red wavelengths produce more extensive damage than blue at equal threshold doses.

    PubMed

    Tsoukas, M M; Lin, G C; Lee, M S; Anderson, R R; Kollias, N

    1997-04-01

    The goal of this investigation was to establish methodology to determine and prevent phototoxic responses of normal skin to photodynamic therapy (PDT). The drug used was a second-generation photosensitizer, benzoporphyrin derivative monoacid ring A (BPD-MA). The dependence of skin phototoxicity on drug dose (0.5-2.0 mg/kg), fluence (1.2-390 J/cm2), and wavelength (690 nm and 458 nm) was studied in the New Zealand albino rabbit in the first 5 h after injection. Skin responses were recorded for 2 wk after irradiation. Noninvasive measurements of drug fluorescence were made on unexposed skin sites during the first 5 h after drug injection. Immediate responses to PDT included erythema induced by 458 nm light and blanching induced by 690 nm light. Delayed reactions included edema on the day of exposure, purpura at 24 h, eschar by day 2 or 3, and scar by the end of follow-up. The threshold fluence for immediate responses correlated strongly with the threshold fluence for delayed reactions. The induction of threshold purpura on day 1 was a reliable index for skin phototoxicity that led to necrosis. The minimum purpura dose on day 1 after irradiation increased exponentially with the interval between drug injection and irradiation, independent of irradiation wavelength, for all drug doses. The action spectrum for threshold purpura mimics closely the absorption spectrum of BPD-MA. The in vivo drug fluorescence correlated with skin phototoxicity, thus allowing predictive dosimetry. This model system defines the safety limits for skin phototoxicity of PDT with BPD-MA.

  8. Laser damage threshold of diamond films

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia; Cropper, Andre D.; Watkins, Linwood C.; Byvik, Charles E.; Buoncristiani, A. Martin

    1989-01-01

    The possibility that diamond films may inhibit laser-induced damage to optical components in laser systems films was investigated by measuring laser damage thresholds of free-standing diamond film windows, diamond films deposited on silicon substrates, and bare silicon substrate. Polycrystalline diamond films were deposited using a dc plasma-enhanced CVD process. It was found that free-standing diamond films had the highest laser damage threshold at 1064 nm. For a diamond film of 630 nm, the damage threshold was found to be 7 J/sq cm, as compared to a damage threshold of 4.5 J/sq cm for bare silicon, and a low value of 1.5 J/sq cm for the film/substrate combination. The damage mechanism is considered to involve melting or dielectric breakdown induced by laser radiation. The low value of the film/substrate combination is attributed to film stress and conditions of film deposition.

  9. Tissue damage thresholds during therapeutic electrical stimulation

    PubMed Central

    Cogan, Stuart F; Ludwig, Kip A; Welle, Cristin G; Takmakov, Pavel

    2017-01-01

    Objective Recent initiatives in bioelectronic modulation of the nervous system by the NIH (SPARC), DARPA (ElectRx, SUBNETS) and the GlaxoSmithKline Bioelectronic Medicines effort are ushering in a new era of therapeutic electrical stimulation. These novel therapies are prompting a re-evaluation of established electrical thresholds for stimulation-induced tissue damage. Approach In this review, we explore what is known and unknown in published literature regarding tissue damage from electrical stimulation. Main results For macroelectrodes, the potential for tissue damage is often assessed by comparing the intensity of stimulation, characterized by the charge density and charge per phase of a stimulus pulse, with a damage threshold identified through histological evidence from in vivo experiments as described by the Shannon equation. While the Shannon equation has proved useful in assessing the likely occurrence of tissue damage, the analysis is limited by the experimental parameters of the original studies. Tissue damage is influenced by factors not explicitly incorporated into the Shannon equation, including pulse frequency, duty cycle, current density, and electrode size. Microelectrodes in particular do not follow the charge per phase and charge density co-dependence reflected in the Shannon equation. The relevance of these factors to tissue damage is framed in the context of available reports from modeling and in vivo studies. Significance It is apparent that emerging applications, especially with microelectrodes, will require clinical charge densities that exceed traditional damage thresholds. Experimental data show that stimulation at higher charge densities can be achieved without causing tissue damage, suggesting that safety parameters for microelectrodes might be distinct from those defined for macroelectrodes. However, these increased charge densities may need to be justified by bench, non-clinical or clinical testing to provide evidence of device safety

  10. Tissue damage thresholds during therapeutic electrical stimulation

    NASA Astrophysics Data System (ADS)

    Cogan, Stuart F.; Ludwig, Kip A.; Welle, Cristin G.; Takmakov, Pavel

    2016-04-01

    Objective. Recent initiatives in bioelectronic modulation of the nervous system by the NIH (SPARC), DARPA (ElectRx, SUBNETS) and the GlaxoSmithKline Bioelectronic Medicines effort are ushering in a new era of therapeutic electrical stimulation. These novel therapies are prompting a re-evaluation of established electrical thresholds for stimulation-induced tissue damage. Approach. In this review, we explore what is known and unknown in published literature regarding tissue damage from electrical stimulation. Main results. For macroelectrodes, the potential for tissue damage is often assessed by comparing the intensity of stimulation, characterized by the charge density and charge per phase of a stimulus pulse, with a damage threshold identified through histological evidence from in vivo experiments as described by the Shannon equation. While the Shannon equation has proved useful in assessing the likely occurrence of tissue damage, the analysis is limited by the experimental parameters of the original studies. Tissue damage is influenced by factors not explicitly incorporated into the Shannon equation, including pulse frequency, duty cycle, current density, and electrode size. Microelectrodes in particular do not follow the charge per phase and charge density co-dependence reflected in the Shannon equation. The relevance of these factors to tissue damage is framed in the context of available reports from modeling and in vivo studies. Significance. It is apparent that emerging applications, especially with microelectrodes, will require clinical charge densities that exceed traditional damage thresholds. Experimental data show that stimulation at higher charge densities can be achieved without causing tissue damage, suggesting that safety parameters for microelectrodes might be distinct from those defined for macroelectrodes. However, these increased charge densities may need to be justified by bench, non-clinical or clinical testing to provide evidence of device

  11. Tissue damage thresholds during therapeutic electrical stimulation.

    PubMed

    Cogan, Stuart F; Ludwig, Kip A; Welle, Cristin G; Takmakov, Pavel

    2016-04-01

    Recent initiatives in bioelectronic modulation of the nervous system by the NIH (SPARC), DARPA (ElectRx, SUBNETS) and the GlaxoSmithKline Bioelectronic Medicines effort are ushering in a new era of therapeutic electrical stimulation. These novel therapies are prompting a re-evaluation of established electrical thresholds for stimulation-induced tissue damage. In this review, we explore what is known and unknown in published literature regarding tissue damage from electrical stimulation. For macroelectrodes, the potential for tissue damage is often assessed by comparing the intensity of stimulation, characterized by the charge density and charge per phase of a stimulus pulse, with a damage threshold identified through histological evidence from in vivo experiments as described by the Shannon equation. While the Shannon equation has proved useful in assessing the likely occurrence of tissue damage, the analysis is limited by the experimental parameters of the original studies. Tissue damage is influenced by factors not explicitly incorporated into the Shannon equation, including pulse frequency, duty cycle, current density, and electrode size. Microelectrodes in particular do not follow the charge per phase and charge density co-dependence reflected in the Shannon equation. The relevance of these factors to tissue damage is framed in the context of available reports from modeling and in vivo studies. It is apparent that emerging applications, especially with microelectrodes, will require clinical charge densities that exceed traditional damage thresholds. Experimental data show that stimulation at higher charge densities can be achieved without causing tissue damage, suggesting that safety parameters for microelectrodes might be distinct from those defined for macroelectrodes. However, these increased charge densities may need to be justified by bench, non-clinical or clinical testing to provide evidence of device safety.

  12. Damage threshold measurements: Self-focusing or intrinsic damage?

    NASA Astrophysics Data System (ADS)

    Efimov, Oleg

    2013-11-01

    The laser-induced damage (LID) thresholds of pure fused silica (Corning 7980) have been measured with single temporal mode nanosecond pulses at 1064 nm. The laser beam has been focused by spherical and conical lenses into 1.6 μm diameter spots. In the case of pseudo-Bessel beam (conical lens) which inherently was not subjected to self-focusing the threshold has been close to the intrinsic threshold in fused silica. However, the measurement with pseudo-Gaussian beam (spherical lens) has shown about 30% lower value of threshold. Complete identity in the cross-section distributions of beam intensities and considerable difference in measured thresholds indicate that self-focusing influence on the LID of dielectrics even for tight focused laser beams.

  13. Dielectric nanostructures with high laser damage threshold

    NASA Astrophysics Data System (ADS)

    Ngo, C. Y.; Hong, L. Y.; Deng, J.; Khoo, E. H.; Liu, Z.; Wu, R. F.; Teng, J. H.

    2017-02-01

    Dielectric-based metamaterials are proposed to be the ideal candidates for low-loss, high-efficiency devices. However, to employ dielectric nanostructures for high-power applications, the dielectric material must have a high laser-induced damaged threshold (LIDT) value. In this work, we investigated the LIDT values of dielectric nanostructures for high-power fiber laser applications. Consequently, we found that the fabricated SiO2 nanostructured lens can withstand laser fluence exceeding 100 J/cm2.

  14. On the probability summation model for laser-damage thresholds

    NASA Astrophysics Data System (ADS)

    Clark, Clifton D.; Buffington, Gavin D.

    2016-01-01

    This paper explores the probability summation model in an attempt to provide insight to the model's utility and ultimately its validity. The model is a statistical description of multiple-pulse (MP) damage trends. It computes the probability of n pulses causing damage from knowledge of the single-pulse dose-response curve. Recently, the model has been used to make a connection between the observed n trends in MP damage thresholds for short pulses (<10 μs) and experimental uncertainties, suggesting that the observed trend is an artifact of experimental methods. We will consider the correct application of the model in this case. We also apply this model to the spot-size dependence of short pulse damage thresholds, which has not been done previously. Our results predict that the damage threshold trends with respect to the irradiated area should be similar to the MP damage threshold trends, and that observed spot-size dependence for short pulses seems to display this trend, which cannot be accounted for by the thermal models.

  15. Acoustic emission sensor radiation damage threshold experiment

    SciTech Connect

    Beeson, K.M.; Pepper, C.E.

    1994-09-01

    Determination of the threshold for damage to acoustic emission sensors exposed to radiation is important in their application to leak detection in radioactive waste transport and storage. Proper response to system leaks is necessary to ensure the safe operation of these systems. A radiation impaired sensor could provide ``false negative or false positive`` indication of acoustic signals from leaks within the system. Research was carried out in the Radiochemical Technology Division at Oak Ridge National Laboratory to determine the beta/gamma radiation damage threshold for acoustic emission sensor systems. The individual system consisted of an acoustic sensor mounted with a two part epoxy onto a stainless steel waveguide. The systems were placed in an irradiation fixture and exposed to a Cobalt-60 source. After each irradiation, the sensors were recalibrated by Physical Acoustics Corporation. The results were compared to the initial calibrations performed prior to irradiation and a control group, not exposed to radiation, was used to validate the results. This experiment determines the radiation damage threshold of each acoustic sensor system and verifies its life expectancy, usefulness and reliability for many applications in radioactive environments.

  16. Damage Threshold Dependence of Multilayer Laser Mirrors on Coating Design

    DTIC Science & Technology

    1991-06-05

    AD-A239 234 _ _ _ _ _ _ _ _ _ _ _ FOREIGN TECHNOLOGY DIVISION DAMAGE THRESHOLD DEPENDENCE OF M4ULTILAYER LASER MIRRORS ON COATING DESIGN by ’du...MICROFICHE NR: FTD-91-C-000401 DAMAGE THRESHOLD DEPENDENCE OF MULTILAYER LASER MIRRORS ON COATING DESIGN By: Wu Zhouling, Fan Zhengxin English pages: 10...For NTIS~P& DTI-- T,,BI I By t ; DAMAGE THRESHOLD DEPENDENCE OF MULTILAYER LASER MIRRORS ON COATING DESIGN Wu Zhouling and Fan Zhengxin, Shanghai

  17. Influence of microstructure on laser damage threshold of IBS coatings

    SciTech Connect

    Stolz, C.J.; Genin, F.Y.; Kozlowski, M.R.

    1996-12-31

    Multilayer coatings deposited by ion-beam sputtering with amorphous layers were found to have lower damage thresholds at 1064 nm than similar coatings with crystalline layers. Interestingly, at higher fluences the damage was less severe for the amorphous coatings. The magnitude of the difference in damage thresholds between the two different microstructures was strongly influenced by the size of the tested area. To better understand the microstructure effects, single layers of HfO{sub 2} With different microstructures were studied using transmission electron microscopy, ellipsometery, and a photothermal deflection technique. Since the laser damage initiated at defects, the influence of thermal diffusivity on thermal gradients in nodular defects is also presented.

  18. Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures

    NASA Astrophysics Data System (ADS)

    Oliver, Jeffrey W.; Stolarski, David J.; Noojin, Gary D.; Hodnett, Harvey M.; Harbert, Corey A.; Schuster, Kurt J.; Foltz, Michael F.; Kumru, Semih S.; Cain, Clarence P.; Finkeldei, C. J.; Buffington, Gavin D.; Noojin, Isaac D.; Thomas, Robert J.

    2010-11-01

    A series of experiments are conducted in vivo using Yucatan mini-pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1940-nm continuous-wave thulium fiber laser irradiation. Experiments employ exposure durations from 10 ms to 10 s and beam diameters of approximately 4.8 to 18 mm. Thermal imagery data provide a time-dependent surface temperature response from the laser. A damage endpoint of minimally visible effect is employed to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a numerical model of optical-thermal interaction. Results are compared with current exposure limits for laser safety. It is concluded that exposure limits should be based on data representative of large-beam exposures, where effects of radial diffusion are minimized for longer-duration damage thresholds.

  19. Modeling of Surface Thermodynamics and Damage Thresholds in the IR and THz Regime

    DTIC Science & Technology

    2007-01-01

    United States; c Air Force Reasearch Lab, Human Effectivness Directorate Optical Branch, 2624 Louis Bauer Drive, San Antonio, TX, United States...thermal damage sustained by the tissue, and can also determine damage thresholds for total optical power delivered to the tissue. Currently , the surface...effect on both temperature response and damage predictions. Current configuration abilities allow us to model a multi-layer material of infinite

  20. High-Damage-Threshold Pinhole for Glass Fusion Laser Applications

    SciTech Connect

    Kumit, N.A.; Letzring, S.A.; Johnson, R.P.

    1998-06-07

    We are investigating methods to fabricate high-damage-threshold spatial-filter pinholes that might not be susceptible to plasma closure for relatively high energies and long pulses. These are based on the observation that grazing-incidence reflection from glass can withstand in excess of 5 kJ/cm{sup 2} (normal to the beam) without plasma formation. The high damage threshold results from both the cos q spreading of the energy across the surface and the reflection of a large fraction of the energy from the surface, thereby greatly reducing the field strength within the medium.

  1. Influence of microstructure on laser damage threshold of IBS coatings

    SciTech Connect

    Stolz, C.J.; Genin, F.Y.; Kozlowski, M.R.; Long, D.; Lalazari, R.; Wu, Z.L.; Kuo, P.K.

    1996-01-05

    Ion-beam sputtering (IBS) coatings were developed for the laser gyro industry to meet significantly different requirements than those of fusion lasers. Laser gyro mirrors are small (< 25 mm) and require low losses (< 30 ppm typical) and high stability with long exposures to low power laser energy. In contrast, fusion laser optics are large (< 1 meter), have significantly reduced loss requirements (< 5,000 ppm) and high damage thresholds (> 26 J/cm{sup 2} at 1,064 nm with 3-ns pulses). As part of the National Ignition Facility (NIF) coating development effort, IBS coatings are being studied to explore the possible benefits of this technology to NIF optics. As an initial step to achieving the NIF size and damage threshold requirements, the coating process is being scaled to uniformly coat a 20 x 40 cm{sup 2} area with reduced spectral, reflected wavefront, and laser damage threshold requirements. Here, multilayer coatings deposited by ion-beam sputtering with amorphous layers were found to have lower damage thresholds at 1,064 nm than similar coatings with crystalline layers. Interestingly, at higher fluences the damage was less severe for the amorphous coatings. The magnitude of the difference in damage thresholds between the two different microstructures was strongly influenced by the size of the tested area. To better understand the microstructure effects, single layers of HfO{sub 2} with different microstructures were studied using transmission electron microscopy, ellipsometry, and a photothermal deflection technique. Since the laser damage initiated at defects, the influence of thermal diffusivity on thermal gradients in nodular defects is also presented.

  2. Prediction of tissue thermal damage.

    PubMed

    Li, Xin; Zhong, Yongmin; Subic, Aleksandar; Jazar, Reza; Smith, Julian; Gu, Chengfan

    2016-04-29

    This paper presents a method to characterize tissue thermal damage by taking into account the thermal-mechanical effect of soft tissues for thermal ablation. This method integrates the bio-heating conduction and non-rigid motion dynamics to describe thermal-mechanical behaviors of soft tissues and further extends the traditional tissue damage model to characterize thermal-mechanical damage of soft tissues. Simulations and comparison analysis demonstrate that the proposed method can effectively predict tissue thermal damage and it also provides reliable guidelines for control of the thermal ablation procedure.

  3. Measured skin damage thresholds for 1314-nm laser exposures

    NASA Astrophysics Data System (ADS)

    Montes de Oca, Cecilia I.; Cain, Clarence P.; Schuster, Kurt J.; Stockton, Kevin; Thomas, James J.; Eggleston, Thomas A.; Roach, William P.

    2003-06-01

    The use of lasers in the infrared region between 1200-1400 nm has steadily increased in various industrial and commercial applications. However, there are few studies documenting damage thresholds for the skin in this region, and current laser safety standards are based on limited data. This study has determined preliminary skin damage thresholds for the Effective Dose for 50% probability (ED50) of a Minimum Visible Lesion (MVL) with laser exposure at 1314nm and 0.35 ms pulse width. An in-vivo pigmented animal model, Yucatan mini-pig (Sus scrofa domestica), was used in this study. The type and extent of tissue damage in the porcine skin was determined through histopathologic examination, and the findings are discussed. Finally, the results of this study were compared to other literature as well as to the existing ANSI Z136.1 (2000) standard for safe use of lasers.

  4. An evaluation of corn earworm damage and thresholds in soybean

    NASA Astrophysics Data System (ADS)

    Adams, Brian Patrick

    Interactions between corn earworm, Helicoverpa zea (Boddie), and soybean, Glycine max L. (Merrill), were investigated in the Mid-South to evaluate thresholds and damage levels. Field studies were conducted in both indeterminate and determinate modern cultivars to evaluate damage, critical injury levels, and soybean response to simulated corn earworm injury. Field studies were also conducted to evaluate the response of indeterminate cultivars to infestations of corn earworm. Field studies were also conducted to investigate the relationship between pyrethroid insecticide application and corn earworm oviposition in soybean. Results of field studies involving simulated corn earworm damage indicated the need for a dynamic threshold that becomes more conservative as soybean phenology progressed through the reproductive growth stages. This suggested that soybean was more tolerant to fruit loss during the earlier reproductive stages and was able to compensate for fruit loss better during this time than at later growth stages. Results of field studies involving infestations of corn earworm indicated that current thresholds are likely too liberal. This resulted in economic injury level tables being constructed based upon a range of crop values and control costs, however, a general action threshold was also recommended for indeterminate soybean in the Mid-South. Field study results investigating the relationship of pyrethroid application and corn earworm oviposition indicated that even in the presence of an insecticide, corn earworm prefers to oviposit in the upper portion of the canopy, as well as on the leaves as opposed to all other plant parts, consistent with all previous literature.

  5. Femtosecond pulse damage thresholds of dielectric coatings in vacuum

    SciTech Connect

    Michelle D. Shinn, Duy N. Nguyen, Luke A. Emmert ,Paul Schwoebel, Dinesh Patel, Carmen S. Menoni, Wolfgang Rudolph

    2011-03-01

    At 10-7 Torr, the multiple femtosecond pulse damage threshold, F(?), is about 10% of the single pulse damage fluence F(1) for hafnia and silica films compared to about 65% and 50%, respectively, at 630 Torr. In contrast, the single-pulse damage threshold is pressure independent. The decrease of F(?) with decreasing air pressure correlates with the water vapor and oxygen content of the ambient gas with the former having the greater effect. The decrease in F(?) is likely associated with an accumulation of defects derived from oxygen deficiency, for example vacancies. From atmospheric air pressure to pressures of {approx}3 x 10{sup -6} Torr, the damage 'crater' starts deterministically at the center of the beam and grows in diameter as the fluence increases. At pressure below 3x10-6 Torr, damage is initiated at random 'sites' within the exposed area in hafnia films, while the damage morphology remains deterministic in silica films. A possible explanation is that absorbing centers are created at predisposed sample sites in hafnia, for example at boundaries between crystallites, or crystalline and amorphous phases.

  6. Revision of laser-induced damage threshold evaluation from damage probability data

    SciTech Connect

    Bataviciute, Gintare; Grigas, Povilas; Smalakys, Linas; Melninkaitis, Andrius

    2013-04-15

    In this study, the applicability of commonly used Damage Frequency Method (DFM) is addressed in the context of Laser-Induced Damage Threshold (LIDT) testing with pulsed lasers. A simplified computer model representing the statistical interaction between laser irradiation and randomly distributed damage precursors is applied for Monte Carlo experiments. The reproducibility of LIDT predicted from DFM is examined under both idealized and realistic laser irradiation conditions by performing numerical 1-on-1 tests. A widely accepted linear fitting resulted in systematic errors when estimating LIDT and its error bars. For the same purpose, a Bayesian approach was proposed. A novel concept of parametric regression based on varying kernel and maximum likelihood fitting technique is introduced and studied. Such approach exhibited clear advantages over conventional linear fitting and led to more reproducible LIDT evaluation. Furthermore, LIDT error bars are obtained as a natural outcome of parametric fitting which exhibit realistic values. The proposed technique has been validated on two conventionally polished fused silica samples (355 nm, 5.7 ns).

  7. Revision of laser-induced damage threshold evaluation from damage probability data

    NASA Astrophysics Data System (ADS)

    BatavičiutÄ--, GintarÄ--; Grigas, Povilas; Smalakys, Linas; Melninkaitis, Andrius

    2013-04-01

    In this study, the applicability of commonly used Damage Frequency Method (DFM) is addressed in the context of Laser-Induced Damage Threshold (LIDT) testing with pulsed lasers. A simplified computer model representing the statistical interaction between laser irradiation and randomly distributed damage precursors is applied for Monte Carlo experiments. The reproducibility of LIDT predicted from DFM is examined under both idealized and realistic laser irradiation conditions by performing numerical 1-on-1 tests. A widely accepted linear fitting resulted in systematic errors when estimating LIDT and its error bars. For the same purpose, a Bayesian approach was proposed. A novel concept of parametric regression based on varying kernel and maximum likelihood fitting technique is introduced and studied. Such approach exhibited clear advantages over conventional linear fitting and led to more reproducible LIDT evaluation. Furthermore, LIDT error bars are obtained as a natural outcome of parametric fitting which exhibit realistic values. The proposed technique has been validated on two conventionally polished fused silica samples (355 nm, 5.7 ns).

  8. Predictive thresholds for plague in Kazakhstan.

    PubMed

    Davis, Stephen; Begon, Mike; De Bruyn, Luc; Ageyev, Vladimir S; Klassovskiy, Nikolay L; Pole, Sergey B; Viljugrein, Hildegunn; Stenseth, Nils Chr; Leirs, Herwig

    2004-04-30

    In Kazakhstan and elsewhere in central Asia, the bacterium Yersinia pestis circulates in natural populations of gerbils, which are the source of human cases of bubonic plague. Our analysis of field data collected between 1955 and 1996 shows that plague invades, fades out, and reinvades in response to fluctuations in the abundance of its main reservoir host, the great gerbil (Rhombomys opimus). This is a rare empirical example of the two types of abundance thresholds for infectious disease-invasion and persistence- operating in a single wildlife population. We parameterized predictive models that should reduce the costs of plague surveillance in central Asia and thereby encourage its continuance.

  9. Thresholds for thermal damage to normal tissues: An update

    PubMed Central

    Yarmolenko, Pavel S.; Moon, Eui Jung; Landon, Chelsea; Manzoor, Ashley; Hochman, Daryl W.; Viglianti, Benjamin L.; Dewhirst, Mark W.

    2013-01-01

    The purpose of this review is to summarise a literature survey on thermal thresholds for tissue damage. This review covers published literature for the consecutive years from 2002–2009. The first review on this subject was published in 2003. It included an extensive discussion of how to use thermal dosimetric principles to normalise all time-temperature data histories to a common format. This review utilises those same principles to address sensitivity of a variety of tissues, but with particular emphasis on brain and testis. The review includes new data on tissues that were not included in the original review. Several important observations have come from this review. First, a large proportion of the papers examined for this review were discarded because time–temperature history at the site of thermal damage assessment was not recorded. It is strongly recommended that future research on this subject include such data. Second, very little data is available examining chronic consequences of thermal exposure. On a related point, the time of assessment of damage after exposure is critically important for assessing whether damage is transient or permanent. Additionally, virtually no data are available for repeated thermal exposures which may occur in certain recreational or occupational activities. For purposes of regulatory guidelines, both acute and lasting effects of thermal damage should be considered. PMID:21591897

  10. Damage thresholds of fluoride multilayers at 355 nm

    SciTech Connect

    Chow, R.; Kozlowski, M.R.; Loomis, G.E.; Rainer, F.

    1992-10-01

    Fluoride multilayer coatings were evaluated for use in 355 nm high reflector applications. The LaF[sub 3]/Na[sub 3]AlF[sub 6], NdF[sub 3]/Na[sub 3]AlF[sub 6] and GdF[sub 3]/Na[sub 3]AlF[sub 6] multilayers had laser damage thresholds of 20, 17.9 and 7.4 (measured at 10-ns pulsewidths), respectively. High tensile stresses in the coatings restricted this evaluation to only 5-layer-pair partial reflectors (49--52%).The LaF[sub 3]/Na[sub 3]AlF[sub 6], NdF[sub 3]/Na[sub 3]Al[sub 6] and GdF[sub 3]/Na[sub 3]AlF[sub 6] multilayers had tensile stresses of [approximately] 1.1 [times] 109, 1.3 [times] 109 and 9.3 [times] 10[sup 8] dynes/cm[sup 2], respectively. Substrate material and glow-discharge processing of the substrates were found to influence the density of stress-induced coating fractures and damage thresholds in some cases. If stress fracturing and scatter can be controlled, these fluoride material combinations are suited for 3[omega] applications.

  11. Damage thresholds of fluoride multilayers at 355 nm

    NASA Astrophysics Data System (ADS)

    Chow, Robert; Kozlowski, Mark R.; Loomis, Gary E.; Rainer, Frank

    1993-06-01

    Fluoride multilayer coatings were evaluated for use in 355 nm high reflector applications. The LaF3/Na3AlF6, NdF3/Na3AlF6, and GdF3/Na3AlF6 multilayers had laser damage thresholds of 20 J/cm2, 17.9 J/cm2, and 7.4 J/cm2 (measured at 10 ns pulsewidths), respectively. High tensile stresses in the coatings restricted this evaluation to only 5-layer-pair partial reflectors (49 - 52%). The LaF3/Na3AlF6, NdF3/Na3AlF6, and GdF3/Na3AlF6 multilayers had tensile stresses of approximately equals 1.1 X 109, 1.3 X 109, and 9.3 X 108 dynes/cm2, respectively. Substrate material and glow-discharge processing of the substrates were found to influence the density of stress-induced coating fractures and damage thresholds in some cases. If stress fracturing and scatter can be controlled, these fluoride material combinations are suited for 3(omega) applications.

  12. Infrared skin damage thresholds from 1319-nm continuous-wave laser exposures

    NASA Astrophysics Data System (ADS)

    Oliver, Jeffrey W.; Vincelette, Rebecca; Noojin, Gary D.; Clark, Clifton D.; Harbert, Corey A.; Schuster, Kurt J.; Shingledecker, Aurora D.; Kumru, Semih S.; Maughan, Justin; Kitzis, Naomi; Buffington, Gavin D.; Stolarski, David J.; Thomas, Robert J.

    2013-12-01

    A series of experiments were conducted in vivo using Yucatan miniature pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1319-nm continuous-wave Nd:YAG laser irradiation. Experiments employed exposure durations of 0.25, 1.0, 2.5, and 10 s and beam diameters of ˜0.6 and 1 cm. Thermal imagery data provided a time-dependent surface temperature response from the laser. A damage endpoint of fifty percent probability of a minimally visible effect was used to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a numerical model of optical-thermal interaction. Resultant trends with respect to exposure duration and beam diameter are compared with current standardized exposure limits for laser safety. Mathematical modeling agreed well with experimental data, predicting that though laser safety standards are sufficient for exposures <10 s, they may become less safe for very long exposures.

  13. Infrared skin damage thresholds from 1319-nm continuous-wave laser exposures.

    PubMed

    Oliver, Jeffrey W; Vincelette, Rebecca; Noojin, Gary D; Clark, Clifton D; Harbert, Corey A; Schuster, Kurt J; Shingledecker, Aurora D; Kumru, Semih S; Maughan, Justin; Kitzis, Naomi; Buffington, Gavin D; Stolarski, David J; Thomas, Robert J

    2013-12-01

    A series of experiments were conducted in vivo using Yucatan miniature pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1319-nm continuous-wave Nd:YAG laser irradiation. Experiments employed exposure durations of 0.25, 1.0, 2.5, and 10 s and beam diameters of ∼0.6 and 1 cm. Thermal imagery data provided a time-dependent surface temperature response from the laser. A damage endpoint of fifty percent probability of a minimally visible effect was used to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a numerical model of optical-thermal interaction. Resultant trends with respect to exposure duration and beam diameter are compared with current standardized exposure limits for laser safety. Mathematical modeling agreed well with experimental data, predicting that though laser safety standards are sufficient for exposures <10 s, they may become less safe for very long exposures.

  14. Large-aperture, high-damage-threshold optics for beamlet

    SciTech Connect

    Campbell, J.H.; Atherton, L.J.; DeYoreo, J.J.

    1996-06-01

    Beamlet serves as a test bed for the proposed National Ignition Facility (NIF) laser design and components. Therefore, its optics are similar in size and quality to those proposed for the NIF. In general, the optics in the main laser cavity and transport section of Beamlet are larger and have higher damage thresholds than the optics manufactured for any of the previous laser systems. In addition, the quality of the Beamlet optical materials is higher, leading to better wavefront quality, higher optical transmission, and lower-intensity modulation of the output laser beam than, for example, that typically achieved on Nova. In this article, the authors discuss the properties and characteristics of the large-aperture optics used on Beamlet.

  15. Large-aperture, high-damage-threshold optics for beamlet

    SciTech Connect

    Campbell, J.H.; Atherton, L.J.; DeYoreo, J.J.; Kozlowski, M.R.; Maney, R.T.; Montesanti, R.C.; Sheehan, L.M.; Barker, C.E.

    1995-02-23

    Beamlet serves as a test bed for the proposed NIF laser design and components. Therefore, its optics are similar in size and quality to those proposed for the NIF. In general, the optics in the main laser cavity and transport section of Beamlet are larger and have higher damage thresholds than the optics manufactured for any of our previous laser systems. In addition, the quality of the Beamlet optical materials is higher, leading to better wavefront quality, higher optical transmission, and lower-intensity modulation of the output laser beam than, for example, that typically achieved on Nova. In this article, we discuss the properties and characteristics of the large-aperture optics used on Beamlet.

  16. Damage and strength of composite materials: Trends, predictions, and challenges

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin

    1994-01-01

    Research on damage mechanisms and ultimate strength of composite materials relevant to scaling issues will be addressed in this viewgraph presentation. The use of fracture mechanics and Weibull statistics to predict scaling effects for the onset of isolated damage mechanisms will be highlighted. The ability of simple fracture mechanics models to predict trends that are useful in parametric or preliminary designs studies will be reviewed. The limitations of these simple models for complex loading conditions will also be noted. The difficulty in developing generic criteria for the growth of these mechanisms needed in progressive damage models to predict strength will be addressed. A specific example for a problem where failure is a direct consequence of progressive delamination will be explored. A damage threshold/fail-safety concept for addressing composite damage tolerance will be discussed.

  17. Damage and strength of composite materials: Trends, predictions, and challenges

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin

    1994-01-01

    Research on damage mechanisms and ultimate strength of composite materials relevant to scaling issues will be addressed in this viewgraph presentation. The use of fracture mechanics and Weibull statistics to predict scaling effects for the onset of isolated damage mechanisms will be highlighted. The ability of simple fracture mechanics models to predict trends that are useful in parametric or preliminary designs studies will be reviewed. The limitations of these simple models for complex loading conditions will also be noted. The difficulty in developing generic criteria for the growth of these mechanisms needed in progressive damage models to predict strength will be addressed. A specific example for a problem where failure is a direct consequence of progressive delamination will be explored. A damage threshold/fail-safety concept for addressing composite damage tolerance will be discussed.

  18. Modeling of surface thermodynamics and damage thresholds in the IR and THz regime

    NASA Astrophysics Data System (ADS)

    Clark, C. D., III; Thomas, Robert J.; Maseberg, Paul D. S.; Buffington, Gavin D.; Irvin, Lance J.; Stolarski, Jacob; Rockwell, Benjamin A.

    2007-02-01

    The Air Force Research Lab has developed a configurable, two-dimensional, thermal model to predict laser-tissue interactions, and to aid in predictive studies for safe exposure limits. The model employs a finite-difference, time-dependent method to solve the two-dimensional cylindrical heat equation (radial and axial) in a biological system construct. Tissues are represented as multi-layer structures, with optical and thermal properties defined for each layer, are homogeneous throughout the layer. Multiple methods for computing the source term for the heat equation have been implemented, including simple linear absorption definitions and full beam propagation through finite-difference methods. The model predicts the occurrence of thermal damage sustained by the tissue, and can also determine damage thresholds for total optical power delivered to the tissue. Currently, the surface boundary conditions incorporate energy loss through free convection, surface radiation, and evaporative cooling. Implementing these boundary conditions is critical for correctly calculating the surface temperature of the tissue, and, therefore, damage thresholds. We present an analysis of the interplay between surface boundary conditions, ambient conditions, and blood perfusion within tissues.

  19. High-efficiency, dielectric multilayer gratings optimized for manufacturability and laser damage threshold

    SciTech Connect

    Britten, J.A.; Perry, M.D.; Shore, B.W.; Boyd, R.D.; Loomis, G.E.; Chow, R.

    1995-11-29

    Ultrashort pulse, high-intensity lasers offer new opportunities for the study of light-matter interaction and for inertial confinement fusion. A 100 Terawatt laser operating 400 fs and 1.053 {mu}m is operational at LLNL, and a 1000 Terawatt (Petawatt) laser will come online in early 1996. These lasers use large-aperture (40 cm and 94 cm diameter, respectively) diffraction gratings to compress the amplified laser pulse. At present, hologrphically produced, gold overcoated photoresist gratings are used: these gratings represent the fuse in the laser chain. Higher laser damage thresholds and higher diffraction efficiencies are theoretically possible with multilayer dielectric gratings (MDG`s). A number of design parameters regarding both the multilayer stack and the etched grating structure can be optimized to maximize the laser damage threshold and also improve the processing latitude for the interference lithography and reactive ion etching steps used during manufacture of these gratings. This paper presents model predictions for the behavior of hafnia/silica MDG`s both during processing and in operation, and presents experimental data on the diffraction efficiency and short- pulse laser damage threshold for optimized witness gratings.

  20. Shock induced damage and damage threshold of optical K9 glass investigated by laser-driven shock wave

    NASA Astrophysics Data System (ADS)

    Song, Yunfei; Yu, Guoyang; Jiang, Lilin; Zheng, Xianxu; Liu, Yuqiang; Yang, Yanqiang

    2011-04-01

    The shock wave driven by short laser pulse is used to study the damage of brittle material K9 glass. The damage morphology of K9 glass surface indicates that the material has experienced different loading modes, respectively, at the central area and the surrounding area of the shock wave. At the central area of shock wave, the wavefront is plane and has a uniform pressure distribution, the material mainly suffers a longitudinal shock pressure; but on the edge the shock wave, the wavefront is approximately spherical, besides longitudinal pressure, transverse tensile stress will emerge inside the material. In the latter case, the damage threshold of the material is much smaller than that in the case of compressing by longitudinal pressure only. According to the relationship between damage area and shock pressure, an experimental method is proposed to measure the damage threshold of materials under shock loading. The damage threshold of K9 glass under spherical shock wave is measured to be about 1.12 GPa; and the damage threshold under plane shock wave is estimated to be between 1.82 and 1.98 GPa. They are much bigger than the damage threshold under static pressure. This method could also be used to measure the damage threshold of other materials when loaded by dynamic pressure.

  1. Damage threshold of in-vivo rabbit cornea by 2 μm laser irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Oliver, Jeffery; Dutta, Soumak; Rylander, Grady H., III; Thomsen, Sharon L.; Welch, Ashley J.

    2007-02-01

    To support refinement of the Maximum Permissible Exposure (MPE) safety limits, a series of experiments were conducted in vivo on Dutch Belted rabbit corneas to determine corneal minimum visible lesion thresholds for 2.0 μm continuous-wave laser irradiation. Single pulse radiant exposures were made at specified pulse durations of 0.1 sec, 0.25 sec, 0.5 sec, 1.0 sec, 2.0 sec and 4.0 seconds for spot 1/e2 diameters of 1.17 mm and 4.02 mm. Lesions were placed in rows without overlap on rabbit cornea. The effect of each irradiation was evaluated within one minute post exposure and the final determination of lesion formation was made using a slit lamp one hour post exposure. Threshold lesions were defined as the presence of a superficial surface whitening one hour after irradiation. Probit analysis was conducted to estimate the dose for 50% probability (ED50) of laser-induced damage. Approximately 20 different radiant exposures were made for each exposure duration-spot size combination. At the threshold level, the diameters of barely visible opaque white lesions were smaller than the Gaussian 1/e2 beam diameter. In selected survival animals, most of the threshold lesions were still visible 24 hours after exposure. The average lesion radius was approximately 0.4 +/- 0.12 mm diameter for the 1.17 mm spot size and 1.0 +/- 0.20 mm diameter for the 4.02 mm spot size. The exposure duration dependence of threshold average radiant exposure was described by an empirical power law equation: Threshold radiant exposure[J/cm2] = a x exposure duration[s] b, experimentally derived coefficient a was 9.79 and b was 0.669 for the 1.17 mm spot diameter; values of a and b were 4.57 and 0.456 respectively for the 4.02 spot diameter. Based on the experimental data and the empirical power law, the safety factors which were defined as threshold radiant exposure divided by MPE values were predicted for the 2.0 μm wavelength at various exposure durations and spot diameters. The minimum limit of

  2. Improving laser damage threshold measurements: an explosive analogy

    NASA Astrophysics Data System (ADS)

    Arenberg, Jonathan W.; Thomas, Michael D.

    2012-11-01

    Laser damage measurements share similarities with testing of explosives, namely the sample or sample site is damaged or modified during the measurement and cannot be retested. An extensive literature exists for techniques of measurement of the "all fire" and "no fire" levels for explosives. These levels hold direct analogy to the "all damage" or 100% probability of damage or the "all safe" or 0% probability of damage. The Maximum Likelihood Estimate method, which is the foundation of this technique, is introduced. These methods are applied to an archetypal damage probability model and the results shown to be accurate and unbiased.

  3. Laser shock processing induced residual compression: Impact on predicted crack growth threshold performance

    NASA Astrophysics Data System (ADS)

    Shepard, M. J.

    2005-08-01

    Design credit is not currently taken for laser shock processing (LSP) induced compressive residual stresses in damage tolerant design. The inclusion of these and other compressive stresses in design practice has the potential to dramatically increase predicted fatigue crack growth threshold performance and damage tolerant design life. In the current effort, Ti-6Al-4V coupons will be subjected to shot peening, glass bead peening, and high intensity laser shock processing. The in-depth residual stresses due to processing will be analyzed and then input into a linear elastic fracture mechanics analysis code to predict fatigue crack growth threshold performance. This analysis establishes both the utility and feasibility of incorporating LSP-induced compressive residual stresses into damage tolerant design practice.

  4. Analysis Concerning the Inspection Threshold for Multi-Site Damage

    DTIC Science & Technology

    1993-12-01

    uL 200 words) Periodic inspections, at a prescribed interval, for Multi-Site Damage (MSD) in longitudinal fuselage lap-joints start when the aircraft ...at a prescribed interval, for Multi-Site Damage (MSD) in longitudinal fuselage lap-joints start when the aircraft has accumulated a certain number of...viii 1. INTRODUCTION AND SCOPE The cumulative probability of detection of Multi-Site Damage (MSD) in fuselage lap-joints of aging aircraft was assessed

  5. A ruggedness evaluation of procedures for damage threshold testing optical materials

    NASA Technical Reports Server (NTRS)

    Hooker, Matthew W.; Thomas, Milfred E.; Wise, Stephanie A.; Tappan, Nina D.

    1995-01-01

    A ruggedness evaluation of approaches to damage threshold testing was performed to determine the influence of three procedural variables on damage threshold data. The differences between the number of test sites evaluated at an applied fluence level (1 site versus 10 sites), the number of laser pulses at each test site (1 pulse versus 200 pulses), and the beam diameter (0.35 mm versus 0.70 mm) were all found to significantly influence the damage threshold data over a 99-percent confidence interval.

  6. The Laser Damage Threshold for Materials and the Relation Between Solid-Melt and Melt-Vapor Interface Velocities

    SciTech Connect

    Khalil, Osama Mostafa

    2010-10-08

    Numerous experiments have demonstrated and analytic theories have predicted that there is a threshold for pulsed laser ablation of a wide range of materials. Optical surface damage threshold is a very complex and important application of high-power lasers. Optical damage may also be considered to be the initial phase of laser ablation. In this work it was determined the time required and the threshold energy of a layer of thickness to heat up. We used the Finite Difference method to simulate the process of laser-target interaction in three cases. Namely, the case before melting begins using a continuous wave (c.w) laser source and a pulsed laser source, the case after the first change of state (from solid to melt), and the case after the second change of state (from melt to vapor). And also study the relation between the solid-melt and melt-vapor interface velocities to have a commonsense of the laser ablation process.

  7. Confronting uncertainty in flood damage predictions

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Kreibich, Heidi; Vogel, Kristin; Merz, Bruno

    2015-04-01

    Reliable flood damage models are a prerequisite for the practical usefulness of the model results. Oftentimes, traditional uni-variate damage models as for instance depth-damage curves fail to reproduce the variability of observed flood damage. Innovative multi-variate probabilistic modelling approaches are promising to capture and quantify the uncertainty involved and thus to improve the basis for decision making. In this study we compare the predictive capability of two probabilistic modelling approaches, namely Bagging Decision Trees and Bayesian Networks. For model evaluation we use empirical damage data which are available from computer aided telephone interviews that were respectively compiled after the floods in 2002, 2005 and 2006, in the Elbe and Danube catchments in Germany. We carry out a split sample test by sub-setting the damage records. One sub-set is used to derive the models and the remaining records are used to evaluate the predictive performance of the model. Further we stratify the sample according to catchments which allows studying model performance in a spatial transfer context. Flood damage estimation is carried out on the scale of the individual buildings in terms of relative damage. The predictive performance of the models is assessed in terms of systematic deviations (mean bias), precision (mean absolute error) as well as in terms of reliability which is represented by the proportion of the number of observations that fall within the 95-quantile and 5-quantile predictive interval. The reliability of the probabilistic predictions within validation runs decreases only slightly and achieves a very good coverage of observations within the predictive interval. Probabilistic models provide quantitative information about prediction uncertainty which is crucial to assess the reliability of model predictions and improves the usefulness of model results.

  8. Damage Threshold Characterization in Structural Composite Materials and Composite Joints

    DTIC Science & Technology

    2010-02-28

    WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Montana State University...Badaliance and Aaron Sears Montana State University, Bozeman, Montana Final Technical Report, for FA9550-06-1-0444, AFOSR/DEPSCOR 06 Program...strain field for damage state which consists only of a crack across the ends of the dropped plies (usually the first damage), and a 3-mm long L1

  9. High laser-induced damage threshold polarizer-coatings for 1054 nm

    NASA Astrophysics Data System (ADS)

    Smith, Douglas J.; Anzellotti, J. F.; Papernov, Semyon; Chrzan, Z. Roman

    1997-05-01

    Polarizer coatings developed for the OMEGA laser are performing well without sustaining any significant damage. Similar polarizers developed for the National Ignition Facility have exceptionally high damage thresholds when tested with a 1-ns pulse at 1054 nm. Polarizers for OMEGA were originally developed using Ta2O5/SiO2 multilayers. All final polarizers before the frequency conversion cell were made using this method. A new coating was developed for a polarizing beamsplitter with more stringent optical and laser-damage requirements. The new coating used a HfO2/SIO2 system with the hafnia formed by reactive evaporation from a hafnium metal melt. The new process provided better film control, lower defect counts, better stress control, and higher damage thresholds. Beamsplitter coatings made from both processes were installed in the OMEGA laser. After 1.5 years of operation the Ta2O5/SiO2 beamsplitters are developing signs of damage on OMEGA while the HfO2/SiO2 coatings show no damage. The HfO2/SiO2 process was also used to develop polarizer coatings for the NIF. Damage- threshold results from 1-on-1 testing will be presented for both types of polarizers. Experimental results show that the coating damage threshold is not strongly dependent on deposition parameters, allowing use of these parameters to control film stress. The damage thresholds are higher for s- polarized incident light, and different damage morphologies for the two polarizations have been observed. A base layer of scandium oxide that allows the coating to be safely stripped does not affect the polarizer damage threshold.

  10. Increase of bulk optical damage threshold fluences of KDP crystals by laser irradiation and heat treatment

    DOEpatents

    Swain, J.E.; Stokowski, S.E.; Milam, D.; Kennedy, G.C.; Rainer, F.

    1982-07-07

    The bulk optical damage threshold fluence of potassium dihydrogen phosphate (KDP) crystals is increased by irradiating the crystals with laser pulses of duration 1 to 20 nanoseconds of increasing fluence, below the optical damage threshold fluence for untreated crystals, or by baking the crystals for times of the order of 24 hours at temperatures of 110 to 165/sup 0/C, or by a combination of laser irradiation and baking.

  11. Development of high damage threshold laser-machined apodizers and gain filters for laser applications

    SciTech Connect

    Rambo, Patrick; Schwarz, Jens; Kimmel, Mark; Porter, John L.

    2016-09-27

    We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. Finally, by creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass’ lithography.

  12. Development of high damage threshold laser-machined apodizers and gain filters for laser applications

    DOE PAGES

    Rambo, Patrick; Schwarz, Jens; Kimmel, Mark; ...

    2016-09-27

    We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. Finally, by creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass’ lithography.

  13. Bulk optical damage thresholds for doped and undoped, crystalline and ceramic yttrium aluminum garnet.

    PubMed

    Do, Binh T; Smith, Arlee V

    2009-06-20

    We measured the bulk optical damage thresholds of pure and Nd-doped ceramic yttrium aluminum garnet (YAG), and of pure, Nd-doped, Cr-doped, and Yb-doped crystalline YAG. We used 9.9 ns, 1064 nm, single-longitudinal mode, TEM00 pulses, to determine that the breakdown thresholds are deterministic, with multiple-pulse thresholds ranging from 1.1 to 2.2 kJ/cm2.

  14. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    NASA Astrophysics Data System (ADS)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V.

    2017-02-01

    The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  15. Laser Induced Retinal Damage Thresholds for Annular Retinal Beam Profiles

    DTIC Science & Technology

    2004-01-01

    Thompson-Gerstman granular model of laser-induced thermal damage to the retina ."°20 The study documented in this paper is a continuation of our earlier...Retinal Beam Profiles DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Laser Interaction...mrad of visual field; which correspond to outer beam diameters of roughly 70, 160, and 300 tin, respectively, on the primate retina . Annular beam

  16. Damage thresholds of thin film materials and high reflectors at 248 nm

    SciTech Connect

    Rainer, F.; Lowdermilk, W.H.; Milam, D.; Carniglia, C.K.; Hart, T.T.; Lichtenstein, T.L.

    1982-01-01

    Twenty-ns, 248-nm KrF laser pulses were used to measure laser damage thresholds for halfwave-thick layers of 15 oxide and fluoride coating materials, and for high reflectance coatings made with 13 combinations of these materials. The damage thresholds of the reflectors and single-layer films were compared to measurements of several properties of the halfwave-thick films to determine whether measurements of these properties of single-layer films to determine whether measurements of these properties of single-layer films were useful for identifying materials for fabrication of damage resistant coatings.

  17. Laser damage threshold of gelatin and a copper phthalocyanine doped gelatin optical limiter

    SciTech Connect

    Brant, M.C.; McLean, D.G.; Sutherland, R.L.

    1996-12-31

    The authors demonstrate optical limiting in a unique guest-host system which uses neither the typical liquid or solid host. Instead, they dope a gelatin gel host with a water soluble Copper (II) phthalocyaninetetrasulfonic acid, tetrasodium salt (CuPcTs). They report on the gelatin`s viscoelasticity, laser damage threshold, and self healing of this damage. The viscoelastic gelatin has mechanical properties quite different than a liquid or solid. The authors` laser measurements demonstrate that the single shot damage threshold of the undoped gelatin host increases with decreasing gelatin concentration. The gelatin also has a much higher laser damage threshold than a stiff acrylic. Unlike brittle solids, the soft gelatin self heals from laser induced damage. Optical limiting test also show the utility of a gelatin host doped with CuPcTs. The CuPcTs/gelatin matrix is not damaged at incident laser energies 5 times the single shot damage threshold of the gelatin host. However, at this high laser energy the CuPcTs is photo bleached at the beam waist. The authors repair photo bleached sites by annealing the CuPcTs/gelatin matrix.

  18. Predicting unconsciousness from a pediatric brain injury threshold.

    PubMed

    Zhu, Qiliang; Prange, Michael; Margulies, Susan

    2006-01-01

    The objective of this study was to utilize tissue deformation thresholds associated with acute axonal injury in the immature brain to predict the duration of unconsciousness. Ten anesthetized 3- to 5-day-old piglets were subjected to nonimpact axial rotations (110-260 rad/s) producing graded injury, with periods of unconsciousness from 0 to 80 min. Coronal sections of the perfusion-fixed brain were immunostained with neurofilament antibody (NF-68) and examined microscopically to identify regions of swollen axons and terminal retraction balls. Each experiment was simulated with a finite element computational model of the piglet brain and the recorded head velocity traces to estimate the local tissue deformation (strain), the strain rate and their product. Using thresholds associated with 50, 80 and 90% probability of axonal injury, white matter regions experiencing suprathreshold responses were determined and expressed as a fraction of the total white matter volume. These volume fractions were then correlated with the duration of unconsciousness, assuming a linear relationship. The thresholds for 80 and 90% probability of predicting injury were found to correlate better with injury severity than those for 50%, and the product of strain and strain rate was the best predictor of injury severity (p=0.02). Predictive capacity of the linear relationship was confirmed with additional (n=13) animal experiments. We conclude that the suprathreshold injured volume can provide a satisfactory prediction of injury severity in the immature brain.

  19. Critical storm thresholds for significant morphological changes and damage along the Emilia-Romagna coastline, Italy

    NASA Astrophysics Data System (ADS)

    Armaroli, Clara; Ciavola, Paolo; Perini, Luisa; Calabrese, Lorenzo; Lorito, Samantha; Valentini, Andrea; Masina, Marinella

    2012-03-01

    The definition of storm morphological thresholds along the coast of the Emilia-Romagna Region strictly depends on its configuration and variability. The region is located in northern Italy, facing the Adriatic Sea. The coastline is characterised by very different levels of economic development, ranging from natural zones with dunes to highly developed stretches protected by breakwaters and groynes. The Integrated Coastal Zone Management effort is mainly concentrated on preserving urban areas that generate significant income for the regional economy. Natural areas, while small in comparison to the urbanised zone, are important for environment preservation. Because of such a multiplicity of issues at stake, it was decided to produce two different thresholds: one for the morphological impact on natural sectors and another for inundation and damage to structures along urbanised zones. The "forcing" component of the threshold definition for natural areas was calculated by summing the effects of surge + tide + waves (run-up elevation) to find the Maximum Water Level (MWL) reached by the sea during one, ten and one-hundred year storm return periods. For urbanised zones, historical storm information was collected starting from the 1960s in order to identify the forcing conditions causing real damages. Each storm was classified in terms of wave height, period, direction and surge level. Morphological information were obtained from Lidar flights performed in 2003 and 2004 and from direct surveys undertaken in September 2008 and February 2009 as part of the monitoring programme for the MICORE Project. The computed MWL for each return period was then compared to beach elevations along natural areas in order to calculate the Dune Stability Factor (DSF), an index that accounts for the eroded sediment volume above the MWL during a storm. Based on analysis along 41 profile lines at a 500 m spacing, it was found that the 1-in-1 year return period wave height + 1-in-1 year return

  20. Analysis of damage threshold of K9 glass irradiated by 248-nm KrF excimer laser

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Shao, Jingzhen; Li, Hua; Nie, Jinsong; Fang, Xiaodong

    2016-02-01

    The theoretical model of K9 glass irradiated by a 248-nm KrF excimer laser was established, and a numerical simulation was performed to calculate temperature and thermal stress fields in the K9 glass sample using the finite element method. The laser-induced damage thresholds were defined and calculated, and the effect of repetition frequency and the number of pulses on the damage threshold were also studied. Furthermore, the experiment research was carried out to confirm the numerical simulation. The damage threshold and damage morphology were analyzed by means of a metallurgical microscope and scanning electron microscopy. The simulation and experimental results indicated that the damage mechanism of K9 glass irradiated by a KrF excimer laser was melting damage and stress damage, and the stress damage first appeared inside the K9 glass sample. The tensile stress damage threshold, the compressive stress damage threshold, and the melting damage threshold were 0.64, 0.76, and 1.05 J/cm2, respectively. The damage threshold decreased with increasing repetition frequency and number of laser pulses. The experimental results indicated that the damage threshold of K9 glass was 2.8 J/cm2.

  1. Skin damage thresholds with continuous-wave laser exposures at the infrared wavelength of 1319 nm

    NASA Astrophysics Data System (ADS)

    Oliver, Jeffrey W.; Harbert, Corey A.; Noojin, Gary D.; Noojin, Isaac D.; Schuster, Kurt J.; Shingledecker, Aurora D.; Stolarski, David J.; Kumru, Semih S.

    2011-03-01

    ABSTRACT Damage thresholds (ED50) for skin using Yucatan mini-pig (Sus scrofa domestica) have been determined at the operational wavelength of 1319 nm with beam diameters of 0.61 cm and 0.96 cm. Exposure durations of 0.25, 1.0, 2.5 and 10 seconds were used to determine trends in damage threshold with respect to exposure time and beam diameter at this moderately-high penetrating wavelength. A relatively narrow range of total radiant exposure from 37.4 J/cm2 to 62.3 J/cm2 average was observed for threshold damage with laser parameters encompassing a factor of two in beam area and a factor of forty in exposure duration.

  2. Laser damage threshold of SiO{sub 2} films by the photoacoustic mirage technique

    SciTech Connect

    Alvisi, M.; Vasanelli, L.; De Nunzio, G.; Diso, D.; Perrone, M. R.; Protopapa, L.; Rizzo, A.; Scaglione, S.

    1999-03-15

    SiO{sub 2} thin films of 240 nm thickness have been deposited by a dual-ion-beam sputtering technique using argon or xenon ions mixed with oxygen ions in the assisting ion beam and the role of the assisting ion beam and of the substrate temperature on the laser damage threshold at 308 nm (XeCl excimer laser) has been investigated by the photo acoustic mirage technique. It has been found that the laser damage threshold was quite dependent on the film deposition conditions. The sample grown at a substrate temperature of 300 deg. C and with the argon ion assisting beam was characterized by the highest damage threshold ( congruent with 10 J/cm{sup 2})

  3. Improvement of the bulk laser damage threshold of potassium dihydrogen phosphate crystals by ultraviolet irradiation

    SciTech Connect

    Yokotani, A.; Sasaki, T.; Yoshida, K.; Yamanaka, T.; Yamanaka, C.

    1986-04-21

    Potassium dihydrogen phosphate (KDP) crystals were grown under the irradiation of ultraviolet light. The bulk laser damage threshold was improved to two to three times (15-20 J/cm/sup 2/) compared to the case of crystals grown by conventional methods. Microbes such as germs and bacteria are frequently generated in the KDP solution with the usual growth method. The ultraviolet light reduces or eliminates organic materials such as microbes or their carcasses incorporated into the crystal, which are the cause of low damage threshold.

  4. Irradiance enhancement and increased laser damage threshold in As₂S₃ moth-eye antireflective structures.

    PubMed

    Weiblen, R Joseph; Florea, Catalin M; Busse, Lynda E; Shaw, L Brandon; Menyuk, Curtis R; Aggarwal, Ishwar D; Sanghera, Jasbinder S

    2015-10-15

    It has been experimentally observed that moth-eye antireflective microstructures at the end of As2S3 fibers have an increased laser damage threshold relative to thin-film antireflective coatings. In this work, we computationally study the irradiance enhancement in As2S3 moth-eye antireflective microstructures in order to explain the increased damage threshold. We show that the irradiance enhancement occurs mostly on the air side of the interfaces and is minimal in the As2S3 material. We give a physical explanation for this behavior.

  5. Heating process and damage threshold analysis of Au film coated on Cu substrate for femtosecond laser

    NASA Astrophysics Data System (ADS)

    Wang, Tingfeng; Guo, Jin; Shao, Junfeng; Sun, Tao; Chen, Anmin; Liu, Hang; Ding, Dajun

    2012-07-01

    The heating processes of a two-layer film assembly of Au padded with Cu irradiated by femtosecond laser pulse are studied using a two-temperature model. It is found that the chosen substantially influence the energy transport, and consequently the temperature variation, and thermal equilibrium time. At the same laser fluence, the different thickness of gold film leads to a change of gold surface temperature. By choosing the thickness of the gold layer in the two-layer film assemblies, the damage threshold of the gold film can be maximized. The results can be used to optimize the damage threshold of gold coating optical components.

  6. Higher-than-predicted saltation threshold wind speeds on Titan.

    PubMed

    Burr, Devon M; Bridges, Nathan T; Marshall, John R; Smith, James K; White, Bruce R; Emery, Joshua P

    2015-01-01

    Titan, the largest satellite of Saturn, exhibits extensive aeolian, that is, wind-formed, dunes, features previously identified exclusively on Earth, Mars and Venus. Wind tunnel data collected under ambient and planetary-analogue conditions inform our models of aeolian processes on the terrestrial planets. However, the accuracy of these widely used formulations in predicting the threshold wind speeds required to move sand by saltation, or by short bounces, has not been tested under conditions relevant for non-terrestrial planets. Here we derive saltation threshold wind speeds under the thick-atmosphere, low-gravity and low-sediment-density conditions on Titan, using a high-pressure wind tunnel refurbished to simulate the appropriate kinematic viscosity for the near-surface atmosphere of Titan. The experimentally derived saltation threshold wind speeds are higher than those predicted by models based on terrestrial-analogue experiments, indicating the limitations of these models for such extreme conditions. The models can be reconciled with the experimental results by inclusion of the extremely low ratio of particle density to fluid density on Titan. Whereas the density ratio term enables accurate modelling of aeolian entrainment in thick atmospheres, such as those inferred for some extrasolar planets, our results also indicate that for environments with high density ratios, such as in jets on icy satellites or in tenuous atmospheres or exospheres, the correction for low-density-ratio conditions is not required.

  7. Higher-than-predicted saltation threshold wind speeds on Titan

    NASA Astrophysics Data System (ADS)

    Burr, Devon M.; Bridges, Nathan T.; Marshall, John R.; Smith, James K.; White, Bruce R.; Emery, Joshua P.

    2015-01-01

    Titan, the largest satellite of Saturn, exhibits extensive aeolian, that is, wind-formed, dunes, features previously identified exclusively on Earth, Mars and Venus. Wind tunnel data collected under ambient and planetary-analogue conditions inform our models of aeolian processes on the terrestrial planets. However, the accuracy of these widely used formulations in predicting the threshold wind speeds required to move sand by saltation, or by short bounces, has not been tested under conditions relevant for non-terrestrial planets. Here we derive saltation threshold wind speeds under the thick-atmosphere, low-gravity and low-sediment-density conditions on Titan, using a high-pressure wind tunnel refurbished to simulate the appropriate kinematic viscosity for the near-surface atmosphere of Titan. The experimentally derived saltation threshold wind speeds are higher than those predicted by models based on terrestrial-analogue experiments, indicating the limitations of these models for such extreme conditions. The models can be reconciled with the experimental results by inclusion of the extremely low ratio of particle density to fluid density on Titan. Whereas the density ratio term enables accurate modelling of aeolian entrainment in thick atmospheres, such as those inferred for some extrasolar planets, our results also indicate that for environments with high density ratios, such as in jets on icy satellites or in tenuous atmospheres or exospheres, the correction for low-density-ratio conditions is not required.

  8. Development of high damage threshold optics for petawatt-class short-pulse lasers

    SciTech Connect

    Stuart, B.C.; Perry, M.D.; Boyd, R.D.

    1995-02-22

    The authors report laser-induced damage threshold measurements on pure and multilayer dielectrics and gold-coated optics at 1053 and 526 nm for pulse durations, {tau}, ranging from 140 fs to 1 ns. Damage thresholds of gold coatings are limited to 500 mJ/cm{sup 2} in the subpicosecond range for 1053-nm pulses. In dielectrics, qualitative differences in the morphology of damage and a departure from the diffusion-dominated {tau}1/2 scaling indicate that damage results from plasma formation and ablation for {tau}{le}10 ps and from conventional melting and boiling for {tau}>50 ps. A theoretical model based on electron production via multiphoton ionization, Joule heating, and collisional (avalanche) ionization is in quantitative agreement with both the pulsewidth and wavelength scaling of experimental results.

  9. Damage prediction in incremental forming by using Lemaitre damage model

    NASA Astrophysics Data System (ADS)

    Wu, Shenghua; Reis, Ana; Teixeira, Pedro; da Rocha, A. Barata; Lino, Jorge

    2012-09-01

    Incremental forming is an innovative flexible method used for manufacturing of the sheet metal products and brings a great insight for the small-batch-size or customized sheet products. Some experiments show that incremental sheet metal forming can undergo higher deformations than traditional sheet metal forming. The traditional method to evaluate formability like forming limit curve (FLD) etc can't give the right answer in incremental forming which is subjected to highly non-monotonic serrated strain paths. In this paper, the Lemaitre' damage model is presented and fully coupled with finite element simulation in commercial software ABAQUS to predict the failure in incremental forming. Results show that the prediction makes a great agreement with the relevant experiments.

  10. Damage Thresholds for Cultures RPE Cells Exposed to Lasers at 532 nm and 458 nm

    DTIC Science & Technology

    2007-06-01

    in onhuman primate studies. Results of in vivo studies have hown that laser damage in the retina depends upon wave- ength, power level, and duration...laser exposure similarly to RPE cells in nonhuman primate models. Our approach was to determine threshold ED50 radiant exposures for damage over a broad...our n vitro system 160 MP/cell responds in a fundamentally imilar fashion to 532-nm laser irradiation, as does the non- uman primate retina

  11. Determination of Pulsed CO2 Laser Damage Thresholds of Optical Surfaces,

    DTIC Science & Technology

    1981-03-01

    des r6sultats obtenus sont sugg6r~es. (NC) ABSTRACT -- An experimental technique is described for determining the damage thresholds of glass and plastic ...ments on various glasses and plastics , opaque to the laser radiation. Damage is defined on the basis of changes which occur in the physical...their patterns. It appeared as white spots in the acrylic plastic (PMMA), and as fine cracks, which occurred within 5-10 s of irradiation, in the glass

  12. Damage Prediction in Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Saanouni, Khémais; Badreddine, Houssem

    2007-05-01

    to kill the fully damaged elements in order to describe the macroscopic crack propagation. Various 2D and 3D examples are given in order to show the capability of the methodology to predict the damage initiation and growth during various sheet metal forming processes.

  13. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    PubMed Central

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-01-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process. PMID:27484188

  14. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics.

    PubMed

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-08-03

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process.

  15. Laser damage threshold studies on urea L-malic acid: A nonlinear optical crystal

    SciTech Connect

    Vanishri, S.; Bhat, H. L.; Deepthy, A.; Nampoori, V. P. N.; Matos Gomes, E. de; Belsley, M.

    2006-04-15

    A detailed study of surface laser damage performed on a nonlinear optical crystal, urea L-malic acid, using 7 ns laser pulses at 10 Hz repetition rate from a Q-switched Nd:YAG laser at wavelengths of 532 and 1064 nm is reported. The single shot and multiple shot surface laser damage threshold values are determined to be 26.64{+-}0.19 and 20.60{+-}0.36 GW cm{sup -2} at 1064 nm and 18.44{+-}0.31 and 7.52{+-}0.22 GW cm{sup -2} at 532 nm laser radiation, respectively. The laser damage anisotropy is consistent with the Vickers mechanical hardness measurement performed along three crystallographic directions. The Knoop polar plot also reflects the damage morphology. Our investigation reveals a direct correlation between the laser damage profile and hardness anisotropy. Thermal breakdown of the crystal is identified as the possible mechanism of laser induced surface damage.

  16. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-08-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process.

  17. Nano-cathodoluminescence reveals the effect of electron damage on the optical properties of nitride optoelectronics and the damage threshold

    NASA Astrophysics Data System (ADS)

    Griffiths, James T.; Zhang, Siyuan; Lhuillier, Jeremy; Zhu, Dandan; Fu, Wai Yuen; Howkins, Ashley; Boyd, Ian; Stowe, David; Wallis, David J.; Humphreys, Colin J.; Oliver, Rachel A.

    2016-10-01

    Nano-cathodoluminescence (Nano-CL) reveals optical emission from individual InGaN quantum wells for applications in optoelectronic devices. We show the luminescent intensity decays over time with exposure to the electron beam for energies between 80 and 200 keV. Measurements of the CL intensity over time show an exponential decline in intensity, which we propose is due to the formation of nitrogen Frenkel defects. The measured CL damage decreases with reductions in the electron accelerating voltage and we suggest that the electron induced structural damage may be suppressed below the proposed damage threshold. The electron beam induced damage leads to a non-radiative region that extends over the measured minority carrier diffusion length. Nano-CL may thus serve as a powerful technique to study III-nitride optoelectronics.

  18. Laser-Induced Damage Threshold and Certification Procedures for Optical Materials

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This document provides instructions for performing laser-induced-damage-threshold tests and pass-fail certification tests on optical materials used in pulsed-laser systems. The optical materials to which these procedures apply include coated and uncoated optical substrates, laser crystals, Q-switches, polarizers, and other optical components employed in pulsed-laser systems.

  19. Predictions Of Fatigue Damage From Strain Histories

    NASA Technical Reports Server (NTRS)

    Sire, Robert A.; Besuner, Philip M.; Toomey, Tim

    1989-01-01

    Semiempirical mathematical model of fatigue damage in stressed objects uses experimental histories of strains in those objects to predict fatigue lives. Accounts for initiation and propagation of fatigue cracks on cycle-by-cycle basis. Measured strain history first digitized, then converted to history of turning-point strains for purposes of analysis. Data between turning points not used. When model calibrated against proper test data for each type of object characterized, its predictions of fatigue lives superior to statistical models as one based on root-mean-square strain.

  20. Quasi-Static 3-Point Reinforced Carbon-Carbon Bend Test and Analysis for Shuttle Orbiter Wing Leading Edge Impact Damage Thresholds

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Sotiris, Kellas

    2006-01-01

    Static 3-point bend tests of Reinforced Carbon-Carbon (RCC) were conducted to failure to provide data for additional validation of an LS-DYNA RCC model suitable for predicting the threshold of impact damage to shuttle orbiter wing leading edges. LS-DYNA predictions correlated well with the average RCC failure load, and were good in matching the load vs. deflection. However, correlating the detectable damage using NDE methods with the cumulative damage parameter in LS-DYNA material model 58 was not readily achievable. The difficulty of finding internal RCC damage with NDE and the high sensitivity of the mat58 damage parameter to the load near failure made the task very challenging. In addition, damage mechanisms for RCC due to dynamic impact of debris such as foam and ice and damage mechanisms due to a static loading were, as expected, not equivalent.

  1. Laser-induced damage thresholds of optical coatings at different temperature

    NASA Astrophysics Data System (ADS)

    Mikami, K.; Motokoshi, S.; Fujita, M.; Jitsuno, T.; Tanaka, K. A.

    2011-12-01

    Laser-induced damage thresholds for dielectric and metal single-layer coatings at different temperature conditions (123-473 K) were measured by 1064-nm wavelength and 4-ns pulses to elucidate the effects of initial temperature to laser damage mechanisms. SiO2, MgF2, gold, silver and copper single-layer coatings were prepared as experimental samples. In the experimental results, temperature dependence of LIDTs for optical substrates and all dielectric single-layer coatings indicated same trend as that for bulk silica glasses, which increased linearly with decreasing the temperature. However, all metallic coatings had the inverse trend of the dependence for dielectric coatings. The effects of initial temperature to laser damage mechanisms were considered with separated processes from the experimental results. In the conclusions, free-electron generation and electron multiple caused difficultly at low temperature and the laser-induced damage thresholds increased. On the other hand, plasma heating caused easily at low temperature and the laser-damage thresholds decreased.

  2. Laser-induced damage threshold of silicon under combined millisecond and nanosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Lv, Xueming; Pan, Yunxiang; Jia, Zhichao; Li, Zewen; Zhang, Hongchao; Ni, Xiaowu

    2017-03-01

    The laser-silicon interaction process was investigated with the superposed radiation of two pulsed Nd:YAG lasers. A pulse duration of 1 millisecond (ms) was superposed by 7 nanosecond (ns) pulses, creating a combined pulse laser (CPL). The time-resolved surface temperature of silicon was measured by an infrared radiation pyrometer. The melting thresholds of silicon were attained for a single ms laser and a CPL by infrared radiometry and time-resolved reflectance. The concept of threshold boundary was proposed, and a fitted curve of threshold boundary was obtained. An axisymmetric model was established for laser heating of silicon. The transient temperature fields were obtained for single ms laser and CPL irradiation using finite element analysis. The numerical results were validated experimentally, and an obvious decrease in melting threshold was found under CPL irradiation. That is attributed to pre-heating by the ms laser and the surface damage caused by the ns laser.

  3. DNA damage response as an anti-cancer barrier: damage threshold and the concept of 'conditional haploinsufficiency'.

    PubMed

    Bartek, Jiri; Lukas, Jiri; Bartkova, Jirina

    2007-10-01

    DNA damage response (DDR) emerges as a biological tumorigenesis barrier in early stages of cancer development, and a selective pressure that favors outgrowth of malignant clones with defects in the genome maintenance machinery, such as mutations of p53 and other DDR components. Recent studies indicate that the DDR barrier is not alarmed universally among early noninvasive lesions, but rather responds to high-risk tumorigenic threats that occur in high-grade, pre-malignant lesions that are generally more likely to develop into bona fide malignancies. In addition, while the DDR barrier appears to operate in major types of cancer, such as carcinomas of the lung, breast and colon, DDR activation is rare at any stage of progression among testicular germ-cell tumors. Together with observations that several, but not all oncogenic insults are capable of activating the DDR machinery, these new results point to existence of a critical threshold of such oncogene-induced DNA damage. It seems that only cells and lesions that experience DNA replication stress and DNA damage above such threshold activate the cellular senescence or cell death pathways within the DDR machinery. The higher load of DNA damage may also contribute to cancer predisposition in families with inherited heterozygous defects in the DDR barrier, such as in ATM, BRCA1, BRCA2, p53 and other genes. We propose that carriers of such DDR defects may be more prone to malignancy due to 'conditional haploinsufficiency': such partial defects may be asymptomatic in normal tissues, yet they may become manifest under conditions of supra-threshold endogenous DNA damage in oncogene-driven pre-malignant lesions.

  4. Review of structural influences on the laser damage thresholds of oxide coatings

    SciTech Connect

    Hacker, E.; Lauth, H.; Weibbrodt, P.

    1996-12-31

    The laser damage thresholds (LDT) of optical coatings lie, as a rule, markedly below those of the respective bulk materials. This is due to diverse specific real structure properties with regard to composition, crystallography, microstructure and the physico-chemical structure of the interfaces. These properties depend in a highly complex and sensitive way on the substrate treatment, coating techniques and deposition conditions. With evaporated and sputtered oxide coatings as example, some correlations between structural thin film properties (e.g. crystallography, microstructure, anisotropy, chemical composition, defects) and the ultraviolet (248 nm) or near infrared (1064 nm) laser damage thresholds are discussed with concern to a further increase of the damage resistance. It is evident from data that an approach to the problem requires complex investigations of the technology-structure-properties relationships.

  5. Prediction of Selection Response for Threshold Dichotomous Traits

    PubMed Central

    Foulley, J. L.

    1992-01-01

    This paper presents a formula to predict expected response to one generation of truncation selection for a dichotomous trait under polygenic additive inheritance. The derivation relies on the threshold liability concept and on the normality assumption of the joint distribution of additive genetic values and their predictors used as selection criteria. This formula accounts for asymmetry of response when both the prevalence of the trait and the selection rate differ from 1/2 via a bivariate normal integral term. The relationship with the classical formula R = ipσ(G) is explained with a Taylor expansion about a zero value of the correlation factor. Properties are illustrated with an example of sire selection based on progeny test performance which shows a departure from usual predictions up to 15-20% at low (0.05) or high (0.95) selection rates. Univariate approximations and extensions to several paths of genetic change are also discussed. PMID:1459435

  6. Predictive macrosomia birthweight thresholds for adverse maternal and neonatal outcomes.

    PubMed

    Wang, Dan; Zhu, Li; Zhang, Shulian; Wu, Xueqin; Wang, Xiaoli; Lv, Qin; Gan, Dongmei; Liu, Ling; Li, Wen; Zhou, Qin; Lu, Jiarong; He, Haiying; Wang, Jimei; Xin, Hua; Li, Zhankui; Chen, Chao

    2016-12-01

    We examined the predictive macrosomia birthweight thresholds for adverse maternal and neonatal outcomes. This was a multicenter, retrospective cohort study conducted in China. We selected 178 709 singletons weighing ≥2500 g with gestational age 37-44 weeks. We categorized macrosomia with two gradations (4000-4499 g and ≥4500 g) and compared them with a normosomic reference group of infants with birthweight 2500-3999 g. The risks of obstetric and neonatal complications increased when infants had a birthweight of ≥4000 g. The rates of infant mortality, Apgar score ≤3 at 5 min, respiratory and neurological disorders rose significantly among neonates weighing ≥4500 g. A definition of macrosomia as birthweight ≥4000 g could be beneficial as an indicator of obstetric and newborn complications, and birthweight ≥4500 g might be predictive of severe infant morbidity and mortality risk.

  7. Modeling of damage generation mechanisms in silicon at energies below the displacement threshold

    SciTech Connect

    Santos, Ivan; Marques, Luis A.; Pelaz, Lourdes

    2006-11-01

    We have used molecular dynamics simulation techniques to study the generation of damage in Si within the low-energy deposition regime. We have demonstrated that energy transfers below the displacement threshold can produce a significant amount of damage, usually neglected in traditional radiation damage calculations. The formation of amorphous pockets agrees with the thermal spike concept of local melting. However, we have found that the order-disorder transition is not instantaneous, but it requires some time to reach the appropriate kinetic-potential energy redistribution for melting. The competition between the rate of this energy redistribution and the energy diffusion to the surrounding atoms determines the amount of damage generated by a given deposited energy. Our findings explain the diverse damage morphology produced by ions of different masses.

  8. Thresholds for morphological changes and damages on a sandy exposed beach

    NASA Astrophysics Data System (ADS)

    Almeida, L. M.; Vousdoukas, M.; Ferreira

    2009-12-01

    Methods for the definition of thresholds for morphological change and damages in sandy coasts are presented. The approach followed to assess the morphological threshold consisted of four steps: (1) the definition of the profile active zone, (2) the establishment of cross-shore sectors, (3) the determination of the vertical variability, and (4) the use of regression analysis between wave height and the vertical variability to define morphological change thresholds. Descriptive information, based on regional newspapers and unpublished reports from the municipality, as well as time series of aerial photographs from the study area, allowed the identification of the major storm events in the last decades and a qualitative assessment of their impact on the coast, which allowed the definition of different thresholds for damages at infrastructures/human occupation. Results from the morphological threshold methods show that the profile active zone is defined between 5 m above Mean Sea Level (MSL) and 10.4 m depth bellow MSL, and that there are clear cross-shore differences on the profile vertical variability. The profile was divided in four cross-shore sectors (sector A - from 20 to 80 m from the profile origin; sector B - between 80 and 170 m from the profile origin; sector C - from 170 to 360 m from the profile origin; sector D - from 360 to 700 m from the profile origin), based on a similarity pattern derived from the standard deviation computation for all surveys. The correlation between the module of the maximum vertical change at each sector and the 99th percentile of the significant wave height between surveys was always significant. The resulting equations were computed and thresholds that determine the existence of important morphological changes at each sector were defined. For sector A the obtained threshold of significant wave height was 2.3 m, for sector B and C 3.2 and for sector D 4.1 m. Regarding the hydrodynamic conditions that can trigger damage on

  9. Laser-induced retinal damage threshold for repetitive-pulse exposure to 100-microsecs pulses

    DTIC Science & Technology

    2014-10-07

    summation (PS) model of Menendez et al.15–17 For this injury mechanism, the cumulative threshold is depen dent only on the number of pulses in the exposure...PS model of Menendez , et al.15 This is strong evidence that the threshold level damage mechanism for single pulse 100 μs duration retinal exposures... Menendez et al., “Probability summation model of multiple laser exposure effects,” Health Phys. 65(5), 523 528 (1993). 16. D. J. Lund and D. Sliney, “A

  10. Satellite-rainfall estimation for identification of rainfall thresholds used for landslide/debris flow prediction

    NASA Astrophysics Data System (ADS)

    Maggioni, Viviana; Nikolopoulos, Efthymios I.; Marra, Francesco; Destro, Elisa; Borga, Marco

    2016-04-01

    Rainfall-induced landslides and debris flows pose a significant and widespread hazard, resulting in a large number of casualties and enormous economic damages worldwide. Rainfall thresholds are often used to identify the local or regional rainfall conditions that, when reached or exceeded, are likely to result in landslides or debris flows. Rain gauge data are the typical source of information for the definition of these rainfall thresholds. However, in-situ observations over mountainous areas, where these hazards mainly occur, are very sparse or inexistent. Therefore identification and use of gauge-based rainfall thresholds is impossible in many landslide prone areas over the globe. The vast advancements in satellite-based precipitation estimation over the last couple of decades have lead to the creation of a number of global precipitation datasets at various spatiotemporal resolutions. Although several investigations have shown that these datasets can be associated with considerable uncertainty, they provide the only source of precipitation information over many areas around the globe. Therefore it is important to assess their performance in the context of landslide/debris flow prediction and investigate how we can potentially benefit from the information they provide. In this work, we evaluate the performance of three widely used quasi-global satellite precipitation products (3B42v7, PERSIANN and CMORPH) for the identification of rainfall threshold for landslide/debris flow triggering. Products are available at 0.25deg/3h resolution. The study region is focused over the Upper Adige river basin, northern Italy where a detailed database of more than 400 identified debris flows (during period 2000-2015) and a raingauge network of 95 stations, is available. Rain-gauge based rainfall thresholds are compared against satellite-based thresholds to evaluate strengths and limitations in using satellite precipitation estimates for defining rainfall thresholds. Analysis of

  11. Comparative study of laser damage threshold energies in the artificial retina

    NASA Astrophysics Data System (ADS)

    Payne, Dale J.; Hopkins, Richard A.; Eilert, Brent; Noojin, Gary D.; Stolarski, David J.; Thomas, Robert J.; Cain, Clarence P.; Hengst, Gordon T.; Kennedy, Paul K.; Jost, Thomas R.; Rockwell, Benjamin A.

    1999-07-01

    Laser damage threshold energies produced from ultrashort (i.e., damage end point being the presence of a bubble imaged at the film plane. Pulse energy thresholds were determined for wavelengths of 1064, 580, and 532 nm with pulse durations ranging from the nanosecond (ns) to the femtosecond (fs) regime. For the at-focus data in the visible regime, the threshold dropped from 0.25 (mu) J for a 532 nm, 5 ns pulse to 0.11 (mu) J for a 580 nm, 100 fs pulse. The near-infrared (NIR) threshold changed from 5.5 (mu) J for a 5 ns pulse to 0.9 (mu) J for a 130 fs pulse at a distance two RR in front of the focus. The experiment was repeated using the same pulse widths and wavelengths, except the water path was removed to determine the impact of nonlinear self-focusing in water. A vertical microscope imaging system was employed in order to observe the threshold event. The NIR fluence threshold of 0.5 J/cm2 remained constant within an experimental uncertainty for all pulse widths, which corresponds to values in the literature. The visible data also demonstrated a nearly constant fluence of 0.07 J/cm2. The disparity in thresholds between the two techniques arises from nonlinear optical phenomena related to propagation differences in the ocular fluid.

  12. Predicting severe winter coastal storm damage

    NASA Astrophysics Data System (ADS)

    Hondula, David M.; Dolan, Robert

    2010-07-01

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'—such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989—are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the losses along the

  13. Prediction of hail damage to aircraft.

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J.

    1972-01-01

    Description of a hailstone impact simulator, a valuable laboratory apparatus which can be used for such hailstone research as the testing of prospective structural designs or generating data to compare with theory. The simulator consists of a launcher and a velocity-measuring system. It has been successfully used to obtain deformation data on flat sheets and spherical caps of various sizes impacted by hailstones at typical flight velocities. A computer program is described which adequately predicts the damage to a simple structure when impacted by a hailstone.

  14. Tornado risk analysis at Savannah River Plant using windspeed damage thresholds and single building strike frequencies

    SciTech Connect

    Taylor, D.H.; McDonald, J.R.; Twisdale, L.A.

    1985-01-01

    In order to evaluate the safety of existing structures and properly design new structures, an analysis of tornado resistance was conducted on each process building at SRP and other buildings by type. Damage estimates were cataloged for each Fujita class windspeed interval and windspeeds were cataloged as a function of increased levels of damage. The probability, for any structure, of a tornado exceeding each windspeed threshold was calculated using the TORRISK computer code which was developed for calculating the probability of a tornado strike on nuclear power generating plants.

  15. Higher certainty of the laser-induced damage threshold test with a redistributing data treatment

    SciTech Connect

    Jensen, Lars; Mrohs, Marius; Gyamfi, Mark; Mädebach, Heinrich; Ristau, Detlev

    2015-10-15

    As a consequence of its statistical nature, the measurement of the laser-induced damage threshold holds always risks to over- or underestimate the real threshold value. As one of the established measurement procedures, the results of S-on-1 (and 1-on-1) tests outlined in the corresponding ISO standard 21 254 depend on the amount of data points and their distribution over the fluence scale. With the limited space on a test sample as well as the requirements on test site separation and beam sizes, the amount of data from one test is restricted. This paper reports on a way to treat damage test data in order to reduce the statistical error and therefore measurement uncertainty. Three simple assumptions allow for the assignment of one data point to multiple data bins and therefore virtually increase the available data base.

  16. Higher certainty of the laser-induced damage threshold test with a redistributing data treatment

    NASA Astrophysics Data System (ADS)

    Jensen, Lars; Mrohs, Marius; Gyamfi, Mark; Mädebach, Heinrich; Ristau, Detlev

    2015-10-01

    As a consequence of its statistical nature, the measurement of the laser-induced damage threshold holds always risks to over- or underestimate the real threshold value. As one of the established measurement procedures, the results of S-on-1 (and 1-on-1) tests outlined in the corresponding ISO standard 21 254 depend on the amount of data points and their distribution over the fluence scale. With the limited space on a test sample as well as the requirements on test site separation and beam sizes, the amount of data from one test is restricted. This paper reports on a way to treat damage test data in order to reduce the statistical error and therefore measurement uncertainty. Three simple assumptions allow for the assignment of one data point to multiple data bins and therefore virtually increase the available data base.

  17. Low-loss and high damage-threshold mirror development for gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Tatsumi, Daisuke; Ueda, Akitoshi; Yoneda, Hitoki; Sato, Kazunari

    2014-11-01

    Low-loss and high damage threshold mirrors are needed for laser interferometer-type gravitational-wave detectors. Collaborative development with Japanese company of SIGMA KOKI CO., LTD., National astronomical observatory of Japan and Institute for Laser Science, University of Electro-Communications was made for this purpose. As a result, high reflectivity mirror of 99.99% for 1064nm has both low-scattering loss of less than 10ppm and high-damage threshold of over 400 J/cm2. Such mirrors can be applied for high finesse cavity of more than 10000 with high laser input power of over 10 Watts. The mirror will offer great benefit for various precise measurements with high power lasers.

  18. Investigations of the Cavitation and Damage Thresholds of Histotripsy and Applications in Targeted Tissue Ablation

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli

    Histotripsy is a noninvasive ultrasound therapy that controls acoustic cavitation to mechanically fractionate soft tissue. This dissertation investigates the physical thresholds to initiate cavitation and produce tissue damage in histotripsy and factors affecting these thresholds in order to develop novel strategies for targeted tissue ablation. In the first part of this dissertation, the effects of tissue properties on histotripsy cavitation thresholds and damage thresholds were investigated. Results demonstrated that the histotripsy shock scattering threshold using multi-cycle pulses increases in stiffer tissues, while the histotripsy intrinsic threshold using single-cycle pulses is independent of tissue stiffness. Further, the intrinsic threshold slightly decreases with lower frequencies and significantly decreases with increasing temperature. The effects of tissue properties on the susceptibility to histotripsy-induced tissue damage were also investigated, demonstrating that stiffer tissues are more resistant to histotripsy. Two strategies were investigated for increasing the effectiveness of histotripsy for the treatment of stiffer tissues, with results showing that thermal preconditioning may be used to alter tissue susceptibility to histotripsy and that lower frequency treatments may increase the efficiency of histotripsy tissue ablation due to enhanced bubble expansion. In the second part of this dissertation, the feasibility of using histotripsy for targeted liver ablation was investigated in an intact in vivo porcine model, with results demonstrating that histotripsy was capable of non-invasively creating precise lesions throughout the entire liver. Additionally, a tissue selective ablation approach was developed, where histotripsy completely fractionated the liver tissue surrounding the major hepatic vessels and gallbladder while being self-limited at the boundaries of these critical structures. Finally, the long-term effects of histotripsy liver

  19. Hydro-oleophobic silica antireflective films with high laser-damage threshold

    NASA Astrophysics Data System (ADS)

    Yan, Lianghong; Lv, Haibing; Wang, Chengcheng; Yuan, Xiaodong

    2011-02-01

    A simple method of preparing hydro-oleophobic anitreflective films with high laser-damage threshold is reported in this article. By adding fluoroalkylsilanes (FAS) into reactant mixture as a co-precursor, FAS modified SiO 2 was obtained under base catalyzed hydrolysis and condensation of tetraethoxysilane. The dip-coating films were deposited on two sides of fused silica substrates. The experimental results on the effect of adding fluoroalkylsilanes (FAS) as a co-precursor on the hydro-oleophobicity and optical properties of tetraethoxysilane (TEOS) based silica AR films, are reported. The hydro-oleophobicity of the films was tested by the contact angle measurements and the highest water contact angle of 136° and oil (peanut) contact angle of 93° were obtained. The surface chemical modification of the hydro-oleophobic films was confirmed using Fourier transform infrared spectroscopy (FTIR). For the films based on FAS and TEOS, additional absorption bands at 1100 cm -1 corresponding to C-F bond presented, clearly indicating the organic modification of the films. The highest optical transmittance of the hydro-oleophobic films was found to be 99.5%. By a Nd:YAG lasers the laser-damage threshold of as-deposited films was measured at 351 nm wavelength (1 ns). The laser-damage threshold was as high as 22.6 J/cm 2.

  20. Wavelength dependence of femtosecond laser-induced damage threshold of optical materials

    SciTech Connect

    Gallais, L. Douti, D.-B.; Commandré, M.; Batavičiūtė, G.; Pupka, E.; Ščiuka, M.; Smalakys, L.; Sirutkaitis, V.; Melninkaitis, A.

    2015-06-14

    An experimental and numerical study of the laser-induced damage of the surface of optical material in the femtosecond regime is presented. The objective of this work is to investigate the different processes involved as a function of the ratio of photon to bandgap energies and compare the results to models based on nonlinear ionization processes. Experimentally, the laser-induced damage threshold of optical materials has been studied in a range of wavelengths from 1030 nm (1.2 eV) to 310 nm (4 eV) with pulse durations of 100 fs with the use of an optical parametric amplifier system. Semi-conductors and dielectrics materials, in bulk or thin film forms, in a range of bandgap from 1 to 10 eV have been tested in order to investigate the scaling of the femtosecond laser damage threshold with the bandgap and photon energy. A model based on the Keldysh photo-ionization theory and the description of impact ionization by a multiple-rate-equation system is used to explain the dependence of laser-breakdown with the photon energy. The calculated damage fluence threshold is found to be consistent with experimental results. From these results, the relative importance of the ionization processes can be derived depending on material properties and irradiation conditions. Moreover, the observed damage morphologies can be described within the framework of the model by taking into account the dynamics of energy deposition with one dimensional propagation simulations in the excited material and thermodynamical considerations.

  1. Single-drop impact damage prediction for low density, coated ceramic materials. [rain erosion

    NASA Technical Reports Server (NTRS)

    Mustelier, D.

    1984-01-01

    A technique utilizing finite element analysis, liquid impact kinematics, and momentum theory is described and compared to single-drop impact test data performed on various configurations of coated ceramic material. The method correlates well with test data and is useful in predicting the single-drop impact damage velocity threshold for low-density, coated ceramic materials.

  2. Predictions of flood warning threshold exceedance computed with logistic regression

    NASA Astrophysics Data System (ADS)

    Diomede, Tommaso; Marsigli, Chiara; Stefania Tesini, Maria

    2017-04-01

    A method based on logistic regression is proposed for the prediction of river level threshold exceedance at different lead times (from +6h up to +42h). The aim of the study is to provide a valuable tool for the issue of warnings by the authority responsible of public safety in case of flood. The role of different precipitation periods as predictors for the exceedance of a fixed river level has been investigated, in order to derive significant information for flood forecasting. Based on catchment-averaged values, a separation of "antecedent" and "peak-triggering" rainfall amounts as independent variables is attempted. In particular, the following flood-related precipitation periods have been considered: (i) the period from 1 to n days before the forecast issue time, which may be relevant for the soil saturation ("state of the catchment"), (ii) the last 24 hours, which may be relevant for the current water level in the river ("state of the river"), and (iii) the period from 0 to x hours in advance with respect to the forecast issue time, when the flood-triggering precipitation generally occurs ("state of the atmosphere"). Several combinations and values of these predictors have been tested to optimise the method implementation. In particular, the period for the precursor antecedent precipitation ranges between 5 and 45 days; the current "state of the river" can be represented by the last 24-h precipitation or, as alternative, by the current river level. The flood-triggering precipitation has been cumulated over the next 18-42 hours, or the previous 6-12h, according to the forecast lead time. The proposed approach requires a specific implementation of logistic regression for each river section and warning threshold. The method performance has been evaluated over several catchments in the Emilia-Romagna Region, northern Italy, which dimensions range from 100 to 1000 km2. A statistical analysis in terms of false alarms, misses and related scores was carried out by using

  3. Improving UV laser damage threshold of fused silica optics by wet chemical etching technique

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Li, Yaguo; Yuan, Zhigang; Wang, Jian; Xu, Qiao; Yang, Wei

    2015-07-01

    Fused silica is widely used in high-power laser systems because of its good optical performance and mechanical properties. However, laser damage initiation and growth induced by 355 nm laser illumination in optical elements have become a bottleneck in the development of high energy laser system. In order to improve the laser-induced damage threshold (LIDT), the fused silica optics were treated by two types of HF-based etchants: 1.7%wt. HF acid and buffer oxide etchant (BOE: the mixture of 0.4%wt. HF and 12%wt. NH4F), respectively, for varied etching time. Damage testing shows that both the etchants increase the damage threshold at a certain depth of material removal, but further removal of material lowers the LIDT markedly. The etching rates of both etchants keep steady in our processing procedure, ~58 μg/min and ~85 μg/min, respectively. The micro-surface roughness (RMS and PV) increases as etching time extends. The hardness (H) and Young's modulus (E) of the fused silica etched for diverse time, measured by nano-indenter, show no solid evidence that LIDT can be related to hardness or Young's modulus.

  4. Noneffect of electronegative gases on pulsed laser-induced optical surface damage thresholds

    NASA Astrophysics Data System (ADS)

    Kardach, J. A.; Stewart, A. F.; Guenther, A. H.

    1984-11-01

    Laser-induced damage testing was conducted on a variety of optical surfaces using an Nd:YAG laser. The samples tested included conventional dielectric coatings of ZrO2, diamond-turned copper, bare surfaces of fused silica and ARG-2 glass, and porous surface layers of both leached ARG-2 glass and some solgel coatings. Measurements were made in vacuum and in nitrogen, Freon 14 (CF4), and SF6 at pressures up to 2 atm. It is found that the ambient gas has no observable effect on the surface damage threshold, in agreement with previous observations that damage sites are initiated on or just below the surface of optical elements.

  5. A Closer Look at the Thresholds of Thermal Damage: Workshop Report by an ICNIRP Task Group.

    PubMed

    Sienkiewicz, Zenon; van Rongen, Eric; Croft, Rodney; Ziegelberger, Gunde; Veyret, Bernard

    2016-09-01

    The International Commission on Non-Ionizing Radiation Protection issued guidelines in 1998 for limiting public and occupational exposure to radiofrequency electromagnetic fields (100 kHz to 300 GHz). As part of the process of updating this advice, a 2-d workshop titled "A closer look at the thresholds of thermal damage" was held from 26-28 May 2015 in Istanbul to re-examine the thermal basis of the guidelines and to provide further information on heat-related effects and thresholds of thermal damage. Overall, the workshop provided much useful information relevant to revision of the guidelines. Participants indicated that the effects of heating from radiofrequency fields are consistent with those from other sources, and that the information derived from those studies can be applied to radiofrequency-induced heating. Another conclusion was that absolute temperature of tissues was more important for thermal damage than temperature change. The discussion suggested that the 6-min averaging time used in international guidelines was valid for whole-body exposures but with a large uncertainty: 30 min may be a more appropriate averaging time for localized exposures, and less than 1 min for implanted medical devices. The duration of whole-body radiofrequency exposure is a critical parameter that often determines the effect threshold, but this will be affected by other, ongoing thermoregulation, which is dependant on many factors. The thresholds for localized radiofrequency exposure were difficult to determine because of the potential range of exposure conditions and the possibility of radiofrequency-induced local hotspots. Suggestions for future dose metrics and further research were discussed and are included in this report.

  6. Prediction and measurement of radiation damage to CMOS devices on board spacecraft

    NASA Technical Reports Server (NTRS)

    Cliff, R. A.; Danchenko, V.; Stassinopoulos, E. G.; Sing, M.; Brucker, G. J.; Ohanian, R. S.

    1976-01-01

    The initial results obtained from the Complementary Metal Oxide Semiconductors Radiation Effects Measurement experiment are presented. Predictions of radiation damage to C-MOS devices are based on standard environment models and computational techniques. A comparison of the shifts in CMOS threshold potentials, that is, those measured in space to those obtained from the on the ground simulation experiment with Co 60, indicated that the measured space damage is greater than predicted by a factor of two for shields thicker than 100 mils (2.54 mm), but agrees well with predictions for the thinner shields.

  7. Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits.

    PubMed

    Framme, Carsten; Schuele, Georg; Roider, Johann; Kracht, Dietmar; Birngruber, Reginald; Brinkmann, Ralf

    2002-01-01

    In both clinical and animal studies, it has been shown that repetitive short laser pulses can cause selective retinal pigment epithelium damage (RPE) with sparing of photoreceptors. Our purpose was to determine the ophthalmoscopic and angiographic damage thresholds as a function of pulse durations by using different pulsed laser systems to optimize treatment modalities. Chinchilla-breed rabbits were narcotized and placed in a special holding system. Laser lesions were applied using a commercial laser slit lamp, contact lens, and irradiation with a frequency-doubled Nd:YLF laser (wave-length: 527 nm; repetition rate: 500 Hz; number of pulses: 100; pulse duration: 5 micros, 1.7 micros, 200 ns) and an argon-ion laser (514 nm, 500 Hz, 100 pulses, 5 micros and 200 ms). In all eyes, spots with different energies were placed into the regio macularis with a diameter of 102 microm (tophat profile). After treatment, fundus photography and fluorescein angiography were performed and radiant exposure for ED50 damage determined. Speckle measurements at the fiber tips were performed to determine intensity peaks in the beam profile. Using the Nd:YLF laser system, the ophthalmoscopic ED50 threshold energies were 25.4 microJ (5 micros), 32 microJ (1.7 micros), and 30 microJ (200 ns). The angiographic ED50 thresholds were 13.4 microJ (5 micros), 9.2 microJ (1.7 micros), and 6.7 microJ (200 ns). With the argon laser, the angiographic threshold for 5 micros pulses was 5.5 microJ. The ophthalmoscopic threshold could not be determined because of a lack of power; however, it was > 12 microJ. For 200 ms, the ED50 radiant exposures were 20.4 mW ophthalmoscopically and 19.2 mW angiographically. Speckle factors were found to be 1.225 for the Nd:YLF and 3.180 for the argon laser. Thus, the maximal ED50 -threshold radiant exposures for the Nd:YLF were calculated to be 362 mJ/cM2 (5 micros), 478 mJ/cm2 (1.7 micros), and 438 mJ/cm2 (200 ns) ophthalmoscopically. Angiographically, the thresholds

  8. Clostridium difficile PCR Cycle Threshold Predicts Free Toxin.

    PubMed

    Senchyna, Fiona; Gaur, Rajiv L; Gombar, Saurabh; Truong, Cynthia Y; Schroeder, Lee F; Banaei, Niaz

    2017-09-01

    There is no stand-alone Clostridium difficile diagnostic that can sensitively and rapidly detect fecal free toxins. We investigated the performance of the C. difficile PCR cycle threshold (CT ) for predicting free toxin status. Consecutive stool samples (n = 312) positive for toxigenic C. difficile by the GeneXpert C. difficile/Epi tcdB PCR assay were tested with the rapid membrane C. Diff Quik Chek Complete immunoassay (RMEIA). RMEIA toxin-negative samples were tested with the cell cytotoxicity neutralization assay (CCNA) and tgcBIOMICS enzyme-linked immunosorbent assay (ELISA). Using RMEIA alone or in combination with CCNA and/or ELISA as the reference method, the accuracy of CT was measured at different CT cutoffs. Using RMEIA as the reference method, a CT cutoff of 26.35 detected toxin-positive samples with a sensitivity, specificity, positive predictive value, and negative predictive value of 96.0% (95% confidence interval [CI], 90.2% to 98.9%), 65.9% (95% CI, 59.0% to 72.2%), 57.4% (95% CI, 52.7% to 62%), and 97.1% (95% CI, 92.8% to 98.9), respectively. Inclusion of CCNA in the reference method improved CT specificity to 78.0% (95% CI, 70.7% to 84.2%). Intercartridge lot CT variability measured as the average coefficient of variation was 2.8% (95% CI, 1.2% to 3.2%). Standardizing the input stool volume did not improve CT toxin specificity. The median CT values were not significantly different between stool samples with Bristol scores of 5, 6, and 7, between pediatric and adult samples, or between presumptive 027 and non-027 strains. In addition to sensitively detecting toxigenic C. difficile in stool, on-demand PCR may also be used to accurately predict toxin-negative stool samples, thus providing additional results in PCR-positive stool samples to guide therapy. Copyright © 2017 American Society for Microbiology.

  9. Comparative study of laser damage threshold energies in the artificial retina.

    PubMed

    Payne, D J; Hopkins, R A; Eilert, B G; Noojin, G D; Stolarski, D J; Thomas, R J; Cain, C P; Hengst, G T; Kennedy, P K; Jost, T R; Rockwell, B A

    1999-07-01

    Laser damage threshold energies produced from ultrashort (i.e., ⩽1 ns) laser pulses are investigated as a function of both pulse width and spot size for an artificial retina. A piece of film acts as the absorbing layer and is positioned at the focus of a variant on the Cain artificial eye [C. Cain, G. D. Noojin, D. X. Hammer, R. J. Thomas, and B. A. Rockwell, "Artificial eye for in vitro experiments of laser light interaction with aqueous media," J. Biomed. Opt.2, 88-94 (1997)]. Experiments were performed at the focal point and at two and ten Rayleigh ranges (RR) in front of the focus with the damage end point being the presence of a bubble imaged at the film plane. Pulse energy thresholds were determined for wavelengths of 1064, 580, and 532 nm with pulse durations ranging from the nanosecond (ns) to the femtosecond (fs) regime. For the at-focus data in the visible regime, the threshold dropped from 0.25 μJ for a 532 nm, 5 ns pulse to 0.11 μJ for a 580 nm, 100 fs pulse. The near-infrared (NIR) threshold changed from 5.5 μJ for a 5 ns pulse to 0.9 μJ for a 130 fs pulse at a distance two RR in front of the focus. The experiment was repeated using the same pulse widths and wavelengths, except the water path was removed to determine the impact of nonlinear self-focusing in water. A vertical microscope imaging system was employed in order to observe the threshold event. The NIR fluence threshold of 0.5 J/cm2 remained constant within an experimental uncertainty for all pulse widths, which corresponds to values in the literature [C. P. Lin and M. W. Kelly, "Ultrafast time-resolved imaging of stress transient and cavitation from short pulsed laser irradiated melanin particles," SPIE Laser-Tissue Interactions VI, Proc. SPIE2391, 294-299 (1995)]. The visible data also demonstrated a nearly constant fluence of 0.07 J/cm2. The disparity in thresholds between the two techniques arises from nonlinear optical phenomena related to propagation differences in the ocular

  10. Femtosecond and nanosecond laser damage thresholds of doped and undoped triazenepolymer thin films

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Solis, J.; Urech, L.; Lippert, T.; Wokaun, A.

    2007-07-01

    The influence of pulse duration on the laser-induced damage in undoped or infrared-absorbing-dye doped thin triazenepolymer films on glass substrates has been investigated for single, near-infrared (800 nm) Ti:sapphire laser pulses with durations ranging from 130 fs up to 540 fs and complementarily for infrared (1064 nm) Nd:YAG ns-laser single-pulse irradiation. The triazenepolymer material has been developed for high resolution ablation with irradiation at 308 nm. Post-irradiation optical microscopy observations have been used to determine quantitatively the threshold fluence for permanent laser damage. In contrast to our previous studies on a triazenepolymer with different composition [J. Bonse, S.M. Wiggins, J. Solis, T. Lippert, Appl. Surf. Sci. 247 (2005) 440], a significant dependence of the damage threshold on the pulse duration is found in the sub-picosecond regime with values ranging from ˜500 mJ/cm 2 (130 fs) up to ˜1500 mJ/cm 2 (540 fs). Other parameters such as the film thickness (50 nm and 1.1 μm samples) or the doping level show no significant influence on the material behavior upon irradiation. The results for fs- and ns-laser pulse irradiation are compared and analyzed in terms of existent ablation models.

  11. Few-cycle pulse laser induced damage threshold determination of ultra-broadband optics.

    PubMed

    Kafka, Kyle R P; Talisa, Noah; Tempea, Gabriel; Austin, Drake R; Neacsu, Catalin; Chowdhury, Enam A

    2016-12-12

    A systematic study of few-cycle pulse laser induced damage threshold (LIDT) determination was performed for commercially-available ultra-broadband optics, (i.e. chirped mirrors, silver mirrors, beamsplitters, etc.) in vacuum and in air, for single and multi-pulse regime (S-on-1). Multi-pulse damage morphology at fluences below the single-pulse LIDT was studied in order to investigate the mechanisms leading to the onset of damage. Stark morphological contrast was observed between multi-pulse damage sites formed in air versus those in vacuum. One effect of vacuum testing compared to air included suppression of laser-induced periodic surface structures (LIPSS) formation, possibly influenced by a reduced presence of damage debris. Another effect of vacuum was occasional lowering of LIDT, which appears to be due to the stress-strain performance of the coating design during laser irradiation and under the external stress of vacuum ambience. A fused silica substrate is also examined, and a non-LIPSS nanostructuring is observed on the surface. Possible mechanisms are discussed.

  12. Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Koerber, Michael; Eberle, Bernd

    2017-03-01

    The continuous development of laser systems toward more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors, such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices. These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, micro-optoelectromechanical systems, such as a digital micromirror device (DMD), are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources, both pulsed lasers and continuous-wave (CW)-lasers are used. The laser-induced damage threshold is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructive device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects, such as persistent dead columns or rows of pixels in the sensor image.

  13. Laser-induced damage threshold of camera sensors and micro-opto-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Körber, Michael; Eberle, Bernd

    2016-10-01

    The continuous development of laser systems towards more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices (CCD). These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, also micro-opto-electro-mechanical systems (MOEMS) like a digital micromirror device (DMD) are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources both pulsed lasers and continuous-wave (CW) lasers are used. The laser-induced damage threshold (LIDT) is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructed device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects like persisting dead columns or rows of pixels in the sensor image.

  14. Quantification of a thermal damage threshold for astrocytes using infrared laser generated heat gradients.

    PubMed

    Liljemalm, Rickard; Nyberg, Tobias

    2014-04-01

    The response of cells and tissues to elevated temperatures is highly important in several research areas, especially in the area of infrared neural stimulation. So far, only the heat response of neurons has been considered. In this study, primary rat astrocytes were exposed to infrared laser pulses of various pulse lengths and the resulting cell morphology changes and cell migration was studied using light microscopy. By using a finite element model of the experimental setup the temperature distribution was simulated and the temperatures and times to induce morphological changes and migration were extracted. These threshold temperatures were used in the commonly used first-order reaction model according to Arrhenius to extract the kinetic parameters, i.e., the activation energy, E a, and the frequency factor, A c, for the system. A damage signal ratio threshold was defined and calculated to be 6% for the astrocytes to change morphology and start migrating.

  15. A Closer Look at the Thresholds of Thermal Damage: Workshop Report by an ICNIRP Task Group

    PubMed Central

    Sienkiewicz, Zenon; van Rongen, Eric; Croft, Rodney; Ziegelberger, Gunde; Veyret, Bernard

    2016-01-01

    Abstract The International Commission on Non-Ionizing Radiation Protection issued guidelines in 1998 for limiting public and occupational exposure to radiofrequency electromagnetic fields (100 kHz to 300 GHz). As part of the process of updating this advice, a 2‐d workshop titled “A closer look at the thresholds of thermal damage” was held from 26–28 May 2015 in Istanbul to re-examine the thermal basis of the guidelines and to provide further information on heat-related effects and thresholds of thermal damage. Overall, the workshop provided much useful information relevant to revision of the guidelines. Participants indicated that the effects of heating from radiofrequency fields are consistent with those from other sources, and that the information derived from those studies can be applied to radiofrequency-induced heating. Another conclusion was that absolute temperature of tissues was more important for thermal damage than temperature change. The discussion suggested that the 6‐min averaging time used in international guidelines was valid for whole-body exposures but with a large uncertainty: 30 min may be a more appropriate averaging time for localized exposures, and less than 1 min for implanted medical devices. The duration of whole-body radiofrequency exposure is a critical parameter that often determines the effect threshold, but this will be affected by other, ongoing thermoregulation, which is dependant on many factors. The thresholds for localized radiofrequency exposure were difficult to determine because of the potential range of exposure conditions and the possibility of radiofrequency-induced local hotspots. Suggestions for future dose metrics and further research were discussed and are included in this report. PMID:27472755

  16. Development of high damage threshold multilayer thin film beam combiner for laser application

    NASA Astrophysics Data System (ADS)

    Nand, Mangla; Babita, Jena, S.; Tokas, R. B.; Rajput, P.; Mukharjee, C.; Thakur, S.; Jha, S. N.; Sahoo, N. K.

    2016-05-01

    A polarized wavelength multiplexer with high laser induced damage threshold has been developed to combine two laser beam of high peak power in the visible region. The present wavelength multiplexer is a multilayer thin film device deposited by reactive electron beam evaporation. The developed device is capable of combining two p-polarized laser beams of peak power density of 1.7 GW/cm2 at an angle of incidence of 45°. High transmission (T> 90%) in high pass region and high reflection (R> 99%) in stop band region have been achieved.

  17. Review of ultraviolet damage threshold measurements at Lawrence Livermore National Laboratory

    SciTech Connect

    Lowdermilk, W.H.; Milam, D.

    1984-01-01

    The results of damage threshold measurements made at LLNL using ultraviolet wavelength laser pulses are reviewed. Measurements were made with pulses from a krypton fluoride laser with wavelength of 248 nm and pulse duration of 20 ns and with Nd-glass laser pulses converted to the third harmonic wavelength of 355 nm with duration of 0.6 ns. Measurements are presented for transparent window materials, crystals and harmonic generation, single layer dielectric films of oxide and fluoride materials and multilayer high reflectivity and antireflective coatings.

  18. Development of an efficient large-aperture high damage-threshold sol-gel diffraction grating.

    SciTech Connect

    Ashley, Carol S.; Rambo, Patrick K.; Schwarz, Jens; Dunphy, Darren Robert; Branson, Eric D.; Smith, Ian Craig; Johnson, William Arthur; Reed, Scott T.; Cook, Adam W.

    2005-03-01

    In order to develop the next generation of high peak intensity lasers, new grating technology providing higher damage thresholds and large apertures is required. The current assumption is that this technical innovation will be multilayer dielectric gratings, wherein the uppermost layer of a thin film mirror is etched to create the desired binary phase grating. A variant of this is explored with the upper grating layer being a lower density gelatin-based volume phase grating in either sol-gel or dichromated gelatin. One key benefit is the elimination of the etching step.

  19. Solubility, thermal, photoconductivity and laser damage threshold studies on L-serine acetate (LSA) single crystal

    NASA Astrophysics Data System (ADS)

    Rajesh, K.; Thayanithi, V.; Mani, A.; Amudha, M.; Kumar, P. Praveen

    2015-06-01

    L-serine acetate crystal was grown by slow evaporation technique. Solubility of L-Serine Acetate was determined at different temperatures. L-Serine Acetate was characterized by SEM is to identify the morphology of the crystal. TG and DTA study reveals the thermal stability of the grown crystal. Dielectric measurement was carried out for different temperature ranges. Photo conductivity study revealed the nature of conductivity of the crystal under halogen light. Laser damage threshold of the crystal was measured using Nd:YAG laser source. NLO property of the crystal is confirmed by Kurtz-Perry powder technique.

  20. Development of high damage threshold multilayer thin film beam combiner for laser application

    SciTech Connect

    Nand, Mangla Babita,; Jena, S.; Tokas, R. B.; Rajput, P.; Thakur, S.; Jha, S. N.; Sahoo, N. K.; Mukharjee, C.

    2016-05-23

    A polarized wavelength multiplexer with high laser induced damage threshold has been developed to combine two laser beam of high peak power in the visible region. The present wavelength multiplexer is a multilayer thin film device deposited by reactive electron beam evaporation. The developed device is capable of combining two p-polarized laser beams of peak power density of 1.7 GW/cm{sup 2} at an angle of incidence of 45°. High transmission (T> 90%) in high pass region and high reflection (R> 99%) in stop band region have been achieved.

  1. Crystalline perfection, birefringence and laser damage threshold properties of piperidinium p-hydroxybenzoate

    SciTech Connect

    Sudhahar, S.; Zahid, I. MD; Kumar, M. Krishna; Kumar, R. Mohan

    2015-06-24

    Piperidinium p-hydroxybenzoate (PPHB) crystal was grown by slow evaporation method. Single crystal X-ray diffraction studies confirm that PPHB crystallizes in monoclinic crystal system with noncentrosymmetric space group Cc. The crystalline perfection of the grown crystal was evaluated by using high resolution X-ray diffractometry. UV-Visible transmission and birefringence studies were employed on the grown PPHB crystal. The laser induced damage threshold value was estimated using Nd:YAG laser. Thermal behavior of PPHB crystal has been investigated by TG-DTA analyses. Etching studies have been performed to assess the growth pattern of PPHB crystal.

  2. Effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals

    SciTech Connect

    Swain, J.E.; Stokowski, S.E.; Milam, D.; Kennedy, G.C.

    1982-07-01

    We increased the bulk laser damage threshold of potassium dihydrogen phosphate crystals by as much as a factor of 5 by first baking the crystals at 140 /sup 0/C for 24 h and then irradiating them with laser pulses of increasing fluence. The combination of baking and subthreshold laser irradiation was more effective in improving bulk damage thresholds than either process alone. The combined process was effective for all laser pulse durations from 1 to 20 ns.

  3. A continuous damage random thresholds model for simulating the fracture behavior of nacre.

    PubMed

    Nukala, Phani K V V; Simunovic, Srdan

    2005-10-01

    This study investigates the fracture properties of nacre using a discrete lattice model based on continuous damage random threshold fuse network. The discrete lattice topology of the model is based on nacre's unique brick and mortar microarchitecture. The mechanical behavior of each of the bonds in the discrete lattice model is governed by the characteristic modular damage evolution of the organic matrix and the mineral bridges between the aragonite platelets. The numerical results obtained using this simple discrete lattice model are in very good agreement with the previously obtained experimental results, such as nacre's stiffness, tensile strength, and work of fracture. The analysis indicates that nacre's superior toughness is a direct consequence of ductility (maximum shear strain) of the organic matrix in terms of repeated unfolding of protein molecules, and its fracture strength is a result of its ordered brick and mortar architecture with significant overlap of the platelets, and shear strength of the organic matrix.

  4. Glucuronic acid γ-lactone: an organic nonlinear optical crystal with high laser-induced damage threshold

    NASA Astrophysics Data System (ADS)

    Saripalli, Ravi Kiran; Bhat, Handady L.; Elizabeth, Suja

    2017-01-01

    Laser applications of nonlinear optical (NLO) crystals are limited by their laser damage threshold. We report a detailed study of the laser damage threshold of an NLO crystal glucuronic acid γ-lactone. Second-harmonic generation efficiency of glucuronic acid γ-lactone was estimated to be 3.5 times that of standard potassium dihydrogen phosphate. Conic sections due to spontaneous noncollinear phase matching were observed. Surface laser damage studies carried out for 1064-nm radiation on a (010) plate of the crystal yielded high-threshold values of 77.72±0.27 and 32.72±0.41 GW/cm2 for single- and multiple-shot damages, respectively. The possible mechanisms for the laser-induced damage are discussed.

  5. Neodymium: YAG laser damage threshold. A comparison of injection-molded and lathe-cut polymethylmethacrylate intraocular lenses.

    PubMed

    Wilson, S E; Brubaker, R F

    1987-01-01

    The possibility that injection-molded intraocular lenses (IOLs) with imperfections called iridescent clefts could have a decreased threshold to neodymium: YAG (Nd:YAG) laser-induced damage was investigated. Thresholds for Nd:YAG laser-induced damage were determined for injection-molded and lathe-cut polymethylmethacrylate lenses. When aimed at a membrane in contact with a posterior convex surface, the average thresholds were 0.96 +/- 0.18 mJ (Standard deviation [SD]) and 1.80 +/- 0.55 mJ, respectively. The difference was significant at P = 0.001. When injection-molding polymethylmethacrylate was used to make lathe-cut IOLs, very few iridescent clefts were present, and the threshold to Nd:YAG laser-induced damage was 0.94 +/- 0.25 mJ. Iridescent clefts are therefore produced during the injection-molding process but they do not lower the threshold to Nd:YAG laser-induced damage. Rather, the reduced threshold in injection-molded lenses is most probably a result of the polymethylmethacrylate used in their manufacture. Clinically, iridescent clefts in a lens suggest that it has been manufactured by an injection-molding process and that Nd:YAG laser posterior capsulotomy must be performed at the lowest possible energy level to avoid damage.

  6. Acute damage threshold for infrared neural stimulation of the cochlea: functional and histological evaluation.

    PubMed

    Goyal, Vinay; Rajguru, Suhrud; Matic, Agnella I; Stock, Stuart R; Richter, Claus-Peter

    2012-11-01

    This article provides a mini review of the current state of infrared neural stimulation (INS), and new experimental results concerning INS damage thresholds. INS promises to be an attractive alternative for neural interfaces. With this method, one can attain spatially selective neural stimulation that is not possible with electrical stimulation. INS is based on the delivery of short laser pulses that result in a transient temperature increase in the tissue and depolarize the neurons. At a high stimulation rate and/or high pulse energy, the method bears the risk of thermal damage to the tissue from the instantaneous temperature increase or from potential accumulation of thermal energy. With the present study, we determined the injury thresholds in guinea pig cochleae for acute INS using functional measurements (compound action potentials) and histological evaluation. The selected laser parameters for INS were the wavelength (λ = 1,869 nm), the pulse duration (100 μs), the pulse repetition rate (250 Hz), and the radiant energy (0-127 μJ/pulse). For up to 5 hr of continuous irradiation at 250 Hz and at radiant energies up to 25 μJ/pulse, we did not observe any functional or histological damage in the cochlea. Functional loss was observed for energies above 25 μJ/pulse and the probability of injury to the target tissue resulting in functional loss increased with increasing radiant energy. Corresponding cochlear histology from control animals and animals exposed to 98 or 127 μJ/pulse at 250 Hz pulse repetition rate did not show a loss of spiral ganglion cells, hair cells, or other soft tissue structures of the organ of Corti. Light microscopy did not reveal any structural changes in the soft tissue either. Additionally, microcomputed tomography was used to visualize the placement of the optical fiber within the cochlea. Copyright © 2012 Wiley Periodicals, Inc.

  7. Histotripsy homogenization of the prostate: thresholds for cavitation damage of periprostatic structures.

    PubMed

    Styn, Nicholas; Hall, Timothy L; Fowlkes, J Brian; Cain, Charles A; Roberts, William W

    2011-09-01

    Histotripsy is a noninvasive, pulsed ultrasound technology that produces mechanically homogenized tissue within targeted volumes. Previous work has demonstrated prostatic tissue debulking in a canine model. The aim was to establish safety thresholds by evaluating histologic changes of urinary sphincter, neurovascular bundle (NVB), and rectum after targeted histotripsy treatment of these critical structures. Rectum, urinary sphincter, and NVB in five anesthetized canines were targeted for histotripsy treatment (50 total points). Locations received 1k, 10k, or 100k acoustic pulses (4 microsecond, 1 MHz) at a repetition frequency of 500 Hz. Canine subjects were euthanized immediately (2), survived 3 days (1), or 2 weeks (3) after treatment. Prostates, periprostatic tissue, and rectum were harvested and processed for histology. The sphincter was structurally intact with minimal muscle fiber disruption even after 100k pulses (n=10). Undamaged nerves, arteries, and veins of the NVB were seen despite mechanical homogenization of surrounding loose connective tissue (n=19). The rectum, however, exhibited dose-dependent damage (n=20). 1k pulses yielded mild submucosal hemorrhage. 10k pulses resulted in moderate collagen disruption and focal mucosal homogenization. 100k pulses produced damage to the mucosa and muscularis propria with extensive hemorrhage and collagen disruption. One canine treated with 100k pulses needed early euthanasia (day 3) because of complications from a urine leak. Histotripsy histologic tissue effect varied based on targeted structure with substantial structural preservation of NVB and sphincter. Rectal subclinical damage was apparent after 1k pulses and increased in extent and severity with escalating doses. Future work will include assessment of functional outcomes and refinement of these initial safety thresholds.

  8. Damage thresholds for cultured retinal pigment epithelial cells exposed to lasers at 532 nm and 458 nm.

    PubMed

    Denton, Michael L; Foltz, Michael S; Schuster, Kurt J; Estlack, Larry E; Thomas, Robert J

    2007-01-01

    The determination of safe exposure levels for lasers has come from damage assessment experiments in live animals, which typically involve correlating visually identifiable damage with laser dosimetry. Studying basic mechanisms of laser damage in animal retinal systems often requires tissue sampling (animal sacrifice), making justification and animal availability problematic. We determined laser damage thresholds in cultured monolayers of a human retinal pigment epithelial (RPE) cell line. By varying exposure duration and laser wavelength, we identified conditions leading to damage by presumed photochemical or thermal mechanisms. A comparison with literature values for ocular damage thresholds validates the in vitro model. The in vitro system described will facilitate molecular and cellular approaches for understanding laser-tissue interaction.

  9. Odor threshold prediction by means of the Monte Carlo method.

    PubMed

    Toropov, Andrey A; Toropova, Alla P; Cappellini, Luigi; Benfenati, Emilio; Davoli, Enrico

    2016-11-01

    A large set of organic compounds (n=906) has been used as a basis to build up a model for the odor threshold (mg/m(3)). The statistical characteristics of the best model are the following: n=523, r(2)=0.647, RMSE=1.18 (training set); n=191, r(2)=0.610, RMSE=1.03, (calibration set); and n=192, r(2)=0.686, RMSE=1.06 (validation set). A mechanistic interpretation of the model is presented as the lists of statistical promoters of the increase and decrease in the odor threshold. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Analysis on the damage threshold of MgO:LiNbO3 crystals under multiple femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Su, Zhuolin; Meng, Qinglong; Zhang, Bin

    2016-10-01

    An improved theoretical model of the interaction between multiple femtosecond laser pulses and MgO:LiNbO3 crystals with different doping concentrations has been established based on the classical two-temperature model. The evolutions of electron and lattice temperature with the duration, the repetition frequency and the numbers of multiple femtosecond laser pulses in MgO:LiNbO3 crystals have been simulated numerically by the Crank-Nicholson implicit finite-difference method. Furthermore, the variations of the damage threshold of MgO:LiNbO3 crystals with the parameters of multiple femtosecond laser pulses at different doping concentrations, as well as the influence of doping concentration on damage threshold have also been analyzed. The results show that, the damage threshold of MgO:LiNbO3 crystals increases with the increasing of the duration of the femtosecond laser pulse. The damage threshold of MgO:LiNbO3 crystals first decreases with the increasing of the numbers and the pulse repetition frequency of the laser pulses and then tends to be a constant. The damage threshold of a small amount of MgO-doped LiNbO3 crystals is higher than that of undoped LiNbO3 crystals. Consequently, the resist damage capability of LiNbO3 crystals can be enhanced by doping appropriate MgO in many practical applications.

  11. Predictions of cell damage rates for Lifesat missions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Atwell, William; Hardy, Alva C.; Golightly, Michael J.; Wilson, John W.; Townsend, Lawrence W.; Shinn, Judy; Nealy, John E.; Katz, Robert

    1990-01-01

    The track model of Katz is used to make predictions of cell damage rates for possible Lifesat experiments. Contributions from trapped protons and electrons and galactic cosmic rays are considered for several orbits. Damage rates for survival and transformation of C3HT10-1/2 cells are predicted for various spacecraft shields.

  12. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources.

    PubMed

    Loch, R A; Sobierajski, R; Louis, E; Bosgra, J; Bijkerk, F

    2012-12-17

    The single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly used multilayer optics and propose new material combinations selected for a high damage threshold. Our study demonstrates that the damage thresholds of multilayer optics can vary over a large range of incidence fluences and can be as high as several hundreds of mJ/cm(2). This strongly suggests that multilayer mirrors are serious candidates for damage resistant optics. Especially, multilayer optics based on Li(2)O spacers are very promising for use in current and future short-wavelength radiation sources.

  13. A historical perspective on fifteen years of laser damage thresholds at LLNL

    SciTech Connect

    Rainer, F.; De Marco, F.P.; Staggs, M.C.; Kozlowski, M.R.; Atherton, L.J.; Sheehan, L.M.

    1993-12-21

    We have completed a fifteen year, referenced and documented compilation of more than 15,000 measurements of laser-induced damage thresholds (LIDT) conducted at the Lawrence Livermore National Laboratory (LLNL). These measurements cover the spectrum from 248 to 1064 nm with pulse durations ranging from < 1 ns to 65 ns and at pulse-repetition frequencies (PRF) from single shots to 6.3 kHz. We emphasize the changes in LIDTs during the past two years since we last summarized our database. We relate these results to earlier data concentrating on improvements in processing methods, materials, and conditioning techniques. In particular, we highlight the current status of anti-reflective (AR) coatings, high reflectors (HR), polarizers, and frequency-conversion crystals used primarily at 355 nm and 1064 nm.

  14. Optimization design and laser damage threshold analysis of pulse compression multilayer dielectric gratings

    NASA Astrophysics Data System (ADS)

    Fan, Shuwei; Bai, Liang; Chen, Nana

    2016-08-01

    As one of the key elements of high-power laser systems, the pulse compression multilayer dielectric grating is required for broader band, higher diffraction efficiency and higher damage threshold. In this paper, the multilayer dielectric film and the multilayer dielectric gratings(MDG) were designed by eigen matrix and optimized with the help of generic algorithm and rigorous coupled wave method. The reflectivity was close to 100% and the bandwith were over 250nm, twice compared to the unoptimized film structure. The simulation software of standing wave field distribution within MDG was developed and the electric field of the MDG was calculated. And the key parameters which affected the electric field distribution were also studied.

  15. Nonlinear optical and laser damage threshold studies of an ammonium p-toluenesulfonate crystal

    NASA Astrophysics Data System (ADS)

    Peramaiyan, G.; Mohan Kumar, R.

    2015-05-01

    An organic nonlinear optical (NLO) crystal of ammonium p-toluenesulfonate (AMPTS) was grown by a slow evaporation solution growth technique. A single crystal X-ray diffraction study revealed that the AMPTS crystal belongs to orthorhombic system with the space group of Pna21. From the UV-Vis-NIR spectral study, refractive index and extinction coefficient were determined. The nonlinear refractive index, nonlinear absorption coefficient and third-order NLO susceptibility were calculated to be -5.2872 × 10-8 cm2/W, 7.035 × 10-3 cm/W and 3.44 × 10-6 esu, respectively, by Z-scan studies. The laser damage threshold of AMPTS crystal was found to be 4.08, 4.0 and 3.95 GW/cm2 for (10-1), (-110) and (001) planes, respectively, using a Nd:YAG laser source. Etching study revealed the surface quality of AMPTS crystal.

  16. Improving the laser-induced damage threshold of 532-nm antireflection coating using plasma ion cleaning

    NASA Astrophysics Data System (ADS)

    Zhu, Meiping; Xing, Huanbin; Chai, Yingjie; Yi, Kui; Sun, Jian; Wang, Jianguo; Shao, Jianda

    2017-01-01

    BK7 glass substrates were precleaned by different cleaning procedures before being loaded into a vacuum chamber, and then a series of plasma ion cleaning procedures were conducted at different bias voltages in the vacuum chamber, prior to the deposition of 532-nm antireflection (AR) coatings. The plasma ion cleaning process was implemented by the plasma ion bombardment from an advanced plasma source. The surface morphology of the plasma ion-cleaned substrate, as well as the laser-induced damage threshold (LIDT) of the 532-nm AR coating was investigated. The results indicated that the LIDT of 532-nm AR coating can be greatly influenced by the plasma ion cleaning energy. The plasma ion cleaning with lower energy is an attractive method to improve the LIDT of the 532-nm AR coating, due to the removal of the adsorbed contaminations on the substrate surface, as well as the removal of part of the chemical impurities hidden in the surface layer.

  17. Cavitation damage prediction for the JSNS mercury target vessel

    NASA Astrophysics Data System (ADS)

    Naoe, Takashi; Kogawa, Hiroyuki; Wakui, Takashi; Haga, Katsuhiro; Teshigawara, Makoto; Kinoshita, Hidetaka; Takada, Hiroshi; Futakawa, Masatoshi

    2016-01-01

    The liquid mercury target system for the Japan Spallation Neutron Source (JSNS) at the Materials and Life science experimental Facility (MLF) in the Japan Proton Accelerator Research Complex (J-PARC) is designed to produce pulsed neutrons. The mercury target vessel in this system, which is made of type 316L stainless steel, is damaged by pressure wave-induced cavitation due to proton beam bombardment. Currently, cavitation damage is considered to be the dominant factor influencing the service life of the target vessel rather than radiation damage. In this study, cavitation damage to the interior surface of the target vessel was predicted on the basis of accumulated damage data from off-beam and on-beam experiments. The predicted damage was compared with the damage observed in a used target vessel. Furthermore, the effect of injecting gas microbubbles on cavitation damage was predicted through the measurement of the acoustic vibration of the target vessel. It was shown that the predicted depth of cavitation damage is reasonably coincident with the observed results. Moreover, it was confirmed that the injection of gas microbubbles had an effect on cavitation damage.

  18. Threshold Region Performance Prediction for Adaptive Matched Field Processing Localization

    DTIC Science & Technology

    2007-11-02

    significant non-local estimation errors at low signal-to-noise ratios ( SNRs )-errors not modeled by traditional localization measures such as the Cramer...as a function of SNR , for apertures and environments of interest. Particular attention will be given to the "threshold SNR " (below which localization...performance degrades rapidly due to global estimation errors) and to the minimum SNR required to achieve acceptable range/depth localization. Initial

  19. Prediction of chronic damage in systemic lupus erythematosus by using machine-learning models.

    PubMed

    Ceccarelli, Fulvia; Sciandrone, Marco; Perricone, Carlo; Galvan, Giulio; Morelli, Francesco; Vicente, Luis Nunes; Leccese, Ilaria; Massaro, Laura; Cipriano, Enrica; Spinelli, Francesca Romana; Alessandri, Cristiano; Valesini, Guido; Conti, Fabrizio

    2017-01-01

    The increased survival in Systemic Lupus Erythematosus (SLE) patients implies the development of chronic damage, occurring in up to 50% of cases. Its prevention is a major goal in the SLE management. We aimed at predicting chronic damage in a large monocentric SLE cohort by using neural networks. We enrolled 413 SLE patients (M/F 30/383; mean age ± SD 46.3±11.9 years; mean disease duration ± SD 174.6 ± 112.1 months). Chronic damage was assessed by the SLICC/ACR Damage Index (SDI). We applied Recurrent Neural Networks (RNNs) as a machine-learning model to predict the risk of chronic damage. The clinical data sequences registered for each patient during the follow-up were used for building and testing the RNNs. At the first visit in the Lupus Clinic, 35.8% of patients had an SDI≥1. For the RNN model, two groups of patients were analyzed: patients with SDI = 0 at the baseline, developing damage during the follow-up (N = 38), and patients without damage (SDI = 0). We created a mathematical model with an AUC value of 0.77, able to predict damage development. A threshold value of 0.35 (sensitivity 0.74, specificity 0.76) seemed able to identify patients at risk to develop damage. We applied RNNs to identify a prediction model for SLE chronic damage. The use of the longitudinal data from the Sapienza Lupus Cohort, including laboratory and clinical items, resulted able to construct a mathematical model, potentially identifying patients at risk to develop damage.

  20. Prediction of chronic damage in systemic lupus erythematosus by using machine-learning models

    PubMed Central

    Perricone, Carlo; Galvan, Giulio; Morelli, Francesco; Vicente, Luis Nunes; Leccese, Ilaria; Massaro, Laura; Cipriano, Enrica; Spinelli, Francesca Romana; Alessandri, Cristiano; Valesini, Guido; Conti, Fabrizio

    2017-01-01

    Objective The increased survival in Systemic Lupus Erythematosus (SLE) patients implies the development of chronic damage, occurring in up to 50% of cases. Its prevention is a major goal in the SLE management. We aimed at predicting chronic damage in a large monocentric SLE cohort by using neural networks. Methods We enrolled 413 SLE patients (M/F 30/383; mean age ± SD 46.3±11.9 years; mean disease duration ± SD 174.6 ± 112.1 months). Chronic damage was assessed by the SLICC/ACR Damage Index (SDI). We applied Recurrent Neural Networks (RNNs) as a machine-learning model to predict the risk of chronic damage. The clinical data sequences registered for each patient during the follow-up were used for building and testing the RNNs. Results At the first visit in the Lupus Clinic, 35.8% of patients had an SDI≥1. For the RNN model, two groups of patients were analyzed: patients with SDI = 0 at the baseline, developing damage during the follow-up (N = 38), and patients without damage (SDI = 0). We created a mathematical model with an AUC value of 0.77, able to predict damage development. A threshold value of 0.35 (sensitivity 0.74, specificity 0.76) seemed able to identify patients at risk to develop damage. Conclusion We applied RNNs to identify a prediction model for SLE chronic damage. The use of the longitudinal data from the Sapienza Lupus Cohort, including laboratory and clinical items, resulted able to construct a mathematical model, potentially identifying patients at risk to develop damage. PMID:28329014

  1. Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature

    SciTech Connect

    Shen, N.; Matthews, M. J.; Elhadj, S.; Miller, P. E.; Nelson, A. J.; Hamilton, J.

    2013-04-03

    Here, chemical vapor deposition (CVD) is used for the production of fused silica optics in high-power laser applications. However, relatively little is known about the ultraviolet laser damage threshold of CVD films and how they relate to intrinsic defects produced during deposition. We present here a study relating structural and electronic defects in CVD films to 355 nm pulsed-laser damage threshold as a function of post-deposition annealing temperature (THT). Plasma-enhanced CVD based on SiH4/N2O under oxygen-rich conditions was used to deposit 1.5, 3.1 and 6.4 µm thick films on etched SiO2 substrates. Rapid annealing was performed using a scanned CO2 laser beam up to THT ~ 2100 K. The films were then characterized using x-ray photoemission spectroscopy, Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy. A gradual transition in the damage threshold of annealed films was observed for THT values up to 1600 K, correlating with a decrease in non-bridging silanol and oxygen deficient centres. An additional sharp transition in damage threshold also occurs at ~1850 K indicating substrate annealing. Based on our results, a mechanism for damage-related defect annealing is proposed, and the potential of using high-THT CVD SiO2 to mitigate optical damage is also discussed.

  2. No threshold for the induction of chromosomal damage at clinically relevant low doses of X rays.

    PubMed

    Boei, Jan J W A; Vermeulen, Sylvia; Skubakova, Martina M; Meijers, Matty; Loenen, Wil A M; Wolterbeek, Ron; Mullenders, Leon H F; Vrieling, Harry; Giphart-Gassler, Micheline

    2012-05-01

    The recent steep increase in population dose from radiation-based medical diagnostics, such as computed tomography (CT) scans, requires insight into human health risks, especially in terms of cancer development. Since the induction of genetic damage is considered a prominent cause underlying the carcinogenic potential of ionizing radiation, we quantified the induction of micronuclei and loss of heterozygosity events in human cells after exposure to clinically relevant low doses of X rays. A linear dose-response relationship for induction of micronuclei was observed in human fibroblasts with significantly increased frequencies at doses as low as 20 mGy. Strikingly, cells exposed during S-phase displayed the highest induction, whereas non S-phase cells showed no significant induction below 100 mGy. Similarly, the induction of loss of heterozygosity in human lymphoblastoid cells quantified at HLA loci, was linear with dose and reached significance at 50 mGy. Together the findings favor a linear-no-threshold model for genetic damage induced by acute exposure to ionizing radiation. We speculate that the higher radiosensitivity of S-phase cells might relate to the excessive cancer risk observed in highly proliferative tissues in radiation exposed organisms.

  3. Femtosecond laser-induced damage threshold of electron beam deposited dielectrics for 1-m class optics

    NASA Astrophysics Data System (ADS)

    Hervy, Adrien; Gallais, Laurent; Chériaux, Gilles; Mouricaud, Daniel

    2017-01-01

    In order to transport multi-petawatt (PW) femtosecond laser beams with large spectral bandwidth, specific mirrors have to be designed and manufactured. We report on an experimental study of the laser-damage resistance and other optical properties of coating materials deposited in a 1-m class coating chamber. The study is conducted on single-layer coatings deposited by electron beam evaporation at 500 fs. Based on the experience of large optics for nanosecond applications, hafnia and silica are particularly investigated. However, in the case of sub-15 fs, the spectral specifications for PW beam transport mirrors cannot be reached by classical high laser-resistant quarter-wave SiO2/HfO2 stacks. Therefore, we investigate the laser resistance of different dielectrics of interest deposited with electron-beam processes: Al2O3, Y2O3, Sc2O3, HfO2, Ta2O5, TiO2. The influence of multiple pulse irradiations and environmental conditions, such as vacuum and temperature, is studied. With the investigation of multilayer stacks, we also show that there is no difference in behavior when a film is studied as a single layer or embedded in a stack. Based on these results, we were able to optimize high reflective (>99.5%), broadband (300 nm) and high laser-induced damage threshold (2.5 J/cm2) mirrors for PW applications.

  4. Motor threshold predicts working memory performance in healthy humans.

    PubMed

    Schicktanz, Nathalie; Schwegler, Kyrill; Fastenrath, Matthias; Spalek, Klara; Milnik, Annette; Papassotiropoulos, Andreas; Nyffeler, Thomas; de Quervain, Dominique J-F

    2014-01-01

    Cognitive functions, such as working memory, depend on neuronal excitability in a distributed network of cortical regions. It is not known, however, if interindividual differences in cortical excitability are related to differences in working memory performance. In the present transcranial magnetic stimulation study, which included 188 healthy young subjects, we show that participants with lower resting motor threshold, which is related to higher corticospinal excitability, had increased 2-back working memory performance. The findings may help to better understand the link between cortical excitability and cognitive functions and may also have important clinical implications with regard to conditions of altered cortical excitability.

  5. Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis

    PubMed Central

    Macurek, Libor; Benada, Jan; Müllers, Erik; Halim, Vincentius A.; Krejčíková, Kateřina; Burdová, Kamila; Pecháčková, Sona; Hodný, Zdeněk; Lindqvist, Arne; Medema, René H.; Bartek, Jiri

    2013-01-01

    Cells are constantly challenged by DNA damage and protect their genome integrity by activation of an evolutionary conserved DNA damage response pathway (DDR). A central core of DDR is composed of a spatiotemporally ordered net of post-translational modifications, among which protein phosphorylation plays a major role. Activation of checkpoint kinases ATM/ATR and Chk1/2 leads to a temporal arrest in cell cycle progression (checkpoint) and allows time for DNA repair. Following DNA repair, cells re-enter the cell cycle by checkpoint recovery. Wip1 phosphatase (also called PPM1D) dephosphorylates multiple proteins involved in DDR and is essential for timely termination of the DDR. Here we have investigated how Wip1 is regulated in the context of the cell cycle. We found that Wip1 activity is downregulated by several mechanisms during mitosis. Wip1 protein abundance increases from G1 phase to G2 and declines in mitosis. Decreased abundance of Wip1 during mitosis is caused by proteasomal degradation. In addition, Wip1 is phosphorylated at multiple residues during mitosis, and this leads to inhibition of its enzymatic activity. Importantly, ectopic expression of Wip1 reduced γH2AX staining in mitotic cells and decreased the number of 53BP1 nuclear bodies in G1 cells. We propose that the combined decrease and inhibition of Wip1 in mitosis decreases the threshold necessary for DDR activation and enables cells to react adequately even to modest levels of DNA damage encountered during unperturbed mitotic progression. PMID:23255129

  6. Predicting direction detection thresholds for arbitrary translational acceleration profiles in the horizontal plane

    PubMed Central

    Soyka, Florian; Robuffo Giordano, Paolo; Beykirch, Karl

    2011-01-01

    In previous research, direction detection thresholds have been measured and successfully modeled by exposing participants to sinusoidal acceleration profiles of different durations. In this paper, we present measurements that reveal differences in thresholds depending not only on the duration of the profile, but also on the actual time course of the acceleration. The measurements are further explained by a model based on a transfer function, which is able to predict direction detection thresholds for all types of acceleration profiles. In order to quantify a participant’s ability to detect the direction of motion in the horizontal plane, a four-alternative forced-choice task was implemented. Three types of acceleration profiles (sinusoidal, trapezoidal and triangular) were tested for three different durations (1.5, 2.36 and 5.86 s). To the best of our knowledge, this is the first study which varies both quantities (profile and duration) in a systematic way within a single experiment. The lowest thresholds were found for trapezoidal profiles and the highest for triangular profiles. Simulations for frequencies lower than the ones actually measured predict a change from this behavior: Sinusoidal profiles are predicted to yield the highest thresholds at low frequencies. This qualitative prediction is only possible with a model that is able to predict thresholds for different types of acceleration profiles. Our modeling approach represents an important advancement, because it allows for a more general and accurate description of perceptual thresholds for simple and complex translational motions. PMID:21234751

  7. Predicting direction detection thresholds for arbitrary translational acceleration profiles in the horizontal plane.

    PubMed

    Soyka, Florian; Robuffo Giordano, Paolo; Beykirch, Karl; Bülthoff, Heinrich H

    2011-03-01

    In previous research, direction detection thresholds have been measured and successfully modeled by exposing participants to sinusoidal acceleration profiles of different durations. In this paper, we present measurements that reveal differences in thresholds depending not only on the duration of the profile, but also on the actual time course of the acceleration. The measurements are further explained by a model based on a transfer function, which is able to predict direction detection thresholds for all types of acceleration profiles. In order to quantify a participant's ability to detect the direction of motion in the horizontal plane, a four-alternative forced-choice task was implemented. Three types of acceleration profiles (sinusoidal, trapezoidal and triangular) were tested for three different durations (1.5, 2.36 and 5.86 s). To the best of our knowledge, this is the first study which varies both quantities (profile and duration) in a systematic way within a single experiment. The lowest thresholds were found for trapezoidal profiles and the highest for triangular profiles. Simulations for frequencies lower than the ones actually measured predict a change from this behavior: Sinusoidal profiles are predicted to yield the highest thresholds at low frequencies. This qualitative prediction is only possible with a model that is able to predict thresholds for different types of acceleration profiles. Our modeling approach represents an important advancement, because it allows for a more general and accurate description of perceptual thresholds for simple and complex translational motions.

  8. Damage threshold of platinum coating used for optics for self-seeding of soft x-ray free electron laser

    DOE PAGES

    Krzywinski, Jacek; Cocco, Daniele; Moeller, Stefan; ...

    2015-02-23

    We investigated the experimental damage threshold of platinum coating on a silicon substrate illuminated by soft x-ray radiation at grazing incidence angle of 2.1 deg. The coating was the same as the blazed grating used for the soft X-ray self-seeding optics of the Linac Coherent Light Source free electron laser. The irradiation condition was chosen such that the absorbed dose was similar to the maximum dose expected for the grating. The expected dose was simulated by solving the Helmholtz equation in non-homogenous media. The experiment was performed at 900 eV photon energy for both single pulse and multi-shot conditions. Wemore » have not observed single shot damage. This corresponds to a single shot damage threshold being higher than 3 J/cm2. The multiple shot damage threshold measured for 10 shots and about 600 shots was determined to be 0.95 J/cm2 and 0.75 J/cm2 respectively. The damage threshold occurred at an instantaneous dose which is higher that the melt dose of platinum.« less

  9. Damage threshold of platinum coating used for optics for self-seeding of soft X-ray free electron laser.

    PubMed

    Krzywinski, Jacek; Cocco, Daniele; Moeller, Stefan; Ratner, Daniel

    2015-03-09

    We investigated the experimental damage threshold of platinum coating on a silicon substrate illuminated by soft x-ray radiation at grazing incidence angle of 2 degrees. The coating was the same as the blazed grating used for the soft X-ray self-seeding optics of the Linac Coherent Light Source free electron laser. The irradiation condition was chosen such that the absorbed dose was similar to the maximum dose expected for the grating. The expected dose was simulated by solving the Helmholtz equation in non-homogenous media. The experiment was performed at 900 eV photon energy for both single pulse and multi-shot conditions. We have not observed single shot damage. This corresponds to a single shot damage threshold being higher than 3 J/cm(2). The multiple shot damage threshold measured for 10 shots and about 600 shots was determined to be 0.95 J/cm(2) and 0.75 J/cm(2) respectively. The damage threshold occurred at an instantaneous dose which is higher that the melt dose of platinum.

  10. Damage threshold of platinum coating used for optics for self-seeding of soft x-ray free electron laser

    SciTech Connect

    Krzywinski, Jacek; Cocco, Daniele; Moeller, Stefan; Ratner, Daniel

    2015-02-23

    We investigated the experimental damage threshold of platinum coating on a silicon substrate illuminated by soft x-ray radiation at grazing incidence angle of 2.1 deg. The coating was the same as the blazed grating used for the soft X-ray self-seeding optics of the Linac Coherent Light Source free electron laser. The irradiation condition was chosen such that the absorbed dose was similar to the maximum dose expected for the grating. The expected dose was simulated by solving the Helmholtz equation in non-homogenous media. The experiment was performed at 900 eV photon energy for both single pulse and multi-shot conditions. We have not observed single shot damage. This corresponds to a single shot damage threshold being higher than 3 J/cm2. The multiple shot damage threshold measured for 10 shots and about 600 shots was determined to be 0.95 J/cm2 and 0.75 J/cm2 respectively. The damage threshold occurred at an instantaneous dose which is higher that the melt dose of platinum.

  11. Combined MRI Might Help Predict Brain Damage in Boxers

    MedlinePlus

    ... fullstory_167571.html Combined MRI Might Help Predict Brain Damage in Boxers Pro fighters, like football players, ... 3, 2017 WEDNESDAY, Aug. 2, 2017 (HealthDay News) -- Brain injuries among pro football players are in the ...

  12. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    DOE PAGES

    Field, Ella; Bellum, John; Kletecka, Damon

    2014-11-06

    We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less

  13. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    SciTech Connect

    Field, Ella; Bellum, John; Kletecka, Damon

    2014-11-06

    We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defect density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.

  14. Finite element prediction of fatigue damage growth in cancellous bone.

    PubMed

    Hambli, Ridha; Frikha, Sana; Toumi, Hechmi; Tavares, João Manuel R S

    2016-01-01

    Cyclic stresses applied to bones generate fatigue damage that affects the bone stiffness and its elastic modulus. This paper proposes a finite element model for the prediction of fatigue damage accumulation and failure in cancellous bone at continuum scale. The model is based on continuum damage mechanics and incorporates crack closure effects in compression. The propagation of the cracks is completely simulated throughout the damaged area. In this case, the stiffness of the broken element is reduced by 98% to ensure no stress-carrying capacities of completely damaged elements. Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. The proposed model suggests that damage evolves over a real physical time variable (cycles). In order to reduce the computation time, the integration of the damage growth rate is based on the cycle blocks approach. In this approach, the real number of cycles is reduced (divided) into equivalent blocks of cycles. Damage accumulation is computed over the cycle blocks and then extrapolated over the corresponding real cycles. The results show a clear difference between local tensile and compressive stresses on damage accumulation. Incorporating stiffness reduction also produces a redistribution of the peak stresses in the damaged region, which results in a delay in damage fracture.

  15. Predicting bulk damage in NIF triple harmonic generators

    SciTech Connect

    De Yoreo, J; Runkel, M; Williams, W

    1998-09-18

    Recently reported experiments have investigated the statistics of laser damage in KDP and KD*P. Automated damage tests have allowed cumulative failure and damage probability distributions to be constructed. Large area tests have investigated the feasibility of on-line laser conditioning and damage evolution for tripler harmonic generation (THG) crystals on the National Ignition Facility (NIF). These tests have shown that there is a nonzero probability of damage at NIF redline fluence (14.3 J/cm2, 351 nm, 3 ns) and that the damage pinpoint density evolves exponentially with fluence. In this paper, the results of these tests are used in conjunction with model spatial profiles of the NIP beam to predict the level of damage created in the THG crystal. A probabilistic calculation based on the overlap of the beam fluence and damage probabiity distribution shows that the overall damage probability is less than 3% for well-conditioned, high quality KDP/KD*P crystals of conventional or rapid growth. The number density of generated pinpoints has been calculated by mapping the damage evolution curves onto the NlF model profile. This shows that the number of damage pinpoints generated in high fluence portions of the NIF beam will be low for well-conditioned THG crystals. In contrast, unconditioned triplers of the same material will exhibit an increase in pinpoint density of greater than 20x. To test the validity of these calculations a 37 cm, conventionally grown KD*P tripler from the Beamlet laser was scatter mapped for bulk damage. The tripler had been exposed to NE-like fluences during its operational lifetime on Beamlet and exhibited very low levels of bulk pinpoint damage, essentially supporting the predictions based on tests and modeling.

  16. Retinal thermal damage threshold dependence on exposure duration for the transitional near-infrared laser radiation at 1319 nm

    PubMed Central

    Wang, Jiarui; Jiao, Luguang; Jing, Xiaomin; Chen, Hongxia; Hu, Xiangjun; Yang, Zaifu

    2016-01-01

    The retinal damage effects induced by transitional near-infrared (NIR) lasers have been investigated for years. However, the damage threshold dependence on exposure duration has not been revealed. In this paper, the in-vivo retinal damage ED50 thresholds were determined in chinchilla grey rabbits for 1319 nm laser radiation for exposure durations from 0.1 s to 10 s. The incident corneal irradiance diameter was fixed at 5 mm. The ED50 thresholds given in terms of the total intraocular energy (TIE) for exposure durations of 0.1, 1 and 10 s were 1.36, 6.33 and 28.6 J respectively. The ED50 thresholds were correlated by a power law equation, ED50 = 6.31t0.66 [J] where t is time [s], with correlation coefficient R = 0.9999. There exists a sufficient safety margin (factor of 28~60) between the human ED50 thresholds derived from the rabbit and the maximum permissible exposure (MPE) values in the current laser safety standards. PMID:27231639

  17. Determination of ultra-short laser induced damage threshold of KH{sub 2}PO{sub 4} crystal: Numerical calculation and experimental verification

    SciTech Connect

    Cheng, Jian; Chen, Mingjun E-mail: chowdhury.24@osu.edu; Wang, Jinghe; Xiao, Yong; Kafka, Kyle; Austin, Drake; Chowdhury, Enam E-mail: chowdhury.24@osu.edu

    2016-03-15

    Rapid growth and ultra-precision machining of large-size KDP (KH{sub 2}PO{sub 4}) crystals with high laser damage resistance are tough challenges in the development of large laser systems. It is of high interest and practical significance to have theoretical models for scientists and manufacturers to determine the laser-induced damage threshold (LIDT) of actually prepared KDP optics. Here, we numerically and experimentally investigate the laser-induced damage on KDP crystals in ultra-short pulse laser regime. On basis of the rate equation for free electron generation, a model dedicated to predicting the LIDT is developed by considering the synergistic effect of photoionization, impact ionization and decay of electrons. Laser damage tests are performed to measure the single-pulse LIDT with several testing protocols. The testing results combined with previously reported experimental data agree well with those calculated by the model. By taking the light intensification into consideration, the model is successfully applied to quantitatively evaluate the effect of surface flaws inevitably introduced in the preparation processes on the laser damage resistance of KDP crystals. This work can not only contribute to further understanding of the laser damage mechanisms of optical materials, but also provide available models for evaluating the laser damage resistance of exquisitely prepared optical components used in high power laser systems.

  18. An analysis of the influences of biological variance, measurement error, and uncertainty on retinal photothermal damage threshold studies

    NASA Astrophysics Data System (ADS)

    Wooddell, David A., Jr.; Schubert-Kabban, Christine M.; Hill, Raymond R.

    2012-03-01

    Safe exposure limits for directed energy sources are derived from a compilation of known injury thresholds taken primarily from animal models and simulation data. The summary statistics for these experiments are given as exposure levels representing a 50% probability of injury, or ED50, and associated variance. We examine biological variance in focal geometries and thermal properties and the influence each has in singlepulse ED50 threshold studies for 514-, 694-, and 1064-nanometer laser exposures in the thermal damage time domain. Damage threshold is defined to be the amount of energy required for a retinal burn on at least one retinal pigment epithelium (RPE) cell measuring approximately 10 microns in diameter. Better understanding of experimental variance will allow for more accurate safety buffers for exposure limits and improve directed energy research methodology.

  19. Nonlinear absorption and optical damage threshold of carbon-based nanostructured material embedded in a protein

    NASA Astrophysics Data System (ADS)

    Janulewicz, K. A.; Hapiddin, A.; Joseph, D.; Geckeler, K. E.; Sung, J. H.; Nickles, P. V.

    2014-12-01

    Physical processes in laser-matter interaction used to be determined by generation of fast electrons resulting from efficient conversion of the absorbed laser radiation. Composite materials offer the possibility to control the absorption by choice of the host material and dopants. Reported here strong absorption of ultrashort laser pulse in a composite carbon-based nanomaterial including single-walled carbon nanotubes (SWCNTs) or multilayer graphene was measured in the intensity range between 1012 and 1016 W cm-2. A protein (lysozyme) was used as the host. The maximum absorption of femtosecond laser pulse has reached 92-96 %. The optical damage thresholds of the coatings were registered at an intensity of (1.1 ± 0.5) × 1013 W cm-2 for the embedded SWCNTs and at (3.4 ± 0.3) × 1013 W cm-2 for the embedded graphene. Encapsulated variant of the dispersed nanomaterial was investigated as well. It was found that supernatant protein in the coating material tends to dominate the absorption process, independently of the embedded nanomaterial. The opposite was observed for the encapsulated material.

  20. Growth, optical, thermal and laser damage threshold studies of 4-aminopyridinium 4-nitrophenolate 4-nitrophenol crystal

    NASA Astrophysics Data System (ADS)

    Jagadesan, A.; Peramaiyan, G.; Mohan Kumar, R.; Arjunan, S.

    2015-05-01

    Organic nonlinear optical (NLO) single crystals of 4-aminopyridinium 4-nitrophenolate 4-nitrophenol (4AP4NP) were grown by the slow evaporation solution growth technique. The unit cell parameters and space group of 4AP4NP crystal were found out by single crystal X-ray diffraction analysis. From the UV-vis-NIR spectral studies, the lower cut-off wavelength of the grown crystal was found to be 474 nm. The laser damage threshold study shows that 4AP4NP crystal withstands the laser radiation up to 3.67 GW cm-2. Thermogravimetric and differential thermal analyses revealed that 4AP4ANP is thermally stable up to 175 °C. The specific heat capacity of 4AP4NP was measured to be 3.9135 J g-1 K-1 at 33 °C. Kurtz and Perry powder study reveals that 4AP4NP is a phase-matchable NLO material. The four independent tensor coefficients of dielectric permittivity were found to be ε11=25.09, ε22=25.84, ε33=26.69 and ε13=0.8 from the dielectric measurement.

  1. Laser-induced damage threshold measurements of high reflecting dielectric layers

    NASA Astrophysics Data System (ADS)

    Melninkaitis, Andrius; Mikšys, Darius; Sirutkaitis, Valdas; Abromavičius, Giedrius; Buzelis, Rytis; Drazdys, Ramutis

    2007-02-01

    A quest for higher laser powers is one of the main driving forces in development of laser technology. Unfortunately all laser components have some limit to the intensity of optical radiation that can be applied on them - the so-called laser-induced damage threshold (LIDT). To enable further power scaling of laser devices, novel highly resistant optical components have to be developed. Such components are laser crystals, mirrors, fibers and other components typically coated with periodic dielectric layers made using e-beam, sputtering or sol-gel technologies. The production materials and methods of all the mentioned optics are under constant development, which requires a reliable quality test to provide the feedback to the manufacturing process; one of such tests are the measurements of LIDT. LIDT measurement procedure using repetitive laser pulses, as described in ISO 11254-2 standard, is time- and human resource consuming, if performed without automation. We developed an automated station for the measurements of LIDT that greatly reduces the required human resources and allows fast data collection. In this presentation, we briefly describe the main components of this automated LIDT test station. Furthermore we present the comparison of the latest results obtained on LIDT measurements of ZrO II/SiO II, Nb IIO 5/SiO II, Ta IIO 5/SiO II and TiO II/SiO II periodic high reflecting dielectric layers performed using repetitive nanosecond laser pulses.

  2. A brief peripheral motion contrast threshold test predicts older drivers' hazardous behaviors in simulated driving.

    PubMed

    Henderson, Steven; Woods-Fry, Heather; Collin, Charles A; Gagnon, Sylvain; Voloaca, Misha; Grant, John; Rosenthal, Ted; Allen, Wade

    2015-05-01

    Our research group has previously demonstrated that the peripheral motion contrast threshold (PMCT) test predicts older drivers' self-report accident risk, as well as simulated driving performance. However, the PMCT is too lengthy to be a part of a battery of tests to assess fitness to drive. Therefore, we have developed a new version of this test, which takes under two minutes to administer. We assessed the motion contrast thresholds of 24 younger drivers (19-32) and 25 older drivers (65-83) with both the PMCT-10min and the PMCT-2min test and investigated if thresholds were associated with measures of simulated driving performance. Younger participants had significantly lower motion contrast thresholds than older participants and there were no significant correlations between younger participants' thresholds and any measures of driving performance. The PMCT-10min and the PMCT-2min thresholds of older drivers' predicted simulated crash risk, as well as the minimum distance of approach to all hazards. This suggests that our tests of motion processing can help predict the risk of collision or near collision in older drivers. Thresholds were also correlated with the total lane deviation time, suggesting a deficiency in processing of peripheral flow and delayed detection of adjacent cars. The PMCT-2min is an improved version of a previously validated test, and it has the potential to help assess older drivers' fitness to drive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Prediction and measurement of radiation damage to CMOS devices on board spacecraft

    NASA Technical Reports Server (NTRS)

    Cliff, R. A.; Danchenko, V.; Stassinopoulos, E. G.; Sing, M.; Brucker, G. J.; Ohanian, R. S.

    1976-01-01

    The CMOS Radiation Effects Measurement (CREM) experiment is presently being flown on the Explorer-55. The purpose of the experiment is to evaluate device performance in the actual space radiation environment and to correlate the respective measurements to on-the-ground laboratory irradiation results. The experiment contains an assembly of C-MOS and P-MOS devices shielded in front by flat slabs of aluminum and by a practically infinite shield in the back. Predictions of radiation damage to C-MOS devices are based on standard environment models and computational techniques. A comparison of the shifts in CMOS threshold potentials, that is, those measured in space to those obtained from the on-the-ground simulation experiment with Co-60, indicates that the measured space damage is smaller than predicted by about a factor of 2-3 for thin shields, but agrees well with predictions for thicker shields.

  4. On the threshold conditions for electron beam damage of asbestos amosite fibers in the transmission electron microscope (TEM).

    PubMed

    Martin, Joannie; Beauparlant, Martin; Sauvé, Sébastien; L'Espérance, Gilles

    2016-12-01

    Asbestos amosite fibers were investigated to evaluate the damage caused by a transmission electron microscope (TEM) electron beam. Since elemental x-ray intensity ratios obtained by energy dispersive x-ray spectroscopy (EDS) are commonly used for asbestos identification, the impact of beam damage on these ratios was evaluated. It was determined that the magnesium/silicon ratio best represented the damage caused to the fiber. Various tests showed that most fibers have a current density threshold above which the chemical composition of the fiber is modified. The value of this threshold current density varied depending on the fiber, regardless of fiber diameter, and in some cases could not be determined. The existence of a threshold electron dose was also demonstrated. This value was dependent on the current density used and can be increased by providing a recovery period between exposures to the electron beam. This study also established that the electron beam current is directly related to the damage rate above a current density of 165 A/cm(2). The large number of different results obtained suggest, that in order to ensure that the amosite fibers are not damaged, analysis should be conducted below a current density of 100 A/cm(2).

  5. Radiation degradation prediction for InGaP solar cells by using appropriate estimation method for displacement threshold energy

    NASA Astrophysics Data System (ADS)

    Okuno, Y.; Okuda, S.; Akiyoshi, M.; Oka, T.; Harumoto, M.; Omura, K.; Kawakita, S.; Imaizumi, M.; Messenger, S. R.; Lee, K. H.; Yamaguchi, M.

    2017-09-01

    InGaP solar cells are not predicted to be susceptible to displacement damage by irradiation with electrons at energies lower than 100 keV from non-ionizing energy loss (NIEL) calculations. However, it is recently observed that InGaP solar cells are shown to degrade by irradiation with 60 keV electrons. This degradation is considered to be caused by radiation defects but is not clear. In this study, the kind of the defects generated by electrons at energies lower than 100 keV is found by deep-level transient spectroscopy (DLTS). The result of DLTS indicates that the prediction of primary knock-on atoms by using the radiation damage model is different from the experiment. In order to suggest the generation mechanism of radiation defects, we propose a new displacement threshold energy (Ed) by using a new technique in which NIEL and the introduction rate of radiation defects are combined. The degradation prediction by using estimated Ed is found to agree well with the degradation of electric power of InGaP solar cells irradiated by low-energy electrons. From the theory of radiation defects, we propose a new obtaining process of suitable degradation prediction by the displacement damage dose method.

  6. Tree mortality predicted from drought-induced vascular damage

    NASA Astrophysics Data System (ADS)

    Anderegg, William R. L.; Flint, Alan; Huang, Cho-Ying; Flint, Lorraine; Berry, Joseph A.; Davis, Frank W.; Sperry, John S.; Field, Christopher B.

    2015-05-01

    The projected responses of forest ecosystems to warming and drying associated with twenty-first-century climate change vary widely from resiliency to widespread tree mortality. Current vegetation models lack the ability to account for mortality of overstorey trees during extreme drought owing to uncertainties in mechanisms and thresholds causing mortality. Here we assess the causes of tree mortality, using field measurements of branch hydraulic conductivity during ongoing mortality in Populus tremuloides in the southwestern United States and a detailed plant hydraulics model. We identify a lethal plant water stress threshold that corresponds with a loss of vascular transport capacity from air entry into the xylem. We then use this hydraulic-based threshold to simulate forest dieback during historical drought, and compare predictions against three independent mortality data sets. The hydraulic threshold predicted with 75% accuracy regional patterns of tree mortality as found in field plots and mortality maps derived from Landsat imagery. In a high-emissions scenario, climate models project that drought stress will exceed the observed mortality threshold in the southwestern United States by the 2050s. Our approach provides a powerful and tractable way of incorporating tree mortality into vegetation models to resolve uncertainty over the fate of forest ecosystems in a changing climate.

  7. Tree mortality predicted from drought-induced vascular damage

    USGS Publications Warehouse

    Anderegg, William R. L.; Flint, Alan L.; Huang, Cho-ying; Flint, Lorraine E.; Berry, Joseph A.; Davis, Frank W.; Sperry, John S.; Field, Christopher B.

    2015-01-01

    The projected responses of forest ecosystems to warming and drying associated with twenty-first-century climate change vary widely from resiliency to widespread tree mortality1, 2, 3. Current vegetation models lack the ability to account for mortality of overstorey trees during extreme drought owing to uncertainties in mechanisms and thresholds causing mortality4, 5. Here we assess the causes of tree mortality, using field measurements of branch hydraulic conductivity during ongoing mortality in Populus tremuloides in the southwestern United States and a detailed plant hydraulics model. We identify a lethal plant water stress threshold that corresponds with a loss of vascular transport capacity from air entry into the xylem. We then use this hydraulic-based threshold to simulate forest dieback during historical drought, and compare predictions against three independent mortality data sets. The hydraulic threshold predicted with 75% accuracy regional patterns of tree mortality as found in field plots and mortality maps derived from Landsat imagery. In a high-emissions scenario, climate models project that drought stress will exceed the observed mortality threshold in the southwestern United States by the 2050s. Our approach provides a powerful and tractable way of incorporating tree mortality into vegetation models to resolve uncertainty over the fate of forest ecosystems in a changing climate.

  8. Damage threshold in adult rabbit eyes after scleral cross-linking by riboflavin/blue light application.

    PubMed

    Iseli, Hans Peter; Körber, Nicole; Karl, Anett; Koch, Christian; Schuldt, Carsten; Penk, Anja; Liu, Qing; Huster, Daniel; Käs, Josef; Reichenbach, Andreas; Wiedemann, Peter; Francke, Mike

    2015-10-01

    Several scleral cross-linking (SXL) methods were suggested to increase the biomechanical stiffness of scleral tissue and therefore, to inhibit axial eye elongation in progressive myopia. In addition to scleral cross-linking and biomechanical effects caused by riboflavin and light irradiation such a treatment might induce tissue damage, dependent on the light intensity used. Therefore, we characterized the damage threshold and mechanical stiffening effect in rabbit eyes after application of riboflavin combined with various blue light intensities. Adult pigmented and albino rabbits were treated with riboflavin (0.5 %) and varying blue light (450 ± 50 nm) dosages from 18 to 780 J/cm(2) (15 to 650 mW/cm(2) for 20 min). Scleral, choroidal and retinal tissue alterations were detected by means of light microscopy, electron microscopy and immunohistochemistry. Biomechanical changes were measured by shear rheology. Blue light dosages of 480 J/cm(2) (400 mW/cm(2)) and beyond induced pathological changes in ocular tissues; the damage threshold was defined by the light intensities which induced cellular degeneration and/or massive collagen structure changes. At such high dosages, we observed alterations of the collagen structure in scleral tissue, as well as pigment aggregation, internal hemorrhages, and collapsed blood vessels. Additionally, photoreceptor degenerations associated with microglia activation and macroglia cell reactivity in the retina were detected. These pathological alterations were locally restricted to the treated areas. Pigmentation of rabbit eyes did not change the damage threshold after a treatment with riboflavin and blue light but seems to influence the vulnerability for blue light irradiations. Increased biomechanical stiffness of scleral tissue could be achieved with blue light intensities below the characterized damage threshold. We conclude that riboflavin and blue light application increased the biomechanical stiffness of scleral tissue at

  9. Threshold behavior in hydrological systems and geo-ecosystems: manifestations, controls and implications for predictability

    NASA Astrophysics Data System (ADS)

    Zehe, E.; Sivapalan, M.

    2008-11-01

    The aim of this paper is to provide evidence that the dynamics of hydrological systems and geo-ecosystems is often influenced by threshold behavior at a variety of space and time scales. Based on well known characteristics of elementary threshold phenomena we suggest criteria for detecting threshold behavior in hydrological systems. The most important one is intermittence of phenomena, i.e. the rapid switching of related state variables/fluxes from zero to finite values, or existence of behavior regimes where the same process/response appears qualitatively differently at the macroscopic level. From the literature we present several examples for intermittent hydrological phenomena, ranging from overland flow generation in different landscapes, including the effects of hydrophobicity, to soil water flow occurring in the matrix continuum or via preferential pathways, including the case of cracking soils, nonlinear subsurface stormflow response of hillslopes during severe rainfall events, and long-term catchment flooding responses. Since threshold phenomena are often associated with environmental hazards such as floods, soil erosion, and contamination of shallow groundwater resources, we discuss common difficulties that complicate predictions of whether or not they might even occur. Predicting the onset of threshold phenomena requires a thorough understanding of the underlying controls. Through examples we illustrate that threshold behavior in hydrological systems can manifest at (a) the process level, (b) the response level, and (c) the functional level, and explain that the complexity of the underlying controls and of the interacting phenomena that determine threshold behavior become increasingly complex at the higher levels. Finally we provide evidence from field observations and model predictions that show that within an "unstable range" of system states "close" to a threshold, it is difficult to predict whether or not the system will switch behavior, for instance

  10. How predictable is plastic damage at the atomic scale?

    NASA Astrophysics Data System (ADS)

    Li, D.; Bucholz, E. W.; Peterson, G.; Reich, B. J.; Russ, J. C.; Brenner, D. W.

    2017-02-01

    The title of this letter implies two questions: To what degree is plastic damage inherently predictable at the atomic scale, and can this predictability be quantified? We answer these questions by combining image analysis with molecular dynamics (MD) simulation to quantify similarities between atomic structures of plastic damage in a database of strained copper bi-crystals. We show that a manifold of different outcomes can originate ostensibly from the same initial structure, but that with this approach complex plastic damage within this manifold can be statistically connected to the initial structure. Not only does this work introduce a powerful approach for analyzing MD simulations of a complex plastic damage but also provides a much needed and critical framework for analyzing and organizing atomic-scale microstructural databases.

  11. Predicting the epidemic threshold of the susceptible-infected-recovered model

    PubMed Central

    Wang, Wei; Liu, Quan-Hui; Zhong, Lin-Feng; Tang, Ming; Gao, Hui; Stanley, H. Eugene

    2016-01-01

    Researchers have developed several theoretical methods for predicting epidemic thresholds, including the mean-field like (MFL) method, the quenched mean-field (QMF) method, and the dynamical message passing (DMP) method. When these methods are applied to predict epidemic threshold they often produce differing results and their relative levels of accuracy are still unknown. We systematically analyze these two issues—relationships among differing results and levels of accuracy—by studying the susceptible-infected-recovered (SIR) model on uncorrelated configuration networks and a group of 56 real-world networks. In uncorrelated configuration networks the MFL and DMP methods yield identical predictions that are larger and more accurate than the prediction generated by the QMF method. As for the 56 real-world networks, the epidemic threshold obtained by the DMP method is more likely to reach the accurate epidemic threshold because it incorporates full network topology information and some dynamical correlations. We find that in most of the networks with positive degree-degree correlations, an eigenvector localized on the high k-core nodes, or a high level of clustering, the epidemic threshold predicted by the MFL method, which uses the degree distribution as the only input information, performs better than the other two methods. PMID:27091705

  12. Predicting the epidemic threshold of the susceptible-infected-recovered model

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Liu, Quan-Hui; Zhong, Lin-Feng; Tang, Ming; Gao, Hui; Stanley, H. Eugene

    2016-04-01

    Researchers have developed several theoretical methods for predicting epidemic thresholds, including the mean-field like (MFL) method, the quenched mean-field (QMF) method, and the dynamical message passing (DMP) method. When these methods are applied to predict epidemic threshold they often produce differing results and their relative levels of accuracy are still unknown. We systematically analyze these two issues—relationships among differing results and levels of accuracy—by studying the susceptible-infected-recovered (SIR) model on uncorrelated configuration networks and a group of 56 real-world networks. In uncorrelated configuration networks the MFL and DMP methods yield identical predictions that are larger and more accurate than the prediction generated by the QMF method. As for the 56 real-world networks, the epidemic threshold obtained by the DMP method is more likely to reach the accurate epidemic threshold because it incorporates full network topology information and some dynamical correlations. We find that in most of the networks with positive degree-degree correlations, an eigenvector localized on the high k-core nodes, or a high level of clustering, the epidemic threshold predicted by the MFL method, which uses the degree distribution as the only input information, performs better than the other two methods.

  13. Multiphoton absorption is probably not the primary threshold damage mechanism for femtosecond laser pulse exposures in the retinal pigment epithelium

    NASA Astrophysics Data System (ADS)

    Glickman, Randolph D.; Johnson, Thomas E.

    2004-07-01

    Laser induced breakdown has the lowest energy threshold in the femtosecond domain, and is responsible for production of threshold ocular lesions. It has been proposed that multiphoton absorption may also contribute to ultrashort-pulse tissue damage, based on the observation that 33 fs, 810 nm pulse laser exposures caused more DNA breakage in cultured, primary RPE cells, compared to CW laser exposures delivering the same average power. Subsequent studies, demonstrating two-photon excitation of fluorescence in isolated RPE melanosomes, appeared to support the role of multiphoton absorption, but mainly at suprathreshold irradiance. Additional experiments have not found a consistent difference in the DNA strand breakage produced by ultrashort and CW threshold exposures. DNA damage appears to be dependent on the amount of melanin pigmentation in the cells, rather than the pulsewidth of the laser; current studies have found that, at threshold, CW and ultrashort pulse laser exposures produce almost identical amounts of DNA breakage. A theoretical analysis suggest that the number of photons delivered to the RPE melanosome during a single 33-fsec pulse at the ED50 irradiance is insufficient to produce multiphoton excitation. This result appears to exclude the melanosome as a locus for two- or three-photon excitation; however, a structure with a larger effective absorption cross-section than the melanosome may interact with the laser pulses. One possibility is that the nuclear chromatin acts as a unit absorber of photons resulting in DNA damage, but this does not explain the near equivalence of ultrashort and CW exposures in the comet assay model. This equivalence indicated that multiphoton absorption is not a major contributor to the ultrashort pulse laser damage threshold in the near infrared.

  14. A Bayesian Prediction Framework of Weather Based Power Line Damages in the Northeast

    NASA Astrophysics Data System (ADS)

    frediani, M.; Anagnostou, E. N.; Wanik, D.; Scerbo, D.

    2012-12-01

    This study aims to evaluate the predictability of damages to overhead power distribution lines from severe weather events in the New England area. During storms, trees and branches can come down and interact with power lines that results in significant interruptions to electricity distribution, causing major interruptions to residents and monetary losses to the utility company. In Connecticut, a densely forested state, severe winds and precipitation (in the form of rain and snow) from storms are key weather factors that challenge the power grid infrastructure vulnerability. Evaluating the local predictability of these impacts may aid local power utilities with crew allocation and preparedness during an event. A probabilistic approach to damage prediction caused by trees subjected to severe weather is being investigated in the region. This study specifically, explores the feasibility of applying Bayesian inversion technique to weather parameters by developing a damage decision tree composed of various meteorological and static parameters, like wind gust, precipitation (rain and snow accumulation and rates), high canopy forest density and tree trimming history for the power distribution lines. The resulting decision tree can be used as a Bayesian inversion database to predict the probability distribution of damages given a storm forecast. The Bayesian database is based on a historical data source provided by The Connecticut Light & Power Company (Connecticut's primary power utility) containing geographical information of trouble spots caused by thunderstorm and winter/snow-storm events; power line specifications and trimming history; and high-resolution model analysis of those storms. The analysis is based on a 2-sqkm model grid cropped over the state of Connecticut comprising a database of 3,307 pixels per storm. Each storm pixel is flagged to contain power line damages or no-damages. A total of 50 storm simulations is used to build the database. Pairs of

  15. Empirical predictions of hypervelocity impact damage to the space station

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Hayashida, K. B.

    1991-01-01

    A family of user-friendly, DOS PC based, Microsoft BASIC programs written to provide spacecraft designers with empirical predictions of space debris damage to orbiting spacecraft is described. The spacecraft wall configuration is assumed to consist of multilayer insulation (MLI) placed between a Whipple style bumper and the pressure wall. Predictions are based on data sets of experimental results obtained from simulating debris impacts on spacecraft using light gas guns on Earth. A module of the program facilitates the creation of the data base of experimental results that are used by the damage prediction modules of the code. The user has the choice of three different prediction modules to predict damage to the bumper, the MLI, and the pressure wall. One prediction module is based on fitting low order polynomials through subsets of the experimental data. Another prediction module fits functions based on nondimensional parameters through the data. The last prediction technique is a unique approach that is based on weighting the experimental data according to the distance from the design point.

  16. Formability prediction for AHSS materials using damage models

    NASA Astrophysics Data System (ADS)

    Amaral, R.; Santos, Abel D.; José, César de Sá; Miranda, Sara

    2017-05-01

    Advanced high strength steels (AHSS) are seeing an increased use, mostly due to lightweight design in automobile industry and strict regulations on safety and greenhouse gases emissions. However, the use of these materials, characterized by a high strength to weight ratio, stiffness and high work hardening at early stages of plastic deformation, have imposed many challenges in sheet metal industry, mainly their low formability and different behaviour, when compared to traditional steels, which may represent a defying task, both to obtain a successful component and also when using numerical simulation to predict material behaviour and its fracture limits. Although numerical prediction of critical strains in sheet metal forming processes is still very often based on the classic forming limit diagrams, alternative approaches can use damage models, which are based on stress states to predict failure during the forming process and they can be classified as empirical, physics based and phenomenological models. In the present paper a comparative analysis of different ductile damage models is carried out, in order numerically evaluate two isotropic coupled damage models proposed by Johnson-Cook and Gurson-Tvergaard-Needleman (GTN), each of them corresponding to the first two previous group classification. Finite element analysis is used considering these damage mechanics approaches and the obtained results are compared with experimental Nakajima tests, thus being possible to evaluate and validate the ability to predict damage and formability limits for previous defined approaches.

  17. Co:MgF2 laser ablation of tissue: effect of wavelength on ablation threshold and thermal damage.

    PubMed

    Schomacker, K T; Domankevitz, Y; Flotte, T J; Deutsch, T F

    1991-01-01

    The wavelength dependence of the ablation threshold of a variety of tissues has been studied by using a tunable pulsed Co:MgF2 laser to determine how closely it tracks the optical absorption length of water. The Co:MgF2 laser was tuned between 1.81 and 2.14 microns, a wavelength region in which the absorption length varies by a decade. For soft tissues the ablation threshold tracks the optical absorption length; for bone there is little wavelength dependence, consistent with the low water content of bone. Thermal damage vs. wavelength was also studied for cornea and bone. Thermal damage to cornea has a weak wavelength dependence, while that to bone shows little wavelength dependence. Framing-camera pictures of the ablation of both cornea and liver show explosive removal of material, but differ as to the nature of the explosion.

  18. A theoretical investigation of the laser damage threshold of metal multi-dielectric mirrors for high power ultrashort applications.

    PubMed

    Wang, Bin; Gallais, Laurent

    2013-06-17

    An approach for the theoretical evaluation of the damage threshold in optical interference coatings that combine metal and dielectric films is presented. The model that is used combines a matrix formalism to describe the film system with the two temperatures model that describes the energy transfer and the temperatures of electrons and lattice in a solid submitted to a laser irradiation at the femtosecond time scale. With this approach the thermal consequences due to the ultrafast absorption of the metal film can be evaluated in the multilayer stack for single or multiple pulses. Some applications are presented for the case of broadband mirrors for ultrashort pulses with low dispersion. Particularly we study the impact of the metal film (metal element, thickness) and the design on the Laser Induced Damage Threshold in the sub picosecond regime.

  19. Increase in the optical damage threshold of a ZnSe-passivated front mirror of a laser diode

    NASA Astrophysics Data System (ADS)

    Davydova, Evgeniya I.; Dmitriev, V. V.; Kozlov, Yu Yu; Kukushkin, I. A.; Uspenskiy, Mikhail B.; Shishkin, Viktor A.

    2011-05-01

    The operation of single-mode diode lasers with a front mirror passivated by ZnSe films of different thicknesses is studied in the pulsed regime (pulse duration τ = 0.2 - 10 μs). It is found that in the case of short (0.2 μs) pulses, the catastrophic optical damage threshold grows almost linearly as the film thickness on the front mirror increases from 0.1 to 0.5 μm. It is shown that lasers with mirrors passivated by 'thick' (0.4 - 0.6 μm) ZnSe films can operate stably in the case of 'long' (2 - 10 μs) pulses. It is assumed that in this pulsed regime the ZnSe film provides an additional heat removal from the hot zone of the front mirror, and consequently increases the optical damage threshold.

  20. A study of metal-dielectric mirrors technology with regard to the laser-induced damage threshold

    NASA Astrophysics Data System (ADS)

    Škoda, Václav; Vanda, Jan

    2016-12-01

    Four sets of mirror samples with multilayer system SiO2/Ta2O5 on silver metal layer were manufactured using modified coating technology of the metal layer. Both BK7 and fused silica substrate materials were used. Laser-induced-damage-threshold of mirrors was tested using a laser apparatus working at 1030 nm wavelength, 3 ps pulse length at 1 kHz repetition rate and in 105- on - 1 test mode. The measured damage thresholds values at 45 deg incidence and Ppolarization were compared for different substrate materials and different technology of the metal layer preparation. Additionally four sets of samples with silver layer covered by SiO2 protecting monolayer were manufactured and tested for the comparison.

  1. Damage Mechanisms In Polymers Upon NIR Femtosecond Pulse Laser Irradiation: Sub-Threshold Processes And Their Implications For Laser Safety Applications

    SciTech Connect

    Bonse, Joern; Krueger, Joerg; Solis, Javier; Spielmann, Christian; Lippert, Thomas

    2010-10-08

    This contribution investigates laser-induced damage of thin film and bulk polymer samples, with the focus on physical processes occurring close to the damage threshold. In-situ real-time reflectivity (RTR) measurements with picosecond (ps) and nanosecond (ns) temporal resolution were performed on thin polymer films on a timescale up to a few microseconds ({mu}s). A model for polymer thin film damage is presented, indicating that irreversible chemical modification processes take place already below the fluence threshold for macroscopic damage. On dye-doped bulk polymer filters (as used for laser goggles), transmission studies using fs-and ps-laser pulses reveal the optical saturation behavior of the material and its relation to the threshold of permanent damage. Implications of the sub-threshold processes for laser safety applications will be discussed for thin film and bulk polymer damage.

  2. Scleral cross-linking by riboflavin and blue light application in young rabbits: damage threshold and eye growth inhibition.

    PubMed

    Iseli, Hans Peter; Körber, Nicole; Koch, Christian; Karl, Anett; Penk, Anja; Huster, Daniel; Reichenbach, Andreas; Wiedemann, Peter; Francke, Mike

    2016-01-01

    Scleral cross-linking (SXL) by riboflavin and light application has been introduced as a possible treatment to increase scleral tissue stiffness and to inhibit excessive axial elongation of highly myopic eyes. We evaluated an ocular tissue damage threshold for blue light irradiation, and used SXL treatment to induce eye growth inhibition. The sclera of 3-week-old rabbits (39 pigmented and 15 albino rabbits) were treated with different blue light intensities (450 ± 50 nm) and riboflavin. Alterations and a damage threshold were detected in ocular tissues by means of light microscopy and immunohistochemistry. The influence of SXL on the eye growth was examined in 21 young rabbits and was measured by using A-scan ultrasonography, micrometer caliper, and for selected eyes additionally by MR imaging. Light microscopic examinations demonstrated degenerative changes in ocular tissue after irradiation with blue light intensities above 400 mW/cm(2) (with and without riboflavin application). Therefore, that light intensity was defined as the damage threshold. Tissue alteration in retina, choroid, and sclera and activation of retinal microglia cells and Müller cells could be earlier observed at blue light intensities of 150 and 200 mW/cm(2). Albino rabbits were less sensitive to this SXL treatment. A significant reduction of the eye growth could be detected by SXL treatment with the minimal efficient blue light intensity of 15 mW/cm(2) and maintained stable for 24 weeks. SXL with riboflavin and blue light intensities below a defined damage threshold can induce a long lasting growth inhibitory effect on young rabbit eyes. Therefore, SXL might be a realistic approach to inhibit eye elongation in highly myopic eyes.

  3. Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm

    NASA Astrophysics Data System (ADS)

    Wang, Jiarui; Jiao, Luguang; Chen, Hongxia; Yang, Zaifu; Hu, Xiangjun

    2016-01-01

    The corneal damage effects induced by 1319-nm transitional near-infrared laser have been investigated for years. However, the damage threshold dependence on exposure duration has not been revealed. The in vivo corneal damage thresholds (ED50s) were determined in New Zealand rabbits for 1319-nm laser radiation for exposure durations from 75 ms to 10 s. An additional corneal ED50 was determined at 1338 nm for a 5-ms exposure. The incident corneal irradiance diameter was fixed at 2 mm for all exposure conditions to avoid the influence of spot size on threshold. The ED50s given in terms of the corneal radiant exposure for exposure durations of 5 ms, 75 ms, 0.35 s, 2 s, and 10 s were 39.4, 51.5, 87.2, 156.3, and 311.1 J/cm2, respectively. The 39.4 J/cm2 was derived from the ED50 for 1338 nm (27.0 J/cm2). The ED50s for exposure durations of 75 ms to 10 s were correlated by a power law equation, ED50=128.9t0.36 in J/cm2, where t was the input in the unit of second, with correlation coefficient (R) of 0.997. Enough safe margins existed between the ED50s and the maximum permitted exposures from current laser safety standard.

  4. Structural Damage Prediction and Analysis for Hypervelocity Impact: Consulting

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A portion of the contract NAS8-38856, 'Structural Damage Prediction and Analysis for Hypervelocity Impacts,' from NASA Marshall Space Flight Center (MSFC), included consulting which was to be documented in the final report. This attachment to the final report contains memos produced as part of that consulting.

  5. Force Criterion Prediction of Damage for Carbon/Epoxy Composite Panels Impacted by High Velocity Ice

    NASA Astrophysics Data System (ADS)

    Rhymer, Jennifer D.

    The use of advanced fiber-reinforced polymer matrix composites in load-bearing aircraft structures is increasing, as evident by the various composites-intensive transport aircraft presently under development. A major impact source of concern for these structures is hail ice, which affects design and skin-sizing (skin thickness determination) at various locations of the aircraft. Impacts onto composite structures often cause internal damage that is not visually detectable due to the high strength and resiliency of the composite material (unlike impacts onto metallic structures). This internal damage and its effect on the performance of the structure are of great concern to the aircraft industry. The prediction of damage in composite structures due to SHI impact has been accomplished via experimental work, explicit dynamic nonlinear finite element analysis (FEA) and the definition of design oriented relationships. Experiments established the critical threshold and corresponding analysis provided contact force results not readily measurable in high velocity SHI impact experiments. The design oriented relationships summarize the FEA results and experimental database into contact force estimation curves that can be easily applied for damage prediction. Failure thresholds were established for the experimental conditions (panel thickness ranging from 1.56 to 4.66 mm and ice diameters from 38.1 to 61.0 mm). Additionally, the observations made by high-speed video during the impact event, and ultrasonic C-scan post-impact, showed how the ice failed during impact and the overall shape and location of the panel damage. Through analysis, the critical force, the force level where damage occurs above but not below, of a SHI impact onto the panel was found to be dependent only on the target structure. However, the peak force generated during impact was dependent on both the projectile and target. Design-oriented curves were generated allowing the prediction of the allowable

  6. Damage threshold of coating materials on x-ray mirror for x-ray free electron laser

    SciTech Connect

    Koyama, Takahisa Yumoto, Hirokatsu; Tono, Kensuke; Togashi, Tadashi; Inubushi, Yuichi; Katayama, Tetsuo; Yabashi, Makina; Ohashi, Haruhiko; Miura, Takanori; Kim, Jangwoo; Matsuyama, Satoshi; Yamauchi, Kazuto

    2016-05-15

    We evaluated the damage threshold of coating materials such as Mo, Ru, Rh, W, and Pt on Si substrates, and that of uncoated Si substrate, for mirror optics of X-ray free electron lasers (XFELs). Focused 1 μm (full width at half maximum) XFEL pulses with the energies of 5.5 and 10 keV, generated by the SPring-8 angstrom compact free electron laser (SACLA), were irradiated under the grazing incidence condition. The damage thresholds were evaluated by in situ measurements of X-ray reflectivity degradation during irradiation by multiple pulses. The measured damage fluences below the critical angles were sufficiently high compared with the unfocused SACLA beam fluence. Rh coating was adopted for two mirror systems of SACLA. One system was a beamline transport mirror system that was partially coated with Rh for optional utilization of a pink beam in the photon energy range of more than 20 keV. The other was an improved version of the 1 μm focusing mirror system, and no damage was observed after one year of operation.

  7. Fluence Thresholds for Laser-Induced Damage of Optical Components in the Injector Laser of the SSRL Gun Test Facility

    SciTech Connect

    Boton, P

    2005-01-31

    Damage threshold fluences for several optical components were measured at three wavelengths using the injector laser at SSRL's Gun Test Facility. Measurements were conducted using the fundamental ir wavelength at 1053 nanometers and harmonics at 526 nm and 263 nm with 3.4ps pulses (1/e{sup 2} full width intensity); ir measurements were also conducted with 850 ps pulses. Practical surfaces relevant to the laser system performance are emphasized. Damage onset was evidenced by an alteration of the specular reflection of a cw probe laser (650 nm) from the irradiated region of the target surface. For the case of stretched ir pulses, damage to a Nd:glass rod was observed to begin at a site within the bulk material and to progress back toward the incident surface.

  8. A Simple Method to Predict Threshold Shear Velocity in the Field

    NASA Astrophysics Data System (ADS)

    Li, J.; Okin, G. S.; Herrick, J. E.; Miller, M. E.; Munson, S. M.; Belnap, J.

    2009-12-01

    A very important parameter in predicting wind erosion is the threshold shear velocity, which is the minimal shear velocity required to initiate deflation of soil particles. Modeling and wind tunnel are primary methods in predicting threshold shear velocity. However, most models have limited applications in the presence of roughness elements, and running a wind tunnel in the field is labor-intensive and time-consuming. Soil crust (both physical and biological) is known to be a crucial factor affecting soil stability and threshold shear velocity. In this report, a simple and portable field method was tested in multiple locations of Utah for the estimation of threshold shear velocity. This method includes measuring size of holes (length and width) induced by shooting a “bullet ball” or “BB” gun, applying a pocket penetrometer, and a torvane on soil surface in the field. In the first stage of the experiment, a conventional wind tunnel was run in combination with BB gun, penetrometer, and torvane in field conditions for a range of soil texture. Results from both the BB gun and penetrometer applied at 45 degree to the ground were significantly correlated with the threshold shear velocity obtained using the wind tunnel (R2=0.70, P<0.001). In the second stage, BB gun and penetrometer method was applied to a serial of sites which have BSNE wind erosion monitors and known horizontal sediment fluxes. Our results showed that a combination of BB gun and penetrometer is able to provide decent prediction of threshold shear velocity in the presence of vegetation under different soil physical and biological conditions.

  9. Damage tolerance based life prediction in gas turbine engine blades under vibratory high cycle fatigue

    SciTech Connect

    Walls, D.P.; deLaneuville, R.E.; Cunningham, S.E.

    1997-01-01

    A novel fracture mechanics approach has been used to predict crack propagation lives in gas turbine engine blades subjected to vibratory high cycle fatigue (HCF). The vibratory loading included both a resonant mode and a nonresonant mode, with one blade subjected to only the nonresonant mode and another blade to both modes. A life prediction algorithm was utilized to predict HCF propagation lives for each case. The life prediction system incorporates a boundary integral element (BIE) derived hybrid stress intensity solution, which accounts for the transition from a surface crack to corner crack to edge crack. It also includes a derivation of threshold crack length from threshold stress intensity factors to give crack size limits for no propagation. The stress intensity solution was calibrated for crack aspect ratios measured directly from the fracture surfaces. The model demonstrates the ability to correlate predicted missions to failure with values deduced from fractographic analysis. This analysis helps to validate the use of fracture mechanics approaches for assessing damage tolerance in gas turbine engine components subjected to combined steady and vibratory stresses.

  10. A Progressive Damage Model for Predicting Permanent Indentation and Impact Damage in Composite Laminates

    NASA Astrophysics Data System (ADS)

    Ji, Zhaojie; Guan, Zhidong; Li, Zengshan

    2016-12-01

    In this paper, a progressive damage model was established on the basis of ABAQUS software for predicting permanent indentation and impact damage in composite laminates. Intralaminar and interlaminar damage was modelled based on the continuum damage mechanics (CDM) in the finite element model. For the verification of the model, low-velocity impact tests of quasi-isotropic laminates with material system of T300/5228A were conducted. Permanent indentation and impact damage of the laminates were simulated and the numerical results agree well with the experiments. It can be concluded that an obvious knee point can be identified on the curve of the indentation depth versus impact energy. Matrix cracking and delamination develops rapidly with the increasing impact energy, while considerable amount of fiber breakage only occurs when the impact energy exceeds the energy corresponding to the knee point. Predicted indentation depth after the knee point is very sensitive to the parameter μ which is proposed in this paper, and the acceptable value of this parameter is in range from 0.9 to 1.0.

  11. Threshold Values for Identification of Contamination Predicted by Reduced-Order Models

    SciTech Connect

    Last, George V.; Murray, Christopher J.; Bott, Yi-Ju; Brown, Christopher F.

    2014-12-31

    The U.S. Department of Energy’s (DOE’s) National Risk Assessment Partnership (NRAP) Project is developing reduced-order models to evaluate potential impacts on underground sources of drinking water (USDWs) if CO2 or brine leaks from deep CO2 storage reservoirs. Threshold values, below which there would be no predicted impacts, were determined for portions of two aquifer systems. These threshold values were calculated using an interwell approach for determining background groundwater concentrations that is an adaptation of methods described in the U.S. Environmental Protection Agency’s Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities.

  12. Threshold Values for Identification of Contamination Predicted by Reduced-Order Models

    DOE PAGES

    Last, George V.; Murray, Christopher J.; Bott, Yi-Ju; ...

    2014-12-31

    The U.S. Department of Energy’s (DOE’s) National Risk Assessment Partnership (NRAP) Project is developing reduced-order models to evaluate potential impacts on underground sources of drinking water (USDWs) if CO2 or brine leaks from deep CO2 storage reservoirs. Threshold values, below which there would be no predicted impacts, were determined for portions of two aquifer systems. These threshold values were calculated using an interwell approach for determining background groundwater concentrations that is an adaptation of methods described in the U.S. Environmental Protection Agency’s Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities.

  13. A methodology to predict damage initiation, damage growth and residual strength in titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Johnson, W. S.

    1994-01-01

    In this research, a methodology to predict damage initiation, damage growth, fatigue life, and residual strength in titanium matrix composites (TMC) is outlined. Emphasis was placed on micromechanics-based engineering approaches. Damage initiation was predicted using a local effective strain approach. A finite element analysis verified the prevailing assumptions made in the formulation of this model. Damage growth, namely, fiber-bridged matrix crack growth, was evaluated using a fiber bridging (FB) model which accounts for thermal residual stresses. This model combines continuum fracture mechanics and micromechanics analyses yielding stress-intensity factor solutions for fiber-bridged matrix cracks. It is assumed in the FB model that fibers in the wake of the matrix crack are idealized as a closure pressure, and an unknown constant frictional shear stress is assumed to act along the debond length of the bridging fibers. This frictional shear stress was used as a curve fitting parameter to the available experimental data. Fatigue life and post-fatigue residual strength were predicted based on the axial stress in the first intact 0 degree fiber calculated using the FB model and a three-dimensional finite element analysis.

  14. Wing Leading Edge RCC Rapid Response Damage Prediction Tool (IMPACT2)

    NASA Technical Reports Server (NTRS)

    Clark, Robert; Cottter, Paul; Michalopoulos, Constantine

    2013-01-01

    This rapid response computer program predicts Orbiter Wing Leading Edge (WLE) damage caused by ice or foam impact during a Space Shuttle launch (Program "IMPACT2"). The program was developed after the Columbia accident in order to assess quickly WLE damage due to ice, foam, or metal impact (if any) during a Shuttle launch. IMPACT2 simulates an impact event in a few minutes for foam impactors, and in seconds for ice and metal impactors. The damage criterion is derived from results obtained from one sophisticated commercial program, which requires hours to carry out simulations of the same impact events. The program was designed to run much faster than the commercial program with prediction of projectile threshold velocities within 10 to 15% of commercial-program values. The mathematical model involves coupling of Orbiter wing normal modes of vibration to nonlinear or linear springmass models. IMPACT2 solves nonlinear or linear impact problems using classical normal modes of vibration of a target, and nonlinear/ linear time-domain equations for the projectile. Impact loads and stresses developed in the target are computed as functions of time. This model is novel because of its speed of execution. A typical model of foam, or other projectile characterized by material nonlinearities, impacting an RCC panel is executed in minutes instead of hours needed by the commercial programs. Target damage due to impact can be assessed quickly, provided that target vibration modes and allowable stress are known.

  15. Wearable Lactate Threshold Predicting Device is Valid and Reliable in Runners.

    PubMed

    Borges, Nattai R; Driller, Matthew W

    2016-08-01

    Borges, NR and Driller, MW. Wearable lactate threshold predicting device is valid and reliable in runners. J Strength Cond Res 30(8): 2212-2218, 2016-A commercially available device claiming to be the world's first wearable lactate threshold predicting device (WLT), using near-infrared LED technology, has entered the market. The aim of this study was to determine the levels of agreement between the WLT-derived lactate threshold workload and traditional methods of lactate threshold (LT) calculation and the interdevice and intradevice reliability of the WLT. Fourteen (7 male, 7 female; mean ± SD; age: 18-45 years, height: 169 ± 9 cm, mass: 67 ± 13 kg, V[Combining Dot Above]O2max: 53 ± 9 ml·kg·min) subjects ranging from recreationally active to highly trained athletes completed an incremental exercise test to exhaustion on a treadmill. Blood lactate samples were taken at the end of each 3-minute stage during the test to determine lactate threshold using 5 traditional methods from blood lactate analysis which were then compared against the WLT predicted value. In a subset of the population (n = 12), repeat trials were performed to determine both inter-reliability and intrareliability of the WLT device. Intraclass correlation coefficient (ICC) found high to very high agreement between the WLT and traditional methods (ICC > 0.80), with TEMs and mean differences ranging between 3.9-10.2% and 1.3-9.4%. Both interdevice and intradevice reliability resulted in highly reproducible and comparable results (CV < 1.2%, TEM <0.2 km·h, ICC > 0.97). This study suggests that the WLT is a practical, reliable, and noninvasive tool for use in predicting LT in runners.

  16. Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength

    SciTech Connect

    Hau-Riege, S; London, R A; Bionta, R M; McKernan, M A; Baker, S L; Krzywinski, J; Sobierajski, R; Nietubyc, R; Pelka, J B; Jurek, M; Klinger, D; Juha, L; Chalupsky, J; Cihelka, J; Hajkova, V; Koptyaev, S; Velyhan, A; Krasa, J; Kuba, J; Tiedtke, K; Toleikis, S; Tschentscher, T; Wabnitz, H; Bergh, M; Caleman, C; Sokolowski-Tinten, K; Stojanovic, N; Zastrau, U; Tronnier, A; Meyer-ter-Vehn, J

    2007-12-03

    We exposed samples of B4C, amorphous C, chemical-vapor-deposition (CVD)-diamond C, Si, and SiC to single 25 fs-long pulses of 32.5 nm free-electron-laser radiation at fluences of up to 2.2 J/cm{sup 2}. The samples were chosen as candidate materials for x-ray free electron laser (XFEL) optics. We found that the threshold for surface-damage is on the order of the fluence required for thermal melting. For larger fluences, the crater depths correspond to temperatures on the order of the critical temperature, suggesting that the craters are formed by two-phase vaporization [1]. XFELs have the promise of producing extremely high-intensity ultrashort pulses of coherent, monochromatic radiation in the 1 to 10 keV regime. The expected high output fluence and short pulse duration pose significant challenges to the optical components, including radiation damage. It has not been possible to obtain direct experimental verification of the expected damage thresholds since appropriate x-ray sources are not yet available. FLASH has allowed us to study the interaction of high-fluence short-duration photon pulses with materials at the shortest wavelength possible to date. With these experiments, we have come closer to the extreme conditions expected in XFEL-matter interaction scenarios than previously possible.

  17. Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization

    DOE PAGES

    Saha, Sourabh K.; Divin, Chuck; Cuadra, Jefferson A.; ...

    2017-05-12

    Two-photon polymerization (TPP) is a laser writing process that enables fabrication of millimeter scale three-dimensional (3D) structures with submicron features. In TPP, writing is achieved via nonlinear two-photon absorption that occurs at high laser intensities. Thus, it is essential to carefully select the incident power to prevent laser damage during polymerization. Currently, the feasible range of laser power is identified by writing small test patterns at varying power levels. Here in this paper, we demonstrate that the results of these tests cannot be generalized, because the damage threshold power depends on the proximity of features and reduces by as muchmore » as 47% for overlapping features. We have identified that this reduction occurs primarily due to an increase in the single-photon absorptivity of the resin after curing. We have captured the damage from proximity effects via X-ray 3D computed tomography (CT) images of a non-homogenous part that has varying feature density. Part damage manifests as internal spherical voids that arise due to boiling of the resist. We have empirically quantified this proximity effect by identifying the damage threshold power at different writing speeds and feature overlap spacings. In addition, we present a first-order analytical model that captures the scaling of this proximity effect. Based on this model and the experiments, we have identified that the proximity effect is more significant at high writing speeds; therefore, it adversely affects the scalability of manufacturing. The scaling laws and the empirical data generated here can be used to select the appropriate TPP writing parameters.« less

  18. Development of post-fire crown damage mortality thresholds in ponderosa pine

    Treesearch

    James F. Fowler; Carolyn Hull Sieg; Joel McMillin; Kurt K. Allen; Jose F. Negron; Linda L. Wadleigh; John A. Anhold; Ken E. Gibson

    2010-01-01

    Previous research has shown that crown scorch volume and crown consumption volume are the major predictors of post-fire mortality in ponderosa pine. In this study, we use piecewise logistic regression models of crown scorch data from 6633 trees in five wildfires from the Intermountain West to locate a mortality threshold at 88% scorch by volume for trees with no crown...

  19. Fiber composite structural durability and damage tolerance: Simplified predictive methods

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Ginty, Carol A.

    1987-01-01

    Simplified predictive methods and models (theory) to evaluate fiber/polymer-matrix composite material for determining structural durability and damage tolerance are presented and described. This theory includes equations for (1) fatigue and fracture of composites without and with defects, (2) impact resistance and residual strength after impact, (3) thermal fatigue, and (4) combined stress fatigue. Several examples are included to illustrate applications of the theory and to identify significant parameters and sensitivities. Comparisons with limited experimental data are made.

  20. Museum specimen data predict crop damage by tropical rodents

    PubMed Central

    Sánchez-Cordero, Víctor; Martínez-Meyer, Enrique

    2000-01-01

    Museum collections constitute a massive store of information on biological diversity. We used museum specimen data to generate ecological niche models that provide predictions of geographic distributions of native rodent pest species and agricultural census data that summarize the geographic distribution of nine crops in the state of Veracruz, Mexico, as well as crop losses between planting and harvest. Herein, we show that crop damage is related significantly to the predicted presence of rodent species for seven of nine crops. Museum collections may thus provide important baseline information for designing land-use and agricultural pest-management programs. PMID:10860973

  1. A prediction model for ocular damage - Experimental validation.

    PubMed

    Heussner, Nico; Vagos, Márcia; Spitzer, Martin S; Stork, Wilhelm

    2015-08-01

    With the increasing number of laser applications in medicine and technology, accidental as well as intentional exposure of the human eye to laser sources has become a major concern. Therefore, a prediction model for ocular damage (PMOD) is presented within this work and validated for long-term exposure. This model is a combination of a raytracing model with a thermodynamical model of the human and an application which determines the thermal damage by the implementation of the Arrhenius integral. The model is based on our earlier work and is here validated against temperature measurements taken with porcine eye samples. For this validation, three different powers were used: 50mW, 100mW and 200mW with a spot size of 1.9mm. Also, the measurements were taken with two different sensing systems, an infrared camera and a fibre optic probe placed within the tissue. The temperatures were measured up to 60s and then compared against simulations. The measured temperatures were found to be in good agreement with the values predicted by the PMOD-model. To our best knowledge, this is the first model which is validated for both short-term and long-term irradiations in terms of temperature and thus demonstrates that temperatures can be accurately predicted within the thermal damage regime. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Residual Strength Prediction of Fuselage Structures with Multiple Site Damage

    NASA Technical Reports Server (NTRS)

    Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1999-01-01

    This paper summarizes recent results on simulating full-scale pressure tests of wide body, lap-jointed fuselage panels with multiple site damage (MSD). The crack tip opening angle (CTOA) fracture criterion and the FRANC3D/STAGS software program were used to analyze stable crack growth under conditions of general yielding. The link-up of multiple cracks and residual strength of damaged structures were predicted. Elastic-plastic finite element analysis based on the von Mises yield criterion and incremental flow theory with small strain assumption was used. A global-local modeling procedure was employed in the numerical analyses. Stress distributions from the numerical simulations are compared with strain gage measurements. Analysis results show that accurate representation of the load transfer through the rivets is crucial for the model to predict the stress distribution accurately. Predicted crack growth and residual strength are compared with test data. Observed and predicted results both indicate that the occurrence of small MSD cracks substantially reduces the residual strength. Modeling fatigue closure is essential to capture the fracture behavior during the early stable crack growth. Breakage of a tear strap can have a major influence on residual strength prediction.

  3. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and Kappa

    Treesearch

    Elizabeth A. Freeman; Gretchen G. Moisen

    2008-01-01

    Modelling techniques used in binary classification problems often result in a predicted probability surface, which is then translated into a presence - absence classification map. However, this translation requires a (possibly subjective) choice of threshold above which the variable of interest is predicted to be present. The selection of this threshold value can have...

  4. Bulk growth, structure, optical properties and laser damage threshold of organic nonlinear optical crystals of Imidazolium L-Ascorbate

    NASA Astrophysics Data System (ADS)

    Saripalli, Ravi Kiran; Bhat, H. L.; Elizabeth, Suja

    2016-09-01

    Bulk, transparent organic nonlinear optical (NLO) single-crystals of imidazolium L-Ascorbate (ImLA) were grown using slow-evaporation. Crystal structure was determined by single crystal X-ray diffraction analysis. Preliminary linear optical measurements through UV-Visible and infrared spectroscopy revealed good optical transmittance and a low near-UV cutoff wavelength at 256 nm. Kurtz and Perry powder test revealed that ImLA is a phase-matchable NLO material with a second harmonic generation (SHG) efficiency of 1.2 times larger than that of standard KH2PO4 (KDP). Laser damage thresholds were determined for ImLA.

  5. Investigations on growth, structure, optical properties and laser damage threshold of organic nonlinear optical crystals of Guanidinium L-Ascorbate

    NASA Astrophysics Data System (ADS)

    Saripalli, Ravi K.; Kumar, Sanath; Bhat, H. L.; Elizabeth, Suja

    2015-05-01

    Single crystals of Guanidinium L-Ascorbate (GuLA) were grown and crystal structure was determined by direct methods. GuLA crystallizes in orthorhombic, non-centrosymmetric space group P212121. The UV-cutoff was determined as 325 nm. The morphology was generated and the interplanar angles estimated and compared with experimental values. Second harmonic generation conversion efficiency was measured and compared with other salts of L-Ascorbic acid. Surface laser damage threshold was calculated as 11.3GW/cm2 for a single shot of laser of 1064 nm wavelength.

  6. Investigation on the damage threshold of films coated on various silicate, fluorophosphate and phosphate laser glasses. Final report, January 1, 1979-August 29, 1980

    SciTech Connect

    Nakajima, Y; Izumitani, T

    1980-01-01

    Effects of substrate laser glass on the damage threshold and adhesion of dielectric films has been studied in order to improve the damage threshold. The study is divided into two parts: the first part dealing with four types of laser glass, LSG-91H silicate, LHG-8 phosphate, P-1 phosphate and LHG-10 fluorophosphate; the second part dealing with twenty-six glasses with systematically modified compositions in three glass systems, silicate, phosphate and fluorophosphate.

  7. The infrared spectra and laser damage threshold of the fused silica after megacoustic field assisted hydrofluoric-based etching

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Yang, Ke; Yao, Caizhen; Wang, Zhiqiang; Yuan, Xiaodong; Yan, Hongwei; Ju, Xin; Yang, Liming

    2017-05-01

    The laser-induced damage of fused silica optics significantly restricts the output ability of large laser systems. Hydrofluoric (HF)-based etching is an effective processing to eliminate impurities and mitigate subsurface defects. Traditional polished fused silica samples were etched for different time in a HF-based etchant (2.3% HF and 11.4% NH4F) assisted by a 1.3 MHz megacoustic field. The laser-induced damage thresholds (LIDT) were measured by R-on-1 method, and fourier transform infrared absorption spectras of the samples were obtained. The results of the LIDT demonstrated that the LIDTs of the fused silica samples increased after megacoustic field assisted etching. The more surface materials were removed, the higher LIDT was obtained. The analysis of the infrared spectra illustrated that structural densification materials were removed during the etching, and thus the LIDT can be improved.

  8. Using the theoretical linear energy solvation energy relationship to correlate and predict nasal pungency thresholds.

    PubMed

    Famini, George R; Aguiar, Denise; Payne, Marvin A; Rodriquez, Ryan; Wilson, Leland Y

    2002-01-01

    The theoretical linear solvation energy relationship (TLSER) has been used to correlate and characterize 44 nasal pungency threshold (NPT) values in man with parameters derived from semi-empirical molecular orbital theory. The resulting relationship provides good correlative (R2 > 0.92) and predictive (R2cy > 0.88) capability. In addition, the TLSER parameters are used as a molecular probe to attempt to understand the fundamental properties influencing nasal pungency.

  9. Prediction of the aroma quality and the threshold values of some pyrazines using artificial neural networks.

    PubMed

    Wailzer, B; Klocker, J; Buchbauer, G; Ecker, G; Wolschann, P

    2001-08-16

    An artificial neural network is used to predict both the classification of aroma compounds and their flavor impression threshold values for a series of pyrazines. The classification set consists of 98 compounds (32 green, 43 bell-pepper, and 23 nutty smelling pyrazines), and the regression sets consist of 24 green and 37 bell-pepper odorous pyrazines. The best classification of the three aroma impressions (93.7%) is obtained by using a multilayer perceptron network architecture. To predict the threshold values of bell-pepper fragrance, a standard Pearson R correlation coefficient of 0.936 for the training set, 0.912 for the verification set, and 0.926 for the test set is received with two hidden layers consisting of two and one neurons. The network for the threshold prediction of the class of green-smelling pyrazines with one hidden layer containing three neurons turns out to be the best with a standard Pearson R correlation coefficient of 0.859 for the training, 0.918 for the verification, and 0.948 for the test set. These good correlations show that artificial neural networks are versatile tools for the classification of aroma compounds.

  10. Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; Huang, Zhimeng; Zhang, Dayong; Luo, Fei; Huang, Lixian; Li, Yanglong; Luo, Yongquan; Wang, Weiping; Zhao, Xiangjie

    2011-12-01

    Laser-induced-damage characteristics of commercial indium-tin oxide (ITO) films deposited by DC magnetron sputtering deposition on K9 glass substrates as a function of the film thickness have been studied at 1064 nm with a 10 ns laser pulse in the 1-on-1 mode, and the various mechanisms for thickness effect on laser-induced-damage threshold (LIDT) of the film have been discussed in detail. It is observed that laser-damage-resistance of ITO film shows dramatic thickness effect with the LIDT of the 50-nm ITO film 7.6 times as large as the value of 300 nm film, and the effect of depressed carrier density by decreasing the film thickness is demonstrated to be the primary reason. Our experiment findings indicate that searching transparent conductive oxide (TCO) film with low carrier density and high carrier mobility is an efficient technique to improve the laser-damage-resistance of TCO films based on maintaining their well electric conductivity.

  11. Threshold Models for Genome-Enabled Prediction of Ordinal Categorical Traits in Plant Breeding

    PubMed Central

    Montesinos-López, Osval A.; Montesinos-López, Abelardo; Pérez-Rodríguez, Paulino; de los Campos, Gustavo; Eskridge, Kent; Crossa, José

    2014-01-01

    Categorical scores for disease susceptibility or resistance often are recorded in plant breeding. The aim of this study was to introduce genomic models for analyzing ordinal characters and to assess the predictive ability of genomic predictions for ordered categorical phenotypes using a threshold model counterpart of the Genomic Best Linear Unbiased Predictor (i.e., TGBLUP). The threshold model was used to relate a hypothetical underlying scale to the outward categorical response. We present an empirical application where a total of nine models, five without interaction and four with genomic × environment interaction (G×E) and genomic additive × additive × environment interaction (G×G×E), were used. We assessed the proposed models using data consisting of 278 maize lines genotyped with 46,347 single-nucleotide polymorphisms and evaluated for disease resistance [with ordinal scores from 1 (no disease) to 5 (complete infection)] in three environments (Colombia, Zimbabwe, and Mexico). Models with G×E captured a sizeable proportion of the total variability, which indicates the importance of introducing interaction to improve prediction accuracy. Relative to models based on main effects only, the models that included G×E achieved 9–14% gains in prediction accuracy; adding additive × additive interactions did not increase prediction accuracy consistently across locations. PMID:25538102

  12. Damage Thresholds for Exposure to NIR and Blue Lasers in an In Vitro RPE Cell System

    DTIC Science & Technology

    2006-07-01

    vivo results. Thresholds for both blue exposures (cw and ml) were identical. Overnight treatment of cells with ascorbic acid (AA) minimized cell...experiments, cells received 2 mM ascorbic acid (AA; BP351-500; Fisher Scientific, Fair Lawn, ND or 1 mM A’-acetyl-L- cysteine (NAC; A9165, Sigma...Aldrich) in fresh complete medium 18 to 20 hours before exposures. Ascorbic acid serves as a well-known physiological antioxidant in the RPE layer,23

  13. Life prediction modeling based on cyclic damage accumulation

    NASA Technical Reports Server (NTRS)

    Nelson, Richard S.

    1988-01-01

    A high temperature, low cycle fatigue life prediction method was developed. This method, Cyclic Damage Accumulation (CDA), was developed for use in predicting the crack initiation lifetime of gas turbine engine materials, where initiation was defined as a 0.030 inch surface length crack. A principal engineering feature of the CDA method is the minimum data base required for implementation. Model constants can be evaluated through a few simple specimen tests such as monotonic loading and rapic cycle fatigue. The method was expanded to account for the effects on creep-fatigue life of complex loadings such as thermomechanical fatigue, hold periods, waveshapes, mean stresses, multiaxiality, cumulative damage, coatings, and environmental attack. A significant data base was generated on the behavior of the cast nickel-base superalloy B1900+Hf, including hundreds of specimen tests under such loading conditions. This information is being used to refine and extend the CDA life prediction model, which is now nearing completion. The model is also being verified using additional specimen tests on wrought INCO 718, and the final version of the model is expected to be adaptable to most any high-temperature alloy. The model is currently available in the form of equations and related constants. A proposed contract addition will make the model available in the near future in the form of a computer code to potential users.

  14. Crash injury prediction and vehicle damage reporting by paramedics.

    PubMed

    Vaca, Federico E; Anderson, Craig L; Herrera, Harold; Patel, Chirag; Silman, Eric F; Deguzman, Rhian; Lahham, Shadi; Kohl, Vanessa

    2009-05-01

    The accuracy of pre-hospital crash scene details and crash victim assessment has important implications for initial trauma care assessment and management. Similarly, it is known to influence physician perception of crash victim injury severity. The goal of this feasibility study was to examine paramedic accuracy in predicting crash victim injury profile, disability outcome at hospital discharge, and reporting vehicle damage with other crash variables. This prospective case series study was undertaken at a Southern California, Level I trauma center certified by the American College of Surgeons. Paramedics transporting crash injured motor vehicle occupants to our emergency department (ED)/trauma center were surveyed. We abstracted ED and in-patient records of injured vehicle occupants. Vehicle and crash scene data were obtained from a professional crash reconstruction, which included the assessment of deformation, crash forces, change in velocity, and the source of each injury. We used survey, injury, and crash reconstruction data from 22 collision cases in the final analysis. The median Injury Severity Score (ISS) was five (range 1-24). No enrolled patients died, and none were severely disabled at the time of discharge from the hospital. The paramedic crash injury severity predictions were sensitive for an Abbreviated Injury Scale (AIS) of 2-4. Paramedics often agreed with the crash reconstruction on restraint use, ejection, and other fatalities at the scene, and had lower levels of agreement for front airbag deployment, steering wheel damage, and window/windshield impact. Paramedics had 80% accuracy in predicting any disability at the time of hospital discharge. Paramedic prediction of injury profile was sensitive, and prediction of disability outcome at discharge was accurate when compared to discharge diagnosis. Their reporting of vehicle specific crash variables was less accurate. Further study should be undertaken to assess the benefits of crash biomechanics

  15. Predictive value of facial nerve electrophysiologic stimulation thresholds in cerebellopontine-angle surgery.

    PubMed

    Selesnick, S H; Carew, J F; Victor, J D; Heise, C W; Levine, J

    1996-05-01

    The predictive value of intraoperative stimulation thresholds for facial nerve function, using a constant-current system, was examined in 49 patients undergoing resection of cerebellopontine-angle tumors. Immediately after surgery, 75% of the 0.1-mA threshold group, 42% of the 0.2-mA group, and 18% of the 0.3-mA or greater group had good (grade I or II) facial nerve function. One year after surgery, 90% of the 0.1-mA group, 58% of the 0.2-mA group, and 41% of the 0.3-mA or greater group had grade I or II function. A statistically significant breakpoint of 0.2 mA was found to predict good postoperative facial function. Delayed facial paralysis occurred in 22% of patients, but the prognosis for these patients was favorable. Both current stimulation threshold and duration are necessary for a meaningful comparison of data between investigators.

  16. Energy Thresholds of DNA Damage Induced by UV Radiation: An XPS Study.

    PubMed

    Gomes, P J; Ferraria, A M; Botelho do Rego, A M; Hoffmann, S V; Ribeiro, P A; Raposo, M

    2015-04-30

    This work stresses on damage at the molecular level caused by ultraviolet radiation (UV) in the range from 3.5 to 8 eV, deoxyribonucleic acid (DNA) films observed by X-ray photoelectron spectroscopy (XPS). Detailed quantitative XPS analysis, in which all the amounts are relative to sodium-assumed not to be released from the samples, of the carbon, oxygen, and particularly, nitrogen components, reveals that irradiation leads to sugar degradation with CO-based compounds release for energies above 6.9 eV and decrease of nitrogen groups which are not involved in hydrogen bonding at energies above 4.2 eV. Also the phosphate groups are seen to decrease to energies above 4.2 eV. Analysis of XPS spectra allowed to conclude that the damage on bases peripheral nitrogen atoms are following the damage on phosphates. It suggests that very low kinetic energy photoelectrons are ejected from the DNA bases, as a result of UV light induced breaking of the phosphate ester groups which forms a transient anion with resonance formation and whereby most of the nitrogen DNA peripheral groups are removed. The degree of ionization of DNA was observed to increase with radiation energy, indicating that the ionized phosphate groups are kept unchanged. This result was interpreted by the shielding of phosphate groups caused by water molecules hydration near sodium atoms.

  17. Implications of the corneal temperature range in the prediction of laser thermal damage. [Monkeys

    SciTech Connect

    Mikesell, G.W. Jr.; Schepler, K.L.

    1980-04-01

    Corneal temperatures of the rhesus monkeys have been measured under conditions that may exist during laser experiments. The minimum and maximum temperatures found for all experimental conditions were 29.54/sup 0/C and 39.16/sup 0/C, respectively, a range of 9.62/sup 0/C. A computer model of thermal damage due to laser irradiation was used to determine the effect varying initial temperature could have on corneal damage thresholds (ED50's). The range of 9.62/sup 0/C found in monkeys for all experimental conditions corresponded to a 39% difference in threshold power. The dependence of damage thresholds on initial temperature could be an important factor to consider when basing laser safety standards on damage threshold data.

  18. Investigating the relationship between material properties and laser-induced damage threshold of dielectric optical coatings at 1064 nm

    NASA Astrophysics Data System (ADS)

    Bassiri, Riccardo; Clark, Caspar; Martin, Iain W.; Markosyan, Ashot; Murray, Peter G.; Tessmer, Joseph; Rowan, Sheila; Fejer, Martin M.

    2015-11-01

    The Laser Induced Damage Threshold (LIDT) and material properties of various multi-layer amorphous dielectric optical coatings, including Nb2O5, Ta2O5, SiO2, TiO2, ZrO2, AlN, SiN, LiF and ZnSe, have been studied. The coatings were produced by ion assisted electron beam and thermal evaporation; and RF and DC magnetron sputtering at Helia Photonics Ltd, Livingston, UK. The coatings were characterized by optical absorption measurements at 1064 nm by Photothermal Common-path Interferometry (PCI). Surface roughness and damage pits were analyzed using atomic force microscopy. LIDT measurements were carried out at 1064 nm, with a pulse duration of 9.6 ns and repetition rate of 100 Hz, in both 1000-on-1 and 1-on-1 regimes. The relationship between optical absorption, LIDT and post-deposition heat-treatment is discussed, along with analysis of the surface morphology of the LIDT damage sites showing both coating and substrate failure.

  19. Improvement on laser-induced damage threshold of sol-gel ZrO(2) coatings by crystal structure tuning.

    PubMed

    Wang, Xiaodong; Wu, Guangming; Zhou, Bin; Shen, Jun

    2012-10-22

    With the development and construction of high peak power lasers it has become more and more important to improve the laser-induced damage threshold (LIDT) of optical coatings. In this paper, ZrO(2) coatings were deposited by sol-gel dip-coating method and further treated by conventional furnace annealing (CFA) and rapid thermal annealing (RTA) at different temperatures. By measuring the Raman spectra, optical constants and LIDT, the influence of annealing on the crystal structures, refractive indices, laser-induced damage characters of ZrO(2) coatings were analyzed. The results show that RTA is effective in tuning the crystal structures of ZrO(2) coatings. Lattice mismatch between monoclinic and tetragonal phases happened on CFA treated film reduces its refractive index, hence the film annealed by RTA at 800 °C realizes a higher refractive index. Compared with CFA annealed films, RTA annealed films were no more susceptible to laser damage due to their crystal structure difference caused lager band gap.

  20. Extended speech intelligibility index for the prediction of the speech reception threshold in fluctuating noise.

    PubMed

    Rhebergen, Koenraad S; Versfeld, Niek J; Dreschler, Wouter A

    2006-12-01

    The extension to the speech intelligibility index (SII; ANSI S3.5-1997 (1997)) proposed by Rhebergen and Versfeld [Rhebergen, K.S., and Versfeld, N.J. (2005). J. Acoust. Soc. Am. 117(4), 2181-2192] is able to predict for normal-hearing listeners the speech intelligibility in both stationary and fluctuating noise maskers with reasonable accuracy. The extended SII model was validated with speech reception threshold (SRT) data from the literature. However, further validation is required and the present paper describes SRT experiments with nonstationary noise conditions that are critical to the extended model. From these data, it can be concluded that the extended SII model is able to predict the SRTs for the majority of conditions, but that predictions are better when the extended SII model includes a function to account for forward masking.

  1. PREDICTING APHASIA TYPE FROM BRAIN DAMAGE MEASURED WITH STRUCTURAL MRI

    PubMed Central

    Yourganov, Grigori; Smith, Kimberly G.; Fridriksson, Julius; Rorden, Chris

    2015-01-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca’s, Wernicke’s, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery. Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients’ aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. PMID:26465238

  2. Predicting aphasia type from brain damage measured with structural MRI.

    PubMed

    Yourganov, Grigori; Smith, Kimberly G; Fridriksson, Julius; Rorden, Chris

    2015-12-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca's, Wernicke's, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery (WAB). Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients' aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine - SVM) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas.

  3. A model to predict threshold concentrations for toxic effects of chlorinated benzenes in sediment

    SciTech Connect

    Fuchsman, P.C.; Duda, D.J.; Barber, T.R.

    1999-09-01

    A probabilistic model was developed to predict effects threshold concentrations for chlorinated benzenes in sediment. Based on published quantitative structure-activity relationships relating the toxicity of chlorinated benzenes to the degree of chlorination, congeners with the same number of chlorine substitutions were considered toxicologically equivalent. Hexachlorobenzene was excluded from the assessment based on a lack of aquatic toxicity at the water solubility limit. The equilibrium partitioning approach was applied in a probabilistic analysis to derive predicted effects thresholds (PETs) for each chlorinated benzene group, with model input distributions defined by published log K{sub ow} values and aquatic toxicity data extracted from the published literature. The probabilistic distributions of PETs generally increased with chlorination, with 20th percentile values ranging from 3.2 mg/kg{sub 1{degree}OC} for chlorobenzene to 67 mg/kg{sub 1%OC} for tetrachlorobenzene congeners. The toxicity of total chlorinated benzenes in sediment can be assessed by applying the PETs in a toxic index model, based on the assumption that multiple chlorinated benzene congeners will show approximately additive toxicity, as characteristic of nonpolar narcotic toxicants. The 20th percentile PET values are one to two orders of magnitude higher than published screening-level guidelines, suggesting that the screening-level guidelines will provide overly conservative assessments in most cases. Relevant spiked sediment toxicity data are very limited but seem consistent with the probabilistic model; additional testing could be conducted to confirm the model's predictions.

  4. Determination of scattering properties and damage thresholds in tissue using ultrafast laser ablation

    NASA Astrophysics Data System (ADS)

    Martin, Chris; Ben-Yakar, Adela

    2016-11-01

    Ultrafast laser surgery of tissue requires precise knowledge of the tissue's optical properties to control the extent of subsurface ablation. Here, we present a method to determine the scattering lengths, ℓs, and fluence thresholds, Fth, in multilayered and turbid tissue by finding the input energies required to initiate ablation at various depths in each tissue layer. We validated the method using tissue-mimicking phantoms and applied it to porcine vocal folds, which consist of an epithelial (ep) layer and a superficial lamina propia (SLP) layer. Across five vocal fold samples, we found ℓ=51.0±3.9 μm, F=1.78±0.08 J/cm2, ℓ=26.5±1.6 μm, and F=1.14±0.12 J/cm2. Our method can enable personalized determination of tissue optical properties in a clinical setting, leading to less patient-to-patient variability and more favorable outcomes in operations, such as femto-LASIK surgery.

  5. Using self-organizing maps to determine observation threshold limit predictions in highly variant data

    USGS Publications Warehouse

    Paganoni, C.A.; Chang, K.C.; Robblee, M.B.

    2006-01-01

    A significant data quality challenge for highly variant systems surrounds the limited ability to quantify operationally reasonable limits on the data elements being collected and provide reasonable threshold predictions. In many instances, the number of influences that drive a resulting value or operational range is too large to enable physical sampling for each influencer, or is too complicated to accurately model in an explicit simulation. An alternative method to determine reasonable observation thresholds is to employ an automation algorithm that would emulate a human analyst visually inspecting data for limits. Using the visualization technique of self-organizing maps (SOM) on data having poorly understood relationships, a methodology for determining threshold limits was developed. To illustrate this approach, analysis of environmental influences that drive the abundance of a target indicator species (the pink shrimp, Farfantepenaeus duorarum) provided a real example of applicability. The relationship between salinity and temperature and abundance of F. duorarum is well documented, but the effect of changes in water quality upstream on pink shrimp abundance is not well understood. The highly variant nature surrounding catch of a specific number of organisms in the wild, and the data available from up-stream hydrology measures for salinity and temperature, made this an ideal candidate for the approach to provide a determination about the influence of changes in hydrology on populations of organisms.

  6. Using self-organizing maps to determine observation threshold limit predictions in highly variant data

    NASA Astrophysics Data System (ADS)

    Paganoni, Christopher A.; Chang, K. C.; Robblee, Michael B.

    2006-05-01

    A significant data quality challenge for highly variant systems surrounds the limited ability to quantify operationally reasonable limits on the data elements being collected and provide reasonable threshold predictions. In many instances, the number of influences that drive a resulting value or operational range is too large to enable physical sampling for each influencer, or is too complicated to accurately model in an explicit simulation. An alternative method to determine reasonable observation thresholds is to employ an automation algorithm that would emulate a human analyst visually inspecting data for limits. Using the visualization technique of self-organizing maps (SOM) on data having poorly understood relationships, a methodology for determining threshold limits was developed. To illustrate this approach, analysis of environmental influences that drive the abundance of a target indicator species (the pink shrimp, Farfantepenaeus duorarum) provided a real example of applicability. The relationship between salinity and temperature and abundance of F. duorarum is well documented, but the effect of changes in water quality upstream on pink shrimp abundance is not well understood. The highly variant nature surrounding catch of a specific number of organisms in the wild, and the data available from up-stream hydrology measures for salinity and temperature, made this an ideal candidate for the approach to provide a determination about the influence of changes in hydrology on populations of organisms.

  7. Growth, structural, optical, thermal and laser damage threshold studies of an organic single crystal: 1,3,5 - triphenylbenzene (TPB)

    NASA Astrophysics Data System (ADS)

    Raja, R. Subramaniyan; Babu, G. Anandha; Ramasamy, P.

    2016-05-01

    Good quality single crystals of pure hydrocarbon 1,3,5-Triphenylbenzene (TPB) have been successfully grown using toluene as a solvent using controlled slow cooling solution growth technique. TPB crystallizes in orthorhombic structure with the space group Pna21. The structural perfection of the grown crystal has been analysed by high resolution X-ray diffraction measurements. The range and percentage of the optical transmission are ascertained by recording the UV-vis spectrum. Thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study its thermal properties. Powder second harmonic generation studies were carried out to explore its NLO properties. Laser damage threshold value has been determined using Nd:YAG laser operating at 1064 nm.

  8. Threshold for NIH stroke scale in predicting vessel occlusion and functional outcome after stroke thrombolysis.

    PubMed

    Cooray, Charith; Fekete, Klara; Mikulik, Robert; Lees, Kennedy R; Wahlgren, Nils; Ahmed, Niaz

    2015-08-01

    Data are limited on optimal threshold for baseline National Institutes of Health Stroke Scale in predicting outcome after stroke thrombolysis (intravenous thrombolysis). Finding thresholds for baseline National Institutes of Health Stroke Scale scores that predict functional outcome and baseline vessel occlusion. We analyzed 44 331 patients with available modified Rankin Scale score at three-months and 11 632 patients with computed tomography/magnetic resonance angiography documented vessel occlusion at baseline in the SITS-International Stroke Thrombolysis Register. Main outcomes were functional independency (modified Rankin Scale 0-2) at three-months and baseline vessel occlusion. We obtained area under the curves by receiver operating characteristic analysis and calculated multivariately adjusted odds ratio for the outcomes of interest based on baseline National Institutes of Health Stroke Scale scores. For functional independency, National Institutes of Health Stroke Scale scores of 12 (area under the curve 0·775) and for baseline vessel occlusion, scores of 11 (area under the curve 0·678) were optimal threshold values. For functional independency, adjusted odds ratio decreased to 0·07 (95% CI 0·05-0·11), and for presence of baseline occlusion, aOR increased to 3·28 (95% CI 3·04-3·58) for National Institutes of Health Stroke Scale scores 12 and 11, respectively, compared with National Institutes of Health Stroke Scale score 0. National Institutes of Health Stroke Scale thresholds decreased with time from stroke onset to imaging, with 2-3 points, respectively, if time to imaging exceeded three-hours. Ideally, all acute stroke patients should have immediate access to multimodal imaging. In reality these services are limited. Baseline National Institutes of Health Stroke Scale scores of 11 and 12 were identified as markers of baseline vessel occlusion and functional independency after intravenous thrombolysis, respectively. These values are time

  9. Effect of Imaging Parameter Thresholds on MRI Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer Subtypes

    PubMed Central

    Jones, Ella F.; Newitt, David C.; Kornak, John; Wilmes, Lisa J.; Esserman, Laura J.; Hylton, Nola M.

    2016-01-01

    The purpose of this study is to evaluate the predictive performance of magnetic resonance imaging (MRI) markers in breast cancer patients by subtype. Sixty-four patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy were enrolled in this study. Each patient received a dynamic contrast-enhanced (DCE-MRI) at baseline, after 1 cycle of chemotherapy and before surgery. Functional tumor volume (FTV), the imaging marker measured by DCE-MRI, was computed at various thresholds of percent enhancement (PEt) and signal-enhancement ratio (SERt). Final FTV before surgery and percent changes of FTVs at the early and final treatment time points were used to predict patients’ recurrence-free survival. The full cohort and each subtype defined by the status of hormone receptor and human epidermal growth factor receptor 2 (HR+/HER2-, HER2+, triple negative) were analyzed. Predictions were evaluated using the Cox proportional hazard model when PEt changed from 30% to 200% in steps of 10% and SERt changed from 0 to 2 in steps of 0.2. Predictions with high hazard ratios and low p-values were considered as strong. Different profiles of FTV as predictors for recurrence-free survival were observed in each breast cancer subtype and strong associations with survival were observed at different PEt/SERt combinations that resulted in different FTVs. Findings from this retrospective study suggest that the predictive performance of imaging markers based on FTV may be improved with enhancement thresholds being optimized separately for clinically-relevant subtypes defined by HR and HER2 receptor expression. PMID:26886725

  10. Borate protection of softwood from Coptotermes acinaciformis (Isoptera: Rhinotermitidae) damage: variation in protection thresholds explained.

    PubMed

    Peters, Brenton C; Fitzgerald, Christopher J

    2006-10-01

    Laboratory and field data reported in the literature are confusing with regard to "adequate" protection thresholds for borate timber preservatives. The confusion is compounded by differences in termite species, timber species and test methodology. Laboratory data indicate a borate retention of 0.5% mass/mass (m/m) boric acid equivalent (BAE) would cause > 90% termite mortality and restrict mass loss in test specimens to < or = 5%. Field data generally suggest that borate retentions appreciably > 0.5% m/m BAE are required. We report two field experiments with varying amounts of untreated feeder material in which Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae) responses to borate-treated radiata (Monterey) pine, Pinus radiata D. Don, were measured. The apparently conflicting results between laboratory and field data are explained by the presence or absence of untreated feeder material in the test environment. In the absence of untreated feeder material, wood containing 0.5% BAE provided adequate protection from Coptotermes sp., whereas in the presence of untreated feeder material, increased retentions were required. Furthermore, the retentions required increased with increased amounts of susceptible material present. Some termites, Nasutitermes sp. and Mastotermes darwiniensis Froggatt, for example, are borate-tolerant and borate timber preservatives are not a viable management option with these species. The lack of uniform standards for termite test methodology and assessment criteria for efficacy across the world is recognized as a difficulty with research into the performance of timber preservatives with termites. The many variables in laboratory and field assays make "prescriptive" standards difficult to recommend. The use of "performance" standards to define efficacy criteria ("adequate" protection) is discussed.

  11. Closing the loop: a spatial analysis to link observed environmental damage to predicted heavy metal emissions.

    PubMed

    Colgan, Anja; Hankard, Peter K; Spurgeon, David J; Svendsen, Claus; Wadsworth, Richard A; Weeks, Jason M

    2003-05-01

    In many cases, the link between industrial emissions and damage to the environment can only be inferred. The Environment Agency of the United Kingdom imposes emissions limits on industrial sites so that predicted concentrations and deposition rates remain below standard thresholds. Estimates of appropriate critical levels and loads are usually based on laboratory results and rarely estimate synergistic effects between pollutants or consider biological adaptation or selection in the target receptor organisms. The Avonmouth smelter has been emitting zinc and other heavy metals since 1929. It has been the subject of a number of detailed and synoptic studies, especially the impact on soil invertebrates. Damage was assessed using both physiological and ecological measurements. Two methods of spatial analysis were investigated, namely interpolation using standard geographical information system (GIS) operators and atmospheric dispersal modeling using an off-the-shelf model. Both methods can be used to compute contours (isolines) of predicted biological effect. Correlation results show that dispersal modeling is at least as good as kriging but requires much less data. This article demonstrates the usefulness of GIS and dispersal models as tools in decision making to determine the most suitable sampling sites in the assessment and monitoring of the impact of contamination around major point sources.

  12. Predicting weld solidification cracking using damage mechanics -- LDRD summary report

    SciTech Connect

    Dike, J.J.; Brooks, J.A.; Bammann, D.J.; Li, M.; Krafcik, J.S.; Yang, N.Y.C.

    1997-04-01

    This report summarizes the efforts to develop and validate a finite element based model to predict weld solidification cracking behavior. Such a model must capture the solidification behavior, the thermal behavior in the weld pool region, the material mechanical response, and some failure criteria to determine when solidification cracking will occur. For such a program to be successful, each aspect of the model had to be accurately modeled and verified since the output of one portion of the model served as the input to other portions of the model. A solidification model which includes dendrite tip and eutectic undercooling was developed and used in both the thermal and mechanical finite element analysis. High magnification video techniques were developed to measure strains for validation of the mechanical predictions using a strain rate and temperature dependent constitutive model. This model was coupled with a ductile void growth damage model and correlated with experimental observations to determine capabilities of predicting cracking response. A two phase (solid + liquid) material model was also developed that can be used to more accurately capture the mechanics of weld solidification cracking. In general, reasonable agreement was obtained between simulation and experiment for location of crack initiation and extent of cracking for 6061-T6 aluminum. 35 refs.

  13. Predicting the speech reception threshold of cochlear implant listeners using an envelope-correlation based measure.

    PubMed

    Yousefian, Nima; Loizou, Philipos C

    2012-11-01

    A modulation-based index is proposed for predicting speech intelligibility by cochlear implant (CI) listeners. The input to the proposed index are speech envelopes extracted using the individual CI user's daily strategy, and as such, this approach incorporates information about the number of active electrodes, shape of the compression function and electrical dynamic range. High correlation (r = 0.96) was achieved with the proposed index when evaluated with speech-reception thresholds (SRTs) obtained by CI users in steady and speech-masker conditions. This outcome suggests that the information contained in electrodograms seems to be sufficient for reliably predicting CI user's performance in noise. The proposed index can be used by clinicians to optimize the selection of fitting parameters of individual CI users for better performance in noise.

  14. Predicting the speech reception threshold of cochlear implant listeners using an envelope-correlation based measure

    PubMed Central

    Yousefian, Nima; Loizou, Philipos C.

    2012-01-01

    A modulation-based index is proposed for predicting speech intelligibility by cochlear implant (CI) listeners. The input to the proposed index are speech envelopes extracted using the individual CI user's daily strategy, and as such, this approach incorporates information about the number of active electrodes, shape of the compression function and electrical dynamic range. High correlation (r = 0.96) was achieved with the proposed index when evaluated with speech-reception thresholds (SRTs) obtained by CI users in steady and speech-masker conditions. This outcome suggests that the information contained in electrodograms seems to be sufficient for reliably predicting CI user's performance in noise. The proposed index can be used by clinicians to optimize the selection of fitting parameters of individual CI users for better performance in noise. PMID:23145620

  15. Observed physical processes in mechanical tests of PBX9501 and recomendations for experiments to explore a possible plasticity/damage threshold

    SciTech Connect

    Buechler, Miles A.

    2012-05-02

    This memo discusses observations that have been made in regards to a series of monotonic and cyclic uniaxial experiments performed on PBX9501 by Darla Thompson under Enhanced Surveilance Campaign support. These observations discussed in Section Cyclic compression observations strongly suggest the presence of viscoelastic, plastic, and damage phenomena in the mechanical response of the material. In Secton Uniaxial data analysis and observations methods are discussed for separating out the viscoelastic effects. A crude application of those methods suggests the possibility of a critical stress below which plasticity and damage may be negligible. The threshold should be explored because if it exists it will be an important feature of any constitutive model. Additionally, if the threshold exists then modifications of experimental methods may be feasible which could potentially simplify future experiments or provide higher quality data from those experiments. A set of experiments to explore the threshold stress are proposed in Section Exploratory tests program for identifying threshold stress.

  16. On the experimental prediction of the stability threshold speed caused by rotating damping

    NASA Astrophysics Data System (ADS)

    Vervisch, B.; Derammelaere, S.; Stockman, K.; De Baets, P.; Loccufier, M.

    2016-08-01

    An ever increasing demand for lighter rotating machinery and higher operating speeds results in a raised probability of instabilities. Rotating damping is one of the reasons, instability occurs. Rotating damping, or rotor internal damping, is the damping related to all rotating parts while non-rotating damping appearing in the non-rotating parts. The present study describes a rotating setup, designed to investigate rotating damping experimentally. An efficient experimental procedure is presented to predict the stability threshold of a rotating machine. The setup consists of a long thin shaft with a disk in the middle and clamped boundary conditions. The goal is to extract the system poles as a function of the rotating speed. The real parts of these poles are used to construct the decay rate plot, which is an indication for the stability. The efficiency of the experimental procedure relies on the model chosen for the rotating shaft. It is shown that the shaft behavior can be approximated by a single degree of freedom model that incorporates a speed dependent damping. As such low measurement effort and only one randomly chosen measurement location are needed to construct the decay rate plot. As an excitation, an automated impact hammer is used and the response is measured by eddy current probes. The proposed method yields a reliable prediction of the stability threshold speed which is validated through measurements.

  17. Magnetic resonance thermometry for predicting thermal damage: an application of interstitial laser coagulation in an in vivo canine prostate model.

    PubMed

    Peters, R D; Chan, E; Trachtenberg, J; Jothy, S; Kapusta, L; Kucharczyk, W; Henkelman, R M

    2000-12-01

    Magnetic resonance image-guidance for interstitial thermal therapy has proven to be a valuable tool in its traditional role in device localization and, more recently, in monitoring heat deposition within tissue. However, a quantitative understanding of how temperature-time exposure relates to thermal damage is crucial if the predictive value of real-time MR thermal-monitoring is to be fully realized. Results are presented on interstitial laser coagulation of two canine prostate models which are shown to provide an opportunity to evaluate three models of thermal damage based on a threshold maximum temperature, an Arrhenius damage integral, and a temperature-time product. These models were compared to the resultant lesion margin as derived from post-treatment T(1)- and T(2)-weighted MR images, as well as from direct histological evaluation of the excised canine prostate. Histological evaluation shows that the thermal-injury boundary can be predicted from a threshold-maximum temperature of approximately 51 degrees C or an equivalent Arrhenius t(43) period of 200 minutes, but it is not reliably predicted using the temperature-time product. The methods described in this study are expected to have implications for the treatment of benign prostatic hyperplasia and prostate cancer with interstitial laser coagulation, which will be the focus of future human studies.

  18. Predicting Heart Rate at the Ventilatory Threshold for Aerobic Exercise Prescription in Persons With Chronic Stroke.

    PubMed

    Boyne, Pierce; Buhr, Sarah; Rockwell, Bradley; Khoury, Jane; Carl, Daniel; Gerson, Myron; Kissela, Brett; Dunning, Kari

    2015-10-01

    Treadmill aerobic exercise improves gait, aerobic capacity, and cardiovascular health after stroke, but a lack of specificity in current guidelines could lead to underdosing or overdosing of aerobic intensity. The ventilatory threshold (VT) has been recommended as an optimal, specific starting point for continuous aerobic exercise. However, VT measurement is not available in clinical stroke settings. Therefore, the purpose of this study was to identify an accurate method to predict heart rate at the VT (HRVT) for use as a surrogate for VT. A cross-sectional design was employed. Using symptom-limited graded exercise test (GXT) data from 17 subjects more than 6 months poststroke, prediction methods for HRVT were derived by traditional target HR calculations (percentage of HRpeak achieved during GXT, percentage of peak HR reserve [HRRpeak], percentage of age-predicted maximal HR, and percentage of age-predicted maximal HR reserve) and by regression analysis. The validity of the prediction methods was then tested among 8 additional subjects. All prediction methods were validated by the second sample, so data were pooled to calculate refined prediction equations. HRVT was accurately predicted by 80% HRpeak (R, 0.62; standard deviation of error [SDerror], 7 bpm), 62% HRRpeak (R, 0.66; SDerror, 7 bpm), and regression models that included HRpeak (R, 0.62-0.75; SDerror, 5-6 bpm). Derived regression equations, 80% HRpeak and 62% HRRpeak, provide a specific target intensity for initial aerobic exercise prescription that should minimize underdosing and overdosing for persons with chronic stroke. The specificity of these methods may lead to more efficient and effective treatment for poststroke deconditioning.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A114).

  19. Predicting the sparticle spectrum from GUTs via SUSY threshold corrections with SusyTC

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Sluka, Constantin

    2016-07-01

    Grand Unified Theories (GUTs) can feature predictions for the ratios of quark and lepton Yukawa couplings at high energy, which can be tested with the increasingly precise results for the fermion masses, given at low energies. To perform such tests, the renormalization group (RG) running has to be performed with sufficient accuracy. In su-persymmetric (SUSY) theories, the one-loop threshold corrections (TC) are of particular importance and, since they affect the quark-lepton mass relations, link a given GUT flavour model to the sparticle spectrum. To accurately study such predictions, we extend and generalize various formulas in the literature which are needed for a precision analysis of SUSY flavour GUT models. We introduce the new software tool SusyTC, a major extension to the Mathematica package REAP [1], where these formulas are implemented. SusyTC extends the functionality of REAP by a full inclusion of the (complex) MSSM SUSY sector and a careful calculation of the one-loop SUSY threshold corrections for the full down-type quark, up-type quark and charged lepton Yukawa coupling matrices in the electroweak-unbroken phase. Among other useful features, SusyTC calculates the one-loop corrected pole mass of the charged (or the CP-odd) Higgs boson as well as provides output in SLHA conventions, i.e. the necessary input for external software, e.g. for performing a two-loop Higgs mass calculation. We apply SusyTC to study the predictions for the parameters of the CMSSM (mSUGRA) SUSY scenario from the set of GUT scale Yukawa relations y_e/y_d=-1/2{-}^2,y_{μ }/y_s = 6 , and y_{τ }/y_b=-3/2 , which has been proposed recently in the context of SUSY GUT flavour models.

  20. Validating a threshold of ocular gaze deviation for the prediction of acute ischaemic stroke.

    PubMed

    McKean, D; Kudari, M; Landells, M; Grant, D; Johnson, S; López de Heredia, L; Yanny, S; Woo, E K

    2014-12-01

    To determine a threshold at which the degree of ocular gaze deviation (OGD) on axial imaging is highly specific for the prediction of acute ischaemic stroke. A retrospective analysis of 517 patients who had received MRI with diffusion-weighted imaging (DWI) for suspected acute stroke was performed. The degree of OGD was measured in all patients and the presence and location of infarction determined. The difference in OGD between groups was compared using the independent t-test for normally distributed data and the Mann-Whitney test for non-normal data. The sensitivity and specificity for degrees of OGD in the prediction of acute infarction was calculated using a receiver operating curve (ROC) analysis. The imaging of 448 patients meeting the inclusion criteria was reviewed. Acute infarct was demonstrated in 34.8% (n=156). There was a significant difference in the degree of OGD between patients with an acute infarct and those without evidence of acute ischaemia (p<0.001). ROC curve analysis for OGD demonstrated area under the curve (AUC) = 0.619 with increasing degrees of OGD more specific for acute infarct. OGD >11.95° had a sensitivity of 17% and specificity of 95.9% in predicting acute infarction. Significant OGD>11.95° has a high specificity for acute infarct. This threshold may provide a helpful additional sign in the detection of subtle acute infarct, particularly on axial CT brain imaging. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  1. Porcine skin damage thresholds for 0.6 to 9.5 cm beam diameters from 1070-nm continuous-wave infrared laser radiation.

    PubMed

    Vincelette, Rebecca; Noojin, Gary D; Harbert, Corey A; Schuster, Kurt J; Shingledecker, Aurora D; Stolarski, Dave; Kumru, Semih S; Oliver, Jeffrey W

    2014-03-01

    There is an increasing use of high-power fiber lasers in manufacturing and telecommunications industries operating in the infrared spectrum between 1000 and 2000 nm, which are advertised to provide as much as 10 kW continuous output power at 1070 nm. Safety standards have traditionally been based on experimental and modeling investigations with scant data available for these wavelengths. A series of studies using 1070-nm infrared lasers to determine the minimum visible lesion damage thresholds in skin using the Yucatan miniature pig (Sus scrofa domestica) for a range of beam diameters (0.6, 1.1, 1.9, 2.4, 4.7, and 9.5 cm) and a range of exposure durations (10 ms to 10 s) is presented. Experimental peak temperatures associated with each damage threshold were measured using thermal imaging. Peak temperatures at damage threshold for the 10-s exposures were ∼10°C lower than those at shorter exposures. The lowest and highest experimental minimum visible lesion damage thresholds were found to have peak radiant exposures of 19 and 432  J/cm2 for the beam diameter-exposure duration pairs of 2.4 cm, 25 ms and 0.6 cm, 10 s, respectively. Thresholds for beam diameters >2.5  cm had a weak to no effect on threshold radiant exposure levels for exposure times ≤0.25  s, but may have a larger effect on thresholds for exposures ≥10  s.

  2. Derivation of groundwater threshold values for analysis of impacts predicted at potential carbon sequestration sites

    SciTech Connect

    Last, G. V.; Murray, C. J.; Bott, Y.

    2016-06-01

    The U.S. Department of Energy’s (DOE’s) National Risk Assessment Partnership (NRAP) Project is developing reduced-order models to evaluate potential impacts to groundwater quality due to carbon dioxide (CO2) or brine leakage, should it occur from deep CO2 storage reservoirs. These efforts targeted two classes of aquifer – an unconfined fractured carbonate aquifer based on the Edwards Aquifer in Texas, and a confined alluvium aquifer based on the High Plains Aquifer in Kansas. Hypothetical leakage scenarios focus on wellbores as the most likely conduits from the storage reservoir to an underground source of drinking water (USDW). To facilitate evaluation of potential degradation of the USDWs, threshold values, below which there would be no predicted impacts, were determined for each of these two aquifer systems. These threshold values were calculated using an interwell approach for determining background groundwater concentrations that is an adaptation of methods described in the U.S. Environmental Protection Agency’s Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities. Results demonstrate the importance of establishing baseline groundwater quality conditions that capture the spatial and temporal variability of the USDWs prior to CO2 injection and storage.

  3. Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems

    NASA Astrophysics Data System (ADS)

    Ďurák, Michal; Velpula, Praveen Kumar; Kramer, Daniel; Cupal, Josef; Medřík, Tomáš; Hřebíček, Jan; Golasowski, Jiří; Peceli, Davorin; Kozlová, Michaela; Rus, Bedřich

    2017-01-01

    Increasing the laser-induced damage resistance of optical components is one of the major challenges in the development of Peta-watt (PW) class laser systems. The extreme light infrastructure (ELI) beamlines project will provide ultrafast laser systems with peak powers up to 10 PW available every minute and PW class beams at 10 Hz complemented by a 5-TW, 1-kHz beamline. Sustainable performance of PW class laser systems relies on the durability of the employed optical components. As part of an effort to evaluate the damage resistance of components utilized in ELI beamlines systems, damage thresholds of several optical multilayer dielectric coatings were measured with different laser parameters and in different environments. Three coatings were tested with 10 Hz and 1 kHz pulse repetition rates, and the effect of a cleaning treatment on their damage resistance was examined. To explore the damage threshold behavior at different vacuum levels, one coating was subject to tests at various residual gas pressures. No change of damage threshold in a high vacuum with respect to ambient pressure was recorded. The effect of the cleaning treatment was found to be inconsistent, suggesting that development of the optimal cleaning treatment for a given coating requires consideration of its specific properties.

  4. Numerical Simulation for Predicting Fatigue Damage Progress in Notched CFRP Laminates by Using Cohesive Elements

    NASA Astrophysics Data System (ADS)

    Okabe, Tomonaga; Yashiro, Shigeki

    This study proposes the cohesive zone model (CZM) for predicting fatigue damage growth in notched carbon-fiber-reinforced composite plastic (CFRP) cross-ply laminates. In this model, damage growth in the fracture process of cohesive elements due to cyclic loading is represented by the conventional damage mechanics model. We preliminarily investigated whether this model can appropriately express fatigue damage growth for a circular crack embedded in isotropic solid material. This investigation demonstrated that this model could reproduce the results with the well-established fracture mechanics model plus the Paris' law by tuning adjustable parameters. We then numerically investigated the damage process in notched CFRP cross-ply laminates under tensile cyclic loading and compared the predicted damage patterns with those in experiments reported by Spearing et al. (Compos. Sci. Technol. 1992). The predicted damage patterns agreed with the experiment results, which exhibited the extension of multiple types of damage (e.g., splits, transverse cracks and delaminations) near the notches.

  5. Prediction of cavitation damage on spillway using K-nearest neighbor modeling.

    PubMed

    Fadaei Kermani, E; Barani, G A; Ghaeini-Hessaroeyeh, M

    2015-01-01

    Cavitation is a common and destructive process on spillways that threatens the stability of the structure and causes damage. In this study, based on the nearest neighbor model, a method has been presented to predict cavitation damage on spillways. The model was tested using data from the Shahid Abbaspour dam spillway in Iran. The level of spillway cavitation damage was predicted for eight different flow rates, using the nearest neighbor model. Moreover, based on the cavitation index, five damage levels from no damage to major damage have been determined. Results showed that the present model predicted damage locations and levels close to observed damage during past floods. Finally, the efficiency and precision of the model was quantified by statistical coefficients. Appropriate values of the correlation coefficient, root mean square error, mean absolute error and coefficient of residual mass show the present model is suitable and efficient.

  6. Synthesis, growth and characterization of o-phenylinediaminium benzilate: An SHG material with high laser damage threshold for NLO applications

    NASA Astrophysics Data System (ADS)

    Rajkumar, M.; Chandramohan, A.

    2017-02-01

    An organic molecular charge transfer complex salt, o-phenylenediaminium benzilate was synthesized and single crystals grown by slow solvent evaporation solution growth technique in methanol at ambient temperature. The grown crystal was subjected to Single crystal XRD analysis to establish the molecular structure. The molecular structure was further confirmed by 1H and 13C NMR spectral studies. The formation of the charge transfer complex salt was confirmed by UV-VIS spectroscopic technique. To identify the optical transmittance window and lower wavelength cut-off, the crystal was subjected to UV-Vis-NIR transmission spectral studies. The presence of various functional groups in the salt crystal was confirmed by FT-IR spectroscopic technique. Photoluminescence study was carried out to explore its efficiency towards device fabrications. The TG and DTA thermal analyses were simultaneously carried out to establish the thermal stability of the crystal. The dielectric studies of the grown crystal were executed at different temperatures as a function of frequency to investigate its electrical properties. The SHG efficiency of the crystal was determined using the modified Kurtz and Perry powder technique and its value was found to be 1.98 times that of the KDP crystal. Laser damage threshold value was measured using Nd:YAG laser. The mechanical stability of the title crystal was established employing Vickers micro hardness tester.

  7. Ln3GaS6 (Ln = Dy, Y): new infrared nonlinear optical materials with high laser induced damage thresholds.

    PubMed

    Zhang, Ming-Jian; Li, Bing-Xuan; Liu, Bin-Wen; Fan, Yu-Hang; Li, Xiao-Guo; Zeng, Hi-Yi; Guo, Guo-Cong

    2013-10-21

    Two new ternary rare earth chalcogenides, Dy3GaS6 (1) and Y3GaS6 (2), are reported here. They both crystallize in the orthorhombic space group Cmc21 (no. 36). Both are synthesized in pure phase and show phase-matchable second harmonic generation (SHG) of about 0.2 and 0.5 times, respectively for 1 and 2, as strong as that of KTiOPO4 (KTP) based on the powder SHG measurement at the wavelength of 1910 nm. They possess high powder laser induced damage thresholds (LIDTs), respectively, about 14 and 18 times that of AgGaS2 (AGS) based on the powder LIDT measurements under 1064 nm laser irradiation. They both exhibit wide transparency in the IR region (2.5–25 μm). It is believed that the title compounds are new candidates for nonlinear optical (NLO) materials in the IR region. To gain further insights into the NLO and LIDT properties of 1 and 2, the calculations of second-order NLO susceptibility and lattice energy density (LED) were also performed to explain their SHG efficiencies and high LIDTs.

  8. Growth, structural, thermal, linear and nonlinear optical and laser damage threshold studies of picolinium tartrate monohydrate single crystals.

    PubMed

    Peramaiyan, G; Pandi, P; Sornamurthy, B M; Bhagavannarayana, G; Mohan Kumar, R

    2012-09-01

    Picolinium tartrate monohydrate (PTM), a novel organic nonlinear optical material was synthesized and bulk crystals were grown from aqueous solution by slow cooling technique. The cell parameters of the grown crystal were found by single and powder X-ray diffraction analyses. The crystalline perfection of the grown crystals has been analyzed by high-resolution X-ray diffraction (HRXRD) rocking curve measurements. The presence of functional groups in the grown crystal was identified by FTIR and FT-Raman spectral analyses. UV-Vis spectral studies reveal PTM crystals are transparent in the wavelength region of 295-1100 nm. The thermal characteristics of PTM were analyzed by TGA/DTA studies. The dielectric and mechanical behaviours of PTM crystals were investigated. Dislocation density was estimated to be 2.89 × 10(3) cm(-2) on the flat-surface of PTM crystals from the etching studies. The laser induced surface damage threshold for the grown crystal was measured using Nd:YAG laser. Its second harmonic generation relative efficiency was measured by Kurtz and Perry powder technique and was observed to be comparable with KDP crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Improved laser damage threshold performance of calcium fluoride optical surfaces via Accelerated Neutral Atom Beam (ANAB) processing

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, S.; Walsh, M.; Svrluga, R.; Thomas, M.

    2015-11-01

    Optics are not keeping up with the pace of laser advancements. The laser industry is rapidly increasing its power capabilities and reducing wavelengths which have exposed the optics as a weak link in lifetime failures for these advanced systems. Nanometer sized surface defects (scratches, pits, bumps and residual particles) on the surface of optics are a significant limiting factor to high end performance. Angstrom level smoothing of materials such as calcium fluoride, spinel, magnesium fluoride, zinc sulfide, LBO and others presents a unique challenge for traditional polishing techniques. Exogenesis Corporation, using its new and proprietary Accelerated Neutral Atom Beam (ANAB) technology, is able to remove nano-scale surface damage and particle contamination leaving many material surfaces with roughness typically around one Angstrom. This surface defect mitigation via ANAB processing can be shown to increase performance properties of high intensity optical materials. This paper describes the ANAB technology and summarizes smoothing results for calcium fluoride laser windows. It further correlates laser damage threshold improvements with the smoothing produced by ANAB surface treatment. All ANAB processing was performed at Exogenesis Corporation using an nAccel100TM Accelerated Particle Beam processing tool. All surface measurement data for the paper was produced via AFM analysis on a Park Model XE70 AFM, and all laser damage testing was performed at Spica Technologies, Inc. Exogenesis Corporation's ANAB processing technology is a new and unique surface modification technique that has demonstrated to be highly effective at correcting nano-scale surface defects. ANAB is a non-contact vacuum process comprised of an intense beam of accelerated, electrically neutral gas atoms with average energies of a few tens of electron volts. The ANAB process does not apply mechanical forces associated with traditional polishing techniques. ANAB efficiently removes surface

  10. Prediction of normal values for lactate threshold estimated by gas exchange in men and women.

    PubMed

    Davis, J A; Storer, T W; Caiozzo, V J

    1997-01-01

    Lactate threshold (LT) is an index of exercise capacity and can be estimated from the gas exchange consequences of a metabolic acidosis (LT(GE)). In recent years, it has emerged as a diagnostic tool in the evaluation of subjects with exercise limitation. The purpose of this study was to develop LT(GE) prediction equations on a relatively large sample of adults and to cross-validate each equation. A total of 204 healthy, sedentary, nonsmoking subjects (103 men and 101 women), aged 20-70 years, underwent graded exercise testing on a cycle ergometer. The V-slope technique was used to detect LTGE as the oxygen uptake (VO2) at the breakpoint of the carbon dioxide output versus VO2 relationship. Multiple linear regression was used to develop 12 equations with combinations of the following predictor variables: age, height, body mass, and fat-free mass. Eight of the equations are gender-specific and four are generalized with gender as a dummy variable. The equations were cross-validated using the predicted residual sum of squares (PRESS) method. The results demonstrate that the equations had relatively high multiple correlations (0.577-0.863) and low standard errors of the estimate (0.123-0.228 1 x min(-1)). The PRESS method demonstrated that the equations are generalizable, i.e., can be used in future studies without a significant loss of accuracy. Since we tested only healthy, sedentary subjects, our equations can be used to predict the lower limit of normal for a given subject. Using individual data for healthy and diseased subjects from the literature, we found that our gender-specific equations rarely miscategorized subjects unless they were obese and mass was a predictor variable. We conclude that our equations provide accurate predictions of normal values for LT(GE) and that they are generalizable to other subject populations.

  11. Structural Damage Prediction and Analysis for Hypervelocity Impacts: Handbook

    NASA Technical Reports Server (NTRS)

    Elfer, N. C.

    1996-01-01

    This handbook reviews the analysis of structural damage on spacecraft due to hypervelocity impacts by meteoroid and space debris. These impacts can potentially cause structural damage to a Space Station module wall. This damage ranges from craters, bulges, minor penetrations, and spall to critical damage associated with a large hole, or even rupture. The analysis of damage depends on a variety of assumptions and the area of most concern is at a velocity beyond well controlled laboratory capability. In the analysis of critical damage, one of the key questions is how much momentum can actually be transfered to the pressure vessel wall. When penetration occurs without maximum bulging at high velocity and obliquities (if less momentum is deposited in the rear wall), then large tears and rupture may be avoided. In analysis of rupture effects of cylindrical geometry, biaxial loading, bending of the crack, a central hole strain rate and R-curve effects are discussed.

  12. Threshold Dose of Three Types of Quantum Dots (QDs) Induces Oxidative Stress Triggers DNA Damage and Apoptosis in Mouse Fibroblast L929 Cells.

    PubMed

    Zhang, Ting; Wang, Yiqing; Kong, Lu; Xue, Yuying; Tang, Meng

    2015-10-26

    Although it has been reported that fluorescent quantum dots (QDs) have obvious acute toxic effects in vitro, their toxic effects at low doses or threshold doses are still unknown. Therefore, we evaluated the biological histocompatibility and in vitro toxicity of three types of QDs at threshold doses. Also, we compared the toxic effects of QDs with different raw chemical compositions and sizes. The results showed that low concentrations of QDs (≤7 μg/mL) had no obvious effect on cell viability and cell membrane damage, oxidative damage, cell apoptosis or DNA damage. However, QD exposure led to a significant cytotoxicity at higher doses (≥14 μg/mL) and induced abnormal cellular morphology. In addition, when comparing the three types of QDs, 2.2 nm CdTe QDs exposure showed a significantly increased proportion of apoptotic cells and significant DNA damage, suggesting that size and composition contribute to the toxic effects of QDs. Based on these discussions, it was concluded that the concentration (7 μg/mL) may serve as a threshold level for these three types of QDs only in L929 fibroblasts, whereas high concentrations (above 14 μg/mL) may be toxic, resulting in inhibition of proliferation, induction of apoptosis and DNA damage in L929 fibroblasts.

  13. Threshold Dose of Three Types of Quantum Dots (QDs) Induces Oxidative Stress Triggers DNA Damage and Apoptosis in Mouse Fibroblast L929 Cells

    PubMed Central

    Zhang, Ting; Wang, Yiqing; Kong, Lu; Xue, Yuying; Tang, Meng

    2015-01-01

    Although it has been reported that fluorescent quantum dots (QDs) have obvious acute toxic effects in vitro, their toxic effects at low doses or threshold doses are still unknown. Therefore, we evaluated the biological histocompatibility and in vitro toxicity of three types of QDs at threshold doses. Also, we compared the toxic effects of QDs with different raw chemical compositions and sizes. The results showed that low concentrations of QDs (≤7 μg/mL) had no obvious effect on cell viability and cell membrane damage, oxidative damage, cell apoptosis or DNA damage. However, QD exposure led to a significant cytotoxicity at higher doses (≥14 μg/mL) and induced abnormal cellular morphology. In addition, when comparing the three types of QDs, 2.2 nm CdTe QDs exposure showed a significantly increased proportion of apoptotic cells and significant DNA damage, suggesting that size and composition contribute to the toxic effects of QDs. Based on these discussions, it was concluded that the concentration (7 μg/mL) may serve as a threshold level for these three types of QDs only in L929 fibroblasts, whereas high concentrations (above 14 μg/mL) may be toxic, resulting in inhibition of proliferation, induction of apoptosis and DNA damage in L929 fibroblasts. PMID:26516873

  14. Quantitative prediction of perceptual decisions during near-threshold fear detection

    NASA Astrophysics Data System (ADS)

    Pessoa, Luiz; Padmala, Srikanth

    2005-04-01

    A fundamental goal of cognitive neuroscience is to explain how mental decisions originate from basic neural mechanisms. The goal of the present study was to investigate the neural correlates of perceptual decisions in the context of emotional perception. To probe this question, we investigated how fluctuations in functional MRI (fMRI) signals were correlated with behavioral choice during a near-threshold fear detection task. fMRI signals predicted behavioral choice independently of stimulus properties and task accuracy in a network of brain regions linked to emotional processing: posterior cingulate cortex, medial prefrontal cortex, right inferior frontal gyrus, and left insula. We quantified the link between fMRI signals and behavioral choice in a whole-brain analysis by determining choice probabilities by means of signal-detection theory methods. Our results demonstrate that voxel-wise fMRI signals can reliably predict behavioral choice in a quantitative fashion (choice probabilities ranged from 0.63 to 0.78) at levels comparable to neuronal data. We suggest that the conscious decision that a fearful face has been seen is represented across a network of interconnected brain regions that prepare the organism to appropriately handle emotionally challenging stimuli and that regulate the associated emotional response. decision making | emotion | functional MRI

  15. A logistic regression based approach for the prediction of flood warning threshold exceedance

    NASA Astrophysics Data System (ADS)

    Diomede, Tommaso; Trotter, Luca; Stefania Tesini, Maria; Marsigli, Chiara

    2016-04-01

    A method based on logistic regression is proposed for the prediction of river level threshold exceedance at short (+0-18h) and medium (+18-42h) lead times. The aim of the study is to provide a valuable tool for the issue of warnings by the authority responsible of public safety in case of flood. The role of different precipitation periods as predictors for the exceedance of a fixed river level has been investigated, in order to derive significant information for flood forecasting. Based on catchment-averaged values, a separation of "antecedent" and "peak-triggering" rainfall amounts as independent variables is attempted. In particular, the following flood-related precipitation periods have been considered: (i) the period from 1 to n days before the forecast issue time, which may be relevant for the soil saturation, (ii) the last 24 hours, which may be relevant for the current water level in the river, and (iii) the period from 0 to x hours in advance with respect to the forecast issue time, when the flood-triggering precipitation generally occurs. Several combinations and values of these predictors have been tested to optimise the method implementation. In particular, the period for the precursor antecedent precipitation ranges between 5 and 45 days; the state of the river can be represented by the last 24-h precipitation or, as alternative, by the current river level. The flood-triggering precipitation has been cumulated over the next 18 hours (for the short lead time) and 36-42 hours (for the medium lead time). The proposed approach requires a specific implementation of logistic regression for each river section and warning threshold. The method performance has been evaluated over the Santerno river catchment (about 450 km2) in the Emilia-Romagna Region, northern Italy. A statistical analysis in terms of false alarms, misses and related scores was carried out by using a 8-year long database. The results are quite satisfactory, with slightly better performances

  16. On the prediction of threshold friction velocity of wind erosion using soil reflectance spectroscopy

    USGS Publications Warehouse

    Li, Junran; Flagg, Cody B.; Okin, Gregory S.; Painter, Thomas H.; Dintwe, Kebonye; Belnap, Jayne

    2015-01-01

    Current approaches to estimate threshold friction velocity (TFV) of soil particle movement, including both experimental and empirical methods, suffer from various disadvantages, and they are particularly not effective to estimate TFVs at regional to global scales. Reflectance spectroscopy has been widely used to obtain TFV-related soil properties (e.g., moisture, texture, crust, etc.), however, no studies have attempted to directly relate soil TFV to their spectral reflectance. The objective of this study was to investigate the relationship between soil TFV and soil reflectance in the visible and near infrared (VIS–NIR, 350–2500 nm) spectral region, and to identify the best range of wavelengths or combinations of wavelengths to predict TFV. Threshold friction velocity of 31 soils, along with their reflectance spectra and texture were measured in the Mojave Desert, California and Moab, Utah. A correlation analysis between TFV and soil reflectance identified a number of isolated, narrow spectral domains that largely fell into two spectral regions, the VIS area (400–700 nm) and the short-wavelength infrared (SWIR) area (1100–2500 nm). A partial least squares regression analysis (PLSR) confirmed the significant bands that were identified by correlation analysis. The PLSR further identified the strong relationship between the first-difference transformation and TFV at several narrow regions around 1400, 1900, and 2200 nm. The use of PLSR allowed us to identify a total of 17 key wavelengths in the investigated spectrum range, which may be used as the optimal spectral settings for estimating TFV in the laboratory and field, or mapping of TFV using airborne/satellite sensors.

  17. Quantitative study of laser damage probabilities in silica and calibrated liquids: comparison with theoretical prediction

    NASA Astrophysics Data System (ADS)

    Natoli, Jean-Yves; Gallais, Laurent; Akhouayri, Hassan; Amra, Claude

    2001-04-01

    The experimental setup developed in Marseille for the laser damage testing allows a localized study. Indeed the use of a 25 micrometers for the waist of the focused beam, permits to de-correlate the extrinsic damage due to the micronic defects (visible under microscope) for the intrinsic ones (non-detectable before damage with conventional imaging systems). The probability of damage versus incident fluence is an S curve given in the range of two thresholds, SL and SH, the low and high damage thresholds. Most often the shape of probability damage curves are different between the intrinsic and the extrinsic cases. In our arrangement the beam size and the extrinsic defect size are in the same range, so by pointing at these visible defects it is possible to determine their specific threshold, and the density of defect is directly obtained from the optical image. Therefore a specific study of the intrinsic zones by pointing the beam at a zone free of extrinsic point, allows us to focus our attention only on these invisible defects. These particles are supposed to be nano-sized. The highlight and the identification of these nono-precursors is the aim of this paper.

  18. Numerical Prediction of Fatigue Damage Progress in Holed CFRP Laminates Using Cohesive Elements

    NASA Astrophysics Data System (ADS)

    Yashiro, Shigeki; Okabe, Tomonaga

    This study presents a numerical simulation to predict damage progress in notched composite laminates under cyclic loading by using a cohesive zone model. A damage-mechanics concept was introduced directly into the fracture process in the cohesive elements in order to express crack growth by cyclic loading. This approach then conformed to the established damage mechanics and facilitated understanding the procedure and reducing computation costs. We numerically investigated the damage progress in holed CFRP cross-ply laminates under tensile cyclic loading and compared the predicted damage patterns with experiment results. The predicted damage patterns agreed with the experiment results that exhibited the extension of multiple types of damage (splits, transverse cracks, and delamination) near the hole. A numerical study indicated that the change in the distribution of in-plane shear stress due to delamination induced the extension of splits and transverse cracks near the hole.

  19. Predictive information speeds up visual awareness in an individuation task by modulating threshold setting, not processing efficiency.

    PubMed

    De Loof, Esther; Van Opstal, Filip; Verguts, Tom

    2016-04-01

    Theories on visual awareness claim that predicted stimuli reach awareness faster than unpredicted ones. In the current study, we disentangle whether prior information about the upcoming stimulus affects visual awareness of stimulus location (i.e., individuation) by modulating processing efficiency or threshold setting. Analogous research on stimulus identification revealed that prior information modulates threshold setting. However, as identification and individuation are two functionally and neurally distinct processes, the mechanisms underlying identification cannot simply be extrapolated directly to individuation. The goal of this study was therefore to investigate how individuation is influenced by prior information about the upcoming stimulus. To do so, a drift diffusion model was fitted to estimate the processing efficiency and threshold setting for predicted versus unpredicted stimuli in a cued individuation paradigm. Participants were asked to locate a picture, following a cue that was congruent, incongruent or neutral with respect to the picture's identity. Pictures were individuated faster in the congruent and neutral condition compared to the incongruent condition. In the diffusion model analysis, the processing efficiency was not significantly different across conditions. However, the threshold setting was significantly higher following an incongruent cue compared to both congruent and neutral cues. Our results indicate that predictive information about the upcoming stimulus influences visual awareness by shifting the threshold for individuation rather than by enhancing processing efficiency.

  20. An in vitro corneal model with a laser damage threshold at 2 μm that is similar to that in the rabbit

    NASA Astrophysics Data System (ADS)

    Foltz, Michael S.; Denton, Michael L.; Schuster, Kurt J.; Estlack, Larry E.; Kumru, Semih S.

    2008-02-01

    Corneal organotypic cultures were generated as per existing methods, which included growth on polycarbonate inserts and air-lifting for one week. The corneal simulant cultures were exposed, with real-time IR imaging, to the 2-μm wavelength output of a thulium fiber laser with 4 mm beam diameter for 0.25 seconds in a thermally controlled environment and then assayed for damage. The in vitro threshold (ED 50 value of 12.5 W/cm2) and peak temperature (74.5 °C) at threshold irradiance are compared with rabbit corneal data in the literature.

  1. Monopolar Detection Thresholds Predict Spatial Selectivity of Neural Excitation in Cochlear Implants: Implications for Speech Recognition

    PubMed Central

    2016-01-01

    The objectives of the study were to (1) investigate the potential of using monopolar psychophysical detection thresholds for estimating spatial selectivity of neural excitation with cochlear implants and to (2) examine the effect of site removal on speech recognition based on the threshold measure. Detection thresholds were measured in Cochlear Nucleus® device users using monopolar stimulation for pulse trains that were of (a) low rate and long duration, (b) high rate and short duration, and (c) high rate and long duration. Spatial selectivity of neural excitation was estimated by a forward-masking paradigm, where the probe threshold elevation in the presence of a forward masker was measured as a function of masker-probe separation. The strength of the correlation between the monopolar thresholds and the slopes of the masking patterns systematically reduced as neural response of the threshold stimulus involved interpulse interactions (refractoriness and sub-threshold adaptation), and spike-rate adaptation. Detection threshold for the low-rate stimulus most strongly correlated with the spread of forward masking patterns and the correlation reduced for long and high rate pulse trains. The low-rate thresholds were then measured for all electrodes across the array for each subject. Subsequently, speech recognition was tested with experimental maps that deactivated five stimulation sites with the highest thresholds and five randomly chosen ones. Performance with deactivating the high-threshold sites was better than performance with the subjects’ clinical map used every day with all electrodes active, in both quiet and background noise. Performance with random deactivation was on average poorer than that with the clinical map but the difference was not significant. These results suggested that the monopolar low-rate thresholds are related to the spatial neural excitation patterns in cochlear implant users and can be used to select sites for more optimal speech

  2. Inflammation and damage in an individual joint predict further damage in that joint in patients with early rheumatoid arthritis.

    PubMed

    Boers, M; Kostense, P J; Verhoeven, A C; van der Linden, S

    2001-10-01

    OBJECTIVE; Several factors predict joint damage in early rheumatoid arthritis (RA). In the context of a trial in early RA, we studied the relationship between clinical signs in individual joints and their propensity to develop progressive damage. The COBRA (Combinatietherapie Bij Reumatoide Artritis) multicenter trial compared the efficacy of prednisolone, methotrexate, and sulfasalazine against sulfasalazine alone in 155 patients with early RA. Two blinded observers interpreted radiographs in sequence (using the Sharp/Van der Heijde scoring system); in each center, one blinded observer performed clinical assessments every 3 months. The current analysis is based on clinical and radiologic data of the individual metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints of 135 patients. Conditional stepwise logistic regression analyzed the relationship between damage (progression) and clinical signs at baseline and followup for each of these joints individually in each patient. Combination therapy strongly retarded the progression of damage. Progression was stronger in patients with rheumatoid factor, HLA-DR4, and high levels of disease activity at baseline. At baseline, 6% of the MCP and PIP joints showed damage; after 1 year, disease had progressed in 10% of these joints. Baseline damage, swelling, or pain in a joint independently and strongly predicted the progression of damage in that joint (P < 0.001). Each additional point in the swelling score (range 0-2) tripled the risk for subsequent progression. Each additional point on the Sharp scale (range 0-8 per joint) and each additional point on the pain scale (range 0-3) doubled the risk. The mean pain and swelling scores over the year were even stronger predictors of damage. Local expression of early RA disease activity, both at baseline and at 1-year followup, is strongly related to progression of damage in the individual joint.

  3. Influence of Injury Risk Thresholds on the Performance of an Algorithm to Predict Crashes with Serious Injuries

    PubMed Central

    Bahouth, George; Digges, Kennerly; Schulman, Carl

    2012-01-01

    This paper presents methods to estimate crash injury risk based on crash characteristics captured by some passenger vehicles equipped with Advanced Automatic Crash Notification technology. The resulting injury risk estimates could be used within an algorithm to optimize rescue care. Regression analysis was applied to the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) to determine how variations in a specific injury risk threshold would influence the accuracy of predicting crashes with serious injuries. The recommended thresholds for classifying crashes with severe injuries are 0.10 for frontal crashes and 0.05 for side crashes. The regression analysis of NASS/CDS indicates that these thresholds will provide sensitivity above 0.67 while maintaining a positive predictive value in the range of 0.20. PMID:23169132

  4. Predicting Bed Grain Size in Threshold Channels Using Lidar Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Snyder, N. P.; Nesheim, A. O.; Wilkins, B. C.; Edmonds, D. A.

    2011-12-01

    Over the past 20 years, researchers have developed GIS-based algorithms to extract channel networks and measure longitudinal profiles from digital elevation models (DEMs), and have used these to study stream morphology in relation to tectonics, climate and ecology. The accuracy of stream elevations from traditional DEMs (10-50 m pixels) is typically limited by the contour interval (3-20 m) of the rasterized topographic map source. This is a particularly severe limitation in low-relief watersheds, where 3 m of channel elevation change may occur over several km. Lidar DEMs (~1 m pixels) allow researchers to resolve channel elevation changes of ~0.5 m, enabling reach-scale calculations of gradient, which is the most important parameter for understanding channel processes at that scale. Lidar DEMs have the additional advantage of allowing users to make estimates of channel width. We present a process-based model that predicts median bed grain size in threshold gravel-bed channels from lidar slope and width measurements using the Shields and Manning equations. We compare these predictions to field grain size measurements in segments of three Maine rivers. Like many paraglacial rivers, these have longitudinal profiles characterized by relatively steep (gradient >0.002) and flat (gradient <0.0005) segments, with length scales of several km. This heterogeneity corresponds to strong variations in channel form, sediment supply, bed grain size, and aquatic habitat characteristics. The model correctly predicts bed sediment size within a factor of two in ~70% of the study sites. The model works best in single-thread channels with relatively low sediment supply, and poorly in depositional, multi-thread and/or fine (median grain size <20 mm) reaches. We evaluate the river morphology (using field and lidar measurements) in the context of the Parker et al. (2007) hydraulic geometry relations for single-thread gravel-bed rivers, and find correspondence in the locations where both

  5. Prediction of temperature and damage in an irradiated human eye-Utilization of a detailed computer model which includes a vectorial blood stream in the choroid.

    PubMed

    Heussner, Nico; Holl, Lukas; Nowak, Timo; Beuth, Thorsten; Spitzer, Martin S; Stork, Wilhelm

    2014-08-01

    The work presented here describes the development and use of a three-dimensional thermo-dynamic model of the human eye for the prediction of temperatures and damage thresholds under irradiation. This model takes into account the blood flow by the implementation of a vectorial blood stream in the choroid and also uses the actual physiological extensions and tissue parameters of the eye. Furthermore it considers evaporation, radiation and convection at the cornea as well as the eye lid. The predicted temperatures were successfully validated against existing eye models in terms of corneal and global thermal behaviour. The model׳s predictions were additionally checked for consistency with in-vivo temperature measurements of the cornea, the irradiated retina and its damage thresholds. These thresholds were calculated from the retinal temperatures using the Arrhenius integral. Hence the model can be used to predict the temperature increase and irradiation hazard within the human eye as long as the absorption values and the Arrhenius coefficients are known and the damage mechanism is in the thermal regime.

  6. Is Using Threshold-Crossing Method and Single Type of Features Sufficient to Achieve Realistic Application of Seizure Prediction?

    PubMed

    Zheng, Yang; Wang, Gang; Wang, Jue

    2016-10-01

    Objective This study aims to verify whether the simple threshold-crossing method can work well enough to achieve the realistic application of seizure prediction on the basis of a large public database, and examines how a more complex classifier can improve prediction performance. It also verified whether the combination of multiple types of features with a complex classifier can improve prediction performance. Method Phase synchronization and spectral power features were extracted from electroencephalogram recordings. The threshold-crossing method and a support vector machine (SVM) were used to identify preictal and interictal samples. Based on the type of selected features and the manner of classification, 5 different methods were conducted on 19 patients. The performances of these methods were directly compared and tested using a random predictor. In-sample optimization problems were avoided in the feature and parameter selection procedure to obtain credible results. Results The threshold-crossing method could only obtain satisfying prediction results for approximately half of the selected patients. The SVM classifier could significantly improve prediction performance compared with the threshold-crossing method for both types of features. Although the average performance was further improved when both types of features were combined with the SVM classifier, the improvement was insignificant. Conclusion A complex classifier, such as the SVM, is recommended in a realistic prediction device, although it will increase the complexity of the device. Indeed, the simple threshold-crossing method performs well enough for some of the patients. The combination of phase synchronization and spectral power features is unnecessary because of the increased computation complexity. © EEG and Clinical Neuroscience Society (ECNS) 2015.

  7. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    PubMed

    Xu, Yifang; Collins, Leslie M

    2004-04-01

    The incorporation of low levels of noise into an electrical stimulus has been shown to improve auditory thresholds in some human subjects (Zeng et al., 2000). In this paper, thresholds for noise-modulated pulse-train stimuli are predicted utilizing a stochastic neural-behavioral model of ensemble fiber responses to bi-phasic stimuli. The neural refractory effect is described using a Markov model for a noise-free pulse-train stimulus and a closed-form solution for the steady-state neural response is provided. For noise-modulated pulse-train stimuli, a recursive method using the conditional probability is utilized to track the neural responses to each successive pulse. A neural spike count rule has been presented for both threshold and intensity discrimination under the assumption that auditory perception occurs via integration over a relatively long time period (Bruce et al., 1999). An alternative approach originates from the hypothesis of the multilook model (Viemeister and Wakefield, 1991), which argues that auditory perception is based on several shorter time integrations and may suggest an NofM model for prediction of pulse-train threshold. This motivates analyzing the neural response to each individual pulse within a pulse train, which is considered to be the brief look. A logarithmic rule is hypothesized for pulse-train threshold. Predictions from the multilook model are shown to match trends in psychophysical data for noise-free stimuli that are not always matched by the long-time integration rule. Theoretical predictions indicate that threshold decreases as noise variance increases. Theoretical models of the neural response to pulse-train stimuli not only reduce calculational overhead but also facilitate utilization of signal detection theory and are easily extended to multichannel psychophysical tasks.

  8. A model for predicting damage induced fatigue life of laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, David H.; Lo, David C.; Georgiou, Ioannis T.; Harris, Charles E.

    1990-01-01

    This paper presents a model for predicting the life of laminated composite structural components subjected to fatigue induced microstructural damage. The model uses the concept of continuum damage mechanics, wherein the effects of microcracks are incorporated into a damage dependent lamination theory instead of treating each crack as an internal boundary. Internal variables are formulated to account for the effects of both matrix cracks and internal delaminations. Evolution laws for determining the damage variables as functions of ply stresses are proposed, and comparisons of predicted damage evolution are made to experiment. In addition, predicted stiffness losses, as well as ply stresses are shown as functions of damage state for a variety of stacking sequences.

  9. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Field, Ella; Bellum, John; Kletecka, Damon

    2014-12-01

    We have examined how three different cleaning processes affect the laser-induced damage threshold (LIDT) of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. Coatings that received cleaning exhibited the highest LIDTs compared to coatings that were not cleaned. In some cases, there is nearly a twofold increase in the LIDT between the cleaned and uncleaned coatings (19.4 J/cm2 compared to 39.1 J/cm2). Higher LIDTs were realized after 4 months of aging. The most effective cleaning process involved washing the coated surface with mild detergent, and then soaking the optic in a mixture of ethyl alcohol and deionized water. Also, the laser damage results indicate that the presence of nonpropagating (NP) damage sites dominates the LIDTs of almost every optic, despite the cleaning process used. NP damage sites can be attributed to defects such as nodules in the coating or surface contamination, which suggests that pursuing further improvements to the deposition or cleaning processes are worthwhile to achieve even higher LIDTs.

  10. A robust operational model for predicting where tropical cyclone waves damage coral reefs

    PubMed Central

    Puotinen, Marji; Maynard, Jeffrey A.; Beeden, Roger; Radford, Ben; Williams, Gareth J.

    2016-01-01

    Tropical cyclone (TC) waves can severely damage coral reefs. Models that predict where to find such damage (the ‘damage zone’) enable reef managers to: 1) target management responses after major TCs in near-real time to promote recovery at severely damaged sites; and 2) identify spatial patterns in historic TC exposure to explain habitat condition trajectories. For damage models to meet these needs, they must be valid for TCs of varying intensity, circulation size and duration. Here, we map damage zones for 46 TCs that crossed Australia’s Great Barrier Reef from 1985–2015 using three models – including one we develop which extends the capability of the others. We ground truth model performance with field data of wave damage from seven TCs of varying characteristics. The model we develop (4MW) out-performed the other models at capturing all incidences of known damage. The next best performing model (AHF) both under-predicted and over-predicted damage for TCs of various types. 4MW and AHF produce strikingly different spatial and temporal patterns of damage potential when used to reconstruct past TCs from 1985–2015. The 4MW model greatly enhances both of the main capabilities TC damage models provide to managers, and is useful wherever TCs and coral reefs co-occur. PMID:27184607

  11. A robust operational model for predicting where tropical cyclone waves damage coral reefs

    NASA Astrophysics Data System (ADS)

    Puotinen, Marji; Maynard, Jeffrey A.; Beeden, Roger; Radford, Ben; Williams, Gareth J.

    2016-05-01

    Tropical cyclone (TC) waves can severely damage coral reefs. Models that predict where to find such damage (the ‘damage zone’) enable reef managers to: 1) target management responses after major TCs in near-real time to promote recovery at severely damaged sites; and 2) identify spatial patterns in historic TC exposure to explain habitat condition trajectories. For damage models to meet these needs, they must be valid for TCs of varying intensity, circulation size and duration. Here, we map damage zones for 46 TCs that crossed Australia’s Great Barrier Reef from 1985–2015 using three models – including one we develop which extends the capability of the others. We ground truth model performance with field data of wave damage from seven TCs of varying characteristics. The model we develop (4MW) out-performed the other models at capturing all incidences of known damage. The next best performing model (AHF) both under-predicted and over-predicted damage for TCs of various types. 4MW and AHF produce strikingly different spatial and temporal patterns of damage potential when used to reconstruct past TCs from 1985–2015. The 4MW model greatly enhances both of the main capabilities TC damage models provide to managers, and is useful wherever TCs and coral reefs co-occur.

  12. A robust operational model for predicting where tropical cyclone waves damage coral reefs.

    PubMed

    Puotinen, Marji; Maynard, Jeffrey A; Beeden, Roger; Radford, Ben; Williams, Gareth J

    2016-05-17

    Tropical cyclone (TC) waves can severely damage coral reefs. Models that predict where to find such damage (the 'damage zone') enable reef managers to: 1) target management responses after major TCs in near-real time to promote recovery at severely damaged sites; and 2) identify spatial patterns in historic TC exposure to explain habitat condition trajectories. For damage models to meet these needs, they must be valid for TCs of varying intensity, circulation size and duration. Here, we map damage zones for 46 TCs that crossed Australia's Great Barrier Reef from 1985-2015 using three models - including one we develop which extends the capability of the others. We ground truth model performance with field data of wave damage from seven TCs of varying characteristics. The model we develop (4MW) out-performed the other models at capturing all incidences of known damage. The next best performing model (AHF) both under-predicted and over-predicted damage for TCs of various types. 4MW and AHF produce strikingly different spatial and temporal patterns of damage potential when used to reconstruct past TCs from 1985-2015. The 4MW model greatly enhances both of the main capabilities TC damage models provide to managers, and is useful wherever TCs and coral reefs co-occur.

  13. Damage threshold and focusability of mid-infrared free-electron laser pulses gated by a plasma mirror with nanosecond switching pulses

    SciTech Connect

    Wang, Xiaolong; Nakajima, Takashi; Zen, Heishun; Kii, Toshiteru; Ohgaki, Hideaki

    2013-11-04

    The presence of a pulse train structure of an oscillator-type free-electron laser (FEL) results in the immediate damage of a solid target upon focusing. We demonstrate that the laser-induced damage threshold can be significantly improved by gating the mid-infrared FEL pulses with a plasma mirror. Although the switching pulses we employ have a nanosecond duration which does not guarantee the clean wavefront of the gated FEL pulses, the high focusability is experimentally confirmed through the observation of spectral broadening by a factor of 2.1 when we tightly focus the gated FEL pulses onto the Ge plate.

  14. Enhancement in second harmonic generation efficiency, laser damage threshold and optical transparency of Mn 2+ doped L-alanine crystals: A correlation with crystalline perfection

    NASA Astrophysics Data System (ADS)

    Kushwaha, S. K.; Rathee, S. P.; Maurya, K. K.; Bhagavannarayana, G.

    2011-08-01

    Effect on crystalline perfection, second harmonic generation (SHG) efficiency, laser damage threshold (LDT) and optical transparency due to Mn 2+ doping in L-alanine crystals has been investigated. The crystalline perfection of pure and doped crystals was evaluated by high-resolution X-ray diffractometry, which revealed the improvement in the crystalline perfection at low and moderate doping concentrations. At moderate and high concentrations, the Mn 2+ ions were found to be incorporated predominantly at the interstitial sites of the crystalline matrix. The actual incorporated amount of dopants in the crystals was analyzed by atomic absorption spectroscopy. The optical transparency, SHG efficiency, and laser damage threshold of the grown crystals with different concentrations of Mn 2+ were investigated. From these studies it is revealed that Mn 2+ doping lead to a considerable enhancement in the measured nonlinear optical properties with a correlation on crystalline perfection.

  15. Time-dependent damage in predictions of fatigue behaviour of normal and healing ligaments

    NASA Astrophysics Data System (ADS)

    Thornton, Gail M.; Bailey, Soraya J.; Schwab, Timothy D.

    2015-08-01

    Ligaments are dense fibrous tissues that connect bones across a joint and are exposed daily to creep and fatigue loading. Ligaments are tensile load-bearing tissues; therefore, fatigue loading will have a component of time-dependent damage from the non-zero mean stress and cycle-dependent damage from the oscillating stress. If time-dependent damage is not sufficient to completely predict the fatigue response, then cycle-dependent damage could be an important contributor. Using data from normal ligaments (current study and Thornton et al., Clin. Biomech. 22:932-940, 2007a) and healing ligaments (Thornton and Bailey, J. Biomech. Eng. 135:091004-1-091004-6, 2013), creep data was used to predict the fatigue response considering time-dependent damage. Relationships between creep lifetime and test stress or initial strain were modelled using exponential or power-law regression. In order to predict fatigue lifetimes, constant rates of damage were assumed and time-varying stresses were introduced into the expressions for time-dependent damage from creep. Then, the predictions of fatigue lifetime were compared with curvefits to the fatigue data where exponential or power-law regressions were used to determine the relationship between fatigue lifetime and test stress or initial strain. The fatigue prediction based on time-dependent damage alone greatly overestimated fatigue lifetime suggesting that time-dependent damage alone cannot account for all of the damage accumulated during fatigue and that cycle-dependent damage has an important role. At lower stress and strain, time-dependent damage was a greater relative contributor for normal ligaments than healing ligaments; however, cycle-dependent damage was a greater relative contributor with incremental increases in stress or strain for normal ligaments than healing ligaments.

  16. Predicting Avoidance of Skin Damage Feedback among College Students

    PubMed Central

    Dwyer, Laura A.; Shepperd, James A.; Stock, Michelle L.

    2015-01-01

    Background Showing people a personal ultraviolet (UV) photograph depicting skin damage can be an effective method for changing sun protection cognitions and behaviors. Purpose We examined whether people opt not to see their UV photograph if given a choice. We also examined predictors of avoidance of skin damage feedback. Methods College students (N = 257) completed questionnaires, viewed example UV photographs, and received the opportunity to see a UV photograph of their face. Results Over one-third of participants opted not to see their UV photograph. Greater perceived risk of sun damage and having fewer coping resources corresponded with greater avoidance, particularly among participants who reported infrequent sun protection behavior. Conclusion The health benefits of UV photography are realized only if people are willing to view the photograph. Our findings suggest the need for interventions that increase receptivity to viewing one’s UV photograph. PMID:25894276

  17. Predictive maps for stochastic nonaffine stiffening and damage in fibrous networks.

    PubMed

    Abhilash, A S; Zhang, Liang; Stiefel, Judah; Purohit, Prashant K; Joshi, Shailendra P

    2014-02-01

    The macroscopic responses of synthetic and natural filamentous networks are determined by a combination of microstructure and filament properties. Biofilament networks such as those of actin and fibrin have become vehicles for studying important concepts in mechanics such as rigidity percolation, linearity and nonlinearity, isotropy and anisotropy, affinity and nonaffinity, hardening and softening, bending and stretching transitions, etc. In this work, we consider generic fibrous network architectures to map out their mechanical responses over a wide range of filament properties. Using the finite element method, we perform two-dimensional simulations of discrete networks subjected to shear deformation. These simulations encompass stochastic effects arising from network topology (filament arrangement, orientation, and length distribution) and the thermally activated crosslink scission. We study the mechanics of these random networks up to a strain of 10%, including damage that is induced by crosslink scission. The response is nonlinear and the initial elastic modulus alone is not sufficient to give an understanding about the overall response. We show that the nonlinear elastic response of the network can be captured using a few parameters that depend on some well known length scales in network mechanics. For networks with filament density above the rigidity percolation threshold, by increasing filament density and bending stiffness, we observe a crossover from the bending dominated elastically compliant stiffening regime to a stretching dominated rigid nonstiffening regime. We show that in the bending dominated regime there are large deviations from the predictions of affine continuum theories. We also give a simple qualitative model for describing the contours of the incubation strain which marks the onset of damage in networks.

  18. The Effect of Delamination on Damage Path and Failure Load Prediction for Notched Composite Laminates

    NASA Technical Reports Server (NTRS)

    Satyanarayana, Arunkumar; Bogert, Philip B.; Chunchu, Prasad B.

    2007-01-01

    The influence of delamination on the progressing damage path and initial failure load in composite laminates is investigated. Results are presented from a numerical and an experimental study of center-notched tensile-loaded coupons. The numerical study includes two approaches. The first approach considers only intralaminar (fiber breakage and matrix cracking) damage modes in calculating the progression of the damage path. In the second approach, the model is extended to consider the effect of interlaminar (delamination) damage modes in addition to the intralaminar damage modes. The intralaminar damage is modeled using progressive damage analysis (PDA) methodology implemented with the VUMAT subroutine in the ABAQUS finite element code. The interlaminar damage mode has been simulated using cohesive elements in ABAQUS. In the experimental study, 2-3 specimens each of two different stacking sequences of center-notched laminates are tensile loaded. The numerical results from the two different modeling approaches are compared with each other and the experimentally observed results for both laminate types. The comparisons reveal that the second modeling approach, where the delamination damage mode is included together with the intralaminar damage modes, better simulates the experimentally observed damage modes and damage paths, which were characterized by splitting failures perpendicular to the notch tips in one or more layers. Additionally, the inclusion of the delamination mode resulted in a better prediction of the loads at which the failure took place, which were higher than those predicted by the first modeling approach which did not include delaminations.

  19. Laser damage threshold and nonlinear optical studies on guanidinium L - monohydrogen tartrate (GuHT) single crystal for NLO device applications

    NASA Astrophysics Data System (ADS)

    Vivek, P.; Murugakoothan, P.

    2015-06-01

    An organic NLO material guanidinium l - monohydrogen tartrate (GuHT) was grown by the slow evaporation technique using water as a solvent. The GuHT crystal belongs to orthorhombic system with noncentrosymmetric space group P212121. The morphology of the GuHT crystal was studied. The laser induced surface damage threshold behaviour of the GuHT crystal was analyzed in different planes. The second harmonic generation (SHG) effective nonlinearity was confirmed by Kurtz and Perry powder technique.

  20. Analysis of the damage threshold of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Xi, Xiao-Wen; Chai, Chang-Chun; Liu, Yang; Yang, Yin-Tang; Fan, Qing-Yang; Shi, Chun-Lei

    2016-08-01

    An electromagnetic pulse (EMP)-induced damage model based on the internal damage mechanism of the GaAs pseudomorphic high electron mobility transistor (PHEMT) is established in this paper. With this model, the relationships among the damage power, damage energy, pulse width and signal amplitude are investigated. Simulation results show that the pulse width index from the damage power formula obtained here is higher than that from the empirical formula due to the hotspot transferring in the damage process of the device. It is observed that the damage energy is not a constant, which decreases with the signal amplitude increasing, and then changes little when the signal amplitude reaches up to a certain level. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  1. Critical Thresholds of Antioxidant and Immune Function Parameters for Se deficiency Prediction in Dairy Cows.

    PubMed

    Wu, Ling; Zhang, Hongyou; Xu, Chuang; Xia, Cheng

    2016-08-01

    The aim of this study was to determine the plasma selenium (Se) levels of lactating cows and to evaluate its association with antioxidant ability and immune function. In a descriptive study, 20 healthy Holstein cows with normal Se level (C) and 30 Holstein cows with subclinical Se deficiency (T) were randomly selected between 14 and 21 days postpartum from a dairy farm, according to a cutoff point of 70 mg/L Se in plasma. Analysis of biochemical parameters of antioxidant and immune function were performed on all the cows, and the risk prediction thresholds for subclinical Se deficiency were determined by area under receiver operating characteristic curve. Cows in the T group had significantly lower plasma Se concentrations compared with cows in the C group (52.16 ± 8.81 vs. 80.37 ± 8.46 μg/L, P = 0.02). There was a marked decrease in plasma glutathione peroxidase (GSH-Px) activity in the T group that correlated positively with the plasma Se level (R = 0.65, P = 0.00), and a significant increase of plasma methane dicarboxylic aldehyde (MDA), total nitric oxide synthase, and lipid peroxidation that correlated negatively with plasma Se levels (R = -0.47, P = 0.01; R = -0.33, P = 0.04; R = -0.40, P = 0.03). Furthermore, there were significantly lower plasma tumor necrosis factor-α and immunoglobulin G levels in the T group that correlated positively with plasma Se levels (R = 0.41, P = 0.01 and R = 0.45, P = 0.01), and a markedly lower plasma interleukin-6 level that correlated negatively with plasma Se levels (R = -0.38, P = 0.02). In addition, if plasma GSH-Px activity was less than 42.37 U/ml, the risk of Se deficiency was significantly increased in lactating cows. These results suggest that low plasma Se levels may reduce the antioxidant ability and immune function, and the risk of low plasma Se level may be predicted effectively by plasma GSH-Px activity in lactating cows.

  2. Navy Enhanced Sierra Mechanics (NESM): Toolbox for predicting Navy shock and damage

    SciTech Connect

    Moyer, Thomas; Stergiou, Jonathan; Reese, Garth; Luton, James; Abboud, Najib

    2016-05-25

    Here, the US Navy is developing a new suite of computational mechanics tools (Navy Enhanced Sierra Mechanics) for the prediction of ship response, damage, and shock environments transmitted to vital systems during threat weapon encounters. NESM includes fully coupled Euler-Lagrange solvers tailored to ship shock/damage predictions. NESM is optimized to support high-performance computing architectures, providing the physics-based ship response/threat weapon damage predictions needed to support the design and assessment of highly survivable ships. NESM is being employed to support current Navy ship design and acquisition programs while being further developed for future Navy fleet needs.

  3. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    PubMed

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  4. Navy Enhanced Sierra Mechanics (NESM): Toolbox for predicting Navy shock and damage

    DOE PAGES

    Moyer, Thomas; Stergiou, Jonathan; Reese, Garth; ...

    2016-05-25

    Here, the US Navy is developing a new suite of computational mechanics tools (Navy Enhanced Sierra Mechanics) for the prediction of ship response, damage, and shock environments transmitted to vital systems during threat weapon encounters. NESM includes fully coupled Euler-Lagrange solvers tailored to ship shock/damage predictions. NESM is optimized to support high-performance computing architectures, providing the physics-based ship response/threat weapon damage predictions needed to support the design and assessment of highly survivable ships. NESM is being employed to support current Navy ship design and acquisition programs while being further developed for future Navy fleet needs.

  5. Foreign Object Damage Prediction in Ceramic Matrix Composites

    DTIC Science & Technology

    2011-02-28

    material properties of a ply or laminate panel. Since, the tow is comprised of filaments, possibly braided into a yarn, which are coated by a boron...scratching off the environmental barrier coating (EBC) coating and the subsequent consequences. 2) Given constant environmental attack of a CMC...damage profile: 5 3.1.2 Mechanisms of fracture toughness: 6 3.1.3 Impact resistance of EBC coated SiC/SC composites 7 3.2.0 Material selection 8

  6. Cumulative-strain-damage model of ductile fracture: simulation and prediction of engineering fracture tests

    SciTech Connect

    Wilkins, M.L.; Streit, R.D.; Reaugh, J.E.

    1980-10-03

    A cumulative-strain-damage criterion is used to predict the initiation and propagation of fracture in ductile materials. The model is consistent with a model of ductile rupture that involves void growth and coalescence. Two- and three-dimensional finite difference computer codes, which use incremental-plasticity theory to describe large strains with rotation, are used to trace the history of damage in a material due to external forces. Fracture begins when the damage exceeds a critical value over a critical distance and proceeds as the critical-damage state is reached elsewhere. This unified approach to failure prediction can be applied to an arbitrary geometry if the material behavior has been adequately characterized. The damage function must be calibrated for a particular material using various material property tests. The fracture toughness of 6061-T651 aluminum is predicted.

  7. A statistical mechanics model to predict electromigration induced damage and void growth in solder interconnects

    NASA Astrophysics Data System (ADS)

    Wang, Yuexing; Yao, Yao; Keer, Leon M.

    2017-02-01

    Electromigration is an irreversible mass diffusion process with damage accumulation in microelectronic materials and components under high current density. Based on experimental observations, cotton type voids dominate the electromigration damage accumulation prior to cracking in the solder interconnect. To clarify the damage evolution process corresponding to cotton type void growth, a statistical model is proposed to predict the stochastic characteristic of void growth under high current density. An analytical solution of the cotton type void volume growth over time is obtained. The synchronous electromigration induced damage accumulation is predicted by combining the statistical void growth and the entropy increment. The electromigration induced damage evolution in solder joints is developed and applied to verify the tensile strength deterioration of solder joints due to electromigration. The predictions agree well with the experimental results.

  8. A physically-based continuum damage mechanics model for numerical prediction of damage growth in laminated composite plates

    NASA Astrophysics Data System (ADS)

    Williams, Kevin Vaughan

    Rapid growth in use of composite materials in structural applications drives the need for a more detailed understanding of damage tolerant and damage resistant design. Current analytical techniques provide sufficient understanding and predictive capabilities for application in preliminary design, but current numerical models applicable to composites are few and far between and their development into well tested, rigorous material models is currently one of the most challenging fields in composite materials. The present work focuses on the development, implementation, and verification of a plane-stress continuum damage mechanics based model for composite materials. A physical treatment of damage growth based on the extensive body of experimental literature on the subject is combined with the mathematical rigour of a continuum damage mechanics description to form the foundation of the model. The model has been implemented in the LS-DYNA3D commercial finite element hydrocode and the results of the application of the model are shown to be physically meaningful and accurate. Furthermore it is demonstrated that the material characterization parameters can be extracted from the results of standard test methodologies for which a large body of published data already exists for many materials. Two case studies are undertaken to verify the model by comparison with measured experimental data. The first series of analyses demonstrate the ability of the model to predict the extent and growth of damage in T800/3900-2 carbon fibre reinforced polymer (CFRP) plates subjected to normal impacts over a range of impact energy levels. The predicted force-time and force-displacement response of the panels compare well with experimental measurements. The damage growth and stiffness reduction properties of the T800/3900-2 CFRP are derived using published data from a variety of sources without the need for parametric studies. To further demonstrate the physical nature of the model, a IM6

  9. Damage prediction in cross-plied curved composite laminates

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.; Jackson, Wade C.

    1991-01-01

    Analytical and experimental work is detailed which is required to predict delamination onset and growth in a curved cross plied composite laminate subjected to static and fatigue loads. The composite used was AS4/3501/6, graphite/epoxy. Analytically, a closed form stress analysis and 2-D and 3-D finite element analyses were conducted to determine the stress distribution in an undamaged curved laminate. The finite element analysis was also used to determine values of strain energy release rate at a delamination emanating from a matrix crack in a 90 deg ply. Experimentally, transverse tensile strength and fatigue life were determined from flat 90 deg coupons. The interlaminar tensile strength and fatigue life were determined from double cantilevered beam specimens. Cross plied curved laminates were tested statically and in fatigue to give a comparison to the analytical predictions. A comparison of the fracture mechanics life prediction technique and the strength based prediction technique is given.

  10. Predicting temporary threshold shifts in a bottlenose dolphin (Tursiops truncatus): the effects of noise level and duration.

    PubMed

    Mooney, T Aran; Nachtigall, Paul E; Breese, Marlee; Vlachos, Stephanie; Au, Whitlow W L

    2009-03-01

    Noise levels in the ocean are increasing and are expected to affect marine mammals. To examine the auditory effects of noise on odontocetes, a bottlenose dolphin (Tursiops truncatus) was exposed to octave-band noise (4-8 kHz) of varying durations (<2-30 min) and sound pressures (130-178 dB re 1 microPa). Temporary threshold shift (TTS) occurrence was quantified in an effort to (i) determine the sound exposure levels (SELs) (dB re 1 microPa(2) s) that induce TTS and (ii) develop a model to predict TTS onset. Hearing thresholds were measured using auditory evoked potentials. If SEL was kept constant, significant shifts were induced by longer duration exposures but not for shorter exposures. Higher SELs were required to induce shifts in shorter duration exposures. The results did not support an equal-energy model to predict TTS onset. Rather, a logarithmic algorithm, which increased in sound energy as exposure duration decreased, was a better predictor of TTS. Recovery to baseline hearing thresholds was also logarithmic (approximately -1.8 dB/doubling of time) but indicated variability including faster recovery rates after greater shifts and longer recoveries necessary after longer duration exposures. The data reflected the complexity of TTS in mammals that should be taken into account when predicting odontocete TTS.

  11. Representation of Vegetation and Other Nonerodible Elements in Aeolian Shear Stress Partitioning Models for Predicting Transport Threshold

    NASA Technical Reports Server (NTRS)

    King, James; Nickling, William G.; Gillies, John A.

    2005-01-01

    The presence of nonerodible elements is well understood to be a reducing factor for soil erosion by wind, but the limits of its protection of the surface and erosion threshold prediction are complicated by the varying geometry, spatial organization, and density of the elements. The predictive capabilities of the most recent models for estimating wind driven particle fluxes are reduced because of the poor representation of the effectiveness of vegetation to reduce wind erosion. Two approaches have been taken to account for roughness effects on sediment transport thresholds. Marticorena and Bergametti (1995) in their dust emission model parameterize the effect of roughness on threshold with the assumption that there is a relationship between roughness density and the aerodynamic roughness length of a surface. Raupach et al. (1993) offer a different approach based on physical modeling of wake development behind individual roughness elements and the partition of the surface stress and the total stress over a roughened surface. A comparison between the models shows the partitioning approach to be a good framework to explain the effect of roughness on entrainment of sediment by wind. Both models provided very good agreement for wind tunnel experiments using solid objects on a nonerodible surface. However, the Marticorena and Bergametti (1995) approach displays a scaling dependency when the difference between the roughness length of the surface and the overall roughness length is too great, while the Raupach et al. (1993) model's predictions perform better owing to the incorporation of the roughness geometry and the alterations to the flow they can cause.

  12. Electrical Resistance of Ceramic Matrix Composites for Damage Detection and Life-Prediction

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory N.; Xia, Zhenhai

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection or inspection of a component during "down time". The correlation of damage with appropriate failure mechanism can then be applied to accurate life prediction for high-temperature ceramic matrix composites.

  13. MLIBlast: A program to empirically predict hypervelocity impact damage to the Space Station

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1991-01-01

    MLIBlast is described, which consists of a number of DOC PC based MIcrosoft BASIC program modules written to provide spacecraft designers with empirical predictions of space debris damage to orbiting spacecraft. The Spacecraft wall configuration is assumed to consist of multilayer insulation (MLI) placed between a Whipple style bumper and a pressure wall. Predictions are based on data sets of experimental results obtained from simulating debris impact on spacecraft. One module of MLIBlast facilitates creation of the data base of experimental results that is used by the damage prediction modules of the code. The user has a choice of three different prediction modules to predict damage to the bumper, the MLI, and the pressure wall.

  14. A threshold-based weather model for predicting stripe rust infection in winter wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat stripe rust (WSR) (caused by Puccinia striiformis sp. tritici) is a major threat in most wheat growing regions worldwide, with potential to inflict regular yield losses when environmental conditions are favorable. We propose a threshold-based disease-forecasting model using a stepwise modeling...

  15. Multiphoton Absorption is Probably Not the Primary Threshold Damage Mechanism for Femtosecond Laser Pulse Exposures in the Retinal Pigment Epithelium

    DTIC Science & Technology

    2004-01-01

    is responsible for production of threshold ocular lesions . It has been proposed that multiphoton absorption may also contribute to ultrashort-pulse...of pulsed, infrared laser sources on retinal pigment epithelial (RPE) cells, we demonstrated that effects normally requiring visible or near UV ( UVA ...excitation effectively upconverted the infrared photons to UVA -VIS wavelengths, which then activated mechanisms that induced single and double strand

  16. Prediction of Size Effects in Notched Laminates Using Continuum Damage Mechanics

    NASA Technical Reports Server (NTRS)

    Camanho, D. P.; Maimi, P.; Davila, C. G.

    2007-01-01

    This paper examines the use of a continuum damage model to predict strength and size effects in notched carbon-epoxy laminates. The effects of size and the development of a fracture process zone before final failure are identified in an experimental program. The continuum damage model is described and the resulting predictions of size effects are compared with alternative approaches: the point stress and the inherent flaw models, the Linear-Elastic Fracture Mechanics approach, and the strength of materials approach. The results indicate that the continuum damage model is the most accurate technique to predict size effects in composites. Furthermore, the continuum damage model does not require any calibration and it is applicable to general geometries and boundary conditions.

  17. Effects of chemical etching on the surface quality and the laser induced damage threshold of fused silica optics

    NASA Astrophysics Data System (ADS)

    Pfiffer, Mathilde; Cormont, Philippe; Néauport, Jérôme; Lambert, Sébastien; Fargin, Evelyne; Bousquet, Bruno; Dussauze, Marc

    2016-12-01

    Effects of deep wet etching on the surface quality and the laser induced damage probability have been studied on fused silica samples. Results obtained with a HF/HNO3 solution and a KOH solution were compared on both polished pristine surface and scratched surfaces. The hydrofluoric solution radically deteriorated the surface quality creating a haze on the whole surface and increasing considerably the roughness. For both solutions, neither improvement nor deterioration of the laser damage performances has been observed on the etched surfaces while the laser damage resistance of scratches has been increased to the level of the surface. We conclude that laser damage performances are equivalent with both solutions but an acid etching induces surface degradation that is not experienced with basic etching.

  18. Prediction Of Formability In Sheet Metal Forming Processes Using A Local Damage Model

    NASA Astrophysics Data System (ADS)

    Teixeira, P.; Santos, Abel; César Sá, J.; Andrade Pires, F.; Barata da Rocha, A.

    2007-05-01

    The formability in sheet metal forming processes is mainly conditioned by ductile fracture resulting from geometric instabilities due to necking and strain localization. The macroscopic collapse associated with ductile failure is a result of internal degradation described throughout metallographic observations by the nucleation, growth and coalescence of voids and micro-cracks. Damage influences and is influenced by plastic deformation and therefore these two dissipative phenomena should be coupled at the constitutive level. In this contribution, Lemaitre's ductile damage model is coupled with Hill's orthotropic plasticity criterion. The coupling between damaging and material behavior is accounted for within the framework of Continuum Damage Mechanics (CDM). The resulting constitutive equations are implemented in the Abaqus/Explicit code, for the prediction of fracture onset in sheet metal forming processes. The damage evolution law takes into account the important effect of micro-crack closure, which dramatically decreases the rate of damage growth under compressive paths.

  19. Damage Assessment Using Hyperchaotic Excitation and Nonlinear Prediction Error

    DTIC Science & Technology

    2011-09-01

    include auto-prediction error [5], Shahab Torkamani and Eric A Butcher, Department of Mechanical and Aerospace Engineering, New Mexico State...0085, USA Gyuhae Park, Los Alamos National Laboratory, MS T001, P.O. Box 1663, Los Alamos, NM 87545, USA 1 2 3 Report Documentation Page Form...with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE SEP 2011 2. REPORT TYPE N/A 3

  20. Structural Damage Prediction and Analysis for Hypervelocity Impact

    NASA Technical Reports Server (NTRS)

    Elfer, Norman

    1995-01-01

    It is necessary to integrate a wide variety of technical disciplines to provide an analysis of structural damage to a spacecraft due to hypervelocity impact. There are many uncertainties, and more detailed investigation is warranted, in each technical discipline. However, a total picture of the debris and meteoroid hazard is required to support manned spaceflight in general, and the international Space Station in particular. In the performance of this contract, besides producing a handbook, research and development was conducted in several different areas. The contract was broken into six separate tasks. Each task objectives and accomplishments will be reviewed in the following sections. The Handbook and separate task reports are contained as attachments to the final report. The final section summarizes all of the recommendations coming out of this study. The analyses and comments are general design guidelines and not necessarily applicable to final Space Station designs since several configuration and detailed design changes were being made during the course of this contract. Rather, the analyses and comments may indicate either a point-in-time concept analysis, available test data, or desirable protection goals, not hindered by the design and operation constraints faced by Space Station designers.

  1. Sensitivity of Airburst Damage Prediction to Asteroid Characterization Uncertainty

    NASA Astrophysics Data System (ADS)

    Mathias, Donovan; Wheeler, Lorien; Dotson, Jessie L.

    2016-10-01

    Characterizing the level of risk posed by asteroid impacts is quintessential to developing informed mitigation criteria, response plans, and long-term survey and characterization strategies for potentially hazardous asteroids. A physics-based impact risk (PBIR) model has been created to assess the consequences of potential asteroid strikes by combining probabilistic sampling of uncertain impact parameters with numerical simulation of the atmospheric flight, breakup, and resulting ground damage for each sampled impact case. The model incudes a Monte Carlo framework that allows the uncertainties in the potential impact parameters to be described in terms of probability distributions, and produces statistical results that support inference regarding the threat level across those ranges. This work considers the PBIR model outputs in terms of potential threat characterization metrics for decision support. Several metrics are assessed, from the single estimated casualty (Ec) parameter to more descriptive distribution functions. Distributions are shown for aggregate risk, risk versus asteroid size, and risk to specific geographic regions. In addition, these results show how the uncertain properties of potential impactors can lead to different conclusions about optimal survey and characterization strategies.

  2. Comparative Analysis of Histological Results of Visible Lesion Thresholds for Thermal and LIB Induced Skin Damage at 1.3 microns and 1.5 microns

    DTIC Science & Technology

    2007-01-01

    L.J. Chavey, M.L Imholte, R.J. Thomas, and B.A. Rockwell, "Injury thresholds for topical-cream- coated skin of hairless guinea pigs ( cavia porcellus ...safety, LIB I. INTRODUCTION Recent technical developments in solid state and chemical lasers have facilitated the growing use of pulsed, high-peak- power ...mechanism of surface LIB plasma damage on skin from nanosecond pulses in the NIR. Due to the proliferation of high-peak- power systems in the NIR for

  3. Comparative study of the laser damage threshold and optical characteristics of Ta2O5-SiO2 multilayers deposited using various methods

    NASA Astrophysics Data System (ADS)

    Botha, Roelene; Schwyn Thöny, Silvia; Grössl, Martin; Mourad, Safer; Maissen, Clau; Venter, Jacobus I.; Südmeyer, Thomas; Hoffmann, Martin; Bulkin, Pavel V.; Linz-Dittrich, Sabine; Bischof, David; Michler, Markus; Rinner, Stefan J.; Ettemeyer, Andreas

    2015-11-01

    Manufacturing processes from the private and academic sectors were used to deposit anti-reflective and high-reflective coatings composed of Ta2O5 - SiO2 multilayers. Used deposition techniques included three Ion Assisted Deposition (IAD) systems and an Ion Beam Sputtering (IBS) system. Coatings were performed on fused silica (Corning 7980) substrates polished by two different suppliers. LIDT Measurements were performed using a Q-Switched Nd:YAG laser operating at 1064nm. The paper presents a comparison of the coatings in terms of laser damage threshold values, optical properties and surface quality.

  4. A Multiscale Computational Model for Predicting Damage Evolution in Viscoelastic Composites Subjected to Impact Loading

    DTIC Science & Technology

    2005-01-01

    The objective of the project was to develop a multiscale computational model capable of predicting the evolution of matrix cracking, delamination...currently under development by the author. The cohesive zone model for predicting damage evolution in laminated composite plates is cast within a...three dimensional continuum finite element algorithm capable of simulating the evolution of matrix, fiber, and delamination cracking in composite

  5. IR Materials Rain Damage Prediction And Tests Results

    NASA Astrophysics Data System (ADS)

    Cassaing, Joseph J.; Deom, Alain A.; Bouveret, Andre M.; Balageas, Daniel L.

    1989-09-01

    A comparison between G.S. Springer's theory, that predicts rain optical and rain mass degradations for different kinds of infrared materials, and the experimental results obtained by ONERA on the SAAB rain rotating arm on IR homogeneous samples is presented. The agreement between theory and experiment is rather poor. A very simple correlation between optical degradation and V, C, p (respectively : droplet impact velocity, longitudinal wave velocity and density of infrared materials) is proposed, which is in good agreement with all data obtained in the range of 200 to 300 m/s for the 9 tested materials.

  6. Predicting joint damage in rheumatoid arthritis using MRI scanning.

    PubMed

    McQueen, Fiona M; Dalbeth, Nicola

    2009-01-01

    Predicting prognosis in the patient with newly diagnosed rheumatoid arthritis is of key importance so that high-cost therapies can be tailored to the needs of the individual. In a recent issue of Arthritis Research and Therapy, the prognostic significance of MRI changes at the forefoot has been studied. While progression to radiographic erosion occurred rarely in this group of patients exposed to potent disease-suppressing therapies, including TNF inhibitors, MRI bone edema, representing osteitis, has been further implicated as a forerunner to bone erosion. Early MRI scans of the forefoot were helpful in defining those with the potential to progress as well as those in a good prognosis category.

  7. Prediction of threshold pain skin temperature from thermal properties of materials in contact.

    PubMed

    Stoll, A M; Chianta, M A; Piergallini, J R

    1982-12-01

    Aerospace design engineers have long sought concrete data with respect to the thermal safety of materials in contact with human skin. A series of studies on this subject has been completed and some of the results have been reported earlier. In these studies over 2,000 observations were made of pain threshold during contact with materials at elevated temperatures. Six materials were used representing the full range of thermal properties from good conductors to good insulators. Previous reports gave methods for determining the maximum permissible temperatures for any material in safe contact with bare skin for 1-5 s solely from a knowledge of its thermal properties. This report presents the comparison of the theoretical and experimental contact temperatures at pain threshold and provides a method for deriving the skin temperature productive of threshold pain from the thermal properties of any material within the range of those studies. Ratios reflecting the heat transfer coefficient associated with the materials in contact are related to their thermal properties so that the skin temperature at pain threshold may be determined from that calculated from heat transfer theory. Tabular and graphical representation of these data permits interpolation within the range of properties so that any material of known thermal conductivity, density and specific heat may be assessed with respect to its effect on the skin temperature during contact to the end point of pain. These data, in conjunction with those already reported, constitute a system for the complete assessment of the thermal aspects of practically any material suitable for construction and manufacturing applications with respect to safe contact with human skin.

  8. A Progressive Damage Methodology for Residual Strength Predictions of Notched Composite Panels

    NASA Technical Reports Server (NTRS)

    Coats, Timothy W.; Harris, Charles E.

    1998-01-01

    The translaminate fracture behavior of carbon/epoxy structural laminates with through-penetration notches was investigated to develop a residual strength prediction methodology for composite structures. An experimental characterization of several composite materials systems revealed a fracture resistance behavior that was very similar to the R-curve behavior exhibited by ductile metals. Fractographic examinations led to the postulate that the damage growth resistance was primarily due to fractured fibers in the principal load-carrying plies being bridged by intact fibers of the adjacent plies. The load transfer associated with this bridging mechanism suggests that a progressive damage analysis methodology will be appropriate for predicting the residual strength of laminates with through-penetration notches. A progressive damage methodology developed by the authors was used to predict the initiation and growth of matrix cracks and fiber fracture. Most of the residual strength predictions for different panel widths, notch lengths, and material systems were within about 10% of the experimental failure loads.

  9. Evaluation of damage models by finite element prediction of fracture in cylindrical tensile test.

    PubMed

    Eom, Jaegun; Kim, Mincheol; Lee, Seongwon; Ryu, Hoyeun; Joun, Mansoo

    2014-10-01

    In this research, tensile tests of cylindrical specimens of a mild steel are predicted via the finite element method, with emphasis on the fracture predictions of various damage models. An analytical model is introduced for this purpose. An iterative material identification procedure is used to obtain the flow stress, making it possible to exactly predict a tensile test up to the fracture point, in the engineering sense. A node-splitting technique is used to generate the cracks on the damaged elements. The damage models of McClintock, Rice-Tracey, Cockcroft-Latham, Freudenthal, Brozzo et al. and Oyane et al. are evaluated by comparing their predictions from the tensile test perspective.

  10. Prediction of feather damage in laying hens using optical flows and Markov models.

    PubMed

    Lee, Hyoung-joo; Roberts, Stephen J; Drake, Kelly A; Dawkins, Marian Stamp

    2011-04-06

    Feather pecking in laying hens is a major welfare and production problem for commercial egg producers, resulting in mortality, loss of production as well as welfare issues for the damaged birds. Damaging outbreaks of feather pecking are currently impossible to control, despite a number of proposed interventions. However, the ability to predict feather damage in advance would be a valuable research tool for identifying which management or environmental factors could be the most effective interventions at different ages. This paper proposes a framework for forecasting the damage caused by injurious pecking based on automated image processing and statistical analysis. By frame-by-frame analysis of video recordings of laying hen flocks, optical flow measures are calculated as indicators of the movement of the birds. From the optical flow datasets, measures of disturbance are extracted using hidden Markov models. Based on these disturbance measures and age-related variables, the levels of feather damage in flocks in future weeks is predicted. Applying the proposed method to real-world datasets, it is shown that the disturbance measures offer improved predictive values for feather damage thus enabling an identification of flocks with probable prevalence of damage and injury later in lay.

  11. Localization of nonlinear damage using state-space-based predictions under stochastic excitation

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Mao, Zhu; Todd, Michael; Huang, Zongming

    2014-02-01

    This paper presents a study on localizing damage under stochastic excitation by state-space-based methods, where the damaged response contains some nonlinearity. Two state-space-based modeling algorithms, namely auto- and cross-predictions, are employed in this paper, and the greatest prediction error will be achieved at the sensor pair closest to the actual damage, in terms of localization. To quantify the distinction of prediction error distributions obtained at different sensor locations, the Bhattacharyya distance is adopted as the quantification metric. There are two lab-scale test-beds adopted as validation platforms, including a two-story plane steel frame with bolt loosening damage and a three-story benchmark aluminum frame with a simulated tunable crack. Band-limited Gaussian noise is applied through an electrodynamic shaker to the systems. Testing results indicate that the damage detection capability of the state-space-based method depends on the nonlinearity-induced high frequency responses. Since those high frequency components attenuate quickly in time and space, the results show great capability for damage localization, i.e., the highest deviation of Bhattacharyya distance is coincident with the sensors close to the physical damage location. This work extends the state-space-based damage detection method for localizing damage to a stochastically excited scenario, which provides the advantage of compatibility with ambient excitations. Moreover, results from both experiments indicate that the state-space-based method is only sensitive to nonlinearity-induced damage, thus it can be utilized in parallel with linear classifiers or normalization strategies to insulate the operational and environmental variability, which often affects the system response in a linear fashion.

  12. Estimation of feeding threshold for Homalodisca vitripennis (Hemiptera: Cicadellidae) and its application to prediction of overwintering mortality.

    PubMed

    Son, Youngsoo; Groves, Russell L; Daane, Kent M; Morgan, David J W; Krugner, Rodrigo; Johnson, Marshall W

    2010-08-01

    The glassy-winged sharpshooter, Homalodisca vitripennis (Germar), vectors the bacterium Xylella fastidiosa that induces Pierce's disease of grape. This study determined the effect of temperature on the feeding activity of H. vitripennis adults and the resulting production of excreta. The Logan type I model described a nonlinear pattern that showed excreta production increased up to an optimal temperature (33.1°C), followed by an abrupt decline near an estimated upper threshold (36.4°C). A temperature threshold for feeding, at or below which adults cease feeding, was estimated to be 10°C using a linear regression model based on the percentage of adults producing excreta over a range of constant temperatures. A simulated winter-temperature experiment using fluctuating thermal cycles confirmed that a time period above the temperature threshold for feeding was a critical factor in determining adult survival. Using data from the simulated temperature study, a predictive model was constructed by quantifying the relationship between cumulative mortality and cooling degree-hours. In field validation experiments, the model accurately predicted the temporal pattern of overwintering mortality of H. vitripennis adults held under winter temperatures simulating conditions in Bakersfield and Riverside, California, in 2006-2007. Model prediction using winter temperature data from a Riverside weather station indicated that H. vitripennis adults would experience an average of 92% overwintering mortality before reproduction in the spring, but levels of mortality varied depending on winter temperatures. The potential for temperature-based indices to predict temporal and spatial dynamics of H. vitripennis overwintering is discussed.

  13. Numerical prediction of the low-velocity impact damage and compression after impact strength of composite laminates

    NASA Astrophysics Data System (ADS)

    Tan, Wei; Falzon, Brian G.; Chiu, Louis N. S.; Price, Mark

    2015-02-01

    Low-velocity impact damage can drastically reduce the residual mechanical properties of the composite structure even when there is barely visible impact damage. The ability to computationally predict the extent of damage and compression after impact (CAI) strength of a composite structure can potentially lead to the exploration of a larger design space without incurring significant development time and cost penalties. A three-dimensional damage model, to predict both low-velocity impact damage and compression after impact CAI strength of composite laminates, has been developed and implemented as a user material subroutine in the commercial finite element package, ABAQUS/Explicit. The virtual tests were executed in two steps, one to capture the impact damage and the other to predict the CAI strength. The observed intra-laminar damage features, delamination damage area as well as residual strength are discussed. It is shown that the predicted results for impact damage and CAI strength correlated well with experimental testing.

  14. Predicting joint damage in rheumatoid arthritis using MRI scanning

    PubMed Central

    2009-01-01

    Predicting prognosis in the patient with newly diagnosed rheumatoid arthritis is of key importance so that high-cost therapies can be tailored to the needs of the individual. In a recent issue of Arthritis Research and Therapy, the prognostic significance of MRI changes at the forefoot has been studied. While progression to radiographic erosion occurred rarely in this group of patients exposed to potent disease-suppressing therapies, including TNF inhibitors, MRI bone edema, representing osteitis, has been further implicated as a forerunner to bone erosion. Early MRI scans of the forefoot were helpful in defining those with the potential to progress as well as those in a good prognosis category. PMID:19796371

  15. Improvement of Progressive Damage Model to Predicting Crashworthy Composite Corrugated Plate

    NASA Astrophysics Data System (ADS)

    Ren, Yiru; Jiang, Hongyong; Ji, Wenyuan; Zhang, Hanyu; Xiang, Jinwu; Yuan, Fuh-Gwo

    2017-05-01

    To predict the crashworthy composite corrugated plate, different single and stacked shell models are evaluated and compared, and a stacked shell progressive damage model combined with continuum damage mechanics is proposed and investigated. To simulate and predict the failure behavior, both of the intra- and inter- laminar failure behavior are considered. The tiebreak contact method, 1D spot weld element and cohesive element are adopted in stacked shell model, and a surface-based cohesive behavior is used to capture delamination in the proposed model. The impact load and failure behavior of purposed and conventional progressive damage models are demonstrated. Results show that the single shell could simulate the impact load curve without the delamination simulation ability. The general stacked shell model could simulate the interlaminar failure behavior. The improved stacked shell model with continuum damage mechanics and cohesive element not only agree well with the impact load, but also capture the fiber, matrix debonding, and interlaminar failure of composite structure.

  16. Relaxed damage threshold intensity conditions and nonlinear increase in the conversion efficiency of an optical parametric oscillator using a bi-directional pump geometry.

    PubMed

    Norris, G; McConnell, G

    2010-03-01

    A novel bi-directional pump geometry that nonlinearly increases the nonlinear optical conversion efficiency of a synchronously pumped optical parametric oscillator (OPO) is reported. This bi-directional pumping method synchronizes the circulating signal pulse with two counter-propagating pump pulses within a linear OPO resonator. Through this pump scheme, an increase in nonlinear optical conversion efficiency of 22% was achieved at the signal wavelength, corresponding to a 95% overall increase in average power. Given an almost unchanged measured pulse duration of 260 fs under optimal performance conditions, this related to a signal wavelength peak power output of 18.8 kW, compared with 10 kW using the traditional single-pass geometry. In this study, a total effective peak intensity pump-field of 7.11 GW/cm(2) (corresponding to 3.55 GW/cm(2) from each pump beam) was applied to a 3 mm long periodically poled lithium niobate crystal, which had a damage threshold intensity of 4 GW/cm(2), without impairing crystal integrity. We therefore prove the application of this novel pump geometry provides opportunities for power-scaling of synchronously pumped OPO systems together with enhanced nonlinear conversion efficiency through relaxed damage threshold intensity conditions.

  17. Measuring single-shot, picosecond optical damage threshold in Ge, Si, and sapphire with a 5.1-μm laser

    SciTech Connect

    Agustsson, R.; Pogorelsky, I.; Arab, E.; Murokh, A.; O"Shea, B.; Ovodenko, A.; Rosenzweig, J.; Solovyov, V.; Tilton, R.

    2015-11-18

    Optical photonic structures driven by picosecond, GW-class lasers are emerging as promising novel sources of electron beams and high quality X-rays. Due to quadratic dependence on wavelength of the laser ponderomotive potential, the performance of such sources scales very favorably towards longer drive laser wavelengths. However, to take full advantage of photonic structures at mid-IR spectral region, it is important to determine optical breakdown limits of common optical materials. To this end, an experimental study was carried out at a wavelength of 5 µm, using a frequency-doubled CO2 laser source, with 5 ps pulse length. Single-shot optical breakdowns were detected and characterized at different laser intensities, and damage threshold values of 0.2, 0.3, and 7.0 J/cm2, were established for Ge, Si, and sapphire, respectively. As a result, the measured damage threshold values were stable and repeatable within individual data sets, and across varying experimental conditions.

  18. A study on crystalline perfection, optical, dielectric, mechanical, laser damage threshold and NLO properties of glycine added potassium dihydrogen phosphate single crystals

    NASA Astrophysics Data System (ADS)

    Boopathi, K.; Rajesh, P.; Ramasamy, P.

    2012-06-01

    Single crystals of glycine doped potassium dihydrogen phosphate have been grown by slow evaporation solution technique, slow cooling along with seed rotation and Sankaranaryanan-Ramasamy method. The size of the grown crystal in slow cooling method was 35×25×20 mm3 and in SR method it was 20 mm in diameter and 110 mm in length. The grown crystals were characterized by HRXRD, UV-Visible, dielectric, Vickers microhardness, laser damage threshold and SHG studies. The crystalline perfection of the grown crystals has been analyzed by high resolution X-ray diffraction. The transmittance of the grown crystals is 66%, 70%, and 77% respectively and all the crystals have good transparency in the entire visible region. The crystal grown by SR method glycine added KDP has much higher hardness value than other method grown crystals. Higher laser damage threshold was observed in SR method grown glycine added KDP crystal compared to SR method grown pure KDP crystal. The second harmonic generation efficiency of the glycine doped KDP is increased compared to pure KDP.

  19. Measuring single-shot, picosecond optical damage threshold in Ge, Si, and sapphire with a 5.1-μm laser

    DOE PAGES

    Agustsson, R.; Pogorelsky, I.; Arab, E.; ...

    2015-11-18

    Optical photonic structures driven by picosecond, GW-class lasers are emerging as promising novel sources of electron beams and high quality X-rays. Due to quadratic dependence on wavelength of the laser ponderomotive potential, the performance of such sources scales very favorably towards longer drive laser wavelengths. However, to take full advantage of photonic structures at mid-IR spectral region, it is important to determine optical breakdown limits of common optical materials. To this end, an experimental study was carried out at a wavelength of 5 µm, using a frequency-doubled CO2 laser source, with 5 ps pulse length. Single-shot optical breakdowns were detectedmore » and characterized at different laser intensities, and damage threshold values of 0.2, 0.3, and 7.0 J/cm2, were established for Ge, Si, and sapphire, respectively. As a result, the measured damage threshold values were stable and repeatable within individual data sets, and across varying experimental conditions.« less

  20. Prediction of spatially explicit rainfall intensity–duration thresholds for post-fire debris-flow generation in the western United States

    USGS Publications Warehouse

    Staley, Dennis M.; Negri, Jacquelyn; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.

    2017-01-01

    Early warning of post-fire debris-flow occurrence during intense rainfall has traditionally relied upon a library of regionally specific empirical rainfall intensity–duration thresholds. Development of this library and the calculation of rainfall intensity-duration thresholds often require several years of monitoring local rainfall and hydrologic response to rainstorms, a time-consuming approach where results are often only applicable to the specific region where data were collected. Here, we present a new, fully predictive approach that utilizes rainfall, hydrologic response, and readily available geospatial data to predict rainfall intensity–duration thresholds for debris-flow generation in recently burned locations in the western United States. Unlike the traditional approach to defining regional thresholds from historical data, the proposed methodology permits the direct calculation of rainfall intensity–duration thresholds for areas where no such data exist. The thresholds calculated by this method are demonstrated to provide predictions that are of similar accuracy, and in some cases outperform, previously published regional intensity–duration thresholds. The method also provides improved predictions of debris-flow likelihood, which can be incorporated into existing approaches for post-fire debris-flow hazard assessment. Our results also provide guidance for the operational expansion of post-fire debris-flow early warning systems in areas where empirically defined regional rainfall intensity–duration thresholds do not currently exist.

  1. Prediction of spatially explicit rainfall intensity-duration thresholds for post-fire debris-flow generation in the western United States

    NASA Astrophysics Data System (ADS)

    Staley, Dennis M.; Negri, Jacquelyn A.; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.

    2017-02-01

    Early warning of post-fire debris-flow occurrence during intense rainfall has traditionally relied upon a library of regionally specific empirical rainfall intensity-duration thresholds. Development of this library and the calculation of rainfall intensity-duration thresholds often require several years of monitoring local rainfall and hydrologic response to rainstorms, a time-consuming approach where results are often only applicable to the specific region where data were collected. Here, we present a new, fully predictive approach that utilizes rainfall, hydrologic response, and readily available geospatial data to predict rainfall intensity-duration thresholds for debris-flow generation in recently burned locations in the western United States. Unlike the traditional approach to defining regional thresholds from historical data, the proposed methodology permits the direct calculation of rainfall intensity-duration thresholds for areas where no such data exist. The thresholds calculated by this method are demonstrated to provide predictions that are of similar accuracy, and in some cases outperform, previously published regional intensity-duration thresholds. The method also provides improved predictions of debris-flow likelihood, which can be incorporated into existing approaches for post-fire debris-flow hazard assessment. Our results also provide guidance for the operational expansion of post-fire debris-flow early warning systems in areas where empirically defined regional rainfall intensity-duration thresholds do not currently exist.

  2. Fast Predicting Statistical Subsurface Damage Parameters of the K9 Sample

    NASA Astrophysics Data System (ADS)

    Wang, Hairong; Chen, Hongfeng; Xiao, Lihui; Zhang, Bike; Jiang, Zhuangde

    2015-07-01

    Based on the subsurface damage model and the material removal rate of K9 glass in HF acid solution, a fast method is proposed to calculate the parameters of characterizing the subsurface damage of a polished sample. When micro cracks of the etched sample's subsurface can be clearly observed, lengths, widths, angles, densities of the micro cracks can be calculated by using the image processing algorithm, and depths of the micro cracks may be predicted by the load-crack model. Eventually a set of the parameters are proposed as a complete description about subsurface damage of the sample.

  3. On the accuracy of creep-damage predictions in thinwalled structures using the finite element method

    NASA Astrophysics Data System (ADS)

    Altenbach, H.; Kolarow, G.; Morachkovsky, O. K.; Naumenko, K.

    The constitutive model with a single damage parameter describing creep-damage behaviour of metals with respect to the different sensitivity of the damage process due to tension and compression is incorporated into the ANSYS finite element code by modifying the user defined creep material subroutine. The procedure is verified by comparison with solutions for beams and rectangular plates in bending based on the Ritz method. Various numerical tests show the sensitivity of long-term predictions to the mesh sizes and element types available for the creep analysis of thinwalled structures.

  4. Predicting failure using conditioning on damage history: Demonstration on percolation and hierarchical fiber bundles

    SciTech Connect

    Andersen, J.V.; Sornette, D.

    2005-11-01

    We formulate the problem of probabilistic predictions of global failure in the simplest possible model based on site percolation and on one of the simplest models of time-dependent rupture, a hierarchical fiber bundle model. We show that conditioning the predictions on the knowledge of the current degree of damage (occupancy density p or number and size of cracks) and on some information on the largest cluster improves significantly the prediction accuracy, in particular by allowing one to identify those realizations which have anomalously low or large clusters (cracks). We quantify the prediction gains using two measures, the relative specific information gain (which is the variation of entropy obtained by adding new information) and the root mean square of the prediction errors over a large ensemble of realizations. The bulk of our simulations have been obtained with the two-dimensional site percolation model on a lattice of size LxL=20x20 and hold true for other lattice sizes. For the hierarchical fiber bundle model, conditioning the measures of damage on the information of the location and size of the largest crack extends significantly the critical region and the prediction skills. These examples illustrate how ongoing damage can be used as a revelation of both the realization-dependent preexisting heterogeneity and the damage scenario undertaken by each specific sample.

  5. A Modified Nonlinear Damage Accumulation Model for Fatigue Life Prediction Considering Load Interaction Effects

    PubMed Central

    Huang, Hong-Zhong; Yuan, Rong

    2014-01-01

    Many structures are subjected to variable amplitude loading in engineering practice. The foundation of fatigue life prediction under variable amplitude loading is how to deal with the fatigue damage accumulation. A nonlinear fatigue damage accumulation model to consider the effects of load sequences was proposed in earlier literature, but the model cannot consider the load interaction effects, and sometimes it makes a major error. A modified nonlinear damage accumulation model is proposed in this paper to account for the load interaction effects. Experimental data of two metallic materials are used to validate the proposed model. The agreement between the model prediction and experimental data is observed, and the predictions by proposed model are more possibly in accordance with experimental data than that by primary model and Miner's rule. Comparison between the predicted cumulative damage by the proposed model and an existing model shows that the proposed model predictions can meet the accuracy requirement of the engineering project and it can be used to predict the fatigue life of welded aluminum alloy joint of Electric Multiple Units (EMU); meanwhile, the accuracy of approximation can be obtained from the proposed model though more simple computing process and less material parameters calling for extensive testing than the existing model. PMID:24574866

  6. Multivariate Feature Selection for Predicting Scour-Related Bridge Damage using a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Anderson, I.

    2015-12-01

    Scour and hydraulic damage are the most common cause of bridge failure, reported to be responsible for over 60% of bridge failure nationwide. Scour is a complex process, and is likely an epistatic function of both bridge and stream conditions that are both stationary and in dynamic flux. Bridge inspections, conducted regularly on bridges nationwide, rate bridge health assuming a static stream condition, and typically do not include dynamically changing geomorphological adjustments. The Vermont Agency of Natural Resources stream geomorphic assessment data could add value into the current bridge inspection and scour design. The 2011 bridge damage from Tropical Storm Irene served as a case study for feature selection to improve bridge scour damage prediction in extreme events. The bridge inspection (with over 200 features on more than 300 damaged and 2,000 non-damaged bridges), and the stream geomorphic assessment (with over 300 features on more than 5000 stream reaches) constitute "Big Data", and together have the potential to generate large numbers of combined features ("epistatic relationships") that might better predict scour-related bridge damage. The potential combined features pose significant computational challenges for traditional statistical techniques (e.g., multivariate logistic regression). This study uses a genetic algorithm to perform a search of the multivariate feature space to identify epistatic relationships that are indicative of bridge scour damage. The combined features identified could be used to improve bridge scour design, and to better monitor and rate bridge scour vulnerability.

  7. An Analysis Methodology to Predict Damage Propagation in Notched Composite Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Bergan, A.; Davila, C.; Leone, F.; Awerbuch, J.; Tan, T.-M.

    2015-01-01

    A new methodology is proposed for predicting damage propagation in notched composite skin-stiffened structures. The proposed approach considers the interaction of damage propagation in the skin with delamination of the stiffener in order to assess the damage containment behavior of the structure. The damage propagating from a notch within a thin fiber-reinforced polymer skin is idealized as a through-the-thickness cohesive crack. The cohesive law for the through-the-thickness crack is characterized using a compact tension test. The approach was applied to a full-scale pultruded rod stitched efficient unitized structure (PRSEUS) concept fuselage panel that was tested recently. The stitched skin/stringer interfaces, a key feature of the PRSEUS concept, were modeled to assess the effectiveness of the stitching at containing damage propagation. Comparison between the predicted and observed damage extension shows acceptable agreement throughout loading. These results indicate that the model can represent accurately the complex interactions between a through-the-thickness crack in the skin and delamination between the skin and stringer. The model is used to demonstrate that the skin-stiffener interface toughness is critical to damage containment capability

  8. Creep crack growth predictions in INCO 718 using a continuum damage model

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Wilson, D. A.

    1985-01-01

    Creep crack growth tests have been carried out in compact type specimens of INCO 718 at 1200 F (649 C). Theoretical creep crack growth predictions have been carried out by incorporating a unified viscoplastic constitutive model and a continuum damage model into the ARAQUS nonlinear finite element program. Material constants for both the viscoplastic model and the creep continuum damage model were determined from tests carried out on uniaxial bar specimens of INCO 718 at 1200 F (649 C). A comparison of the theoretical creep crack growth rates obtained from the finite element predictions with the experimentally observed creep crack growth rates indicates that the viscoplastic/continuum damage model can be used to successfully predict creep crack growth in compact type specimens using material constants obtained from uniaxial bar specimens of INCO 718 at 1200 F (649 C).

  9. Numerical prediction of frequency dependent 3D maps of mechanical index thresholds in ultrasonic brain therapy.

    PubMed

    Pinton, Gianmarco; Aubry, Jean-Francois; Fink, Mathias; Tanter, Mickael

    2012-01-01

    Therapeutic ultrasound has been used in the brain for thrombolysis and high intensity focused ultrasound (HIFU) therapy. A low-frequency clinical study of sonothrombolysis, called the transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia (TRUMBI), has revealed an increased incidence of hemorrhage, which may have been caused by cavitation. The goal of this study is to determine if there is a comparable risk of generating cavitation during HIFU brain therapy at different frequencies. Two approaches are used to transmit acoustic energy through the skull to the brain: low-frequency ultrasound, with a wavelength that is larger than the skull thickness, and high frequency ultrasound, that is sensitive to aberrations and must use corrective techniques. At high frequency, the mechanical index (MI) is lower, which translates to a higher cavitation threshold. In addition to the nonfocused geometry of the 300 kHz sonothrombolysis treatment device, two types of focused therapeutic transducers were modeled: a low frequency 220 kHz transducer and a 1 MHz transducer that required aberration correction with a time-reversal approach, representing the lowest and highest frequencies currently used. The acoustic field was modeled with a finite difference fullwave acoustic code developed for large scale computations, that is, capable of simulating the entire brain volume. Various MI thresholds and device geometries were considered to determine the regions of the brain that have an increased probability of cavitation events. For an equivalent energy deposition rate, it is shown that at a low frequency there is a significant volume of the brain that is above the MI thresholds. At a high frequency, the volume is over 3 orders of magnitude smaller, and it is entirely confined to a compact focal spot. The significant frequency dependence of the volumes with an increased probability of cavitation can be attributed to two factors: First, the volume encompassed by the

  10. A damage mechanics based method for fatigue life prediction of the metal graded materials

    NASA Astrophysics Data System (ADS)

    Tong, Yang; Hu, Weiping; Meng, Qingchun

    2017-03-01

    Based on the continuum damage mechanics theory, the fatigue life prediction for TC4-TC11 graded material was conducted. At first, the damage evolution equation was derived, then the method to calibrate material parameters for TC4-TC11 graded material was proposed, and all the material parameters were obtained. A beam model with TC4-TC11 graded material was established by using the stratified method and finite element method. Finally, the fatigue life of TC4-TC11 graded beam was predicted.

  11. Tools for Predicting Optical Damage on Inertial Confinement Fusion-Class Laser Systems

    SciTech Connect

    Nostrand, M C; Carr, C W; Liao, Z M; Honig, J; Spaeth, M L; Manes, K R; Johnson, M A; Adams, J J; Cross, D A; Negres, R A; Widmayer, C C; Williams, W H; Matthews, M J; Jancaitis, K S; Kegelmeyer, L M

    2010-12-20

    Operating a fusion-class laser to its full potential requires a balance of operating constraints. On the one hand, the total laser energy delivered must be high enough to give an acceptable probability for ignition success. On the other hand, the laser-induced optical damage levels must be low enough to be acceptably handled with the available infrastructure and budget for optics recycle. Our research goal was to develop the models, database structures, and algorithmic tools (which we collectively refer to as ''Loop Tools'') needed to successfully maintain this balance. Predictive models are needed to plan for and manage the impact of shot campaigns from proposal, to shot, and beyond, covering a time span of years. The cost of a proposed shot campaign must be determined from these models, and governance boards must decide, based on predictions, whether to incorporate a given campaign into the facility shot plan based upon available resources. Predictive models are often built on damage ''rules'' derived from small beam damage tests on small optics. These off-line studies vary the energy, pulse-shape and wavelength in order to understand how these variables influence the initiation of damage sites and how initiated damage sites can grow upon further exposure to UV light. It is essential to test these damage ''rules'' on full-scale optics exposed to the complex conditions of an integrated ICF-class laser system. Furthermore, monitoring damage of optics on an ICF-class laser system can help refine damage rules and aid in the development of new rules. Finally, we need to develop the algorithms and data base management tools for implementing these rules in the Loop Tools. The following highlights progress in the development of the loop tools and their implementation.

  12. Multiscale Modeling of Advanced Materials for Damage Prediction and Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Borkowski, Luke

    Advanced aerospace materials, including fiber reinforced polymer and ceramic matrix composites, are increasingly being used in critical and demanding applications, challenging the current damage prediction, detection, and quantification methodologies. Multiscale computational models offer key advantages over traditional analysis techniques and can provide the necessary capabilities for the development of a comprehensive virtual structural health monitoring (SHM) framework. Virtual SHM has the potential to drastically improve the design and analysis of aerospace components through coupling the complementary capabilities of models able to predict the initiation and propagation of damage under a wide range of loading and environmental scenarios, simulate interrogation methods for damage detection and quantification, and assess the health of a structure. A major component of the virtual SHM framework involves having micromechanics-based multiscale composite models that can provide the elastic, inelastic, and damage behavior of composite material systems under mechanical and thermal loading conditions and in the presence of microstructural complexity and variability. Quantification of the role geometric and architectural variability in the composite microstructure plays in the local and global composite behavior is essential to the development of appropriate scale-dependent unit cells and boundary conditions for the multiscale model. Once the composite behavior is predicted and variability effects assessed, wave-based SHM simulation models serve to provide knowledge on the probability of detection and characterization accuracy of damage present in the composite. The research presented in this dissertation provides the foundation for a comprehensive SHM framework for advanced aerospace materials. The developed models enhance the prediction of damage formation as a result of ceramic matrix composite processing, improve the understanding of the effects of architectural and

  13. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants.

    PubMed

    Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan

    2017-08-09

    Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi-Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings.

  14. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants

    PubMed Central

    Yu, Zheng-Yong; Liu, Qiang; Liu, Yunhan

    2017-01-01

    Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi–Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings. PMID:28792487

  15. Optical and electrical properties of indium tin oxide films near their laser damage threshold [Electrical and optical properties of indium tin oxide films under multi-pulse laser irradiation at 1064 nm

    DOE PAGES

    Yoo, Jae -Hyuck; Lange, Andrew; Bude, Jeff; ...

    2017-02-10

    In this paper, we investigated whether the optical and electrical properties of indium tin oxide (ITO) films are degraded under laser irradiation below their laser ablation threshold. While performing multi-pulse laser damage experiments on a single ITO film (4.7 ns, 1064 nm, 10 Hz), we examined the optical and electrical properties in situ. A decrease in reflectance was observed prior to laser damage initiation. However, under sub-damage threshold irradiation, conductivity and reflectance of the film were maintained without measurable degradation. This indicates that ITO films in optoelectronic devices may be operated below their lifetime laser damage threshold without noticeable performancemore » degradation.« less

  16. Accuracy of body mass index (BMI) thresholds for predicting excess body fat in girls from five ethnicities.

    PubMed

    Duncan, J Scott; Duncan, Elizabeth K; Schofield, Grant

    2009-01-01

    The association between body mass index (BMI) and body fat in young people differs among ethnic groups. Consequently, BMI thresholds for defining childhood overweight may not represent an equivalent level of adiposity in multiethnic populations. The objectives of this study were to characterise the relationships between BMI and percentage body fat (%BF) and to determine the appropriateness of universal BMI standards for predicting excess fatness in girls from five ethnic groups. The BMI and %BF of 1,676 European, Maori, Pacific Island, East Asian, and South Asian girls aged 5-16 years were determined using anthropometric and bioimpedance measurements. Receiver operating characteristic (ROC) curves were prepared to assess the sensitivity and specificity of the International Obesity Taskforce (IOTF) and Centers for Disease Control and Prevention (CDC) BMI thresholds for detecting %BF >85th percentile. Compared with European girls, South and East Asians averaged 4.2% and 1.3% more %BF at a fixed BMI and age, whereas Pacific Islanders averaged 1.8% less %BF. Areas under the ROC curves ranged from 89.9% to 92.4%, suggesting that BMI is an acceptable screening tool for identifying excess adiposity. However, the IOTF and CDC thresholds showed low sensitivity for predicting excess %BF in South and East Asian girls, with low specificity in Pacific Island and Maori girls. The development of an ethnic-specific definition of overweight improved diagnostic performance. We conclude that BMI can be an acceptable proxy measure of excess fatness in girls from diverse ethnicities, especially when ethnic-specific BMI reference points are implemented.

  17. Optical Coherence Tomography Analysis Based Prediction of Humphrey 24-2 Visual Field Thresholds in Patients With Glaucoma

    PubMed Central

    Guo, Zhihui; Kwon, Young H.; Lee, Kyungmoo; Wang, Kai; Wahle, Andreas; Alward, Wallace L. M.; Fingert, John H.; Bettis, Daniel I.; Johnson, Chris A.; Garvin, Mona K.; Sonka, Milan; Abràmoff, Michael D.

    2017-01-01

    Purpose A pilot study showed that prediction of individual Humphrey 24-2 visual field (HVF 24-2) sensitivity thresholds from optical coherence tomography (OCT) image analysis is possible. We evaluate performance of an improved approach as well as 3 other predictive algorithms on a new, fully independent set of glaucoma subjects. Methods Subjects underwent HVF 24-2 and 9-field OCT (Heidelberg Spectralis) testing. Nerve fiber (NFL), and ganglion cell and inner plexiform (GCL+IPL) layers were cosegmented and partitioned into 52 sectors matching HVF 24-2 test locations. The Wilcoxon rank sum test was applied to test correlation R, root mean square error (RMSE), and limits of agreement (LoA) between actual and predicted thresholds for four prediction models. The training data consisted of the 9-field OCT and HVF 24-2 thresholds of 111 glaucoma patients from our pilot study. Results We studied 112 subjects (112 eyes) with early, moderate, or advanced primary and secondary open angle glaucoma. Subjects with less than 9 scans (15/112) or insufficient quality segmentations (11/97) were excluded. Retinal ganglion cell axonal complex (RGC-AC) optimized had superior average R = 0.74 (95% confidence interval [CI], 0.67–0.76) and RMSE = 5.42 (95% CI, 5.1–5.7) dB, which was significantly better (P < 0.05/3) than the other three models: Naïve (R = 0.49; 95% CI, 0.44–0.54; RMSE = 7.24 dB; 95% CI, 6.6–7.8 dB), Garway-Heath (R = 0.66; 95% CI, 0.60–0.68; RMSE = 6.07 dB; 95% CI, 5.7–6.5 dB), and Donut (R = 0.67; 95% CI, 0.61–0.69; RMSE = 6.08 dB, 95% CI, 5.8–6.4 dB). Conclusions The proposed RGC-AC optimized predictive algorithm based on 9-field OCT image analysis and the RGC-AC concept is superior to previous methods and its performance is close to the reproducibility of HVF 24-2. PMID:28796875

  18. Annealing effects on microstructure and laser-induced damage threshold of HfO2/SiO2 multilayer mirrors.

    PubMed

    Jena, Shuvendu; Tokas, Raj Bahadur; Rao, K Divakar; Thakur, Sudhakar; Sahoo, Naba Kishore

    2016-08-01

    HfO2/SiO2 periodic multilayer high reflection mirrors have been prepared by a reactive electron-beam evaporation technique. The deposited mirrors were annealed in the temperature range from 300°C to 500°C. The effects of annealing on optical, microstructural, and laser-induced damage characteristics of the mirrors have been investigated. The high reflection band of the mirror shifts toward a shorter wavelength with increasing annealing temperature. As-deposited and annealed mirrors show polycrystalline structure with a monoclinic phase of HfO2. Crystalinity and grain size increase upon annealing. The laser-induced damage threshold (LIDT) has been assessed using a 532 nm pulsed laser at a pulse width of 7 ns. The LIDT value of the multilayer mirror increases from 44.1  J/cm2 to 77.6  J/cm2 with annealing up to 400°C. The improvement of LIDT with annealing is explained through oxygen vacancy defects as well as grain-size-dependent thermal conductivity. Finally, the observed laser damage morphology, such as circular scalds and ablated multilayer stacks with terrace structure, are analyzed.

  19. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades

    PubMed Central

    Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan

    2017-01-01

    As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB) and Fatemi-Socie (FS) models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT) model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models. PMID:28772873

  20. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades.

    PubMed

    Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan

    2017-05-08

    As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB) and Fatemi-Socie (FS) models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT) model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.

  1. Prediction of Fracture in Deep Drawing Process, Using Ductile Damage Criteria

    NASA Astrophysics Data System (ADS)

    Nejatbakhsh, Hassan; Khataei, Mohamad; Poursina, Mehrdad

    2011-08-01

    In the deep drawing process, determination of the drawing depth and prediction of the time and the place that fracture occurs has been one of the important case studies which engineers tend to take into account. Because of a drastic reduction in design and manufacturing expenditures, numerical methods are extended to calculate the drawing depth during the process. In this paper, ductile damage model in which the stress triaxiality and equivalent strain are the most effective parameters on the damage growth and fracture of the material is used to predict fracture. For prediction the place and time of ductile fracture, according to ductile damage criteria, the fracture strain for various stress triaxiality values should be determined. To obtain the parameters of ductile damage model for St12 steel, some tensile tests have been performed on the notched specimens. Numerical simulation of deep drawing was performed using commercial finite element ABAQUS. Results obtained from simulation are in good agreement with the experimental ones and emphasize that using ductile damage model is appropriate to anticipate the place and time of the fracture during the deep drawing process.

  2. A simple nonlocal damage model for predicting failure of notched laminates

    NASA Technical Reports Server (NTRS)

    Kennedy, T. C.; Nahan, M. F.

    1995-01-01

    The ability to predict failure loads in notched composite laminates is a requirement in a variety of structural design circumstances. A complicating factor is the development of a zone of damaged material around the notch tip. The objective of this study was to develop a computational technique that simulates progressive damage growth around a notch in a manner that allows the prediction of failure over a wide range of notch sizes. This was accomplished through the use of a relatively simple, nonlocal damage model that incorporates strain-softening. This model was implemented in a two-dimensional finite element program. Calculations were performed for two different laminates with various notch sizes under tensile loading, and the calculations were found to correlate well with experimental results.

  3. Comparison of Damage Path Predictions for Composite Laminates by Explicit and Standard Finite Element Analysis Tools

    NASA Technical Reports Server (NTRS)

    Bogert, Philip B.; Satyanarayana, Arunkumar; Chunchu, Prasad B.

    2006-01-01

    Splitting, ultimate failure load and the damage path in center notched composite specimens subjected to in-plane tension loading are predicted using progressive failure analysis methodology. A 2-D Hashin-Rotem failure criterion is used in determining intra-laminar fiber and matrix failures. This progressive failure methodology has been implemented in the Abaqus/Explicit and Abaqus/Standard finite element codes through user written subroutines "VUMAT" and "USDFLD" respectively. A 2-D finite element model is used for predicting the intra-laminar damages. Analysis results obtained from the Abaqus/Explicit and Abaqus/Standard code show good agreement with experimental results. The importance of modeling delamination in progressive failure analysis methodology is recognized for future studies. The use of an explicit integration dynamics code for simple specimen geometry and static loading establishes a foundation for future analyses where complex loading and nonlinear dynamic interactions of damage and structure will necessitate it.

  4. Rapid prediction of damage on a struck ship accounting for side impact scenario models

    NASA Astrophysics Data System (ADS)

    Prabowo, Aditya Rio; Bae, Dong Myung; Sohn, Jung Min; Zakki, Ahmad Fauzan; Cao, Bo

    2017-04-01

    The impact phenomenon is inseparable part of every physical things, from substantial particle until macrostructure namely ship. In ship collisions, short-period load is distributed during impact process from striking ship into struck ship. The kinetic energy that is used to move striking ship is absorbed by struck ship that makes its structure undergoes plastic deformation and failure. This paper presents study that focuses on predicting occurred damage on side hull of struck ship for various impact scenario models. These scenarios are calculated by finite element approach to obtain characteristic on damage, energy as well as load during and after impact processes. The results indicate that the damages on impact to longitudinal components such as main and car decks are smaller than impact to transverse structure components. The damage and deformation are widely distributed to almost side structures including inner structure. The width between outer and inner shells is very affecting the damage mode where the width below the two meters will make inner shell experience damage beyond plastic deformation. The contribution of structure components is proofed deliver significant effect to damage mode and material strengths clearly affect the results in energy and load characteristic.

  5. Is There a Threshold Oral Glucose Tolerance Test Value for Predicting Adverse Pregnancy Outcome?

    PubMed

    Stuebe, Alison M; Landon, Mark B; Lai, Yinglei; Klebanoff, Mark; Ramin, Susan M; Wapner, Ronald J; Varner, Michael W; Rouse, Dwight J; Sciscione, Anthony; Catalano, Patrick; Saade, George; Sorokin, Yoram; Peaceman, Alan M

    2015-07-01

    This study aims to determine whether there is a threshold 3-hour oral glucose tolerance test (OGTT) value associated with accelerated risk of adverse pregnancy outcomes. In a secondary analysis of a cohort of women with untreated mild gestational glucose intolerance, we used generalized additive models with smoothing splines to explore nonlinear associations between each of the 3-hour OGTT values (fasting, 1-hour, 2-hour, and 3-hour) and adverse pregnancy outcomes, including the study's composite outcome (perinatal mortality, hypoglycemia, hyperbilirubinemia, neonatal hyperinsulinemia, and/or birth trauma), large for gestational age birth weight, small for gestational age birth weight, shoulder dystocia, neonatal hypoglycemia, gestational hypertension (gHTN), and preeclampsia. Among the 1,360 eligible women, each timed OGTT value was linearly associated with increased odds of composite adverse outcome. We found evidence of a departure from linearity only for the association between fasting glucose and gHTN/preeclampsia, with a stronger association for values of 85 to 94 mg/dL (p = 0.03). We found no evidence of departure from linearity for any other OGTT values and measured outcomes (all chi-square test p-values ≥ 0.05). In a population of untreated women with mild gestational glucose intolerance and fasting OGTT < 95 mg/dL, we found an increasing risk of gHTN with a fasting glucose between 85 and 94 mg/dL. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. Noninvasive prediction of prostatic DNA damage by oxidative stress challenge of peripheral blood lymphocytes

    USDA-ARS?s Scientific Manuscript database

    To move closer to the goal of individualized risk prediction for prostate cancer, we used an in vivo canine model to evaluate whether genetic instability, expressed as the susceptibility of peripheral blood lymphocytes (PBLs) to oxidative stress-induced DNA damage, could identify those individuals w...

  7. Isothermal Fatigue, Damage Accumulation, and Life Prediction of a Woven PMC

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.

    1998-01-01

    This dissertation focuses on the characterization of the fully reversed fatigue behavior exhibited by a carbon fiber/polyimide resin, woven laminate at room and elevated temperatures. Nondestructive video edge view microscopy and destructive sectioning techniques were used to study the microscopic damage mechanisms that evolved. The residual elastic stiffness was monitored and recorded throughout the fatigue life of the coupon. In addition, residual compressive strength tests were conducted on fatigue coupons with various degrees of damage as quantified by stiffness reduction. Experimental results indicated that the monotonic tensile properties were only minimally influenced by temperature, while the monotonic compressive and fully reversed fatigue properties displayed noticeable reductions due to the elevated temperature. The stiffness degradation, as a function of cycles, consisted of three stages; a short-lived high degradation period, a constant degradation rate segment composing the majority of the life, and a final stage demonstrating an increasing rate of degradation up to failure. Concerning the residual compressive strength tests at room and elevated temperatures, the elevated temperature coupons appeared much more sensitive to damage. At elevated temperatures, coupons experienced a much larger loss in compressive strength when compared to room temperature coupons with equivalent damage. The fatigue damage accumulation law proposed for the model incorporates a scalar representation for damage, but admits a multiaxial, anisotropic evolutionary law. The model predicts the current damage (as quantified by residual stiffness) and remnant life of a composite that has undergone a known load at temperature. The damage/life model is dependent on the applied multiaxial stress state as well as temperature. Comparisons between the model and data showed good predictive capabilities concerning stiffness degradation and cycles to failure.

  8. Growth, structural, optical, thermal and laser damage threshold studies of an organic single crystal: 1,3,5 – triphenylbenzene (TPB)

    SciTech Connect

    Raja, R. Subramaniyan; Babu, G. Anandha; Ramasamy, P.

    2016-05-23

    Good quality single crystals of pure hydrocarbon 1,3,5-Triphenylbenzene (TPB) have been successfully grown using toluene as a solvent using controlled slow cooling solution growth technique. TPB crystallizes in orthorhombic structure with the space group Pna2{sub 1}. The structural perfection of the grown crystal has been analysed by high resolution X-ray diffraction measurements. The range and percentage of the optical transmission are ascertained by recording the UV-vis spectrum. Thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study its thermal properties. Powder second harmonic generation studies were carried out to explore its NLO properties. Laser damage threshold value has been determined using Nd:YAG laser operating at 1064 nm.

  9. Estimation of production losses caused by the coffee berry borer (Coleoptera: Scolytidae) and calculation of an economic damage threshold in Togolese coffee plots.

    PubMed

    Wegbe, Komlan; Cilas, Christian; Decazy, Bernard; Alauzet, Claude; Dufour, Bernard

    2003-10-01

    The coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae), which exists in all coffee producing zones, is a major pest. The seriousness of this scolytid was assessed in Togolese plots spread over five agroclimatic zones, by determining the attack rate from a sample of coffee trees. The work was carried out over 2 yr and revealed that weight losses were proportional to the attack rates. The average infestation rates were 5.64% in the first year and 6.36% in the second year, while total production losses amounted to 2.60% and 3.18%, respectively, for the same periods. Generally speaking, attack rates in the plots were low and varied considerably within a given zone. Plantations located on plateau were more severely attacked than those in the plains. A relationship was established between total losses and the cost of insecticide treatment; this relationship was used to calculate an economic damage threshold beyond which control proves to be cost effective.

  10. Investigations on structural, optical, dielectric, laser damage threshold and NLO properties of 2-amino-5-nitropyridinium p-tolunesulfonate (2A5NPT) single crystal

    NASA Astrophysics Data System (ADS)

    Pandian, Muthu Senthil; Sivasubramani, V.; Ramasamy, P.

    2016-05-01

    The highly efficient organic nonlinear optical (NLO) 2-amino-5-nitropyridinium p-tolunesulfonate single crystals have been grown by conventional slow evaporation technique using Millipore water as a solvent in the period of 60 days. The single crystal XRD confirms the unit cell parameters of the grown crystal. The morphology of the grown crystal was analyzed using Bruker-Kappa APEXII single crystal instrument and their planes are identified. The optical transmittance range and the cut-off wavelength are recorded using UV-Visible NIR characterization. The laser damage threshold (LDT) studies were carried out using Nd:YAG laser and LDT value was found to be 3.7 GW/cm2. The dielectric constant and dielectric loss of 2A5NPT single crystals were measured. The SHG efficiency was tested by powder Kurtz-Perry technique and the SHG efficiency is 15 times greater than that of standard KDP material.

  11. Laser-induced-damage threshold of periodically poled lithium niobate for 1030 nm femtosecond laser pulses at 100 kHz and 75 MHz

    NASA Astrophysics Data System (ADS)

    Pipinyté, I.; Grigonis, R.; Stankevičiuté, K.; Kičas, S.; Drazdys, R.; Eckardt, R. C.; Sirutkaitis, V.

    2013-07-01

    We report laser-induced damage threshold (LIDT) measurements of periodically poled lithium niobate (PPLN) and magnesium-oxide-doped PPLN (MgO:PPLN) in the femtosecond pulse duration regime at 1030 nm with 100 kHz and 75 MHz repetition rate. PPLN and MgO:PPLN crystals with broadband Nb2O5/SiO2 AR coatings for 1.4 - 1.8 um spectral range were used. S-on-1 test for LIDT measurements were performed. S was equal to 106 and 4.56*1010 pulses for 100 kHz CPA laser system and 75 MHz oscillator, respectively. Evaluated LIDT was 20 mJ/cm2 for 290 fs pulses at 100 kHz repetition rate and 0.63 mJ/cm2 for 105 fs pulses at 76 MHz repetition rate.

  12. Effect of the oxygen non-stoichiometry on the damage threshold of the SiO2-δ system optical coatings

    NASA Astrophysics Data System (ADS)

    Guretskii, S. A.; Luginets, A. M.; Kalanda, N. A.; Mashchenko, A. G.; Kutavichyus, U. P.; Zaporozhenko, J. U.; Tushina, C. D.

    2005-04-01

    The results of the coulometric study of the processes of oxygen sorption-desorption in optical coatings (OCs) of the SiO2-δ system deposited by the electron-beam sputtering technique are presented. The character of structural transformations occurring when the coatings under-go polythermal annealing within the temperature range from 200 to 1000°C and at oxygen partial pressures pO2=102-105 Pa has been established. It has been ascertained that the intensity of photoluminescence of the OCs and shift of the absorption edge depends on the annealing condition within the temperature range from 400 to 550°C in the dehydrated oxygen atmosphere that is caused by the coagulation of silicon atoms with their subsequent oxidization. The dependence of the optical damage thresholds of the SiO2-δ on structural defects has been studied.

  13. Laser induced damage threshold and optical properties of TiO2 and Al2O3 coatings prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Jensen, Lars O.; Mädebach, Heinrich; Maula, Jarmo; Gürtler, Karlheinz; Ristau, Detlev

    2012-11-01

    Atomic Layer Deposition (ALD) allows for the deposition of homogeneous and conformal coatings with superior microstructural properties and well controllable thickness. As a consequence, ALD-processes have moved into the focus of optical thin film research during the last decade. In contrast to this, only a relatively small number of investigations in the power handling capability of ALD-coatings have been reported until now. The present contribution summarizes results of a study dedicated to the optical properties of single layers and high reflecting coating systems of TiO2 and Al2O3 deposited by ALD. Besides Laser Induced Damage Threshold (LIDT) values, the spectral characteristics as well the absorption and scatter losses are discussed.

  14. Geospatial evaluation of lead bioaccessibility and distribution for site specific prediction of threshold limits.

    PubMed

    Bower, Jennifer A; Lister, Sydney; Hazebrouck, Garrett; Perdrial, Nicolas

    2017-10-01

    Recent work identified the need for site-specific Pb bioaccessibility evaluation and scaled contaminant modeling. Pb heterogeneity has made bioaccessibility characterization difficult, and complicated distribution models. Using field testing, bioaccessibility measurement, Integrated Exposure Uptake and Biokinetic (IEUBK) modeling, and geospatial techniques, we propose a framework for conducting applied risk-based, multiscale assessment. This framework was tested and implemented in Burlington, VT, an area of old housing stock and high Pb burden (up to 15 000 mg kg(-1)) derived primarily from paint. After analyzing local soil samples for total and bioaccessible Pb, it was determined that bioaccessible and total Pb were well correlated in this area, through which an average bioaccessibility parameter was derived approximating Pb bioaccessibility for this soil type and Pb impact. This parameter was used with the IEUBK to recommend the local limit for residential soil Pb be reduced from 400 to 360 mg kg(-1), taking into consideration the lowering of the blood lead level threshold for Pb poisoning from 10 to 5 μg dL(-1) by the Centers for Disease Control (CDC). Geospatial investigation incorporated samples collected during this investigation and samples from a high school summer science academy, and relied on three techniques, used at different scales: kriging of total and background Pb alone, kriging of total and background Pb with housing age as a well-sampled, well-correlated secondary variable (cokriging), and inverse distance weighting of total and bioaccessible Pb. Modeling at different scales allowed for characterization of Pb impact at single sites as well as citywide. Model maps show positive correlation between areas of older housing and areas of high Pb burden, as well as potential at different scales for reducing the effects of Pb heterogeneity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A threshold regression model to predict return to work after traumatic limb injury.

    PubMed

    Hou, Wen-Hsuan; Chuang, Hung-Yi; Lee, Mei-Ling Ting

    2016-02-01

    The study aims to examine the severity of initial impairment and recovery rate of return-to-work (RTW) predictors among workers with traumatic limb injury. This 2-year prospective cohort study recruited 1124 workers with traumatic limb injury during the first 2 weeks of hospital admission. Baseline data were obtained by questionnaire and chart review. Patient follow-up occurred at 1, 3, 6, 12, 18, and 24 months post injury. The primary outcome was the time of first RTW. The impact of potential predictors on initial impairment and rate of recovery towards RTW was estimated by threshold regression (TR). A total of 846 (75.27%) participants returned to work during the follow-up period. Our model revealed that the initial impairment level in elderly workers and lower limb injuries were 33% and 35% greater than their counterparts, respectively. Workers with >12 years of education, part-time job, and moderate and higher self-efficacy were less impaired at initial injury compared with their counterparts. In terms of the rate of recovery leading to RTW, workers with older age, part-time jobs, lower limbs, or combined injuries had a significantly slower recovery rate, while workers with 9-12 years of education and >12 years of education had a significantly faster recovery rate. Our study provides researchers and clinicians with evidence to understand the baseline impairment and rate of recovery towards RTW by explaining the predictors of RTW among workers with traumatic limb injuries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Is there a threshold OGTT value for predicting adverse pregnancy outcome?

    PubMed Central

    STUEBE, Alison M.; LANDON, Mark B.; LAI, Yinglei; KLEBANOFF, Mark; RAMIN, Susan M.; WAPNER, Ronald J.; VARNER, Michael W.; ROUSE, Dwight J.; SCISCIONE, Anthony; CATALANO, Patrick; SAADE, George; SOROKIN, Yoram; PEACEMAN, Alan M.

    2015-01-01

    OBJECTIVE To determine whether there is a threshold 3-hour OGTT value associated with accelerated risk of adverse pregnancy outcomes. STUDY DESIGN In a secondary analysis of a cohort of women with untreated mild gestational glucose intolerance, defined as 50 gram glucose loading test between 135 and 199 mg/dL and fasting glucose <95 mg/dL, we used generalized additive models with smoothing splines to explore non-linear associations between each of the 3-hour OGTT values (fasting, 1-h, 2-h, and 3-h) and adverse pregnancy outcomes, including the study’s composite outcome (perinatal mortality, hypoglycemia, hyperbilirubinemia, neonatal hyperinsulinemia, and/or birth trauma), large-for-gestational age birth weight, small-for-gestational age birth weight, shoulder dystocia, neonatal hypoglycemia, gestational hypertension and preeclampsia. RESULTS Among 1360 eligible women, each timed OGTT value was linearly associated with increased odds of composite adverse outcome. We found evidence of a departure from linearity only for the association between fasting glucose and gestational hypertension/preeclampsia (gHTN), with a stronger association for values of 85-94 mg/dL (p=0.03). We found no evidence of departure from linearity for any other OGTT values and measured outcomes (all chi-square test p-values ≥0.05). CONCLUSION In a population of untreated women with mild gestational glucose intolerance and fasting OGTT < 95 mg/dL, we found an increasing risk of gestational hypertension with fasting glucose between 85 and 94 mg/dL. PMID:25594222

  17. Outstanding laser damage threshold in Li2MnGeS4 and tunable optical nonlinearity in diamond-like semiconductors.

    PubMed

    Brant, Jacilynn A; Clark, Daniel J; Kim, Yong Soo; Jang, Joon I; Weiland, Ashley; Aitken, Jennifer A

    2015-03-16

    The new Li2MnGeS4 and Li2CoSnS4 compounds result from employing a rational and simple design strategy that guides the discovery of diamond-like semiconductors (DLSs) with wide regions of optical transparency, high laser damage threshold, and efficient second-order optical nonlinearity. Single-crystal X-ray diffraction was used to solve and refine the crystal structures of Li2MnGeS4 and Li2CoSnS4, which crystallize in the noncentrosymmetric space groups Pna21 and Pn, respectively. Synchrotron X-ray powder diffraction (SXRPD) was used to assess the phase purity, and diffuse reflectance UV-vis-NIR spectroscopy was used to estimate the bandgaps of Li2MnGeS4 (Eg = 3.069(3) eV) and Li2CoSnS4 (Eg = 2.421(3) eV). In comparison with Li2FeGeS4, Li2FeSnS4, and Li2CoSnS4 DLSs, Li2MnGeS4 exhibits the widest region of optical transparency (0.60-25 μm) and phase matchability (≥1.6 μm). All four of the DLSs exhibit second-harmonic generation and are compared with the benchmark NLO material, AgGaSe2. Most remarkably, Li2MnGeS4 does not undergo two- or three-photon absorption upon exposure to a fundamental Nd:YAG beam (λ = 1.064 μm) and exhibits a laser damage threshold > 16 GW/cm(2).

  18. Ovipositional preferences, damage thresholds, and detection of the tomato-potato psyllid Bactericera cockerelli (Homoptera: Psyllidae) on selected tomato accessions.

    PubMed

    Liu, D; Trumble, J T

    2006-04-01

    The tomato-potato psyllid Bactericera [Paratrioza] cockerelli (Sulc) has recently caused losses exceeding 50% on fresh market tomatoes in California and Baja, Mexico by injecting a toxin that results in a condition known as 'psyllid yellows'. The objectives of this study were to: (i) document oviposition preferences on a range of tomato cultivars; (ii) determine threshold levels for psyllid densities that would cause psyllid yellows on tomatoes within the first three weeks following transplanting; and (iii) identify the most important 'psyllid yellows' symptoms that might be used in surveying and monitoring for this pest. Plant lines tested included the commonly-planted commercial cultivars 'Shady Lady' and 'QualiT 21', an older, previously commercial cultivar '7718 VFN', a common cultivar planted by consumers 'Yellow Pear', and a wild type plant accession, PI 134417. When given a choice, psyllids significantly preferred 'Yellow Pear' and avoided PI 134417 for oviposition. Under no-choice conditions psyllids laid significantly fewer eggs on PI 134417, but all the other plant lines were equally good substrates for laying eggs. Thus, oviposition preference is not likely to provide a functional management strategy in large plantings. On 'Shady Lady', psyllids preferred to oviposit on plants already infested with adults. On both 'Shady Lady' and '7718 VFN' oviposition was significantly greater on plants previously infested by nymphs as compared to uninfested control plants. This suggests that, at least for some cultivars, there is a physiological change in plant attractiveness following psyllid feeding. 'Yellow Pear' and 'QualiT 21' were relatively tolerant of psyllids, requiring 18 nymphs per plant to produce the disease symptoms. Only eight nymphs per plant were needed on 'Shady Lady' and '7718 VFN'. For all cultivars, the pest density showed strong correlations with measurements such as the number of yellowing leaves and leaflets and distorted leaves, which were as

  19. A Progressive Damage Methodology for Residual Strength Predictions of Center-Crack Tension Composite Panels

    NASA Technical Reports Server (NTRS)

    Coats, Timothy William

    1996-01-01

    An investigation of translaminate fracture and a progressive damage methodology was conducted to evaluate and develop a residual strength prediction capability for laminated composites with through penetration notches. This is relevant to the damage tolerance of an aircraft fuselage that might suffer an in-flight accident such as an uncontained engine failure. An experimental characterization of several composite materials systems revealed an R-curve type of behavior. Fractographic examinations led to the postulate that this crack growth resistance could be due to fiber bridging, defined here as fractured fibers of one ply bridged by intact fibers of an adjacent ply. The progressive damage methodology is currently capable of predicting the initiation and growth of matrix cracks and fiber fracture. Using two difference fiber failure criteria, residual strength was predicted for different size panel widths and notch lengths. A ply discount fiber failure criterion yielded extremely conservative results while an elastic-perfectly plastic fiber failure criterion showed that the fiber bridging concept is valid for predicting residual strength for tensile dominated failure loads. Furthermore, the R-curves predicted by the model using the elastic-perfectly plastic fiber criterion compared very well with the experimental R-curves.

  20. [Prediction of histological liver damage in asymptomatic alcoholic patients by means of clinical and laboratory data].

    PubMed

    Iturriaga, H; Hirsch, S; Bunout, D; Díaz, M; Kelly, M; Silva, G; de la Maza, M P; Petermann, M; Ugarte, G

    1993-04-01

    Looking for a noninvasive method to predict liver histologic alterations in alcoholic patients without clinical signs of liver failure, we studied 187 chronic alcoholics recently abstinent, divided in 2 series. In the model series (n = 94) several clinical variables and results of common laboratory tests were confronted to the findings of liver biopsies. These were classified in 3 groups: 1. Normal liver; 2. Moderate alterations; 3. Marked alterations, including alcoholic hepatitis and cirrhosis. Multivariate methods used were logistic regression analysis and a classification and regression tree (CART). Both methods entered gamma-glutamyltransferase (GGT), aspartate-aminotransferase (AST), weight and age as significant and independent variables. Univariate analysis with GGT and AST at different cutoffs were also performed. To predict the presence of any kind of damage (Groups 2 and 3), CART and AST > 30 IU showed the higher sensitivity, specificity and correct prediction, both in the model and validation series. For prediction of marked liver damage, a score based on logistic regression and GGT > 110 IU had the higher efficiencies. It is concluded that GGT and AST are good markers of alcoholic liver damage and that, using sample cutoffs, histologic diagnosis can be correctly predicted in 80% of recently abstinent asymptomatic alcoholics.

  1. Predicting the hurricane damage ratio of commercial buildings by claim payout from Hurricane Ike

    NASA Astrophysics Data System (ADS)

    Kim, J. M.; Woods, P. K.; Park, Y. J.; Kim, T. H.; Choi, J. S.; Son, K.

    2013-07-01

    The increasing occurrence of natural disaster events and related damages have led to a growing demand for models that predict financial loss. Although considerable research has studied the financial losses related to natural disaster events, and has found significant predictors, there has not yet been a comprehensive study that addresses the relationship among the vulnerabilities, natural disasters, and economic losses of the individual buildings. This study identified hurricanes and their vulnerability indicators in order to establish a metric to predict the related financial loss. We identify hurricane-prone areas by imaging the spatial distribution of the losses and vulnerabilities. This study utilized a Geographical Information System (GIS) to combine and produce spatial data, as well as a multiple linear regression method, to establish a hurricane damage prediction model. As the dependent variable, we utilized the following ratio to predict the real pecuniary loss: the value of the Texas Windstorm Insurance Association (TWIA) claim payout divided by the appraised values of the buildings. As independent variables, we selected the hurricane indicators and vulnerability indicators of the built environment and the geographical features. The developed statistical model and results can be used as important guidelines by insurance companies, government agencies, and emergency planners for predicting hurricane damage.

  2. High EDSS can predict risk for upper urinary tract damage in patients with multiple sclerosis.

    PubMed

    Ineichen, Benjamin V; Schneider, Marc P; Hlavica, Martin; Hagenbuch, Niels; Linnebank, Michael; Kessler, Thomas M

    2017-03-01

    Neurogenic lower urinary tract dysfunction (NLUTD) is very common in patients with multiple sclerosis (MS), and it might jeopardize renal function and thereby increase mortality. Although there are well-known urodynamic risk factors for upper urinary tract damage, no clinical prediction parameters are available. We aimed to assess clinical parameters potentially predicting urodynamic risk factors for upper urinary tract damage. A consecutive series of 141 patients with MS referred from neurologists for primary neuro-urological work-up including urodynamics were prospectively evaluated. Clinical parameters taken into account were age, sex, duration, and clinical course of MS and Expanded Disability Status Scale (EDSS). Multivariate modeling revealed EDSS as a clinical parameter significantly associated with urodynamic risk factors for upper urinary tract damage (odds ratio = 1.34, 95% confidence interval (CI) = 1.06-1.71, p = 0.02). Using receiver operator characteristic (ROC) curves, an EDSS of 5.0 as cutoff showed a sensitivity of 86%-87% and a specificity of 52% for at least one urodynamic risk factor for upper urinary tract damage. High EDSS is significantly associated with urodynamic risk factors for upper urinary tract damage and allows a risk-dependent stratification in daily neurological clinical practice to identify MS patients requiring further neuro-urological assessment and treatment.

  3. Refractive microlens structures with high-damage thresholds enable flexible beam shaping of high-power lasers

    NASA Astrophysics Data System (ADS)

    Homburg, O.; Aschke, L.; Lissotschenko, V.

    2007-01-01

    High power and high energy laser sources are used in a large variety of industrial and scientific applications for material processing. The most common are welding, soldering, cutting, drilling, laser thermal annealing, micro-machining, ablation and micro-lithography. For optimised processes the most important laser sources today are: CO II-lasers, Nd- YAG lasers, high-power diode lasers, excimer lasers or fiber lasers. Beside the right choice of the suitable laser source the right choice of high performance optics for generating the appropriate beam profile is of high importance for the applications. In many cases homogenous top-hat square or rectangular light fields as well as light lines are indispensable or add strong advantages to the application. This takes into account that gaussian shaped laser foci are not the ideal solution. Refractive micro-lenses and micro-lens arrays based on damage resistant materials are an efficient, compact and flexible solution to achieve adequate intensity distributions on the work piece. LIMO has a unique production technology based on computer-aided design that enables the manufacture of high-precision microlens arrays with free programmable surfaces. Thus, specific beam profiles with superior uniformity and efficiency can be generated. Compact beam shaper modules with prealigned optics have been developed. These modules simply have to be placed into the collimated input beam and the required intensity profile is generated at the target without any complicated alignment.

  4. Computer model to predict subsurface damage in tibial inserts of total knees.

    PubMed

    Sathasivam, S; Walker, P S

    1998-09-01

    Two designs of total knee replacements were analysed to determine how the geometry of their bearing surface would affect the susceptibility of their ultra high molecular weight polyethylene tibial inserts to delamination. Orientations of the femoral components on the tibial surfaces were calculated with use of rigid body analysis for discrete intervals during the stance phase of gait. For each successive orientation, finite element analysis was used to compress the components together to determine the stresses in the tibial inserts. A damage function analogous to strain energy density was defined to account for the accumulated amplitudes and frequencies of the maximum shear stress cycles and hence to predict fatigue failure. The damage function was applied to each polyethylene element in the tibial insert, and the highest value calculated for each design was its damage score. One knee had a damage score more than three times less than that of the other because of lower stresses and because the contact points moved in the medial-lateral as well as anterior-posterior directions during internal-external rotation. The femoral and tibial components of this knee had large outer frontal radii and close conformity in the frontal plane. We propose that this method, which accounts for the motions and stresses endured during walking, makes different predictions regarding the likelihood of delamination compared with the predictions made by conventional static compression tests performed when the knee is in a neutral position.

  5. Anticitrullinated protein/peptide antibody assays in early rheumatoid arthritis for predicting five year radiographic damage

    PubMed Central

    Meyer, O; Labarre, C; Dougados, M; Goupille, P.; Cantagrel, A; Dubois, A; Nicaise-Roland, P; Sibilia, J; Combe, B

    2003-01-01

    Objective: To study the value of antibodies to citrullinated proteins/peptides for predicting joint outcomes in patients with recent onset rheumatoid arthritis (RA). Methods: 191 patients with RA onset within the past year were followed up prospectively for five years. Serum samples obtained from 145 patients at baseline before disease modifying antirheumatic drug treatment were examined using three anticitrullinated protein/peptide antibody assays: antiperinuclear factor (APF) by indirect immunofluorescence (IIF), antikeratin antibodies (AKA) by IIF, and anti-cyclic citrullinated peptide (CCP) antibodies by enzyme linked immunosorbent assay (ELISA). Radiographs of the hands and feet taken at baseline and after three and five years were evaluated using Sharp scores modified by van der Heijde. Results:Anti-CCP ELISA was positive in 58.9% of patients. APF/anti-CCP agreement was 77%. The likelihood of a total Sharp score increase after five years was significantly greater among patients with anti-CCP antibodies (67%; odds ratio (OR) 2.5; 95% confidence interval (95% CI) 1.2 to 5.0) or APF (57%; OR 2.4; 95% CI 1.2 to 4.9) but not rheumatoid factor (RF; OR 0.7; 95% CI 0.3 to 1.5). Mean values for radiographic damage, erosion, and joint narrowing scores at the three times were significantly higher in patients with anti-CCP or APF than in those without. AKA did not significantly predict radiographic damage. In separate analyses of patients with and without RF, anti-CCP or APF was better than RF for predicting total joint damage and joint damage progression after five years. Conclusion: Antibodies to citrullinated proteins/peptides determined early in the course of RA by APF IIF or anti-CCP ELISA are good predictors of radiographic joint damage. Further studies of clinical, laboratory, and genetic parameters are needed to improve RA outcome prediction in clinical practice. PMID:12525380

  6. Structural, optical, thermal, photoconductivity, laser damage threshold and fluorescence analysis of an organic material: β-P-amino benzoic acid single crystal

    NASA Astrophysics Data System (ADS)

    Chandran, SenthilKumar; Paulraj, Rajesh; Ramasamy, P.

    2016-02-01

    β-P-amino benzoic acid, an organic single crystal was grown by slow evaporation technique. Single crystal X-ray diffraction studies show that the grown crystal has β-polymorph of P-amino benzoic acid [β-PABA] form and the lattice parameters are a = 6.30 Å, b = 8.61 Å, c = 12.43 Å α = γ = 90° and β = 100.20°. FTIR analysis confirms that bands at 1588 cm-1, 1415 cm-1 are assigned to ring skeletal vibrations of title compound. The molecular structure of the grown crystal has been identified by Nuclear Magnetic Resonance spectral study. The optical absorbance spectrum from 200 to 1100 nm shows that there is an edge absorbance in UV region. Optical band gap of the crystal has been assessed from the absorbance spectrum. The thermal properties of crystals were evaluated from TG-DTA analysis, it exhibits that there is no weight loss up to 187 °C. Laser damage threshold indicates that the grown crystal has no surface damage up to 35 mJ. Photoconductivity and fluorescence spectral experiments are also carried out and the results are discussed.

  7. Theoretical predicting of permeability evolution in damaged rock under compressive stress

    NASA Astrophysics Data System (ADS)

    Vu, M. N.; Nguyen, S. T.; To, Q. D.; Dao, N. H.

    2017-05-01

    This paper outlines an analytical model of crack growth induced permeability changes. A theoretical solution of effective permeability of cracked porous media is derived. The fluid flow obeys Poisseuille's law along the crack and Darcy's law in the porous matrix. This solution exhibits a percolation threshold for any type of crack distribution apart from a parallel crack distribution. The physical behaviour of fluid flow through a cracked porous material is well reproduced by the proposed model. The presence of this effective permeability coupling to analytical expression of crack growth under compression enables the modelling of the permeability variation due to stress-induced cracking in a porous rock. This incorporation allows the prediction of the permeability change of a porous rock embedding an anisotropic crack distribution from any initial crack density, that is, lower, around or upper to percolation threshold. The interaction between cracks is not explicitly taken into account. The model is well applicable both to micro- and macrocracks.

  8. Theoretical predicting of permeability evolution in damaged rock under compressive stress

    NASA Astrophysics Data System (ADS)

    Vu, M. N.; Nguyen, S. T.; To, Q. D.; Dao, N. H.

    2017-03-01

    This paper outlines an analytical model of crack growth induced permeability changes. A theoretical solution of effective permeability of cracked porous media is derived. The fluid flow obeys Poisseuille's law along the crack and Darcy's law in the porous matrix. This solution exhibits a percolation threshold for any type of crack distribution apart from a parallel crack distribution. The physical behaviour of fluid flow through a cracked porous material is well reproduced by the proposed model. The presence of this effective permeability coupling to analytical expression of crack growth under compression enables the modelling of the permeability variation due to stress-induced cracking in a porous rock. This incorporation allows the prediction of the permeability change of a porous rock embedding an anisotropic crack distribution from any initial crack density, i.e. lower, around or upper to percolation threshold. The interaction between cracks is not explicitly taken into account. The model is well applicable both to micro and macro-cracks.

  9. Isothermal fatigue, damage accumulation, and life prediction of a woven PMC

    NASA Astrophysics Data System (ADS)

    Gyekenyesi, Andrew Laszlo

    This dissertation focuses on the characterization of the fully reversed fatigue behavior exhibited by a carbon fiber/polyimide resin, woven laminate at room and elevated temperatures. Nondestructive video edge view microscopy and destructive sectioning techniques were used to study the microscopic damage mechanisms that evolved. The elastic stiffness was monitored and recorded throughout the fatigue life of the coupon and later utilized as a damage variable for a phenomenological model. In addition, residual compressive strength tests were conducted on fatigue coupons with various degrees of damage as quantified by stiffness reduction. Experimental results indicated that the monotonic tensile properties were only minimally influenced by temperature, while the monotonic compressive and fully reversed fatigue properties displayed noticeable reductions due to the elevated temperature. The stiffness degradation, as a function of cycles, consisted of three stages: a short-lived high degradation period, a constant degradation rate segment composing the majority of life, and a final stage demonstrating an increasing rate of degradation up to failure. Concerning the residual compressive strength tests at room and elevated temperatures, the elevated temperature coupons appeared much more sensitive to damage. At elevated temperatures, coupons experienced a much larger loss in compressive strength when compared to room temperature coupons with equivalent damage. The fatigue damage accumulation law proposed for the model incorporates a scalar representation for damage, but admits a multiaxial, anisotropic evolutionary law. The model predicts the current damage (as quantified by current stiffness) and remnant life of a composite that has undergone a known load at temperature. The damage/life model is dependent on the applied multiaxial stress state and temperature. Comparisons between the damage/life model and data showed good predictive capabilities concerning stiffness

  10. Development of a threshold model to predict germination of Populus tomentosa seeds after harvest and storage under ambient condition.

    PubMed

    Wang, Wei-Qing; Cheng, Hong-Yan; Song, Song-Quan

    2013-01-01

    Effects of temperature, storage time and their combination on germination of aspen (Populus tomentosa) seeds were investigated. Aspen seeds were germinated at 5 to 30°C at 5°C intervals after storage for a period of time under 28°C and 75% relative humidity. The effect of temperature on aspen seed germination could not be effectively described by the thermal time (TT) model, which underestimated the germination rate at 5°C and poorly predicted the time courses of germination at 10, 20, 25 and 30°C. A modified TT model (MTT) which assumed a two-phased linear relationship between germination rate and temperature was more accurate in predicting the germination rate and percentage and had a higher likelihood of being correct than the TT model. The maximum lifetime threshold (MLT) model accurately described the effect of storage time on seed germination across all the germination temperatures. An aging thermal time (ATT) model combining both the TT and MLT models was developed to describe the effect of both temperature and storage time on seed germination. When the ATT model was applied to germination data across all the temperatures and storage times, it produced a relatively poor fit. Adjusting the ATT model to separately fit germination data at low and high temperatures in the suboptimal range increased the models accuracy for predicting seed germination. Both the MLT and ATT models indicate that germination of aspen seeds have distinct physiological responses to temperature within a suboptimal range.

  11. A Microalbuminuria Threshold to Predict the Risk for the Development of Diabetic Retinopathy in Type 2 Diabetes Mellitus Patients

    PubMed Central

    Huang, Yan; Guo, Kaifeng; Lu, Junxi; Zhang, Lei; Yu, Haoyong; Bao, Yuqian; Jia, Weiping

    2012-01-01

    Objective To test the hypothesis that a microalbuminuria (MA) threshold can help predict the risk for the development of diabetic retinopathy (DR) in type 2 diabetes mellitus (T2DM)_ patients. Design We conducted a cross-sectional study of 4739 subjects with T2DM and a prospective study of 297 subjects with T2DM in China respectively. Methods Clinical and laboratory data were collected and biologic risk factors associated with any DR were analysed. Results In the cross-sectional study, we found that MA was an independent risk factor for DR development; further, when the patients were divided into MA deciles, odds ratio (ORs) of DR for the patients in the sixth MA decile (10.7 mg/24 h) was 1.579-fold (1.161–2.147) compared to that for patients in the first MA decile. Furthermore, the OR of DR increased with a gradual increase in MA levels. Similarly, in the prospective study, during a mean follow-up of 4.5 years, we found that 51 patients (29.0%) of the 176 subjects with high MA level (10.7–30 mg/24 h) developed DR, while 17 patients (14.1%) of the 121 subjects with lower MA (<10.7 mg/24 h) developed DR, and the relative risk ratio of the development of DR is 2.13(95% CI, 1.58–3.62, P<0.001). Conclusion These data suggest that an MA threshold can predict the risk for the development of DR in type 2 diabetes mellitus, although it is still within the traditionally established normal range. PMID:22590593

  12. Climate, Demography, and Zoogeography Predict Introgression Thresholds in Salmonid Hybrid Zones in Rocky Mountain Streams.

    PubMed

    Young, Michael K; Isaak, Daniel J; McKelvey, Kevin S; Wilcox, Taylor M; Bingham, Daniel M; Pilgrim, Kristine L; Carim, Kellie J; Campbell, Matthew R; Corsi, Matthew P; Horan, Dona L; Nagel, David E; Schwartz, Michael K

    2016-01-01

    Among the many threats posed by invasions of nonnative species is introgressive hybridization, which can lead to the genomic extinction of native taxa. This phenomenon is regarded as common and perhaps inevitable among native cutthroat trout and introduced rainbow trout in western North America, despite that these taxa naturally co-occur in some locations. We conducted a synthetic analysis of 13,315 genotyped fish from 558 sites by building logistic regression models using data from geospatial stream databases and from 12 published studies of hybridization to assess whether environmental covariates could explain levels of introgression between westslope cutthroat trout and rainbow trout in the U.S. northern Rocky Mountains. A consensus model performed well (AUC, 0.78-0.86; classification success, 72-82%; 10-fold cross validation, 70-82%) and predicted that rainbow trout introgression was significantly associated with warmer water temperatures, larger streams, proximity to warmer habitats and to recent sources of rainbow trout propagules, presence within the historical range of rainbow trout, and locations further east. Assuming that water temperatures will continue to rise in response to climate change and that levels of introgression outside the historical range of rainbow trout will equilibrate with those inside that range, we applied six scenarios across a 55,234-km stream network that forecast 9.5-74.7% declines in the amount of habitat occupied by westslope cutthroat trout populations of conservation value, but not the wholesale loss of such populations. We conclude that introgression between these taxa is predictably related to environmental conditions, many of which can be manipulated to foster largely genetically intact populations of westslope cutthroat trout and help managers prioritize conservation activities.

  13. Heart Rate-Based Prediction of Fixed Blood Lactate Thresholds in Professional Team-Sport Players.

    PubMed

    Garcia-Tabar, Ibai; Llodio, Iñaki; Sánchez-Medina, Luis; Ruesta, Maite; Ibañez, Javier; Gorostiaga, Esteban M

    2015-10-01

    The aim of this study was to investigate whether the speed associated with 90% of maximal heart rate (S90%HRmax) could predict speeds at fixed blood lactate concentrations of 3 mmol·L(-1) (S3mM) and 4 mmol·L(-1) (S4mM). Professional team-sport players of futsal (n = 10), handball (n = 16), and basketball (n = 10) performed a 4-stage discontinuous progressive running test followed, if exhaustion was not previously achieved, by an additional maximal continuous incremental running test to attain maximal heart rate (HRmax). The individual S3mM, S4mM, and S90%HRmax were determined by linear interpolation. S3mM (11.6 ± 1.5 km·h(-1)) and S4mM (12.5 ± 1.4 km·h(-1)) did not differ (p > 0.05) from S90%HRmax (12.0 ± 1.2 km·h(-1)). Very large significant (p < 0.001) relationships were found between S90%HRmax and S3mM (r = 0.82; standard error of the estimates [SEE] = 0.87 km·h(-1)), as well as between S90%HRmax and S4mM (r = 0.82; SEE = 0.87 km·h(-1)). S3mM and S4mM inversely correlated with %HRmax associated with running speeds of 10 and 12 km·h(-1) (r = 0.78-0.81; p < 0.001; SEE = 0.94-0.87 km·h(-1)). In conclusion, S3mM and S4mM can be accurately predicted by S90%HRmax in professional team-sport players.

  14. Climate, Demography, and Zoogeography Predict Introgression Thresholds in Salmonid Hybrid Zones in Rocky Mountain Streams

    PubMed Central

    Young, Michael K.; Isaak, Daniel J.; McKelvey, Kevin S.; Wilcox, Taylor M.; Pilgrim, Kristine L.; Carim, Kellie J.; Campbell, Matthew R.; Corsi, Matthew P.; Horan, Dona L.; Nagel, David E.; Schwartz, Michael K.

    2016-01-01

    Among the many threats posed by invasions of nonnative species is introgressive hybridization, which can lead to the genomic extinction of native taxa. This phenomenon is regarded as common and perhaps inevitable among native cutthroat trout and introduced rainbow trout in western North America, despite that these taxa naturally co-occur in some locations. We conducted a synthetic analysis of 13,315 genotyped fish from 558 sites by building logistic regression models using data from geospatial stream databases and from 12 published studies of hybridization to assess whether environmental covariates could explain levels of introgression between westslope cutthroat trout and rainbow trout in the U.S. northern Rocky Mountains. A consensus model performed well (AUC, 0.78–0.86; classification success, 72–82%; 10-fold cross validation, 70–82%) and predicted that rainbow trout introgression was significantly associated with warmer water temperatures, larger streams, proximity to warmer habitats and to recent sources of rainbow trout propagules, presence within the historical range of rainbow trout, and locations further east. Assuming that water temperatures will continue to rise in response to climate change and that levels of introgression outside the historical range of rainbow trout will equilibrate with those inside that range, we applied six scenarios across a 55,234-km stream network that forecast 9.5–74.7% declines in the amount of habitat occupied by westslope cutthroat trout populations of conservation value, but not the wholesale loss of such populations. We conclude that introgression between these taxa is predictably related to environmental conditions, many of which can be manipulated to foster largely genetically intact populations of westslope cutthroat trout and help managers prioritize conservation activities. PMID:27828980

  15. Convergence of detrital stoichiometry predicts thresholds of nutrient-stimulated breakdown in streams.

    PubMed

    Manning, David W P; Rosemond, Amy D; Gulis, Vladislav; Benstead, Jonathan P; Kominoski, John S; Maerz, John C

    2016-09-01

    Nutrient enrichment of detritus-based streams increases detrital resource quality for consumers and stimulates breakdown rates of particulate organic carbon (C). The relative importance of dissolved inorganic nitrogen (N) vs. phosphorus (P) for detrital quality and their effects on microbial- vs. detritivore-mediated detrital breakdown are poorly understood. We tested effects of experimental N and P additions on detrital stoichiometry (C:N, C:P) and total and microbial breakdown (i.e., with and without detritivorous shredders, respectively) of five detritus types (four leaf litter species and wood) with different initial C : nutrient content. We enriched five headwater streams continuously for two years at different relative availabilities of N and P and compared breakdown rates and detrital stoichiometry to pretreatment conditions. Total breakdown rates increased with nutrient enrichment and were predicted by altered detrital stoichiometry. Streamwater N and P, fungal biomass, and their interactions affected stoichiometry of detritus. Streamwater N and P decreased detrital C:N, whereas streamwater P had stronger negative effects on detrital C:P. Nutrient addition and fungal biomass reduced C:N by 70% and C:P by 83% on average after conditioning, compared to only 26% for C:N and 10% for C:P under pretreatment conditions. Detritus with lowest initial nutrient content changed the most and had greatest increases in total breakdown rates. Detrital stoichiometry was reduced and differences among detritus types were homogenized by nutrient enrichment. With enrichment, detrital nutrient content approached detritivore nutritional requirements and stimulated greater detritivore vs. microbial litter breakdown. We used breakpoint regression to estimate values of detrital stoichiometry that can potentially be used to indicate elevated breakdown rates. Breakpoint ratios for total breakdown were 41 (C:N) and 1518 (C:P), coinciding with total breakdown rates that were ~1.9

  16. Effect of MR Imaging Contrast Thresholds on Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer Subtypes: A Subgroup Analysis of the ACRIN 6657/I-SPY 1 TRIAL.

    PubMed

    Li, Wen; Arasu, Vignesh; Newitt, David C; Jones, Ella F; Wilmes, Lisa; Gibbs, Jessica; Kornak, John; Joe, Bonnie N; Esserman, Laura J; Hylton, Nola M

    2016-12-01

    Functional tumor volume (FTV) measurements by dynamic contrast-enhanced magnetic resonance imaging can predict treatment outcomes for women receiving neoadjuvant chemotherapy for breast cancer. Here, we explore whether the contrast thresholds used to define FTV could be adjusted by breast cancer subtype to improve predictive performance. Absolute FTV and percent change in FTV (ΔFTV) at sequential time-points during treatment were calculated and investigated as predictors of pathologic complete response at surgery. Early percent enhancement threshold (PEt) and signal enhancement ratio threshold (SERt) were varied. The predictive performance of resulting FTV predictors was evaluated using the area under the receiver operating characteristic curve. A total number of 116 patients were studied both as a full cohort and in the following groups defined by hormone receptor (HR) and HER2 receptor subtype: 45 HR+/HER2-, 39 HER2+, and 30 triple negatives. High AUCs were found at different ranges of PEt and SERt levels in different subtypes. Findings from this study suggest that the predictive performance to treatment response by MRI varies by contrast thresholds, and that pathologic complete response prediction may be improved through subtype-specific contrast enhancement thresholds. A validation study is underway with a larger patient population.

  17. Effect of MR Imaging Contrast Thresholds on Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer Subtypes: A Subgroup Analysis of the ACRIN 6657/I-SPY 1 TRIAL

    PubMed Central

    Li, Wen; Arasu, Vignesh; Newitt, David C.; Jones, Ella F.; Wilmes, Lisa; Gibbs, Jessica; Kornak, John; Joe, Bonnie N.; Esserman, Laura J.; Hylton, Nola M.

    2016-01-01

    Functional tumor volume (FTV) measurements by dynamic contrast-enhanced magnetic resonance imaging can predict treatment outcomes for women receiving neoadjuvant chemotherapy for breast cancer. Here, we explore whether the contrast thresholds used to define FTV could be adjusted by breast cancer subtype to improve predictive performance. Absolute FTV and percent change in FTV (ΔFTV) at sequential time-points during treatment were calculated and investigated as predictors of pathologic complete response at surgery. Early percent enhancement threshold (PEt) and signal enhancement ratio threshold (SERt) were varied. The predictive performance of resulting FTV predictors was evaluated using the area under the receiver operating characteristic curve. A total number of 116 patients were studied both as a full cohort and in the following groups defined by hormone receptor (HR) and HER2 receptor subtype: 45 HR+/HER2−, 39 HER2+, and 30 triple negatives. High AUCs were found at different ranges of PEt and SERt levels in different subtypes. Findings from this study suggest that the predictive performance to treatment response by MRI varies by contrast thresholds, and that pathologic complete response prediction may be improved through subtype-specific contrast enhancement thresholds. A validation study is underway with a larger patient population. PMID:28066808

  18. A model for predicting damage dependent response of inelastic media with microstructure

    SciTech Connect

    Allen, D.H.; DeVries, K.L.

    1997-12-01

    This paper presents a model developed for predicting the mechanical response of inelastic media with heterogeneous microstructure. Particular emphasis is given to the development of microstructural damage along grains. The model is developed within the concepts of continuum mechanics, with special emphasis on the development of internal boundaries in the continuum by utilizing fracture mechanics-based cohesive zone models. In addition, the grains are assumed to be characterized by nonlinear viscoplastic material behavior. Implementation of the model to a finite element computational algorithm is also briefly described, and example solutions are obtained. Finally, homogenization procedures are discussed for obtaining macroscopic damage dependent mechanical constitutive equations that may then be utilized to construct a well-posed boundary value problem for the macroscopically homogenized damage dependent medium.

  19. Physics-based damage predictions for simulating testing and evaluation (T and E) experiments

    SciTech Connect

    Addessio, F.L.; Schraad, M.W.; Lewis, M.W.

    1999-03-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This report addresses the need to develop computational techniques and physics-based material models for simulating damage to weapons systems resulting from ballistic threats. Modern weapons systems, such as fighter aircraft, are becoming more dependent upon composite materials to reduce weight, to increase strength and stiffness, and to resist adverse conditions resulting from high temperatures and corrosion. Unfortunately, damaged components can have severe and detrimental effects, as evidenced by statistics from Desert Storm indicating that 75% of aircraft losses were attributable to fuel system vulnerability with hydrodynamic ram being the primary kill mechanism. Therefore, this project addresses damage predictions for composite systems that are subjected to ballistic threats involving hydrodynamic ram. A computational technique for simulating fluid-solid interaction phenomena and physics-based material models have been developed for this purpose.

  20. MLITemp: A computer program to predict the thermal effects associated with hypervelocity impact damage to space station MLI

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Giridharan, V.

    1991-01-01

    A family of user-friendly, DOS PC based, Microsoft BASIC programs written to provide spacecraft designers with empirical predictions of space debris damage to orbiting spacecraft are described. Spacecraft wall temperatures and condensate formation is also predicted. The spacecraft wall configuration is assumed to consist of multilayered insulation (MLI) placed between a Whipple style bumper and the pressure wall. Impact damage predictions are based on data sets of experimental results obtained from simulating debris impacts on spacecraft using light gas guns on earth. A module of the program facilitates the creation of the database of experimental results that is used by the damage prediction modules to predict damage to the bumper, the MLI, and the pressure wall. A finite difference technique is used to predict temperature distributions in the pressure wall, the MLI, and the bumper. Condensate layer thickness is predicted for the case where the pressure wall temperature drops below the dew point temperature of the spacecraft atmosphere.

  1. Visual detection following retinal damage: predictions of an inhomogeneous retino-cortical model

    NASA Astrophysics Data System (ADS)

    Arnow, Thomas L.; Geisler, Wilson S.

    1996-04-01

    A model of human visual detection performance has been developed, based on available anatomical and physiological data for the primate visual system. The inhomogeneous retino- cortical (IRC) model computes detection thresholds by comparing simulated neural responses to target patterns with responses to a uniform background of the same luminance. The model incorporates human ganglion cell sampling distributions; macaque monkey ganglion cell receptive field properties; macaque cortical cell contrast nonlinearities; and a optical decision rule based on ideal observer theory. Spatial receptive field properties of cortical neurons were not included. Two parameters were allowed to vary while minimizing the squared error between predicted and observed thresholds. One parameter was decision efficiency, the other was the relative strength of the ganglion-cell center and surround. The latter was only allowed to vary within a small range consistent with known physiology. Contrast sensitivity was measured for sinewave gratings as a function of spatial frequency, target size and eccentricity. Contrast sensitivity was also measured for an airplane target as a function of target size, with and without artificial scotomas. The results of these experiments, as well as contrast sensitivity data from the literature were compared to predictions of the IRC model. Predictions were reasonably good for grating and airplane targets.

  2. Predictive and Prognostic Significance of Glutathione Levels and DNA Damage in Cervix Cancer Patients Undergoing Radiotherapy

    SciTech Connect

    Vidyasagar, Mamidipudi Srinivasa; Kodali, Maheedhar; Prakash Saxena, Pu

    2010-10-01

    Purpose: To assess the predictive significance of serum glutathione (GSH) and tumor tissue DNA damage in the treatment of cervical cancer patients undergoing chemoradiotherapy. Methods and Materials: This study included subjects undergoing hysterectomy (for normal cervix tissue) and cervical cancer patients who underwent conventional concurrent chemoradiotherapy (cisplatin once per week for 5 weeks with concurrent external radiotherapy of 2 Gy per fraction for 5 weeks, followed by two applications of intracavitary brachytherapy once per week after 2 weeks' rest). Blood was collected after two fractions, whereas both blood and tissues were collected after five fractions of radiotherapy in separate groups of subjects. Serum for total GSH content and tissues were processed for single-cell gel electrophoresis (SCGE) assay for DNA damage analysis. Clinical tumor radioresponse was assessed 2 months after the completion of treatment as complete responders (CR) (100% shrinkage), partial responders (PR) (>50%), and nonresponders (NR) (<50%). Results: Serum GSH content depleted significantly after a total dose of 4 Gy and 10 Gy of radiotherapy with a single dose of cisplatin, which was significantly lesser in NR than of CR patients. Similarly, Olive Tail Moment, the index of DNA damage, indicated significantly higher values in the fifth fraction of radiotherapy (5-RT) than in pretreatment. The DNA damage after 5-RT in the NR subgroup was significantly lower than that of CR. Conclusions: Serum GSH analysis and tumor tissue SCGE assay found to be useful parameters for predicting chemoradioresponse prior to and also at an early stage of treatment of cervical cancers.

  3. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina

    PubMed Central

    Unachukwu, Uchenna John; Warren, Alice; Li, Ze; Mishra, Shawn; Zhou, Jing; Sauane, Moira; Lim, Hyungsik; Vazquez, Maribel; Redenti, Stephen

    2016-01-01

    To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α – CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment. PMID:26935401

  4. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina

    NASA Astrophysics Data System (ADS)

    Unachukwu, Uchenna John; Warren, Alice; Li, Ze; Mishra, Shawn; Zhou, Jing; Sauane, Moira; Lim, Hyungsik; Vazquez, Maribel; Redenti, Stephen

    2016-03-01

    To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α - CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment.

  5. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina.

    PubMed

    Unachukwu, Uchenna John; Warren, Alice; Li, Ze; Mishra, Shawn; Zhou, Jing; Sauane, Moira; Lim, Hyungsik; Vazquez, Maribel; Redenti, Stephen

    2016-03-03

    To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α - CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment.

  6. Damage Behavior and Life Prediction in CFRP Cross-Ply Laminates under Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Tohgo, Keiichiro; Nakagawa, Shuji; Araki, Hiroyasu

    This paper deals with fatigue damage and life prediction of CFRP cross-ply laminates. Fatigue tests are carried out on CFRP unidirectional and cross-ply laminates under the on-axis and off-axis directions. On the unidirectional laminate, fiber breakage and fiber-peeling develop before the final fracture under on-axis fatigue, while the final fracture suddenly occurs by cracking along the fiber direction under off-axis fatigue. On the cross-ply laminates, ply-cracking in 90° plies and fiber-peeling in 0° plies develop under on-axis fatigue, while ply-cracking and delamination lead to the final fracture under off-axis fatigue. Based on the comparison of damage behavior and S-N curves between unidirectional and cross-ply laminates, possibility of fatigue life prediction of CFRP cross-ply laminates is discussed.

  7. Predicting and Mitigating Corrosion Related Damage in Geothermal Facilities, Phase-I

    SciTech Connect

    M. Shirmohamadi; S. Bratt; J. Ridgely

    2000-08-25

    Corrosion related damage (CRD) is probably the most important and costly damage mechanism for components operating in geothermal fields. This problem is further complicated as steam chemistry in such fields changes continuously with season, time, and load. Unfortunately, such changes are not predictable. The problem is further complicated in the area where early condensate (first moisture) forms. The chemistry of these first droplets is significantly different from that of built steam and this, again, cannot be predicted with reasonable accuracy. Therefore, a formidable challenge facing the geothermal field operators remains in knowing the chemistry of the condensate and, more importantly, how it affects specific field equipment such as rotor, piping, valves, etc. This project showed that testing in such an environment is feasible and concluded that continuous monitoring of steam conditions is needed to detect and prevent conditions leading to CRD of components. This project also developed tools and techniques for continuous monitoring of corrosion potential and detection of pitting events.

  8. A finite-element model predicts thermal damage in cutaneous contact burns.

    PubMed

    Orgill, D P; Solari, M G; Barlow, M S; O'Connor, N E

    1998-01-01

    Thermal injury results from exposure of skin elements to an externally applied heat source. Finite-element analysis of heat transfer in cutaneous burns allows for an accurate prediction of tissue time-temperature relationships throughout the exposed tissue. A two-dimensional, axisymmetric, finite-element model of a contact burn was constructed, and damage integrals were calculated by applying the Arrhenius equation to the time-temperature profiles at each point. The epidermis, dermis, and subcutaneous fat were modeled as uniform elements with distinct thermal properties. Heated aluminum blocks were applied to Yorkshire pigs for 10 to 80 seconds to produce contact burns. Wound biopsies taken at 1, 24, and 48 hours were examined histologically and measured for the depth of burn. A significant deepening of the gelatinized tissue was observed in tissue taken from 1 hour to 24 hours. The finite-element prediction of cutaneous contact burn damage correlated well with histologic observations in this porcine model.

  9. Fatigue Life Prediction of Steel Bridges for Extreme Loading Using a New Damage Indicator

    NASA Astrophysics Data System (ADS)

    Karunananda, Pallaha Athawudagedara Kamal; Ohga, Mitao; Dissanayake, Punchi Bandage Ranjith; Siriwardane, Siriwardane Arachchilage Sudath Chaminda

    High cycle fatigue (HCF) damage caused by normal traffic loading is one of the major modes of failures in steel bridges. During bridge service life, there are extreme loading situations such as typhoons, earthquakes which cause higher amplitude loading than normal traffic loading. Due to this reason, critical members could undergo overstress cycles in the plastic range. Therefore, such members are subjected to low cycle fatigue (LCF) during these situations while subjecting to HCF in serviceable condition. Bridges, which are not seriously damaged, generally continue to be functioned after these extreme loading situations and fatigue life estimation is required to ensure their safety. Therefore, this paper presents a new damage indicator based fatigue model to predict life of steel bridges due to combined effect of extreme and normal traffic loadings. It consists of a modified strain life curve and a strain based damage indicator. Both the strain life curve and the damage indicator are newly proposed in the study. Modified strain life curve consists of Coffin Manson relation in the LCF regime and a new strain life curve in the HCF regime. Damage variable is based on von Mises equivalent strain and modified by factors to consider effects of loading non proportionality and loading path in multiaxial stress state. The new damage indicator can capture the loading sequence effect. The proposed model is verified with experimental test results of combined HCF and LCF of three materials; S304L stainless steel, Haynes 188 (a Cobolt superalloy) and S45C steel obtained from the literature. The verification of experimental results confirms the validity of the proposed model.

  10. Computerized fetal heart rate analysis in the prediction of myocardial damage in pregnancies with placental insufficiency.

    PubMed

    Maeda, Mariane de Fátima Y; Nomura, Roseli M Y; Niigaki, Juliana I; Francisco, Rossana P V; Zugaib, Marcelo

    2015-07-01

    To evaluate the reliability of fetal heart rate (FHR) parameters analyzed by computerized cardiotocography (cCTG) in predicting myocardial damage in pregnancies with placental insufficiency. We evaluated 38 patients with placental insufficiency detected before 34 weeks of gestation. All patients underwent 30 min of cCTG (Sonicaid Fetal Care, version 2.2) and Doppler of umbilical artery, middle cerebral artery, and ductus venosus. Umbilical vein blood samples were collected at birth to determine fetal cardiac Troponin T, and a ≥0.09ng/ml value was deemed a sign of myocardial damage. The fetuses with myocardial damage (39%) showed significantly increased values of umbilical artery pulsatility index z-score (P=0.003), ductus venosus pulsatility index z-score (P=0.007), basal FHR (P=0.033) and periods of low episodes (P=0.038). The number of small accelerations and the short-term variation (STV) were significantly reduced in the group with myocardial damage (P=0.013 and P=0.003, respectively). Logistic regression analysis identified STV and gestational age at delivery as independent predictors for fetal myocardial damage, with area under ROC curve of 0.91. Computerized cardiotocography parameters may be useful in the management of early onset placental insufficiency, and the association of STV with gestational age could play a role in detecting myocardial injury in pregnancies with placental insufficiency. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Prediction and classification of the modes of genotoxic actions using bacterial biosensors specific for DNA damages.

    PubMed

    Ahn, Joo-Myung; Hwang, Ee Taek; Youn, Chul-Hee; Banu, Danusia L; Kim, Byoung Chan; Niazi, Javed H; Gu, Man Bock

    2009-12-15

    We report on a novel approach to predict the mode of genotoxic action of chemicals using a series of DNA damage specific bioluminescent bacteria. For this, a group of seven different DNA damage sensing recombinant bioluminescent strains were employed. Each of these strains was tested against model DNA damaging agents, such as mitomycin C (MMC), 1-methyl-1-nitroso-N-methylguanidine (MNNG), nalidixic acid (Nal) and 4-nitroquinoline N-oxide (4-NQO). These biosensors were grouped based on their responses to a specific mode of genotoxic action, such as (a) DNA damage cascade response (biosensor with nrdA-, dinI- and sbmC-lux), (b) SOS response or DNA repair (strains carrying recA-, recN- and sulA-lux), and (c) DNA damage potentially by alkylation (biosensor with alkA-lux). The differential response patterns and its strength of these strains to various model genotoxicants allowed classifying the chemical's potential genotoxic mode. Therefore, it is possible to elucidate and classify the mode of genotoxic impacts of an unknown sample and that together they may be utilized in the pre-screening steps of new drugs, newly synthesized chemicals, food and environmental contaminants.

  12. Age-stratified thresholds of anti-Müllerian hormone improve prediction of polycystic ovary syndrome over a population-based threshold.

    PubMed

    Dewailly, Didier

    2017-09-26

    In this issue, Quinn et al. reports their experience on the diagnostic value of the anti-mullerian hormone (AMH) assay for the recognition of polycystic ovary syndrome (PCOS). This subject remains very much debated and, in particular, there is no consensus on a specific threshold discriminating PCOS from normal women. One of the reasons, but certainly not the only one, is the heterogeneity of the control groups between the various studies reported to date. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Progressive damage, fracture predictions and post mortem correlations for fiber composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Lewis Research Center is involved in the development of computational mechanics methods for predicting the structural behavior and response of composite structures. In conjunction with the analytical methods development, experimental programs including post failure examination are conducted to study various factors affecting composite fracture such as laminate thickness effects, ply configuration, and notch sensitivity. Results indicate that the analytical capabilities incorporated in the CODSTRAN computer code are effective in predicting the progressive damage and fracture of composite structures. In addition, the results being generated are establishing a data base which will aid in the characterization of composite fracture.

  14. A Micromechanics-Based Damage Model for the Strength Prediction of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Camanho, Pedro P.; Mayugo, Joan A.; Maimi, Pere; Davila, Carlos G.

    2006-01-01

    A new damage model based on a micromechanical analysis of cracked [+/-0deg/90deg(sub n)]s laminates subjected to multiaxial loads is proposed. The model predicts the onset and accumulation of transverse matrix cracks in uniformly stressed laminates, the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate. The model also accounts for the effect of the ply thickness on the ply strength. Predictions relating the elastic properties of several laminates and multiaxial loads are presented.

  15. Consideration notes on the critical rainfall threshold to predict the triggering of pyroclastic flows

    NASA Astrophysics Data System (ADS)

    Scotto di Santolo, A.

    2009-04-01

    This paper reports the results of a theoretical analysis carried out designed to evaluate meteoric events that can be defined as critical since they are capable of triggering landslides in partially saturated pyroclastic soils. The study refers to analyses of the pyroclastic covers in the area of Campania, Italy, which is often affected by complex phenomena that begin as rotational or translational slide or fall and evolve into rapid landslides as earth-flows (debris or mud as function of grain size distributions). The prediction of triggering factors is of extreme importance for the implementation of civic protection schemes, given the dynamic features that characterize these phenomena during their evolution. The study highlights the fact that it is impossible to define the criticality of a meteoric event by means of empiric laws that correlate the mean intensity of rainfall and the "mean" duration of the event. However, it is possible to identify the criticality of a meteoric event in partially saturated soils, by means of a more complex approach which is physically conditioned. The rainfall is critical if it is capable of causing the rainwater to filter into the subsoil into "weak" layers where there is an increase in the specific volume with a significant reduction of the suction and resistance to the shear of the terrain (Fredlund et al., 78). This study focuses exclusively on seepage, regardless of the resistance of the soil, by analyzing, among various aspects, the phenomenon using a simplified subsoil model. For this study, it is assumed that the rainfall is critical when it is capable of saturating the soil cover for a predefined summit thickness Zc. For the purposes of this study, value Zc could be given an arbitrary value. This has been assumed to be 1m, considering that the experimental evidence has shown that rapid flows, at least when triggered, prove to be superficial. The other hypotheses are: • 1D infiltration, • Rigid solid skeleton;

  16. Tension Strength, Failure Prediction and Damage Mechanisms in 2D Triaxial Braided Composites with Notch

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Anglin, Colin

    1995-01-01

    The unnotched and notched (open hole) tensile strength and failure mechanisms of two-dimensional (2D) triaxial braided composites were examined. The effect of notch size and notch position were investigated. Damage initiation and propagation in notched and unnotched coupons were also examined. Theory developed to predict the normal stress distribution near an open hole and failure for tape laminated composites was evaluated for its applicability to 2D triaxial braided textile composite materials. Four different fiber architectures were considered; braid angle, yarn and braider size, percentage of longitudinal yarns and braider angle varied. Tape laminates equivalent to textile composites were also constructed for comparison. Unnotched tape equivalents were stronger than braided textiles but exhibited greater notch sensitivity. Notched textiles and tape equivalents have roughly the same strength at large notch sizes. Two common damage mechanisms were found: braider yarn cracking and near notch longitudinal yarn splitting. Cracking was found to initiate in braider yarns in unnotched and notched coupons, and propagate in the direction of the braider yarns until failure. Damage initiation stress decreased with increasing braid angle. No significant differences in prediction of near notch strain between textile and tape equivalents could be detected for small braid angle, but the correlations were weak for textiles with large braid angle. Notch strength could not be predicted using existing anisotropic theory for braided textiles due to their insensitivity to notch.

  17. Application of cyclic damage accumulation life prediction model to high temperature components

    NASA Technical Reports Server (NTRS)

    Nelson, Richard S.

    1989-01-01

    A high temperature, low cycle fatigue life prediction method was developed. This method, Cyclic Damage Accumulation (CDA), was developed for use in predicting the crack initiation lifetime of gas turbine engine materials, but it can be applied to other materials as well. The method is designed to account for the effects on creep-fatigue life of complex loading such as thermomechanical fatigue, hold periods, waveshapes, mean stresses, multiaxiality, cumulative damage, coatings, and environmental attack. Several features of this model were developed to make it practical for application to actual component analysis, such as the ability to handle nonisothermal loading (including TMF), arbitrary cycle paths, and multiple damage modes. The CDA life prediction model was derived from extensive specimen tests conducted on cast nickel-base superalloy B1900 + Hf. These included both monotonic tests (tensile and creep) and strain-controlled fatigue experiments (uniaxial, biaxial, TMF, mixed creep-fatigue, and controlled mean stress). Additional specimen tests were conducted on wrought INCO 718 to verify the applicability of the final CDA model to other high-temperature alloys. The model will be available to potential users in the near future in the form of a FORTRAN-77 computer program.

  18. Damage Mechanisms of Filled Siloxanes for Predictive Multiscale Modeling of Aging Behavior

    SciTech Connect

    Balazs, B; Maxwell, R; de Teresa, S; Dinh, L; Gee, R

    2002-04-02

    Predictions of component performance versus lifetime are often risky for complex materials in which there may be many underlying aging or degradation mechanisms. In order to develop more accurate predictive models for silica-filled siloxane components, we are studying damage mechanisms over a broad range of size domains, linked together through several modeling efforts. Atomistic and molecular dynamic modeling has elucidated the chemistry of the silica filler to polymer interaction, as this interaction plays a key role in this material's aging behavior. This modeling work has been supported by experimental data on the removal of water from the silica surface, the effect of the surrounding polymer on this desiccation, and on the subsequent change in the mechanical properties of the system. Solid State NMR efforts have characterized the evolution of the polymer and filler dynamics as the material is damaged through irradiation or desiccation. These damage signatures have been confirmed by direct measurements of changes in polymer crosslink density and filler interaction as measured by solvent swelling, and by mechanical property tests. Data from the changes at these molecular levels are simultaneously feeding the development of age-aware constitutive models for polymer behavior. In addition, the microstructure of the foam, including under load, has been determined by Computed Tomography, and this data is being introduced into Finite Element Analysis codes to allow component level models. All of these techniques are directed towards the incorporation of molecular and microstructural aging signatures into predictive models for overall component performance.

  19. Prediction of plasma-induced damage distribution during silicon nitride etching using advanced three-dimensional voxel model

    SciTech Connect

    Kuboi, Nobuyuki Tatsumi, Tetsuya; Kinoshita, Takashi; Shigetoshi, Takushi; Fukasawa, Masanaga; Komachi, Jun; Ansai, Hisahiro

    2015-11-15

    The authors modeled SiN film etching with hydrofluorocarbon (CH{sub x}F{sub y}/Ar/O{sub 2}) plasma considering physical (ion bombardment) and chemical reactions in detail, including the reactivity of radicals (C, F, O, N, and H), the area ratio of Si dangling bonds, the outflux of N and H, the dependence of the H/N ratio on the polymer layer, and generation of by-products (HCN, C{sub 2}N{sub 2}, NH, HF, OH, and CH, in addition to CO, CF{sub 2}, SiF{sub 2}, and SiF{sub 4}) as ion assistance process parameters for the first time. The model was consistent with the measured C-F polymer layer thickness, etch rate, and selectivity dependence on process variation for SiN, SiO{sub 2}, and Si film etching. To analyze the three-dimensional (3D) damage distribution affected by the etched profile, the authors developed an advanced 3D voxel model that can predict the time-evolution of the etched profile and damage distribution. The model includes some new concepts for gas transportation in the pattern using a fluid model and the property of voxels called “smart voxels,” which contain details of the history of the etching situation. Using this 3D model, the authors demonstrated metal–oxide–semiconductor field-effect transistor SiN side-wall etching that consisted of the main-etch step with CF{sub 4}/Ar/O{sub 2} plasma and an over-etch step with CH{sub 3}F/Ar/O{sub 2} plasma under the assumption of a realistic process and pattern size. A large amount of Si damage induced by irradiated hydrogen occurred in the source/drain region, a Si recess depth of 5 nm was generated, and the dislocated Si was distributed in a 10 nm deeper region than the Si recess, which was consistent with experimental data for a capacitively coupled plasma. An especially large amount of Si damage was also found at the bottom edge region of the metal–oxide–semiconductor field-effect transistors. Furthermore, our simulation results for bulk fin-type field-effect transistor side-wall etching

  20. Two-phase damage theory and crustal rock failure: the theoretical `void' limit, and the prediction of experimental data

    NASA Astrophysics Data System (ADS)

    Ricard, Yanick; Bercovici, David

    2003-12-01

    Using a classical averaging approach, we derive a two-phase theory to describe the deformation of a porous material made of a matrix containing voids. The presence and evolution of surface energy at the interface between the solid matrix and voids is taken into account with non-equilibrium thermodynamic considerations that allow storage of deformational work as surface energy on growing or newly created voids. This treatment leads to a simple description of isotropic damage that can be applied to low-cohesion media such as sandstone. In particular, the theory yields two possible solutions wherein samples can either `break' by shear localization with dilation (i.e. void creation), or undergo shear-enhanced compaction (void collapse facilitated by deviatoric stress). For a given deviatoric stress and confining pressure, the dominant solution is that with the largest absolute value of the dilation rate, |Γ|, which thus predicts that shear-localization and dilation occur at low effective pressures, while shear-enhanced compaction occurs at larger effective pressure. Stress trajectories of constant |Γ| represent potential failure envelopes that are ogive- (Gothic-arch-) shaped curves, wherein the ascending branch represents failure by dilation and shear-localization, and the descending branch denotes shear-enhanced compactive failure. The theory further predicts that the onset of dilation preceding shear-localization and failure necessarily occurs at the transition from compactive to dilational states and thus along a line connecting the peaks of constant-|Γ| ogives. Finally, the theory implies that while shear-enhanced compaction first occurs with increasing deviatoric stress (at large effective pressure), dilation will occur at higher deviatoric stresses. All of these predictions in fact compare very successfully with various experimental data. Indeed, the theory leads to a normalization where all the data of failure envelopes and dilation thresholds collapse to a

  1. Predictability of state-level flood damage in the conterminous United States: the role of hazard, exposure and vulnerability

    DOE PAGES

    Zhou, Qianqian; Leng, Guoyong; Feng, Leyang

    2017-07-13

    Understanding historical changes in flood damage and the underlying mechanisms is critical for predicting future changes for better adaptations. In this study, a detailed assessment of flood damage for 1950–1999 is conducted at the state level in the conterminous United States (CONUS). Geospatial datasets on possible influencing factors are then developed by synthesizing natural hazards, population, wealth, cropland and urban area to explore the relations with flood damage. A considerable increase in flood damage in CONUS is recorded for the study period which is well correlated with hazards. Comparably, runoff indexed hazards simulated by the Variable Infiltration Capacity (VIC) modelmore » can explain a larger portion of flood damage variations than precipitation in 84% of the states. Cropland is identified as an important factor contributing to increased flood damage in central US while urbanland exhibits positive and negative relations with total flood damage and damage per unit wealth in 20 and 16 states, respectively. Altogether, flood damage in 34 out of 48 investigated states can be predicted at the 90% confidence level. In extreme cases, ~76% of flood damage variations can be explained in some states, highlighting the potential of future flood damage prediction based on climate change and socioeconomic scenarios.« less

  2. Development of a Threshold Model to Predict Germination of Populus tomentosa Seeds after Harvest and Storage under Ambient Condition

    PubMed Central

    Wang, Wei-Qing; Cheng, Hong-Yan; Song, Song-Quan

    2013-01-01

    Effects of temperature, storage time and their combination on germination of aspen (Populus tomentosa) seeds were investigated. Aspen seeds were germinated at 5 to 30°C at 5°C intervals after storage for a period of time under 28°C and 75% relative humidity. The effect of temperature on aspen seed germination could not be effectively described by the thermal time (TT) model, which underestimated the germination rate at 5°C and poorly predicted the time courses of germination at 10, 20, 25 and 30°C. A modified TT model (MTT) which assumed a two-phased linear relationship between germination rate and temperature was more accurate in predicting the germination rate and percentage and had a higher likelihood of being correct than the TT model. The maximum lifetime threshold (MLT) model accurately described the effect of storage time on seed germination across all the germination temperatures. An aging thermal time (ATT) model combining both the TT and MLT models was developed to describe the effect of both temperature and storage time on seed germination. When the ATT model was applied to germination data across all the temperatures and storage times, it produced a relatively poor fit. Adjusting the ATT model to separately fit germination data at low and high temperatures in the suboptimal range increased the models accuracy for predicting seed germination. Both the MLT and ATT models indicate that germination of aspen seeds have distinct physiological responses to temperature within a suboptimal range. PMID:23658654

  3. The Identification of a Threshold of Long Work Hours for Predicting Elevated Risks of Adverse Health Outcomes.

    PubMed

    Conway, Sadie H; Pompeii, Lisa A; Gimeno Ruiz de Porras, David; Follis, Jack L; Roberts, Robert E

    2017-07-15

    Working long hours has been associated with adverse health outcomes. However, a definition of long work hours relative to adverse health risk has not been established. Repeated measures of work hours among approximately 2,000 participants from the Panel Study of Income Dynamics (1986-2011), conducted in the United States, were retrospectively analyzed to derive statistically optimized cutpoints of long work hours that best predicted three health outcomes. Work-hours cutpoints were assessed for model fit, calibration, and discrimination separately for the outcomes of poor self-reported general health, incident cardiovascular disease, and incident cancer. For each outcome, the work-hours threshold that best predicted increased risk was 52 hours per week or more for a minimum of 10 years. Workers exposed at this level had a higher risk of poor self-reported general health (relative risk (RR) = 1.28; 95% confidence interval (CI): 1.06, 1.53), cardiovascular disease (RR = 1.42; 95% CI: 1.24, 1.63), and cancer (RR = 1.62; 95% CI: 1.22, 2.17) compared with those working 35-51 hours per week for the same duration. This study provides the first health risk-based definition of long work hours. Further examination of the predictive power of this cutpoint on other health outcomes and in other study populations is needed. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Comparison of Intrinsic Rate of Different House Fly Densities in a Simulated Condition: A Prediction for House Fly Population and Control Threshold.

    PubMed

    Ong, Song-Quan; Ahmad, Hamdan; Jaal, Zairi; Rus, Adanan; Fadzlah, Fadhlina Hazwani Mohd

    2017-01-01

    Determining the control threshold for a pest is common prior to initiating a pest control program; however, previous studies related to the house fly control threshold for a poultry farm are insufficient for determining such a threshold. This study aimed to predict the population changes of house fly population by comparing the intrinsic rate of increase (rm) for different house fly densities in a simulated system. This study first defined the knee points of a known population growth curve as a control threshold by comparing the rm of five densities of house flies in a simulated condition. Later, to understand the interactions between the larval and adult populations, the correlation between larval and adult capacity rate (rc) was studied. The rm values of 300- and 500-fly densities were significantly higher compared with the rm values at densities of 50 and 100 flies. This result indicated their representative indices as candidates for a control threshold. The rc of larval and adult populations were negatively correlated with densities of fewer than 300 flies; this implicated adult populations with fewer than 300 flies as declining while the larval population was growing; therefore, control approaches should focus on the immature stages. The results in the present study suggest a control threshold for house fly populations. Future works should focus on calibrating the threshold indices in field conditions. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Prediction of fault-related damage zones in porous granular rock using strain energy density criteria

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.; Schultz, R. A.

    2004-12-01

    In granular geologic materials such as porous sandstone, fault-related damage zones are formed by deformation bands, which are tabular discontinuities characterized by pore space collapse and shear. We present results of a study in which separate strain energy density-based criteria are used to successfully predict the tendencies for the nucleation and for the propagation of deformation bands in a classic outcrop of fault-related damage zones within the brittlely-deformed Jurassic Wingate sandstone exposed in the Laramide-aged Uncompahgre Uplift, in western Colorado. The separate distributions of volumetric and distortional strain energy density are calculated for the geometry and stress state of the causative Laramide-aged thrust fault displacements from boundary element calculations of the attendant slip-induced local stresses. Volumetric strain energy density predicts the tendency for deformation band nucleation, the growth stage at which the deformation bands are defined by pore space collapse. Deformation band propagation, where shear occurs along the band, is predicted by distortional strain energy density. The relative magnitudes of elevated volumetric and distortional strain energy density are correlated with deformation band intensity (i.e. the mapped fracture intensity). Within a damage zone, enhanced deformation band nucleation tendencies are predicted and observed to occur within the upper hanging wall and ahead of the causative thrust fault, as well as along the frictionally-slipping base of the Wingate. Additionally, enhanced deformation band propagation tendencies are predicted ahead of and slightly within the footwall of the thrust. Here, propagation would occur along deformation bands that nucleated at an earlier stage of fault growth. The predicted tendencies for deformation band propagation are consistent with the observed distributions of compressive mode II deformation band stepover structures, which occur solely between propagating deformation

  6. Investigation on crystalline perfection, optical transmittance, birefringence, temperature-dependent refractive index, laser damage threshold and pyroelectric characteristics of inversely soluble lithium sulfate monohydrate single crystals

    NASA Astrophysics Data System (ADS)

    Silambarasan, A.; Rajesh, P.; Bhatt, Rajeev; Bhaumik, Indranil; Karnal, A. K.; Ramasamy, P.; Gupta, P. K.

    2016-08-01

    Bulk prismatic lithium sulfate monohydrate (LSMH) single crystals were grown by seed rotation with slow heating method from aqueous solution. Small FWHM obtained from high-resolution X-ray diffraction spectrum shows that the crystals grown by this method have less defects and absence of low-angle grain boundaries. The high transmittance and low reflectance nature of the grown crystal was observed using UV-Vis-NIR spectrometer. The principal refractive indices of a LSMH crystal have been measured by a prism coupling method for the wavelengths of 0.407, 0.532, 0.828, 1.064 and 1.551 µm at room temperature, and Sellmeier equations are determined from the fitting of the data point. The refractive index data confirm that LSMH crystal is negative biaxial and the optic axis lies in YZ plane with an angle (2 V y ) of 51.74° with respect to y axis at 532 nm wavelength. The thermo-optic coefficients were determined from the temperature-dependent refractive indices measured in the range of 30-125 °C for the wavelengths of 532 and 1064 nm. The surface laser damage threshold studies reveal the higher optical radiation stability against 532-nm laser. The pyroelectric coefficients and pyroelectric figure of merit were determined from the pyroelectric current measurement by the Byer and Roundy method.

  7. Studies on growth, structural, dielectric, laser damage threshold, linear and nonlinear optical properties of methylene blue admixtured l-arginine phosphate single crystal.

    PubMed

    Peramaiyan, G; Pandi, P; Bhagavannarayana, G; Mohan Kumar, R

    2012-12-01

    L-Arginine phosphate (LAP) and methylene blue dye admixtured L-arginine phosphate single crystals were grown by slow cooling technique and their cell parameters, crystalline perfection, dopant inclusion were confirmed by single crystal, powder X-ray diffraction and high resolution X-ray diffraction analyses respectively. The modes of vibrations of different functional groups present in pure and dye admixtured LAP crystals have been identified by FTIR spectral analysis. The UV-Vis-NIR spectral study was performed on the grown crystals and found that the crystals are transparent in the entire visible-NIR region. The dielectric measurement was carried out on the grown crystals as a function of frequency at room temperature. The microhardness hardness study on (100) plane of grown crystals reveals the mechanical behavior of the crystals. The laser damage threshold value significantly enhanced for dye admixtured crystal in comparison with pure LAP crystal. The relative SHG efficiency of methylane blue admixtured LAP crystal was found to be 1.3 times higher than that of pure LAP crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Synthesis, growth, characterisation and laser damage threshold studies of N,N-dimethylanilinium-3-carboxy-4-hydroxybenzenesulphonate crystal: An efficient SHG material for electro-optic applications

    NASA Astrophysics Data System (ADS)

    Rajkumar, M.; Chandramohan, A.

    2017-04-01

    An NLO active organic proton transfer complex salt, N,N-Dimethylanilinium-3-carboxy-4-hydroxybenzenesulphonate has been synthesized and single crystals grown by slow solvent evaporation solution growth technique at ambient temperature. The synthesized salt was characterized by Uv-visible absorption, UV-vis-NIR transmission spectral studies and elemental analysis. The formation of the salt and the crystal structure have been confirmed by single crystal X-ray diffraction (XRD) analysis and the title crystal belongs to monoclinic crystal system with the non-centrosymmetric space group, Pc. The FT-IR spectrum was recorded to confirm the presence of various functional groups in the grown crystal. The molecular structure of the crystal was further confirmed by 1H and 13C NMR spectra. The TG/DTA analyses were carried out to establish the thermal stability of the title crystal. The dielectric constant and dielectric loss have been studied as a function of frequency at different temperatures. The presence of SHG and its conversion efficiency was measured by employing the modified Kurtz and Perry powder technique. The laser damage threshold value of the title crystal was determined using a Nd:YAG laser with the wavelength of 1064 nm.

  9. Use of Al2O3 layers for higher laser damage threshold at 22.5° incidence, S polarization of a 527 nm/1054 nm dichroic coating

    NASA Astrophysics Data System (ADS)

    Bellum, John C.; Field, Ella S.; Kletecka, Damon E.; Rambo, Patrick K.; Smith, Ian C.

    2016-12-01

    We have designed and reported on a dichroic beam combiner coating consisting of HfO2/SiO2 layer pairs to provide high transmission at 527 nm and high reflection at 1054 nm for 22.5° angle of incidence (AOI) in S polarization (Spol). The laser-induced damage threshold (LIDT) of this first coating at the use AOI and polarization with 3.5 nanosecond (ns) pulses at 532 nm is 7 J/cm2, and only marginally adequate for our beam combining application. In this paper, we describe the use of a combination of Al2O3 and HfO2 high index layers to modify the first as well as a second dichroic coating in two different ways, which results in a higher LIDT of 10 J/cm2 for 3.5 ns pulses at 532 nm and 22.5° AOI, Spol for the second dichroic coating, and in the same 7 J/cm2 LIDT for the first dichroic coating.

  10. Growth, spectral, thermal, dielectric, mechanical, linear and nonlinear optical, birefringence, laser damage threshold studies of semi-organic crystal: dibrucinium sulfate heptahydrate.

    PubMed

    Krishnan, P; Gayathri, K; Bhagavannarayana, G; Jayaramakrishnan, V; Gunasekaran, S; Anbalagan, G

    2013-08-01

    Dibrucinium sulfate heptahydrate (DBSH), a semi-organic nonlinear optical material, has been synthesized and single crystals were grown from water-ethanol solution at room temperature up to dimensions of 10×7×2 mm(3). The unit cell parameters were determined from single crystal and powder X-ray diffraction studies. The structural perfection of the grown crystal has been analyzed by high-resolution X-ray diffraction (HRXRD) study. FTIR and Raman studies were performed to identify the functional groups present in the title compound. The activation energy (E), entropy (ΔS), enthalpy (ΔH) and Gibbs free energy (ΔG), of the thermal decomposition reaction have been derived from thermo gravimetric (TGA) and differential thermal (DTA) analysis curves, using Coats-Redfern method. The variation of dielectric properties of the grown crystal with respect to frequency has been investigated at different temperatures. Microhardness measurements revealed the mechanical strength of grown crystal. The optical parameters, the optical band gap E(g) and width of localized states Eu were determined using the transmittance data in the spectral range 200-800 nm. The relative second harmonic efficiency of the compound is found to be 1.4 times greater than that of KDP. Birefringence and Laser damage threshold studies were carried out for the grown crystal.

  11. Growth, spectral, thermal, dielectric, mechanical, linear and nonlinear optical, birefringence, laser damage threshold studies of semi-organic crystal: Dibrucinium sulfate heptahydrate

    NASA Astrophysics Data System (ADS)

    Krishnan, P.; Gayathri, K.; Bhagavannarayana, G.; Jayaramakrishnan, V.; Gunasekaran, S.; Anbalagan, G.

    2013-08-01

    Dibrucinium sulfate heptahydrate (DBSH), a semi-organic nonlinear optical material, has been synthesized and single crystals were grown from water-ethanol solution at room temperature up to dimensions of 10 × 7 × 2 mm3. The unit cell parameters were determined from single crystal and powder X-ray diffraction studies. The structural perfection of the grown crystal has been analyzed by high-resolution X-ray diffraction (HRXRD) study. FTIR and Raman studies were performed to identify the functional groups present in the title compound. The activation energy (E), entropy (ΔS), enthalpy (ΔH) and Gibbs free energy (ΔG), of the thermal decomposition reaction have been derived from thermo gravimetric (TGA) and differential thermal (DTA) analysis curves, using Coats-Redfern method. The variation of dielectric properties of the grown crystal with respect to frequency has been investigated at different temperatures. Microhardness measurements revealed the mechanical strength of grown crystal. The optical parameters, the optical band gap Eg and width of localized states Eu were determined using the transmittance data in the spectral range 200-800 nm. The relative second harmonic efficiency of the compound is found to be 1.4 times greater than that of KDP. Birefringence and Laser damage threshold studies were carried out for the grown crystal.

  12. Probing the dynamics of the interaction between few-cycle laser pulses and single crystal (100) Si and GaAs near the laser-induced damage threshold

    NASA Astrophysics Data System (ADS)

    Talisa, Noah; Werner, Kevin; Kafka, Kyle; Austin, Drake R.; Chowdhury, Enam

    2016-12-01

    The dynamics of the laser-solid interaction with high intensity ultra-short s-polarized few-cycle pulses (FCPs) (Ephoton 1.65 eV) and single crystals (100) Si and GaAs (Egap 1.14 and 1.4 eV, respectivly) near the multipulse laser-induced damage threshold (LIDT) were measured using a pump-probe reflectivity technique. FCP's with central wavelength 760 nm and FWHM duration 5 fs used as both pump and probe pulses were incident at 45°, and the reflectivity of each probe pulse was measured as the delay between the pump and probe pulses was varied with 0.1 fs resolution. Near zero delay, the probe pulse reflectivity displayed oscillatory behavior relative to the unexcited reflectivity for both materials, with a period equal to the optical cycle ( 2.6 fs). For Si, the crystal orientation was varied so that the field polarization was parallel to the (010) and (011) directions, and half way in between. Significantly larger zero delay oscillations were observed for the field polarization parallel to the (011) direction compared to those for the other two directions.

  13. Growth, spectral, thermal, laser damage threshold, microhardness, dielectric, linear and nonlinear optical properties of an organic single crystal: L-phenylalanine DL-mandelic acid

    NASA Astrophysics Data System (ADS)

    Jayaprakash, P.; Peer Mohamed, M.; Krishnan, P.; Nageshwari, M.; Mani, G.; Lydia Caroline, M.

    2016-12-01

    Single crystals of L-phenylalanine dl-mandelic acid [C9H11NO2. C8H8O3], have been grown by the slow evaporation technique at room temperature using aqueous solution. The single crystal XRD study confirms monoclinic system for the grown crystal. The functional groups present in the grown crystal have been identified by FTIR and FT-Raman analyses. The optical absorption studies show that the crystal is transparent in the visible region with a lower cut-off wavelength of 257 nm and the optical band gap energy Eg is determined to be 4.62 eV. The Kurtz powder second harmonic generation was confirmed using Nd:YAG laser with fundamental wavelength of 1064 nm. Further, the thermal studies confirmed no weight loss up to 150°C for the as-grown crystal. The photoluminescence spectrum exhibited three peaks (414 nm, 519 nm, 568 nm) due to the donation of protons from carboxylic acid to amino group. Laser damage threshold value was found to be 4.98 GW/cm2. The Vickers microhardness test was carried out on the grown crystals and there by Vickers hardness number (Hv), work hardening coefficient (n), yield strength (σy), stiffness constant C11 were evaluated. The dielectric behavior of the crystal has been determined in the frequency range 50 Hz-5 MHz at various temperatures.

  14. Synthesis, structural, thermal, mechanical, second harmonic generation efficiency and laser damage threshold studies of 4-dimethylaminopyridinium-3,5-dicarboxybenzoate trihydrate single crystal

    NASA Astrophysics Data System (ADS)

    Rajkumar, M.; Saravanabhavan, M.; Chandramohan, A.

    2017-10-01

    4-dimethylaminopyridinium-3,5-dicarboxybenzoate trihydrate was synthesized and single crystals grown by slow solvent evaporation solution growth technique at ambient temperature. The single crystal XRD analysis was carried out to establish the molecular structure of the title crystal. Further, the data indicate that the title salt crystallizes in orthorhombic crystal system with the non-centrosymmetric space group, Pna21. The established molecular structure was further confirmed by 1H and 13C NMR spectroscopic studies. The grown crystal has been subjected to FT-IR spectral study to identify the various functional groups. The UV-Vis-NIR transmission spectrum was recorded on powdered sample of crystal to determine the lower wavelength cut-off and optical band gap. The photoluminescence spectrum was recorded to investigate the luminescence properties of the salt crystal. The thermal and mechanical stabilities of the crystal were established by TG/DTA analyses and Vickers microhardness study, respectively. The dielectric studies of the grown crystal were executed at different temperatures as a function of frequency to investigate its electrical properties. The SHG efficiency of the title crystal was investigated and its value is 0.89 times that of KDP crystal. The laser damage threshold value is found to be 1.06 GW/cm2.

  15. Crystal growth, perfection, linear and nonlinear optical, photoconductivity, dielectric, thermal and laser damage threshold properties of 4-methylimidazolium picrate: an interesting organic crystal for photonic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Rajesh, K.; Arun, A.; Mani, A.; Praveen Kumar, P.

    2016-10-01

    The 4-methylimidazolium picrate has been synthesized and characterized successfully. Single and powder x-ray diffraction studies were conducted which confirmed the crystal structure, and the value of the strain was calculated. The crystal perfection was determined by a HRXR diffractometer. The transmission spectrum exhibited a better transmittance of the crystal in the entire visible region with a lower cut-off wavelength of 209 nm. The linear absorption value was calculated by the optical limiting method. A birefringence study was also carried out. Second and third order nonlinear optical properties of the crystal were found by second harmonic generation and the z-scan technique. The crystals were also characterized by dielectric measurement and a photoconductivity analyzer to determine the dielectric property and the optical conductivity of the crystal. The laser damage threshold activity of the grown crystal was studied by a Q-switched Nd:YAG laser beam. Thermal studies established that the compound did not undergo a phase transition and was stable up to 240 °C.

  16. Prediction of myocardial damage depth induced by extracellular photosensitization reaction using fluorescence measurement in vivo

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Ogawa, E.; Nakamura, T.; Kawakami, H.; Machida, N.; Yajima, M.; Kurotsu, M.; Ito, A.; Kimura, T.; Arai, T.

    2014-03-01

    We experimentally studied the correlation between myocardial damage depth due to the extracellular photosensitization reaction (PR) using talaporfin sodium and fluorescence-fall amount (FA), which is calculated from the measured backscattering fluorescence intensity via a manipulatable 7 Fr. laser catheter during the PR operation in vivo to establish treatment depth predictor for a non-thermal tachyarrhythmia treatment. The PR was performed to left and/or right ventricle in the open-chest canine heart. The laser irradiation of 663+/-2 nm in wavelength via the laser catheter was operated 15 min after the intravenous administration of talaporfin sodium with concentration of 36.2+/-8.0 μg/ml in plasma. The irradiation was operated with irradiance of 5, 10, 20 W/cm2, and duration of 5, 10, 20 s. Backscattering fluorescence of 710+/-2 nm in wavelength was measured via the laser catheter during the PR. The FA was calculated multiplying the irradiation duration by the fluorescence-fall, which is subtraction of the fluorescence intensity at the kickoff and end of the irradiation. The canine heart was extracted 1 week after the PR and HE stained specimen was histologically evaluated. The correlation of the myocardial damage depth and FA was investigated. We found that FA obtained a logarithmic relation to the myocardial damage depth. We think that the FA might be available to predict the PR induced myocardial damage depth for the application of tachyarrhythmia treatment under catheterization in vivo.

  17. Aerodynamic-thermomechanic coupling and creep-fatigue damage prediction. Part B: Thermomechanic investigation

    SciTech Connect

    Bruchet, P.

    1995-12-31

    The purpose of this paper is creep-fatigue damage prediction during the cold start-up of a 250 MW steam turbine high pressure rotor. Calculations were performed taking into account aerodynamic and thermal effects. Aerodynamic effects were obtained from a calculation of the bucket root and diaphragm packing leakage flow performed with the finite elements code N3S (see Part A : Aerodynamic investigation). Then, thermomechanical calculations were undertaken with the finite elements mechanical code ASTER and with the thermal boundary conditions previously obtained. These calculations pointed out plastified zones in the first two stages of the HP rotor. Consequently, it was necessary to estimate the thermal fatigue life reduction due to the start-up as well as the creep damage. These calculations were performed using frequency dependent Manson-Coffin curves for fatigue damage and Larson-Miller curves for creep damage. The start-up influence on the rotor residual life was particularly studied and interesting results are available.

  18. Damage Prediction and Estimation in Structural Mechanics Based on Data Mining

    SciTech Connect

    Sandhu, S S; Kanapady, R; Tamma, K K; Kamath, C; Kumar, V

    2001-07-23

    Damage in a material includes localized softening or cracks in a structural component due to high operational loads, or the presence of flaws in a structure due to various manufacturing processes. Methods that identify the presence, the location and the severity of damage in the structure are useful for non-destructive evaluation procedures that are typically employed in agile manufacturing and rapid prototyping systems. The current state-of-the art techniques for these inverse problems are computationally intensive or ill conditioned when insufficient data exists. Early work by a number of researchers has shown that data mining techniques can provide a potential solution to this problem. In this paper, they investigate the use of data mining techniques for predicting failure in a variety of 2D and 3D structures using artificial neural networks (ANNs) and decision trees. This work shows that if the correct features are chosen to build the model, and the model is trained on an adequate amount of data, the model can then correctly classify the failure event as well as predict location and severity of the damage in these structures.

  19. Modern nuclear force predictions for n -3H scattering above the three- and four-nucleon breakup thresholds

    NASA Astrophysics Data System (ADS)

    Lazauskas, Rimantas

    2015-04-01

    Background: Description of the collision process, which includes breakup, is one of the most challenging problems of the quantum mechanics. Recently I have developed a formalism based on the complex-scaling method, which describes accurately nuclear collisions in three- and four-body systems. Purpose: To provide accurate calculations for n -3H scattering above the three- and four-nucleon breakup thresholds. Method: A four-nucleon system is described in configuration space employing Faddeev-Yakubovsky equations. The complex-scaling method is applied to overcome the difficulties related with the complicated boundary conditions. Results: Elastic observables as well as total breakup cross sections are calculated for neutron scattering on tritium at 14.1, 18, and 22.1 MeV using realistic NN interactions. Excellent agreement is found with the pioneering calculations of this process reported by A. Deltuva et al. [Phys. Rev. C 86, 011001 (2012), 10.1103/PhysRevC.86.011001]. Strong correlation of the calculated cross sections is established with model-predicted trinucleon binding energy. The forementioned observables reveal little sensitivity to the short-range details of NN interaction. Conclusion: Reliable and accurate methods are now available to study four-nucleon scattering including the breakup.

  20. A Finite Element Analysis for Predicting the Residual Compressive Strength of Impact-Damaged Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.; Jackson, Wade C.

    2008-01-01

    A simple analysis method has been developed for predicting the residual compressive strength of impact-damaged sandwich panels. The method is tailored for honeycomb core-based sandwich specimens that exhibit an indentation growth failure mode under axial compressive loading, which is driven largely by the crushing behavior of the core material. The analysis method is in the form of a finite element model, where the impact-damaged facesheet is represented using shell elements and the core material is represented using spring elements, aligned in the thickness direction of the core. The nonlinear crush response of the core material used in the analysis is based on data from flatwise compression tests. A comparison with a previous analysis method and some experimental data shows good agreement with results from this new approach.

  1. A Finite Element Analysis for Predicting the Residual Compression Strength of Impact-Damaged Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.; Jackson, Wade C.

    2008-01-01

    A simple analysis method has been developed for predicting the residual compression strength of impact-damaged sandwich panels. The method is tailored for honeycomb core-based sandwich specimens that exhibit an indentation growth failure mode under axial compression loading, which is driven largely by the crushing behavior of the core material. The analysis method is in the form of a finite element model, where the impact-damaged facesheet is represented using shell elements and the core material is represented using spring elements, aligned in the thickness direction of the core. The nonlinear crush response of the core material used in the analysis is based on data from flatwise compression tests. A comparison with a previous analysis method and some experimental data shows good agreement with results from this new approach.

  2. Brittle seismic damage before and after eruptions, worldwide statistical analyses: implications for prediction.

    NASA Astrophysics Data System (ADS)

    Schmid, Agathe; Grasso, Jean-Robert

    2010-05-01

    Recent studies suggested that the seismic events prior and after an eruption follow an Omori's law similar to the one observed for earthquakes with possible different exponent values (e.g., Lemarchand and Grasso, 2007). Given these similarities, we are interested in going further into the analogy between damage triggered by earthquake failure and eruption onset, by studying the damage of the upper crust contemporary to eruptions. First, using worldwide earthquakes and eruptions databases, we quantified the spatial scale involved in crust damage around eruptions, as a function of the size of volcanic events, i.e. as measured by VEI. Using the distribution of seismic events around the time of eruption onsets, we found that larger volumes are involved in the brittle crust damage for the largest eruption sizes. Second, we analyzed the analogy between eruptions and earthquakes regarding crust loading and discharge, thanks to patterns of seismicity around event times. For eruptions on a given volcano, evidences for crust loading have been highlighted thanks to seismicity up to ten days prior eruption time (e.g.,Voight, 1988; Kilburn, 2003; Chastin and Main, 2003; Collombet and Grasso, 2003). For worldwide eruptions, average seismicity around eruption time, shows direct and inverse Omori's law, the same way earthquakes do but with different values of exponents (Lemarchand and Grasso, 2007). Contrarily to earthquakes Omori's law, our preliminary analysis suggests the values of these exponents to possibly vary with the eruption sizes. Given that eruption processes generally show longer failure times than earthquake rupture propagation, we are interested in the mechanical responses of the brittle crust damages as a function of the forcing rate. It possibly argues for the eruption process to impact the brittle crust the same way than a slow earthquake, with a larger number of foreshocks than the regular earthquake. Implications for prediction of eruptions, regarding the size

  3. Forming limit prediction of powder forging process by the energy-based elastoplastic damage model

    NASA Astrophysics Data System (ADS)

    Yeh, Hung-Yang; Cheng, Jung-Ho; Huang, Cheng-Chao

    2004-06-01

    An energy-based elastoplastic damage model is developed and then applied to predict the deformation and fracture initiation in powder forging processes. The fracture mechanism is investigated by the newly proposed damage model, which is based on the plastic energy dissipation. The developed formulations are implemented into finite element program ABAQUS in order to simulate the complex loading conditions. The forming limits of sintered porous metals under various operational conditions are explored by comparing the relevant experiments with the finite element analyses. The sintered iron-powder preforms of various initial relative densities (RDs) and aspect ratios are compressed until crack initiates. The deformation level of the bulged billets at fracture stroke obtained from compressive fracture tests is utilized to validate the finite element model and then the forming limit diagrams are constructed with the validated model. This model is further verified by the gear blank forging. The fracture site and corresponding deformation level are predicted by the finite element simulations. Meanwhile, the gear forging experiment is performed on the sintered preforms. The predicted results agree well with the experimental observations.

  4. The Effect of General Statistical Fiber Misalignment on Predicted Damage Initiation in Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.

    2014-01-01

    A micromechanical method is employed for the prediction of unidirectional composites in which the fiber orientation can possess various statistical misalignment distributions. The method relies on the probability-weighted averaging of the appropriate concentration tensor, which is established by the micromechanical procedure. This approach provides access to the local field quantities throughout the constituents, from which initiation of damage in the composite can be predicted. In contrast, a typical macromechanical procedure can determine the effective composite elastic properties in the presence of statistical fiber misalignment, but cannot provide the local fields. Fully random fiber distribution is presented as a special case using the proposed micromechanical method. Results are given that illustrate the effects of various amounts of fiber misalignment in terms of the standard deviations of in-plane and out-of-plane misalignment angles, where normal distributions have been employed. Damage initiation envelopes, local fields, effective moduli, and strengths are predicted for polymer and ceramic matrix composites with given normal distributions of misalignment angles, as well as fully random fiber orientation.

  5. A Simplified and Reliable Damage Method for the Prediction of the Composites Pieces

    NASA Astrophysics Data System (ADS)

    Viale, R.; Coquillard, M.; Seytre, C.

    2012-07-01

    Structural engineers are often faced to test results on composite structures largely tougher than predicted. By attempting to reduce this frequent gap, a survey of some extensive synthesis works relative to the prediction methods and to the failure criteria was led. This inquiry dealts with the plane stress state only. All classical methods have strong and weak points wrt practice and reliability aspects. The main conclusion is that in the plane stress case, the best usaul industrial methods give predictions rather similar. But very generally they do not explain the often large discrepancies wrt the tests, mainly in the cases of strong stress gradients or of bi-axial laminate loadings. It seems that only the methods considering the complexity of the composites damages (so-called physical methods or Continuum Damage Mechanics “CDM”) bring a clear mending wrt the usual methods..The only drawback of these methods is their relative intricacy mainly in urged industrial conditions. A method with an approaching but simplified representation of the CDM phenomenology is presented. It was compared to tests and other methods: - it brings a fear improvement of the correlation with tests wrt the usual industrial methods, - it gives results very similar to the painstaking CDM methods and very close to the test results. Several examples are provided. In addition this method is really thrifty wrt the material characterization as well as for the modelisation and the computation efforts.

  6. Finite Element Prediction of Sheet Forming Defects Using Elastic-Plastic, Damage and Localization Models

    NASA Astrophysics Data System (ADS)

    Haddag, Badis; Abed-Meraim, Farid; Balan, Tudor

    2007-05-01

    In this work, an advanced anisotropic elastic-plasticity model is combined with a damage model and a strain localization criterion in the aim to describe accurately the mechanical behavior of sheet metals. Large strain, fully three-dimensional, implicit time integration algorithms are developed for this model and implemented in the finite element code Abaqus. The resulting code is used to predict the strain localization limits as well as the springback after forming of sheet steels. The impact of strain-path dependent hardening models on the limit strains and on the amount of springback is addressed.

  7. Phenomenological Model for Predicting the Energy Resolution of Neutron-Damaged Coaxial HPGe Detectors

    SciTech Connect

    C. DeW. Van Siclen; E. H. Seabury; C. J. Wharton; A. J. Caffrey

    2012-10-01

    The peak energy resolution of germanium detectors deteriorates with increasing neutron fluence. This is due to hole capture at neutron-created defects in the crystal which prevents the full energy of the gamma-ray from being recorded by the detector. A phenomenological model of coaxial HPGe detectors is developed that relies on a single, dimensionless parameter that is related to the probability for immediate trapping of a mobile hole in the damaged crystal. As this trap parameter is independent of detector dimensions and type, the model is useful for predicting energy resolution as a function of neutron fluence.

  8. Deformation history and load sequence effects on cumulative fatigue damage and life predictions

    NASA Astrophysics Data System (ADS)

    Colin, Julie

    Fatigue loading seldom involves constant amplitude loading. This is especially true in the cooling systems of nuclear power plants, typically made of stainless steel, where thermal fluctuations and water turbulent flow create variable amplitude loads, with presence of mean stresses and overloads. These complex loading sequences lead to the formation of networks of microcracks (crazing) that can propagate. As stainless steel is a material with strong deformation history effects and phase transformation resulting from plastic straining, such load sequence and variable amplitude loading effects are significant to its fatigue behavior and life predictions. The goal of this study was to investigate the effects of cyclic deformation on fatigue behavior of stainless steel 304L as a deformation history sensitive material and determine how to quantify and accumulate fatigue damage to enable life predictions under variable amplitude loading conditions for such materials. A comprehensive experimental program including testing under fully-reversed, as well as mean stress and/or mean strain conditions, with initial or periodic overloads, along with step testing and random loading histories was conducted on two grades of stainless steel 304L, under both strain-controlled and load-controlled conditions. To facilitate comparisons with a material without deformation history effects, similar tests were also carried out on aluminum 7075-T6. Experimental results are discussed, including peculiarities observed with stainless steel behavior, such as a phenomenon, referred to as secondary hardening characterized by a continuous increase in the stress response in a strain-controlled test and often leading to runout fatigue life. Possible mechanisms for secondary hardening observed in some tests are also discussed. The behavior of aluminum is shown not to be affected by preloading, whereas the behavior of stainless steel is greatly influenced by prior loading. Mean stress relaxation in

  9. Threshold doses and prediction of visually apparent liver dysfunction after stereotactic body radiation therapy in cirrhotic and normal livers using magnetic resonance imaging

    PubMed Central

    Doi, Hiroshi; Shiomi, Hiroya; Masai, Norihisa; Tatsumi, Daisaku; Igura, Takumi; Imai, Yasuharu; Oh, Ryoong-Jin

    2016-01-01

    The purpose of the present study was to investigate the threshold dose for focal liver damage after stereotactic body radiation therapy (SBRT) in cirrhotic and normal livers using magnetic resonance imaging (MRI). A total of 64 patients who underwent SBRT for liver tumors, including 54 cirrhotic patients with hepatocellular carcinoma (HCC) and 10 non-cirrhotic patients with liver metastases, were analyzed. MRI was performed 3−6 months after SBRT, using gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced T1-weighted sequences. All MRI datasets were merged with 3D dosimetry data. All dose distributions were corrected to the biologically effective dose using the linear–quadratic model with an assumed α/β ratio of 2 Gy. The development of liver dysfunction was validly correlated with isodose distribution. The median biologically effective dose (BED2) that provoked liver dysfunction was 57.3 (30.0−227.9) and 114.0 (70.4−244.9) Gy in cirrhotic and normal livers, respectively (P = 0.0002). The BED2 associated with a >5% risk of liver dysfunction was 38.5 in cirrhotic livers and 70.4 Gy in normal livers. The threshold BED2 for liver dysfunction was not significantly different between Child−Pugh A and B patients (P = 0.0719). Moreover, the fractionation schedule was not significantly correlated with threshold BED2 for liver dysfunction in the cirrhotic liver (P = 0.1019). In the cirrhotic liver, fractionation regimen and Child−Pugh classification did not significantly influence the threshold BED2 for focal liver damage after SBRT. We suggest that the threshold BED2 for liver dysfunction after SBRT is 40 and 70 Gy in the cirrhotic and normal liver, respectively. PMID:26983986

  10. The effect of mean stress on damage predictions for spectral loading of fibreglass composite coupons

    NASA Astrophysics Data System (ADS)

    Sutherland, Herbert J.; Mandell, John F.

    2005-01-01

    In many analyses of wind turbine blades the effects of mean stress on the determination of damage in composite blades are either ignored completely or characterized inadequately. Mandell et al. have recently presented an updated Goodman diagram for a fibreglass material that is typical of the materials used in wind turbine blades. Their formulation uses the MSU/DOE fatigue database to develop a Goodman diagram with detailed information at 13 R-values. Using these data, linear, bilinear and full Goodman diagrams are constructed using mean and 95/95 fits to the data. The various Goodman diagrams are used to predict the failure stress for coupons tested using the WISPERX spectrum. Three models are used in the analyses. The first is the linear Miner's rule commonly used by the wind industry to predict failure (service lifetimes). The second is a non-linear variation of Miner's rule which computes a non-linear Miner's residual strength based upon an exponential degradation parameter. The third is a generalized non-linear residual strength model that also relies on an exponential degradation parameter. The results illustrate that Miner's rule does not predict failure very well. When the mean full Goodman diagram is used, the non-linear models predict failures near the mean of the experimental data, and when the 95/95 Goodman diagram is used, they predict the lower bound of the measured data very well. Published in 2004 by John Wiley & Sons, Ltd.

  11. Predictive value of tender joints compared to synovitis for structural damage in rheumatoid arthritis

    PubMed Central

    Cheung, Peter P; Mari, Karine; Devauchelle-Pensec, Valérie; Jousse-Joulin, Sandrine; D'Agostino, Maria Antonietta; Chalès, Gérard; Gaudin, Philippe; Mariette, Xavier; Saraux, Alain; Dougados, Maxime

    2016-01-01

    Objective To evaluate the predictive value of tender joints compared to synovitis for structural damage in rheumatoid arthritis (RA). Methods A post hoc analysis was performed on a prospective 2-year study of 59 patients with active RA starting on antitumour necrosis factor (TNF). Tenderness and synovitis was assessed clinically at baseline, followed by blinded ultrasound assessment (B-mode and power Doppler ultrasound (PDUS)) on the hands and feet (2 wrists, 10 metacarpophalangeal, 10 proximal interphalangeal and 10 metatarsophalangeal (MTP) joints). Radiographs of these joints were performed at baseline and at 2 years. The risk of radiographic progression with respect to the presence of baseline tenderness or synovitis, as well as its persistence (after 4 months of anti-TNF), was estimated by OR (95% CI). Results Baseline tender joints were the least predictive for radiographic progression (OR=1.53 (95% CI 1.02 to 2.29) p<0.04), when compared to synovitis (clinical OR=2.08 (95% CI 1.39 to 3.11) p<0.001 or PDUS OR=1.80 (95% CI 1.20 to 2.71) p=0.005, respectively). Tender joints with the presence of synovitis were predictive of radiographic progression (OR=1.89 (95% CI 1.25 to 2.85) p=0.002), especially seen in the MTP joints. Non-tender joints with no synovitis were negatively predictive (OR=0.57 (95% CI 0.39 to 0.82) p=0.003). Persistence of tender joints was negatively predictive (OR=0.38 (95% CI 0.18 to 0.78) p=0.009) while persistence of synovitis was predictive (OR=2.41 (95% CI 1.24 to 4.67) p=0.01) of radiographic progression. Conclusions Synovitis is better than tenderness to predict for subsequent structural progression. However, coexistence of tenderness and synovitis at the level of an individual joint is predictive of structural damage, particularly in the MTP joints. Trial registration number NCT00444691. PMID:27042336

  12. The Space Shuttle Program Pre-Flight Meteoroid and Orbital Debris Risk/Damage Predictions and Post-Flight Damage Assessments

    NASA Technical Reports Server (NTRS)

    Levin, George M.; Christiansen, Eric L.

    1997-01-01

    The pre-flight predictions and postflight assessments carried out in relation to a series of Space Shuttle missions are reviewed, and data are presented for the meteoroid and orbital debris damage observed on the Hubble Space Telescope during the 1994 Hubble repair mission. Pre-flight collision risk analyses are carried out prior to each mission, and in the case of an unacceptable risk, the mission profile is altered until the risk is considered to be acceptable. The NASA's BUMPER code is used to compute the probability of damage from debris and meteoroid particle impacts based on the Poisson statistical model for random events. The penetration probability calculation requires information concerning the geometry of the critical systems, the penetration resistance and mission profile parameters. Following each flight, the orbiter is inspected for meteoroid and space debris damage. The emphasis is on areas such as the radiator panels, the windows and the reinforced carbon-carbon structures on the leading wing edges and on the nose cap. The contents of damage craters are analyzed using a scanning electron microscope to determine the nature and origin of the impactor. Hypervelocity impact tests are often performed to simulate the observed damage and to estimate the nature of the damaging particles. The number and type of damage observed provides information concerning the orbital debris environment.

  13. The Space Shuttle Program Pre-Flight Meteoroid and Orbital Debris Risk/Damage Predictions and Post-Flight Damage Assessments

    NASA Technical Reports Server (NTRS)

    Levin, George M.; Christiansen, Eric L.

    1997-01-01

    The pre-flight predictions and postflight assessments carried out in relation to a series of Space Shuttle missions are reviewed, and data are presented for the meteoroid and orbital debris damage observed on the Hubble Space Telescope during the 1994 Hubble repair mission. Pre-flight collision risk analyses are carried out prior to each mission, and in the case of an unacceptable risk, the mission profile is altered until the risk is considered to be acceptable. The NASA's BUMPER code is used to compute the probability of damage from debris and meteoroid particle impacts based on the Poisson statistical model for random events. The penetration probability calculation requires information concerning the geometry of the critical systems, the penetration resistance and mission profile parameters. Following each flight, the orbiter is inspected for meteoroid and space debris damage. The emphasis is on areas such as the radiator panels, the windows and the reinforced carbon-carbon structures on the leading wing edges and on the nose cap. The contents of damage craters are analyzed using a scanning electron microscope to determine the nature and origin of the impactor. Hypervelocity impact tests are often performed to simulate the observed damage and to estimate the nature of the damaging particles. The number and type of damage observed provides information concerning the orbital debris environment.

  14. Continuum Damage Mechanics Used to Predict the Creep Life of Monolithic Ceramics

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Jadaan, Osama M.

    1998-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated temperature applications. High-temperature and long-duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. An analytical methodology in the form of the integrated design program-Ceramics Analysis and Reliability Evaluation of Structures/Creep (CARES/Creep) has been developed by the NASA Lewis Research Center to predict the life of ceramic structural components subjected to creep rupture conditions. This program utilizes commercially available finite element packages and takes into account the transient state of stress and creep strain distributions (stress relaxation as well as the asymmetric response to tension and compression). The creep life of a component is discretized into short time steps, during which the stress distribution is assumed constant. Then, the damage is calculated for each time step on the basis of a modified Monkman-Grant (MMG) creep rupture criterion. The cumulative damage is subsequently calculated as time elapses in a manner similar to Miner's rule for cyclic fatigue loading. Failure is assumed to occur when the normalized cumulative damage at any point in the component reaches unity. The corresponding time is the creep rupture life for that component.

  15. Cyclic fatigue damage characteristics observed for simple loadings extended to multiaxial life prediction

    NASA Technical Reports Server (NTRS)

    Jones, David J.; Kurath, Peter

    1988-01-01

    Fully reversed uniaxial strain controlled fatigue tests were performed on smooth cylindrical specimens made of 304 stainless steel. Fatigue life data and cracking observations for uniaxial tests were compared with life data and cracking behavior observed in fully reversed torsional tests. It was determined that the product of maximum principle strain amplitude and maximum principle stress provided the best correlation of fatigue lives for these two loading conditions. Implementation of this parameter is in agreement with observed physical damage and it accounts for the variation of stress-strain response, which is unique to specific loading conditions. Biaxial fatigue tests were conducted on tubular specimens employing both in-phase and out-of-phase tension torsion cyclic strain paths. Cracking observations indicated that the physical damage which occurred in the biaxial tests was similar to the damage observed in uniaxial and torsional tests. The Smith, Watson, and Topper parameter was then extended to predict the fatigue lives resulting from the more complex loading conditions.

  16. Development of advanced structural analysis methodologies for predicting widespread fatigue damage in aircraft structures

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Starnes, James H., Jr.; Newman, James C., Jr.

    1995-01-01

    NASA is developing a 'tool box' that includes a number of advanced structural analysis computer codes which, taken together, represent the comprehensive fracture mechanics capability required to predict the onset of widespread fatigue damage. These structural analysis tools have complementary and specialized capabilities ranging from a finite-element-based stress-analysis code for two- and three-dimensional built-up structures with cracks to a fatigue and fracture analysis code that uses stress-intensity factors and material-property data found in 'look-up' tables or from equations. NASA is conducting critical experiments necessary to verify the predictive capabilities of the codes, and these tests represent a first step in the technology-validation and industry-acceptance processes. NASA has established cooperative programs with aircraft manufacturers to facilitate the comprehensive transfer of this technology by making these advanced structural analysis codes available to industry.

  17. Methodology for Predicting the Onset of Widespread Fatigue Damage in Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Harris, C. E.; Piascik, R. S.; Dawicke, D. S.

    1998-01-01

    NASA has conducted an Airframe Structural Integrity Program to develop the methodology to predict the onset of widespread fatigue damage to lap-splice joints of fuselage structures. Several stress analysis codes have been developed or enhanced to analyze the lap-splice-joint configuration. Fatigue lives in lap-splice-joint specimens and fatigue-crack growth in a structural fatigue test article agreed well with calculations from small-crack theory and fatigue-crack growth analyses with the FASTRAN code. Residual-strength analyses of laboratory specimens and wide stiffened panels were predicted quite well from the critical crack-tip-opening angle (CTOA) fracture criterion and elastic-plastic finite-element analyses (two- or three-dimensional codes and the STAGS shell code).

  18. The impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Field, Ella; Bellum, John; Kletecka, Damon

    2014-09-01

    The Z-Backlighter lasers at Sandia National Laboratories are kilojoule class, pulsed systems operating with ns pulse lengths at 527 nm and ns and sub-ps pulse lengths at 1054 nm (www.z-beamlet.sandia.gov), and are linked to the most powerful and energetic x-ray source in the world, the Z-Accelerator (http://www.sandia.gov/z-machine/). An important Z-Backlighter optic is a flat, fused silica optic measuring 32.5 cm × 32.5 cm × 1 cm with an antireflection (AR) coating on both sides. It is used as a debris shield to protect other Z-Backlighter laser optics from high-velocity particles released by the experiments conducted in the Z-Accelerator. Each experiment conducted in the Z-Accelerator releases enough debris to cloud the surface of a debris shield, which means that a debris shield cannot be used for more than one experiment. Every year, the large optics coating facility [1] at Sandia provides AR coatings for approximately 50 debris shields, in addition to AR coatings for numerous other meter-class Z-Backlighter lenses and windows. As with all Z-Backlighter optical coatings, these AR coatings must have a high laser-induced damage threshold (LIDT) in order to withstand the powerful Z-Backlighter laser fluences. Achieving a good LIDT depends not only on the coating deposition processes but also on the polishing and cleaning processes used to prepare the coated and uncoated surfaces [2]. We spend a lot of time, both before and after the coatings have been deposited, manually cleaning the optics, including the debris shields, even though they are an expendable type of optic. Therefore, in this study we have tested new cleaning methods in addition to our current method to determine their impact on the LIDT of AR coatings, and conclude whether a shorter-duration or less labor-intensive cleaning process would suffice.

  19. Damage to the anterior arcuate fasciculus predicts non-fluent speech production in aphasia

    PubMed Central

    Guo, Dazhou; Fillmore, Paul; Holland, Audrey; Rorden, Chris

    2013-01-01

    Non-fluent aphasia implies a relatively straightforward neurological condition characterized by limited speech output. However, it is an umbrella term for different underlying impairments affecting speech production. Several studies have sought the critical lesion location that gives rise to non-fluent aphasia. The results have been mixed but typically implicate anterior cortical regions such as Broca’s area, the left anterior insula, and deep white matter regions. To provide a clearer picture of cortical damage in non-fluent aphasia, the current study examined brain damage that negatively influences speech fluency in patients with aphasia. It controlled for some basic speech and language comprehension factors in order to better isolate the contribution of different mechanisms to fluency, or its lack. Cortical damage was related to overall speech fluency, as estimated by clinical judgements using the Western Aphasia Battery speech fluency scale, diadochokinetic rate, rudimentary auditory language comprehension, and executive functioning (scores on a matrix reasoning test) in 64 patients with chronic left hemisphere stroke. A region of interest analysis that included brain regions typically implicated in speech and language processing revealed that non-fluency in aphasia is primarily predicted by damage to the anterior segment of the left arcuate fasciculus. An improved prediction model also included the left uncinate fasciculus, a white matter tract connecting the middle and anterior temporal lobe with frontal lobe regions, including the pars triangularis. Models that controlled for diadochokinetic rate, picture-word recognition, or executive functioning also revealed a strong relationship between anterior segment involvement and speech fluency. Whole brain analyses corroborated the findings from the region of interest analyses. An additional exploratory analysis revealed that involvement of the uncinate fasciculus adjudicated between Broca’s and global aphasia

  20. Damage to the anterior arcuate fasciculus predicts non-fluent speech production in aphasia.

    PubMed

    Fridriksson, Julius; Guo, Dazhou; Fillmore, Paul; Holland, Audrey; Rorden, Chris

    2013-11-01

    Non-fluent aphasia implies a relatively straightforward neurological condition characterized by limited speech output. However, it is an umbrella term for different underlying impairments affecting speech production. Several studies have sought the critical lesion location that gives rise to non-fluent aphasia. The results have been mixed but typically implicate anterior cortical regions such as Broca's area, the left anterior insula, and deep white matter regions. To provide a clearer picture of cortical damage in non-fluent aphasia, the current study examined brain damage that negatively influences speech fluency in patients with aphasia. It controlled for some basic speech and language comprehension factors in order to better isolate the contribution of different mechanisms to fluency, or its lack. Cortical damage was related to overall speech fluency, as estimated by clinical judgements using the Western Aphasia Battery speech fluency scale, diadochokinetic rate, rudimentary auditory language comprehension, and executive functioning (scores on a matrix reasoning test) in 64 patients with chronic left hemisphere stroke. A region of interest analysis that included brain regions typically implicated in speech and language processing revealed that non-fluency in aphasia is primarily predicted by damage to the anterior segment of the left arcuate fasciculus. An improved prediction model also included the left uncinate fasciculus, a white matter tract connecting the middle and anterior temporal lobe with frontal lobe regions, including the pars triangularis. Models that controlled for diadochokinetic rate, picture-word recognition, or executive functioning also revealed a strong relationship between anterior segment involvement and speech fluency. Whole brain analyses corroborated the findings from the region of interest analyses. An additional exploratory analysis revealed that involvement of the uncinate fasciculus adjudicated between Broca's and global aphasia

  1. Prediction of sand particle trajectories and sand erosion damage on helicopter rotor blades

    NASA Astrophysics Data System (ADS)

    Shin, Bong Gun

    Therefore, in this dissertation, accurate and time-efficient methodologies were developed for performing sand particle tracking and predicting sand erosion damage on actual helicopter rotor blades under realistic hover and vertical lift conditions. In this dissertation, first, injection (release) conditions of solid particles with new injection parameter, sand particle mass flow rate (SPmFR), were specified to deal with the effect of non-uniform and unsteady flow conditions surrounding at each injection point from which solid particles are released. The SPmFR defines the number of solid particles released from the same injection position per unit time. Secondly, a general definition of erosion rate, "mass or volume loss from the metal surface due to the impact of a unit "mass" of solid particles" was also modified by multiplying with SPmFR in order to solve the limitation for predicting erosion damage on actual helicopter rotor blade. Next, a suitable empirical particle rebound model and an erosion damage model for spherical sand particles with diameters ranging from 10 microm to 500 microm impacting on the material Ti-6A1-4V, the material of helicopter rotor blade, were developed. Finally, C++ language based codes in the form of User Defined Functions (UDFs) were developed and implemented into the commercially available multi-dimensional viscous flow solver ANSYS-FLUENT in order to develop and integrate with the general purpose flow solver, ANSYS-FLUENT, for a specific Lagrangian particle trajectory computing algorithm and rebound and erosion quantification purposes. In the erosion simulation, a reasonably accurate fluid flow solution is necessary. In order to validate the numerical results obtained in this dissertation, computations for flow-only around 2D RAE2822 airfoil and 3D rotating rotor blade (NACA0012) without any sand particle were performed. In the comparison of these results with experimental results, it is found that the flow solutions are in good

  2. Structural kinematics based damage zone prediction in gradient structures using vibration database

    NASA Astrophysics Data System (ADS)

    Talha, Mohammad; Ashokkumar, Chimpalthradi R.

    2014-05-01

    To explore the applications of functionally graded materials (FGMs) in dynamic structures, structural kinematics based health monitoring technique becomes an important problem. Depending upon the displacements in three dimensions, the health of the material to withstand dynamic loads is inferred in this paper, which is based on the net compressive and tensile displacements that each structural degree of freedom takes. These net displacements at each finite element node predicts damage zones of the FGM where the material is likely to fail due to a vibration response which is categorized according to loading condition. The damage zone prediction of a dynamically active FGMs plate have been accomplished using Reddy's higher-order theory. The constituent material properties are assumed to vary in the thickness direction according to the power-law behavior. The proposed C0 finite element model (FEM) is applied to get net tensile and compressive displacement distributions across the structures. A plate made of Aluminum/Ziconia is considered to illustrate the concept of structural kinematics-based health monitoring aspects of FGMs.

  3. Prediction of damage evolution in continuous fiber metal matrix composites subjected to fatigue loading

    SciTech Connect

    Allen, D.; Helms, K.; Lagoudas, D.

    1995-08-01

    A life prediction model is being developed by the authors for application to metal matrix composites (MMC`s). The systems under study are continuous silicon carbide fibers imbedded in titanium matrix. The model utilizes a computationally based framework based on thermodynamics and continuum mechanics, and accounts for matrix inelasticity, damage evolution, and environmental degradation due to oxidation. The computational model utilizes the finite element method, and an evolutionary analysis of a unit cell is accomplished via a time stepping algorithm. The computational scheme accounts for damage growth such as fiber-matrix debonding, surface cracking, and matrix cracking via the inclusion of cohesive zone elements in the unit cell. These elements are located based on experimental evidence also obtained by the authors. The current paper outlines the formulation utilized by the authors to solve this problem, and recent results are discussed. Specifically, results are given for a four-ply unidirectional composite subjected to cyclic fatigue loading at 650{degrees}C both in air and inert gas. The effects of oxidation on the life of the composite are predicted with the model, and the results are compared to limited experimental results.

  4. Displacement damage and predicted non-ionizing energy loss in GaAs

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Chen, Nanjun; Hernandez-Rivera, Efrain; Huang, Danhong; LeVan, Paul D.

    2017-03-01

    Large-scale molecular dynamics (MD) simulations, along with bond-order interatomic potentials, have been applied to study the defect production for lattice atom recoil energies from 500 eV to 20 keV in gallium arsenide (GaAs). At low energies, the most surviving defects are single interstitials and vacancies, and only 20% of the interstitial population is contained in clusters. However, a direct-impact amorphization in GaAs occurs with a high degree of probability during the cascade lifetime for Ga PKAs (primary knock-on atoms) with energies larger than 2 keV. The results reveal a non-linear defect production that increases with the PKA energy. The damage density within a cascade core is evaluated, and used to develop a model that describes a new energy partition function. Based on the MD results, we have developed a model to determine the non-ionizing energy loss (NIEL) in GaAs, which can be used to predict the displacement damage degradation induced by space radiation on electronic components. The calculated NIEL predictions are compared with the available data, thus validating the NIEL model developed in this study.

  5. Interface modeling to predict well casing damage for big hill strategic petroleum reserve.

    SciTech Connect

    Ehgartner, Brian L.; Park, Byoung Yoon

    2012-02-01

    Oil leaks were found in well casings of Caverns 105 and 109 at the Big Hill Strategic Petroleum Reserve site. According to the field observations, two instances of casing damage occurred at the depth of the interface between the caprock and top of salt. This damage could be caused by interface movement induced by cavern volume closure due to salt creep. A three dimensional finite element model, which allows each cavern to be configured individually, was constructed to investigate shear and vertical displacements across each interface. The model contains interfaces between each lithology and a shear zone to examine the interface behavior in a realistic manner. This analysis results indicate that the casings of Caverns 105 and 109 failed by shear stress that exceeded shear strength due to the horizontal movement of the top of salt relative to the caprock, and tensile stress due to the downward movement of the top of salt from the caprock, respectively. The casings of Caverns 101, 110, 111 and 114, located at the far ends of the field, are predicted to be failed by shear stress in the near future. The casings of inmost Caverns 107 and 108 are predicted to be failed by tensile stress in the near future.

  6. Radiation-induced brain damage, impact of Michael Robbins' work and the need for predictive biomarkers.

    PubMed

    Prasanna, Pataje G S; Ahmed, Mansoor M; Stone, Helen B; Vikram, Bhadrasain; Mehta, Minesh P; Coleman, C Norman

    2014-09-01

    To review the literature on radiation-induced normal tissue injury in the context of treatment of primary and metastatic brain tumors with a focus on Michael Robbins' work on mechanisms of injury and approaches to mitigation, and also to identify other potential opportunities to improve treatment outcome and quality of life (QOL). Brain tumors remain a significant challenge for patients, their families, the physicians treating them, and researchers seeking more effective treatments. Current treatment of brain tumors involves combinations of radiotherapy with surgery, chemotherapy, and molecularly targeted agents. As patient survival improves with advances in treatment there is an increasing concern for the cognitive deficits that may become apparent months or years after treatment some of which are related to radiation-induced brain damage. One area of Michael Robbins' research was unraveling the mechanisms of radiation-induced cognitive deficits, which formed the basis for the development of some mitigators of radiation injury. Extrapolating from this, new opportunities to identify and develop putative predictive biomarkers of radiation-induced brain damage can be explored. Predictive biomarkers of radiation-induced brain injury may enable stratifying patients for customization of treatment and thus aid in improving the QOL and possibly prolonging survival. Here we discuss the challenges involved in leveraging recent advances in radiation-specific biomarker research and translating them to radiotherapy, which for the foreseeable future is likely to remain a cornerstone of the treatment of brain tumors.

  7. Use of flow cytometry to monitor cell damage and predict fermentation activity of dried yeasts.

    PubMed

    Attfield, P V; Kletsas, S; Veal, D A; van Rooijen, R; Bell, P J

    2000-08-01

    Viable dried yeast is used as an inoculum for many fermentations in the baking and wine industries. The fermentative activity of yeast in bread dough or grape must is a critical parameter of process efficiency. Here, it is shown that fluorescent stains and flow cytometry can be used in concert to predict the abilities of populations of dried bakers' and wine yeasts to ferment after rehydration. Fluorescent dyes that stain cells only if they have damaged membrane potential (oxonol) or have increased membrane permeability (propidium iodide) were used to analyse, by flow cytometry, populations of rehydrated yeasts. A strong relationship (r2 = 0.99) was found between the percentages of populations staining with the oxonol and the degree of cell membrane damage as measured by the more traditional method of leakage of intracellular compounds. There were also were good negative relationships (r2 > or = 0.83) between fermentation by rehydrated bakers' or wine dry yeasts and percentage of populations staining with either oxonol or propidium iodide. Fluorescent staining with flow cytometry confirmed that factors such as vigour of dried yeast mixing in water, soaking before stirring, rehydration in water or fermentation medium and temperature of rehydration have profound effects on subsequent yeast vitality. These experiments indicate the potential of flow cytometry as a rapid means of predicting the fermentation performance of dried bakers' and wine yeasts.

  8. [Risk predictive model for damage caused by the spittlebug Aeneolamiapostica (Walker) Fennah (Hemiptera: Cercopidae)].

    PubMed

    García-García, Carlos G; López-Collado, José; Nava-Tablada, Martha E; Villanueva-Jiménez, Juan A; Vera-Graziano, Jorge

    2006-01-01

    This paper evaluated the risk that Aenolamia postica (Walker) Fennah populations reach the economic threshold in sugar cane fields in Veracruz, México. A risk deductive model was constructed to include the sequence of events leading to damaging populations, considered the top event or critical failure in the crop. Model events were identified and quantified, and model was validated on field conditions. The model components and their state values were identified as: temperature e" 28 degrees C, precipitation e" 45% during June and July, soil clay content e" 40%, infested adjoining fields, deficient weed control, wind dominance, crop phenology and variety, deficient chemical and biological control, and irrigation. Sensitivity analysis showed that the most important events triggering high densities of A. postica were high temperatures and precipitation, previous field infestation, nymph and weed presence. Event probability estimates were combined using Boolean algebra to compute the minimum, mean and maximum probabilities for the top event, yielding values of 0.417, 0.563, y 0.734 respectively. Model was tested in field, by selecting sugar cane fields having the model properties and compared to fields without these features. Fields were sampled in both conditions during 2004 year and high-risk fields had significantly (F = 13, 4, gl = 1, 18, P = 0,0018) higher densities (2.4 adults m(-1)) than low-risk plots (0.4 adults m(-1)) thus agreeing with the model forecast.

  9. Computational prediction of probabilistic ignition threshold of pressed granular Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under shock loading

    NASA Astrophysics Data System (ADS)

    Kim, Seokpum; Miller, Christopher; Horie, Yasuyuki; Molek, Christopher; Welle, Eric; Zhou, Min

    2016-09-01

    The probabilistic ignition thresholds of pressed granular Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine explosives with average grain sizes between 70 μm and 220 μm are computationally predicted. The prediction uses material microstructure and basic constituent properties and does not involve curve fitting with respect to or prior knowledge of the attributes being predicted. The specific thresholds predicted are James-type relations between the energy flux and energy fluence for given probabilities of ignition. Statistically similar microstructure sample sets are computationally generated and used based on the features of micrographs of materials used in actual experiments. The predicted thresholds are in general agreement with measurements from shock experiments in terms of trends. In particular, it is found that grain size significantly affects the ignition sensitivity of the materials, with smaller sizes leading to lower energy thresholds required for ignition. For example, 50% ignition threshold of the material with an average grain size of 220 μm is approximately 1.4-1.6 times that of the material with an average grain size of 70 μm in terms of energy fluence. The simulations account for the controlled loading of thin-flyer shock experiments with flyer velocities between 1.5 and 4.0 km/s, constituent elasto-viscoplasticity, fracture, post-fracture contact and friction along interfaces, bulk inelastic heating, interfacial frictional heating, and heat conduction. The constitutive behavior of the materials is described using a finite deformation elasto-viscoplastic formulation and the Birch-Murnaghan equation of state. The ignition thresholds are determined via an explicit analysis of the size and temperature states of hotspots in the materials and a hotspot-based ignition criterion. The overall ignition threshold analysis and the microstructure-level hotspot analysis also lead to the definition of a macroscopic ignition parameter (J) and a microscopic

  10. An in vitro Corneal Model with a Laser Damage Threshold at 2 Micrometers That is Similar to That in the Rabbit

    DTIC Science & Technology

    2007-11-01

    data in the literature. 15. SUBJECT TERMS corneal organotypic culture, laser, threshold, thermography , Probit 16. SECURITY CLASSIFICATION OF...literature. Keywords: corneal organotypic culture, laser, threshold, thermography , Probit 1. INTRODUCTION Use of lasers has become commonplace...temperature increases from exposure to the 2-µm laser were measured using the IR camera during laser exposure to membranes that were dry , wetted from

  11. Using a deterministic time-lagged ensemble forecast with a probabilistic threshold for improving 6-15 day summer precipitation prediction in China

    NASA Astrophysics Data System (ADS)

    Jie, Weihua; Wu, Tongwen; Wang, Jun; Li, Weijing; Polivka, Thomas

    2015-04-01

    A Deterministic Time-lagged Ensemble Forecast using a Probabilistic Threshold (DEFPT) method is suggested for improving summer 6-15 day categorical precipitation prediction in China from the Beijing Climate Center Atmospheric General Circulation Model version 2.1 (BCC_AGCM2.1). It is based on a time-lagged ensemble system that consists of 13 ensemble members separated sequentially at 6 hour intervals lagging the last three days. The DEFPT is not intended to predict the probability of rainfall, but rather to forecast rainfall (yes/no) occurrence for different categories of precipitation at any model grid box. A given categorical precipitation is forecasted to occur at one gridbox only when the ensemble probability for that categorical precipitation exceeds a certain threshold. This method is useful for providing an estimate of whether precipitation events will occur to decision-makers based on probabilistic forecasts during days 6-15. A large number of hindcast experiments for 1996-2005 summers reveal that this threshold can be best (and empirically) set as 5/13 and 4/13 respectively for the 6-15 day prediction of 1 + mm (i.e., above 1 mm per day) and 5 + mm rainfall events, using the Relative Operating Characteristic (ROC) curve, the Equitable Threat Score (ETS), the Hanssen and Kuipers (HK) score, and frequency bias (BIA) to achieve best prediction performance. With this set of thresholds, the DEFPT shows skill improvement over the corresponding single deterministic forecast using one initial value and the Time-Lagged Average Forecast (LAF) ensemble method. Similar improvements by the DEFPT are also found for the prediction of several other categories of precipitation between 1 + mm and 10 + mm per day. Application of DEFPT to larger ensemble size and BCC_AGCM version 2.2 with a higher horizontal resolution also demonstrates the effectiveness of the DEFPT for 6-15 day categorical precipitation forecasts.

  12. Sensitivity of damage predictions to tissue level yield properties and apparent loading conditions.

    PubMed

    Niebur, G L; Yuen, J C; Burghardt, A J; Keaveny, T M

    2001-05-01

    High-resolution finite element models of trabecular bone failure could be used to augment current techniques for measuring damage in trabecular bone. However, the sensitivity of such models to the assumed tissue yield properties and apparent loading conditions is unknown. The goal of this study was to assess the sensitivity of the amount and mode (tension vs. compression) of tissue level yielding in trabecular bone to these factors. Linear elastic, high-resolution finite element models of nine bovine tibial trabecular bone specimens were used to calculate the fraction of the total tissue volume that exceeded each criterion for apparent level loading to the reported elastic limit in both on-axis and transverse compression and tension, and in shear. Four candidate yield criteria were studied, based on values suggested in the literature. Both the amount and the failure mode of yielded tissue were sensitive to the magnitudes of the tissue yield strains, the degree of tension-compression asymmetry of the yield criterion, and the applied apparent loads. The amount of yielded tissue was most sensitive to the orientation of the applied apparent loading, with the most tissue yielding for loading along the principal trabecular orientation and the least for loading perpendicular to it, regardless of the assumed tissue level yield criterion. Small changes in the magnitudes and the degree of asymmetry of the tissue yield criterion resulted in much larger changes in the amount of yielded tissue in the model. The results indicate that damage predictions based on high-resolution finite element models are highly sensitive to the assumed tissue yield properties. As such, good estimates of these values are needed before high-resolution finite element models can be applied to the study of trabecular bone damage. Regardless of the assumed tissue yield properties, the amount and type of damage that occurs in trabecular bone depends on the relative orientations of the applied apparent

  13. Fast Prediction of Blast Damage from Airbursts: An Empirical Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Brown, Peter G.; Stokan, Ed

    2016-10-01

    The February 15, 2013 Chelyabinsk airburst was the first modern bolide whose associated shockwave caused blast damage at the ground (Popova et al., 2013). Near-Earth Object (NEO) impacts in the Chelyabinsk-size range (~20 m) are expected to occur every few decades (Boslough et al., 2015) and therefore we expect ground damage from meteoric airbursts to be the next planetary defense threat to be confronted. With pre-impact detections of small NEOs certain to become more common, decision makers will be faced with estimating blast damage from impactors with uncertain physical properties on short timescales.High fidelity numerical bolide entry models have been developed in recent years (eg. Boslough and Crawford, 2008; Shuvalov et al., 2013), but the wide range in a priori data about strength, fragmentation behavior, and other physical properties for a specific impactor make predictions of bolide behavior difficult. The long computational running times for hydrocode models make the exploration of a wide parameter space challenging in the days to hours before an actual impact.Our approach to this problem is to use an analytical bolide entry model, the triggered-progressive fragmentation model (TPFM) developed by ReVelle (2005) within a Monte Carlo formalism. In particular, we couple this model with empirical constraints on the statistical spread in strength for meter-scale impactors from Brown et al (2015) based on the observed height at maximum bolide brightness. We also use the correlation of peak bolide brightness with total energy as given by Brown (2016) as a proxy for fragmentation behaviour. Using these constraints, we are able to quickly generate a large set of realizations of probable bolide energy deposition curves and produce simple estimates of expected blast damage using existing analytical relations.We validate this code with the known parameters of the Chelyabinsk airburst and explore how changes to the entry conditions of the observed bolide may have

  14. Right ventricular stimulation threshold at ICD implant predicts device therapy in primary prevention patients with ischaemic heart disease.

    PubMed

    Atary, Jael Z; Borleffs, C Jan Willem; van der Bom, Johanna G; Trines, Serge A I P; Bootsma, Marianne; Zeppenfeld, Katja; van Erven, Lieselot; Schalij, Martin J

    2010-11-01

    Myocardial excitability is known (amongst other reasons) to be related to the degree of ischaemia, contractile dysfunction and heart failure. It was hypothesized that the right ventricular (RV) stimulation threshold has prognostic value with respect to the occurrence of ventricular arrhythmias (VAs) and patient survival in recipients of an implantable cardioverter defibrillator (ICD). Ischaemic heart disease patients receiving an ICD at Leiden University Medical Center as primary prevention for sudden cardiac death were included in this study. Right ventricular thresholds were determined at ICD implant. Data were collected on VAs triggering ICD therapy and on all-cause mortality. A total of 689 consecutive patients were included (87% male, age 63 ± 11 years, left ventricular ejection fraction (LVEF) 29 ± 11%) and followed for a median of 28 months. Post-implant RV-threshold was 0.7 ± 0.5 volt (V) at 0.5 ms pulse duration. Best dichotomous separation was reached at a cut-off of 1 V. During follow-up, 167 (24%) patients received appropriate ICD therapy, 88 (13%) had appropriate shocks and 134 (19%) died. Cumulative appropriate shock incidence for patients with RV threshold ≥ 1 V (n = 166) was 16% at 1 year, 24% at 3 years and 34% at 5 years compared with 4, 11 and 17% for patients with an RV-threshold < 1 V (n = 523). Adjusted hazard ratio of RV threshold ≥ 1 V was 2.0 (95% CI: 1.4-2.9) for appropriate therapy, 3.3 (95% CI: 2.0-5.4) for appropriate shocks and 1.6 (95% CI: 1.1-2.5) for mortality. The RV stimulation threshold at ICD implant has a strong independent prognostic value for the occurrence of VAs triggering appropriate ICD therapy, appropriate shocks and mortality.

  15. Near-threshold fatigue crack growth behavior of 2195 aluminum-lithium-alloy—prediction of crack propagation direction and influence of stress ratio

    NASA Astrophysics Data System (ADS)

    Chen, D. L.; Chaturvedi, M. C.

    2000-06-01

    Tensile properties and fatigue crack propagation behavior of a 2195-T8 Al-Li alloy were investigated at different stress ratios, with particular emphasis on their dependence on specimen orientation. Specimens with orientations of 0, 15, 30, 45, and 90 deg to the rolling direction were tested. The alloy contained a strong brass-type texture and a profuse distribution of platelike precipitates of T 1 (Al2CuLi) phase on {111} matrix planes. Both tensile strength and fatigue thresholds were found to be strongly dependent on the specimen orientation, with the lowest values observed along the direction at 45 deg to the rolling direction. The effect of stress ratio on fatigue threshold could generally be explained by a modified crack closure concept. The growth of fatigue crack in this alloy was found to exhibit a significant crystallographic cracking and especially macroscopic crack deflection. The specimens oriented in the L-T + 45 deg had the smallest deflection angle, while the specimens in the L-T and T-L orientations exhibited a large deflection angle. The dependence of the fatigue threshold on the specimen orientation could be rationalized by considering an equivalent fatigue threshold calculated from both mode I and mode II values due to the crack deflection. A four-step approach on the basis of Schmid’s law combined with specific crystallographic textures is proposed to predict the fatigue crack deflection angle. Good agreement between the theoretical prediction and experimental results was observed.

  16. A micromechanical model to predict damage and failure in biological tissues. Application to the ligament-to-bone attachment in the human knee joint.

    PubMed

    Subit, D; Chabrand, P; Masson, C

    2009-02-09

    Computational models are developed in injury biomechanics to assess lesions in biological tissues based on mechanical measurements. The linear mechanics of fracture theory (LMFT) is a common approach to establish injuries based on thresholds (such as force or strain thresholds) which are straightforward to implement and computationally efficient. However, LMFT does not apply to non-linear heterogeneous materials and does not have the ability to predict failure onset. This paper proposes the cohesive zone model theory (CZMT) as an alternative. CZMT focuses on the development of behaviour laws for crack initiation and propagation at an interface that apply within a fibrous material or at the interface between materials. With the view of evaluating CZMT for biological tissues, the model developed by Raous et al. [1999. A consistent model coupling adhesion, friction and unilateral contact. Comput. Methods Appl. Mech. Eng., 177, 383-399] was applied to the ligament-to-bone interface in the human knee joint. This model accounts for adhesion, friction and damage at the interface and provides a smooth transition from total adhesion to complete failure through the intensity of adhesion variable. A 2D finite element model was developed to mimic previous experiments, and the model parameters were determined using a dichotomy method. The model showed good results by its ability to predict damage. The extension to a 3D geometry, with an inverse problem approach, is, however, required to better estimate the model parameters values. Although it is computationally costly, CZMT supplements the improvements achieved in microimaging techniques to support the development of micro/macro approaches in biomechanical modelling.

  17. On predicting future economic losses from tropical cyclones: Comparing damage functions for the Eastern USA

    NASA Astrophysics Data System (ADS)

    Geiger, Tobias; Levermann, Anders; Frieler, Katja

    2015-04-01

    Recent years have seen an intense scientific debate of what to expect from future tropical cyclone activity under climate change [1,2]. Besides the projection of cyclones' genesis points and trajectories it is the cyclone's impact on future societies that needs to be quantified. In our present work, where we focus on the Eastern USA, we start out with a comprehensive comparison of a variety of presently available and novel functional relationships that are used to link cyclones' physical properties with their damage caused on the ground. These so-called damage functions make use of high quality data sets consisting of gridded population data, exposed capital at risk, and information on the cyclone's extension and its translational and locally resolved maximum wind speed. Based on a cross-validation ansatz we train a multitude of damage functions on a large variety of data sets in order to evaluate their performance on an equally sized test sample. Although different damage analyses have been conducted in the literature [3,4,5,6], the efforts have so far primarily been focused on determining fit parameters for individual data sets. As our analysis consists of a wide range of damage functions implemented on identical data sets, we can rigorously evaluate which (type of) damage function (for which set of parameters) does best in reproducing damages and should therefore be used for future loss analysis with highest certainty. We find that the benefits of using locally resolved data input tend to be outweighed by the large uncertainties that accompany the data. More coarse and generalized data input therefore captures the diversity of cyclonic features better. Furthermore, our analysis shows that a non-linear relation between wind speed and damage outperforms the linear as well as the exponential relationship discussed in the literature. In a second step, the damage function with the highest predictive quality is implemented to predict potential future cyclone losses

  18. Na4MgM2Se6 (M = Si, Ge): The First Noncentrosymmetric Compounds with Special Ethane-like [M2Se6](6-) Units Exhibiting Large Laser-Damage Thresholds.

    PubMed

    Wu, Kui; Yang, Zhihua; Pan, Shilie

    2015-11-02

    Two new noncentrosymmetric compounds, Na4MgM2Se6 (I, M = Si; II, M = Ge), that contain special ethane-like [M2Se6](6-) units were reported for the first time. Remarkably, they exhibit high laser-damage thresholds [9 (I) and 7 (II) × benchmark AgGaS2] and moderate second-harmonic-generation responses with type I phase matching.

  19. Crack Growth Prediction Methodology for Multi-Site Damage: Layered Analysis and Growth During Plasticity

    NASA Technical Reports Server (NTRS)

    James, Mark Anthony

    1999-01-01

    A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.

  20. Predictive zoning of rice stem borer damage in southern India through spatial interpolation of weather-based models.

    PubMed

    Reji, G; Chander, Subhash; Kamble, Kalpana

    2014-09-01

    Rice stem borer is an important insect pest causing severe damage to rice crop in India. The relationship between weather parameters such as maximum (T(max)) and minimum temperature (T(min)), morning (RH1) and afternoon relative humidity (RH2) and the severity of stem borer damage (SB) were studied. Multiple linear regression analysis was used for formulating pest-weather models at three sites in southern India namely, Warangal, Coimbatore and Pattambi as SB = -66.849 + 2.102 T(max) + 0.095 RH1, SB = 156.518 - 3.509 T(min) - 0.785 RH1 and SB = 43.483 - 0.418 T(min) - 0.283 RH1 respectively. The pest damage predicted using the model at three sites did not significantly differ from the observed damage (t = 0.442; p > 0.05). The range of weather parameters favourable for stem borer damage at each site were also predicted using the models. Geospatial interpolation (kriging) of the pest-weather models were carried out to predict the zones of stem borer damage in southern India. Maps showing areas with high, medium and low risk of stem borer damage were prepared using geographical information system. The risk maps of rice stem borer would be useful in devising management strategies for the pest in the region.

  1. The EST Model for Predicting Progressive Damage and Failure of Open Hole Bending Specimens

    NASA Technical Reports Server (NTRS)

    Joseph, Ashith P. K.; Waas, Anthony M.; Pineda, Evan J.

    2016-01-01

    Progressive damage and failure in open hole composite laminate coupons subjected to flexural loading is modeled using Enhanced Schapery Theory (EST). Previous studies have demonstrated that EST can accurately predict the strength of open hole coupons under remote tensile and compressive loading states. This homogenized modeling approach uses single composite shell elements to represent the entire laminate in the thickness direction and significantly reduces computational cost. Therefore, when delaminations are not of concern or are active in the post-peak regime, the version of EST presented here is a good engineering tool for predicting deformation response. Standard coupon level tests provides all the input data needed for the model and they are interpreted in conjunction with finite element (FE) based simulations. Open hole bending test results of three different IM7/8552 carbon fiber composite layups agree well with EST predictions. The model is able to accurately capture the curvature change and deformation localization in the specimen at and during the post catastrophic load drop event.

  2. Growth, structural, physical and computational perspectives of trans-4-hydroxy-l-proline: a promising organic nonlinear optical material with large laser-induced damage threshold

    NASA Astrophysics Data System (ADS)

    Thirumurugan, Ramaiah; Anitha, Kandasamy

    2017-05-01

    In this work, a systematic study of an organic nonlinear optical (NLO) material, trans-4-hydroxy-l-proline (THP), C5H9NO3 is reported. An optical quality single crystals of THP have been successfully grown by using slow evaporation solution growth technique (SEST). The single crystal x-ray diffraction (SXRD) analysis reveals that grown crystal belongs to the orthorhombic system with non-centrosymmetric space group (NCS), P212121. Powder x-ray diffraction (PXRD) analysis shows relatively a good crystalline nature. The molecular structure of THP was recognized by NMR (1H and 13C) studies and its vibrational modes were confirmed by FTIR and FT-Raman vibrational studies. UV-Vis-NIR spectrum of grown crystal shows high optical transparency in the visible and near-IR region with low near-UV cut-off wavelength at 218 nm. Photoluminescence study confirms ultraviolet wavelength emission of THP crystal. The second harmonic generation (SHG) efficiency of grown crystal is 1.6 times greater with respect to standard potassium dihydrogen phosphate (KDP). Nonlinear refractive index (n 2) and nonlinear absorption coefficient (β) were determined using the Z-scan technique. The title compound owns high thermal stability of 294 °C and specific heat capacity (C P) of 1.21 J g-1 K-1 at 300 K and 11.33 J g-1 K-1 at 539 K (melting point). The laser-induced damage threshold (LDT) value of grown crystal was measured as 7.25 GW cm-2. The crystal growth mechanism and defects of grown crystal were studied by chemical etching technique. Mechanical strength was extensively studied by Vickers microhardness test and crystal void percentage analysis. Moreover, density functional theory (DFT) studies were carried out to probe the Mulliken charge distribution, frontier molecular orbitals (FMOs) and first order hyperpolarizability (β) of the optimized molecular structure to get a better insight of the molecular properties. These characterization results endorse that grown THP crystal as a

  3. Effect of Assumed Damage and Location on the Delamination Onset Predictions for Skin-Stiffener Debonding

    NASA Technical Reports Server (NTRS)

    Paris, Isabelle L.; Krueger, Ronald; OBrien, T. Kevin

    2004-01-01

    The difference in delamination onset predictions based on the type and location of the assumed initial damage are compared in a specimen consisting of a tapered flange laminate bonded to a skin laminate. From previous experimental work, the damage was identified to consist of a matrix crack in the top skin layer followed by a delamination between the top and second skin layer (+45 deg./-45 deg. interface). Two-dimensional finite elements analyses were performed for three different assumed flaws and the results show a considerable reduction in critical load if an initial delamination is assumed to be present, both under tension and bending loads. For a crack length corresponding to the peak in the strain energy release rate, the delamination onset load for an assumed initial flaw in the bondline is slightly higher than the critical load for delamination onset from an assumed skin matrix crack, both under tension and bending loads. As a result, assuming an initial flaw in the bondline is simpler while providing a critical load relatively close to the real case. For the configuration studied, a small delamination might form at a lower tension load than the critical load calculated for a 12.7 mm (0.5") delamination, but it would grow in a stable manner. For the bending case, assuming an initial flaw of 12.7 mm (0.5") is conservative, the crack would grow unstably.

  4. Effect of Assumed Damage and Location on the Delamination Onset Predictions for Skin-Stiffener Debonding

    NASA Technical Reports Server (NTRS)

    Paris, Isabelle L.; Krueger, Ronald; OBrien, T. Kevin

    2004-01-01

    The difference in delamination onset predictions based on the type and location of the assumed initial damage are compared in a specimen consisting of a tapered flange laminate bonded to a skin laminate. From previous experimental work, the damage was identified to consist of a matrix crack in the top skin layer followed by a delamination between the top and second skin layer (+45 deg./-45 deg. interface). Two-dimensional finite elements analyses were performed for three different assumed flaws and the results show a considerable reduction in critical load if an initial delamination is assumed to be present, both under tension and bending loads. For a crack length corresponding to the peak in the strain energy release rate, the delamination onset load for an assumed initial flaw in the bondline is slightly higher than the critical load for delamination onset from an assumed skin matrix crack, both under tension and bending loads. As a result, assuming an initial flaw in the bondline is simpler while providing a critical load relatively close to the real case. For the configuration studied, a small delamination might form at a lower tension load than the critical load calculated for a 12.7 mm (0.5") delamination, but it would grow in a stable manner. For the bending case, assuming an initial flaw of 12.7 mm (0.5") is conservative, the crack would grow unstably.

  5. Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model

    SciTech Connect

    Fok, Alex

    2013-10-30

    The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the model to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.

  6. Meteoroid/orbital debris impact damage predictions for the Russian space station MIR

    NASA Technical Reports Server (NTRS)

    Christiansen, E. L.; Hyde, J. L.; Lear, D.

    1997-01-01

    Components of the Mir space station have been exposed to the meteoroid/orbital debris (M/OD) environment for up to 11 years. During this period, no M/OD impact perforation of the pressure shell of the manned modules were reported. The NASA standard M/OD analysis code BUMPER was used to predict the probability of M/OD impact damage to various components of Mir. The analysis indicates a 1 in 2.2 chance that a M/OD impact would have caused a penetration resulting in a pressure leak of the Mir modules since its launch up to the February 1997. For the next five years, the estimated odds become 1 in 3. On an annual basis, penetration risks are 60 percent higher, on the average, in the next five years due to the larger size of Mir and the growth in the orbital debris population.

  7. Meteoroid/orbital debris impact damage predictions for the Russian space station MIR

    NASA Technical Reports Server (NTRS)

    Christiansen, E. L.; Hyde, J. L.; Lear, D.

    1997-01-01

    Components of the Mir space station have been exposed to the meteoroid/orbital debris (M/OD) environment for up to 11 years. During this period, no M/OD impact perforation of the pressure shell of the manned modules were reported. The NASA standard M/OD analysis code BUMPER was used to predict the probability of M/OD impact damage to various components of Mir. The analysis indicates a 1 in 2.2 chance that a M/OD impact would have caused a penetration resulting in a pressure leak of the Mir modules since its launch up to the February 1997. For the next five years, the estimated odds become 1 in 3. On an annual basis, penetration risks are 60 percent higher, on the average, in the next five years due to the larger size of Mir and the growth in the orbital debris population.

  8. A Continuum Damage Mechanics Model to Predict Kink-Band Propagation Using Deformation Gradient Tensor Decomposition

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew C.; Leone, Frank A., Jr.

    2016-01-01

    A new model is proposed that represents the kinematics of kink-band formation and propagation within the framework of a mesoscale continuum damage mechanics (CDM) model. The model uses the recently proposed deformation gradient decomposition approach to represent a kink band as a displacement jump via a cohesive interface that is embedded in an elastic bulk material. The model is capable of representing the combination of matrix failure in the frame of a misaligned fiber and instability due to shear nonlinearity. In contrast to conventional linear or bilinear strain softening laws used in most mesoscale CDM models for longitudinal compression, the constitutive response of the proposed model includes features predicted by detailed micromechanical models. These features include: 1) the rotational kinematics of the kink band, 2) an instability when the peak load is reached, and 3) a nonzero plateau stress under large strains.

  9. Monitoring the Damage State of Fiber Reinforced Composites Using an FBG Network for Failure Prediction

    PubMed Central

    Kocaman, Esat Selim; Akay, Erdem; Yilmaz, Cagatay; Turkmen, Halit Suleyman; Misirlioglu, Ibrahim Burc; Suleman, Afzal; Yildiz, Mehmet

    2017-01-01

    A structural health monitoring (SHM) study of biaxial glass fibre-reinforced epoxy matrix composites under a constant, high strain uniaxial fatigue loading is performed using fibre Bragg grating (FBG) optical sensors embedded in composites at various locations to monitor the evolution of local strains, thereby understanding the damage mechanisms. Concurrently, the temperature changes of the samples during the fatigue test have also been monitored at the same locations. Close to fracture, significant variations in local temperatures and strains are observed, and it is shown that the variations in temperature and strain can be used to predict imminent fracture. It is noted that the latter information cannot be obtained using external strain gages, which underlines the importance of the tracking of local strains internally. PMID:28772393

  10. Models for predicting damage evolution in metal matrix composites subjected to cyclic loading

    SciTech Connect

    Allen, D.H.; Hurtado, L.D.; Helms, K.L.E.

    1995-03-01

    A thermomechanical analysis of a continuous fiber metal matrix composite (MMC) subjected to cyclic loading is performed herein. The analysis includes the effects of processing induced residual thermal stresses, matrix inelasticity, and interface cracking. Due to these complexities, the analysis is performed computationally using the finite element method. Matrix inelasticity is modelled with a rate dependent viscoplasticity model. Interface fracture is modelled by the use of a nonlinear interface constitutive model. The problem formulation is summarized, and results are given for a four-ply unidirectional SCS-6/{beta}21S titanium composite under high temperature isothermal mechanical fatigue. Results indicate rate dependent viscoplasticity can be a significant mechanism for dissipating the energy available for damage propagation, thus contributing to improved ductility of the composite. Results also indicate that the model may be useful for inclusion in life prediction methodologies for MMC`s.

  11. Adaptive Thresholds

    SciTech Connect

    Bremer, P. -T.

    2014-08-26

    ADAPT is a topological analysis code that allow to compute local threshold, in particular relevance based thresholds for features defined in scalar fields. The initial target application is vortex detection but the software is more generally applicable to all threshold based feature definitions.

  12. A comparison of South Asian specific and established BMI thresholds for determining obesity prevalence in pregnancy and predicting pregnancy complications: findings from the Born in Bradford cohort.

    PubMed

    Bryant, M; Santorelli, G; Lawlor, D A; Farrar, D; Tuffnell, D; Bhopal, R; Wright, J

    2014-03-01

    To describe how maternal obesity prevalence varies by established international and South Asian specific body mass index (BMI) cut-offs in women of Pakistani origin and investigate whether different BMI thresholds can help to identify women at risk of adverse pregnancy and birth outcomes. Prospective bi-ethnic birth cohort study (the Born in Bradford (BiB) cohort). Bradford, a deprived city in the North of the UK. A total of 8478 South Asian and White British pregnant women participated in the BiB cohort study. Maternal obesity prevalence; prevalence of known obesity-related adverse pregnancy outcomes: mode of birth, hypertensive disorders of pregnancy (HDP), gestational diabetes, macrosomia and pre-term births. Application of South Asian BMI cut-offs increased prevalence of obesity in Pakistani women from 18.8 (95% confidence interval (CI) 17.6-19.9) to 30.9% (95% CI 29.5-32.2). With the exception of pre-term births, there was a positive linear relationship between BMI and prevalence of adverse pregnancy and birth outcomes, across almost the whole BMI distribution. Risk of gestational diabetes and HDP increased more sharply in Pakistani women after a BMI threshold of at least 30 kg m(-2), but there was no evidence of a sharp increase in any risk factors at the new, lower thresholds suggested for use in South Asian women. BMI was a good single predictor of outcomes (area under the receiver operating curve: 0.596-0.685 for different outcomes); prediction was more discriminatory and accurate with BMI as a continuous variable than as a binary variable for any possible cut-off point. Applying the new South Asian threshold to pregnant women would markedly increase those who were referred for monitoring and lifestyle advice. However, our results suggest that lowering the BMI threshold in South Asian women would not improve the predictive ability for identifying those who were at risk of adverse pregnancy outcomes.

  13. A comparison of South Asian specific and established BMI thresholds for determining obesity prevalence in pregnancy and predicting pregnancy complications: Findings from the Born in Bradford cohort

    PubMed Central

    Bryant, Maria; Santorelli, Gillian; Lawlor, Debbie A; Farrar, Diane; Tuffnell, Derek; Bhopal, Raj; Wright, John

    2013-01-01

    Objective To describe how maternal obesity prevalence varies by established international and South Asian specific BMI cut-offs in women of Pakistani origin and investigate whether different BMI thresholds can help to identify women at risk of adverse pregnancy and birth outcomes. Design Prospective bi-ethnic birth cohort study (The Born in Bradford Cohort). Setting Bradford, a deprived city in the North of the UK. Participants 8,478 South Asian and White British pregnant women participating in the Born in Bradford cohort study Main outcome measures Maternal obesity prevalence; prevalence of known obesity related adverse pregnancy outcomes: mode of birth, hypertensive disorders of pregnancy (HDP), gestational diabetes, macrosomia, pre-term births. Results Application of South Asian BMI cut-offs increased prevalence of obesity in Pakistani women from 18.8% (95% CI 17.6 to 19.9) to 30.9% (95% CI 29.5 to 32.2). With the exception of pre-term births, there was a positive linear relationship between BMI and prevalence of adverse pregnancy and birth outcomes, across almost the whole BMI distribution. Risk of gestational diabetes and HDP increased more sharply in Pakistani women after a BMI threshold of at least 30kg/m2, but there was no evidence of a sharp increase in any risk factors at the new, lower thresholds suggested for use in South Asian women. BMI was a good single predictor of outcomes (Area Under the Receiver Operating Curve: 0.596 to 0.685 for different outcomes); prediction was more discriminatory and accurate with BMI as a continuous variable than as a binary variable for any possible cut-point. Conclusion Applying the new South Asian threshold to pregnant women would markedly increase those referred for monitoring and lifestyle advice. However, our results suggest that lowering the BMI threshold in South Asian women would not improve the predictive ability for identifying those at risk of adverse pregnancy outcomes. PMID:23797188

  14. Modeling of plasma-induced damage during the etching of ultimately-scaled transistors in ULSI circuits--A model prediction of damage in three dimensional structures

    NASA Astrophysics Data System (ADS)

    Eriguchi, Koji

    2014-10-01

    An increasing demand for high performance field-effect transistors (FETs) leads to the aggressive critical dimension shrinkage and the currently-emerging three dimensional (3D) geometry. Plasma processing is widely used also in the scaled- and 3D-FET (e.g. FinFET) manufacturing, where precise control of the reaction on the (sidewall) surfaces is a prime issue. In this study, damage creation mechanism during plasma etching--plasma-induced physical damage (PPD)--was investigated in such structures on the basis of the PPD range theory, atomistic simulations, and experiments. Compared to PPD in planar FETs (e.g. Si recess [2,3]), a stochastic modeling and atomistic simulations predicted that, during etching of ``fins'' in a 3D-FET, the following two mechanisms are responsible for damage creation in addition to an ion impact on the sidewall at an oblique incident angle: 1) incoming ions penetrate into the Si substrate and undergo scattering by Si atoms in the lateral direction even if the incident angle is normal to the surface and 2) some of Si atoms and ions sputtered at the surface being etched impact on the sidewall with energies sufficient to break Si-Si bonds. These straggling and sputtering processes are stochastic and fundamental, thus, result in 3D structure damage (``fin-damage''). The ``fin-damage'' induced by straggling was modeled by the PPD range theory. Molecular dynamics simulations clarified the mechanisms under the various plasma conditions. Quantum mechanical calculations showed that created defect structures play the role of a carrier trap site, which was experimentally verified by an electrical measurement. Since they are intrinsic natures of etching, both straggling and sputtering noted here should be implemented to design a low-damage etching process. This work was supported in part by Grant-in-Aid for Scientific Research (B) 23360321 from JSPS and STARC project.

  15. CONTAMINANT THRESHOLDS FOR PREDICTING ADVERSE IMPACTS IN BENTHIC COMMUNITIES ALONG THE U.S. ATLANTIC AND GULF OF MEXICO COASTS

    EPA Science Inventory

    EMAP 2001 Symposium, April 24-27, 2001, Pensacola, FL

    Matching data on sediment contaminants and macroinfauna from 1,349 samples collected as part of EMAP in estuaries along the U.S. Atlantic and Gulf of Mexico coasts were used to define thresholds for evaluating risks of ...

  16. A study of the possibility of predicting the threshold of plasma formation on a metal surface by the optoacoustic method

    NASA Astrophysics Data System (ADS)

    Aver'ianov, N. E.; Baloshin, Iu. A.; Martiukhina, L. I.; Pavlishin, I. V.; Sud'Enkov, Iu. V.

    1987-09-01

    The amplitudes of the acoustic signals excited in metal reflectors by laser pulses are analyzed as a function of the energy density of target irradiation. It is shown that the slope of the resulting plot is related to the threshold of plasma generation near the specimen surface. Results are presented for the emission wavelengths of Nd-glass and CO2 lasers.

  17. Investigation of Cumulative Fatigue Damage Through Sequential Low Cycle Fatigue and High Cycle Fatigue Cycling at High Temperature for a Type 316LN Stainless Steel: Life-Prediction Techniques and Associated Mechanisms

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Laha, K.; Okazaki, M.

    2017-01-01

    Cumulative fatigue damage under sequential low cycle fatigue (LCF) and high cycle fatigue (HCF) cycling was investigated at 923 K (650 °C) by conducting HCF tests on specimens subjected to prior LCF cycling at various strain amplitudes. Remnant HCF lives were found to decrease drastically with increase in prior fatigue exposure as a result of strong LCF-HCF interactions. The rate of decrease in remnant lives varied as a function of the applied strain amplitude. A threshold damage in terms of prior LCF life-fraction was found, below which no significant LCF-HCF interaction takes place. Similarly, a critical damage during the LCF pre-cycling marking the highest degree of LCF-HCF interaction was identified which was found to depend on the applied strain amplitude. In view of the non-linear damage accumulation behavior, Miner's linear damage rule proved to be highly non-conservative. Manson's damage curve approach, suitably modified, was found to be a better alternative for predicting the remnant HCF life. The single constant (β) employed in the model, which reflects the damage accumulation of the material under two/multi-level loading conditions is derived from the regression analysis of the experimental results and validated further.

  18. Investigation of Cumulative Fatigue Damage Through Sequential Low Cycle Fatigue and High Cycle Fatigue Cycling at High Temperature for a Type 316LN Stainless Steel: Life-Prediction Techniques and Associated Mechanisms

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Laha, K.; Okazaki, M.

    2017-03-01

    Cumulative fatigue damage under sequential low cycle fatigue (LCF) and high cycle fatigue (HCF) cycling was investigated at 923 K (650 °C) by conducting HCF tests on specimens subjected to prior LCF cycling at various strain amplitudes. Remnant HCF lives were found to decrease drastically with increase in prior fatigue exposure as a result of strong LCF-HCF interactions. The rate of decrease in remnant lives varied as a function of the applied strain amplitude. A threshold damage in terms of prior LCF life-fraction was found, below which no significant LCF-HCF interaction takes place. Similarly, a critical damage during the LCF pre-cycling marking the highest degree of LCF-HCF interaction was identified which was found to depend on the applied strain amplitude. In view of the non-linear damage accumulation behavior, Miner's linear damage rule proved to be highly non-conservative. Manson's damage curve approach, suitably modified, was found to be a better alternative for predicting the remnant HCF life. The single constant ( β) employed in the model, which reflects the damage accumulation of the material under two/multi-level loading conditions is derived from the regression analysis of the experimental results and validated further.

  19. Multiscale Model Predicts Tissue-Level Failure From Collagen Fiber-Level Damage

    PubMed Central

    Hadi, Mohammad F.; Sander, Edward A.; Barocas, Victor H.

    2013-01-01

    Excessive tissue-level forces communicated to the microstructure and extracellular matrix of soft tissues can lead to damage and failure through poorly understood physical processes that are multiscale in nature. In this work, we propose a multiscale mechanical model for the failure of collagenous soft tissues that incorporates spatial heterogeneity in the microstructure and links the failure of discrete collagen fibers to the material response of the tissue. The model, which is based on experimental failure data derived from different collagen gel geometries, was able to predict the mechanical response and failure of type I collagen gels, and it demonstrated that a fiber-based rule (at the micrometer scale) for discrete failure can strongly shape the macroscale failure response of the gel (at the millimeter scale). The model may be a useful tool in predicting the macroscale failure conditions for soft tissues and engineered tissue analogs. In addition, the multiscale model provides a framework for the study of failure in complex fiber-based mechanical systems in general. PMID:22938372

  20. Interbed Modeling to Predict Wellbore Damage for Big Hill Strategic Petroleum Reserve

    NASA Astrophysics Data System (ADS)

    Park, Byoung Yoon

    2014-09-01

    Oil leaks were found in wellbores of Caverns 105 and 109 at the Big Hill Strategic Petroleum Reserve site. According to the field observations, two instances of casing damage occurred at the depth of the interbed between the caprock bottom and salt top. A three-dimensional finite element model, which allows each cavern to be configured individually, was constructed to investigate horizontal and vertical displacements in each well as it crosses the various interbeds. The model contains interfaces between each lithology and a shear zone (fault) to examine the interbed behavior in a realistic manner. This analysis results indicate that the casings of Caverns 105 and 109 failed, respectively, from shear stress that exceeded the casing shear strength due to the horizontal movement of the salt top relative to the caprock and tensile stress due to the downward movement of the salt top from the caprock. The wellbores of Caverns 114 and 104, located at the far end of the field and near the fault, respectively, are predicted to fail by shear stress in the near future. The wellbores of inmost Caverns 107 and 108 are predicted to fail by tensile stress in the near future. The salt top subsides because the volumes of caverns in the salt dome decrease with time due to salt creep closure, while the caprock does not subside at the same rate as the salt top because the caprock is thick and stiff. This discrepancy yields deformation of the well.

  1. Prediction of UV spectra and UV-radiation damage in actual plasma etching processes using on-wafer monitoring technique

    NASA Astrophysics Data System (ADS)

    Jinnai, Butsurin; Fukuda, Seiichi; Ohtake, Hiroto; Samukawa, Seiji

    2010-02-01

    UV radiation during plasma processing affects the surface of materials. Nevertheless, the interaction of UV photons with surface is not clearly understood because of the difficulty in monitoring photons during plasma processing. For this purpose, we have previously proposed an on-wafer monitoring technique for UV photons. For this study, using the combination of this on-wafer monitoring technique and a neural network, we established a relationship between the data obtained from the on-wafer monitoring technique and UV spectra. Also, we obtained absolute intensities of UV radiation by calibrating arbitrary units of UV intensity with a 126 nm excimer lamp. As a result, UV spectra and their absolute intensities could be predicted with the on-wafer monitoring. Furthermore, we developed a prediction system with the on-wafer monitoring technique to simulate UV-radiation damage in dielectric films during plasma etching. UV-induced damage in SiOC films was predicted in this study. Our prediction results of damage in SiOC films shows that UV spectra and their absolute intensities are the key cause of damage in SiOC films. In addition, UV-radiation damage in SiOC films strongly depends on the geometry of the etching structure. The on-wafer monitoring technique should be useful in understanding the interaction of UV radiation with surface and in optimizing plasma processing by controlling UV radiation.

  2. Carotenoid-based coloration predicts resistance to oxidative damage during immune challenge.

    PubMed

    Pérez-Rodríguez, Lorenzo; Mougeot, Francois; Alonso-Alvarez, Carlos

    2010-05-01

    Many animal ornaments may have evolved as signals advertising the quality of the bearer. The honesty of the information content of these signals would rely on the costs associated with their expression, these being relatively greater for low-quality than for high-quality individuals. Given the physiological functions of carotenoids, carotenoid-based ornaments could indicate individual immunocompetence, and possibly the ability to mount an immune response at a lower cost. We evaluated whether the red carotenoid-based coloration of male red-legged partridges (Alectoris rufa) predicts the capacity of the individual to counteract the oxidative stress generated by a cell-mediated immune response. Individuals were subcutaneously injected with phytohaemagglutinin (PHA) or phosphate buffer solution (PBS) as a control. We found that eye ring pigmentation predicted the change in the amount of peroxidized lipids (TBARS) in blood after the PHA-induced inflammatory challenge. The degree of pigmentation of this carotenoid-based ornament was also negatively related to individual changes in gamma-glutamyl transferase (GGT), another biomarker of oxidative stress involved in antioxidant metabolism (i.e. glutathione recycling). However, changes in circulating carotenoids did not significantly explain changes in lipid peroxidation or GGT levels, suggesting that the higher resistance to oxidative stress of those individuals with more pigmented eye rings was not directly mediated by their greater circulating levels of carotenoids. Our results indicate that carotenoid-based coloration can predict not only immune responsiveness (more coloured males mount greater responses) but also an individual's ability to counter the oxidative stress generated during immune challenge (more coloured males experience less oxidative damage when mounting an immune response).

  3. Chronic hepatitis C virus infection: Serum biomarkers in predicting liver damage

    PubMed Central

    Valva, Pamela; Ríos, Daniela A; De Matteo, Elena; Preciado, Maria V

    2016-01-01

    Currently, a major clinical challenge in the management of the increasing number of hepatitis C virus (HCV) infected patients is determining the best means for evaluating liver impairment. Prognosis and treatment of chronic hepatitis C (CHC) are partly dependent on the assessment of histological activity, namely cell necrosis and inflammation, and the degree of liver fibrosis. These parameters can be provided by liver biopsy; however, in addition to the risks related to an invasive procedure, liver biopsy has been associated with sampling error mostly due to suboptimal biopsy size. To avoid these pitfalls, several markers have been proposed as non-invasive alternatives for the diagnosis of liver damage. Distinct approaches among the currently available non-invasive methods are (1) the physical ones based on imaging techniques; and (2) the biological ones based on serum biomarkers. In this review, we discuss these approaches with special focus on currently available non-invasive serum markers. We will discuss: (1) class I serum biomarkers individually and as combined panels, particularly those that mirror the metabolism of liver extracellular matrix turnover and/or fibrogenic cell changes; (2) class II biomarkers that are indirect serum markers and are based on the evaluation of common functional alterations in the liver; and (3) biomarkers of liver cell death, since hepatocyte apoptosis plays a significant role in the pathogenesis of HCV infection. We highlight in this review the evidence behind the use of these markers and assess the diagnostic accuracy as well as advantages, limitations, and application in clinical practice of each test for predicting liver damage in CHC. PMID:26819506

  4. Blasting Damage Predictions by Numerical Modeling in Siahbishe Pumped Storage Powerhouse

    NASA Astrophysics Data System (ADS)

    Eslami, Majid; Goshtasbi, Kamran

    2017-04-01

    One of the popular methods of underground