Sample records for damage thresholds increased

  1. Damage threshold dependence of optical coatings on substrate materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhouling, W.; Zhenxiu, F.

    1996-04-01

    Damage threshold dependence on substrate materials was investigated for TiO2, ZrO2, SiO2, MgF2, ZnS, and single and TiO2/SiO2 multilayers. The results show that the damage threshold increases with increasing substrate thermal conductivity for single layers and AR coatings and remains the same for HR coatings. With the help of localized absorption measurement and in-situ damage process analysis, these phenomena were well correlated with local absorption-initiated thermal damage mechanism.

  2. Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm.

    PubMed

    Temple, P A; Lowdermilk, W H; Milam, D

    1982-09-15

    Mechanically polished fused silica surfaces were heated with continuous-wave CO(2) laser radiation. Laser-damage thresholds of the surfaces were measured with 1064-nm 9-nsec pulses focused to small spots and with large-spot, 1064-nm, 1-nsec irradiation. A sharp transition from laser-damage-prone to highly laser-damage-resistant took place over a small range in CO(2) laser power. The transition to high damage resistance occurred at a silica surface temperature where material softening began to take place as evidenced by the onset of residual strain in the CO(2) laser-processed part. The small-spot damage measurements show that some CO(2) laser-treated surfaces have a local damage threshold as high as the bulk damage threshold of SiO(2). On some CO(2) laser-treated surfaces, large-spot damage thresholds were increased by a factor of 3-4 over thresholds of the original mechanically polished surface. These treated parts show no obvious change in surface appearance as seen in bright-field, Nomarski, or total internal reflection microscopy. They also show little change in transmissive figure. Further, antireflection films deposited on CO(2) laser-treated surfaces have thresholds greater than the thresholds of antireflection films on mechanically polished surfaces.

  3. Increase of bulk optical damage threshold fluences of KDP crystals by laser irradiation and heat treatment

    DOEpatents

    Swain, J.E.; Stokowski, S.E.; Milam, D.; Kennedy, G.C.; Rainer, F.

    1982-07-07

    The bulk optical damage threshold fluence of potassium dihydrogen phosphate (KDP) crystals is increased by irradiating the crystals with laser pulses of duration 1 to 20 nanoseconds of increasing fluence, below the optical damage threshold fluence for untreated crystals, or by baking the crystals for times of the order of 24 hours at temperatures of 110 to 165/sup 0/C, or by a combination of laser irradiation and baking.

  4. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C. Robert; Kozlowski, Mark R.; Campbell, John H.; Staggs, Michael; Rainer, Frank

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  5. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Ella; Bellum, John; Kletecka, Damon

    We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less

  6. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    DOE PAGES

    Field, Ella; Bellum, John; Kletecka, Damon

    2014-11-06

    We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less

  7. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  8. Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers.

    PubMed

    Chorel, Marine; Lanternier, Thomas; Lavastre, Éric; Bonod, Nicolas; Bousquet, Bruno; Néauport, Jérôme

    2018-04-30

    We report on a numerical optimization of the laser induced damage threshold of multi-dielectric high reflection mirrors in the sub-picosecond regime. We highlight the interplay between the electric field distribution, refractive index and intrinsic laser induced damage threshold of the materials on the overall laser induced damage threshold (LIDT) of the multilayer. We describe an optimization method of the multilayer that minimizes the field enhancement in high refractive index materials while preserving a near perfect reflectivity. This method yields a significant improvement of the damage resistance since a maximum increase of 40% can be achieved on the overall LIDT of the multilayer.

  9. Irradiance enhancement and increased laser damage threshold in As₂S₃ moth-eye antireflective structures.

    PubMed

    Weiblen, R Joseph; Florea, Catalin M; Busse, Lynda E; Shaw, L Brandon; Menyuk, Curtis R; Aggarwal, Ishwar D; Sanghera, Jasbinder S

    2015-10-15

    It has been experimentally observed that moth-eye antireflective microstructures at the end of As2S3 fibers have an increased laser damage threshold relative to thin-film antireflective coatings. In this work, we computationally study the irradiance enhancement in As2S3 moth-eye antireflective microstructures in order to explain the increased damage threshold. We show that the irradiance enhancement occurs mostly on the air side of the interfaces and is minimal in the As2S3 material. We give a physical explanation for this behavior.

  10. Surface damage of thin AlN films with increased oxygen content by nanosecond and femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly; Salakhutdinov, Ildar; Chen, J. K.; Danylyuk, Yuriy; McCullen, Erik; Auner, Gregory

    2009-10-01

    AlN films deposited on sapphire substrates were damaged by single UV nanosecond (at 248 nm) and IR femtosecond (at 775 nm) laser pulses in air at normal pressure. The films had high (27-35 atomic %) concentration of oxygen introduced into thin surface layer (5-10 nm thickness). We measured damage threshold and studied morphology of the damage sites with atomic force and Nomarski optical microscopes with the objective to determine a correlation between damage processes and oxygen content. The damage produced by nanosecond pulses was accompanied by significant thermal effects with evident signatures of melting, chemical modification of the film surface, and specific redistribution of micro-defect rings around the damage spots. The nanosecond-damage threshold exhibited pronounced increase with increase of the oxygen content. In contrast to that, the femtosecond pulses produced damage without any signs of thermal, thermo-mechanical or chemical effects. No correlation between femtosecond-damage threshold and oxygen content as well as presence of defects within the laser-damage spot was found. We discuss the influence of the oxygen contamination on film properties and related mechanisms responsible for the specific damage effects and morphology of the damage sites observed in the experiments.

  11. Development of high damage threshold laser-machined apodizers and gain filters for laser applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rambo, Patrick; Schwarz, Jens; Kimmel, Mark

    We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. Finally, by creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass’ lithography.

  12. Development of high damage threshold laser-machined apodizers and gain filters for laser applications

    DOE PAGES

    Rambo, Patrick; Schwarz, Jens; Kimmel, Mark; ...

    2016-09-27

    We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. Finally, by creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass’ lithography.

  13. Laser damage threshold of gelatin and a copper phthalocyanine doped gelatin optical limiter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brant, M.C.; McLean, D.G.; Sutherland, R.L.

    1996-12-31

    The authors demonstrate optical limiting in a unique guest-host system which uses neither the typical liquid or solid host. Instead, they dope a gelatin gel host with a water soluble Copper (II) phthalocyaninetetrasulfonic acid, tetrasodium salt (CuPcTs). They report on the gelatin`s viscoelasticity, laser damage threshold, and self healing of this damage. The viscoelastic gelatin has mechanical properties quite different than a liquid or solid. The authors` laser measurements demonstrate that the single shot damage threshold of the undoped gelatin host increases with decreasing gelatin concentration. The gelatin also has a much higher laser damage threshold than a stiff acrylic.more » Unlike brittle solids, the soft gelatin self heals from laser induced damage. Optical limiting test also show the utility of a gelatin host doped with CuPcTs. The CuPcTs/gelatin matrix is not damaged at incident laser energies 5 times the single shot damage threshold of the gelatin host. However, at this high laser energy the CuPcTs is photo bleached at the beam waist. The authors repair photo bleached sites by annealing the CuPcTs/gelatin matrix.« less

  14. Damage threshold in adult rabbit eyes after scleral cross-linking by riboflavin/blue light application.

    PubMed

    Iseli, Hans Peter; Körber, Nicole; Karl, Anett; Koch, Christian; Schuldt, Carsten; Penk, Anja; Liu, Qing; Huster, Daniel; Käs, Josef; Reichenbach, Andreas; Wiedemann, Peter; Francke, Mike

    2015-10-01

    Several scleral cross-linking (SXL) methods were suggested to increase the biomechanical stiffness of scleral tissue and therefore, to inhibit axial eye elongation in progressive myopia. In addition to scleral cross-linking and biomechanical effects caused by riboflavin and light irradiation such a treatment might induce tissue damage, dependent on the light intensity used. Therefore, we characterized the damage threshold and mechanical stiffening effect in rabbit eyes after application of riboflavin combined with various blue light intensities. Adult pigmented and albino rabbits were treated with riboflavin (0.5 %) and varying blue light (450 ± 50 nm) dosages from 18 to 780 J/cm(2) (15 to 650 mW/cm(2) for 20 min). Scleral, choroidal and retinal tissue alterations were detected by means of light microscopy, electron microscopy and immunohistochemistry. Biomechanical changes were measured by shear rheology. Blue light dosages of 480 J/cm(2) (400 mW/cm(2)) and beyond induced pathological changes in ocular tissues; the damage threshold was defined by the light intensities which induced cellular degeneration and/or massive collagen structure changes. At such high dosages, we observed alterations of the collagen structure in scleral tissue, as well as pigment aggregation, internal hemorrhages, and collapsed blood vessels. Additionally, photoreceptor degenerations associated with microglia activation and macroglia cell reactivity in the retina were detected. These pathological alterations were locally restricted to the treated areas. Pigmentation of rabbit eyes did not change the damage threshold after a treatment with riboflavin and blue light but seems to influence the vulnerability for blue light irradiations. Increased biomechanical stiffness of scleral tissue could be achieved with blue light intensities below the characterized damage threshold. We conclude that riboflavin and blue light application increased the biomechanical stiffness of scleral tissue at blue light energy levels below the damage threshold. Therefore, applied blue light intensities below the characterized damage threshold might define a therapeutic blue light tolerance range. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Long-range pulselength scaling of 351nm laser damage thresholds

    NASA Astrophysics Data System (ADS)

    Foltyn, S. R.; Jolin, L. J.

    1986-12-01

    In a series of experiments incorporating 351nm pulselength of 9, 26, 54, and 625ns, it was found that laser damage thresholds increased as (pulselength)/sup x/, and that the exponent averaged 0.36 and ranged, for different samples, from 0.23 to 0.48. Similar results were obtained when only catastrophic damage was considered. Samples included Al2O3/SiO2 in both AR and HR multilayers, HR's of Sc2O3/SiO2 and HfO2/SiO2, and Al-on-pyrex mirror; 9ns thresholds were between 0.2 to 5.6 J/sq cm. When these data were compared with a wide range of other results - for wavelengths from 0.25 to 10.6 microns and pulselengths down to 4ps - a remarkably consistent picture emerged. Damage thresholds, on average, increase approximately as the cube-root of pulselength from picoseconds to nearly a microsecond, and do so regardless of wavelength or material under test.

  16. Laser damage of HR, AR-coatings, monolayers and bare surfaces at 1064 nm

    NASA Technical Reports Server (NTRS)

    Garnov, S. V.; Klimentov, S. M.; Said, A. A.; Soileau, M. J.

    1993-01-01

    Laser induced damage thresholds and morphologies were investigated in a variety of uncoated and coated surfaces, including monolayers and multi-layers of different chemical compositions. Both antireflective (AR) and highly reflective (HR) were tested. Testing was done at 1064 nm with 25 picosecond and 8 nanosecond YAG/Nd laser single pulses. Spot diameter in the experiments varied from 0.09 to 0.22 mm. The laser damage measurement procedure consisted of 1-on-1 (single laser pulse in the selected site) and N-on-1 experiments including repeated irradiation by pulses of the same fluence and subsequently raised from pulse to pulse fluence until damage occurred. The highest picosecond damage thresholds of commercially available coatings averaged 12 - 14 J/sq cm, 50 percent less than thresholds obtained in bare fused silica. Some coatings and bare surfaces revealed a palpable preconditioning effect (an increase in threshold of 1.2 to 1.8 times). Picosecond and nanosecond data were compared to draw conclusions about pulse width dependence. An attempt was made to classify damage morphologies according to the type of coating, class of irradiating, and damage level.

  17. Dynamic permeability in fault damage zones induced by repeated coseismic fracturing events

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M. L.; Mitchell, T. M.

    2017-12-01

    Off-fault fracture damage in upper crustal fault zones change the fault zone properties and affect various co- and interseismic processes. One of these properties is the permeability of the fault damage zone rocks, which is generally higher than the surrounding host rock. This allows large-scale fluid flow through the fault zone that affects fault healing and promotes mineral transformation processes. Moreover, it might play an important role in thermal fluid pressurization during an earthquake rupture. The damage zone permeability is dynamic due to coseismic damaging. It is crucial for earthquake mechanics and for longer-term processes to understand how the dynamic permeability structure of a fault looks like and how it evolves with repeated earthquakes. To better detail coseismically induced permeability, we have performed uniaxial split Hopkinson pressure bar experiments on quartz-monzonite rock samples. Two sample sets were created and analyzed: single-loaded samples subjected to varying loading intensities - with damage varying from apparently intact to pulverized - and samples loaded at a constant intensity but with a varying number of repeated loadings. The first set resembles a dynamic permeability structure created by a single large earthquake. The second set resembles a permeability structure created by several earthquakes. After, the permeability and acoustic velocities were measured as a function of confining pressure. The permeability in both datasets shows a large and non-linear increase over several orders of magnitude (from 10-20 up to 10-14 m2) with an increasing amount of fracture damage. This, combined with microstructural analyses of the varying degrees of damage, suggests a percolation threshold. The percolation threshold does not coincide with the pulverization threshold. With increasing confining pressure, the permeability might drop up to two orders of magnitude, which supports the possibility of large coseismic fluid pulses over relatively large distances along a fault. Also, a relatively small threshold could potentially increase permeability in a large volume of rock, given that previous earthquakes already damaged these rocks.

  18. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-08-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process.

  19. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    PubMed Central

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-01-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process. PMID:27484188

  20. The effect of the impactor diameter and temperature on low velocity impact behavior of CFRP laminates

    NASA Astrophysics Data System (ADS)

    Evci, C.; Uyandıran, I.

    2017-02-01

    Impact damage is one of the major concerns that should be taken into account with the new aircraft and spacecraft structures which employ ever-growing use of composite materials. Considering the thermal loads encountered at different altitudes, both low and high temperatures can affect the properties and impact behavior of composite materials. This study aims to investigate the effect of temperature and impactor diameter on the impact behavior and damage development in balanced and symmetrical CFRP laminates which were manufactured by employing vacuum bagging process with autoclave cure. Instrumented drop-weight impact testing system is used to perform the low velocity impact tests in a range of temperatures ranged from 60 down to -50 °C. Impact tests for each temperature level were conducted using three different hemispherical impactor diameters varying from 10 to 20 mm. Energy profile method is employed to determine the impact threshold energies for damage evolution. The level of impact damage is determined from the dent depth on the impacted face and delamination damage detected using ultrasonic C-Scan technique. Test results reveal that the threshold of penetration energy, main failure force and delamination area increase with impactor diameter at all temperature levels. No clear influence of temperature on the critical force thresholds could be derived. However, penetration threshold energy decreased as the temperature was lowered. Drop in the penetration threshold was more obvious with quite low temperatures. Delamination damage area increased while the temperature decreased from +60 °C to -50 °C.

  1. 78 FR 77601 - Adjustment of Monetary Threshold for Reporting Rail Equipment Accidents/Incidents for Calendar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ..., Notice No. 6] RIN 2130-ZA12 Adjustment of Monetary Threshold for Reporting Rail Equipment Accidents... threshold from $9,900 to $10,500 for certain railroad accidents/incidents involving property damage that... reflect cost increases that have occurred since the reporting threshold was last published in November of...

  2. Accelerated Near-Threshold Fatigue Crack Growth Behavior of an Aluminum Powder Metallurgy Alloy

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Newman, John A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low DK, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = Kmin/Kmax). The near threshold accelerated FCG rates are exacerbated by increased levels of Kmax (Kmax less than 0.4 KIC). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and Kmax influenced accelerated crack growth is time and temperature dependent.

  3. Dielectric breakdown induced by picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1976-01-01

    The damage thresholds of transparent optical materials were investigated. Single picosecond pulses at 1.06 microns, 0.53 microns and 0.35 microns were obtained from a mode locked Nd-YAG oscillator-amplifier-frequency multiplier system. The pulses were Gaussian in space and time and permitted the determination of breakdown thresholds with a reproducibility of 15%. It was shown that the breakdown thresholds are characteristic of the bulk material, which included nine alkali halides, five different laser host materials, KDP, quartz, sapphire and calcium fluoride. The extension of the damage data to the ultraviolet is significant, because some indication was obtained that two- and three-photon absorption processes begin to play a role in determining the threshold. Throughout the visible region of the spectrum the threshold is still an increasing function of frequency, indicating that avalanche ionization is the dominant factor in determining the breakdown threshold. This was confirmed by a detailed study of the damage morphology with a high resolution microscope just above the threshold. The influence of self focusing is discussed, and evidence for beam distortion below the power threshold for complete self focusing is presented, confirming the theory of Marburger.

  4. Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems

    NASA Astrophysics Data System (ADS)

    Ďurák, Michal; Velpula, Praveen Kumar; Kramer, Daniel; Cupal, Josef; Medřík, Tomáš; Hřebíček, Jan; Golasowski, Jiří; Peceli, Davorin; Kozlová, Michaela; Rus, Bedřich

    2017-01-01

    Increasing the laser-induced damage resistance of optical components is one of the major challenges in the development of Peta-watt (PW) class laser systems. The extreme light infrastructure (ELI) beamlines project will provide ultrafast laser systems with peak powers up to 10 PW available every minute and PW class beams at 10 Hz complemented by a 5-TW, 1-kHz beamline. Sustainable performance of PW class laser systems relies on the durability of the employed optical components. As part of an effort to evaluate the damage resistance of components utilized in ELI beamlines systems, damage thresholds of several optical multilayer dielectric coatings were measured with different laser parameters and in different environments. Three coatings were tested with 10 Hz and 1 kHz pulse repetition rates, and the effect of a cleaning treatment on their damage resistance was examined. To explore the damage threshold behavior at different vacuum levels, one coating was subject to tests at various residual gas pressures. No change of damage threshold in a high vacuum with respect to ambient pressure was recorded. The effect of the cleaning treatment was found to be inconsistent, suggesting that development of the optimal cleaning treatment for a given coating requires consideration of its specific properties.

  5. Precision Laser Annealing of Focal Plane Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Daniel A.; DeRose, Christopher; Starbuck, Andrew Lea

    2015-09-01

    We present results from laser annealing experiments in Si using a passively Q-switched Nd:YAG microlaser. Exposure with laser at fluence values above the damage threshold of commercially available photodiodes results in electrical damage (as measured by an increase in photodiode dark current). We show that increasing the laser fluence to values in excess of the damage threshold can result in annealing of a damage site and a reduction in detector dark current by as much as 100x in some cases. A still further increase in fluence results in irreparable damage. Thus we demonstrate the presence of a laser annealing windowmore » over which performance of damaged detectors can be at least partially reconstituted. Moreover dark current reduction is observed over the entire operating range of the diode indicating that device performance has been improved for all values of reverse bias voltage. Additionally, we will present results of laser annealing in Si waveguides. By exposing a small (<10 um) length of a Si waveguide to an annealing laser pulse, the longitudinal phase of light acquired in propagating through the waveguide can be modified with high precision, <15 milliradian per laser pulse. Phase tuning by 180 degrees is exhibited with multiple exposures to one arm of a Mach-Zehnder interferometer at fluence values below the morphological damage threshold of an etched Si waveguide. No reduction in optical transmission at 1550 nm was found after 220 annealing laser shots. Modeling results for laser annealing in Si are also presented.« less

  6. 75 FR 75911 - Adjustment of Monetary Threshold for Reporting Rail Equipment Accidents/Incidents for Calendar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ...This rule increases the rail equipment accident/incident reporting threshold from $9,200 to $9,400 for certain railroad accidents/incidents involving property damage that occur during calendar year 2011. This action is needed to ensure that FRA's reporting requirements reflect cost increases that have occurred since the reporting threshold was last computed in December of 2009.

  7. 76 FR 72850 - Adjustment of Monetary Threshold for Reporting Rail Equipment Accidents/Incidents for Calendar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ...This rule increases the rail equipment accident/incident reporting threshold from $9,400 to $9,500 for certain railroad accidents/incidents involving property damage that occur during calendar year 2012. This action is needed to ensure that FRA's reporting requirements reflect cost increases that have occurred since the reporting threshold was last published in December of 2010.

  8. 77 FR 71354 - Adjustment of Monetary Threshold for Reporting Rail Equipment Accidents/Incidents for Calendar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ...This rule increases the rail equipment accident/incident reporting threshold from $9,500 to $9,900 for certain railroad accidents/incidents involving property damage that occur during calendar year 2013. This action is needed to ensure that FRA's reporting requirements reflect cost increases that have occurred since the reporting threshold was last published in November of 2011.

  9. Damage thresholds for blaze diffraction gratings and grazing incidence optics at an X-ray free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krzywinski, Jacek; Conley, Raymond; Moeller, Stefan

    The Linac Coherent Light Source is upgrading its machine to high repetition rate and to extended ranges. Novel coatings, with limited surface oxidation, which are able to work at the carbon edge, are required. In addition, high-resolution soft X-ray monochromators become necessary. One of the big challenges is to design the mirror geometry and the grating profile to have high reflectivity (or efficiency) and at the same time survive the high peak energy of the free-electron laser pulses. For these reasons the experimental damage threshold, at 900 eV, of two platinum-coated gratings with different blazed angles has been investigated. The gratingsmore » were tested at 1° grazing incidence. To validate a model for which the damage threshold on the blaze grating can be estimated by calculating the damage threshold of a mirror with an angle of incidence identical to the angle of incidence on the grating plus the blaze angle, tests on Pt-coated substrates have also been performed. The results confirmed the prediction. Uncoated silicon, platinum and SiB 3 (both deposited on a silicon substrate) were also investigated. In general, the measured damage threshold at grazing incidence is higher than that calculated under the assumption that there is no energy transport from the volume where the photons are absorbed. However, it was found that, for the case of the SiB 3 coating, the grazing incidence condition did not increase the damage threshold, indicating that the energy transport away from the extinction volume is negligible.« less

  10. Damage thresholds for blaze diffraction gratings and grazing incidence optics at an X-ray free-electron laser

    DOE PAGES

    Krzywinski, Jacek; Conley, Raymond; Moeller, Stefan; ...

    2018-01-01

    The Linac Coherent Light Source is upgrading its machine to high repetition rate and to extended ranges. Novel coatings, with limited surface oxidation, which are able to work at the carbon edge, are required. In addition, high-resolution soft X-ray monochromators become necessary. One of the big challenges is to design the mirror geometry and the grating profile to have high reflectivity (or efficiency) and at the same time survive the high peak energy of the free-electron laser pulses. For these reasons the experimental damage threshold, at 900 eV, of two platinum-coated gratings with different blazed angles has been investigated. The gratingsmore » were tested at 1° grazing incidence. To validate a model for which the damage threshold on the blaze grating can be estimated by calculating the damage threshold of a mirror with an angle of incidence identical to the angle of incidence on the grating plus the blaze angle, tests on Pt-coated substrates have also been performed. The results confirmed the prediction. Uncoated silicon, platinum and SiB 3 (both deposited on a silicon substrate) were also investigated. In general, the measured damage threshold at grazing incidence is higher than that calculated under the assumption that there is no energy transport from the volume where the photons are absorbed. However, it was found that, for the case of the SiB 3 coating, the grazing incidence condition did not increase the damage threshold, indicating that the energy transport away from the extinction volume is negligible.« less

  11. Accelerated Threshold Fatigue Crack Growth Effect-Powder Metallurgy Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Piascik, R. S.; Newman, J. A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low (Delta) K, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = K(sub min)/K(sub max)). The near threshold accelerated FCG rates are exacerbated by increased levels of K(sub max) (K(sub max) = 0.4 K(sub IC)). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and K(sub max) influenced accelerated crack growth is time and temperature dependent.

  12. On the threshold conditions for electron beam damage of asbestos amosite fibers in the transmission electron microscope (TEM).

    PubMed

    Martin, Joannie; Beauparlant, Martin; Sauvé, Sébastien; L'Espérance, Gilles

    2016-12-01

    Asbestos amosite fibers were investigated to evaluate the damage caused by a transmission electron microscope (TEM) electron beam. Since elemental x-ray intensity ratios obtained by energy dispersive x-ray spectroscopy (EDS) are commonly used for asbestos identification, the impact of beam damage on these ratios was evaluated. It was determined that the magnesium/silicon ratio best represented the damage caused to the fiber. Various tests showed that most fibers have a current density threshold above which the chemical composition of the fiber is modified. The value of this threshold current density varied depending on the fiber, regardless of fiber diameter, and in some cases could not be determined. The existence of a threshold electron dose was also demonstrated. This value was dependent on the current density used and can be increased by providing a recovery period between exposures to the electron beam. This study also established that the electron beam current is directly related to the damage rate above a current density of 165 A/cm 2 . The large number of different results obtained suggest, that in order to ensure that the amosite fibers are not damaged, analysis should be conducted below a current density of 100 A/cm 2 .

  13. Ocular damage effects from 1338-nm pulsed laser radiation in a rabbit eye model

    PubMed Central

    Jiao, Luguang; Wang, Jiarui; Jing, Xiaomin; Chen, Hongxia; Yang, Zaifu

    2017-01-01

    The ocular damage effects induced by transitional near-infrared (NIR) lasers have been investigated for years. However, no retinal damage thresholds are determined in a wide interval between 0.65 ms and 80 ms, and a definite relationship between corneal damage threshold and spot size cannot be drawn from existing data points. In this paper, the in-vivo corneal damage thresholds (ED50s) were determined in New Zealand white rabbits for a single 5 ms pulse at the wavelength of 1338 nm for spot sizes from 0.28 mm to 3.55 mm. Meanwhile, the retinal damage threshold for this laser was determined in chinchilla grey rabbits under the condition that the beam was collimated, and the incident corneal spot diameter was 5.0 mm. The corneal ED50s given in terms of the corneal radiant exposure for spot diameters of 0.28, 0.94, 1.91, and 3.55 mm were 70.3, 35.6, 29.6 and 30.3 J/cm2, respectively. The retinal ED50 given in terms of total intraocular energy (TIE) was 0.904 J. The most sensitive ocular tissue to this laser changed from the cornea to retina with the increase of spot size. PMID:28663903

  14. Porcine skin damage thresholds for pulsed nanosecond-scale laser exposure at 1064-nm

    NASA Astrophysics Data System (ADS)

    DeLisi, Michael P.; Peterson, Amanda M.; Noojin, Gary D.; Shingledecker, Aurora D.; Tijerina, Amanda J.; Boretsky, Adam R.; Schmidt, Morgan S.; Kumru, Semih S.; Thomas, Robert J.

    2018-02-01

    Pulsed high-energy lasers operating in the near-infrared (NIR) band are increasingly being used in medical, industrial, and military applications, but there are little available experimental data to characterize their hazardous effects on skin tissue. The current American National Standard for the Safe Use of Lasers (ANSI Z136.1-2014) defines the maximum permissible exposure (MPE) on the skin as either a single-pulse or total exposure time limit. This study determined the minimum visible lesion (MVL) damage thresholds in Yucatan miniature pig skin for the single-pulse case and several multiple-pulse cases over a wide range of pulse repetition frequencies (PRFs) (10, 125, 2,000, and 10,000 Hz) utilizing nanosecond-scale pulses (10 or 60 ns). The thresholds are expressed in terms of the median effective dose (ED50) based on varying individual pulse energy with other laser parameters held constant. The results confirm a decrease in MVL threshold as PRF increases for exposures with a constant number of pulses, while also noting a PRF-dependent change in the threshold as a function of the number of pulses. Furthermore, this study highlights a change in damage mechanism to the skin from melanin-mediated photomechanical events at high irradiance levels and few numbers of pulses to bulk tissue photothermal additivity at lower irradiance levels and greater numbers of pulses. The observed trends exceeded the existing exposure limits by an average factor of 9.1 in the photothermally-damaged cases and 3.6 in the photomechanicallydamaged cases.

  15. Threshold Assessment of Gear Diagnostic Tools on Flight and Test Rig Data

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Mosher, Marianne; Huff, Edward M.

    2003-01-01

    A method for defining thresholds for vibration-based algorithms that provides the minimum number of false alarms while maintaining sensitivity to gear damage was developed. This analysis focused on two vibration based gear damage detection algorithms, FM4 and MSA. This method was developed using vibration data collected during surface fatigue tests performed in a spur gearbox rig. The thresholds were defined based on damage progression during tests with damage. The thresholds false alarm rates were then evaluated on spur gear tests without damage. Next, the same thresholds were applied to flight data from an OH-58 helicopter transmission. Results showed that thresholds defined in test rigs can be used to define thresholds in flight to correctly classify the transmission operation as normal.

  16. Infrared laser damage thresholds in corneal tissue phantoms using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Boretsky, Adam R.; Clary, Joseph E.; Noojin, Gary D.; Rockwell, Benjamin A.

    2018-02-01

    Ultrafast lasers have become a fixture in many biomedical, industrial, telecommunications, and defense applications in recent years. These sources are capable of generating extremely high peak power that can cause laser-induced tissue breakdown through the formation of a plasma upon exposure. Despite the increasing prevalence of such lasers, current safety standards (ANSI Z136.1-2014) do not include maximum permissible exposure (MPE) values for the cornea with pulse durations less than one nanosecond. This study was designed to measure damage thresholds in corneal tissue phantoms in the near-infrared and mid-infrared to identify the wavelength dependence of laser damage thresholds from 1200-2500 nm. A high-energy regenerative amplifier and optical parametric amplifier outputting 100 femtosecond pulses with pulse energies up to 2 mJ were used to perform exposures and determine damage thresholds in transparent collagen gel tissue phantoms. Three-dimensional imaging, primarily optical coherence tomography, was used to evaluate tissue phantoms following exposure to determine ablation characteristics at the surface and within the bulk material. The determination of laser damage thresholds in the near-IR and mid-IR for ultrafast lasers will help to guide safety standards and establish the appropriate MPE levels for exposure sensitive ocular tissue such as the cornea. These data will help promote the safe use of ultrafast lasers for a wide range of applications.

  17. Laser induced damage thresholds and laser safety levels. Do the units of measurement matter?

    NASA Astrophysics Data System (ADS)

    Wood, R. M.

    1998-04-01

    The commonly used units of measurement for laser induced damage are those of peak energy or power density. However, the laser induced damage thresholds, LIDT, of all materials are well known to be absorption, wavelength, spot size and pulse length dependent. As workers using these values become divorced from the theory it becomes increasingly important to use the correct units and to understand the correct scaling factors. This paper summarizes the theory and highlights the danger of using the wrong LIDT units in the context of potentially hazardous materials, laser safety eyewear and laser safety screens.

  18. Effects of γ-ray irradiation on optical absorption and laser damage performance of KDP crystals containing arsenic impurities.

    PubMed

    Guo, D C; Jiang, X D; Huang, J; Wang, F R; Liu, H J; Xiang, X; Yang, G X; Zheng, W G; Zu, X T

    2014-11-17

    The effects of γ-irradiation on potassium dihydrogen phosphate crystals containing arsenic impurities are investigated with different optical diagnostics, including UV-VIS absorption spectroscopy, photo-thermal common-path interferometer and photoluminescence spectroscopy. The optical absorption spectra indicate that a new broad absorption band near 260 nm appears after γ-irradiation. It is found that the intensity of absorption band increases with the increasing irradiation dose and arsenic impurity concentration. The simulation of radiation defects show that this absorption is assigned to the formation of AsO₄⁴⁻ centers due to arsenic ions substituting for phosphorus ions. Laser-induced damage threshold test is conducted by using 355 nm nanosecond laser pulses. The correlations between arsenic impurity concentration and laser induced damage threshold are presented. The results indicate that the damage performance of the material decreases with the increasing arsenic impurity concentration. Possible mechanisms of the irradiation-induced defects formation under γ-irradiation of KDP crystals are discussed.

  19. Electrohydraulic shock wave generation as a means to increase intrinsic permeability of mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurel, O.; Reess, T.; Matallah, M.

    2010-12-15

    This article discusses the influence of compressive shock waves on the permeability of cementitious materials. Shock waves are generated in water by Pulsed Arc Electrohydraulic Discharges (PAED). The practical aim is to increase the intrinsic permeability of the specimens. The maximum pressure amplitude of the shock wave is 250 MPa. It generates damage in the specimens and the evolution of damage is correlated with the intrinsic permeability of the mortar. A threshold of pressure is observed. From this threshold, the increase of permeability is linear in a semi-log plot. The influence of repeated shocks on permeability is also discussed. Qualitativemore » X Ray Tomography illustrates the evolution of the microstructure of the material leading to the increase of permeability. Comparative results from mercury intrusion porosimetry (MIP) show that the micro-structural damage process starts at the sub-micrometric level and that the characteristic size of pores of growing volume increases.« less

  20. Radiation damage limits to XPCS studies of protein dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vodnala, Preeti, E-mail: preeti.vodnala@gmail.com; Karunaratne, Nuwan; Lurio, Laurence

    2016-07-27

    The limitations to x-ray photon correlation spectroscopy (XPCS) imposed by radiation damage have been evaluated for suspensions of alpha crystallin. We find that the threshold for radiation damage to the measured protein diffusion rate is significantly lower than the threshold for damage to the protein structure. We provide damage thresholds beyond which the measured diffusion coeffcients have been modified using both XPCS and dynamic light scattering (DLS).

  1. A ruggedness evaluation of procedures for damage threshold testing optical materials

    NASA Technical Reports Server (NTRS)

    Hooker, Matthew W.; Thomas, Milfred E.; Wise, Stephanie A.; Tappan, Nina D.

    1995-01-01

    A ruggedness evaluation of approaches to damage threshold testing was performed to determine the influence of three procedural variables on damage threshold data. The differences between the number of test sites evaluated at an applied fluence level (1 site versus 10 sites), the number of laser pulses at each test site (1 pulse versus 200 pulses), and the beam diameter (0.35 mm versus 0.70 mm) were all found to significantly influence the damage threshold data over a 99-percent confidence interval.

  2. Higher certainty of the laser-induced damage threshold test with a redistributing data treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Lars; Mrohs, Marius; Gyamfi, Mark

    2015-10-15

    As a consequence of its statistical nature, the measurement of the laser-induced damage threshold holds always risks to over- or underestimate the real threshold value. As one of the established measurement procedures, the results of S-on-1 (and 1-on-1) tests outlined in the corresponding ISO standard 21 254 depend on the amount of data points and their distribution over the fluence scale. With the limited space on a test sample as well as the requirements on test site separation and beam sizes, the amount of data from one test is restricted. This paper reports on a way to treat damage testmore » data in order to reduce the statistical error and therefore measurement uncertainty. Three simple assumptions allow for the assignment of one data point to multiple data bins and therefore virtually increase the available data base.« less

  3. Relaxed damage threshold intensity conditions and nonlinear increase in the conversion efficiency of an optical parametric oscillator using a bi-directional pump geometry.

    PubMed

    Norris, G; McConnell, G

    2010-03-01

    A novel bi-directional pump geometry that nonlinearly increases the nonlinear optical conversion efficiency of a synchronously pumped optical parametric oscillator (OPO) is reported. This bi-directional pumping method synchronizes the circulating signal pulse with two counter-propagating pump pulses within a linear OPO resonator. Through this pump scheme, an increase in nonlinear optical conversion efficiency of 22% was achieved at the signal wavelength, corresponding to a 95% overall increase in average power. Given an almost unchanged measured pulse duration of 260 fs under optimal performance conditions, this related to a signal wavelength peak power output of 18.8 kW, compared with 10 kW using the traditional single-pass geometry. In this study, a total effective peak intensity pump-field of 7.11 GW/cm(2) (corresponding to 3.55 GW/cm(2) from each pump beam) was applied to a 3 mm long periodically poled lithium niobate crystal, which had a damage threshold intensity of 4 GW/cm(2), without impairing crystal integrity. We therefore prove the application of this novel pump geometry provides opportunities for power-scaling of synchronously pumped OPO systems together with enhanced nonlinear conversion efficiency through relaxed damage threshold intensity conditions.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhadj, Selim; Yoo, Jae-hyuck; Negres, Raluca A.

    The optical damage performance of electrically conductive gallium nitride (GaN) and indium tin oxide (ITO) films is addressed using large area, high power laser beam exposures at 1064 nm sub-bandgap wavelength. Analysis of the laser damage process assumes that onset of damage (threshold) is determined by the absorption and heating of a nanoscale region of a characteristic size reaching a critical temperature. We use this model to rationalize semi-quantitatively the pulse width scaling of the damage threshold from picosecond to nanosecond timescales, along with the pulse width dependence of the damage threshold probability derived by fitting large beam damage densitymore » data. Multi-shot exposures were used to address lifetime performance degradation described by an empirical expression based on the single exposure damage model. A damage threshold degradation of at least 50% was observed for both materials. Overall, the GaN films tested had 5-10 × higher optical damage thresholds than the ITO films tested for comparable transmission and electrical conductivity. This route to optically robust, large aperture transparent electrodes and power optoelectronics may thus involve use of next generation widegap semiconductors such as GaN.« less

  5. Subclinical chronic kidney disease modifies the diagnosis of experimental acute kidney injury.

    PubMed

    Succar, Lena; Pianta, Timothy J; Davidson, Trent; Pickering, John W; Endre, Zoltán H

    2017-09-01

    Extensive structural damage within the kidney must be present before serum creatinine increases. However, a subclinical phase of chronic kidney disease (CKD) usually goes undetected. Here we tested whether experimental subclinical CKD would modify functional and damage biomarker profiles of acute kidney injury (AKI). Subclinical CKD was induced in rats by adenine or aristolochic acid models but without increasing serum creatinine. After prolonged recovery (three to six weeks), AKI was induced with a subnephrotoxic dose of cisplatin. Urinary levels of kidney injury molecule-1 (KIM-1), cytochrome C, monocyte chemotactic protein-1 (MCP-1), clusterin, and interleukin-18 increased during CKD induction, without an increase in serum creatinine. After AKI in adenine-induced CKD, serum creatinine increased more rapidly, while increased urinary KIM-1, clusterin, and MCP-1 were delayed and reduced. Increased serum creatinine and biomarker excretion were associated with diffuse tubulointerstitial injury in the outer stripe of outer medulla coupled with over 50% cortical damage. Following AKI in aristolochic acid-induced CKD, increased serum creatinine, urinary KIM-1, clusterin, MCP-1, cytochrome C, and interleukin-18 concentrations and excretion were greater at day 21 than day 42 and inversely correlated with cortical injury. Subclinical CKD modified functional and damage biomarker profiles in diametrically opposite ways. Functional biomarker profiles were more sensitive, while damage biomarker diagnostic thresholds and increases were diminished and delayed. Damage biomarker concentrations and excretion were inversely linked to the extent of prior cortical damage. Thus, thresholds for AKI biomarkers may need to be lower or sampling delayed in the known presence of CKD. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  6. High-laser-damage-threshold HfO2/SiO2 mirrors manufactured by sputtering process

    NASA Astrophysics Data System (ADS)

    Fornier, Anne; Bernardino, D.; Lam, Odile; Neauport, Jerome; Dufour, Francois; Schmitt, Bernard R.; Mackowski, Jean-Marie

    1999-07-01

    A major preoccupation for the design of the LMJ laser is the mirrors laser damage threshold. SAGEM SA, in collaboration with the CEA, has conducted a study in order to improve the laser induced damage threshold under operational conditions.

  7. Differential responses to acoustic damage and furosemide in auditory brainstem and otoacoustic emission measures

    NASA Astrophysics Data System (ADS)

    Mills, David M.

    2003-02-01

    Characteristics of distortion product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs) were measured in Mongolian gerbil before and after the introduction of two different auditory dysfunctions: (1) acoustic damage with a high-intensity tone, or (2) furosemide intoxication. The goal was to find emission parameters and measures that best differentiated between the two dysfunctions, e.g., at a given ABR threshold elevation. Emission input-output or ``growth'' functions were used (frequencies f1 and f2, f2/f1=1.21) with equal levels, L1=L2, and unequal levels, with L1=L2+20 dB. The best parametric choice was found to be unequal stimulus levels, and the best measure was found to be the change in the emission threshold level, Δx. The emission threshold was defined as the stimulus level required to reach a criterion emission amplitude, in this case -10 dB SPL. (The next best measure was the change in emission amplitude at high stimulus levels, specifically that measured at L1×L2=90×70 dB SPL.) For an ABR threshold shift of 20 dB or more, there was essentially no overlap in the emission threshold measures for the two conditions, sound damage or furosemide. The dividing line between the two distributions increased slowly with the change in ABR threshold, ΔABR, and was given by Δxt=0.6 ΔABR+8 dB. For a given ΔABR, if the shift in emission threshold was more than the calculated dividing line value, Δxt, the auditory dysfunction was due to acoustic damage, if less, it was due to furosemide.

  8. Estimation of Crack Initiation and Propagation Thresholds of Confined Brittle Coal Specimens Based on Energy Dissipation Theory

    NASA Astrophysics Data System (ADS)

    Ning, Jianguo; Wang, Jun; Jiang, Jinquan; Hu, Shanchao; Jiang, Lishuai; Liu, Xuesheng

    2018-01-01

    A new energy-dissipation method to identify crack initiation and propagation thresholds is introduced. Conventional and cyclic loading-unloading triaxial compression tests and acoustic emission experiments were performed for coal specimens from a 980-m deep mine with different confining pressures of 10, 15, 20, 25, 30, and 35 MPa. Stress-strain relations, acoustic emission patterns, and energy evolution characteristics obtained during the triaxial compression tests were analyzed. The majority of the input energy stored in the coal specimens took the form of elastic strain energy. After the elastic-deformation stage, part of the input energy was consumed by stable crack propagation. However, with an increase in stress levels, unstable crack propagation commenced, and the energy dissipation and coal damage were accelerated. The variation in the pre-peak energy-dissipation ratio was consistent with the coal damage. This new method demonstrates that the crack initiation threshold was proportional to the peak stress ( σ p) for ratios that ranged from 0.4351 to 0.4753 σ p, and the crack damage threshold ranged from 0.8087 to 0.8677 σ p.

  9. Investigations of the Cavitation and Damage Thresholds of Histotripsy and Applications in Targeted Tissue Ablation

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli

    Histotripsy is a noninvasive ultrasound therapy that controls acoustic cavitation to mechanically fractionate soft tissue. This dissertation investigates the physical thresholds to initiate cavitation and produce tissue damage in histotripsy and factors affecting these thresholds in order to develop novel strategies for targeted tissue ablation. In the first part of this dissertation, the effects of tissue properties on histotripsy cavitation thresholds and damage thresholds were investigated. Results demonstrated that the histotripsy shock scattering threshold using multi-cycle pulses increases in stiffer tissues, while the histotripsy intrinsic threshold using single-cycle pulses is independent of tissue stiffness. Further, the intrinsic threshold slightly decreases with lower frequencies and significantly decreases with increasing temperature. The effects of tissue properties on the susceptibility to histotripsy-induced tissue damage were also investigated, demonstrating that stiffer tissues are more resistant to histotripsy. Two strategies were investigated for increasing the effectiveness of histotripsy for the treatment of stiffer tissues, with results showing that thermal preconditioning may be used to alter tissue susceptibility to histotripsy and that lower frequency treatments may increase the efficiency of histotripsy tissue ablation due to enhanced bubble expansion. In the second part of this dissertation, the feasibility of using histotripsy for targeted liver ablation was investigated in an intact in vivo porcine model, with results demonstrating that histotripsy was capable of non-invasively creating precise lesions throughout the entire liver. Additionally, a tissue selective ablation approach was developed, where histotripsy completely fractionated the liver tissue surrounding the major hepatic vessels and gallbladder while being self-limited at the boundaries of these critical structures. Finally, the long-term effects of histotripsy liver ablation were investigated in an intact in vivo rodent model, showing that the liver homogenate resulting from histotripsy-induced tissue fractionation was completely resorbed over the course of 28 days. In the final part of this dissertation, a novel ablation method combining histotripsy with acoustically sensitive nanodroplets was developed for targeted cancer cell ablation, demonstrating the potential of using nanodroplet-mediated histotripsy (NMH) for targeted, multi-focal ablation. Studies demonstrated that lower frequency and higher boiling point perfluorocarbon droplets can improve NMH therapy. The role of positive and negative pressure on cavitation nucleation in NMH was also investigated, showing that NMH cavitation nucleation is caused directly from the peak negative pressure of the incident wave, similar to histotripsy bubbles generated above the intrinsic threshold. Overall, the results of this dissertation provide significant insight into the physical mechanisms underlying histotripsy tissue ablation and will help to guide the future development of histotripsy for clinical applications such as the treatment of liver cancer.

  10. Optical damage performance of conductive widegap semiconductors: spatial, temporal, and lifetime modeling

    DOE PAGES

    Elhadj, Selim; Yoo, Jae-hyuck; Negres, Raluca A.; ...

    2016-12-19

    The optical damage performance of electrically conductive gallium nitride (GaN) and indium tin oxide (ITO) films is addressed using large area, high power laser beam exposures at 1064 nm sub-bandgap wavelength. Analysis of the laser damage process assumes that onset of damage (threshold) is determined by the absorption and heating of a nanoscale region of a characteristic size reaching a critical temperature. We use this model to rationalize semi-quantitatively the pulse width scaling of the damage threshold from picosecond to nanosecond timescales, along with the pulse width dependence of the damage threshold probability derived by fitting large beam damage densitymore » data. Multi-shot exposures were used to address lifetime performance degradation described by an empirical expression based on the single exposure damage model. A damage threshold degradation of at least 50% was observed for both materials. Overall, the GaN films tested had 5-10 × higher optical damage thresholds than the ITO films tested for comparable transmission and electrical conductivity. This route to optically robust, large aperture transparent electrodes and power optoelectronics may thus involve use of next generation widegap semiconductors such as GaN.« less

  11. Physical Biology of Axonal Damage.

    PubMed

    de Rooij, Rijk; Kuhl, Ellen

    2018-01-01

    Excessive physical impacts to the head have direct implications on the structural integrity at the axonal level. Increasing evidence suggests that tau, an intrinsically disordered protein that stabilizes axonal microtubules, plays a critical role in the physical biology of axonal injury. However, the precise mechanisms of axonal damage remain incompletely understood. Here we propose a biophysical model of the axon to correlate the dynamic behavior of individual tau proteins under external physical forces to the evolution of axonal damage. To propagate damage across the scales, we adopt a consistent three-step strategy: First, we characterize the axonal response to external stretches and stretch rates for varying tau crosslink bond strengths using a discrete axonal damage model. Then, for each combination of stretch rates and bond strengths, we average the axonal force-stretch response of n = 10 discrete simulations, from which we derive and calibrate a homogenized constitutive model. Finally, we embed this homogenized model into a continuum axonal damage model of [1-d]-type in which d is a scalar damage parameter that is driven by the axonal stretch and stretch rate. We demonstrate that axonal damage emerges naturally from the interplay of physical forces and biological crosslinking. Our study reveals an emergent feature of the crosslink dynamics: With increasing loading rate, the axonal failure stretch increases, but axonal damage evolves earlier in time. For a wide range of physical stretch rates, from 0.1 to 10 /s, and biological bond strengths, from 1 to 100 pN, our model predicts a relatively narrow window of critical damage stretch thresholds, from 1.01 to 1.30, which agrees well with experimental observations. Our biophysical damage model can help explain the development and progression of axonal damage across the scales and will provide useful guidelines to identify critical damage level thresholds in response to excessive physical forces.

  12. Evaluation of a threshold-based model of fatigue in gamma titanium aluminide following impact damage

    NASA Astrophysics Data System (ADS)

    Harding, Trevor Scott

    2000-10-01

    Recent interest in gamma titanium aluminide (gamma-TiAl) for use in gas turbine engine applications has centered on the low density and good elevated temperature strength retention of gamma-TiAl compared to current materials. However, the relatively low ductility and fracture toughness of gamma-TiAl leads to serious concerns regarding its ability to resist impact damage. Furthermore, the limited fatigue crack growth resistance of gamma-TiAl means that the potential for fatigue failures resulting from impact damage is real if a damage tolerant design approach is used. A threshold-based design approach may be required if fatigue crack growth from potential impact sites is to be avoided. The objective of the present research is to examine the feasibility of a threshold-based approach for the design of a gamma-TiAl low-pressure turbine blade subjected to both assembly-related impact damage and foreign object damage. Specimens of three different gamma-TiAl alloys were damaged in such a way as to simulate anticipated impact damage for a turbine blade. Step-loading fatigue tests were conducted at both room temperature and 600°C. In terms of the assembly-related impact damage, the results indicate that there is reasonably good agreement between the threshold-based predictions of the fatigue strength of damaged specimens and the measured data. However, some discrepancies do exist. In the case of very lightly damaged specimens, prediction of the resulting fatigue strength requires that a very conservative small-crack fatigue threshold be used. Consequently, the allowable design conditions are significantly reduced. For severely damaged specimens, an analytical approach found that the potential effects of residual stresses may be related to the discrepancies observed between the threshold-based model and measured fatigue strength data. In the case of foreign object damage, a good correlation was observed between impacts resulting in large cracks and a long-crack threshold-based approximation of the fatigue strength. However, in the case of smaller impact sites, a lower small-crack threshold appears to be more appropriate. In some cases, a complete perforation of the material, or blowout, would result from the impact. Prediction of the reduction in fatigue strength resulting from this form of damage required the use of a stress concentration factor, rather than a threshold-based prediction.

  13. Experimental research on femto-second laser damaging array CCD cameras

    NASA Astrophysics Data System (ADS)

    Shao, Junfeng; Guo, Jin; Wang, Ting-feng; Wang, Ming

    2013-05-01

    Charged Coupled Devices (CCD) are widely used in military and security applications, such as airborne and ship based surveillance, satellite reconnaissance and so on. Homeland security requires effective means to negate these advanced overseeing systems. Researches show that CCD based EO systems can be significantly dazzled or even damaged by high-repetition rate pulsed lasers. Here, we report femto - second laser interaction with CCD camera, which is probable of great importance in future. Femto - second laser is quite fresh new lasers, which has unique characteristics, such as extremely short pulse width (1 fs = 10-15 s), extremely high peak power (1 TW = 1012W), and especially its unique features when interacting with matters. Researches in femto second laser interaction with materials (metals, dielectrics) clearly indicate non-thermal effect dominates the process, which is of vast difference from that of long pulses interaction with matters. Firstly, the damage threshold test are performed with femto second laser acting on the CCD camera. An 800nm, 500μJ, 100fs laser pulse is used to irradiate interline CCD solid-state image sensor in the experiment. In order to focus laser energy onto tiny CCD active cells, an optical system of F/5.6 is used. A Sony production CCDs are chose as typical targets. The damage threshold is evaluated with multiple test data. Point damage, line damage and full array damage were observed when the irradiated pulse energy continuously increase during the experiment. The point damage threshold is found 151.2 mJ/cm2.The line damage threshold is found 508.2 mJ/cm2.The full-array damage threshold is found to be 5.91 J/cm2. Although the phenomenon is almost the same as that of nano laser interaction with CCD, these damage thresholds are substantially lower than that of data obtained from nano second laser interaction with CCD. Then at the same time, the electric features after different degrees of damage are tested with electronic multi meter. The resistance values between clock signal lines are measured. Contrasting the resistance values of the CCD before and after damage, it is found that the resistances decrease significantly between the vertical transfer clock signal lines values. The same results are found between the vertical transfer clock signal line and the earth electrode (ground).At last, the damage position and the damage mechanism were analyzed with above results and SEM morphological experiments. The point damage results in the laser destroying material, which shows no macro electro influence. The line damage is quite different from that of point damage, which shows deeper material corroding effect. More importantly, short circuits are found between vertical clock lines. The full array damage is even more severe than that of line damage starring with SEM, while no obvious different electrical features than that of line damage are found. Further researches are anticipated in femto second laser caused CCD damage mechanism with more advanced tools. This research is valuable in EO countermeasure and/or laser shielding applications.

  14. Neodymium: YAG laser damage threshold. A comparison of injection-molded and lathe-cut polymethylmethacrylate intraocular lenses.

    PubMed

    Wilson, S E; Brubaker, R F

    1987-01-01

    The possibility that injection-molded intraocular lenses (IOLs) with imperfections called iridescent clefts could have a decreased threshold to neodymium: YAG (Nd:YAG) laser-induced damage was investigated. Thresholds for Nd:YAG laser-induced damage were determined for injection-molded and lathe-cut polymethylmethacrylate lenses. When aimed at a membrane in contact with a posterior convex surface, the average thresholds were 0.96 +/- 0.18 mJ (Standard deviation [SD]) and 1.80 +/- 0.55 mJ, respectively. The difference was significant at P = 0.001. When injection-molding polymethylmethacrylate was used to make lathe-cut IOLs, very few iridescent clefts were present, and the threshold to Nd:YAG laser-induced damage was 0.94 +/- 0.25 mJ. Iridescent clefts are therefore produced during the injection-molding process but they do not lower the threshold to Nd:YAG laser-induced damage. Rather, the reduced threshold in injection-molded lenses is most probably a result of the polymethylmethacrylate used in their manufacture. Clinically, iridescent clefts in a lens suggest that it has been manufactured by an injection-molding process and that Nd:YAG laser posterior capsulotomy must be performed at the lowest possible energy level to avoid damage.

  15. R-on-1 automatic mapping: A new tool for laser damage testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hue, J.; Garrec, P.; Dijon, J.

    1996-12-31

    Laser damage threshold measurement is statistical in nature. For a commercial qualification or for a user, the threshold determined by the weakest point is a satisfactory characterization. When a new coating is designed, threshold mapping is very useful. It enables the technology to be improved and followed more accurately. Different statistical parameters such as the minimum, maximum, average, and standard deviation of the damage threshold as well as spatial parameters such as the threshold uniformity of the coating can be determined. Therefore, in order to achieve a mapping, all the tested sites should give data. This is the major interestmore » of the R-on-1 test in spite of the fact that the laser damage threshold obtained by this method may be different from the 1-on-1 test (smaller or greater). Moreover, on the damage laser test facility, the beam size is smaller (diameters of a few hundred micrometers) than the characteristic sizes of the components in use (diameters of several centimeters up to one meter). Hence, a laser damage threshold mapping appears very interesting, especially for applications linked to large optical components like the Megajoule project or the National Ignition Facility (N.I.F). On the test bench used, damage detection with a Nomarski microscope and scattered light measurement are almost equivalent. Therefore, it becomes possible to automatically detect on line the first defects induced by YAG irradiation. Scattered light mappings and laser damage threshold mappings can therefore be achieved using a X-Y automatic stage (where the test sample is located). The major difficulties due to the automatic capabilities are shown. These characterizations are illustrated at 355 nm. The numerous experiments performed show different kinds of scattering curves, which are discussed in relation with the damage mechanisms.« less

  16. Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy.

    PubMed

    Zuo, Yue Yue J; Hébraud, Pascal; Hemar, Yacine; Ashokkumar, Muthupandian

    2012-05-01

    A simple light microscopic technique was developed in order to quantify the damage inflicted by high-power low-frequency ultrasound (0-160 W, 20 kHz) treatment on potato starch granules in aqueous dispersions. The surface properties of the starch granules were modified using ethanol and SDS washing methods, which are known to displace proteins and lipids from the surface of the starch granules. The study showed that in the case of normal and ethanol-washed potato starch dispersions, two linear regions were observed. The number of defects first increased linearly with an increase in ultrasound power up to a threshold level. This was then followed by another linear dependence of the number of defects on the ultrasound power. The power threshold where the change-over occurred was higher for the ethanol-washed potato dispersions compared to non-washed potato dispersions. In the case of SDS-washed potato starch, although the increase in defects was linear with the ultrasound power, the power threshold for a second linear region was not observed. These results are discussed in terms of the different possible mechanisms of cavitation induced-damage (hydrodynamic shear stresses and micro-jetting) and by taking into account the hydrophobicity of the starch granule surface. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Motor unit activity after eccentric exercise and muscle damage in humans.

    PubMed

    Semmler, J G

    2014-04-01

    It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.

  18. Coseismic Damage Generation in Fault Zones by Successive High Strain Rate Loading Experiments

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M. L.; Renard, F.; Toussaint, R.; Reuschlé, T.; Gratier, J. P.

    2014-12-01

    Damage zones of active faults control both resistance to rupture and transport properties of the fault. Hence, knowing the rock damage's origin is important to constrain its properties. Here we study experimentally the damage generated by a succession of dynamic loadings, a process mimicking the stress history of a rock sample located next to an active fault. A propagating rupture generates high frequency stress perturbations next to its tip. This dynamic loading creates pervasive damage (pulverization), as multiple fractures initiate and grow simultaneously. Previous single loading experiments have shown a strain rate threshold for pulverization. Here, we focus on conditions below this threshold and the dynamic peak stress to constrain: 1) if there is dynamic fracturing at these conditions and 2) if successive loadings (cumulative seismic events) result in pervasive fracturing, effectively reducing the pulverization threshold to milder conditions. Monzonite samples were dynamically loaded (strain rate > 50 s-1) several times below the dynamic peak strength, using a Split Hopkinson Pressure Bar apparatus. Several quasi-static experiments were conducted as well (strain rate < 10-5-s). Samples loaded up to stresses above the quasi-static uniaxial compressive strength (qsUCS) systematically fragmented or pulverized after four successive loadings. We measured several damage proxies (P-wave velocity, porosity), that show a systematic increase in damage with each load. In addition, micro-computed tomography acquisition on several damage samples revealed the growth of a pervasive fracture network between ensuing loadings. Samples loaded dynamically below the qsUCS failed along one fracture after a variable amount of loadings and damage proxies do not show any a systematic trend. Our conclusions is that milder dynamic loading conditions, below the dynamic peak strength, result in pervasive dynamic fracturing. Also, successive loadings effectively lower the pulverization threshold of the rock. However, the peak loading stress must exceed the qsUCS of the rock, otherwise quasi-static fracturing occurs. Pulverized rocks found in the field are therefore witnesses of previous large earthquakes.

  19. Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Koerber, Michael; Eberle, Bernd

    2017-03-01

    The continuous development of laser systems toward more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors, such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices. These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, micro-optoelectromechanical systems, such as a digital micromirror device (DMD), are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources, both pulsed lasers and continuous-wave (CW)-lasers are used. The laser-induced damage threshold is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructive device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects, such as persistent dead columns or rows of pixels in the sensor image.

  20. Protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion.

    PubMed

    Zhai, S-Q; Guo, W; Hu, Y-Y; Yu, N; Chen, Q; Wang, J-Z; Fan, M; Yang, W-Y

    2011-05-01

    To explore the protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion. Recombinant adenovirus brain-derived neurotrophic factor vector, recombinant adenovirus LacZ and artificial perilymph were prepared. Guinea pigs with audiometric auditory brainstem response thresholds of more than 75 dB SPL, measured seven days after four hours of noise exposure at 135 dB SPL, were divided into three groups. Adenovirus brain-derived neurotrophic factor vector, adenovirus LacZ and perilymph were infused into the cochleae of the three groups, variously. Eight weeks later, the cochleae were stained immunohistochemically and the spiral ganglion cells counted. The auditory brainstem response threshold recorded before and seven days after noise exposure did not differ significantly between the three groups. However, eight weeks after cochlear perfusion, the group receiving brain-derived neurotrophic factor had a significantly decreased auditory brainstem response threshold and increased spiral ganglion cell count, compared with the adenovirus LacZ and perilymph groups. When administered via cochlear infusion following noise damage, brain-derived neurotrophic factor appears to improve the auditory threshold, and to have a protective effect on the spiral ganglion cells.

  1. Why Does Threshold Level Change in Transcranial Motor-evoked Potentials During Surgery for Supratentorial Lesions?

    PubMed

    Abboud, Tammam; Huckhagel, Torge; Stork, Jan-Henrich; Hamel, Wolfgang; Schwarz, Cindy; Vettorazzi, Eik; Westphal, Manfred; Martens, Tobias

    2017-10-01

    Rising threshold level during monitoring of motor-evoked potentials (MEP) using transcranial electrical stimulation (TES) has been described without damage to the motor pathway in the cranial surgery, suggesting the need for monitoring of affected and unaffected hemisphere. We aimed to determine the factors that lead to a change in threshold level and to establish reliable criteria for adjusting stimulation intensity during surgery for supratentorial lesions. Between October 2014 and October 2015, TES-MEP were performed in 143 patients during surgery for unilateral supratentorial lesions in motor-eloquent brain areas. All procedures were performed under general anesthesia using a strict protocol to maintain stable blood pressure. MEP were evaluated bilaterally to assess the percentage increase in threshold level, which was considered significant if it exceeded 20% on the contralateral side beyond the percentage increase on the ipsilateral side. Patients who developed a postoperative motor deficit were excluded. Volume of subdural air was measured on postoperative magnetic resonance imaging. Logistic regression was performed to identify factors associated with the intraoperative recorded changes in threshold level. A total of 123 patients were included in the study. On the affected side, 82 patients (66.7%) showed an increase in threshold level, which ranged from 2% to 48% and 41 patients (33.3%) did not show any change. The difference to the unaffected side was under 20% in all patients. The recorded range of changes in the systolic and mean pressure did not exceed 20 mm Hg in any of the patients. Pneumocephalus was detected on postoperative magnetic resonance imaging scans in 87 patients (70.7%) and 81 of them (93.1%) had an intraoperative increase in threshold level on either sides. Pneumocephalus was the only factor associated with an increase in threshold level on the affected side (P<0.001), while each of pneumocephalus and length of the procedure correlated with a change in threshold level on the unaffected side (P<0.001 and 0.032, respectively). Pneumocephalus was the only factor associated with increase in threshold level during MEP monitoring without damaging motor pathway. Threshold level on the affected side can rise up to 48% without being predictive of postoperative paresis, as long as the difference between the increased threshold of the affected and unaffected side is within 20%. Changes in systolic or mean blood pressure within a range of 20 mm Hg do not seem to influence intraoperative MEP.

  2. Optical and electrical properties of indium tin oxide films near their laser damage threshold [Electrical and optical properties of indium tin oxide films under multi-pulse laser irradiation at 1064 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Jae -Hyuck; Lange, Andrew; Bude, Jeff

    In this paper, we investigated whether the optical and electrical properties of indium tin oxide (ITO) films are degraded under laser irradiation below their laser ablation threshold. While performing multi-pulse laser damage experiments on a single ITO film (4.7 ns, 1064 nm, 10 Hz), we examined the optical and electrical properties in situ. A decrease in reflectance was observed prior to laser damage initiation. However, under sub-damage threshold irradiation, conductivity and reflectance of the film were maintained without measurable degradation. This indicates that ITO films in optoelectronic devices may be operated below their lifetime laser damage threshold without noticeable performancemore » degradation.« less

  3. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources.

    PubMed

    Loch, R A; Sobierajski, R; Louis, E; Bosgra, J; Bijkerk, F

    2012-12-17

    The single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly used multilayer optics and propose new material combinations selected for a high damage threshold. Our study demonstrates that the damage thresholds of multilayer optics can vary over a large range of incidence fluences and can be as high as several hundreds of mJ/cm(2). This strongly suggests that multilayer mirrors are serious candidates for damage resistant optics. Especially, multilayer optics based on Li(2)O spacers are very promising for use in current and future short-wavelength radiation sources.

  4. Optical and electrical properties of indium tin oxide films near their laser damage threshold [Electrical and optical properties of indium tin oxide films under multi-pulse laser irradiation at 1064 nm

    DOE PAGES

    Yoo, Jae -Hyuck; Lange, Andrew; Bude, Jeff; ...

    2017-02-10

    In this paper, we investigated whether the optical and electrical properties of indium tin oxide (ITO) films are degraded under laser irradiation below their laser ablation threshold. While performing multi-pulse laser damage experiments on a single ITO film (4.7 ns, 1064 nm, 10 Hz), we examined the optical and electrical properties in situ. A decrease in reflectance was observed prior to laser damage initiation. However, under sub-damage threshold irradiation, conductivity and reflectance of the film were maintained without measurable degradation. This indicates that ITO films in optoelectronic devices may be operated below their lifetime laser damage threshold without noticeable performancemore » degradation.« less

  5. Evaluating the thermal damage resistance of graphene/carbon nanotube hybrid composite coatings

    NASA Astrophysics Data System (ADS)

    David, L.; Feldman, A.; Mansfield, E.; Lehman, J.; Singh, G.

    2014-03-01

    We study laser irradiation behavior of multiwalled carbon nanotubes (MWCNT) and chemically modified graphene (rGO)-composite spray coatings for use as a thermal absorber material for high-power laser calorimeters. Spray coatings on aluminum test coupon were exposed to increasing laser irradiance for extended exposure times to quantify their damage threshold and optical absorbance. The coatings, prepared at varying mass % of MWCNTs in rGO, demonstrated significantly higher damage threshold values at 2.5 kW laser power at 10.6 μm wavelength than carbon paint or MWCNTs alone. Electron microscopy and Raman spectroscopy of irradiated specimens show that the coating prepared at 50% CNT loading endure at least 2 kW.cm-2 for 10 seconds without significant damage. The improved damage resistance is attributed to the unique structure of the composite in which the MWCNTs act as an efficient absorber of laser light while the much larger rGO sheets surrounding them, dissipate the heat over a wider area.

  6. Ultrashort Laser Retinal Damage Threshold Mechanisms

    DTIC Science & Technology

    2010-01-15

    epithelium . Below one nanosecond both stress-confinement in melanosomes and self-focusing reduce the threshold for damage as measured in corneal radiant... epithelium (RPE). Below 1 ns, both stress confinement in melanosomes and self-focusing reduce the threshold for damage as measured in corneal radiant...collimated laser light is focused to a very small spot on the retina. The retinal pigment epithelium (RPE) contains melanosomes, which are the primary

  7. Improved laser damage threshold for chalcogenide glasses through surface microstructuring

    NASA Astrophysics Data System (ADS)

    Florea, Catalin; Sanghera, Jasbinder; Busse, Lynda; Shaw, Brandon; Aggarwal, Ishwar

    2011-03-01

    We demonstrate improved laser damage threshold of chalcogenide glasses with microstructured surfaces as compared to chalcogenide glasses provided with traditional antireflection coatings. The surface microstructuring is used to reduce Fresnel losses over large bandwidths in As2S3 glasses and fibers. The treated surfaces show almost a factor of two of improvement in the laser damage threshold when compared with untreated surfaces.

  8. Damage threshold of platinum coating used for optics for self-seeding of soft x-ray free electron laser

    DOE PAGES

    Krzywinski, Jacek; Cocco, Daniele; Moeller, Stefan; ...

    2015-02-23

    We investigated the experimental damage threshold of platinum coating on a silicon substrate illuminated by soft x-ray radiation at grazing incidence angle of 2.1 deg. The coating was the same as the blazed grating used for the soft X-ray self-seeding optics of the Linac Coherent Light Source free electron laser. The irradiation condition was chosen such that the absorbed dose was similar to the maximum dose expected for the grating. The expected dose was simulated by solving the Helmholtz equation in non-homogenous media. The experiment was performed at 900 eV photon energy for both single pulse and multi-shot conditions. Wemore » have not observed single shot damage. This corresponds to a single shot damage threshold being higher than 3 J/cm 2. The multiple shot damage threshold measured for 10 shots and about 600 shots was determined to be 0.95 J/cm 2 and 0.75 J/cm 2 respectively. The damage threshold occurred at an instantaneous dose which is higher that the melt dose of platinum.« less

  9. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    NASA Astrophysics Data System (ADS)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V.

    2017-02-01

    The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  10. On 1064 nm and 350 nm laser damage thresholds of high index oxide films deposited from organic solutions and sols

    NASA Astrophysics Data System (ADS)

    Thomas, I.; Wilder, J.; Gonzales, R.; George, D.

    1987-06-01

    High index oxide coatings TiO2, Ta2O5, ZrO2 and HfO2 have been prepared from organic solutions of metal organic precursors or from colloidal oxide suspensions. Room temperature processing gives porous coatings of comparatively low index (1.8 to 1.9). Heat treatments can, in some cases, increase the index. Laser damage threshold levels at 1064 nm with a single 1 ns pulse are in the range 6 to 10 J/sq cm. Lower figures are obtained at 350 nm with a 25 ns pulse under multishot (25 Hz) conditions.

  11. Laser-induced damage threshold of camera sensors and micro-opto-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Körber, Michael; Eberle, Bernd

    2016-10-01

    The continuous development of laser systems towards more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices (CCD). These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, also micro-opto-electro-mechanical systems (MOEMS) like a digital micromirror device (DMD) are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources both pulsed lasers and continuous-wave (CW) lasers are used. The laser-induced damage threshold (LIDT) is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructed device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects like persisting dead columns or rows of pixels in the sensor image.

  12. Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope.

    PubMed

    Johnston-Peck, Aaron C; DuChene, Joseph S; Roberts, Alan D; Wei, Wei David; Herzing, Andrew A

    2016-11-01

    Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO 2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. Published by Elsevier B.V.

  13. Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope

    PubMed Central

    Johnston-Peck, Aaron C.; DuChene, Joseph S.; Roberts, Alan D.; Wei, Wei David; Herzing, Andrew A.

    2016-01-01

    Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300 keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. PMID:27469265

  14. Comparison between 355 nm and 1064 nm damage of high grade dielectric mirror coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodemann, A.; Kaiser, N.

    1996-12-31

    Advanced reactive e-beam evaporation process was used to deposit HfO{sub 2}/SiO{sub 2} HR coatings for 355 nm high power laser applications. Atomic force microscopy studies and Nomarski microscopy have shown that the defect density of these coatings is extremely low exhibiting nearly no nodular defects known for an increased susceptibility to laser damage in the IR spectral region. Standard damage testing (conditioned and unconditioned) was conducted at LLNL at 355 nm (3 ns) for normal (0{degrees}) and nonnormal-incident designs (45{degrees}). Damage thresholds between 5 J/cm{sup 2} and 8 J/cm{sup 2} were obtained. No significant conditioning effect could be demonstrated. Themore » same evaporation technique was used to manufacture normal incident HfO{sub 2}/SiO{sub 2} HR coatings for 1064 nm wavelength from 2 different types of evaporant grade HfO{sub 2} as well as from a Hf metal source. Damage test results, as well as defect concentrations and conditioning effect, were compared to the 355 nm samples. Moreover, care was taken on the detection of the origin of damage at fluences near the damage thresholds.« less

  15. Evaluation of runaway-electron effects on plasma-facing components for NET

    NASA Astrophysics Data System (ADS)

    Bolt, H.; Calén, H.

    1991-03-01

    Runaway electrons which are generated during disruptions can cause serious damage to plasma facing components in a next generation device like NET. A study was performed to quantify the response of NET plasma facing components to runaway-electron impact. For the determination of the energy deposition in the component materials Monte Carlo computations were performed. Since the subsurface metal structures can be strongly heated under runaway-electron impact from the computed results damage threshold values for the thermal excursions were derived. These damage thresholds are strongly dependent on the materials selection and the component design. For a carbonmolybdenum divertor with 10 and 20 mm carbon armour thickness and 1 degree electron incidence the damage thresholds are 100 MJ/m 2 and 220 MJ/m 2. The thresholds for a carbon-copper divertor under the same conditions are about 50% lower. On the first wall damage is anticipated for energy depositions above 180 MJ/m 2.

  16. Methods for improving the damage performance of fused silica polished by magnetorheological finishing

    DOE PAGES

    Kafka, Kyle R. P.; Hoffman, Brittany N.; Papernov, Semyon; ...

    2017-12-11

    The laser-induced damage threshold of fused-silica samples processed via magnetorheological finishing is investigated for polishing compounds depending on the type of abrasive material and the post-polishing surface roughness. The effectiveness of laser conditioning is examined using a ramped pre-exposure with the same 351-nm, 3-ns Gaussian pulses. Lastly, we examine chemical etching of the surface and correlate the resulting damage threshold to the etching protocol. A combination of etching and laser conditioning is found to improve the damage threshold by a factor of ~3, while maintaining <1-nm surface roughness.

  17. Methods for improving the damage performance of fused silica polished by magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Kafka, K. R. P.; Hoffman, B.; Papernov, S.; DeMarco, M. A.; Hall, C.; Marshall, K. L.; Demos, S. G.

    2017-12-01

    The laser-induced damage threshold of fused-silica samples processed via magnetorheological finishing is investigated for polishing compounds depending on the type of abrasive material and the post-polishing surface roughness. The effectiveness of laser conditioning is examined using a ramped pre-exposure with the same 351-nm, 3-ns Gaussian pulses. Finally, we examine chemical etching of the surface and correlate the resulting damage threshold to the etching protocol. A combination of etching and laser conditioning is found to improve the damage threshold by a factor of 3, while maintaining <1-nm surface roughness.

  18. [Heat-induced symptomatology in human teeth. An in-vitro study].

    PubMed

    Baldissara, P; Bortolini, S; Papale, G; Scotti, R

    1998-09-01

    Various dental procedures can generate thermal increase in the dental pulp, in particular if they are incorrectly conducted. In literature the pulp cells are considered very heat sensitive. In this study the symptomatological response of patients during and after thermal administration to the dental crown has been recorded. The analysis of the symptomatology was used as an indication for the definition of the threshold of thermal damage. Twelve healthy teeth of four patients programmed for extraction were subdivided into six couples of homologous teeth. One tooth out of each couple was used for the immediate in vivo recording of the symptoms; the other, once extracted, was used to determine the thermal increase applied through the insertion of a thermocouple sensor. In each couple of teeth the thermal stimulus was equal. The average thermal increase was 11.2 degrees C. Pain starts at temperatures ranging from 39.5 to 50.4 degrees C with an average of 44.6 degrees C. This agrees with classical physiological data which reports the threshold of pain at 45 degrees C. The threshold of pain registered suggests that at temperatures below 44.6 degrees C damage to the dental pulp is improbable, at least in healthy teeth. The limit of 45 degrees C appears, therefore, to be a probable safe threshold, contrary to what is reported in literature.

  19. Ultrafast Passive Shields for Laser and Ballistic Protection

    DTIC Science & Technology

    1991-07-15

    chemically polymerized P(DPA)) as a binder, and these were tested for ablation (i.e. laser damage threshold ) limits. Table IV below summarizes these results...50, 100, 250 and 500 AJ/pulse o 1.G, 2.5, 5.0 mJ/pulse. The following energies were used for the preliminary laser damage threshold tests: o 2.5, 5.0...these were tested for ablation (i.e. laser damage threshold ) limits. Table VI summarizes these results which are all for tests in the absence of an iris

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafka, Kyle R. P.; Hoffman, Brittany N.; Papernov, Semyon

    The laser-induced damage threshold of fused-silica samples processed via magnetorheological finishing is investigated for polishing compounds depending on the type of abrasive material and the post-polishing surface roughness. The effectiveness of laser conditioning is examined using a ramped pre-exposure with the same 351-nm, 3-ns Gaussian pulses. Lastly, we examine chemical etching of the surface and correlate the resulting damage threshold to the etching protocol. A combination of etching and laser conditioning is found to improve the damage threshold by a factor of ~3, while maintaining <1-nm surface roughness.

  1. Supra-threshold epidermis injury from near-infrared laser radiation prior to ablation onset

    NASA Astrophysics Data System (ADS)

    DeLisi, Michael P.; Peterson, Amanda M.; Lile, Lily A.; Noojin, Gary D.; Shingledecker, Aurora D.; Stolarski, David J.; Zohner, Justin J.; Kumru, Semih S.; Thomas, Robert J.

    2017-02-01

    With continued advancement of solid-state laser technology, high-energy lasers operating in the near-infrared (NIR) band are being applied in an increasing number of manufacturing techniques and medical treatments. Safety-related investigations of potentially harmful laser interaction with skin are commonplace, consisting of establishing the maximum permissible exposure (MPE) thresholds under various conditions, often utilizing the minimally-visible lesion (MVL) metric as an indication of damage. Likewise, characterization of ablation onset and velocity is of interest for therapeutic and surgical use, and concerns exceptionally high irradiance levels. However, skin injury response between these two exposure ranges is not well understood. This study utilized a 1070-nm Yb-doped, diode-pumped fiber laser to explore the response of excised porcine skin tissue to high-energy exposures within the supra-threshold injury region without inducing ablation. Concurrent high-speed videography was employed to assess the effect on the epidermis, with a dichotomous response determination given for three progressive damage event categories: observable permanent distortion on the surface, formation of an epidermal bubble due to bounded intra-cutaneous water vaporization, and rupture of said bubble during laser exposure. ED50 values were calculated for these categories under various pulse configurations and beam diameters, and logistic regression models predicted injury events with approximately 90% accuracy. The distinction of skin response into categories of increasing degrees of damage expands the current understanding of high-energy laser safety while also underlining the unique biophysical effects during induced water phase change in tissue. These observations could prove useful in augmenting biothermomechanical models of laser exposure in the supra-threshold region.

  2. Engineered Defects for Investigation of Laser-Induced Damage of Fused Silica at 355nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamza, A V; Siekhaus, W J; Rubenchik, A M

    2001-12-18

    Embedded gold and mechanical deformation in silica were used to investigate initiation of laser-induced damage at 3.55-nm (7.6 ns). The nanoparticle-covered surfaces were coated with between 0 and 500 nm of SiO{sub 2} by e-beam deposition. The threshold for observable damage and initiation site morphology for these ''engineered'' surfaces was determined. The gold nanoparticle coated surfaces with 500nm SiO{sub 2} coating exhibited pinpoint damage threshold of <0.7 J/cm{sup 2} determined by light scattering and Nomarski microscopy. The gold nanoparticle coated surfaces with the 100nm SiO{sub 2} coatings exhibited what nominally appeared to be film exfoliation damage threshold of 19 J/cm{supmore » 2} via light scattering and Nomarski microscopy. With atomic force microscopy pinholes could be detected at fluences greater than 7 J/cm{sup 2} and blisters at fluences greater than 3 J/cm{sup 2} on the 100 nm-coated surfaces. A series of mechanical indents and scratches were made in the fused silica substrates using a nano-indentor. Plastic deformation without cracking led to damage thresholds of -25 J/cm{sup 2}, whereas indents and scratches with cracking led to damage thresholds of only {approx}5 J/cm{sup 2}. Particularly illuminating was the deterministic damage of scratches at the deepest end of the scratch, as if the scratch acted as a waveguide.« less

  3. Damage Thresholds for Exposure to NIR and Blue Lasers in an In Vitro RPE Cell System

    DTIC Science & Technology

    2006-07-01

    damage , and to identify antioxidants capable of protecting these cells from laser-in- duced cell death. MATERIALS AND METHODS The human RPE cell...melanosomes in blue laser-induced damage in vitro, which confirms the view that melanin plays an important role in photochemical damage mechanisms in...community has only a validating role in the animal ED50 damage threshold data used by safety committees. Systems of in vitro analysis must be

  4. Comparing the ISO-recommended and the cumulative data-reduction algorithms in S-on-1 laser damage test by a reverse approach method

    NASA Astrophysics Data System (ADS)

    Zorila, Alexandru; Stratan, Aurel; Nemes, George

    2018-01-01

    We compare the ISO-recommended (the standard) data-reduction algorithm used to determine the surface laser-induced damage threshold of optical materials by the S-on-1 test with two newly suggested algorithms, both named "cumulative" algorithms/methods, a regular one and a limit-case one, intended to perform in some respects better than the standard one. To avoid additional errors due to real experiments, a simulated test is performed, named the reverse approach. This approach simulates the real damage experiments, by generating artificial test-data of damaged and non-damaged sites, based on an assumed, known damage threshold fluence of the target and on a given probability distribution function to induce the damage. In this work, a database of 12 sets of test-data containing both damaged and non-damaged sites was generated by using four different reverse techniques and by assuming three specific damage probability distribution functions. The same value for the threshold fluence was assumed, and a Gaussian fluence distribution on each irradiated site was considered, as usual for the S-on-1 test. Each of the test-data was independently processed by the standard and by the two cumulative data-reduction algorithms, the resulting fitted probability distributions were compared with the initially assumed probability distribution functions, and the quantities used to compare these algorithms were determined. These quantities characterize the accuracy and the precision in determining the damage threshold and the goodness of fit of the damage probability curves. The results indicate that the accuracy in determining the absolute damage threshold is best for the ISO-recommended method, the precision is best for the limit-case of the cumulative method, and the goodness of fit estimator (adjusted R-squared) is almost the same for all three algorithms.

  5. Laser pulse transmission and damage threshold of silica fibers with antireflective coatings

    NASA Astrophysics Data System (ADS)

    Meister, Stefan; Wosniok, Alexander; Riesbeck, Thomas; Scharfenorth, Chris; Eichler, Hans J.

    2005-03-01

    Standard 200 μm multimode fibers with Ta2O5/SiO2 antireflective coatings reach a transmission of more than 99.5% below the threshold of stimulated Brillouin scattering. The laser-induced damage threshold measured at 1064 nm and 24 ns pulse duration was about half than the LIDT of uncoated fibers.

  6. Infrared skin damage thresholds from 1319-nm continuous-wave laser exposures

    NASA Astrophysics Data System (ADS)

    Oliver, Jeffrey W.; Vincelette, Rebecca; Noojin, Gary D.; Clark, Clifton D.; Harbert, Corey A.; Schuster, Kurt J.; Shingledecker, Aurora D.; Kumru, Semih S.; Maughan, Justin; Kitzis, Naomi; Buffington, Gavin D.; Stolarski, David J.; Thomas, Robert J.

    2013-12-01

    A series of experiments were conducted in vivo using Yucatan miniature pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1319-nm continuous-wave Nd:YAG laser irradiation. Experiments employed exposure durations of 0.25, 1.0, 2.5, and 10 s and beam diameters of ˜0.6 and 1 cm. Thermal imagery data provided a time-dependent surface temperature response from the laser. A damage endpoint of fifty percent probability of a minimally visible effect was used to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a numerical model of optical-thermal interaction. Resultant trends with respect to exposure duration and beam diameter are compared with current standardized exposure limits for laser safety. Mathematical modeling agreed well with experimental data, predicting that though laser safety standards are sufficient for exposures <10 s, they may become less safe for very long exposures.

  7. Removal of dust particles from metal-mirror surfaces by excimer-laser radiation

    NASA Astrophysics Data System (ADS)

    Mann, Klaus R.; Wolff-Rottke, B.; Mueller, F.

    1995-07-01

    The effect of particle desorption from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way of cleaning the Al coatings of future very large telescope mirrors. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples, taking particularly into account laser-induced damage and degradation effects of coating and substrate. The particle removal rate increases with increasing laser fluence, being limited however by the damage threshold of the coating. Therefore, parameters influencing the damage threshold of metal coatings like wavelength, pulse width, and number of pulses have been studied in detail. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be reinstalled, in particular when an additional solvent film on the sample surface is applied. Hence, laser desorption seems to be a viable method of cleaning large Al mirrors for telescopes.

  8. Detection of impact damage on thermal protection systems using thin-film piezoelectric sensors for integrated structural health monitoring

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Kuhr, Samuel J.; Jata, Kumar V.

    2008-03-01

    Thermal Protection Systems (TPS) can be subjected to impact damage during flight and/or during ground maintenance and/or repair. AFRL/RXLP is developing a reliable and robust on-board sensing/monitoring capability for next generation thermal protection systems to detect and assess impact damage. This study was focused on two classes of metallic thermal protection tiles to determine threshold for impact damage and develop sensing capability of the impacts. Sensors made of PVDF piezoelectric film were employed and tested to evaluate the detectability of impact signals and assess the onset or threshold of impact damage. Testing was performed over a range of impact energy levels, where the sensors were adhered to the back of the specimens. The PVDF signal levels were analyzed and compared to assess damage, where digital microscopy, visual inspection, and white light interferometry were used for damage verification. Based on the impact test results, an assessment of the impact damage thresholds for each type of metallic TPS system was made.

  9. Vapor bubble generation around gold nano-particles and its application to damaging of cells

    PubMed Central

    Kitz, M.; Preisser, S.; Wetterwald, A.; Jaeger, M.; Thalmann, G. N.; Frenz, M.

    2011-01-01

    We investigated vapor bubbles generated upon irradiation of gold nanoparticles with nanosecond laser pulses. Bubble formation was studied both with optical and acoustic means on supported single gold nanoparticles and single nanoparticles in suspension. Formation thresholds determined at different wavelengths indicate a bubble formation efficiency increasing with the irradiation wavelength. Vapor bubble generation in Bac-1 cells containing accumulations of the same particles was also investigated at different wavelengths. Similarly, they showed an increasing cell damage efficiency for longer wavelengths. Vapor bubbles generated by single laser pulses were about half the cell size when inducing acute damage. PMID:21339875

  10. Acute damage threshold for infrared neural stimulation of the cochlea: functional and histological evaluation.

    PubMed

    Goyal, Vinay; Rajguru, Suhrud; Matic, Agnella I; Stock, Stuart R; Richter, Claus-Peter

    2012-11-01

    This article provides a mini review of the current state of infrared neural stimulation (INS), and new experimental results concerning INS damage thresholds. INS promises to be an attractive alternative for neural interfaces. With this method, one can attain spatially selective neural stimulation that is not possible with electrical stimulation. INS is based on the delivery of short laser pulses that result in a transient temperature increase in the tissue and depolarize the neurons. At a high stimulation rate and/or high pulse energy, the method bears the risk of thermal damage to the tissue from the instantaneous temperature increase or from potential accumulation of thermal energy. With the present study, we determined the injury thresholds in guinea pig cochleae for acute INS using functional measurements (compound action potentials) and histological evaluation. The selected laser parameters for INS were the wavelength (λ = 1,869 nm), the pulse duration (100 μs), the pulse repetition rate (250 Hz), and the radiant energy (0-127 μJ/pulse). For up to 5 hr of continuous irradiation at 250 Hz and at radiant energies up to 25 μJ/pulse, we did not observe any functional or histological damage in the cochlea. Functional loss was observed for energies above 25 μJ/pulse and the probability of injury to the target tissue resulting in functional loss increased with increasing radiant energy. Corresponding cochlear histology from control animals and animals exposed to 98 or 127 μJ/pulse at 250 Hz pulse repetition rate did not show a loss of spiral ganglion cells, hair cells, or other soft tissue structures of the organ of Corti. Light microscopy did not reveal any structural changes in the soft tissue either. Additionally, microcomputed tomography was used to visualize the placement of the optical fiber within the cochlea. Copyright © 2012 Wiley Periodicals, Inc.

  11. Establishing storm thresholds for the Spanish Gulf of Cádiz coast

    NASA Astrophysics Data System (ADS)

    Del Río, Laura; Plomaritis, Theocharis A.; Benavente, Javier; Valladares, María; Ribera, Pedro

    2012-03-01

    In this study critical thresholds are defined for storm impacts along the Spanish coast of the Gulf of Cádiz. The thresholds correspond to the minimum wave and tide conditions necessary to produce significant morphological changes on beaches and dunes and/or damage on coastal infrastructure or human occupation. Threshold definition was performed by computing theoretical sea-level variations during storms and comparing them with the topography of the study area and the location of infrastructure at a local level. Specifically, the elevations of the berm, the dune foot and the entrance of existing washovers were selected as threshold parameters. The total sea-level variation generated by a storm event was estimated as the sum of the tidal level, the wind-induced setup, the barometric setup and the wave-associated sea-level variation (wave setup and runup), assuming a minimum interaction between the different processes. These components were calculated on the basis of parameterisations for significant wave height (Hs) obtained for the oceanographic and environmental conditions of the Gulf of Cadiz. For this purpose real data and reanalysis time-series (HIPOCAS project) were used. Validation of the obtained results was performed for a range of coastal settings over the study area. The obtained thresholds for beach morphological changes in spring tide conditions range between a significant wave height of 1.5 m and 3.7 m depending on beach characteristics, while for dune foot erosion are around 3.3 to 3.7 m and for damage to infrastructure around 7.2 m. In case of neap tide conditions these values are increased on average by 50% over the areas with large tidal range. Furthermore, records of real damage in coastal infrastructure caused by storms were collected at a regional level from newspapers and other bibliographic sources and compared with the hydrodynamic conditions that caused the damage. These were extracted from the hindcast database of the HIPOCAS project, including parameters such as storm duration, mean and maximum wave height and wave direction. Results show that the duration of the storm is not critical in determining the occurrence of coastal damage in the regional study area. This way, the threshold would be defined as a duration ≥30 h, with moderate average wave height (≥3.3 m) and high maximum wave height (≥4.1 m) approaching from the 3rd and 4th quadrants, during mean or spring tide situation. The calculated thresholds constitute snapshots of risk conditions within a certain time framework. Beach and nearshore zones are extremely dynamic, and also the characteristics of occupation on the coast change over time, so critical storm thresholds will change accordingly and therefore will need to be updated.

  12. Laser damage of free-standing nanometer membranes

    NASA Astrophysics Data System (ADS)

    Morimoto, Yuya; Roland, Iännis; Rennesson, Stéphanie; Semond, Fabrice; Boucaud, Philippe; Baum, Peter

    2017-12-01

    Many high-field/attosecond and ultrafast electron diffraction/microscopy experiments on condensed matter require samples in the form of free-standing membranes with nanometer thickness. Here, we report the measurement of the laser-induced damage threshold of 11 different free-standing nanometer-thin membranes of metallic, semiconducting, and insulating materials for 1-ps, 1030-nm laser pulses at 50 kHz repetition rate. We find a laser damage threshold that is very similar to each corresponding bulk material. The measurements also reveal a band gap dependence of the damage threshold as a consequence of different ionization rates. These results establish the suitability of free-standing nanometer membranes for high-field pump-probe experiments.

  13. Impact response of graphite-epoxy flat laminates using projectiles that simulate aircraft engine encounters

    NASA Technical Reports Server (NTRS)

    Preston, J. L., Jr.; Cook, T. S.

    1975-01-01

    An investigation of the response of a graphite-epoxy material to foreign object impact was made by impacting spherical projectiles of gelatin, ice, and steel normally on flat panels. The observed damage was classified as transverse (stress wave delamination and cracking), penetrative, or structural (gross failure): the minimum, or threshold, velocity to cause each class of damage was established as a function of projectile characteristics. Steel projectiles had the lowest transverse damage threshold, followed by gelatin and ice. Making use of the threshold velocities and assuming that the normal component of velocity produces the damage in nonnormal impacts, a set of impact angles and velocities was established for each projectile material which would result in damage to composite fan blades. Analysis of the operating parameters of a typical turbine fan blade shows that small steel projectiles are most likely to cause delamination and penetration damage to unprotected graphite-epoxy composite fan blades.

  14. New method for measuring the laser-induced damage threshold of optical thin film

    NASA Astrophysics Data System (ADS)

    Su, Jun-hong; Wang, Hong; Xi, Ying-xue

    2012-10-01

    The laser-induced damage threshold (LIDT) of thin film means that the thin film can withstand a maximum intensity of laser radiation. The film will be damaged when the irradiation under high laser intensity is greater than the value of LIDT. In this paper, an experimental platform with measurement operator interfaces and control procedures in the VB circumstance is built according to ISO11254-1. In order to obtain more accurate results than that with manual measurement, in the software system, a hardware device can be controlled by control widget on the operator interfaces. According to the sample characteristic, critical parameters of the LIDT measurement system such as spot diameter, damage threshold region, and critical damage pixel number are set up on the man-machine conversation interface, which could realize intelligent measurements of the LIDT. According to experimental data, the LIDT is obtained by fitting damage curve automatically.

  15. Nanosecond laser-induced damage at different initial temperatures of Ta{sub 2}O{sub 5} films prepared by dual ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Cheng, E-mail: xucheng@cumt.edu.cn; Jia, Jiaojiao; Fan, Heliang

    2014-08-07

    Ta{sub 2}O{sub 5} films were deposited by dual ion beam sputtering method. The nanosecond laser-induced damage threshold (LIDT) at different initial temperatures and time of the films was investigated by an in situ high temperature laser-induced damage testing platform. It was shown that, when the initial temperature increased from 298 K to 383 K, the LIDT at 1064 nm and 12 ns significantly decreased by nearly 14%. Then the LIDT at 1064 nm and 12 ns decreased slower with the same temperature increment. Different damage morphologies were found at different initial temperatures. At low initial temperatures, it was the defects-isolated damage while at high initial temperaturesmore » it was the defects-combined damage. The theoretical calculations based on the defect-induced damage model revealed that both the significant increase of the highest temperature and the duration contributed to the different damage morphologies. With the initial temperature being increased, the thermal-stress coupling damage mechanism transformed gradually to the thermal dominant damage mechanism.« less

  16. High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise.

    PubMed

    Macgregor, Lewis J; Hunter, Angus M

    2018-01-01

    Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p <0.001) and rate of torque development (495.7 ± 136.9 Nm.s-1 vs. 163.4 ± 163.7 Nm.s-1; p <0.001) 48h post-exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p <0.01) in high-threshold motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; p< 0.001) 48h post-exercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures.

  17. High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise

    PubMed Central

    Macgregor, Lewis J.

    2018-01-01

    Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p <0.001) and rate of torque development (495.7 ± 136.9 Nm.s-1 vs. 163.4 ± 163.7 Nm.s-1; p <0.001) 48h post-exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p <0.01) in high-threshold motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; p< 0.001) 48h post-exercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures. PMID:29630622

  18. Reappraisal of somatosensory disorders in methylmercury poisoning.

    PubMed

    Ninomiya, Tadashi; Imamura, Keiko; Kuwahata, Misako; Kindaichi, Michiaki; Susa, Mari; Ekino, Shigeo

    2005-01-01

    The first well-documented methylmercury (MeHg) poisoning by consumption of fish arose in Minamata, Japan in 1953. MeHg had dispersed from Minamata to the Shiranui Sea. The temporal changes in MeHg in the umbilical cords indicate that residents living around that Sea had been exposed to low-dose MeHg through fish consumption for about 20 years (at least from 1950 to 1968). They have complained of paresthesia at the distal parts of the extremities and around the lip even 30 years after the cessation of exposure to anthropogenic MeHg. The thresholds of touch and two-point discrimination of those residents and Minamata disease (MD) patients were examined using the quantifiable instruments. They could perceive the stimulation of touch although their touch thresholds significantly increased in comparison to those of the control people. Their touch thresholds increased at the proximal extremities and the trunks as well as at the distal extremities. The evenly distributed increases at both distal and proximal parts revealed that the persistent somatosensory disturbances were not caused by the injuries to their peripheral nerves. The thresholds of two-point discrimination, which are associated with the function of the somatosensory cortex, increased at both forefingers and the lip in both groups. Taking into consideration that, the apraxia limb kinetics, astereognosis and disorder of active sensation, which are all associated with damage to the somatosensory cortex, were detected, it is proposed that the persisting somatosensory disorders after discontinuation of exposure to MeHg were induced by diffuse damage to the somatosensory cortex.

  19. Wavelength dependence of laser-induced retinal injury

    NASA Astrophysics Data System (ADS)

    Lund, David J.; Edsall, Peter; Stuck, Bruce E.

    2005-04-01

    The threshold for laser-induced retinal damage is dependent primarily upon the laser wavelength and the exposure duration. The study of the wavelength dependence of the retinal damage threshold has been greatly enhanced by the availability of tunable lasers. The Optical Parametric Oscillator (OPO), capable of providing useful pulse energy throughout a tuning range from 400 nm to 2200 nm, made it possible to determine the wavelength dependence of laser-induced retinal damage thresholds for q-switched pulses throughout the visible and NIR spectrum. Studies using the a tunable TI:Saph laser and several fixed-wavelength lasers yielded threshold values for 0.1 s exposures from 440 nm to 1060 nm. Laser-induced retinal damage for these exposure durations results from thermal conversion of the incident laser irradiation and an action spectrum for thermal retinal damage was developed based on the wavelength dependent transmission and absorption of ocular tissue and chromatic aberration of the eye optics. Long (1-1000s) duration exposures to visible laser demonstrated the existence of non-thermal laser-induced retinal damage mechanisms having a different action spectrum. This paper will present the available data for the wavelength dependence of laser-induced thermal retinal damage and compare this data to the maximum permissible exposure levels (MPEs) provided by the current guidelines for the safe use of lasers.

  20. Evaluation damage threshold of optical thin-film using an amplified spontaneous emission source

    NASA Astrophysics Data System (ADS)

    Zhou, Qiong; Sun, Mingying; Zhang, Zhixiang; Yao, Yudong; Peng, Yujie; Liu, Dean; Zhu, Jianqiang

    2014-10-01

    An accurate evaluation method with an amplified spontaneous emission (ASE) as the irradiation source has been developed for testing thin-film damage threshold. The partial coherence of the ASE source results in a very smooth beam profile in the near-field and a uniform intensity distribution of the focal spot in the far-field. ASE is generated by an Nd: glass rod amplifier in SG-II high power laser facility, with pulse duration of 9 ns and spectral width (FWHM) of 1 nm. The damage threshold of the TiO2 high reflection film is 14.4J/cm2 using ASE as the irradiation source, about twice of 7.4 J/cm2 that tested by a laser source with the same pulse duration and central wavelength. The damage area induced by ASE is small with small-scale desquamation and a few pits, corresponding to the defect distribution of samples. Large area desquamation is observed in the area damaged by laser, as the main reason that the non-uniformity of the laser light. The ASE damage threshold leads to more accurate evaluations of the samples damage probability by reducing the influence of hot spots in the irradiation beam. Furthermore, the ASE source has a great potential in the detection of the defect distribution of the optical elements.

  1. LONG-TERM SD-OCT/SLO IMAGING OF NEURORETINA AND RETINAL PIGMENT EPITHELIUM AFTER SUB-THRESHOLD INFRARED LASER TREATMENT OF DRUSEN

    PubMed Central

    MOJANA, FRANCESCA; BRAR, MANPREET; CHENG, LINGYUN; BARTSCH, DIRK-UWE G.; FREEMAN, WILLIAM R.

    2012-01-01

    PURPOSE To determine the long-term effect of sub-threshold diode laser treatment for drusen in patients with non-exudative age-related macular degeneration (AMD) with spectral domain optical coherence tomography combined with simultaneous scanning laser ophthalmoscope (SD-OCT/SLO). METHODS 8 eyes of 4 consecutive AMD patients with bilateral drusen previously treated with sub-threshold diode laser were imaged with SD-OCT/SLO. Abnormalities in the outer retina layers reflectivity as seen with SD-OCT/SLO were retrospectively analyzed and compared with color fundus pictures and autofluorescence images (AF) acquired immediately before and after the laser treatment. RESULTS A focal discrete disruptions in the reflectivity of the outer retinal layers was noted in 29% of the laser lesions. The junction in between the inner and outer segment of the photoreceptor was more frequently affected, with associated focal damage of the outer nuclear layer. Defects of the RPE were occasionally detected. These changes did not correspond to threshold burns on color fundus photography, but corresponded to focal areas of increased AF in the majority of the cases. CONCLUSIONS Sub-threshold diode laser treatment causes long-term disruption of the retinal photoreceptor layer as analyzed by SD-OCT/SLO. The concept that sub-threshold laser treatment can achieve a selected RPE effect without damage to rods and cones may be flawed. PMID:21157398

  2. Analysis Concerning the Inspection Threshold for Multi-Site Damage.

    DOT National Transportation Integrated Search

    1993-12-01

    Periodic inspections, at a prescribed interval, for Multi-Site Damage (MS) in longitudinal fuselage lap-joints start when the aircraft has accumulated a certain number of flights, the inspection threshold. The work reported here was an attempt to obt...

  3. Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization

    DOE PAGES

    Saha, Sourabh K.; Divin, Chuck; Cuadra, Jefferson A.; ...

    2017-05-12

    Two-photon polymerization (TPP) is a laser writing process that enables fabrication of millimeter scale three-dimensional (3D) structures with submicron features. In TPP, writing is achieved via nonlinear two-photon absorption that occurs at high laser intensities. Thus, it is essential to carefully select the incident power to prevent laser damage during polymerization. Currently, the feasible range of laser power is identified by writing small test patterns at varying power levels. Here in this paper, we demonstrate that the results of these tests cannot be generalized, because the damage threshold power depends on the proximity of features and reduces by as muchmore » as 47% for overlapping features. We have identified that this reduction occurs primarily due to an increase in the single-photon absorptivity of the resin after curing. We have captured the damage from proximity effects via X-ray 3D computed tomography (CT) images of a non-homogenous part that has varying feature density. Part damage manifests as internal spherical voids that arise due to boiling of the resist. We have empirically quantified this proximity effect by identifying the damage threshold power at different writing speeds and feature overlap spacings. In addition, we present a first-order analytical model that captures the scaling of this proximity effect. Based on this model and the experiments, we have identified that the proximity effect is more significant at high writing speeds; therefore, it adversely affects the scalability of manufacturing. The scaling laws and the empirical data generated here can be used to select the appropriate TPP writing parameters.« less

  4. Optics Recycle Loop Strategy for NIF Operations above UV Laser-Induced Damage Threshold

    DOE PAGES

    Spaeth, M. L.; Wegner, P. J.; Suratwala, T. I.; ...

    2017-03-23

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) houses the world’s largest laser system, composed of 192 individual, 40-cm-aperture beamlines. The NIF laser routinely operates at ultraviolet (UV) fluences above 8 J/cm 2, more than twice the (3ω only) damage threshold of commercially available UV-grade fused silica. NIF is able to maintain such high fluence operation by using an optics recycling loop strategy. Successful operation of the loop relies on a number of technologies specifically developed for NIF. One of the most important is the capability developed by LLNL and their vendors for producing highly damage-resistant optics.more » Other technologies developed for the optics recycle loop raise the operating point of NIF by keeping damage growth in check. LLNL has demonstrated the capability to sustain UV fused silica optic recycling rates of up to 40 optics per week. The optics are ready for reinstallation after a 3-week trip through a recycle loop where the damage state of each optic is assessed and repaired. The impact of the optics recycle loop has been profound, allowing the experimental program to routinely employ energies and fluences that would otherwise have been unachievable. Without the recycle loop, it is likely that the NIF fluence would need to be kept below the UV threshold for damage growth, ~4 J/cm 2, thus keeping the energy delivered to the target significantly below 1 MJ. With the recycle loop implemented during the National Ignition Campaign, NIF can routinely deliver >1.8 MJ on target, an increase in operational capability of more than 100%. Finally, in this paper, the enabling technological advances, optical performance, and operational capability implications of the optics recycle loop are discussed.« less

  5. Optics Recycle Loop Strategy for NIF Operations above UV Laser-Induced Damage Threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaeth, M. L.; Wegner, P. J.; Suratwala, T. I.

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) houses the world’s largest laser system, composed of 192 individual, 40-cm-aperture beamlines. The NIF laser routinely operates at ultraviolet (UV) fluences above 8 J/cm 2, more than twice the (3ω only) damage threshold of commercially available UV-grade fused silica. NIF is able to maintain such high fluence operation by using an optics recycling loop strategy. Successful operation of the loop relies on a number of technologies specifically developed for NIF. One of the most important is the capability developed by LLNL and their vendors for producing highly damage-resistant optics.more » Other technologies developed for the optics recycle loop raise the operating point of NIF by keeping damage growth in check. LLNL has demonstrated the capability to sustain UV fused silica optic recycling rates of up to 40 optics per week. The optics are ready for reinstallation after a 3-week trip through a recycle loop where the damage state of each optic is assessed and repaired. The impact of the optics recycle loop has been profound, allowing the experimental program to routinely employ energies and fluences that would otherwise have been unachievable. Without the recycle loop, it is likely that the NIF fluence would need to be kept below the UV threshold for damage growth, ~4 J/cm 2, thus keeping the energy delivered to the target significantly below 1 MJ. With the recycle loop implemented during the National Ignition Campaign, NIF can routinely deliver >1.8 MJ on target, an increase in operational capability of more than 100%. Finally, in this paper, the enabling technological advances, optical performance, and operational capability implications of the optics recycle loop are discussed.« less

  6. Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Sourabh K.; Divin, Chuck; Cuadra, Jefferson A.

    Two-photon polymerization (TPP) is a laser writing process that enables fabrication of millimeter scale three-dimensional (3D) structures with submicron features. In TPP, writing is achieved via nonlinear two-photon absorption that occurs at high laser intensities. Thus, it is essential to carefully select the incident power to prevent laser damage during polymerization. Currently, the feasible range of laser power is identified by writing small test patterns at varying power levels. Here in this paper, we demonstrate that the results of these tests cannot be generalized, because the damage threshold power depends on the proximity of features and reduces by as muchmore » as 47% for overlapping features. We have identified that this reduction occurs primarily due to an increase in the single-photon absorptivity of the resin after curing. We have captured the damage from proximity effects via X-ray 3D computed tomography (CT) images of a non-homogenous part that has varying feature density. Part damage manifests as internal spherical voids that arise due to boiling of the resist. We have empirically quantified this proximity effect by identifying the damage threshold power at different writing speeds and feature overlap spacings. In addition, we present a first-order analytical model that captures the scaling of this proximity effect. Based on this model and the experiments, we have identified that the proximity effect is more significant at high writing speeds; therefore, it adversely affects the scalability of manufacturing. The scaling laws and the empirical data generated here can be used to select the appropriate TPP writing parameters.« less

  7. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress.

    PubMed

    De Marchi, Thiago; Leal Junior, Ernesto Cesar Pinto; Bortoli, Celiana; Tomazoni, Shaiane Silva; Lopes-Martins, Rodrigo Alvaro Brandão; Salvador, Mirian

    2012-01-01

    The aim of this work was to evaluate the effects of low-level laser therapy (LLLT) on exercise performance, oxidative stress, and muscle status in humans. A randomized double-blind placebo-controlled crossover trial was performed with 22 untrained male volunteers. LLLT (810 nm, 200 mW, 30 J in each site, 30 s of irradiation in each site) using a multi-diode cluster (with five spots - 6 J from each spot) at 12 sites of each lower limb (six in quadriceps, four in hamstrings, and two in gastrocnemius) was performed 5 min before a standardized progressive-intensity running protocol on a motor-drive treadmill until exhaustion. We analyzed exercise performance (VO(2 max), time to exhaustion, aerobic threshold and anaerobic threshold), levels of oxidative damage to lipids and proteins, the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and the markers of muscle damage creatine kinase (CK) and lactate dehydrogenase (LDH). Compared to placebo, active LLLT significantly increased exercise performance (VO(2 max) p = 0.01; time to exhaustion, p = 0.04) without changing the aerobic and anaerobic thresholds. LLLT also decreased post-exercise lipid (p = 0.0001) and protein (p = 0.0230) damages, as well as the activities of SOD (p = 0.0034), CK (p = 0.0001) and LDH (p = 0.0001) enzymes. LLLT application was not able to modulate CAT activity. The use of LLLT before progressive-intensity running exercise increases exercise performance, decreases exercise-induced oxidative stress and muscle damage, suggesting that the modulation of the redox system by LLLT could be related to the delay in skeletal muscle fatigue observed after the use of LLLT.

  8. LIDT test coupled with gamma radiation degraded optics

    NASA Astrophysics Data System (ADS)

    IOAN, M.-R.

    2016-06-01

    A laser can operate in regular but also in nuclear ionizing radiation environments. This paper presents the results of a real time measuring method used to detect the laser induced damage threshold (LIDT) in the optical surfaces/volumes of TEMPAX borosilicate glasses operating in high gamma rays fields. The laser damage quantification technique is applied by using of an automated station intended to measure the damage threshold of optical components, according to the International Standard ISO 21254. Single and multiple pulses laser damage thresholds were determined. For an optical material, life time when it is subjected to multiple pulses of high power laser radiation can be predicted. A few ns pulses shooting laser, operating in regular conditions, inflects damage to a target by its intense electrical component but also in a lower manner by local absorption of its transported thermal energy. When the beam is passing thru optical glass elements affected by ionizing radiation fields, the thermal component is starting to have a more important role, because of the increased thermal absorption in the material's volume caused by the radiation induced color centers. LIDT results on TEMPAX optical glass windows, with the contribution due to the gamma radiation effects (ionization mainly by Compton effect in this case), are presented. This contribution was highlighted and quantified. Energetic, temporal and spatial beam characterizations (according to ISO 11554 standards) and LIDT tests were performed using a high power Nd: YAG laser (1064 nm), before passing the beam through each irradiated glass sample (0 kGy, 1.3 kGy and 21.2 kGy).

  9. Effects of substrate on the femtosecond laser-induced damage properties of gold films

    NASA Astrophysics Data System (ADS)

    Huang, Haopeng; Wang, Leilei; Kong, Fanyu; Xia, Zhilin; Jin, Yunxia; Xu, Jiao; Chen, Junming; Cui, Yun; Shao, Jianda

    2018-07-01

    In this work, gold films on two different types of substrates were fabricated by electron beam (e-beam) evaporation, and the femtosecond laser-induced damage properties were evaluated. The first sample was gold film deposited on fused silica, whereas the second was gold deposited on photoresist. 1-on-1 damage tests were implemented by an 800 ± 30 nm laser with pulse duration of 30 fs. Different damage thresholds and morphologies were obtained for the two samples. The damage threshold of the gold film on fused silica was 0.64 J/cm2, with the typical damage morphology of thermal ablation and melting; the damage threshold of the gold film on photoresist was 0.30 J/cm2, with the typical damage morphology of blisters or peeling off. In order to better understand the impact of the substrate on the properties of the whole sample, the normalized electric field intensity, temperature, and thermal stress distributions were calculated. The adhesion between the gold film and substrate were measured and the experimental results well agreed with the theoretical analysis. The results indicate that gold films deposited onto grating-structured fused silica will have more powerful laser damage resistance performance.

  10. Flood Damages- savings potential for Austrian municipalities and evidence of adaptation

    NASA Astrophysics Data System (ADS)

    Unterberger, C.

    2016-12-01

    Recent studies show that the number of extreme precipitation events has increased globally and will continue to do so in the future. These observations are particularly true for central, northern and north-eastern Europe. These changes in the patterns of extreme events have direct repercussions for policy makers. Rojas et al. (2013) find that until 2080, annual damages could increase by a factor of 17 (from €5,5 bn/year today to € 98 bn/year in 2080) in the event that no adaptation measures are taken. Steininger et al. (2015) find that climate and weather induced extreme events account for an annual current welfare loss of about € 1 billion in Austria. As a result, policy makers will need to understand the interaction between hazard, exposure and vulnerability, with the goal of achieving flood risk reduction. Needed is a better understanding of where exposure, vulnerability and eventually flood risk are highest, i.e. where to reduce risk first and which factors drive existing flood risk. This article analyzes direct flood losses as reported by 1153 Austrian municipalities between 2005 and 2013. To achieve comparability between flood damages and municipalities' ordinary spending, a "vulnerability threshold" is introduced suggesting that flood damages should be lower than 5% of municipalities' average annual ordinary spending. It is found that the probability that flood damages exceed this vulnerability threshold is 12%. To provide a reliable estimate for that exceedance probability the joint distribution of damages and spending is modelled by means of a copula approach. Based on the joint distribution, a Monte Carlo simulation is conducted to derive uncertainty ranges for the exceedance probability. To analyze the drivers of flood damages and the effect they have on municipalities' spending, two linear regression models are estimated. Hereby obtained results suggest that damages increase significantly for those municipalities located along the shores of the river Danube and decrease significantly for municipalities that experienced floods in the past- indicating successful adaptation. As for the relationship between flood damages and municipalities' spending, the regression results indicate that flood damages have a significant positive impact.

  11. Removal of dust particles from metal mirror surfaces by excimer laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, K.; Wolff-Rottke, B.; Mueller, F.

    1995-12-31

    The effect of particle desorption from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way of cleaning the Al coatings of future very large telescope (VLT) mirrors. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples, taking particularly into account laser induced damage and degradation effects of coating and substrate. The particle removal rate increases with increasing laser fluence,more » being limited however by the damage threshold of the coating. Therefore, parameters influencing the damage threshold of metal coatings like wavelength, pulse width and number of pulses have been studied in detail. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be reinstalled, in particular when an additional solvent film on the sample surface is applied. Hence, laser desorption seems to be a viable method of cleaning large Al mirrors for telescopes.« less

  12. Link between mechanical strength and laser damage threshold for antireflective coating made by sol-gel

    NASA Astrophysics Data System (ADS)

    Avice, J.; Piombini, H.; Boscher, C.; Belleville, P.; Vaudel, G.; Brotons, G.; Ruello, P.; Gusev, V.

    2017-11-01

    The MegaJoule Laser (LMJ) for inertial confinement fusion experiments is currently in operation at CEA-CESTA in France. All the lenses are coated by an antireflective (AR) layer to optimize the light power transmission. This AR layer is manufactured by sol-gel process, a soft chemical process, associated with a liquid phase coating technique to realize thin film of metal oxide. These optical components are hardened into ammoniac vapors in order to mechanically reinforce the AR coating and to make them more handling. This hardening induces a thickness reduction of the layer so an increase of the stiffness and sometimes a crazing of the layer. As these optical components undergo a high-power laser beam, so, it is important to verify if the AR properties (optical and mechanical) influence the value of the threshold laser damage. A series of coated samples have been manufactured having variable elastic moduli to discuss this point. In that purpose, a homemade Laser Induced Damage Threshold (LIDT) setup has been developed to test the layers under laser flux. We describe the used methods and different results are given. Preliminary results obtained on several coated samples with variable elastic moduli are presented. We show that whatever are the elastic stiffness of the AR coating, an overall decrease of the threshold appears with no noticeable effect of the mechanical properties of the AR coatings. Some possible explanations are given.

  13. Laser pulse power transmission limits of silica fibers with antireflective coating

    NASA Astrophysics Data System (ADS)

    Meister, St.; Wosniok, A.; Seewald, G.; Scharfenorth, Ch.; Eichler, H. J.

    2005-04-01

    Multimode optical fibers are used for the transmission of high power laser pulses and as phase conjugated mirrors by stimulated Brillouin scattering. Both applications are enhanced by antireflection coatings on the fiber end-faces. Fiber transmissions reach more than 99.5% for pulse energies below the threshold of stimulated Brillouin scattering. Laser-induced damage thresholds of the fibers coated with Ta2O5 / SiO2 were measured at 1064 nm and 24 ns pulse duration. A damage threshold of up to 101 J/cm2 could be achieved. The damage morphology was investigated using atomic force microscopy and scanning electron microscopy.

  14. Effect of Li and NH4 doping on the crystal perfection, second harmonic generation efficiency and laser damage threshold of potassium pentaborate crystals

    NASA Astrophysics Data System (ADS)

    Vigneshwaran, A. N.; Kalainathan, S.; Raja, C. Ramachandra

    2018-03-01

    Potassium pentaborate (KB5) is an excellent nonlinear optical material especially in the UV region. In this work, Li and NH4 doped KB5 crystals were grown using slow evaporation solution growth method. The incorporation of dopant has been confirmed and analysed by Energy dispersive X-ray analysis (EDAX), Inductively coupled plasma (ICP) analysis and Raman spectroscopy. The crystalline perfection of pure and doped KB5 crystals was studied by High resolution X-ray diffraction (HRXRD) analysis. Structural grain boundaries were observed in doped crystals. Second harmonic generation was confirmed for pure and doped crystals and output values revealed the enhancement of SHG efficiency in doped crystals. Resistance against laser damage was carried out using 1064 nm Nd-YAG laser of pulse width 10 ns. The laser damage threshold value is increased in Li doped crystal and decreased in NH4 doped crystal when compared to pure KB5 crystal.

  15. Calculation of femtosecond pulse laser induced damage threshold for broadband antireflective microstructure arrays.

    PubMed

    Jing, Xufeng; Shao, Jianda; Zhang, Junchao; Jin, Yunxia; He, Hongbo; Fan, Zhengxiu

    2009-12-21

    In order to more exactly predict femtosecond pulse laser induced damage threshold, an accurate theoretical model taking into account photoionization, avalanche ionization and decay of electrons is proposed by comparing respectively several combined ionization models with the published experimental measurements. In addition, the transmittance property and the near-field distribution of the 'moth eye' broadband antireflective microstructure directly patterned into the substrate material as a function of the surface structure period and groove depth are performed by a rigorous Fourier model method. It is found that the near-field distribution is strongly dependent on the periodicity of surface structure for TE polarization, but for TM wave it is insensitive to the period. What's more, the femtosecond pulse laser damage threshold of the surface microstructure on the pulse duration taking into account the local maximum electric field enhancement was calculated using the proposed relatively accurate theoretical ionization model. For the longer incident wavelength of 1064 nm, the weak linear damage threshold on the pulse duration is shown, but there is a surprising oscillation peak of breakdown threshold as a function of the pulse duration for the shorter incident wavelength of 532 nm.

  16. Identification of structural damage using wavelet-based data classification

    NASA Astrophysics Data System (ADS)

    Koh, Bong-Hwan; Jeong, Min-Joong; Jung, Uk

    2008-03-01

    Predicted time-history responses from a finite-element (FE) model provide a baseline map where damage locations are clustered and classified by extracted damage-sensitive wavelet coefficients such as vertical energy threshold (VET) positions having large silhouette statistics. Likewise, the measured data from damaged structure are also decomposed and rearranged according to the most dominant positions of wavelet coefficients. Having projected the coefficients to the baseline map, the true localization of damage can be identified by investigating the level of closeness between the measurement and predictions. The statistical confidence of baseline map improves as the number of prediction cases increases. The simulation results of damage detection in a truss structure show that the approach proposed in this study can be successfully applied for locating structural damage even in the presence of a considerable amount of process and measurement noise.

  17. Influence of subsurface defects on damage performance of fused silica in ultraviolet laser

    NASA Astrophysics Data System (ADS)

    Huang, Jin; Zhou, Xinda; Liu, Hongjie; Wang, Fengrui; Jiang, Xiaodong; Wu, Weidong; Tang, Yongjian; Zheng, Wanguo

    2013-02-01

    In ultraviolet pulse laser, damage performance of fused silica optics is directly dependent on the absorptive impurities and scratches in subsurface, which are induced by mechanical polishing. In the research about influence of subsurface defects on damage performance, a series of fused silica surfaces with various impurity concentrations and scratch structures were created by hydrofluoric (HF) acid solution etching. Time of Flight secondary ion mass spectrometry and scanning probe microprobe revealed that with increasing etching depth, impurity concentrations in subsurface layers are decreased, the scratch structures become smoother and the diameter:depth ratio is increased. Damage performance test with 355-nm pulse laser showed that when 600 nm subsurface thickness is removed by HF acid etching, laser-induced damage threshold of fused silica is raised by 40 percent and damage density is decreased by over one order of magnitude. Laser weak absorption was tested to explain the cause of impurity elements impacting damage performance, field enhancement caused by change of scratch structures was calculated by finite difference time domain simulation, and the calculated results are in accord with the damage test results.

  18. Interactions of forest management practices and tip moth damage

    Treesearch

    John T. Nowak

    1999-01-01

    Intensive forest management practices have been shown to increase tree growth and shorten rotation time. However, they may also increase the need for insect pest management because of higher infestation levels and lower action thresholds. The Nantucket pine tip moth (Rhyacionia frustrana [Comstock]) is one insect that is expected to become more important with more...

  19. Understanding the Femtosecond Laser-Solid Interaction Near and Beyond the Material Damage Threshold

    DTIC Science & Technology

    2016-05-23

    study of the fundamentals of femtosecond laser damage as a function of various parameters, laser wavelength, pulsewidth, pulse number, experimental ... experimental observation without any free parameters. The brand new FSD Lab constructed under the BRI grant in the Physics Research Building at the Ohio... studied across a range of band-gaps for s- and p-polarized light and it is found that conventional theoretical prediction on laser damage threshold

  20. The effects of tensile preloads on the impact response of carbon/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan; Daniel, Vince; Branscomb, Caleb

    1995-01-01

    The effects of tensile preloads on the tension-after-impact (TAI) strength of composite laminates of IM7/8551-7 were examined. A failure threshold curve was first determined so the most informative values for preload/impact energy combinations could be determined. The impact tests were instrumented so maximum load of impact, as well as several other parameters could be measured. The elastic response data indicate that as the tensile preload is increased, the maximum load of impact also increases. The damage data show that at low impact energies, the damage/failure is an 'all-or-nothing' event but at higher impact energies, a region of preload values exists where the coupons could sustain damage, yet not fail catastrophically.

  1. Thresholds in marsh resilience to the Deepwater Horizon oil spill

    PubMed Central

    Silliman, Brian R.; Dixon, Philip M.; Wobus, Cameron; He, Qiang; Daleo, Pedro; Hughes, Brent B.; Rissing, Matthew; Willis, Jonathan M.; Hester, Mark W.

    2016-01-01

    Ecosystem boundary retreat due to human-induced pressure is a generally observed phenomenon. However, studies that document thresholds beyond which internal resistance mechanisms are overwhelmed are uncommon. Following the Deepwater Horizon (DWH) oil spill, field studies from a few sites suggested that oiling of salt marshes could lead to a biogeomorphic feedback where plant death resulted in increased marsh erosion. We tested for spatial generality of and thresholds in this effect across 103 salt marsh sites spanning ~430 kilometers of shoreline in coastal Louisiana, Alabama, and Mississippi, using data collected as part of the natural resource damage assessment (NRDA). Our analyses revealed a threshold for oil impacts on marsh edge erosion, with higher erosion rates occurring for ~1–2 years after the spill at sites with the highest amounts of plant stem oiling (90–100%). These results provide compelling evidence showing large-scale ecosystem loss following the Deepwater Horizon oil spill. More broadly, these findings provide rare empirical evidence identifying a geomorphologic threshold in the resistance of an ecosystem to increasing intensity of human-induced disturbance. PMID:27679956

  2. Evaluating the Thermal Damage Resistance of Reduced Graphene Oxide/Carbon Nanotube Hybrid Coatings

    NASA Astrophysics Data System (ADS)

    David, Lamuel; Feldman, Ari; Mansfield, Elisabeth; Lehman, John; Singh, Gurpreet; National Institute of Standards and Technology Collaboration

    2014-03-01

    Carbon nanotubes and graphene are known to exhibit some exceptional thermal (K ~ 2000 to 4400 W.m-1K-1 at 300K) and optical properties. Here, we demonstrate preparation and testing of multiwalled carbon nanotubes and chemically modified graphene-composite spray coatings for use on thermal detectors for high-power lasers. The synthesized nanocomposite material was tested by preparing spray coatings on aluminum test coupons used as a representation of the thermal detector's surface. These coatings were then exposed to increasing laser powers and extended exposure times to quantify their damage threshold and optical absorbance. The graphene/carbon nanotube (prepared at varying mass% of graphene in CNTs) coatings demonstrated significantly higher damage threshold values at 2.5 kW laser power (10.6 μm wavelength) than carbon paint or MWCNTs alone. Electron microscopy and Raman spectroscopy of irradiated specimens showed that the composite coating endured high laser-power densities (up to 2 kW.cm-2) without significant visual damage. This research is based on work supported by the National Science Foundation (Chemical, Bioengineering, Environmental, and Transport Systems Division), under grant no. 1335862 to G. Singh.

  3. An in vitro Corneal Model with a Laser Damage Threshold at 2 Micrometers That is Similar to That in the Rabbit

    DTIC Science & Technology

    2007-11-01

    Proceedings 3. DATES COVERED (From - To) June 2007- November 2007 4. TITLE AND SUBTITLE An In Vitro Corneal Model with a Laser Damage Threshold at 2...2-µm wavelength output of a thulium fiber laser with 4 mm beam diameter for 0.25 seconds in a thermally controlled environment and then assayed for...data in the literature. 15. SUBJECT TERMS corneal organotypic culture, laser , threshold, thermography, Probit 16. SECURITY CLASSIFICATION OF

  4. Laser-Induced Damage Threshold and Certification Procedures for Optical Materials

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This document provides instructions for performing laser-induced-damage-threshold tests and pass-fail certification tests on optical materials used in pulsed-laser systems. The optical materials to which these procedures apply include coated and uncoated optical substrates, laser crystals, Q-switches, polarizers, and other optical components employed in pulsed-laser systems.

  5. Near-threshold fatigue crack behaviour in EUROFER 97 at different temperatures

    NASA Astrophysics Data System (ADS)

    Aktaa, J.; Lerch, M.

    2006-07-01

    The fatigue crack behaviour in EUROFER 97 was investigated at room temperature (RT), 300, 500 and 550 °C for the assessment of cracks in first wall structures built from EUROFER 97 of future fusion reactors. For this purpose, fatigue crack growth tests were performed using CT specimens with two R-ratios, R = 0.1 and R = 0.5 ( R is the load ratio with R = Fmin/ Fmax where Fmin and Fmax are the minimum and maximum applied loads within a cycle, respectively). Hence, fatigue crack threshold, fatigue crack growth behaviour in the near-threshold range and their dependences on temperature and R-ratio were determined and described using an analytical formula. The fatigue crack threshold showed a monotonous dependence on temperature which is for R = 0.5 insignificantly small. The fatigue crack growth behaviour exhibited for R = 0.1 a non-monotonous dependence on temperature which is explained by the decrease of yield stress and the increase of creep damage with increasing temperature.

  6. Laser-induced retinal damage thresholds for annular retinal beam profiles

    NASA Astrophysics Data System (ADS)

    Kennedy, Paul K.; Zuclich, Joseph A.; Lund, David J.; Edsall, Peter R.; Till, Stephen; Stuck, Bruce E.; Hollins, Richard C.

    2004-07-01

    The dependence of retinal damage thresholds on laser spot size, for annular retinal beam profiles, was measured in vivo for 3 μs, 590 nm pulses from a flashlamp-pumped dye laser. Minimum Visible Lesion (MVL)ED50 thresholds in rhesus were measured for annular retinal beam profiles covering 5, 10, and 20 mrad of visual field; which correspond to outer beam diameters of roughly 70, 160, and 300 μm, respectively, on the primate retina. Annular beam profiles at the retinal plane were achieved using a telescopic imaging system, with the focal properties of the eye represented as an equivalent thin lens, and all annular beam profiles had a 37% central obscuration. As a check on experimental data, theoretical MVL-ED50 thresholds for annular beam exposures were calculated using the Thompson-Gerstman granular model of laser-induced thermal damage to the retina. Threshold calculations were performed for the three experimental beam diameters and for an intermediate case with an outer beam diameter of 230 μm. Results indicate that the threshold vs. spot size trends, for annular beams, are similar to the trends for top hat beams determined in a previous study; i.e., the threshold dose varies with the retinal image area for larger image sizes. The model correctly predicts the threshold vs. spot size trends seen in the biological data, for both annular and top hat retinal beam profiles.

  7. Interaction of Tamoxifen and noise induced damage to the cochlea

    PubMed Central

    Pillai, Jagan A; Siegel, Jonathan H

    2011-01-01

    Tamoxifen has been used extensively in the treatment of breast cancer and other neoplasms. In addition to its well-known action on estrogen receptors it is also known to acutely block chloride channels that participate in cell volume regulation. Tamoxifen’s role in preventing cochlear outer hair cell (OHC) swelling in vitro suggested that OHC swelling noted following noise exposure could potentially be a therapeutic target for Tamoxifen in its role as a chloride channel blocker to help prevent noise induced hearing loss. To investigate this possiblity, the effects of exposure to Tamoxifen on physiologic measures of cochlear function in the presence and absence of subsequent noise exposure were studied. Male Mongolian gerbils (2–4 months old) were randomly assigned to different groups. Tamoxifen at ~10 mg/kg was administered to one of the groups. Five hours later they were exposed to a one-third octave band of noise centered at 8 kHz in a sound isolation chamber for 30 minutes at 108dB SPL. Compound action potential (CAP) thresholds and distortion product otoacoustic emission (DPOAE) levels were measured 30–35 days following noise exposure. Tamoxifen administration did not produce any changes in CAP thresholds and DPOAE levels when administered by itself in the absence of noise. Tamoxifen causes a significant increase in CAP thresholds from 8–15 kHz following noise exposure compared to CAP thresholds in animals exposed to noise alone. No significant differences were seen in the DPOAE levels the f2 = 8–15 kHz frequency range where maximum noise-induced increases in CAP thresholds were seen. Contrary to our original expectation, it is concluded that Tamoxifen potentiates the degree of damage to the cochlea resulting from noise exposure. PMID:21907781

  8. [Effects of radiation exposure on human body].

    PubMed

    Kamiya, Kenji; Sasatani, Megumi

    2012-03-01

    There are two types of radiation health effect; acute disorder and late on-set disorder. Acute disorder is a deterministic effect that the symptoms appear by exposure above a threshold. Tissues and cells that compose the human body have different radiation sensitivity respectively, and the symptoms appear in order, from highly radiosensitive tissues. The clinical symptoms of acute disorder begin with a decrease in lymphocytes, and then the symptoms appear such as alopecia, skin erythema, hematopoietic damage, gastrointestinal damage, central nervous system damage with increasing radiation dose. Regarding the late on-set disorder, a predominant health effect is the cancer among the symptoms of such as cancer, non-cancer disease and genetic effect. Cancer and genetic effect are recognized as stochastic effects without the threshold. When radiation dose is equal to or more than 100 mSv, it is observed that the cancer risk by radiation exposure increases linearly with an increase in dose. On the other hand, the risk of developing cancer through low-dose radiation exposure, less 100 mSv, has not yet been clarified scientifically. Although uncertainty still remains regarding low level risk estimation, ICRP propound LNT model and conduct radiation protection in accordance with LNT model in the low-dose and low-dose rate radiation from a position of radiation protection. Meanwhile, the mechanism of radiation damage has been gradually clarified. The initial event of radiation-induced diseases is thought to be the damage to genome such as radiation-induced DNA double-strand breaks. Recently, it is clarified that our cells could recognize genome damage and induce the diverse cell response to maintain genome integrity. This phenomenon is called DNA damage response which induces the cell cycle arrest, DNA repair, apoptosis, cell senescence and so on. These responses act in the direction to maintain genome integrity against genome damage, however, the death of large number of cells results in acute disorder, and then DNA mis-repair and mutation is speculated to cause cancer. The extent to which this kind of cellular response could reduce the low-dose radiation risk is a major challenge for future research.

  9. Modeling the Progression of Epithelial Leak Caused by Overdistension

    PubMed Central

    Hamlington, Katharine L.; Ma, Baoshun; Smith, Bradford J.; Bates, Jason H. T.

    2016-01-01

    Mechanical ventilation is necessary for treatment of the acute respiratory distress syndrome but leads to overdistension of the open regions of the lung and produces further damage. Although we know that the excessive stresses and strains disrupt the alveolar epithelium, we know little about the relationship between epithelial strain and epithelial leak. We have developed a computational model of an epithelial monolayer to simulate leak progression due to overdistension and to explain previous experimental findings in mice with ventilator-induced lung injury. We found a nonlinear threshold-type relationship between leak area and increasing stretch force. After the force required to initiate the leak was reached, the leak area increased at a constant rate with further increases in force. Furthermore, this rate was slower than the rate of increase in force, especially at end-expiration. Parameter manipulation changed only the leak-initiating force; leak area growth followed the same trend once this force was surpassed. These results suggest that there is a particular force (analogous to ventilation tidal volume) that must not be exceeded to avoid damage and that changing cell physical properties adjusts this threshold. This is relevant for the development of new ventilator strategies that avoid inducing further injury to the lung. PMID:26951764

  10. Laser injury and in vivo multimodal imaging using a mouse model

    NASA Astrophysics Data System (ADS)

    Pocock, Ginger M.; Boretsky, Adam; Gupta, Praveena; Oliver, Jeff W.; Motamedi, Massoud

    2011-03-01

    Balb/c wild type mice were used to perform in vivo experiments of laser-induced thermal damage to the retina. A Heidelberg Spectralis HRA confocal scanning laser ophthalmoscope with a spectral domain optical coherence tomographer was used to obtain fundus and cross-sectional images of laser induced injury in the retina. Sub-threshold, threshold, and supra-threshold lesions were observed using optical coherence tomography (OCT), infrared reflectance, red-free reflectance, fluorescence angiography, and autofluorescence imaging modalities at different time points post-exposure. Lesions observed using all imaging modalities, except autofluorescence, were not visible immediately after exposure but did resolve within an hour and grew in size over a 24 hour period. There was a decrease in fundus autofluorescence at exposure sites immediately following exposure that developed into hyper-fluorescence 24-48 hours later. OCT images revealed threshold damage that was localized to the RPE but extended into the neural retina over a 24 hour period. Volumetric representations of the mouse retina were created to visualize the extent of damage within the retina over a 24 hour period. Multimodal imaging provides complementary information regarding damage mechanisms that may be used to quantify the extent of the damage as well as the effectiveness of treatments without need for histology.

  11. Multiple pulse nanosecond laser induced damage threshold on hybrid mirrors

    NASA Astrophysics Data System (ADS)

    Vanda, Jan; Muresan, Mihai-George; Bilek, Vojtech; Sebek, Matej; Hanus, Martin; Lucianetti, Antonio; Rostohar, Danijela; Mocek, Tomas; Škoda, Václav

    2017-11-01

    So-called hybrid mirrors, consisting of broadband metallic surface coated with dielectric reflector designed for specific wavelength, becoming more important with progressing development of broadband mid-IR sources realized using parametric down conversion system. Multiple pulse nanosecond laser induced damage on such mirrors was tested by method s-on-1, where s stands for various numbers of pulses. We show difference in damage threshold between common protected silver mirrors and hybrid silver mirrors prepared by PVD technique and their variants prepared by IAD. Keywords: LIDT,

  12. Predicting threshold and location of laser damage on optical surfaces

    DOEpatents

    Siekhaus, Wigbert

    1987-01-01

    An apparatus useful in the prediction of the damage threshold of various optical devices, the location of weak spots on such devices and the location, identification, and elimination of optical surface impurities comprising, a focused and pulsed laser, an photo electric detector/imaging means, and a timer. The weak spots emit photoelectrons when subjected to laser intensities that are less than the intensity actually required to produce the damage. The weak spots may be eliminated by sustained exposure to the laser beam.

  13. Gear Damage Detection Using Oil Debris Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2001-01-01

    The purpose of this paper was to verify, when using an oil debris sensor, that accumulated mass predicts gear pitting damage and to identify a method to set threshold limits for damaged gears. Oil debris data was collected from 8 experiments with no damage and 8 with pitting damage in the NASA Glenn Spur Gear Fatigue Rig. Oil debris feature analysis was performed on this data. Video images of damage progression were also collected from 6 of the experiments with pitting damage. During each test, data from an oil debris sensor was monitored and recorded for the occurrence of pitting damage. The data measured from the oil debris sensor during experiments with damage and with no damage was used to identify membership functions to build a simple fuzzy logic model. Using fuzzy logic techniques and the oil debris data, threshold limits were defined that discriminate between stages of pitting wear. Results indicate accumulated mass combined with fuzzy logic analysis techniques is a good predictor of pitting damage on spur gears.

  14. Digital Image Sensor-Based Assessment of the Status of Oat (Avena sativa L.) Crops after Frost Damage

    PubMed Central

    Macedo-Cruz, Antonia; Pajares, Gonzalo; Santos, Matilde; Villegas-Romero, Isidro

    2011-01-01

    The aim of this paper is to classify the land covered with oat crops, and the quantification of frost damage on oats, while plants are still in the flowering stage. The images are taken by a digital colour camera CCD-based sensor. Unsupervised classification methods are applied because the plants present different spectral signatures, depending on two main factors: illumination and the affected state. The colour space used in this application is CIELab, based on the decomposition of the colour in three channels, because it is the closest to human colour perception. The histogram of each channel is successively split into regions by thresholding. The best threshold to be applied is automatically obtained as a combination of three thresholding strategies: (a) Otsu’s method, (b) Isodata algorithm, and (c) Fuzzy thresholding. The fusion of these automatic thresholding techniques and the design of the classification strategy are some of the main findings of the paper, which allows an estimation of the damages and a prediction of the oat production. PMID:22163940

  15. Observed physical processes in mechanical tests of PBX9501 and recomendations for experiments to explore a possible plasticity/damage threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buechler, Miles A.

    2012-05-02

    This memo discusses observations that have been made in regards to a series of monotonic and cyclic uniaxial experiments performed on PBX9501 by Darla Thompson under Enhanced Surveilance Campaign support. These observations discussed in Section Cyclic compression observations strongly suggest the presence of viscoelastic, plastic, and damage phenomena in the mechanical response of the material. In Secton Uniaxial data analysis and observations methods are discussed for separating out the viscoelastic effects. A crude application of those methods suggests the possibility of a critical stress below which plasticity and damage may be negligible. The threshold should be explored because if itmore » exists it will be an important feature of any constitutive model. Additionally, if the threshold exists then modifications of experimental methods may be feasible which could potentially simplify future experiments or provide higher quality data from those experiments. A set of experiments to explore the threshold stress are proposed in Section Exploratory tests program for identifying threshold stress.« less

  16. Digital image sensor-based assessment of the status of oat (Avena sativa L.) crops after frost damage.

    PubMed

    Macedo-Cruz, Antonia; Pajares, Gonzalo; Santos, Matilde; Villegas-Romero, Isidro

    2011-01-01

    The aim of this paper is to classify the land covered with oat crops, and the quantification of frost damage on oats, while plants are still in the flowering stage. The images are taken by a digital colour camera CCD-based sensor. Unsupervised classification methods are applied because the plants present different spectral signatures, depending on two main factors: illumination and the affected state. The colour space used in this application is CIELab, based on the decomposition of the colour in three channels, because it is the closest to human colour perception. The histogram of each channel is successively split into regions by thresholding. The best threshold to be applied is automatically obtained as a combination of three thresholding strategies: (a) Otsu's method, (b) Isodata algorithm, and (c) Fuzzy thresholding. The fusion of these automatic thresholding techniques and the design of the classification strategy are some of the main findings of the paper, which allows an estimation of the damages and a prediction of the oat production.

  17. Selective retinal therapy with a continuous line scanning laser

    NASA Astrophysics Data System (ADS)

    Paulus, Yannis M.; Jain, ATul; Gariano, Ray F.; Nomoto, Hiroyuki; Schuele, Georg; Sramek, Christopher; Charalel, Resmi; Palanker, Daniel

    2010-02-01

    This study evaluates the effects of exposure duration, beam diameter, and power on the safety, selectivity, and healing of retinal lesions created using a continuous line scanning laser. A 532 nm laser (PASCALTM) with retinal beam diameters of 40 and 66 μm was applied to 60 eyes of 30 Dutch-Belted rabbits. Retinal exposure duration varied from 15 to 60 μs. Lesions were acutely assessed by ophthalmoscopy and fluorescein angiography (FA). RPE flatmounts were evaluated with live-dead fluorescent assay (LD). Histological analysis was performed at 1 hour, 1 and 3 days, 1 and 2 weeks, and 1 and 2 months following laser treatment. Ophthalmoscopic visibility (OV) of the lesions corresponded to photoreceptor damage on histological analysis at 1 hour. In subvisible lesions, FA and LD yielded similar thresholds of RPE damage. The ratios of the threshold of rupture and of OV to FA visibility (measures of safety and selectivity) increased with decreasing duration and beam diameter. Above the threshold of OV, histology showed focal RPE damage and photoreceptor loss at one day without inner retinal effects. By one week, continuity of photoreceptor and RPE layers was restored. By 1 month, photoreceptors appeared normal while hypertrophy and hyperpigmentation of the RPE persisted. Retinal therapy with a fast scanning continuous laser achieves selective targeting of the RPE and, at higher power, of the photoreceptors. The damage zone in the photoreceptor layer is quickly filled-in, likely due to photoreceptor migration from adjacent zones. Continuous scanning laser can treat large retinal areas within standard eye fixation time.

  18. Quasi-Static 3-Point Reinforced Carbon-Carbon Bend Test and Analysis for Shuttle Orbiter Wing Leading Edge Impact Damage Thresholds

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Sotiris, Kellas

    2006-01-01

    Static 3-point bend tests of Reinforced Carbon-Carbon (RCC) were conducted to failure to provide data for additional validation of an LS-DYNA RCC model suitable for predicting the threshold of impact damage to shuttle orbiter wing leading edges. LS-DYNA predictions correlated well with the average RCC failure load, and were good in matching the load vs. deflection. However, correlating the detectable damage using NDE methods with the cumulative damage parameter in LS-DYNA material model 58 was not readily achievable. The difficulty of finding internal RCC damage with NDE and the high sensitivity of the mat58 damage parameter to the load near failure made the task very challenging. In addition, damage mechanisms for RCC due to dynamic impact of debris such as foam and ice and damage mechanisms due to a static loading were, as expected, not equivalent.

  19. Combined meso-scale modeling and experimental investigation of the effect of mechanical damage on the transport properties of cementitious composites

    NASA Astrophysics Data System (ADS)

    Raghavan, Balaji; Niknezhad, Davood; Bernard, Fabrice; Kamali-Bernard, Siham

    2016-09-01

    The transport properties of cementitious composites such as concrete are important indicators of their durability, and are known to be heavily influenced by mechanical loading. In the current work, we use meso-scale hygro-mechanical modeling with a morphological 3D two phase mortar-aggregate model, in conjunction with experimentally obtained properties, to investigate the coupling between mechanical loading and damage and the permeability of the composite. The increase in permeability of a cylindrical test specimen at 28% aggregate fraction during a uniaxial displacement-controlled compression test at 85% of the peak load was measured using a gas permeameter. The mortar's mechanical behavior is assumed to follow the well-known compression damaged plasticity (CDP) model with isotropic damage, at varying thresholds, and obtained from different envelope curves. The damaged intrinsic permeability of the mortar evolves according to a logarithmic matching law with progressive loading. We fit the matching law parameters to the experimental result for the test specimen by inverse identification using our meso-scale model. We then subject a series of virtual composite specimens to quasi-static uniaxial compressive loading with varying boundary conditions to obtain the simulated damage and strain evolutions, and use the damage data and the previously identified parameters to determine the evolution of the macroscopic permeability tensor for the specimens, using a network model. We conduct a full parameter study by varying aggregate volume fraction, granulometric distribution, loading/boundary conditions and "matching law" parameters, as well as for different strain-damage thresholds and uniaxial loading envelope curves. Based on this study, we propose Avrami equation-based upper and lower bounds for the evolution of the damaged permeability of the composite.

  20. Paraheliotropic leaf movement in Siratro as a protective mechanism against drought-induced damage to primary photosynthetic reactions: damage by excessive light and heat.

    PubMed

    Ludlow, M M; Björkman, O

    1984-11-01

    Damage to primary photosynthetic reactions by drought, excess light and heat in leaves of Macroptilium atropurpureum Dc. cv. Siratro was assessed by measurements of chlorophyll fluorescence emission kinetics at 77 K (-196°C). Paraheliotropic leaf movement protected waterstressed Siratro leaves from damage by excess light (photoinhibition), by heat, and by the interactive effects of excess light and high leaf temperatures. When the leaves were restrained to a horizontal position, photoinhibition occurred and the degree of photoinhibitory damage increased with the time of exposure to high levels of solar radiation. Severe inhibition was followed by leaf death, but leaves gradually recovered from moderate damage. This drought-induced photoinhibitory damage seemed more closely related to low leaf water potential than to low leaf conductance. Exposure to leaf temperatures above 42°C caused damage to the photosynthetic system even in the dark and leaves died at 48°C. Between 42 and 48°C the degree of heat damage increased with the time of exposure, but recovery from moderate heat damage occurred over several days. The threshold temperature for direct heat damage increased with the growth temperature regime, but was unaffected by water-stress history or by current leaf water status. No direct heat damage occurred below 42°C, but in water-stressed plants photoinhibition increased with increasing leaf temperature in the range 31-42°C and with increasing photon flux density up to full sunglight values. Thus, water stress evidently predisposes the photosynthetic system to photoinhibition and high leaf temperature exacerbates this photoinhibitory damage. It seems probable that, under the climatic conditions where Siratro occurs in nature, but in the absence of paraheliotropic leaf movement, photoinhibitory damage would occur more frequently during drought than would direct heat damage.

  1. Soft x-ray free-electron laser induced damage to inorganic scintillators

    DOE PAGES

    Burian, Tomáš; Hájková, Věra; Chalupský, Jaromír; ...

    2015-01-07

    An irreversible response of inorganic scintillators to intense soft x-ray laser radiation was investigated at the FLASH (Free-electron LASer in Hamburg) facility. Three ionic crystals, namely, Ce:YAG (cerium-doped yttrium aluminum garnet), PbWO4 (lead tungstate), and ZnO (zinc oxide), were exposed to single 4.6 nm ultra-short laser pulses of variable pulse energy (up to 12 μJ) under normal incidence conditions with tight focus. Damaged areas produced with various levels of pulse fluences, were analyzed on the surface of irradiated samples using differential interference contrast (DIC) and atomic force microscopy (AFM). The effective beam area of 22.2 ± 2.2 μm2 was determinedmore » by means of the ablation imprints method with the use of poly(methyl methacrylate) - PMMA. Applied to the three inorganic materials, this procedure gave almost the same values of an effective area. The single-shot damage threshold fluence was determined for each of these inorganic materials. The Ce:YAG sample seems to be the most radiation resistant under the given irradiation conditions, its damage threshold was determined to be as high as 660.8 ± 71.2 mJ/cm2. Contrary to that, the PbWO4 sample exhibited the lowest radiation resistance with a threshold fluence of 62.6 ± 11.9 mJ/cm2. The threshold for ZnO was found to be 167.8 ± 30.8 mJ/cm2. Both interaction and material characteristics responsible for the damage threshold difference are discussed in the article.« less

  2. Enhancement of surface damage resistance by selective chemical removal of CeO2

    NASA Astrophysics Data System (ADS)

    Kamimura, Tomosumi; Motokoshi, Shinji; Sakamoto, Takayasu; Jitsuno, Takahisa; Shiba, Haruya; Akamatsu, Shigenori; Horibe, Hideo; Okamoto, Takayuki; Yoshida, Kunio

    2005-02-01

    The laser-induced damage threshold of polished fused silica surfaces is much lower than the damage threshod of its bulk. It is well known that contaminations of polished surface are one of the causes of low threshold of laser-induced surface damage. Particularly, polishing contamination such as cerium dioxide (CeO2) compound used in optical polishing process is embedded inside the surface layer, and cannot be removed by conventional cleaning. For the enhancement of surface damage resistance, various surface treatments have been applied to the removal of embedded polishing compound. In this paper, we propose a new method using slective chemical removal with high-temperature sulfuric acid (H2SO4). Sulfuric acid could dissolve only CeO2 from the fused silica surface. The surface roughness of fused silica treated H2SO4 was kept through the treatment process. At the wavelength of 355 nm, the surface damage threshold was drastically improved to the nearly same as bulk quality. However, the effect of our treatment was not observed at the wavelength of 1064 nm. The comparison with our previous results obtained from other surface treatments will be discussed.

  3. Signal Detection Theory Applied to Helicopter Transmission Diagnostic Thresholds

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Keller, Jonathan A.; Wade, Daniel R.

    2008-01-01

    Helicopter Health Usage Monitoring Systems (HUMS) have potential for providing data to support increasing the service life of a dynamic mechanical component in the transmission of a helicopter. Data collected can demonstrate the HUMS condition indicator responds to a specific component fault with appropriate alert limits and minimal false alarms. Defining thresholds for specific faults requires a tradeoff between the sensitivity of the condition indicator (CI) limit to indicate damage and the number of false alarms. A method using Receiver Operating Characteristic (ROC) curves to assess CI performance was demonstrated using CI data collected from accelerometers installed on several UH60 Black Hawk and AH64 Apache helicopters and an AH64 helicopter component test stand. Results of the analysis indicate ROC curves can be used to reliably assess the performance of commercial HUMS condition indicators to detect damaged gears and bearings in a helicopter transmission.

  4. Signal Detection Theory Applied to Helicopter Transmission Diagnostic Thresholds

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Keller, Jonathan A.; Wade, Daniel R.

    2009-01-01

    Helicopter Health Usage Monitoring Systems (HUMS) have potential for providing data to support increasing the service life of a dynamic mechanical component in the transmission of a helicopter. Data collected can demonstrate the HUMS condition indicator responds to a specific component fault with appropriate alert limits and minimal false alarms. Defining thresholds for specific faults requires a tradeoff between the sensitivity of the condition indicator (CI) limit to indicate damage and the number of false alarms. A method using Receiver Operating Characteristic (ROC) curves to assess CI performance was demonstrated using CI data collected from accelerometers installed on several UH60 Black Hawk and AH64 Apache helicopters and an AH64 helicopter component test stand. Results of the analysis indicate ROC curves can be used to reliably assess the performance of commercial HUMS condition indicators to detect damaged gears and bearings in a helicopter transmission.

  5. Blister Threshold Based Thermal Limits for the U-Mo Monolithic Fuel System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. M. Wachs; I. Glagolenko; F. J. Rice

    2012-10-01

    Fuel failure is most commonly induced in research and test reactor fuel elements by exposure to an under-cooled or over-power condition that results in the fuel temperature exceeding a critical threshold above which blisters form on the plate. These conditions can be triggered by normal operational transients (i.e. temperature overshoots that may occur during reactor startup or power shifts) or mild upset events (e.g., pump coastdown, small blockages, mis-loading of fuel elements into higher-than-planned power positions, etc.). The rise in temperature has a number of general impacts on the state of a fuel plate that include, for example, stress relaxationmore » in the cladding (due to differential thermal expansion), softening of the cladding, increased mobility of fission gases, and increased fission-gas pressure in pores, all of which can encourage the formation of blisters on the fuel-plate surface. These blisters consist of raised regions on the surface of fuel plates that occur when the cladding plastically deforms in response to fission-gas pressure in large pores in the fuel meat and/or mechanical buckling of the cladding over damaged regions in the fuel meat. The blister temperature threshold decreases with irradiation because the mechanical properties of the fuel plate degrade while under irradiation (due to irradiation damage and fission-product accumulation) and because the fission-gas inventory progressively increases (and, thus, so does the gas pressure in pores).« less

  6. Biological mechanisms of non-linear dose-response for respirable mineral fibers.

    PubMed

    Cox, Louis Anthony Tony

    2018-06-19

    Sufficiently high and prolonged inhalation exposures to some respirable elongated mineral particles (REMPs), notably including amphibole asbestos fibers, can increase risk of inflammation-mediated diseases including malignant mesothelioma, pleural diseases, fibrosis, and lung cancer. Chronic inflammation involves ongoing activation of the NLRP3 inflammasome, which enables immune cells to produce potent proinflammatory cytokines IL-1β and IL-18. Reactive oxygen species (ROS) (in particular, mitochondrial ROS) contribute to NRLP3 activation via a well-elucidated mechanism involving oxidation of reduced thioredoxin and association of thioredoxin-interacting protein with NLRP3. Lysosomal destabilization, efflux of cytosolic potassium ions and influx of calcium ions, signals from damaged mitochondria, both translational and post-translational controls, and prion-like polymerization have increasingly clear roles in regulating NLRP3 activation. As the molecular biology of inflammation-mediated responses to REMP exposure becomes clearer, a practical question looms: What do these mechanisms imply for the shape of the dose-response function relating exposure concentrations and durations for EMPs to risk of pathological responses? Dose-response thresholds or threshold-like nonlinearities can arise from (a) Cooperativity in assembly of supramolecular signaling complexes; (b) Positive feedback loops and bistability in regulatory networks; (c) Overwhelming of defensive barriers maintaining homeostasis; and (d) Damage thresholds, as in lysosome destabilization-induced activation of NLRP3. Each of these mechanisms holds for NLRP3 activation in response to stimuli such as REMP exposures. It is therefore timely to consider the implications of these advances in biological understanding for human health risk assessment with dose-response thresholds. Copyright © 2018. Published by Elsevier Inc.

  7. Damage threshold of coating materials on x-ray mirror for x-ray free electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyama, Takahisa, E-mail: koyama@spring8.or.jp; Yumoto, Hirokatsu; Tono, Kensuke

    2016-05-15

    We evaluated the damage threshold of coating materials such as Mo, Ru, Rh, W, and Pt on Si substrates, and that of uncoated Si substrate, for mirror optics of X-ray free electron lasers (XFELs). Focused 1 μm (full width at half maximum) XFEL pulses with the energies of 5.5 and 10 keV, generated by the SPring-8 angstrom compact free electron laser (SACLA), were irradiated under the grazing incidence condition. The damage thresholds were evaluated by in situ measurements of X-ray reflectivity degradation during irradiation by multiple pulses. The measured damage fluences below the critical angles were sufficiently high compared withmore » the unfocused SACLA beam fluence. Rh coating was adopted for two mirror systems of SACLA. One system was a beamline transport mirror system that was partially coated with Rh for optional utilization of a pink beam in the photon energy range of more than 20 keV. The other was an improved version of the 1 μm focusing mirror system, and no damage was observed after one year of operation.« less

  8. Analysis of the damage threshold of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Xi, Xiao-Wen; Chai, Chang-Chun; Liu, Yang; Yang, Yin-Tang; Fan, Qing-Yang; Shi, Chun-Lei

    2016-08-01

    An electromagnetic pulse (EMP)-induced damage model based on the internal damage mechanism of the GaAs pseudomorphic high electron mobility transistor (PHEMT) is established in this paper. With this model, the relationships among the damage power, damage energy, pulse width and signal amplitude are investigated. Simulation results show that the pulse width index from the damage power formula obtained here is higher than that from the empirical formula due to the hotspot transferring in the damage process of the device. It is observed that the damage energy is not a constant, which decreases with the signal amplitude increasing, and then changes little when the signal amplitude reaches up to a certain level. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  9. Predicting threshold and location of laser damage on optical surfaces

    DOEpatents

    Siekhaus, W.

    1985-02-04

    Disclosed is an apparatus useful in the prediction of the damage threshold of various optical devices, the location of weak spots on such devices and the location, identification, and elimination of optical surface impurities. The apparatus comprises a focused and pulsed laser, a photo electric detector/imaging means, and a timer. The weak spots emit photoelectrons when subjected to laser intensities that are less than the intensity actually required to produce the damage. The weak spots may be eliminated by sustained exposure to the laser beam.

  10. Single mode fibers with antireflective surface structures for high power laser applications

    NASA Astrophysics Data System (ADS)

    Busse, Lynda E.; Florea, Catalin M.; Shaw, L. Brandon; Aggarwal, Ishwar D.; Sanghera, Jasbinder S.

    2014-03-01

    We present results for increased transmission of ~99.5% in the near-IR through the end faces of silica single mode fibers by creating a random antireflective microstructure etched into the end face of the fiber. We demonstrate high laser damage thresholds for these fibers with AR structured surfaces.

  11. Influence of resonator length on catastrophic optical damage in high-power AlGaInP broad-area lasers

    NASA Astrophysics Data System (ADS)

    Bou Sanayeh, Marwan

    2017-05-01

    The increasing importance of extracting high optical power out of semiconductor lasers motivated several studies in catastrophic optical damage (COD) level improvement. In this study, the influence of the resonator length in high-power broad-area (BA) AlGaInP lasers on COD is presented. For the analyses, several 638 nm AlGaInP 60 μm BA lasers from the same wafer were used. Resonator lengths of 900, 1200, 1500, and 1800 μm were compared. In order to independently examine the effect of the resonator length on the maximum power reached by the lasers before COD (PCOD), the lasers used are uncoated and unmounted, and PCOD under pulsed mode was determined. It was found that higher output powers and eventually higher PCOD can be achieved using longer resonators; however, it was also found that this is mainly useful when working at high output powers far away from the laser threshold, since the threshold current and slope efficiency worsen when the resonator length increases.

  12. Femtosecond near-infrared laser microirradiation reveals a crucial role for PARP signaling on factor assemblies at DNA damage sites

    PubMed Central

    Saquilabon Cruz, Gladys Mae; Kong, Xiangduo; Silva, Bárbara Alcaraz; Khatibzadeh, Nima; Thai, Ryan; Berns, Michael W.; Yokomori, Kyoko

    2016-01-01

    Laser microirradiation is a powerful tool for real-time single-cell analysis of the DNA damage response (DDR). It is often found, however, that factor recruitment or modification profiles vary depending on the laser system employed. This is likely due to an incomplete understanding of how laser conditions/dosages affect the amounts and types of damage and the DDR. We compared different irradiation conditions using a femtosecond near-infrared laser and found distinct damage site recruitment thresholds for 53BP1 and TRF2 correlating with the dose-dependent increase of strand breaks and damage complexity. Low input-power microirradiation that induces relatively simple strand breaks led to robust recruitment of 53BP1 but not TRF2. In contrast, increased strand breaks with complex damage including crosslinking and base damage generated by high input-power microirradiation resulted in TRF2 recruitment to damage sites with no 53BP1 clustering. We found that poly(ADP-ribose) polymerase (PARP) activation distinguishes between the two damage states and that PARP activation is essential for rapid TRF2 recruitment while suppressing 53BP1 accumulation at damage sites. Thus, our results reveal that careful titration of laser irradiation conditions allows induction of varying amounts and complexities of DNA damage that are gauged by differential PARP activation regulating protein assembly at the damage site. PMID:26424850

  13. Laser-induced damage of coatings on Yb:YAG crystals at cryogenic condition

    NASA Astrophysics Data System (ADS)

    Wang, He; Zhang, Weili; Chen, Shunli; Zhu, Meiping; He, Hongbo; Fan, Zhengxiu

    2011-12-01

    As large amounts of heat need to be dissipated during laser operation, some diode pumped solid state lasers (DPSSL), especially Yb:YAG laser, operate at cryogenic condition. This work investigated the laser induced damage of coatings (high-reflective and anti-reflective coatings) on Yb:YAG crystals at cryogenic temperature and room temperature. The results show that the damage threshold of coatings at cryogenic temperature is lower than the one at room temperature. Field-emission scanning electron microscopy (FESEM), optical profiler, step profiler and Atomic force microscope (AFM) were used to obtain the damage morphology, size and depth. Taking alteration of physical parameters, microstructure of coatings and the environmental pollution into consideration, we analyzed the key factor of lowering the coating damage threshold at cryogenic conditions. The results are important to understand the mechanisms leading to damage at cryogenic condition.

  14. Impact Damage Thresholds in Brittle Materials Impacted by Water Drops.

    DTIC Science & Technology

    1979-03-01

    hardness AS$TNAC T (C 5M.. cc roc .. aId. It ,. m.p .id td ..tIl~- S~. block cad ..) The damage threshold for brittle materials impacted by water drops...center, vls-a-vls their(continued) ~~~ DO I JA N71 1Q3 EDITION OP 1 NOV IS iS OHOLETE UNCLASSIFIED SECURITY CLASSIFICATION OP ThiS RAGS (a. ONs

  15. Damage resistant optics for a mega-joule solid-state laser

    NASA Astrophysics Data System (ADS)

    Campbell, J. H.; Rainer, F.; Kozlowski, M. R.; Wolfe, C. R.; Thomas, I.; Milanovich, F.

    1990-12-01

    Research on Inertial Confinement Fusion (ICF) has progressed rapidly in the past several years. As a consequence, LLNL is developing plans to upgrade the current 120 kJ solid state (Nd3+ phosphate glass) Nova laser to a 1.5 to 2 megajoule system with the goal of achieving fusion ignition. The design of the planned Nova Upgrade is briefly discussed. Because of recent improvements in the damage resistance of optical materials it is now technically and economically feasible to build a megajoule-class solid state laser. Specifically, the damage threshold of Nd(+3)-doped phosphate laser glass, multilayer dielectric coatings, and non-linear optical crystals (e.g., KDP) have been dramatically improved. These materials now meet the fluence requirements for a 1.5 to 2 MJ Nd(+3)-glass laser operating at 1054 and 351 nm and at a pulse length of 3 ns. The recent improvements in damage thresholds are reviewed; threshold data at both 1064 and 355 nm and the measured pulse length scaling are presented.

  16. Damage resistant optics for a megajoule solid state laser

    NASA Astrophysics Data System (ADS)

    Campbell, Jack H.; Rainer, Frank; Kozlowski, Mark R.; Wolfe, C. Robert; Thomas, Ian M.; Milanovich, Fred P.

    1991-06-01

    Research on Inertial Confinement Fusion (ICF) has progressed rapidly in the past several years. As a consequence LLNL is developing plans to upgrade the current 120 kJ solid state (Nd3-phosphate glass) Nova laser to a 1 . 5 to 2 megajoule system with the goal of achieving fusion ignition. The design of the planned Nova Upgrade is briefly discussed. Because of recent improvements in the damage resistance of optical materials it is now technically and economically feasible to build a megajoule-class solid state laser. Specifically the damage threshold of Nd3- doped phosphate laser glass muliilayer dielectric coatings and non-linear optical crystals (e. g. KDP) have been dramatically improved. These materials now meet the fluence requirements for a 1. 5-2 MJ Nd3-glass laser operating at 1054 and 351 nm and at a pulse length of 3 ns. The recent improvements in damage thresholds are reviewed threshold data at both 1064 and 355 nm and the measured pulse length scaling are presented. 1.

  17. Electrical and optical co-stimulation in the deaf white cat

    NASA Astrophysics Data System (ADS)

    Cao, Zhiping; Xu, Yingyue; Tan, Xiaodong; Suematsu, Naofumi; Robinson, Alan; Richter, Claus-Peter

    2018-02-01

    Spatial selectivity of neural stimulation with photons, such as infrared neural stimulation (INS) is higher than the selectivity obtained with electrical stimulation. To obtain more independent channels for stimulation in neural prostheses, INS may be implemented to better restore the fidelity of the damaged neural system. However, irradiation with infrared light also bares the risk of heat accumulation in the target tissue with subsequent neural damage. Lowering the threshold for stimulation could reduce the amount of heat delivered to the tissue and the risk for subsequent tissue damage. It has been shown in the rat sciatic nerve that simultaneous irradiation with infrared light and the delivery of biphasic sub-threshold electrical pulses can reduce the threshold for INS [1]. In this study, deaf white cats have been used to test whether opto-electrical co-stimulation can reduce the stimulation threshold for INS in the auditory system too. The cochleae of the deaf white cats have largely reduced spiral ganglion neuron counts and significant degeneration of the organ of Corti and do not respond to acoustic stimuli. Combined electrical and optical stimulation was used to demonstrate that simultaneous stimulation with infrared light and biphasic electrical pulses can reduce the threshold for stimulation.

  18. Repeatability of automated perimetry: a comparison between standard automated perimetry with stimulus size III and V, matrix, and motion perimetry.

    PubMed

    Wall, Michael; Woodward, Kimberly R; Doyle, Carrie K; Artes, Paul H

    2009-02-01

    Standard automated perimetry (SAP) shows a marked increase in variability in damaged areas of the visual field. This study was conducted to test the hypothesis that larger stimuli are associated with more uniform variability, by investigating the retest variability of four perimetry tests: standard automated perimetry size III (SAP III), with the SITA standard strategy; SAP size V (SAP V), with the full-threshold strategy; Matrix (FDT II), and Motion perimetry. One eye each of 120 patients with glaucoma was examined on the same day with these four perimetric tests and retested 1 to 8 weeks later. The decibel scales were adjusted to make the test's scales numerically similar. Retest variability was examined by establishing the distributions of retest threshold estimates, for each threshold level observed at the first test. The 5th and 95th percentiles of the retest distribution were used as point-wise limits of retest variability. Regression analyses were performed to quantify the relationship between visual field sensitivity and variability. With SAP III, the retest variability increased substantially with reducing sensitivity. Corresponding increases with SAP V, Matrix, and Motion perimetry were considerably smaller or absent. With SAP III, sensitivity explained 22% of the retest variability (r(2)), whereas corresponding data for SAP V, Matrix, and Motion perimetry were 12%, 2%, and 2%, respectively. Variability of Matrix and Motion perimetry does not increase as substantially as that of SAP III in damaged areas of the visual field. Increased sampling with the larger stimuli of these techniques is the likely explanation for this finding. These properties may make these stimuli excellent candidates for early detection of visual field progression.

  19. Wavelength dependence of femtosecond laser-induced damage threshold of optical materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallais, L., E-mail: laurent.gallais@fresnel.fr; Douti, D.-B.; Commandré, M.

    2015-06-14

    An experimental and numerical study of the laser-induced damage of the surface of optical material in the femtosecond regime is presented. The objective of this work is to investigate the different processes involved as a function of the ratio of photon to bandgap energies and compare the results to models based on nonlinear ionization processes. Experimentally, the laser-induced damage threshold of optical materials has been studied in a range of wavelengths from 1030 nm (1.2 eV) to 310 nm (4 eV) with pulse durations of 100 fs with the use of an optical parametric amplifier system. Semi-conductors and dielectrics materials, in bulk or thinmore » film forms, in a range of bandgap from 1 to 10 eV have been tested in order to investigate the scaling of the femtosecond laser damage threshold with the bandgap and photon energy. A model based on the Keldysh photo-ionization theory and the description of impact ionization by a multiple-rate-equation system is used to explain the dependence of laser-breakdown with the photon energy. The calculated damage fluence threshold is found to be consistent with experimental results. From these results, the relative importance of the ionization processes can be derived depending on material properties and irradiation conditions. Moreover, the observed damage morphologies can be described within the framework of the model by taking into account the dynamics of energy deposition with one dimensional propagation simulations in the excited material and thermodynamical considerations.« less

  20. The effect of laser ablation parameters on optical limiting properties of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Gursoy, Irmak; Yaglioglu, Halime Gul

    2017-09-01

    This paper presents the effect of laser ablation parameters on optical limiting properties of silver nanoparticles. The current applications of lasers such as range finding, guidance, detection, illumination and designation have increased the potential of damaging optical imaging systems or eyes temporary or permanently. The applications of lasers introduce risks for sensors or eyes, when laser power is higher than damage threshold of the detection system. There are some ways to protect these systems such as neutral density (nd) filters, shutters, etc. However, these limiters reduce the total amount of light that gets into the system. Also, response time of these limiters may not be fast enough to prevent damage and cause precipitation in performance due to deprivation of transmission or contrast. Therefore, optical limiting filters are needed that is transparent for low laser intensities and limit or block the high laser intensities. Metal nanoparticles are good candidates for such optical limiting filters for ns pulsed lasers or CW lasers due to their high damage thresholds. In this study we investigated the optical limiting performances of silver nanoparticles produced by laser ablation technique. A high purity silver target immersed in pure water was ablated with a Nd:YAG nanosecond laser at 532 nm. The effect of altering laser power and ablation time on laser ablation efficiency of nanoparticles was investigated experimentally and optimum values were specified. Open aperture Zscan experiment was used to investigate the effect of laser ablation parameters on the optical limiting performances of silver nanoparticles in pure water. It was found that longer ablation time decreases the optical limiting threshold. These results are useful for silver nanoparticles solutions to obtain high performance optical limiters.

  1. Gluten and celiac disease--an immunological perspective.

    PubMed

    Rallabhandi, Prasad

    2012-01-01

    Gluten, a complex protein group in wheat, rye, and barley, causes celiac disease (CD), an autoimmune enteropathy of the small intestine, in genetically susceptible individuals. CD affects about 1% of the general population and causes significant health problems. Adverse inflammatory reactions to gluten are mediated by inappropriate T-cell activation leading to severe damage of the gastrointestinal mucosa, causing atrophy of absorptive surface villi. Gluten peptides bind to the chemokine receptor, CXCR3, and induce release of zonulin, which mediates tight-junction disassembly and subsequent increase in intestinal permeability. Proinflammatory cytokine IL-15 also contributes to the pathology of CD, by driving the expansion of intra-epithelial lymphocytes that damage the epithelium and promote the onset of T-cell lymphomas. There is no cure or treatment for CD, except for avoiding dietary gluten. Current gluten thresholds for food labeling have been established based on the available analytical methods, which show variation in gluten detection and quantification. Also, the clinical heterogeneity of celiac patients poses difficulty in defining clinically acceptable gluten thresholds in gluten-free foods. Presently, there is no bioassay available to measure gluten-induced immunobiological responses. This review focuses on various aspects of CD, and the importance of gluten thresholds and reference material from an immunological perspective.

  2. Repetition rate dependency of low-density plasma effects during femtosecond-laser-based surgery of biological tissue

    NASA Astrophysics Data System (ADS)

    Kuetemeyer, K.; Baumgart, J.; Lubatschowski, H.; Heisterkamp, A.

    2009-11-01

    Femtosecond laser based nanosurgery of biological tissue is usually done in two different regimes. Depending on the application, low kHz repetition rates above the optical breakdown threshold or high MHz repetition rates in the low-density plasma regime are used. In contrast to the well understood optical breakdown, mechanisms leading to dissection below this threshold are not well known due to the complexity of chemical effects with high numbers of interacting molecules. Furthermore, the laser repetition rate may influence their efficiency. In this paper, we present our study on low-density plasma effects in biological tissue depending on repetition rate by static exposure of porcine corneal stroma to femtosecond pulses. We observed a continuous increase of the laser-induced damage with decreasing repetition rate over two orders of magnitude at constant numbers of applied laser pulses or constant laser pulse energies. Therefore, low repetition rates in the kHz regime are advantageous to minimize the total delivered energy to biological tissue during femtosecond laser irradiation. However, due to frequent excessive damage in this regime directly above the threshold, MHz repetition rates are preferable to create nanometer-sized cuts in the low-density plasma regime.

  3. Magnetic Flux Leakage Sensing and Artificial Neural Network Pattern Recognition-Based Automated Damage Detection and Quantification for Wire Rope Non-Destructive Evaluation.

    PubMed

    Kim, Ju-Won; Park, Seunghee

    2018-01-02

    In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.

  4. An evaluation of corn earworm damage and thresholds in soybean

    NASA Astrophysics Data System (ADS)

    Adams, Brian Patrick

    Interactions between corn earworm, Helicoverpa zea (Boddie), and soybean, Glycine max L. (Merrill), were investigated in the Mid-South to evaluate thresholds and damage levels. Field studies were conducted in both indeterminate and determinate modern cultivars to evaluate damage, critical injury levels, and soybean response to simulated corn earworm injury. Field studies were also conducted to evaluate the response of indeterminate cultivars to infestations of corn earworm. Field studies were also conducted to investigate the relationship between pyrethroid insecticide application and corn earworm oviposition in soybean. Results of field studies involving simulated corn earworm damage indicated the need for a dynamic threshold that becomes more conservative as soybean phenology progressed through the reproductive growth stages. This suggested that soybean was more tolerant to fruit loss during the earlier reproductive stages and was able to compensate for fruit loss better during this time than at later growth stages. Results of field studies involving infestations of corn earworm indicated that current thresholds are likely too liberal. This resulted in economic injury level tables being constructed based upon a range of crop values and control costs, however, a general action threshold was also recommended for indeterminate soybean in the Mid-South. Field study results investigating the relationship of pyrethroid application and corn earworm oviposition indicated that even in the presence of an insecticide, corn earworm prefers to oviposit in the upper portion of the canopy, as well as on the leaves as opposed to all other plant parts, consistent with all previous literature.

  5. Comparison of alternatives to amplitude thresholding for onset detection of acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Bai, F.; Gagar, D.; Foote, P.; Zhao, Y.

    2017-02-01

    Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors in an array is essential in performing localisation. Currently, this is determined using a fixed threshold which is particularly prone to errors when not set to optimal values. This paper presents three new methods for determining the onset of AE signals without the need for a predetermined threshold. The performance of the techniques is evaluated using AE signals generated during fatigue crack growth and compared to the established Akaike Information Criterion (AIC) and fixed threshold methods. It was found that the 1D location accuracy of the new methods was within the range of < 1 - 7.1 % of the monitored region compared to 2.7% for the AIC method and a range of 1.8-9.4% for the conventional Fixed Threshold method at different threshold levels.

  6. Role of the Excitability Brake Potassium Current IKD in Cold Allodynia Induced by Chronic Peripheral Nerve Injury.

    PubMed

    González, Alejandro; Ugarte, Gonzalo; Restrepo, Carlos; Herrera, Gaspar; Piña, Ricardo; Gómez-Sánchez, José Antonio; Pertusa, María; Orio, Patricio; Madrid, Rodolfo

    2017-03-22

    Cold allodynia is a common symptom of neuropathic and inflammatory pain following peripheral nerve injury. The mechanisms underlying this disabling sensory alteration are not entirely understood. In primary somatosensory neurons, cold sensitivity is mainly determined by a functional counterbalance between cold-activated TRPM8 channels and Shaker-like Kv1.1-1.2 channels underlying the excitability brake current I KD Here we studied the role of I KD in damage-triggered painful hypersensitivity to innocuous cold. We found that cold allodynia induced by chronic constriction injury (CCI) of the sciatic nerve in mice, was related to both an increase in the proportion of cold-sensitive neurons (CSNs) in DRGs contributing to the sciatic nerve, and a decrease in their cold temperature threshold. I KD density was reduced in high-threshold CSNs from CCI mice compared with sham animals, with no differences in cold-induced TRPM8-dependent current density. The electrophysiological properties and neurochemical profile of CSNs revealed an increase of nociceptive-like phenotype among neurons from CCI animals compared with sham mice. These results were validated using a mathematical model of CSNs, including I KD and TRPM8, showing that a reduction in I KD current density shifts the thermal threshold to higher temperatures and that the reduction of this current induces cold sensitivity in former cold-insensitive neurons expressing low levels of TRPM8-like current. Together, our results suggest that cold allodynia is largely due to a functional downregulation of I KD in both high-threshold CSNs and in a subpopulation of polymodal nociceptors expressing TRPM8, providing a general molecular and neural mechanism for this sensory alteration. SIGNIFICANCE STATEMENT This paper unveils the critical role of the brake potassium current I KD in damage-triggered cold allodynia. Using a well-known form of nerve injury and combining behavioral analysis, calcium imaging, patch clamping, and pharmacological tools, validated by mathematical modeling, we determined that the functional expression of I KD is reduced in sensory neurons in response to peripheral nerve damage. This downregulation not only enhances cold sensitivity of high-threshold cold thermoreceptors signaling cold discomfort, but it also transforms a subpopulation of polymodal nociceptors signaling pain into neurons activated by mild temperature drops. Our results suggest that cold allodynia is linked to a reduction of I KD in both high-threshold cold thermoreceptors and nociceptors expressing TRPM8, providing a general model for this form of cold-induced pain. Copyright © 2017 the authors 0270-6474/17/373109-18$15.00/0.

  7. Limitations on gas exchange recovery following natural drought in Californian oak woodlands.

    NASA Astrophysics Data System (ADS)

    Ackerly, D.; Skelton, R. P.; Dawson, T.; Thompson, S.; Feng, X.; Weitz, A.; McLaughlin, B.

    2017-12-01

    Abstract Background/Question/Methods Drought can cause major damage to plant communities, but species damage thresholds and post-drought recovery of forest productivity are not yet predictable. We asked the question how should forest net primary productivity recover following exposure to severe drought? We used a natural drought period to investigate whether drought responses and post-drought recovery of canopy health could be predicted by properties of the water transport system. We aimed to test the hypothesis that recovery of gas exchange and canopy health would be most severely limited by xylem embolism in stems. To do this we monitored leaf level gas exchange and water status for multiple individuals of two deciduous and two evergreen species for four years spanning a severe drought event and following subsequent rehydration. Results/Discussion Severe drought caused major declines in leaf water potential, reduced stomatal conductance and assimilation rates and increased canopy bareness in our four canopy species. Water potential surpassed levels associated with incipient embolism in leaves of most trees. In contrast, due to hydraulic segmentation, water potential only rarely surpassed critical thresholds in the stems of the study trees. Individuals that surpassed critical thresholds of embolism in the stem displayed significant canopy dieback and mortality. Thus, recovery of plant gas exchange and canopy health was predicted by xylem safety margin in stems, but not leaves, providing strong support for stem cavitation vulnerability as an index of damage under natural drought conditions.

  8. Spatial distribution of threshold wind speeds for dust outbreaks in northeast Asia

    NASA Astrophysics Data System (ADS)

    Kimura, Reiji; Shinoda, Masato

    2010-01-01

    Asian windblown dust events cause human and animal health effects and agricultural damage in dust source areas such as China and Mongolia and cause "yellow sand" events in Japan and Korea. It is desirable to develop an early warning system to help prevent such damage. We used our observations at a Mongolian station together with data from previous studies to model the spatial distribution of threshold wind speeds for dust events in northeast Asia (35°-45°N and 100°-115°E). Using a map of Normalized Difference Vegetation Index (NDVI), we estimated spatial distributions of vegetation cover, roughness length, threshold friction velocity, and threshold wind speed. We also recognized a relationship between NDVI in the dust season and maximum NDVI in the previous year. Thus, it may be possible to predict the threshold wind speed in the next dust season using the maximum NDVI in the previous year.

  9. Challenges in devising economic spray thresholds for a major pest of Australian canola, the redlegged earth mite (Halotydeus destructor).

    PubMed

    Arthur, Aston L; Hoffmann, Ary A; Umina, Paul A

    2015-10-01

    A key component for spray decision-making in IPM programmes is the establishment of economic injury levels (EILs) and economic thresholds (ETs). We aimed to establish an EIL for the redlegged earth mite (Halotydeus destructor Tucker) on canola. Complex interactions between mite numbers, feeding damage and plant recovery were found, highlighting the challenges in linking H. destructor numbers to yield. A guide of 10 mites plant(-1) was established at the first-true-leaf stage; however, simple relationships were not evident at other crop development stages, making it difficult to establish reliable EILs based on mite number. Yield was, however, strongly associated with plant damage and plant densities, reflecting the impact of mite feeding damage and indicating a plant-based alternative for establishing thresholds for H. destructor. Drawing on data from multiple field trials, we show that plant densities below 30-40 plants m(-2) could be used as a proxy for mite damage when reliable estimates of mite densities are not possible. This plant-based threshold provides a practical tool that avoids the difficulties of accurately estimating mite densities. The approach may be applicable to other situations where production conditions are unpredictable and interactions between pests and plant hosts are complex. © 2015 Society of Chemical Industry.

  10. Temperature-activity relationships in Meligethes aeneus: implications for pest management

    PubMed Central

    Ferguson, Andrew W; Nevard, Lucy M; Clark, Suzanne J; Cook, Samantha M

    2015-01-01

    BACKGROUND Pollen beetle (Meligethes aeneus F.) management in oilseed rape (Brassica napus L.) has become an urgent issue in the light of insecticide resistance. Risk prediction advice has relied upon flight temperature thresholds, while risk assessment uses simple economic thresholds. However, there is variation in the reported temperature of migration, and economic thresholds vary widely across Europe, probably owing to climatic factors interacting with beetle activity and plant compensation for damage. The effect of temperature on flight, feeding and oviposition activity of M. aeneus was examined in controlled conditions. RESULTS Escape from a release vial was taken as evidence of flight and was supported by video observations. The propensity to fly followed a sigmoid temperature–response curve between 6 and 23 °C; the 10, 25 and 50% flight temperature thresholds were 12.0–12.5 °C, 13.6–14.2 °C and 15.5–16.2 °C, respectively. Thresholds were slightly higher in the second of two flight bioassays, suggesting an effect of beetle age. Strong positive relationships were found between temperature (6–20 °C) and the rates of feeding and oviposition on flower buds of oilseed rape. CONCLUSION These temperature relationships could be used to improve M. aeneus migration risk assessment, refine weather-based decision support systems and modulate damage thresholds according to rates of bud damage. © 2014 Society of Chemical Industry PMID:25052810

  11. Local cochlear damage reduces local nonlinearity and decreases generator-type cochlear emissions while increasing reflector-type emissions.

    PubMed

    Dong, Wei; Olson, Elizabeth S

    2010-03-01

    Distortion product otoacoustic emissions (DPOAEs) originate in cochlear nonlinearity and emerge into the ear canal as an apparent sum of emission types, one of which (generator) travels directly out and the other (reflector) travels out following linear reflection. The present study explores intracochlear sources of DPOAEs via simultaneous ear canal and intracochlear pressure measurements in gerbils. A locally damaged cochlea was produced with reduced local intracochlear nonlinearity and significant elevation of the compound action potential thresholds at frequencies represented within the damaged region. In the DPOAE the comparison of healthy to locally damaged cochleae showed the following: (1) In the broad frequency region corresponding to the locally damaged best frequency, DPOAEs evoked by wider f(2)/f(1) stimuli decreased, consistent with the reduction in local nonlinearity. (2) DPOAEs evoked by narrow f(2)/f(1) stimuli often had a bimodal change, decreasing in a lower frequency band and increasing in a band just adjacent and higher, and the DPOAE phase-vs-frequency slope steepened. These changes confirm the complex nature of the DPOAE.

  12. Silent Damage of Noise on Cochlear Afferent Innervation in Guinea Pigs and the Impact on Temporal Processing

    PubMed Central

    He, Tingting; Aiken, Steve; Bance, Manohar; Yin, Shankai; Wang, Jian

    2012-01-01

    Noise-exposure at levels low enough to avoid a permanent threshold shift has been found to cause a massive, delayed degeneration of spiral ganglion neurons (SGNs) in mouse cochleae. Damage to the afferent innervation was initiated by a loss of synaptic ribbons, which is largely irreversible in mice. A similar delayed loss of SGNs has been found in guinea pig cochleae, but at a reduced level, suggesting a cross-species difference in SGN sensitivity to noise. Ribbon synapse damage occurs “silently” in that it does not affect hearing thresholds as conventionally measured, and the functional consequence of this damage is not clear. In the present study, we further explored the effect of noise on cochlear afferent innervation in guinea pigs by focusing on the dynamic changes in ribbon counts over time, and resultant changes in temporal processing. It was found that (1) contrary to reports in mice, the initial loss of ribbons largely recovered within a month after the noise exposure, although a significant amount of residual damage existed; (2) while the response threshold fully recovered in a month, the temporal processing continued to be deteriorated during this period. PMID:23185359

  13. Toward automated selective retina treatment (SRT): an optical microbubble detection technique

    NASA Astrophysics Data System (ADS)

    Seifert, Eric; Park, Young-Gun; Theisen-Kunde, Dirk; Roh, Young-Jung; Brinkmann, Ralf

    2018-02-01

    Selective retina therapy (SRT) is an ophthalmological laser technique, targeting the retinal pigment epithelium (RPE) with repetitive microsecond laser pulses, while causing no thermal damage to the neural retina, the photoreceptors as well as the choroid. The RPE cells get damaged mechanically by microbubbles originating, at the intracellular melanosomes. Beneficial effects of SRT on Central Serous Retinopathy (CSR) and Diabetic Macula Edema (DME) have already been shown. Variations in the transmission of the anterior eye media and pigmentation variation of RPE yield in intra- and inter- individual thresholds of the pulse energy required for selective RPE damage. Those selective RPE lesions are not visible. Thus, dosimetry-systems, designed to detect microbubbles as an indicator for RPE cell damage, are demanded elements to facilitate SRT application. Therefore, a technique based on the evaluation of backscattered treatment light has been developed. Data of 127 spots, acquired during 10 clinical treatments of CSR patients, were assigned to a RPE cell damage class, validated by fluorescence angiography (FLA). An algorithm has been designed to match the FLA based information. A sensitivity of 0.9 with a specificity close to 1 is achieved. The data can be processed within microseconds. Thus, the process can be implemented in existing SRT lasers with an automatic pulse wise increasing energy and an automatic irradiation ceasing ability to enable automated treatment close above threshold to prevent adverse effects caused by too high pulse energy. Alternatively, a guidance procedure, informing the treating clinician about the adequacy of the actual settings, is possible.

  14. Low Velocity Impacts of Variable Tip Radius on Carbon/Epoxy Plates

    NASA Astrophysics Data System (ADS)

    Delaney, Mac P.

    With a growing use of composite materials in aircraft structures, there is a greater need to understand the response of these materials to low velocity impacts. Low velocity impacts from tool drops or ground equipment collisions can be of varying bluntness and can leave little or no visible evidence of damage. Therefore, a need exists to investigate the initiation of internal damage and the relationship between this internal damage and the external visible damage with respect to the bluntness of the impactor. A pendulum impactor was used to impact 76.2 x 127 mm carbon/epoxy panels that were 8, 16, and 24 plies thick. The panels were impacted by hardened steel tips with radii of 12.7 to 76.2 mm. The experimental results show that the failure threshold energies for each panel thickness and tip radius combination occur at a distinct and consistent energy. This threshold increases with impactor bluntness, and this effect is greater for the 8 ply panel than it is for the 16 or 24 ply panels. To describe the visibility of impact damage, the area of delamination was compared to the depth of the dents resulting from the impacts. For the sharper impact tips, there is a clear relationship between the delamination area and the depth of the dents. However, these relationships are dependent on the radius of the impact tip, and for the blunter impact tips no strong correlation could be determined between the delamination area and the depth of the dents.

  15. Eccentric muscle damage has variable effects on motor unit recruitment thresholds and discharge patterns in elbow flexor muscles.

    PubMed

    Dartnall, Tamara J; Rogasch, Nigel C; Nordstrom, Michael A; Semmler, John G

    2009-07-01

    The purpose of this study was to determine the effect of eccentric muscle damage on recruitment threshold force and repetitive discharge properties of low-threshold motor units. Ten subjects performed four tasks involving isometric contraction of elbow flexors while electromyographic (EMG) data were recorded from human biceps brachii and brachialis muscles. Tasks were 1) maximum voluntary contraction (MVC); 2) constant-force contraction at various submaximal targets; 3) motor unit recruitment threshold task; and 4) minimum motor unit discharge rate task. These tasks were performed on three separate days before, immediately after, and 24 h after eccentric exercise of elbow flexor muscles. MVC force declined (42%) immediately after exercise and remained depressed (29%) 24 h later, indicative of muscle damage. Mean motor unit recruitment threshold for biceps brachii was 8.4+/-4.2% MVC, (n=34) before eccentric exercise, and was reduced by 41% (5.0+/-3.0% MVC, n=34) immediately after and by 39% (5.2+/-2.5% MVC, n=34) 24 h after exercise. No significant changes in motor unit recruitment threshold were observed in the brachialis muscle. However, for the minimum tonic discharge rate task, motor units in both muscles discharged 11% faster (10.8+/-2.0 vs. 9.7+/-1.7 Hz) immediately after (n=29) exercise compared with that before (n=32). The minimum discharge rate variability was greater in brachialis muscle immediately after exercise (13.8+/-3.1%) compared with that before (11.9+/-3.1%) and 24 h after exercise (11.7+/-2.4%). No significant changes in minimum discharge rate variability were observed in the biceps brachii motor units after exercise. These results indicate that muscle damage from eccentric exercise alters motor unit recruitment thresholds for >or=24 h, but the effect is not the same in the different elbow flexor muscles.

  16. Fluence thresholds for grazing incidence hard x-ray mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquila, A.; Ozkan, C.; Sinn, H.

    2015-06-15

    X-ray Free Electron Lasers (XFELs) have the potential to contribute to many fields of science and to enable many new avenues of research, in large part due to their orders of magnitude higher peak brilliance than existing and future synchrotrons. To best exploit this peak brilliance, these XFEL beams need to be focused to appropriate spot sizes. However, the survivability of X-ray optical components in these intense, femtosecond radiation conditions is not guaranteed. As mirror optics are routinely used at XFEL facilities, a physical understanding of the interaction between intense X-ray pulses and grazing incidence X-ray optics is desirable. Wemore » conducted single shot damage threshold fluence measurements on grazing incidence X-ray optics, with coatings of ruthenium and boron carbide, at the SPring-8 Angstrom compact free electron laser facility using 7 and 12 keV photon energies. The damage threshold dose limits were found to be orders of magnitude higher than would naively be expected. The incorporation of energy transport and dissipation via keV level energetic photoelectrons accounts for the observed damage threshold.« less

  17. Effect of cotton bollworm (Helicoverpa armigera Hübner) caused injury on maize grain content, especially regarding to the protein alteration.

    PubMed

    Keszthelyi, S; Pál-Fám, F; Kerepesi, I

    2011-03-01

    The cotton bollworm (Helicoverpa armigera Hübner), which migrated in the Carpathian-basin from Mediterraneum in the last decades, is becoming an increasingly serious problem for maize producers in Hungary. In several regions the damage it causes has reached the threshold of economic loss, especially in the case of the sweet maize cultivation. The aim of the research was to determine the changing of ears weights and in-kernel accumulation and alteration in grain as a function of cotton bollworm mastication.Our investigation confirmed that there is an in-kernel and protein pattern change of maize grain by cotton bollworm. Our results proved the significant damaging of each part of ears by cotton bollworm masticating (the average weight loss of ears: 13.99%; the average weight loss of grains: 14.03%; the average weight loss of cobs: 13.74%), with the exception of the increasing of the grain-cob ratio. Our examinations did not prove the water loss - that is the "forced maturing" - caused by the damage. Decreasing of raw fat (control: 2.8%; part-damaged: 2.6%; damaged: 2.4%) and starch content (control: 53.1%; part-damaged: 46.6%; damaged: 44.7%) were registered as a function of injury. In contrast, the raw protein content was increased (control: 4.7%; part-damaged: 5.3%; damaged: 7.4%) by maize ear masticating. The most conspicuous effect on protein composition changing was proved by comparison of damaged grain samples by SDS PAGE. Increased amounts of 114, 50, 46 and 35 kDa molecular mass proteins were detected which explained the more than 50% elevation of raw protein content. The statistical analysis of molecular weights proved the protein realignment as a function of the pest injuries, too.

  18. Subsurface defects of fused silica optics and laser induced damage at 351 nm.

    PubMed

    Hongjie, Liu; Jin, Huang; Fengrui, Wang; Xinda, Zhou; Xin, Ye; Xiaoyan, Zhou; Laixi, Sun; Xiaodong, Jiang; Zhan, Sui; Wanguo, Zheng

    2013-05-20

    Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.

  19. Damage Threshold of In Vivo Rabbit Cornea by 2 micron Laser Irradiation

    DTIC Science & Technology

    2007-01-01

    in laser injury experiments? Implications for human exposure limits. Health Phys 2002; 82(3):335-347. 11. Siegman AE, Sasnett MW, Johnston TF. Choice... Laser Irradiation DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Conference on...part numbers comprise the compilation report: ADP023676 thru ADP023710 UNCLASSIFIED Damage Threshold of In Vivo Rabbit Cornea by 2 gm Laser Irradiation

  20. Co:MgF2 laser ablation of tissue: effect of wavelength on ablation threshold and thermal damage.

    PubMed

    Schomacker, K T; Domankevitz, Y; Flotte, T J; Deutsch, T F

    1991-01-01

    The wavelength dependence of the ablation threshold of a variety of tissues has been studied by using a tunable pulsed Co:MgF2 laser to determine how closely it tracks the optical absorption length of water. The Co:MgF2 laser was tuned between 1.81 and 2.14 microns, a wavelength region in which the absorption length varies by a decade. For soft tissues the ablation threshold tracks the optical absorption length; for bone there is little wavelength dependence, consistent with the low water content of bone. Thermal damage vs. wavelength was also studied for cornea and bone. Thermal damage to cornea has a weak wavelength dependence, while that to bone shows little wavelength dependence. Framing-camera pictures of the ablation of both cornea and liver show explosive removal of material, but differ as to the nature of the explosion.

  1. Injury thresholds for topical-cream-coated skin of hairless guinea pigs (cavia porcellus) in the near-infrared region

    NASA Astrophysics Data System (ADS)

    Pocock, Ginger M.; Zohner, Justin J.; Stolarski, David J.; Buchanan, Kelvin C.; Jindra, Nichole M.; Figueroa, Manuel A.; Chavey, Lucas J.; Imholte, Michelle L.; Thomas, Robert J.; Rockwell, Benjamin A.

    2006-02-01

    The reflectance and absorption of the skin plays a vital role in determining how much radiation will be absorbed by human tissue. Any substance covering the skin would change the way radiation is reflected and absorbed and thus the extent of thermal injury. Hairless guinea pigs (cavia porcellus) in vivo were used to evaluate how the minimum visible lesion threshold for single-pulse laser exposure is changed with a topical agent applied to the skin. The ED 50 for visible lesions due to an Er: glass laser at 1540-nm with a pulse width of 50-ns was determined, and the results were compared with model predictions using a skin thermal model. The ED50 is compared with the damage threshold of skin coated with a highly absorbing topical cream at 1540 nm to determine its effect on damage pathology and threshold. The ED 50 for the guinea pig was then compared to similar studies using Yucatan minipigs and Yorkshire pigs at 1540-nm and nanosecond pulse duration. 1,2 The damage threshold at 24-hours of a Yorkshire pig for a 2.5-3.5-mm diameter beam for 100 ns was 3.2 Jcm -2; very similar to our ED 50 of 3.00 Jcm -2 for the hairless guinea pigs.

  2. Combatant eye protection: an introduction to the blue light hazard

    NASA Astrophysics Data System (ADS)

    Lattimore, Morris R.

    2016-05-01

    Emerging evidence of metabolic vulnerability to visible blue light is vitally important, as it is indicative of a scalable threshold effect. Added stressors (e.g., increased altitude or contact lens wear) could shift the wavelength effects toward a more damaging clinical picture. Recent reports have indicated rod photo-pigment damage resulting from solar blue-light exposures, adversely affecting unaided night vision, a militarily important performance decrement. The activation wavelength for the daily synchronous setting of the Circadian Clock, which regulates the synchronization of all hormonal and organ systems throughout the body, falls within this blue light perceptual range.

  3. Setting limits: Using air pollution thresholds to protect and restore U.S. ecosystems

    USGS Publications Warehouse

    Fenn, M.E.; Lambert, K.F.; Blett, T.F.; Burns, Douglas A.; Pardo, L.H.; Lovett, Gary M.; Haeuber, R. A.; Evers, D.C.; Driscoll, C.T.; Jeffries, D.S.

    2011-01-01

    More than four decades of research provide unequivocal evidence that sulfur, nitrogen, and mercury pollution have altered, and will continue to alter, our nation's lands and waters. The emission and deposition of air pollutants harm native plants and animals, degrade water quality, affect forest productivity, and are damaging to human health. Many air quality policies limit emissions at the source but these control measures do not always consider ecosystem impacts. Air pollution thresholds at which ecological effects are observed, such as critical loads, are effective tools for assessing the impacts of air pollution on essential ecosystem services and for informing public policy. U.S. ecosystems can be more effectively protected and restored by using a combination of emissions-based approaches and science-based thresholds of ecosystem damage. Based on the results of a comprehensive review of air pollution thresholds, we conclude: ??? Ecosystem services such as air and water purification, decomposition and detoxification of waste materials, climate regulation, regeneration of soil fertility, production and biodiversity maintenance, as well as crop, timber and fish supplies are impacted by deposition of nitrogen, sulfur, mercury and other pollutants. The consequences of these changes may be difficult or impossible to reverse as impacts cascade throughout affected ecosystems. ??? The effects of too much nitrogen are common across the U.S. and include altered plant and lichen communities, enhanced growth of invasive species, eutrophication and acidification of lands and waters, and habitat deterioration for native species, including endangered species. ??? Lake, stream and soil acidification is widespread across the eastern United States. Up to 65% of lakes within sensitive areas receive acid deposition that exceeds critical loads. ??? Mercury contamination adversely affects fish in many inland and coastal waters. Fish consumption advisories for mercury exist in all 50 states and on many tribal lands. High concentrations of mercury in wildlife are also widespread and have multiple adverse effects. ??? Air quality programs, such as those stemming from the 1990 Clean Air Act Amendments, have helped decrease air pollution even as population and energy demand have increased. Yet, they do not adequately protect ecosystems from long-term damage. Moreover they do not address ammonia emissions. ??? A stronger ecosystem basis for air pollutant policies could be established through adoption of science-based thresholds. Existing monitoring programs track vital information needed to measure the response to policies, and could be expanded to include appropriate chemical and biological indicators for terrestrial and aquatic ecosystems and establishment of a national ecosystem monitoring network for mercury. The development and use of air pollution thresholds for ecosystem protection and management is increasing in the United States, yet threshold approaches remain underutilized. Ecological thresholds for air pollution, such as critical loads for nitrogen and sulfur deposition, are not currently included in the formal regulatory process for emissions controls in the United States, although they are now considered in local management decisions by the National Park Service and U.S. Forest Service. Ecological thresholds offer a scientifically sound approach to protecting and restoring U.S. ecosystems and an important tool for natural resource management and policy. ?? The Ecological Society of America.

  4. [Decrease and asymmetry in taste perception in patients with nerve trunk damage].

    PubMed

    Nikulina, V A; Kokin, G S; Morozov, I S

    1995-01-01

    The purpose of this article was the gustatory perception state study (NaCl solution perception) in patients with one-sided damages of branchial plexus as well as of radial, facial and ulnar nervous trunks. The decrease of gustatory perception was observed in 78 (70.3%) cases, while the lack of such alterations in 33 (29.7%) patients. The gustatory perception disturbances (increase of the absolute threshold on the ipsilateral tongue's half) took place in 82.2% and 69.6% at right and left limbs damages respectively. The results presented testified the strengthening of normally existing asymmetry in gustatory perception especially in patients with left-sided denervation. The degree of gustatory perception restoration may serve as a prognostic test at surgery of such patients.

  5. The repeatability of mean defect with size III and size V standard automated perimetry.

    PubMed

    Wall, Michael; Doyle, Carrie K; Zamba, K D; Artes, Paul; Johnson, Chris A

    2013-02-15

    The mean defect (MD) of the visual field is a global statistical index used to monitor overall visual field change over time. Our goal was to investigate the relationship of MD and its variability for two clinically used strategies (Swedish Interactive Threshold Algorithm [SITA] standard size III and full threshold size V) in glaucoma patients and controls. We tested one eye, at random, for 46 glaucoma patients and 28 ocularly healthy subjects with Humphrey program 24-2 SITA standard for size III and full threshold for size V each five times over a 5-week period. The standard deviation of MD was regressed against the MD for the five repeated tests, and quantile regression was used to show the relationship of variability and MD. A Wilcoxon test was used to compare the standard deviations of the two testing methods following quantile regression. Both types of regression analysis showed increasing variability with increasing visual field damage. Quantile regression showed modestly smaller MD confidence limits. There was a 15% decrease in SD with size V in glaucoma patients (P = 0.10) and a 12% decrease in ocularly healthy subjects (P = 0.08). The repeatability of size V MD appears to be slightly better than size III SITA testing. When using MD to determine visual field progression, a change of 1.5 to 4 decibels (dB) is needed to be outside the normal 95% confidence limits, depending on the size of the stimulus and the amount of visual field damage.

  6. Kinetic Modeling of the X-ray-induced Damage to a Metalloprotein

    PubMed Central

    Davis, Katherine M.; Kosheleva, Irina; Henning, Robert W.; Seidler, Gerald T.; Pushkar, Yulia

    2013-01-01

    It is well known that biological samples undergo x-ray-induced degradation. One of the fastest occurring x-ray-induced processes involves redox modifications (reduction or oxidation) of redox-active cofactors in proteins. Here we analyze room temperature data on the photoreduction of Mn ions in the oxygen evolving complex (OEC) of photosystem II, one of the most radiation damage sensitive proteins and a key constituent of natural photosynthesis in plants, green algae and cyanobacteria. Time-resolved x-ray emission spectroscopy with wavelength-dispersive detection was used to collect data on the progression of x-ray-induced damage. A kinetic model was developed to fit experimental results, and the rate constant for the reduction of OEC MnIII/IV ions by solvated electrons was determined. From this model, the possible kinetics of x-ray-induced damage at variety of experimental conditions, such as different rates of dose deposition as well as different excitation wavelengths, can be inferred. We observed a trend of increasing dosage threshold prior to the onset of x-ray-induced damage with increasing rates of damage deposition. This trend suggests that experimentation with higher rates of dose deposition is beneficial for measurements of biological samples sensitive to radiation damage, particularly at pink beam and x-ray FEL sources. PMID:23815809

  7. First-principles simulation for strong and ultra-short laser pulse propagation in dielectrics

    NASA Astrophysics Data System (ADS)

    Yabana, K.

    2016-05-01

    We develop a computational approach for interaction between strong laser pulse and dielectrics based on time-dependent density functional theory (TDDFT). In this approach, a key ingredient is a solver to simulate electron dynamics in a unit cell of solids under a time-varying electric field that is a time-dependent extension of the static band calculation. This calculation can be regarded as a constitutive relation, providing macroscopic electric current for a given electric field applied to the medium. Combining the solver with Maxwell equations for electromagnetic fields of the laser pulse, we describe propagation of laser pulses in dielectrics without any empirical parameters. An important output from the coupled Maxwell+TDDFT simulation is the energy transfer from the laser pulse to electrons in the medium. We have found an abrupt increase of the energy transfer at certain laser intensity close to damage threshold. We also estimate damage threshold by comparing the transferred energy with melting and cohesive energies. It shows reasonable agreement with measurements.

  8. Comparison of Spall Pullback Signals and X-ray Tomography Analysis in Copper

    NASA Astrophysics Data System (ADS)

    Gard, Marcie; Russell, Rod; Hanna, Romy; Bless, Stephan; InstituteAdvanced Technology Collaboration; Department of Geological Sciences-UT Austin Collaboration

    2011-06-01

    Spall experiments were conducted on electrolytic tough pitch C110 copper plates. Flyer plates half the target-plate thickness were launched with a single-stage compressed-gas gun. Pullback signals were measured with a photonic Doppler velocimeter (PDV). Spall stresses were determined and found to be about 1 GPa. In addition, damage on the spall plane for samples that failed to separate a spall plate was characterized by x-ray tomography. The paper will include a description of threshold damage. The threshold for appearance of a pullback signal corresponded to the initiation of tensile damage, not formation of a spall separation plane.

  9. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser

    NASA Astrophysics Data System (ADS)

    Kozub, John A.; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Shane Hutson, M.

    2015-10-01

    Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-μm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43 μm), pulse energy (up to 3 mJ/pulse), and spot diameter (100 to 600 μm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09 μm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (˜100-μm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies >1 mJ). When the beam is softly focused (˜300-μm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications.

  10. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser

    PubMed Central

    Kozub, John A.; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Shane Hutson, M.

    2015-01-01

    Abstract. Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-μm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43  μm), pulse energy (up to 3  mJ/pulse), and spot diameter (100 to 600  μm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09  μm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (∼100-μm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies >1  mJ). When the beam is softly focused (∼300-μm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications. PMID:26456553

  11. Temperature-activity relationships in Meligethes aeneus: implications for pest management.

    PubMed

    Ferguson, Andrew W; Nevard, Lucy M; Clark, Suzanne J; Cook, Samantha M

    2015-03-01

    Pollen beetle (Meligethes aeneus F.) management in oilseed rape (Brassica napus L.) has become an urgent issue in the light of insecticide resistance. Risk prediction advice has relied upon flight temperature thresholds, while risk assessment uses simple economic thresholds. However, there is variation in the reported temperature of migration, and economic thresholds vary widely across Europe, probably owing to climatic factors interacting with beetle activity and plant compensation for damage. The effect of temperature on flight, feeding and oviposition activity of M. aeneus was examined in controlled conditions. Escape from a release vial was taken as evidence of flight and was supported by video observations. The propensity to fly followed a sigmoid temperature-response curve between 6 and 23 °C; the 10, 25 and 50% flight temperature thresholds were 12.0-12.5 °C, 13.6-14.2 °C and 15.5-16.2 °C, respectively. Thresholds were slightly higher in the second of two flight bioassays, suggesting an effect of beetle age. Strong positive relationships were found between temperature (6-20 °C) and the rates of feeding and oviposition on flower buds of oilseed rape. These temperature relationships could be used to improve M. aeneus migration risk assessment, refine weather-based decision support systems and modulate damage thresholds according to rates of bud damage. © 2014 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  12. Laser-induced damage threshold measurements of optical dielectric coatings at lambda = 1.06 micron

    NASA Astrophysics Data System (ADS)

    Milev, I. Ia.; Dimov, S. S.; Terziev, D. V.; Iordanova, J. I.; Todorova, L. B.; Gelkova, A. B.

    1991-10-01

    The laser-induced damage thresholds for lambda = 1.06 micron of commercially available dielectric optical coatings, both antireflective and high reflectance, have been determined. The dependence of the optical coatings stability on design and selection of materials has been investigated. An improvement of the coatings durability by using nonquarterwave layers in addition to the basic design of the mirrors has been obtained. The choice of the coating materials is also discussed.

  13. Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm

    NASA Astrophysics Data System (ADS)

    Wang, Jiarui; Jiao, Luguang; Chen, Hongxia; Yang, Zaifu; Hu, Xiangjun

    2016-01-01

    The corneal damage effects induced by 1319-nm transitional near-infrared laser have been investigated for years. However, the damage threshold dependence on exposure duration has not been revealed. The in vivo corneal damage thresholds (ED50s) were determined in New Zealand rabbits for 1319-nm laser radiation for exposure durations from 75 ms to 10 s. An additional corneal ED50 was determined at 1338 nm for a 5-ms exposure. The incident corneal irradiance diameter was fixed at 2 mm for all exposure conditions to avoid the influence of spot size on threshold. The ED50s given in terms of the corneal radiant exposure for exposure durations of 5 ms, 75 ms, 0.35 s, 2 s, and 10 s were 39.4, 51.5, 87.2, 156.3, and 311.1 J/cm2, respectively. The 39.4 J/cm2 was derived from the ED50 for 1338 nm (27.0 J/cm2). The ED50s for exposure durations of 75 ms to 10 s were correlated by a power law equation, ED50=128.9t0.36 in J/cm2, where t was the input in the unit of second, with correlation coefficient (R) of 0.997. Enough safe margins existed between the ED50s and the maximum permitted exposures from current laser safety standard.

  14. Lowering threshold energy for femtosecond laser pulse photodisruption through turbid media using adaptive optics

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Ripken, Tammo; Krueger, Ronald R.; Lubatschowski, Holger

    2011-03-01

    Focussed femtosecond laser pulses are applied in ophthalmic tissues to create an optical breakdown and therefore a tissue dissection through photodisruption. The threshold irradiance for the optical breakdown depends on the photon density in the focal volume which can be influenced by the pulse energy, the size of the irradiated area (focus), and the irradiation time. For an application in the posterior eye segment the aberrations of the anterior eye elements cause a distortion of the wavefront and therefore an increased focal volume which reduces the photon density and thus raises the required energy for surpassing the threshold irradiance. The influence of adaptive optics on lowering the pulse energy required for photodisruption by refining a distorted focus was investigated. A reduction of the threshold energy can be shown when using adaptive optics. The spatial confinement with adaptive optics furthermore raises the irradiance at constant pulse energy. The lowered threshold energy allows for tissue dissection with reduced peripheral damage. This offers the possibility for moving femtosecond laser surgery from corneal or lental applications in the anterior eye to vitreal or retinal applications in the posterior eye.

  15. Optical monitoring of ultrasound-induced bioeffects in glass catfish.

    PubMed

    Maruvada, Subha; Hynynen, Kullervo

    2004-01-01

    This study is an investigation of the therapeutic ultrasound (US) effects on the blood vessels of optically transparent fish in vivo. Although many investigators have characterized cavitation in vivo using remote-sensing methods (i.e., measuring the acoustic emissions caused by oscillating bubbles) very few have made direct observations of cavitation-induced damage. Anesthetized glass catfish, which are optically transparent, was injected with the contrast agent, Optison, and then insonified at pressures that ranged from 0.5-10 MPa (peak negative pressures). Two focused transducers were used in these experiments to cover a frequency range of 0.7-3.3 MHz. Sonications were pulsed with pulse durations of 100, 10, 1, 0.1 and 0.01 ms and a pulse repetition frequency (PRF) of 1 Hz. The entire length of one sonication at a specific pressure level was 20 s. An inverted microscope combined with a digital camera and video monitor were used optically to monitor and record US interaction with the blood vessels in the tail of the anesthetized fish at 200x magnification. The effects of the burst sonication were analyzed visually at each pressure level. For the 1.091-MHz sonications, the first type of damage that occurred due to the US interaction was structural damage to the cartilage rods that comprise the tail of the fish, and was characterized by a disintegration of the lining of the rod. Damage to the rods occurred, starting at 3.5 MPa, 3.1 MPa, 4.1 MPa and 5.5 MPa for the 100-ms, 10-ms, 1-ms and 100-micros sonications, respectively. The formation of large gas bubbles was observed in the blood vessels of the fish at threshold values of 3.8 MPa, 3.8 MPa and 5.3 MPa, for the 100-ms, 10-ms and 1-ms sonications, respectively. Neither gas bubble formation nor hemorrhaging was observed during 100-micros sonications. Bubble formation was always accompanied by an increase of damage to the rods at the area surrounding the bubble. At 1.091 MHz, petechial hemorrhage thresholds were observed at 4.1 MPa, 4.1 MPa and 6.1 MPa, respectively, for the three pulse durations. The thresholds for damage were the lowest for the 0.747-MHz sonications: they were 2.6 MPa for damage to the rods, 3.7 MPa for gas bubble formation and 2.4 MPa for hemorrhaging.

  16. Evidence for Non-Opponent Coding of Colour Information in Human Visual Cortex: Selective Loss of "Green" Sensitivity in a Subject with Damaged Ventral Occipito-Temporal Cortex.

    PubMed

    Rauscher, Franziska G; Plant, Gordon T; James-Galton, Merle; Barbur, John L

    2011-01-01

    Damage to ventral occipito-temporal extrastriate visual cortex leads to the syndrome of prosopagnosia often with coexisting cerebral achromatopsia. A patient with this syndrome resulting in a left upper homonymous quadrantanopia, prosopagnosia, and incomplete achromatopsia is described. Chromatic sensitivity was assessed at a number of locations in the intact visual field using a dynamic luminance contrast masking technique that isolates the use of colour signals. In normal subjects chromatic detection thresholds form an elliptical contour when plotted in the Commission Internationale d'Eclairage, (x-y), chromaticity diagram. Because the extraction of colour signals in early visual processing involves opponent mechanisms, subjects with Daltonism (congenital red/green loss of sensitivity) show symmetric increase in thresholds towards the long wavelength ("red") and middle wavelength ("green") regions of the spectrum locus. This is also the case with acquired loss of chromatic sensitivity as a result of retinal or optic nerve disease. Our patient's results were an exception to this rule. Whilst his chromatic sensitivity in the central region of the visual field was reduced symmetrically for both "red/green" and "yellow/blue" directions in colour space, the subject's lower left quadrant showed a marked asymmetry in "red/green" thresholds with the greatest loss of sensitivity towards the "green" region of the spectrum locus. This spatially localized asymmetric loss of "green" but not "red" sensitivity has not been reported previously in human vision. Such loss is consistent with selective damage of neural substrates in the visual cortex that process colour information, but are spectrally non-opponent.

  17. Few-cycle pulse laser induced damage threshold determination of ultra-broadband optics.

    PubMed

    Kafka, Kyle R P; Talisa, Noah; Tempea, Gabriel; Austin, Drake R; Neacsu, Catalin; Chowdhury, Enam A

    2016-12-12

    A systematic study of few-cycle pulse laser induced damage threshold (LIDT) determination was performed for commercially-available ultra-broadband optics, (i.e. chirped mirrors, silver mirrors, beamsplitters, etc.) in vacuum and in air, for single and multi-pulse regime (S-on-1). Multi-pulse damage morphology at fluences below the single-pulse LIDT was studied in order to investigate the mechanisms leading to the onset of damage. Stark morphological contrast was observed between multi-pulse damage sites formed in air versus those in vacuum. One effect of vacuum testing compared to air included suppression of laser-induced periodic surface structures (LIPSS) formation, possibly influenced by a reduced presence of damage debris. Another effect of vacuum was occasional lowering of LIDT, which appears to be due to the stress-strain performance of the coating design during laser irradiation and under the external stress of vacuum ambience. A fused silica substrate is also examined, and a non-LIPSS nanostructuring is observed on the surface. Possible mechanisms are discussed.

  18. SU-C-BRE-07: Sensitivity Analysis of the Threshold Energy for the Creation of Strand Breaks and of Single and Double Strand Break Clustering Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pater, P

    Purpose: To analyse the sensitivity of the creation of strand breaks (SB) to the threshold energy (Eth) and thresholding method and to quantify the impact of clustering conditions on single strand break (SSB) and double strand break (DSB) yields. Methods: Monte Carlo simulations using Geant4-DNA were conducted for electron tracks of 280 eV to 220 keV in a geometrical DNA model composed of nucleosomes of 396 phospho-diester groups (PDGs) each. A strand break was created inside a PDG when the sum of all energy deposits (method 1) or energy transfers (method 2) was higher than Eth or when at leastmore » one interaction deposited (method 3) or transferred (method 4) an energy higher than Eth. SBs were then clustered into SSBs and DSBs using clustering scoring criteria from the literature and compared to our own. Results: The total number of SBs decreases as Eth is increased. In addition, thresholding on the energy transfers (methods 2 and 4) produces a higher SB count than when thresholding on energy deposits (methods 1 and 3). Method 2 produces a step-like function and should be avoided when attempting to optimize Eth. When SBs are grouped into damage patterns, clustering conditions can underestimated SSBs by up to 18 % and DSBs can be overestimated by up to 12 % compared to our own implementation. Conclusion: We show that two often underreported simulation parameters have a non-negligible effect on overall DNA damage yields. First more SBs are counted when using energy transfers to the PDG rather than energy deposits. Also, SBs grouped according to different clustering conditions can influence reported SSB and DSB by as much as 20%. Careful handling of these parameters is required when trying to compare DNA damage yields from different authors. Research funding from the governments of Canada and Quebec. PP acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290)« less

  19. Enhanced thermomechanical stability on laser-induced damage by functionally graded layers in quasi-rugate filters

    NASA Astrophysics Data System (ADS)

    Pu, Yunti; Ma, Ping; Lv, Liang; Zhang, Mingxiao; Lu, Zhongwen; Qiao, Zhao; Qiu, Fuming

    2018-05-01

    Ta2O5-SiO2 quasi-rugate filters with a reasonable optimization of rugate notch filter design were prepared by ion-beam sputtering. The optical properties and laser-induced damage threshold are studied. Compared with the spectrum of HL-stacks, the spectrum of quasi-rugate filters have weaker second harmonic peaks and narrower stopbands. According to the effect of functionally graded layers (FGLs), 1-on-1 and S-on-1 Laser induced damage threshold (LIDT) of quasi-rugate filters are about 22% and 50% higher than those of HL stacks, respectively. Through the analysis of the damage morphologies, laser-induced damage of films under nanosecond multi-pulse are dominated by a combination of thermal shock stress and thermomechanical instability due to nodules. Compared with catastrophic damages, the damage sits of quasi-rugate filters are developed in a moderate way. The damage growth behavior of defect-induced damage sites have been effectively restrained by the structure of FGLs. Generally, FGLs are used to reduce thermal stress by the similar thermal-expansion coefficients of neighboring layers and solve the problems such as instability and cracking raised by the interface discontinuity of nodular boundaries, respectively.

  20. Hotspots, Lifelines, and the Safrr Haywired Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Ratliff, J. L.; Porter, K.

    2014-12-01

    Though California has experienced many large earthquakes (San Francisco, 1906; Loma Prieta, 1989; Northridge, 1994), the San Francisco Bay Area has not had a damaging earthquake for 25 years. Earthquake risk and surging reliance on smartphones and the Internet to handle everyday tasks raise the question: is an increasingly technology-reliant Bay Area prepared for potential infrastructure impacts caused by a major earthquake? How will a major earthquake on the Hayward Fault affect lifelines (roads, power, water, communication, etc.)? The U.S. Geological Survey Science Application for Risk Reduction (SAFRR) program's Haywired disaster scenario, a hypothetical two-year earthquake sequence triggered by a M7.05 mainshock on the Hayward Fault, addresses these and other questions. We explore four geographic aspects of lifeline damage from earthquakes: (1) geographic lifeline concentrations, (2) areas where lifelines pass through high shaking or potential ground-failure zones, (3) areas with diminished lifeline service demand due to severe building damage, and (4) areas with increased lifeline service demand due to displaced residents and businesses. Potential mainshock lifeline vulnerability and spatial demand changes will be discerned by superimposing earthquake shaking, liquefaction probability, and landslide probability damage thresholds with lifeline concentrations and with large-capacity shelters. Intersecting high hazard levels and lifeline clusters represent potential lifeline susceptibility hotspots. We will also analyze possible temporal vulnerability and demand changes using an aftershock shaking threshold. The results of this analysis will inform regional lifeline resilience initiatives and response and recovery planning, as well as reveal potential redundancies and weaknesses for Bay Area lifelines. Identified spatial and temporal hotspots can provide stakeholders with a reference for possible systemic vulnerability resulting from an earthquake sequence.

  1. Towards developing drought impact functions to advance drought monitoring and early warning

    NASA Astrophysics Data System (ADS)

    Bachmair, Sophie; Stahl, Kerstin; Hannaford, Jamie; Svoboda, Mark

    2015-04-01

    In natural hazard analysis, damage functions (also referred to as vulnerability or susceptibility functions) relate hazard intensity to the negative effects of the hazard event, often expressed as damage ratio or monetary loss. While damage functions for floods and seismic hazards have gained considerable attention, there is little knowledge on how drought intensity translates into ecological and socioeconomic impacts. One reason for this is the multifaceted nature of drought affecting different domains of the hydrological cycle and different sectors of human activity (for example, recognizing meteorological - agricultural - hydrological - socioeconomic drought) leading to a wide range of drought impacts. Moreover, drought impacts are often non-structural and hard to quantify or monetarize (e.g. impaired navigability of streams, bans on domestic water use, increased mortality of aquatic species). Knowledge on the relationship between drought intensity and drought impacts, i.e. negative environmental, economic or social effects experienced under drought conditions, however, is vital to identify critical thresholds for drought impact occurrence. Such information may help to improve drought monitoring and early warning (M&EW), one goal of the international DrIVER project (Drought Impacts: Vulnerability thresholds in monitoring and Early-warning Research). The aim of this study is to test the feasibility of designing "drought impact functions" for case study areas in Europe (Germany and UK) and the United States to derive thresholds meaningful for drought impact occurrence; to account for the multidimensionality of drought impacts, we use the broader term "drought impact function" over "damage function". First steps towards developing empirical drought impact functions are (1) to identify meaningful indicators characterizing the hazard intensity (e.g. indicators expressing a precipitation or streamflow deficit), (2) to identify suitable variables representing impacts, damage, or loss due to drought, and (3) to test different statistical models to link drought intensity with drought impact information to derive meaningful thresholds. While the focus regarding drought impact variables lies on text-based impact reports from the European Drought Impact report Inventory (EDII) and the US Drought Impact Reporter (DIR), the information gain through exploiting other variables such as agricultural yield statistics and remotely sensed vegetation indices is explored. First results reveal interesting insights into the complex relationship between drought indicators and impacts and highlight differences among drought impact variables and geographies. Although a simple intensity threshold evoking specific drought impacts cannot be identified, developing drought impact functions helps to elucidate how drought conditions relate to ecological or socioeconomic impacts. Such knowledge may provide guidance for inferring meaningful triggers for drought M&EW and could have potential for a wide range of drought management applications (for example, building drought scenarios for testing the resilience of drought plans or water supply systems).

  2. Nanosecond laser pulses for mimicking thermal effects on nanostructured tungsten-based materials

    NASA Astrophysics Data System (ADS)

    Besozzi, E.; Maffini, A.; Dellasega, D.; Russo, V.; Facibeni, A.; Pazzaglia, A.; Beghi, M. G.; Passoni, M.

    2018-03-01

    In this work, we exploit nanosecond laser irradiation as a compact solution for investigating the thermomechanical behavior of tungsten materials under extreme thermal loads at the laboratory scale. Heat flux factor thresholds for various thermal effects, such as melting, cracking and recrystallization, are determined under both single and multishot experiments. The use of nanosecond lasers for mimicking thermal effects induced on W by fusion-relevant thermal loads is thus validated by direct comparison of the thresholds obtained in this work and the ones reported in the literature for electron beams and millisecond laser irradiation. Numerical simulations of temperature and thermal stress performed on a 2D thermomechanical code are used to predict the heat flux factor thresholds of the different thermal effects. We also investigate the thermal effect thresholds of various nanostructured W coatings. These coatings are produced by pulsed laser deposition, mimicking W coatings in tokamaks and W redeposited layers. All the coatings show lower damage thresholds with respect to bulk W. In general, thresholds decrease as the porosity degree of the materials increases. We thus propose a model to predict these thresholds for coatings with various morphologies, simply based on their porosity degree, which can be directly estimated by measuring the variation of the coating mass density with respect to that of the bulk.

  3. Cumulative Damage in Strength-Dominated Collisions of Rocky Asteroids: Rubble Piles and Brick Piles

    NASA Technical Reports Server (NTRS)

    Housen, Kevin

    2009-01-01

    Laboratory impact experiments were performed to investigate the conditions that produce large-scale damage in rock targets. Aluminum cylinders (6.3 mm diameter) impacted basalt cylinders (69 mm diameter) at speeds ranging from 0.7 to 2.0 km/s. Diagnostics included measurements of the largest fragment mass, velocities of the largest remnant and large fragments ejected from the periphery of the target, and X-ray computed tomography imaging to inspect some of the impacted targets for internal damage. Significant damage to the target occurred when the kinetic energy per unit target mass exceeded roughly 1/4 of the energy required for catastrophic shattering (where the target is reduced to one-half its original mass). Scaling laws based on a rate-dependent strength were developed that provide a basis for extrapolating the results to larger strength-dominated collisions. The threshold specific energy for widespread damage was found to scale with event size in the same manner as that for catastrophic shattering. Therefore, the factor of four difference between the two thresholds observed in the lab also applies to larger collisions. The scaling laws showed that for a sequence of collisions that are similar in that they produce the same ratio of largest fragment mass to original target mass, the fragment velocities decrease with increasing event size. As a result, rocky asteroids a couple hundred meters in diameter should retain their large ejecta fragments in a jumbled rubble-pile state. For somewhat larger bodies, the ejection velocities are sufficiently low that large fragments are essentially retained in place, possibly forming ordered "brick-pile" structures.

  4. Can Mass Trapping Reduce Thrips Damage and Is It Economically Viable? Management of the Western Flower Thrips in Strawberry

    PubMed Central

    Sampson, Clare; Kirk, William D. J.

    2013-01-01

    The western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) is a cosmopolitan, polyphagous insect pest that causes bronzing to fruit of strawberry (Fragaria x ananassa). The main aim of this study was to test whether mass trapping could reduce damage and to predict whether this approach would be economically viable. In semi-protected strawberry crops, mass trapping of F. occidentalis using blue sticky roller traps reduced adult thrips numbers per flower by 61% and fruit bronzing by 55%. The addition of the F. occidentalis aggregation pheromone, neryl (S)-2-methylbutanoate, to the traps doubled the trap catch, reduced adult thrips numbers per flower by 73% and fruit bronzing by 68%. The factors affecting trapping efficiency through the season are discussed. Damage that would result in downgrading of fruit to a cheaper price occurred when bronzing affected about 10% of the red fruit surface. Cost-benefit analysis using this threshold showed that mass trapping of thrips using blue sticky roller traps can be cost-effective in high-value crops. The addition of blue sticky roller traps to an integrated pest management programme maintained thrips numbers below the damage threshold and increased grower returns by a conservative estimate of £2.2k per hectare. Further work is required to develop the F. occidentalis aggregation pheromone for mass trapping and to determine the best timing for trap deployment. Mass trapping of thrips is likely to be cost-effective in other countries and other high-value crops affected by F. occidentalis damage, such as cucumber and cut flowers. PMID:24282554

  5. Reduction of the 355-nm laser-induced damage initiators by removing the subsurface cracks in fused silica

    NASA Astrophysics Data System (ADS)

    Yang, Minghong; Qi, Hongji; Zhao, Yuanan; Yi, Kui

    2012-01-01

    The 355 nm laser-induced damage thresholds (LIDTs) of polished fused silica with and without the residual subsurface cracks were explored. HF based wet etching and magnetorheological finishing was used to remove the subsurface cracks. To isolate the effect of subsurface cracks, chemical leaching was used to eliminate the photoactive impurities in the polishing layer. Results show that the crack number density decreased from~103 to <1cm-2, and the LIDT was improved as high as 2.8-fold with both the subsurface cracks and the polishing layer being removed. Subsurface cracks play a significant role in laser damage at fluencies between 15~31 J/cm2 (355nm, 8ns). HF Etching of the cracks was shown to increase the damage performance as nearly high as that of the samples in which subsurface cracks are well controlled.

  6. Research on laser-induced damage resistance of fused silica optics by the fluid jet polishing method.

    PubMed

    Lv, Liang; Ma, Ping; Huang, Jinyong; He, Xiang; Cai, Chao; Zhu, Heng

    2016-03-20

    Laser-induced damage threshold (LIDT) is one important evaluation index for optical glasses applied in large laser instruments which are exposed to high light irradiation flux. As a new kind of precise polishing technology, fluid jet polishing (FJP) has been widely used in generating planar, spherical, and aspherical optics with high-accuracy surfaces. Laser damage resistances of fused silica optics by the FJP process are studied in this paper. Fused silica samples with various FJP parameters are prepared, and laser damage experiments are performed with 351 nm wavelength and a 5.5 ns pulse width laser. Experimental results demonstrate that the LIDT of the samples treated with FJP processes did not increase, compared to their original state. The surface quality of the samples is one factor for the decrease of LIDT. For ceria solution polished samples, the cerium element remaining is another factor of the lower LIDT.

  7. Pro-oxidant Induced DNA Damage in Human Lymphoblastoid Cells: Homeostatic Mechanisms of Genotoxic Tolerance

    PubMed Central

    Seager, Anna L.

    2012-01-01

    Oxidative stress contributes to many disease etiologies including ageing, neurodegeneration, and cancer, partly through DNA damage induction (genotoxicity). Understanding the i nteractions of free radicals with DNA is fundamental to discern mutation risks. In genetic toxicology, regulatory authorities consider that most genotoxins exhibit a linear relationship between dose and mutagenic response. Yet, homeostatic mechanisms, including DNA repair, that allow cells to tolerate low levels of genotoxic exposure exist. Acceptance of thresholds for genotoxicity has widespread consequences in terms of understanding cancer risk and regulating human exposure to chemicals/drugs. Three pro-oxidant chemicals, hydrogen peroxide (H2O2), potassium bromate (KBrO3), and menadione, were examined for low dose-response curves in human lymphoblastoid cells. DNA repair and antioxidant capacity were assessed as possible threshold mechanisms. H2O2 and KBrO3, but not menadione, exhibited thresholded responses, containing a range of nongenotoxic low doses. Levels of the DNA glycosylase 8-oxoguanine glycosylase were unchanged in response to pro- oxidant stress. DNA repair–focused gene expression arrays reported changes in ATM and BRCA1, involved in double-strand break repair, in response to low-dose pro-oxidant exposure; however, these alterations were not substantiated at the protein level. Determination of oxidatively induced DNA damage in H2O2-treated AHH-1 cells reported accumulation of thymine glycol above the genotoxic threshold. Further, the H2O2 dose-response curve was shifted by modulating the antioxidant glutathione. Hence, observed pro- oxidant thresholds were due to protective capacities of base excision repair enzymes and antioxidants against DNA damage, highlighting the importance of homeostatic mechanisms in “genotoxic tolerance.” PMID:22539617

  8. The Limits to Adaptation: A Systems Approach

    EPA Science Inventory

    The ability to adapt to climate change is delineated by capacity thresholds, after which climate damages begin to overwhelm the adaptation response. Such thresholds depend upon physical properties (natural processes and engineering parameters), resource constraints (expressed th...

  9. Recent changes in flood damage in the United States from observations and ACME model

    NASA Astrophysics Data System (ADS)

    Leng, G.; Leung, L. R.

    2017-12-01

    Despite efforts to mitigate flood hazards in flood-prone areas, survey- and report-based flood databases show that flood damage has increased and emerged as one of the most costly disaster in the United States since the 1990s. Understanding the mechanism driving the changes in flood damage is therefore critical for reducing flood risk. In this study, we first conduct a comprehensive analysis of the changing characteristics of flood damage at local, state and country level. Results show a significant increasing trend in the number of flood hazards, causing economic losses of up to $7 billion per year. The ratio of flood events that caused tangible economical cost to the total flood events has exhibited a non-significant increasing trend before 2007 followed by a significant decrease, indicating a changing vulnerability to floods. Analysis also reveals distinct spatial and temporal patterns in the threshold intensity of flood hazards with tangible economical cost. To understand the mechanism behind the increasing flood damage, we develop a flood damage economic model coupled with the integrated hydrological modeling system of ACME that features a river routing model with an inundation parameterization and a water use and regulation model. The model is evaluated over the country against historical records. Several numerical experiments are then designed to explore the mechanisms behind the recent changes in flood damage from the perspective of flood hazard, exposure and vulnerability, which constitute flood damage. The role of human activities such as reservoir operations and water use in modifying regional floods are also explored using the new tool, with the goal of improving understanding and modeling of vulnerability to flood hazards.

  10. Laser-induced bulk damage of silica glass at 355nm and 266nm

    NASA Astrophysics Data System (ADS)

    Kashiwagi, R.; Aramomi, S.

    2016-12-01

    Laser processing machines using Nd:YAG 3rd harmonic wave (355 nm) and 4th harmonic wave (266 nm) have been developed and put into practical use lately. Due to this, optical elements with high laser durability to 355 nm and 266 nm are required. Silica glass is the optical element which has high UV transmission and high laser durability. Laser-induced surface damage of the silica glass has been studied in detail, but we hardly have the significant knowledge of laserinduced bulk damage. This knowledge is required in order to evaluate the silica glass itself. That is because cracks and scratches on the surface give rise to a higher possibility of damage. Therefore, we studied the laser durability of a variety of the silica glass samples by 1-on-1 and S-on-1 laser-induced bulk damage threshold (LIDT) at 355 nm and 266 nm. In this study, we gained knowledge in three areas about bulk damage to the silica glass. First, the LIDT became lower as shot counts increased. Second, the LIDT decreased as the hydroxyl content in the silica glass increased. Last, the LIDT became higher as the hydrogen concentration in the silica glass increased. Under the UV irradiation, impurities are generated and the silica glass absorbs more light. Therefore, the LIDT decreased as shot counts increased. Also, the hydroxyl in particular generates more impurities, so damage easily occurs. On the other hand, the hydrogen reacts with impurities and absorption is suppressed. Based on these results, we can improve laser durability at 355 nm and 266 nm by reducing the hydroxyl content and increasing the hydrogen concentration in the silica glass.

  11. Finite element model of thermal processes in retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis M.; Nomoto, Hiroyuki; Huie, Phil; Palanker, Daniel

    2009-02-01

    Short duration (< 20 ms) pulses are desirable in patterned scanning laser photocoagulation to confine thermal damage to the photoreceptor layer, decrease overall treatment time and reduce pain. However, short exposures have a smaller therapeutic window (defined as the ratio of rupture threshold power to that of light coagulation). We have constructed a finite-element computational model of retinal photocoagulation to predict spatial damage and improve the therapeutic window. Model parameters were inferred from experimentally measured absorption characteristics of ocular tissues, as well as the thresholds of vaporization, coagulation, and retinal pigment epithelial (RPE) damage. Calculated lesion diameters showed good agreement with histological measurements over a wide range of pulse durations and powers.

  12. Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Kimmel, Mark; Rambo, Patrick; Broyles, Robin; Geissel, Matthias; Schwarz, Jens; Bellum, John; Atherton, Briggs

    2009-10-01

    To enable laser-based radiography of high energy density physics events on the Z-Accelerator[4,5] at Sandia National Laboratories, a facility known as the Z-Backlighter has been developed. Two Nd:Phosphate glass lasers are used to create x-rays and/or proton beams capable of this radiographic diagnosis: Z-Beamlet (a multi-kilojoule laser operating at 527nm in a few nanoseconds) and Z-Petawatt (a several hundred joule laser operating at 1054nm in the subpicosecond regime) [1,2]. At the energy densities used in these systems, it is necessary to use high damage threshold optical materials, some of which are poorly characterized (especially for the sub-picosecond pulse). For example, Sandia has developed a meter-class dielectric coating capability for system optics. Damage testing can be performed by external facilities for nanosecond 532nm pulses, measuring high reflector coating damage thresholds >80J/cm2 and antireflection coating damage thresholds >20J/cm2 [3]. However, available external testing capabilities do not use femtosecond/picosecond scale laser pulses. To this end, we have constructed a sub-picoseond-laser-based optical damage test system. The damage tester system also allows for testing in a vacuum vessel, which is relevant since many optics in the Z-Backlighter system are used in vacuum. This paper will present the results of laser induced damage testing performed in both atmosphere and in vacuum, with 1054nm sub-picosecond laser pulses. Optical materials/coatings discussed are: bare fused silica and protected gold used for benchmarking; BK7; Zerodur; protected silver; and dielectric optical coatings (halfnia/silica layer pairs) produced by Sandia's in-house meter-class coating capability.

  13. Measuring single-shot, picosecond optical damage threshold in Ge, Si, and sapphire with a 5.1-μm laser

    DOE PAGES

    Agustsson, R.; Pogorelsky, I.; Arab, E.; ...

    2015-11-18

    Optical photonic structures driven by picosecond, GW-class lasers are emerging as promising novel sources of electron beams and high quality X-rays. Due to quadratic dependence on wavelength of the laser ponderomotive potential, the performance of such sources scales very favorably towards longer drive laser wavelengths. However, to take full advantage of photonic structures at mid-IR spectral region, it is important to determine optical breakdown limits of common optical materials. To this end, an experimental study was carried out at a wavelength of 5 µm, using a frequency-doubled CO 2 laser source, with 5 ps pulse length. Single-shot optical breakdowns weremore » detected and characterized at different laser intensities, and damage threshold values of 0.2, 0.3, and 7.0 J/cm 2, were established for Ge, Si, and sapphire, respectively. As a result, the measured damage threshold values were stable and repeatable within individual data sets, and across varying experimental conditions.« less

  14. Measuring single-shot, picosecond optical damage threshold in Ge, Si, and sapphire with a 5.1-μm laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agustsson, R.; Pogorelsky, I.; Arab, E.

    Optical photonic structures driven by picosecond, GW-class lasers are emerging as promising novel sources of electron beams and high quality X-rays. Due to quadratic dependence on wavelength of the laser ponderomotive potential, the performance of such sources scales very favorably towards longer drive laser wavelengths. However, to take full advantage of photonic structures at mid-IR spectral region, it is important to determine optical breakdown limits of common optical materials. To this end, an experimental study was carried out at a wavelength of 5 µm, using a frequency-doubled CO 2 laser source, with 5 ps pulse length. Single-shot optical breakdowns weremore » detected and characterized at different laser intensities, and damage threshold values of 0.2, 0.3, and 7.0 J/cm 2, were established for Ge, Si, and sapphire, respectively. As a result, the measured damage threshold values were stable and repeatable within individual data sets, and across varying experimental conditions.« less

  15. Beneficial effects of neuropeptide galanin on reinstatement of exercise-induced somatic and psychological trauma.

    PubMed

    He, Biao; Fang, Penghua; Guo, Lili; Shi, Mingyi; Zhu, Yan; Xu, Bo; Bo, Ping; Zhang, Zhenwen

    2017-04-01

    Galanin is a versatile neuropeptide that is distinctly upregulated by exercise in exercise-related tissues. Although benefits from exercise-induced upregulation of this peptide have been identified, many issues require additional exploration. This Review summarizes the information currently available on the relationship between galanin and exercise-induced physical and psychological damage. On the one hand, body movement, exercise damage, and exercise-induced stress and pain significantly increase local and circulatory galanin levels. On the other hand, galanin plays an exercise-protective role to inhibit the flexor reflex and prevent excessive movement of skeletal muscles through enhancing response threshold and reducing acetylcholine release. Additionally, elevated galanin levels can boost repair of the exercise-induced damage in exercise-related tissues, including peripheral nerve, skeletal muscle, blood vessel, skin, bone, articulation, and ligament. Moreover, elevated galanin levels may serve as effective signals to buffer sport-induced stress and pain via inhibiting nociceptive signal transmission and enhancing pain threshold. This Review deepens our understanding of the profitable roles of galanin in exercise protection, exercise injury repair, and exercise-induced stress and pain. Galanin and its agonists may be used to develop a novel preventive and therapeutic strategy to prevent and treat exercise-induced somatic and psychological trauma. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Test and Analysis of Foam Impacting a 6x6 Inch RCC Flat Panel

    NASA Technical Reports Server (NTRS)

    Lessard, Wendy B.

    2006-01-01

    This report presents the testing and analyses of a foam projectile impacting onto thirteen 6x6 inch flat panels at a 90 degrees incidence angle. The panels tested in this investigation were fabricated of Reinforced-Carbon-Carbon material and were used to aid in the validation of an existing material model, MAT58. The computational analyses were performed using LS-DYNA, which is a physics-based, nonlinear, transient, finite element code used for analyzing material responses subjected to high impact forces and other dynamic conditions. The test results were used to validate LS-DYNA predictions and to determine the threshold of damage generated by the MAT58 cumulative damage material model. The threshold of damage parameter represents any external or internal visible RCC damage detectable by nondestructive evaluation techniques.

  17. Online damage inspection of optics for ATP system

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Jiang, Yu; Mao, Yao; Gan, Xun; Liu, Qiong

    2016-09-01

    In the Electro-Optical acquisition-tracking-pointing system (ATP), the optical components will be damaged with the several influencing factors. In this situation, the rate will increase sharply when the arrival of damage to some extent. As the complex processing techniques and long processing cycle of optical components, the damage will cause the great increase of the system development cost and cycle. Therefore, it is significant to detect the laser-induced damage in the ATP system. At present, the major research on the on-line damage detection technology of optical components is for the large optical system in the international. The relevant detection systems have complicated structures and many of components, and require enough installation space reserved, which do not apply for ATP system. To solve the problem mentioned before, This paper use a method based on machine vision to detect the damage on-line for the present ATP system. To start with, CCD and PC are used for image acquisition. Secondly, smoothing filters are used to restrain false damage points produced by noise. Then, with the shape feature included in the damage image, the OTSU Method which can define the best segmentation threshold automatically is used to achieve the goal to locate the damage regions. At last, we can supply some opinions for the lifetime of the optical components by analyzing the damage data, such as damage area, damage position. The method has the characteristics of few-detectors and simple-structures which can be installed without any changes of the original light path. With the method, experimental results show that it is stable and effective to achieve the goal of detecting the damage of optical components on-line in the ATP system.

  18. A long-term high-fat diet increases oxidative stress, mitochondrial damage and apoptosis in the inner ear of D-galactose-induced aging rats.

    PubMed

    Du, Zhengde; Yang, Yang; Hu, Yujuan; Sun, Yu; Zhang, Sulin; Peng, Wei; Zhong, Yi; Huang, Xiang; Kong, Weijia

    2012-05-01

    In humans, chronic dyslipidemia associated with elevated triglycerides may reduce auditory function. However, there is little evidence available in the literature concerning the effects of a long-term high-fat diet (HFD) on the inner ears of animals. The purpose of this study was to investigate the effect of 12 month-HFD on the inner ear of Sprague-Dawley rats and on the D-galactose (D-gal)-induced aging process in the inner ear. We found that 12 month-HFD markedly elevated the auditory brainstem response (ABR) threshold in the high-frequency region. The HFD significantly increased the generation of reactive oxygen species (ROS) and the expressions of NADPH oxidase (NOX) and the uncoupling proteins (UCP). Furthermore, an elevated accumulation of the mitochondrial DNA (mtDNA) common deletion (CD) and mitochondrial ultrastructural changes in the inner ear suggested that there was mitochondrial damage in response to the excessive fat intake. The expression level of cleaved caspase-3 and the number of terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end-labelling (TUNEL)-positive cells in the inner ear were increased by the HFD. The effects of D-gal on the inner ears were similar with 12 month-HFD. We found that rats receiving both the HFD and D-gal exhibited a greater shift in the ABR threshold, larger increases in the expression levels of NOX, UCP and cleaved caspase-3 and an increased number of TUNEL-positive cells in the inner ear. The present study demonstrated that HFD may induce oxidative stress, mitochondrial damage and apoptosis in the inner ear, and it provided evidence regarding the link between HFD and an increased risk of age-related hearing loss. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Laser damage threshold measurements of microstructure-based high reflectors

    NASA Astrophysics Data System (ADS)

    Hobbs, Douglas S.

    2008-10-01

    In 2007, the pulsed laser induced damage threshold (LIDT) of anti-reflecting (AR) microstructures built in fused silica and glass was shown to be up to three times greater than the LIDT of single-layer thin-film AR coatings, and at least five times greater than multiple-layer thin-film AR coatings. This result suggested that microstructure-based wavelength selective mirrors might also exhibit high LIDT. Efficient light reflection over a narrow spectral range can be produced by an array of sub-wavelength sized surface relief microstructures built in a waveguide configuration. Such surface structure resonant (SSR) filters typically achieve a reflectivity exceeding 99% over a 1-10nm range about the filter center wavelength, making SSR filters useful as laser high reflectors (HR). SSR laser mirrors consist of microstructures that are first etched in the surface of fused silica and borosilicate glass windows and subsequently coated with a thin layer of a non-absorbing high refractive index dielectric material such as tantalum pent-oxide or zinc sulfide. Results of an initial investigation into the LIDT of single layer SSR laser mirrors operating at 532nm, 1064nm and 1573nm are described along with data from SEM analysis of the microstructures, and spectral reflection measurements. None of the twelve samples tested exhibited damage thresholds above 3 J/cm2 when illuminated at the resonant wavelength, indicating that the simple single layer, first order design will need further development to be suitable for high power laser applications. Samples of SSR high reflectors entered in the Thin Film Damage Competition also exhibited low damage thresholds of less than 1 J/cm2 for the ZnS coated SSR, and just over 4 J/cm2 for the Ta2O5 coated SSR.

  20. Pulse Compression Techniques for Laser Generated Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  1. The Limits to Adaptation; A Systems Approach

    EPA Science Inventory

    The Limits to Adaptation: A Systems Approach. The ability to adapt to climate change is delineated by capacity thresholds, after which climate damages begin to overwhelm the adaptation response. Such thresholds depend upon physical properties (natural processes and engineering...

  2. Glancing-angle-deposited magnesium oxide films for high-fluence applications

    DOE PAGES

    Oliver, J. B.; Smith, C.; Spaulding, J.; ...

    2016-06-15

    Here, Birefringent magnesium oxide thin films are formed by glancing angle deposition to perform as quarter-wave plates at a wavelength of 351 nm. These films are being developed to fabricate a large aperture distributed-polarization rotator for use in vacuum, with an ultimate laser-damage–threshold goal of up to 12 J/cm 2 for a 5-ns flat-in-time pulse. The laser-damage threshold, ease of deposition, and optical film properties are evaluated. While the measured large-area laser-damage threshold is limited to ~4 J/cm 2 in vacuum, initial results based on small-spot testing in air (>20 J/cm 2) suggest MgO may be suitable with further processmore » development.« less

  3. Cell damage evaluation of mammalian cells in cell manipulation by amplified femtosecond ytterbium laser

    NASA Astrophysics Data System (ADS)

    Hong, Z.-Y.; Iino, T.; Hagihara, H.; Maeno, T.; Okano, K.; Yasukuni, R.; Hosokawa, Y.

    2018-03-01

    A micrometer-scale explosion with cavitation bubble generation is induced by focusing a femtosecond laser in an aqueous solution. We have proposed to apply the explosion as an impulsive force to manipulate mammalian cells especially in microfluidic chip. Herein, we employed an amplified femtosecond ytterbium laser as an excitation source for the explosion and evaluated cell damage in the manipulation process to clarify the application potential. The damage of C2C12 myoblast cell prepared as a representative mammalian cell was investigated as a function of distance between cell and laser focal point. Although the cell received strong damage on the direct laser irradiation condition, the damage sharply decreased with increasing distance. Since the threshold distance, above which the cell had no damage, was consistent with radius of the cavitation bubble, impact of the cavitation bubble would be a critical factor for the cell damage. The damage had strong nonlinearity in the pulse energy dependence. On the other hand, cell position shift by the impact of the cavitation bubble was almost proportional to the pulse energy. In balance between the cell viability and the cell position shift, we elucidated controllability of the cell manipulation in microfluidic chip.

  4. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics.

    PubMed

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-06-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.

  5. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics

    PubMed Central

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-01-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery. PMID:23761849

  6. When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H₂O₂ formation.

    PubMed

    Hüve, Katja; Bichele, Irina; Rasulov, Bahtijor; Niinemets, Ulo

    2011-01-01

    Photosynthesis rate (A(n)) becomes unstable above a threshold temperature, and the recovery upon return to low temperature varies because of reasons not fully understood. We investigated responses of A(n), dark respiration and chlorophyll fluorescence to supraoptimal temperatures of varying duration and kinetics in Phaseolus vulgaris asking whether the instability of photosynthesis under severe heat stress is associated with cellular damage. Cellular damage was assessed by Evans blue penetration (enhanced membrane permeability) and by H₂O₂ generation [3,3'-diaminobenzidine 4HCl (DAB)-staining]. Critical temperature for dark fluorescence (F(0) ) rise (T(F)) was at 46-48 °C, and a burst of respiration was observed near T(F). However, A(n) was strongly inhibited already before T(F) was reached. Membrane permeability increased with temperature according to a switch-type response, with enhanced permeability observed above 48 °C. Experiments with varying heat pulse lengths and intensities underscored the threshold-type loss of photosynthetic function, and indicated that the degree of photosynthetic deterioration and cellular damage depended on accumulated heat-dose. Beyond the 'point of no return', propagation of cellular damage and reduction of photosynthesis continued upon transfer to lower temperatures and photosynthetic recovery was slow or absent. We conclude that instability of photosynthesis under severe heat stress is associated with time-dependent propagation of cellular lesions. © 2010 Blackwell Publishing Ltd.

  7. Steroid treatment of posttraumatic anosmia.

    PubMed

    Jiang, Rong-San; Wu, Shang-Heng; Liang, Kai-Li; Shiao, Jiun-Yih; Hsin, Chung-Han; Su, Mao-Chang

    2010-10-01

    The objective of this study was to treat posttraumatic anosmia with oral steroid and evaluate its effect. One-hundred sixteen posttraumatic patients whose olfactory thresholds were -1.0 by the phenyl ethyl alcohol threshold test assembled in our department. They were treated with a course of high-dose steroid, and followed up for at least 3 months. During the latter period of this study, magnetic resonance imaging was performed to measure the volumes of olfactory bulbs and to detect subfrontal lobe damage. Among them, 19 (16.4%) patients' olfactory thresholds improved after steroid treatment, but the other 97 patients' thresholds did not change. The incidences of loss of consciousness and intracranial hemorrhage after head injury, the ratios of admission and craniotomy, the intervals between head injury and steroid treatment, the volumes of olfactory bulbs, and the incidences of subfrontal lobe damage were not significantly different between patients whose thresholds improved and those whose thresholds did not improve. However, patients with olfactory improvement were significantly younger than those who remained unchanged. Our study showed that oral steroid treatment might improve olfactory acuity in some patients with posttraumatic anosmia, but the possibility of spontaneous recovery cannot be ruled out.

  8. Development, characterization, and modeling of ballistic impact on composite laminates under compressive pre-stress

    NASA Astrophysics Data System (ADS)

    Kerr-Anderson, Eric

    Structural composite laminates were ballistically impacted while under in-plane compressive pre-stress. Residual properties, damage characterization, and energy absorption were compared to determine synergistic effects of in-plane compressive pre-stress and impact velocity. A fixture was developed to apply in-plane compressive loads up to 30 tons to structural composites during an impact event using a single-stage light-gas gun. Observed failure modes included typical conical delamination, the development of an impact initiated shear crack (IISC), and the shear failure of a pre-stressed composite due to impact. It was observed that the compressive failure threshold quadratically decreased in relation to the impact velocity up to velocities that caused partial penetration. For all laminates impacted at velocities causing partial or full penetration up to 350 ms-1, the failure threshold was consistent and used as an experimental normalization. Samples impacted below 65% of the failure threshold witnessed no significant change in damage morphology or residual properties when compared to typical conical delamination. Samples impacted above 65% of the failure threshold witnessed additional damage in the form of a shear crack extending perpendicular to the applied load from the point of impact. The presence of an IISC reduced the residual properties and even caused failure upon impact at extreme combinations. Four failure envelopes have been established as: transient failure, steady state failure, impact initiated shear crack, and conical damage. Boundaries and empirically based equations for residual compressive strength have been developed for each envelope with relation to two E-glass/vinyl ester laminate systems. Many aspects of pre-stressed impact have been individually examined, but there have been no comprehensive examinations of pre-stressed impact. This research has resulted in the exploration and characterization of compressively pre-stressed damage for impact velocities resulting in reflection, partial penetration, and penetration at pre-stress levels resulting in conical damage, shear cracking, and failure.

  9. Observations on the relationship of structure to the mechanical properties of thin TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1976-01-01

    A study of the relationship between structure and mechanical properties of thin TD-NiCr sheet indicated that the elevated temperature tensile, stress-rupture, and creep strength properties are dependent on grain aspect ratio and sheet thickness. In general, the strength properties increase with increasing grain aspect ratio and sheet thickness. Tensile testing revealed an absence of ductility at elevated temperatures (not less than 1144 K). Significant creep damage as determined by subsequent tensile testing at room temperature occurs after very small amounts (less than 0.1%) of prior creep deformation over the temperature range 1144-1477 K. A threshold stress for creep appears to exist. Creep exposure below the threshold stress at T not less than 1366 K results in almost full retention of room temperature tensile properties.

  10. Population Dynamics of Belonolaimus longicaudatusin a Cotton Production System

    PubMed Central

    Crow, W. T.; Weingartner, D. P.; McSorley, R.; Dickson, D. W.

    2000-01-01

    Belonolaimus longicaudatus is a recognized pathogen of cotton (Gossypium hirsutum), but insufficient information is available on the population dynamics and economic thresholds of B. longicaudatus in cotton production. In this study, data collected from a field in Florida were used to develop models predicting population increases of B. longicaudatus on cotton and population declines under clean fallow. Population densities of B. longicaudatus increased on cotton, reaching a carrying capacity of 139 nematodes/130 cm³ of soil, but decreased exponentially during periods of bare fallow. The model indicated that population densities should decrease each year of monocropped cotton, if an alternate host is not present between sequential cotton crops. Economic thresholds derived from published damage functions and current prices for cotton and nematicides varied from 2 to 5 B. longicaudatus/130 cm³ of soil, depending on the nematicide used. PMID:19270968

  11. Central sensitization as the mechanism underlying pain in joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type.

    PubMed

    Di Stefano, G; Celletti, C; Baron, R; Castori, M; Di Franco, M; La Cesa, S; Leone, C; Pepe, A; Cruccu, G; Truini, A; Camerota, F

    2016-09-01

    Patients with joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type (JHS/EDS-HT) commonly suffer from pain. How this hereditary connective tissue disorder causes pain remains unclear although previous studies suggested it shares similar mechanisms with neuropathic pain and fibromyalgia. In this prospective study seeking information on the mechanisms underlying pain in patients with JHS/EDS-HT, we enrolled 27 consecutive patients with this connective tissue disorder. Patients underwent a detailed clinical examination, including the neuropathic pain questionnaire DN4 and the fibromyalgia rapid screening tool. As quantitative sensory testing methods, we included thermal-pain perceptive thresholds and the wind-up ratio and recorded a standard nerve conduction study to assess non-nociceptive fibres and laser-evoked potentials, assessing nociceptive fibres. Clinical examination and diagnostic tests disclosed no somatosensory nervous system damage. Conversely, most patients suffered from widespread pain, the fibromyalgia rapid screening tool elicited positive findings, and quantitative sensory testing showed lowered cold and heat pain thresholds and an increased wind-up ratio. While the lack of somatosensory nervous system damage is incompatible with neuropathic pain as the mechanism underlying pain in JHS/EDS-HT, the lowered cold and heat pain thresholds and increased wind-up ratio imply that pain in JHS/EDS-HT might arise through central sensitization. Hence, this connective tissue disorder and fibromyalgia share similar pain mechanisms. WHAT DOES THIS STUDY ADD?: In patients with JHS/EDS-HT, the persistent nociceptive input due to joint abnormalities probably triggers central sensitization in the dorsal horn neurons and causes widespread pain. © 2016 European Pain Federation - EFIC®

  12. Design and comparison of laser windows for high-power lasers

    NASA Astrophysics Data System (ADS)

    Niu, Yanxiong; Liu, Wenwen; Liu, Haixia; Wang, Caili; Niu, Haisha; Man, Da

    2014-11-01

    High-power laser systems are getting more and more widely used in industry and military affairs. It is necessary to develop a high-power laser system which can operate over long periods of time without appreciable degradation in performance. When a high-energy laser beam transmits through a laser window, it is possible that the permanent damage is caused to the window because of the energy absorption by window materials. So, when we design a high-power laser system, a suitable laser window material must be selected and the laser damage threshold of the window must be known. In this paper, a thermal analysis model of high-power laser window is established, and the relationship between the laser intensity and the thermal-stress field distribution is studied by deducing the formulas through utilizing the integral-transform method. The influence of window radius, thickness and laser intensity on the temperature and stress field distributions is analyzed. Then, the performance of K9 glass and the fused silica glass is compared, and the laser-induced damage mechanism is analyzed. Finally, the damage thresholds of laser windows are calculated. The results show that compared with K9 glass, the fused silica glass has a higher damage threshold due to its good thermodynamic properties. The presented theoretical analysis and simulation results are helpful for the design and selection of high-power laser windows.

  13. Wavelength dependence of nanosecond laser induced surface damage in fused silica from 260 to 1550 nm

    NASA Astrophysics Data System (ADS)

    Cao, Ming; Cao, Jianjun; Liu, Mian; Sun, Yuan; Wu, Meng; Guo, Shiming; Gao, Shumei

    2018-04-01

    The wavelength dependence of laser induced surface damage in fused silica is experimentally studied in a wide wavelength range from 260 to 1550 nm. An optical parametric oscillator system is used to provide the tunable laser pulses with a duration of 5 ns. In the experiments, the exit surface of the silica slice is observed to be damaged prior to the entrance surface. The damage threshold decreases gradually as the wavelength decreases from 1550 to 324 nm and drops suddenly at 324 nm, which corresponds to a half of 7.66 eV. This wavelength dependence can be explained by a defect assisted multiphoton absorption mechanism. By fitting the experimental data with a power law equation, the damage threshold is found to be proportional to the 3.47-th power of wavelength in the range of 325-685 nm and 1.1-th power of wavelength in the range of 260-1550 nm.

  14. New Energy-Dependent Soft X-Rav Damage In MOS Devices

    NASA Astrophysics Data System (ADS)

    Chan, Tung-Yi; Gaw, Henry; Seligson, Daniel; Pan, Lawrence; King, Paul L.; Pianetta, Piero

    1988-06-01

    An energy-dependent soft x-ray-induced device damage has been discovered in MOS devices fabricated using standard CMOS process. MOS devices were irradiated by monochromatic x-rays in energy range just above and below the silicon K-edge (1.84 keV). Photons below the K-edge is found to create more damage in the oxide and oxide/silicon interface than photons above the K-edge. This energy-dependent damage effect is believed to be due to charge traps generated during device fabrication. It is found that data for both n- and p-type devices lie along a universal curve if normalized threshold voltage shifts are plotted against absorbed dose in the oxide. The threshold voltage shift saturates when the absorbed dose in the oxide exceeds 1.4X105 mJ/cm3, corresponding to 6 Mrad in the oxide. Using isochronal anneals, the trapped charge damage is found to recover with an activation energy of 0.38 eV. A discrete radiation-induced damage state appears in the low frequency C-V curve in a temperature range from 1750C to 325°C.

  15. Development of High Level Electrical Stress Failure Threshold and Prediction Model for Small Scale Junction Integrated Circuits

    DTIC Science & Technology

    1978-09-01

    AWACS EMP Guidelines presents two different models to predict the damage pcwer of the dev-ce and the circuit damage EMP voltage ( VEMP ). Neither of...calculated as K P~ I V BD 6. The damage EMP voltage ( VEMP ) is calculated KZ EMP +IZ =D +BD VBD1F 7. The damage EMP voltage is calculated for collector

  16. Genomic damage induced by 1-MHz ultrasound in vitro.

    PubMed

    Udroiu, Ion; Marinaccio, Jessica; Bedini, Angelico; Giliberti, Claudia; Palomba, Raffaele; Sgura, Antonella

    2018-01-01

    Genotoxic effects of therapeutic ultrasound are poorly documented, when compared with the wide use of this physical agent. The aim of this work was to investigate the clastogenic and aneugenic potential of 1 MHz ultrasound, employing intensities (200 and 300 mW/cm 2 ) above the cavitational threshold, but in the range of those normally used in therapeutics. Both normal fibroblasts (AG01522) and tumoral cells (MCF-7) were sonicated. While no effects on viability were noted, significant increases of CREST-negative micronuclei (indicative of clastogenesis) and CREST-positive micronuclei (indicative of aneuploidy) were detected. Clastogenesis was confirmed by increases of γ-H2AX foci, while increases of spindle anomalies confirmed the induction of aneuploidy. Our results confirm previous works that showed ultrasound-induced DNA breakage. Moreover, our experiments show that the known effect of ultrasound-induced damage to microtubules is also able to damage the mitotic spindle and induce aneuploidy. On the overall, this work highlights the importance to further investigate the potential risks related to therapeutics US. Environ. Mol. Mutagen. 59:60-68, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Evidence for Non-Opponent Coding of Colour Information in Human Visual Cortex: Selective Loss of “Green” Sensitivity in a Subject with Damaged Ventral Occipito-Temporal Cortex

    PubMed Central

    Rauscher, Franziska G.; Plant, Gordon T.; James-Galton, Merle; Barbur, John L.

    2011-01-01

    Damage to ventral occipito-temporal extrastriate visual cortex leads to the syndrome of prosopagnosia often with coexisting cerebral achromatopsia. A patient with this syndrome resulting in a left upper homonymous quadrantanopia, prosopagnosia, and incomplete achromatopsia is described. Chromatic sensitivity was assessed at a number of locations in the intact visual field using a dynamic luminance contrast masking technique that isolates the use of colour signals. In normal subjects chromatic detection thresholds form an elliptical contour when plotted in the Commission Internationale d’Eclairage, (x-y), chromaticity diagram. Because the extraction of colour signals in early visual processing involves opponent mechanisms, subjects with Daltonism (congenital red/green loss of sensitivity) show symmetric increase in thresholds towards the long wavelength (“red”) and middle wavelength (“green”) regions of the spectrum locus. This is also the case with acquired loss of chromatic sensitivity as a result of retinal or optic nerve disease. Our patient’s results were an exception to this rule. Whilst his chromatic sensitivity in the central region of the visual field was reduced symmetrically for both “red/green” and “yellow/blue” directions in colour space, the subject’s lower left quadrant showed a marked asymmetry in “red/green” thresholds with the greatest loss of sensitivity towards the “green” region of the spectrum locus. This spatially localized asymmetric loss of “green” but not “red” sensitivity has not been reported previously in human vision. Such loss is consistent with selective damage of neural substrates in the visual cortex that process colour information, but are spectrally non-opponent. PMID:27956924

  18. Computational model of retinal photocoagulation and rupture

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis M.; Nomoto, Hiroyuki; Huie, Phil; Palanker, Daniel

    2009-02-01

    In patterned scanning laser photocoagulation, shorter duration (< 20 ms) pulses help reduce thermal damage beyond the photoreceptor layer, decrease treatment time and minimize pain. However, safe therapeutic window (defined as the ratio of rupture threshold power to that of light coagulation) decreases for shorter exposures. To quantify the extent of thermal damage in the retina, and maximize the therapeutic window, we developed a computational model of retinal photocoagulation and rupture. Model parameters were adjusted to match measured thresholds of vaporization, coagulation, and retinal pigment epithelial (RPE) damage. Computed lesion width agreed with histological measurements in a wide range of pulse durations and power. Application of ring-shaped beam profile was predicted to double the therapeutic window width for exposures in the range of 1 - 10 ms.

  19. Effects of hydromechanical loading history and antecedent soil mechanical damage on shallow landslide triggering

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2015-10-01

    Evidence suggests that the sudden triggering of rainfall-induced shallow landslides is preceded by accumulation of local internal failures in the soil mantle before their abrupt coalescence into a landslide failure plane. The mechanical status of a hillslope at any given time reflects competition between local damage accumulated during antecedent rainfall events and rates of mechanical healing (e.g., rebonding of microcracks and root regrowth). This dynamic interplay between damage accumulation and healing rates determines the initial mechanical state for landslide modeling. We evaluated the roles of these dynamic processes on landslide characteristics and patterns using a hydromechanical landslide-triggering model for a sequence of rainfall scenarios. The progressive nature of soil failure was represented by the fiber bundle model formalism that considers threshold strength of mechanical bonds linking adjacent soil columns and bedrock. The antecedent damage induced by prior rainfall events was expressed by the fraction of broken fibers that gradually regain strength or mechanically heal at rates specific to soil and roots. Results indicate that antecedent damage accelerates landslide initiation relative to pristine (undamaged) hillslopes. The volumes of first triggered landslides increase with increasing antecedent damage; however, for heavily damaged hillslopes, landslide volumes tend to decrease. Elapsed time between rainfall events allows mechanical healing that reduces the effects of antecedent damage. This study proposed a quantitative framework for systematically incorporating hydromechanical loading history and information on precursor events (e.g., such as recorded by acoustic emissions) into shallow landslide hazard assessment.

  20. Visible lesion laser thresholds in Cynomolgus (Macaca fascicularis) retina with a 1064 nm 12-ns pulsed laser

    NASA Astrophysics Data System (ADS)

    Oliver, Jeffrey W.; Stolarski, David J.; Noojin, Gary D.; Hodnett, Harvey M.; Imholte, Michelle L.; Rockwell, Benjamin A.; Kumru, Semih S.

    2007-02-01

    A series of experiments in a new animal model for retinal damage, cynomolgus monkeys (Macaca fascicularis), have been conducted to determine the damage threshold for 12.5-nanosecond laser exposures at 1064 nm. These results provide a direct comparison to threshold values obtained in rhesus monkey (Macaca mulatta), which is the model historically used in establishing retinal maximum permissible exposure (MPE) limits. In this study, the irradiance level of a collimated Gaussian laser beam of 2.5 mm diameter at the cornea was randomly varied to produce a rectangular grid of exposures on the retina. Exposures sites were fundoscopically evaluated at post-irradiance intervals of 1 hour and 24 hours. Probit analysis was performed on dose-response data to obtain probability of response curves. The 50% probability of damage (ED50) values for 1 and 24 hours post-exposure are 28.5(22.7-38.4) μJ and 17.0(12.9-21.8) μJ, respectively. These values compare favorably to data obtained with the rhesus model, 28.7(22.3-39.3) μJ and 19.1(13.6-24.4) μJ, suggesting that the cynomolgus monkey may be a suitable replacement for rhesus monkey in photoacoustic minimum visible lesion threshold studies.

  1. Wavelength dependence of ocular damage thresholds in the near-ir to far-ir transition region: proposed revisions to MPES.

    PubMed

    Zuclich, Joseph A; Lund, David J; Stuck, Bruce E

    2007-01-01

    This report summarizes the results of a series of infrared (IR) laser-induced ocular damage studies conducted over the past decade. The studies examined retinal, lens, and corneal effects of laser exposures in the near-IR to far-IR transition region (wavelengths from 1.3-1.4 mum with exposure durations ranging from Q-switched to continuous wave). The corneal and retinal damage thresholds are tabulated for all pulsewidth regimes, and the wavelength dependence of the IR thresholds is discussed and contrasted to laser safety standard maximum permissible exposure limits. The analysis suggests that the current maximum permissible exposure limits could be beneficially revised to (1) relax the IR limits over wavelength ranges where unusually high safety margins may unintentionally hinder applications of recently developed military and telecommunications laser systems; (2) replace step-function discontinuities in the IR limits by continuously varying analytical functions of wavelength and pulsewidth which more closely follow the trends of the experimental retinal (for point-source laser exposures) and corneal ED50 threshold data; and (3) result in an overall simplification of the permissible exposure limits over the wavelength range from 1.2-2.6 mum. A specific proposal for amending the IR maximum permissible exposure limits over this wavelength range is presented.

  2. How much can disaster and climate science contribute to loss and damage mechanisms in international climate policy?

    NASA Astrophysics Data System (ADS)

    Huggel, Christian; Allen, Simon; Eicken, Hajo; Hansen, Gerrit; Stone, Dáithí

    2015-04-01

    As the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) recently has shown, there is increasing evidence of observed impacts of climate change on natural and human systems. Some of these impacts are negative and result in damage and loss of lives and assets. In international climate policy negotiations under the UNFCCC the discussions on loss and damage have gained significant traction during the past negotiation rounds. At COP 19 the Warsaw International Mechanism for Loss and Damage (WIM) was created as an institutional arrangement to address this issue. Thereby, loss and damage (L&D) are typically defined as the residual damage and loss that occur beyond mitigation and adaptation efforts. This implies that effective mitigation and adaptation policy can substantially reduce L&D. While there is wide agreement that knowledge and understanding needs to be strengthened on how L&D due to climate change affects countries, in particular highly vulnerable countries and populations, there is still substantial disagreement on several aspects. In fact, after COP20 in Lima a number of options are on the table, including whether L&D should be located under the adaptation framework or form a separate institutional arrangement, or whether a compensation regime should be established to support developing countries. Similarly, the scientific framework for a clear L&D concept, its application in real-world cases, and implications for international climate policy, in particular with respect to questions of responsibility, liability, compensation and financing, is still evolving. Earlier proposals, for instance, have included a threshold concept, with payments released upon crossing of certain thresholds of climate (related) parameters, similar to insurance procedures. The threshold would be defined as a departure of the parameter from baseline conditions, for instance a rainfall event that is more intense than a certain baseline based threshold. Further proposals for mechanisms of financing suggested a role of causation and thus attribution of L&D to (anthropogenic) climate change. Yet, causation mechanisms are particularly delicate in terms of climate justice, development and implications of legal liabilities. Here, we outline potential contributions of science to L&D mechanisms in greater specificity, in particular for (i) threshold based mechanisms, and (ii) causation related mechanisms. We draw on recent concepts of L&D attribution suggesting a more comprehensive attribution framework based on risk concepts. We present a first-order proof-of-concept for the above mechanisms (i) and (ii), using case studies of recent disasters (both related to extreme events and gradual climate change) in the Indian Himalayas, Colombia, Alaska and Australia. We analyze whether science is in a position to substantially contribute to the different L&D policy proposals, including the question whether currently available data and datasets on climate and hazards, exposure and vulnerability are in line with such support, in particular with regards to developing country contexts. We conclude with a perspective on critical research and data needs to further strengthen L&D science and policy.

  3. Approaches for characterizing threshold dose-response relationships for DNA-damage pathways involved in carcinogenicity in vivo and micronuclei formation in vitro.

    PubMed

    Clewell, Rebecca A; Andersen, Melvin E

    2016-05-01

    Assessing the shape of dose-response curves for DNA-damage in cellular systems and for the consequences of DNA damage in intact animals remains a controversial topic. This overview looks at aspects of the pharmacokinetics (PK) and pharmacodynamics (PD) of cellular DNA-damage/repair and their role in defining the shape of dose-response curves using an in vivo example with formaldehyde and in vitro examples for micronuclei (MN) formation with several test compounds. Formaldehyde is both strongly mutagenic and an endogenous metabolite in cells. With increasing inhaled concentrations, there were transitions in gene changes, from activation of selective stress pathway genes at low concentrations, to activation of pathways for cell-cycle control, p53-DNA damage, and stem cell niche pathways at higher exposures. These gene expression changes were more consistent with dose-dependent transitions in the PD responses to formaldehyde in epithelial cells in the intact rat rather than the low-dose linear extrapolation methods currently used for carcinogens. However, more complete PD explanations of non-linear dose response for creation of fixed damage in cells require detailed examination of cellular responses in vitro using measures of DNA damage and repair that are not easily accessible in the intact animal. In the second section of the article, we illustrate an approach from our laboratory that develops fit-for-purpose, in vitro assays and evaluates the PD of DNA damage and repair through studies using prototypical DNA-damaging agents. Examination of a broad range of responses in these cells showed that transcriptional upregulation of cell cycle control and DNA repair pathways only occurred at doses higher than those causing overt damage fixed damage-measured as MN formation. Lower levels of damage appear to be handled by post-translational repair process using pre-existing proteins. In depth evaluation of the PD properties of one such post-translational process (formation of DNA repair centers; DRCs) has indicated that the formation of DRCs and their ability to complete repair before replication are consistent with threshold behaviours for mutagenesis and, by extension, with chemical carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Lesions to the left lateral prefrontal cortex impair decision threshold adjustment for lexical selection.

    PubMed

    Anders, Royce; Riès, Stéphanie; Van Maanen, Leendert; Alario, F-Xavier

    Patients with lesions in the left prefrontal cortex (PFC) have been shown to be impaired in lexical selection, especially when interference between semantically related alternatives is increased. To more deeply investigate which computational mechanisms may be impaired following left PFC damage due to stroke, a psychometric modelling approach is employed in which we assess the cognitive parameters of the patients from an evidence accumulation (sequential information sampling) modelling of their response data. We also compare the results to healthy speakers. Analysis of the cognitive parameters indicates an impairment of the PFC patients to appropriately adjust their decision threshold, in order to handle the increased item difficulty that is introduced by semantic interference. Also, the modelling contributes to other topics in psycholinguistic theory, in which specific effects are observed on the cognitive parameters according to item familiarization, and the opposing effects of priming (lower threshold) and semantic interference (lower drift) which are found to depend on repetition. These results are developed for the blocked-cyclic picture naming paradigm, in which pictures are presented within semantically homogeneous (HOM) or heterogeneous (HET) blocks, and are repeated several times per block. Overall, the results are in agreement with a role of the left PFC in adjusting the decision threshold for lexical selection in language production.

  5. Cellular mechanisms of noise-induced hearing loss.

    PubMed

    Kurabi, Arwa; Keithley, Elizabeth M; Housley, Gary D; Ryan, Allen F; Wong, Ann C-Y

    2017-06-01

    Exposure to intense sound or noise can result in purely temporary threshold shift (TTS), or leave a residual permanent threshold shift (PTS) along with alterations in growth functions of auditory nerve output. Recent research has revealed a number of mechanisms that contribute to noise-induced hearing loss (NIHL). The principle cause of NIHL is damage to cochlear hair cells and associated synaptopathy. Contributions to TTS include reversible damage to hair cell (HC) stereocilia or synapses, while moderate TTS reflects protective purinergic hearing adaptation. PTS represents permanent damage to or loss of HCs and synapses. While the substrates of HC damage are complex, they include the accumulation of reactive oxygen species and the active stimulation of intracellular stress pathways, leading to programmed and/or necrotic cell death. Permanent damage to cochlear neurons can also contribute to the effects of NIHL, in addition to HC damage. These mechanisms have translational potential for pharmacological intervention and provide multiple opportunities to prevent HC damage or to rescue HCs and spiral ganglion neurons that have suffered injury. This paper reviews advances in our understanding of cellular mechanisms that contribute to NIHL and their potential for therapeutic manipulation. Published by Elsevier B.V.

  6. The influence of dynamical change of optical properties on the thermomechanical response and damage threshold of noble metals under femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Tsibidis, George D.

    2018-02-01

    We present a theoretical investigation of the dynamics of the dielectric constant of noble metals following heating with ultrashort pulsed laser beams and the influence of the temporal variation of the associated optical properties on the thermomechanical response of the material. The effect of the electron relaxation time on the optical properties based on the use of a critical point model is thoroughly explored for various pulse duration values (i.e., from 110 fs to 8 ps). The proposed theoretical framework correlates the dynamical change in optical parameters, relaxation processes and induced strains-stresses. Simulations are presented by choosing gold as a test material, and we demonstrate that the consideration of the aforementioned factors leads to significant thermal effect changes compared to results when static parameters are assumed. The proposed model predicts a substantially smaller damage threshold and a large increase of the stress which firstly underlines the significant role of the temporal variation of the optical properties and secondly enhances its importance with respect to the precise determination of laser specifications in material micromachining techniques.

  7. Alcohol Modulation of the Post Burn Hepatic Response

    PubMed Central

    Chen, Michael M; Carter, Stewart R; Curtis, Brenda J; O’Halloran, Eileen B; Gamelli, Richard L; Kovacs, Elizabeth J

    2015-01-01

    The widespread and rapidly increasing trend of binge drinking is accompanied by a concomitant rise in the prevalence of trauma patients under the influence of alcohol at the time of their injury. Epidemiologic evidence suggests up to half of all adult burn patients are intoxicated at the time of admission and the presence of alcohol is an independent risk factor for death in the early stages post burn. As the major site of alcohol metabolism and toxicity, the liver is a critical determinant of post burn outcome and experimental evidence implies an injury threshold exists beyond which burn-induced hepatic derangement is observed. Alcohol may lower this threshold for post burn hepatic damage through a variety of mechanisms including modulation of extrahepatic events, alteration of the gut-liver axis, and changes in signaling pathways. The direct and indirect effects of alcohol may prime the liver for the second-hit of many overlapping physiologic responses to burn injury. In an effort to gain a deeper understanding of how alcohol potentiates post burn hepatic damage, we summarize possible mechanisms by which alcohol modulates the post burn hepatic response. PMID:26284631

  8. Precipitation thresholds for triggering floods in Corgo hydrographic basin (Northern Portugal)

    NASA Astrophysics Data System (ADS)

    Santos, Monica; Fragoso, Marcelo

    2016-04-01

    The precipitation is a major cause of natural hazards and is therefore related to the flood events (Borga et al., 2011; Gaál et al., 2014; Wilhelmi & Morss, 2013). The severity of a precipitation event and their potential damage is dependent on the total amount of rain but also on the intensity and duration event (Gaál et al., 2014). In this work, it was established thresholds based on critical combinations: amount / duration of flood events with daily rainfall data for Corgo hydrographic basin, in northern Portugal. In Corgo basin are recorded 31 floods events between 1865 and 2011 (Santos et al., 2015; Zêzere et al., 2014). We determined the minimum, maximum and pre-warning thresholds that define the boundaries so that an event may occur. Additionally, we applied these thresholds to different flood events occurred in the past in the study basin. The results show that the ratio between the flood events and precipitation events that occur above the minimum threshold has relatively low probability of a flood happen. These results may be related to the reduced number of floods events (only those that caused damage reported by the media and produced some type of damage). The maximum threshold is not useful for floods forecasting, since the majority of true positives are below this limit. The retrospective analysis of the thresholds defined suggests that the minimum and pre warning thresholds are well adjusted. The application of rainfall thresholds contribute to minimize possible situations of pre-crisis or immediate crisis, reducing the consequences and the resources involved in emergency response of flood events. References Borga, M., Anagnostou, E. N., Blöschl, G., & Creutin, J. D. (2011). Flash flood forecasting, warning and risk management: the HYDRATE project. Environmental Science & Policy, 14(7), 834-844. doi: 10.1016/j.envsci.2011.05.017 Gaál, L., Molnar, P., & Szolgay, J. (2014). Selection of intense rainfall events based on intensity thresholds and lightning data in Switzerland. Hydrol. Earth Syst. Sci., 18(5), 1561-1573. doi: 10.5194/hess-18-1561-2014 Santos, M., Santos, J. A., & Fragoso, M. (2015). Historical damaging flood records for 1871-2011 in Northern Portugal and underlying atmospheric forcings. Journal of Hydrology, 530, 591-603. doi: 10.1016/j.jhydrol.2015.10.011 Wilhelmi, O. V., & Morss, R. E. (2013). Integrated analysis of societal vulnerability in an extreme precipitation event: A Fort Collins case study. Environmental Science & Policy, 26, 49-62. doi: 10.1016/j.envsci.2012.07.005 Zêzere, J. L., Pereira, S., Tavares, A. O., Bateira, C., Trigo, R. M., Quaresma, I., Santos, P. P., Santos, M., & Verde, J. (2014). DISASTER: a GIS database on hydro-geomorphologic disasters in Portugal. Nat. Hazards, 1-30. doi: 10.1007/s11069-013-1018-y

  9. Effects of roller massager on muscle recovery after exercise-induced muscle damage.

    PubMed

    Casanova, Nuno; Reis, Joana F; Vaz, João R; Machado, Rita; Mendes, Bruno; Button, Duane C; Pezarat-Correia, Pedro; Freitas, Sandro R

    2018-01-01

    Two experiments (n = 10) were conducted to determine the effects of roller massager (RM) on ankle plantar flexor muscle recovery after exercise-induced muscle damage (EIMD). Experiment 1 examined both functional [i.e., ankle plantar flexion maximal isometric contraction and submaximal (30%) sustained force; ankle dorsiflexion maximal range of motion and resistance to stretch; and medial gastrocnemius pain pressure threshold] and morphological [cross-sectional area, thickness, fascicle length, and fascicle angle] variables, before and immediately, 1, 24, 48, and 72 h after an EIMD stimulus. Experiment 2 examined medial gastrocnemius deoxyhaemoglobin concentration kinetics before and 48 h after EIMD. Participants performed both experiments twice: with (RM) and without (no-roller massager; NRM) the application of a RM (6 × 45 s; 20-s rest between sets). RM intervention did not alter the functional impairment after EIMD, as well as the medial gastrocnemius morphology and oxygenation kinetics (P > 0.05). Although, an acute increase of ipsilateral (RM = + 19%, NRM = -5%, P = 0.032) and a strong tendency for contralateral (P = 0.095) medial gastrocnemius pain pressure threshold were observed. The present results suggest that a RM has no effect on plantar flexors performance, morphology, and oxygenation recovery after EIMD, except for muscle pain pressure threshold (i.e., a soreness).

  10. Damage threshold from large retinal spot size repetitive-pulse laser exposures.

    PubMed

    Lund, Brian J; Lund, David J; Edsall, Peter R

    2014-10-01

    The retinal damage thresholds for large spot size, multiple-pulse exposures to a Q-switched, frequency doubled Nd:YAG laser (532 nm wavelength, 7 ns pulses) have been measured for 100 μm and 500 μm retinal irradiance diameters. The ED50, expressed as energy per pulse, varies only weakly with the number of pulses, n, for these extended spot sizes. The previously reported threshold for a multiple-pulse exposure for a 900 μm retinal spot size also shows the same weak dependence on the number of pulses. The multiple-pulse ED50 for an extended spot-size exposure does not follow the n dependence exhibited by small spot size exposures produced by a collimated beam. Curves derived by using probability-summation models provide a better fit to the data.

  11. Setting limits: Using air pollution thresholds to protect and restore US ecosystems

    USGS Publications Warehouse

    Fenn, Mark E.; Lambert, Kathleen F.; Blett, Tamara F.; Burns, Douglas A.; Pardo, Linda H.; Lovett, Gary M.; Haeuber, Richard A.; Evers, David C.; Driscoll, Charles T.; Jeffries, Dean S.

    2011-01-01

    More than four decades of research provide unequivocal evidence that sulfur, nitrogen, and mercury pollution have altered, and will continue to alter, our nation's lands and waters. The emission and deposition of air pollutants harm native plants and animals, degrade water quality, affect forest productivity, and are damaging to human health. Many air quality policies limit emissions at the source but these control measures do not always consider ecosystem impacts. Air pollution thresholds at which ecological effects are observed, such as critical loads, are effective tools for assessing the impacts of air pollution on essential ecosystem services and for informing public policy. U.S. ecosystems can be more effectively protected and restored by using a combination of emissions-based approaches and science-based thresholds of ecosystem damage.

  12. Preservation of auditory brainstem response thresholds after cochleostomy and titanium microactuator implantation in the lateral wall of cat scala tympani.

    PubMed

    Lesinski, S George; Prewitt, Jessica; Bray, Victor; Aravamudhan, Radhika; Bermeo Blanco, Oscar A; Farmer-Fedor, Brenda L; Ward, Jonette A

    2014-04-01

    The safety of implanting a titanium microactuator into the lateral wall of cat scala tympani was assessed by comparing preoperative and postoperative auditory brainstem response (ABR) thresholds for 1 to 3 months. The safety of directly stimulating cochlear perilymph with an implantable hearing system requires maintaining preoperative hearing levels. This cat study is an essential step in the development of the next generation of fully implantable hearing devices for humans. Following GLP surgical standards, a 1-mm cochleostomy was drilled into the lateral wall of the scala tympani, and a nonfunctioning titanium anchor/microactuator assembly was inserted in 8 cats. The scala media was damaged in the 1 cat. ABR thresholds with click and 4- and 8-kHz stimuli were measured preoperatively and compared with postoperative thresholds at 1, 2, and 3 months. Nonimplanted ear thresholds were also measured to establish statistical significance for threshold shifts (>28.4 dB). Two audiologists independently interpreted thresholds. Postoperatively, 7 cats implanted in the scala tympani demonstrated no significant ABR threshold shift for click stimulus; one shifted ABR thresholds to 4- and 8-kHz stimuli. The eighth cat, with surgical damage to the scala media, maintained stable click threshold but had a significant shift to 4- and 8-kHz stimuli. This cat study provides no evidence of worsening hearing thresholds after fenestration of the scala tympani and insertion of a titanium anchor/microactuator, provided there is no surgical trauma to the scala media and the implanted device is securely anchored in the cochleostomy. These 2 issues have been resolved in the development of a fully implantable hearing system for humans. The long-term hearing stability (combined with histologic studies) reaffirm that the microactuator is well tolerated by the cat cochlea.

  13. Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa.

    PubMed

    Lin, Li; Feng, Cong; Li, Qingyun; Wu, Min; Zhao, Liangyuan

    2015-10-01

    Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa were investigated in order to reveal the mechanisms of electrolytic inhibition of algae. Threshold of current density was found under a certain initial no. of algae cell. When current density was equal to or higher than the threshold (fixed electrolysis time), growth of algae was inhibited completely and the algae lost the ability to survive. Effect of algal solution volume on algal inhibition was insignificant. Thresholds of current density were 8, 10, 14, 20, and 22 mA cm(-2) at 2.5 × 10(7), 5 × 10(7), 1 × 10(8), 2.5 × 10(8), and 5 × 10(8) cells mL(-1) initial no. of algae cell, respectively. Correlativity between threshold of current and initial no. of algae cells was established for scale-up and determining operating conditions. Changes of chlorophyll fluorescence parameters demonstrated that photosystem (PS) II of algae was damaged by electrolysis but still maintained relatively high activity when algal solution was treated by current densities lower than the threshold. The activity of algae recovered completely after 6 days of cultivation. On the contrary, when current density was higher than the threshold, connection of phycobilisome (PBS) and PS II core complexes was destroyed, PS II system of algae was damaged irreversibly, and algae could not survive thoroughly. The inactivation of M. aeruginosa by electrolysis can be attributed to irreversible separation of PBS from PS II core complexes and the damage of PS II of M. aeruginosa.

  14. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury.

    PubMed

    Bonesso, Joshua Louis; Leggat, William; Ainsworth, Tracy Danielle

    2017-01-01

    Elevated sea surface temperatures (SSTs) are linked to an increase in the frequency and severity of bleaching events due to temperatures exceeding corals' upper thermal limits. The temperatures at which a breakdown of the coral- Symbiodinium endosymbiosis (coral bleaching) occurs are referred to as the upper thermal limits for the coral species. This breakdown of the endosymbiosis results in a reduction of corals' nutritional uptake, growth, and tissue integrity. Periods of elevated sea surface temperature, thermal stress and coral bleaching are also linked to increased disease susceptibility and an increased frequency of storms which cause injury and physical damage to corals. Herein we aimed to determine the capacity of corals to regenerate and recover from injuries (removal of apical tips) sustained during periods of elevated sea surface temperatures which result in coral stress responses, but which do not result in coral bleaching (i.e., sub-bleaching thermal stress events). In this study, exposure of the species Acropora aspera to an elevated SST of 32 °C (2 °C below the bleaching threshold, 34 °C) was found to result in reduced fluorescence of green fluorescent protein (GFP), reduced skeletal calcification and a lack of branch regrowth at the site of injury, compared to corals maintained under ambient SST conditions (26 °C). Corals maintained under normal, ambient, sea surface temperatures expressed high GFP fluorescence at the injury site, underwent a rapid regeneration of the coral branch apical tip within 12 days of sustaining injury, and showed extensive regrowth of the coral skeleton. Taken together, our results have demonstrated that periods of sustained increased sea surface temperatures, below the corals' bleaching threshold but above long-term summertime averages, impair coral recovery from damage, regardless of the onset or occurrence of coral bleaching.

  15. Heat shock protein expression as guidance for the therapeutic window of retinal laser therapy

    NASA Astrophysics Data System (ADS)

    Wang, Jenny; Huie, Philip; Dalal, Roopa; Lee, Seungjun; Tan, Gavin; Lee, Daeyoung; Lavinksy, Daniel; Palanker, Daniel

    2016-03-01

    Unlike conventional photocoagulation, non-damaging retinal laser therapy (NRT) limits laser-induced heating to stay below the retinal damage threshold and therefore requires careful dosimetry. Without the adverse effects associated with photocoagulation, NRT can be applied to critical areas of the retina and repeatedly to manage chronic disorders. Although the clinical benefits of NRT have been demonstrated, the mechanism of therapeutic effect and width of the therapeutic window below damage threshold are not well understood. Here, we measure activation of heat shock response via laser-induced hyperthermia as one indication of cellular response. A 577 nm laser is used with the Endpoint Management (EpM) user interface, a titration algorithm, to set experimental pulse energies relative to a barely visible titration lesion. Live/dead staining and histology show that the retinal damage threshold in rabbits is at 40% of titration energy on EpM scale. Heat shock protein 70 (HSP70) expression in the retinal pigment epithelium (RPE) was detected by whole-mount immunohistochemistry after different levels of laser treatment. We show HSP70 expression in the RPE beginning at 25% of titration energy indicating that there is a window for NRT between 25% and 40% with activation of the heat shock protein expression in response to hyperthermia. HSP70 expression is also seen at the perimeter of damaging lesions, as expected based on a computational model of laser heating. Expression area for each pulse energy setting varied between laser spots due to pigmentation changes, indicating the relatively narrow window of non-damaging activation and highlighting the importance of proper titration.

  16. Pilot study about dose-effect relationship of ocular injury in argon laser photocoagulation

    NASA Astrophysics Data System (ADS)

    Chen, P.; Zhang, C. P.; Fu, X. B.; Zhang, T. M.; Wang, C. Z.; Qian, H. W.; San, Q.

    2011-03-01

    The aim of this article was to study the injury effect of either convergent or parallel argon laser beam on rabbit retina, get the dose-effect relationship for the two types of laser beams, and calculate the damage threshold of argon laser for human retinas. An argon laser therapeutic instrument for ophthalmology was used in this study. A total of 80 rabbit eyes were irradiated for 600 lesions, half of which were treated by convergent laser and the other half were done with parallel laser beam. After irradiation, slit lamp microscope and fundus photography were used to observe the lesions, change and the incidence of injury was processed statistically to get the damage threshold of rabbit retina. Based on results from the experiments on animals and the data from clinical cases of laser treatment, the photocoagulation damage thresholds of human retinas for convergent and parallel argon laser were calculated to be 0.464 and 0.285 mJ respectively. These data provided biological reference for safely operation when employing laser photocoagulation in clinical practice and other fields.

  17. Ocular dynamics and visual tracking performance after Q-switched laser exposure

    NASA Astrophysics Data System (ADS)

    Zwick, Harry; Stuck, Bruce E.; Lund, David J.; Nawim, Maqsood

    2001-05-01

    In previous investigations of q-switched laser retinal exposure in awake task oriented non-human primates (NHPs), the threshold for retinal damage occurred well below that of the threshold for permanent visual function loss. Visual function measures used in these studies involved measures of visual acuity and contrast sensitivity. In the present study, we examine the same relationship for q-switched laser exposure using a visual performance task, where task dependency involves more parafoveal than foveal retina. NHPs were trained on a visual pursuit motor tracking performance task that required maintaining a small HeNe laser spot (0.3 degrees) centered in a slowly moving (0.5deg/sec) annulus. When NHPs reliably produced visual target tracking efficiencies > 80%, single q-switched laser exposures (7 nsec) were made coaxially with the line of sight of the moving target. An infrared camera imaged the pupil during exposure to obtain the pupillary response to the laser flash. Retinal images were obtained with a scanning laser ophthalmoscope 3 days post exposure under ketamine and nembutol anesthesia. Q-switched visible laser exposures at twice the damage threshold produced small (about 50mm) retinal lesions temporal to the fovea; deficits in NHP visual pursuit tracking were transient, demonstrating full recovery to baseline within a single tracking session. Post exposure analysis of the pupillary response demonstrated that the exposure flash entered the pupil, followed by 90 msec refractory period and than a 12 % pupillary contraction within 1.5 sec from the onset of laser exposure. At 6 times the morphological threshold damage level for 532 nm q-switched exposure, longer term losses in NHP pursuit tracking performance were observed. In summary, q-switched laser exposure appears to have a higher threshold for permanent visual performance loss than the corresponding threshold to produce retinal threshold injury. Mechanisms of neural plasticity within the retina and at higher visual brain centers may mediat

  18. Prediction of load threshold of fibre-reinforced laminated composite panels subjected to low velocity drop-weight impact using efficient data filtering techniques

    NASA Astrophysics Data System (ADS)

    Farooq, Umar; Myler, Peter

    This work is concerned with physical testing of carbon fibrous laminated composite panels with low velocity drop-weight impacts from flat and round nose impactors. Eight, sixteen, and twenty-four ply panels were considered. Non-destructive damage inspections of tested specimens were conducted to approximate impact-induced damage. Recorded data were correlated to load-time, load-deflection, and energy-time history plots to interpret impact induced damage. Data filtering techniques were also applied to the noisy data that unavoidably generate due to limitations of testing and logging systems. Built-in, statistical, and numerical filters effectively predicted load thresholds for eight and sixteen ply laminates. However, flat nose impact of twenty-four ply laminates produced clipped data that can only be de-noised involving oscillatory algorithms. Data filtering and extrapolation of such data have received rare attention in the literature that needs to be investigated. The present work demonstrated filtering and extrapolation of the clipped data using Fast Fourier Convolution algorithm to predict load thresholds. Selected results were compared to the damage zones identified with C-scan and acceptable agreements have been observed. Based on the results it is proposed that use of advanced data filtering and analysis methods to data collected by the available resources has effectively enhanced data interpretations without resorting to additional resources. The methodology could be useful for efficient and reliable data analysis and impact-induced damage prediction of similar cases' data.

  19. Preservative cytotoxic threshold for benzalkonium chloride and chlorhexidine digluconate in cat and rabbit corneas.

    PubMed

    Burstein, N L

    1980-03-01

    Benzalkonium chloride (BAC) and chlorhexidine digluconate (CDG) were applied to rabbit and cat corneal epithelium in clinically used concentrations. Corneas were fixed 1/2 hr later and examined by scanning electron microscopy (SEM). BAC was found to produce a progressive increase in damage at concentrations between 0.001% and 0.01% as determined by SEM. CGD produced less damage than BAC at any concentration. Cats lacrimated copiously and blinked frequently after instillation of drops; rabbits did not. No significant difference was found between the two species, however, in their response to the preservative agents tested. It is presumed that binding of these surface active agents occurs almost immediately and is unaffected by tear film dilution. Studies measuring permeability increase in the human eye after preservative use are required to allow clinical interpretation of the data presented here.

  20. A review of colour center and nanostructure creation in LiF under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Schwartz, K.; Maniks, J.; Manika, I.

    2015-09-01

    A study of radiation damage in LiF crystals under irradiation with MeV-GeV energy ions, from 12C to 238U, at temperatures varying from 8 to 300 K, depending on the ion energy, energy loss and irradiation temperature, is presented. For light ions (12C, 14N) at low fluences, it is mainly color centers that are created. Increasing the fluence leads to the overlapping of tracks and the creation of more complex color centers, defect aggregates and dislocations. For ions with an energy loss above a threshold value (dE/dx = 10 keV nm-1) the tracks exhibit a central core damage region with a radius of 1-2 nm, surrounded by an extended halo which mainly contains single color centers. In this case, ion-induced nanostructuring is observed. Novel effects of radiation damage creation under ion irradiation at 8 K are observed. The role of energy loss and irradiation temperature in damage creation is discussed.

  1. Relation of structure to mechanical properties of thin thoria dispersion strengthened nickel-chromium (TD-NiCr alloy sheet

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1975-01-01

    A study of the relation between structure and mechanical properties of thin TD-NiCr sheet indicated that the elevated temperature tensile, stress-rupture, and creep strength properties depend primarily on the grain aspect ratio and sheet thickness. In general, the strength properties increased with increasing grain aspect ratio and sheet thickness. Tensile testing revealed an absence of ductility at elevated temperatures. A threshold stress for creep appears to exist. Even small amounts of prior creep deformation at elevated temperatures can produce severe creep damage.

  2. Investigation of Cumulative Fatigue Damage Through Sequential Low Cycle Fatigue and High Cycle Fatigue Cycling at High Temperature for a Type 316LN Stainless Steel: Life-Prediction Techniques and Associated Mechanisms

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Laha, K.; Okazaki, M.

    2017-03-01

    Cumulative fatigue damage under sequential low cycle fatigue (LCF) and high cycle fatigue (HCF) cycling was investigated at 923 K (650 °C) by conducting HCF tests on specimens subjected to prior LCF cycling at various strain amplitudes. Remnant HCF lives were found to decrease drastically with increase in prior fatigue exposure as a result of strong LCF-HCF interactions. The rate of decrease in remnant lives varied as a function of the applied strain amplitude. A threshold damage in terms of prior LCF life-fraction was found, below which no significant LCF-HCF interaction takes place. Similarly, a critical damage during the LCF pre-cycling marking the highest degree of LCF-HCF interaction was identified which was found to depend on the applied strain amplitude. In view of the non-linear damage accumulation behavior, Miner's linear damage rule proved to be highly non-conservative. Manson's damage curve approach, suitably modified, was found to be a better alternative for predicting the remnant HCF life. The single constant ( β) employed in the model, which reflects the damage accumulation of the material under two/multi-level loading conditions is derived from the regression analysis of the experimental results and validated further.

  3. High-Resolution In Vivo Imaging of Regimes of Laser Damage to the Primate Retina

    PubMed Central

    Pocock, Ginger M.; Oliver, Jeffrey W.; Specht, Charles S.; Estep, J. Scot; Noojin, Gary D.; Schuster, Kurt; Rockwell, Benjamin A.

    2014-01-01

    Purpose. To investigate fundamental mechanisms of regimes of laser induced damage to the retina and the morphological changes associated with the damage response. Methods. Varying grades of photothermal, photochemical, and photomechanical retinal laser damage were produced in eyes of eight cynomolgus monkeys. An adaptive optics confocal scanning laser ophthalmoscope and spectral domain optical coherence tomographer were combined to simultaneously collect complementary in vivo images of retinal laser damage during and following exposure. Baseline color fundus photography was performed to complement high-resolution imaging. Monkeys were perfused with 10% buffered formalin and eyes were enucleated for histological analysis. Results. Laser energies for visible retinal damage in this study were consistent with previously reported damage thresholds. Lesions were identified in OCT images that were not visible in direct ophthalmoscopic examination or fundus photos. Unique diagnostic characteristics, specific to each damage regime, were identified and associated with shape and localization of lesions to specific retinal layers. Previously undocumented retinal healing response to blue continuous wave laser exposure was recorded through a novel experimental methodology. Conclusion. This study revealed increased sensitivity of lesion detection and improved specificity to the laser of origin utilizing high-resolution imaging when compared to traditional ophthalmic imaging techniques in the retina. PMID:24891943

  4. Force Criterion Prediction of Damage for Carbon/Epoxy Composite Panels Impacted by High Velocity Ice

    NASA Astrophysics Data System (ADS)

    Rhymer, Jennifer D.

    The use of advanced fiber-reinforced polymer matrix composites in load-bearing aircraft structures is increasing, as evident by the various composites-intensive transport aircraft presently under development. A major impact source of concern for these structures is hail ice, which affects design and skin-sizing (skin thickness determination) at various locations of the aircraft. Impacts onto composite structures often cause internal damage that is not visually detectable due to the high strength and resiliency of the composite material (unlike impacts onto metallic structures). This internal damage and its effect on the performance of the structure are of great concern to the aircraft industry. The prediction of damage in composite structures due to SHI impact has been accomplished via experimental work, explicit dynamic nonlinear finite element analysis (FEA) and the definition of design oriented relationships. Experiments established the critical threshold and corresponding analysis provided contact force results not readily measurable in high velocity SHI impact experiments. The design oriented relationships summarize the FEA results and experimental database into contact force estimation curves that can be easily applied for damage prediction. Failure thresholds were established for the experimental conditions (panel thickness ranging from 1.56 to 4.66 mm and ice diameters from 38.1 to 61.0 mm). Additionally, the observations made by high-speed video during the impact event, and ultrasonic C-scan post-impact, showed how the ice failed during impact and the overall shape and location of the panel damage. Through analysis, the critical force, the force level where damage occurs above but not below, of a SHI impact onto the panel was found to be dependent only on the target structure. However, the peak force generated during impact was dependent on both the projectile and target. Design-oriented curves were generated allowing the prediction of the allowable velocity for given SHI diameter impact onto a known panel in order to estimated damage. Finally, a scaling relationship was established to predict the peak force developed onto composite panels impacted by SHI. This is useful in reducing the amount of experimental investigations, or computationally expensive simulation work, that would otherwise need to be performed to obtain these results.

  5. Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis

    PubMed Central

    Macurek, Libor; Benada, Jan; Müllers, Erik; Halim, Vincentius A.; Krejčíková, Kateřina; Burdová, Kamila; Pecháčková, Sona; Hodný, Zdeněk; Lindqvist, Arne; Medema, René H.; Bartek, Jiri

    2013-01-01

    Cells are constantly challenged by DNA damage and protect their genome integrity by activation of an evolutionary conserved DNA damage response pathway (DDR). A central core of DDR is composed of a spatiotemporally ordered net of post-translational modifications, among which protein phosphorylation plays a major role. Activation of checkpoint kinases ATM/ATR and Chk1/2 leads to a temporal arrest in cell cycle progression (checkpoint) and allows time for DNA repair. Following DNA repair, cells re-enter the cell cycle by checkpoint recovery. Wip1 phosphatase (also called PPM1D) dephosphorylates multiple proteins involved in DDR and is essential for timely termination of the DDR. Here we have investigated how Wip1 is regulated in the context of the cell cycle. We found that Wip1 activity is downregulated by several mechanisms during mitosis. Wip1 protein abundance increases from G1 phase to G2 and declines in mitosis. Decreased abundance of Wip1 during mitosis is caused by proteasomal degradation. In addition, Wip1 is phosphorylated at multiple residues during mitosis, and this leads to inhibition of its enzymatic activity. Importantly, ectopic expression of Wip1 reduced γH2AX staining in mitotic cells and decreased the number of 53BP1 nuclear bodies in G1 cells. We propose that the combined decrease and inhibition of Wip1 in mitosis decreases the threshold necessary for DDR activation and enables cells to react adequately even to modest levels of DNA damage encountered during unperturbed mitotic progression. PMID:23255129

  6. Fractional sunburn threshold UVR doses generate equivalent vitamin D and DNA damage in skin types I-VI, but with epidermal DNA damage gradient correlated to skin darkness.

    PubMed

    Shih, Barbara B; Farrar, Mark D; Cooke, Marcus S; Osman, Joanne; Langton, Abigail K; Kift, Richard; Webb, Ann R; Berry, Jacqueline L; Watson, Rachel E B; Vail, Andy; de Gruijl, Frank R; Rhodes, Lesley E

    2018-05-03

    Public health guidance recommends limiting sun-exposure to sub-sunburn levels, but it's unknown whether these can gain vitamin D (for musculoskeletal health) whilst avoiding epidermal DNA damage (initiates skin cancer). Well-characterised healthy humans of all skin types (I-VI; lightest to darkest skin) were exposed to a low dose-series of solar simulated UVR of 20-80% their individual sunburn threshold dose (minimal erythemal dose, MED). Significant UVR dose-responses were seen for serum 25(OH)D and whole epidermal CPD, with as little as 0.2 MED concurrently producing 25(OH)D and CPD. Notably, fractional MEDs generated equivalent levels of whole epidermal CPD and 25(OH)D across all skin types. Crucially, we demonstrated an epidermal gradient of CPD formation strongly correlated with skin darkness (r=0.74; P<0.0001), which reflected melanin content and revealed increasing protection across the skin types, ranging from darkest skin, where high CPD levels occurred superficially with none in the germinative basal layer, through to lightest skin where CPD were induced evenly across the epidermal depth. Darker skin people can be encouraged to utilise sub-sunburn UVR-exposure to enhance their vitamin D. In lighter skin people, basal cell damage occurs concurrent with vitamin D synthesis at exquisitely low UVR levels, providing an explanation for their high skin cancer incidence; greater caution is required. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Development of high damage threshold multilayer thin film beam combiner for laser application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nand, Mangla, E-mail: mnand@rrcat.gov.in; Babita,; Jena, S.

    2016-05-23

    A polarized wavelength multiplexer with high laser induced damage threshold has been developed to combine two laser beam of high peak power in the visible region. The present wavelength multiplexer is a multilayer thin film device deposited by reactive electron beam evaporation. The developed device is capable of combining two p-polarized laser beams of peak power density of 1.7 GW/cm{sup 2} at an angle of incidence of 45°. High transmission (T> 90%) in high pass region and high reflection (R> 99%) in stop band region have been achieved.

  8. Development of high damage threshold multilayer thin film beam combiner for laser application

    NASA Astrophysics Data System (ADS)

    Nand, Mangla; Babita, Jena, S.; Tokas, R. B.; Rajput, P.; Mukharjee, C.; Thakur, S.; Jha, S. N.; Sahoo, N. K.

    2016-05-01

    A polarized wavelength multiplexer with high laser induced damage threshold has been developed to combine two laser beam of high peak power in the visible region. The present wavelength multiplexer is a multilayer thin film device deposited by reactive electron beam evaporation. The developed device is capable of combining two p-polarized laser beams of peak power density of 1.7 GW/cm2 at an angle of incidence of 45°. High transmission (T> 90%) in high pass region and high reflection (R> 99%) in stop band region have been achieved.

  9. High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression.

    PubMed

    Canova, Frederico; Clady, Raphael; Chambaret, Jean-Paul; Flury, Manuel; Tonchev, Svtelen; Fechner, Renate; Parriaux, Olivier

    2007-11-12

    High efficiency, broad-band TE-polarization diffraction over a wavelength range centered at 800 nm is obtained by high index gratings placed on a non-corrugated mirror. More than 96% efficiency wide band top-hat diffraction efficiency spectra, as well as more than 1 J/cm(2) damage threshold under 50 fs pulses are demonstrated experimentally. This opens the way to high-efficiency Chirped Pulse Amplification for high average power laser machining by means of all-dielectric structures as well as for ultra-short high energy pulses by means of metal-dielectric structures.

  10. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors

    NASA Astrophysics Data System (ADS)

    Brown, P. G.; Assink, J. D.; Astiz, L.; Blaauw, R.; Boslough, M. B.; Borovička, J.; Brachet, N.; Brown, D.; Campbell-Brown, M.; Ceranna, L.; Cooke, W.; de Groot-Hedlin, C.; Drob, D. P.; Edwards, W.; Evers, L. G.; Garces, M.; Gill, J.; Hedlin, M.; Kingery, A.; Laske, G.; Le Pichon, A.; Mialle, P.; Moser, D. E.; Saffer, A.; Silber, E.; Smets, P.; Spalding, R. E.; Spurný, P.; Tagliaferri, E.; Uren, D.; Weryk, R. J.; Whitaker, R.; Krzeminski, Z.

    2013-11-01

    Most large (over a kilometre in diameter) near-Earth asteroids are now known, but recognition that airbursts (or fireballs resulting from nuclear-weapon-sized detonations of meteoroids in the atmosphere) have the potential to do greater damage than previously thought has shifted an increasing portion of the residual impact risk (the risk of impact from an unknown object) to smaller objects. Above the threshold size of impactor at which the atmosphere absorbs sufficient energy to prevent a ground impact, most of the damage is thought to be caused by the airburst shock wave, but owing to lack of observations this is uncertain. Here we report an analysis of the damage from the airburst of an asteroid about 19 metres (17 to 20 metres) in diameter southeast of Chelyabinsk, Russia, on 15 February 2013, estimated to have an energy equivalent of approximately 500 (+/-100) kilotons of trinitrotoluene (TNT, where 1 kiloton of TNT = 4.185×1012 joules). We show that a widely referenced technique of estimating airburst damage does not reproduce the observations, and that the mathematical relations based on the effects of nuclear weapons--almost always used with this technique--overestimate blast damage. This suggests that earlier damage estimates near the threshold impactor size are too high. We performed a global survey of airbursts of a kiloton or more (including Chelyabinsk), and find that the number of impactors with diameters of tens of metres may be an order of magnitude higher than estimates based on other techniques. This suggests a non-equilibrium (if the population were in a long-term collisional steady state the size-frequency distribution would either follow a single power law or there must be a size-dependent bias in other surveys) in the near-Earth asteroid population for objects 10 to 50 metres in diameter, and shifts more of the residual impact risk to these sizes.

  11. A Single Swede Midge (Diptera: Cecidomyiidae) Larva Can Render Cauliflower Unmarketable.

    PubMed

    Stratton, Chase A; Hodgdon, Elisabeth A; Zuckerman, Samuel G; Shelton, Anthony M; Chen, Yolanda H

    2018-05-01

    Swede midge, Contarinia nasturtii Kieffer (Diptera: Cecidomyiidae), is an invasive pest causing significant damage on Brassica crops in the Northeastern United States and Eastern Canada. Heading brassicas, like cauliflower, appear to be particularly susceptible. Swede midge is difficult to control because larvae feed concealed inside meristematic tissues of the plant. In order to develop damage and marketability thresholds necessary for integrated pest management, it is important to determine how many larvae render plants unmarketable and whether the timing of infestation affects the severity of damage. We manipulated larval density (0, 1, 3, 5, 10, or 20) per plant and the timing of infestation (30, 55, and 80 d after seeding) on cauliflower in the lab and field to answer the following questions: 1) What is the swede midge damage threshold? 2) How many swede midge larvae can render cauliflower crowns unmarketable? and 3) Does the age of cauliflower at infestation influence the severity of damage and marketability? We found that even a single larva can cause mild twisting and scarring in the crown rendering cauliflower unmarketable 52% of the time, with more larvae causing more severe damage and additional losses, regardless of cauliflower age at infestation.

  12. Physics must join with biology in better assessing risk from low-dose irradiation.

    PubMed

    Feinendegen, L E; Neumann, R D

    2005-01-01

    This review summarises the complex response of mammalian cells and tissues to low doses of ionising radiation. This thesis encompasses induction of DNA damage, and adaptive protection against both renewed damage and against propagation of damage from the basic level of biological organisation to the clinical expression of detriment. The induction of DNA damage at low radiation doses apparently is proportional to absorbed dose at the physical/chemical level. However, any propagation of such damage to higher levels of biological organisation inherently follows a sigmoid function. Moreover, low-dose-induced inhibition of damage propagation is not linear, but instead follows a dose-effect function typical for adaptive protection, after an initial rapid rise it disappears at doses higher than approximately 0.1-0.2 Gy to cells. The particular biological response duality at low radiation doses precludes the validity of the linear-no-threshold hypothesis in the attempt to relate absorbed dose to cancer. In fact, theory and observation support not only a lower cancer incidence than expected from the linear-no-threshold hypothesis, but also a reduction of spontaneously occurring cancer, a hormetic response, in the healthy individual.

  13. A new qualitative acoustic emission parameter based on Shannon's entropy for damage monitoring

    NASA Astrophysics Data System (ADS)

    Chai, Mengyu; Zhang, Zaoxiao; Duan, Quan

    2018-02-01

    An important objective of acoustic emission (AE) non-destructive monitoring is to accurately identify approaching critical damage and to avoid premature failure by means of the evolutions of AE parameters. One major drawback of most parameters such as count and rise time is that they are strongly dependent on the threshold and other settings employed in AE data acquisition system. This may hinder the correct reflection of original waveform generated from AE sources and consequently bring difficulty for the accurate identification of the critical damage and early failure. In this investigation, a new qualitative AE parameter based on Shannon's entropy, i.e. AE entropy is proposed for damage monitoring. Since it derives from the uncertainty of amplitude distribution of each AE waveform, it is independent of the threshold and other time-driven parameters and can characterize the original micro-structural deformations. Fatigue crack growth test on CrMoV steel and three point bending test on a ductile material are conducted to validate the feasibility and effectiveness of the proposed parameter. The results show that the new parameter, compared to AE amplitude, is more effective in discriminating the different damage stages and identifying the critical damage.

  14. Flood disturbance and regrowth of vegetation in ephemeral channels: conditions and interactions

    NASA Astrophysics Data System (ADS)

    Hooke, J.

    2012-04-01

    Flood flows disturb vegetation growing in ephemeral channels but more information is needed on the thresholds for damage and removal and on the regrowth processes and timescales after floods. Once vegetation is re-established then it has feedback effects on processes and may raise thresholds. Several sites in SE Spain have been monitored for the effects of flows and for the growth and responses of plants over a period of >15 years. Two major floods and many minor flows have occurred. Measurements on quadrats and in different zones of the valley floor have allowed quantification of the thresholds for damage of different species of plant. Position of the plants in the channel also has a marked influence on effect of flows; velocities and flow forces for different parts have been calculated. The threshold for removal or mortality of certain plants in these Mediterranean valleys is very high. Types and species of plants regrowing in different zones have been identified and rates of growth measured. The relationship to climatic and weather conditions between channel flows is analysed. Growth rates between floods are closely related to moisture availability, mainly influenced by inter-annual variability of rainfall but also varying with location in the channel. One site in which hydrological regime was altered by human actions has shown marked change in vegetation cover and in channel response. Feedback effects reduce erosion and increase sedimentation and these effects have been measured directly and by calculation of roughness and resistance effects. The results demonstrate the different degrees of adaptation of plants to disturbance, natural vegetation such as phreatophytes showing high resilience but crop trees such as olives and almonds on floodplains being vulnerable to high flows.

  15. Revision of laser-induced damage threshold evaluation from damage probability data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bataviciute, Gintare; Grigas, Povilas; Smalakys, Linas

    2013-04-15

    In this study, the applicability of commonly used Damage Frequency Method (DFM) is addressed in the context of Laser-Induced Damage Threshold (LIDT) testing with pulsed lasers. A simplified computer model representing the statistical interaction between laser irradiation and randomly distributed damage precursors is applied for Monte Carlo experiments. The reproducibility of LIDT predicted from DFM is examined under both idealized and realistic laser irradiation conditions by performing numerical 1-on-1 tests. A widely accepted linear fitting resulted in systematic errors when estimating LIDT and its error bars. For the same purpose, a Bayesian approach was proposed. A novel concept of parametricmore » regression based on varying kernel and maximum likelihood fitting technique is introduced and studied. Such approach exhibited clear advantages over conventional linear fitting and led to more reproducible LIDT evaluation. Furthermore, LIDT error bars are obtained as a natural outcome of parametric fitting which exhibit realistic values. The proposed technique has been validated on two conventionally polished fused silica samples (355 nm, 5.7 ns).« less

  16. RhoJ Regulates Melanoma Chemoresistance by Suppressing Pathways that Sense DNA Damage

    PubMed Central

    Ho, Hsiang; Aruri, Jayavani; Kapadia, Rubina; Mehr, Hootan; White, Michael A.; Ganesan, Anand K.

    2012-01-01

    Melanomas resist conventional chemotherapeutics in part through intrinsic disrespect of apoptotic checkpoint activation. In this study, using an unbiased genome-wide RNAi screen we identified RhoJ and its effector Pak1, as key modulators of melanoma cell sensitivity to DNA damage. We find that RhoJ activates Pak1 in response to drug-induced DNA damage, which then uncouples ATR from its downstream effectors, ultimately resulting in a blunted DNA damage response (DDR). In addition, ATR suppression leads to the decreased phosphorylation of ATF2, and consequent increased expression of the melanocyte survival gene Sox10 resulting in a higher DDR threshold required to engage melanoma cell death. In the setting of normal melanocyte behavior, this regulatory relationship may facilitate appropriate epidermal melanization in response to UV-induced DNA damage. However, pathological pathway activation during oncogenic transformation produces a tumor that is intrinsically resistant to chemotherapy and has the propensity to accumulate additional mutations. These findings identify DNA damage agents and pharmacological inhibitors of RhoJ/PAK1 as novel synergistic agents that can be used to treat melanomas that are resistant to conventional chemotherapies. PMID:22971344

  17. Cold starting of fluorescent lamps - part II: experiments on glow times and electrode damaging

    NASA Astrophysics Data System (ADS)

    Langer, Reinhard; Paul, Irina; Hilscher, Achim; Horn, Siegfried; Tidecks, Reinhard

    2017-01-01

    In the present work we present experiments on cold start and the resulting electrode damaging (reducing lamp life) of AC driven fluorescent lamps. The crucial parameter is the glow time, determined from time resolved measurements of lamp voltage and current. The relation between the energy consumed during glow phase and the glow time is studied. It turns out that there is no common threshold of energy until the glow-to-arc transition takes place, but strong energy input into the lamp yields short glow times. The transient behaviour from the glow to the arc regime is investigated and the stable operation points of the arc discharge are determined, yielding an arc discharge voltage-current characteristics of the lamp type investigated. The electrode damage is investigated as a function of the open source voltage and the ballast resistance. Subsequent cold starts lead to an increase of the glow time due to electrode damaging, i.e., the electrode damage accumulates. Different regeneration procedures and their effectiveness are compared. Regeneration burning turns out to be more effective than heating up the electrode. A criterion for avoiding high electrode damage is obtained, indicating that the average power during glow time should exceed 20 W.

  18. Role of atomic-level defects and electronic energy loss on amorphization in LiNbO3 single crystals

    NASA Astrophysics Data System (ADS)

    Sellami, N.; Crespillo, M. L.; Xue, H.; Zhang, Y.; Weber, W. J.

    2017-08-01

    Understanding complex non-equilibrium defect processes, where multiple irradiation mechanisms may take place simultaneously, is a long standing subject in material science. The separate and combined effects of elastic and inelastic energy loss are a very complicated and challenging topic. In this work, LiNbO3 has been irradiated with 0.9 MeV Si+ and 8 MeV O3+, which are representative of regimes where nuclear (S n) and electronic (S e) energy loss are dominant, respectively. The evolution of damage has been investigated by Rutherford backscattering spectrometry (RBS) in channeling configuration. Pristine samples were irradiated with 0.9 MeV Si+ ions to create different pre-existing damage states. Below the threshold (S e,th  =  5-6 keV nm-1) for amorphous track formation in this material, irradiation of the pristine samples with a highly ionizing beam of 8 MeV O3+ ions, with nearly constant S e of about 3 keV nm-1, induces a crystalline to amorphous phase transition at high ion fluences. In the pre-damaged samples, the electronic energy loss from the 8 MeV O3+ ions interacts synergistically with the pre-existing damage, resulting in a rapid, non-linear increase in damage production. There is a significant reduction in the incubation fluence for rapid amorphization with the increasing amount of pre-existing damage. These results highlight the important role of atomic-level defects on increasing the sensitivity of some oxides to amorphization induced by electronic energy loss. Controlling the nature and amount of pre-damage may provide a new approach to tuning optical properties for photonic device applications.

  19. Role of atomic-level defects and electronic energy loss on amorphization in LiNbO 3 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellami, N.; Crespillo, M. L.; Xue, H.

    Understanding complex non-equilibrium defect processes, where multiple irradiation mechanisms may take place simultaneously, is a long standing subject in material science. The separate and combined effects of elastic and inelastic energy loss are a very complicated and challenging topic. In this work, LiNbO 3 has been irradiated with 0.9 MeV Si + and 8 MeV O 3+, which are representative of regimes where nuclear (S n) and electronic (S e) energy loss are dominant, respectively. The evolution of damage has been investigated by Rutherford backscattering spectrometry (RBS) in channeling configuration. Pristine samples were irradiated with 0.9 MeV Si + ionsmore » to create different pre-existing damage states. Below the threshold (S e,th = 5–6 keV nm –1) for amorphous track formation in this material, irradiation of the pristine samples with a highly ionizing beam of 8 MeV O 3+ ions, with nearly constant S e of about 3 keV nm –1, induces a crystalline to amorphous phase transition at high ion fluences. In the pre-damaged samples, the electronic energy loss from the 8 MeV O 3+ ions interacts synergistically with the pre-existing damage, resulting in a rapid, non-linear increase in damage production. There is a significant reduction in the incubation fluence for rapid amorphization with the increasing amount of pre-existing damage. Here, these results highlight the important role of atomic-level defects on increasing the sensitivity of some oxides to amorphization induced by electronic energy loss. Controlling the nature and amount of pre-damage may provide a new approach to tuning optical properties for photonic device applications.« less

  20. Role of atomic-level defects and electronic energy loss on amorphization in LiNbO 3 single crystals

    DOE PAGES

    Sellami, N.; Crespillo, M. L.; Xue, H.; ...

    2017-06-20

    Understanding complex non-equilibrium defect processes, where multiple irradiation mechanisms may take place simultaneously, is a long standing subject in material science. The separate and combined effects of elastic and inelastic energy loss are a very complicated and challenging topic. In this work, LiNbO 3 has been irradiated with 0.9 MeV Si + and 8 MeV O 3+, which are representative of regimes where nuclear (S n) and electronic (S e) energy loss are dominant, respectively. The evolution of damage has been investigated by Rutherford backscattering spectrometry (RBS) in channeling configuration. Pristine samples were irradiated with 0.9 MeV Si + ionsmore » to create different pre-existing damage states. Below the threshold (S e,th = 5–6 keV nm –1) for amorphous track formation in this material, irradiation of the pristine samples with a highly ionizing beam of 8 MeV O 3+ ions, with nearly constant S e of about 3 keV nm –1, induces a crystalline to amorphous phase transition at high ion fluences. In the pre-damaged samples, the electronic energy loss from the 8 MeV O 3+ ions interacts synergistically with the pre-existing damage, resulting in a rapid, non-linear increase in damage production. There is a significant reduction in the incubation fluence for rapid amorphization with the increasing amount of pre-existing damage. Here, these results highlight the important role of atomic-level defects on increasing the sensitivity of some oxides to amorphization induced by electronic energy loss. Controlling the nature and amount of pre-damage may provide a new approach to tuning optical properties for photonic device applications.« less

  1. Neuropathy in non-freezing cold injury (trench foot).

    PubMed Central

    Irwin, M S; Sanders, R; Green, C J; Terenghi, G

    1997-01-01

    Non-freezing cold injury (trench foot) is characterized, in severe cases, by peripheral nerve damage and tissue necrosis. Controversy exists regarding the susceptibility of nerve fibre populations to injury as well as the mechanism of injury. Clinical and histological studies (n = 2) were conducted in a 40-year-old man with severe non-freezing cold injury in both feet. Clinical sensory tests, including two-point discrimination and pressure, vibration and thermal thresholds, indicated damage to large and small diameter nerves. On immunohistochemical assessment, terminal cutaneous nerve fibres within the plantar skin stained much less than in a normal control whereas staining to von Willebrand factor pointed to increased vascularity in all areas. The results indicate that all nerve populations (myelinated and unmyelinated) were damaged, possibly in a cycle of ischaemia and reperfusion. Images Figure 1 a Figure 1 b Figure 2 a Figure 2 b Figure 3 a Figure 3 b PMID:9306996

  2. EMG biofeedback: the effects of CRF, FR, VR, FI, and VI schedules of reinforcement on the acquisition and extinction of increases in forearm muscle tension.

    PubMed

    Cohen, S L; Richardson, J; Klebez, J; Febbo, S; Tucker, D

    2001-09-01

    Biofeedback was used to increase forearm-muscle tension. Feedback was delivered under continuous reinforcement (CRF), variable interval (VI), fixed interval (FI), variable ratio (VR), and fixed ratio (FR) schedules of reinforcement when college students increased their muscle tension (electromyograph, EMG) above a high threshold. There were three daily sessions of feedback, and Session 3 was immediately followed by a session without feedback (extinction). The CRF schedule resulted in the highest EMG, closely followed by the FR and VR schedules, and the lowest EMG scores were produced by the FI and VI schedules. Similarly, the CRF schedule resulted in the greatest amount of time-above-threshold and the VI and FI schedules produced the lowest time-above-threshold. The highest response rates were generated by the FR schedule, followed by the VR schedule. The CRF schedule produced relatively low response rates, comparable to the rates under the VI and FI schedules. Some of the data are consistent with the partial-reinforcement-extinction effect. The present data suggest that different schedules of feedback should be considered in muscle-strengthening-contexts such as during the rehabilitation of muscles following brain damage or peripheral nervous-system injury.

  3. The ablation threshold of Er;Cr:YSGG laser radiation in bone tissue

    NASA Astrophysics Data System (ADS)

    Benetti, Carolina; Zezell, Denise Maria

    2015-06-01

    In laser cut clinical applications, the use of energy densities lower than the ablation threshold causes increase of temperature of the irradiated tissue, which might result in an irreversible thermal damage. Hence, knowing the ablation threshold is crucial for insuring the safety of these procedures. The aim of this study was to determine the ablation threshold of the Er,Cr:YSGG laser in bone tissue. Bone pieces from jaws of New Zealand rabbits were cut as blocks of 5 mm × 8 mm and polished with sandpaper. The Er,Cr:YSGG laser used in this study had wavelength of 2780 nm, 20 Hz of frequency, and the irradiation condition was chosen so as to simulate the irradiation during a surgical procedure. The laser irradiation was performed with 12 different values of laser energy densities, between 3 J/cm2 and 42 J/cm2, during 3 seconds, resulting in the overlap of 60 pulses. This process was repeated in each sample, for all laser energy densities. After irradiation, the samples were analyzed by scanning electron microscope (SEM), and it was measured the crater diameter for each energy density. By fitting a curve that related the ablation threshold with the energy density and the corresponding diameter of ablation crater, it was possible to determine the ablation threshold. The results showed that the ablation threshold of the Er,Cr:YSGG in bone tissue was 1.95+/-0.42 J/cm2.

  4. Addressing the limits to adaptation across four damage--response systems

    EPA Science Inventory

    Our ability to adapt to climate change is not boundless, and previous modeling shows that capacity limited adaptation will play a policy-significant role in future decisions about climate change. These limits are delineated by capacity thresholds, after which climate damages beg...

  5. Towards a damage tolerance philosophy for composite materials and structures

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin

    1990-01-01

    A damage-threshold/fail-safe approach is proposed to ensure that composite structures are both sufficiently durable for economy of operation, as well as adequately fail-safe or damage tolerant for flight safety. Matrix cracks are assumed to exist throughout the off-axis plies. Delamination onset is predicted using a strain energy release rate characterization. Delamination growth is accounted for in one of three ways: either analytically, using delamination growth laws in conjunction with strain energy release rate analyses incorporating delamination resistance curves; experimentally, using measured stiffness loss; or conservatively, assuming delamination onset corresponds to catastrophic delamination growth. Fail-safety is assessed by accounting for the accumulation of delaminations through the thickness. A tension fatigue life prediction for composite laminates is presented as a case study to illustrate how this approach may be implemented. Suggestions are made for applying the damage-threshold/fail-safe approach to compression fatigue, tension/compression fatigue, and compression strength following low velocity impact.

  6. Mitigation of laser damage on National Ignition Facility optics in volume production

    NASA Astrophysics Data System (ADS)

    Folta, James; Nostrand, Mike; Honig, John; Wong, Nan; Ravizza, Frank; Geraghty, Paul; Taranowski, Mike; Johnson, Gary; Larkin, Glenn; Ravizza, Doug; Peterson, John; Welday, Brian; Wegner, Paul

    2013-12-01

    The National Ignition Facility has recently achieved the milestone of delivering over 1.8 MJ and 500 TW of 351 nm laser energy and power on target, which required average fluences up to 9 J/cm2 (3 ns equivalent) in the final optics system. Commercial fused silica laser-grade UV optics typically have a maximum operating threshold of 5 J/cm2. We have developed an optics recycling process which enables NIF to operate above the laser damage initiation and growth thresholds. We previously reported a method to mitigate laser damage with laser ablation of the damage site to leave benign cone shaped pits. We have since developed a production facility with four mitigation systems capable of performing the mitigation protocols on full-sized (430 mm) optics in volume production. We have successfully repaired over 700 NIF optics (unique serial numbers), some of which have been recycled as many as 11 times. We describe the mitigation systems, the optics recycle loop process, and optics recycle production data.

  7. Towards a damage tolerance philosophy for composite materials and structures

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin

    1988-01-01

    A damage-threshold/fail-safe approach is proposed to ensure that composite structures are both sufficiently durable for economy of operation, as well as adequately fail-safe or damage tolerant for flight safety. Matrix cracks are assumed to exist throughout the off-axis plies. Delamination onset is predicted using a strain energy release rate characterization. Delamination growth is accounted for in one of three ways: either analytically, using delamination growth laws in conjunction with strain energy release rate analyses incorporating delamination resistance curves; experimentally, using measured stiffness loss; or conservatively, assuming delamination onset corresponds to catastrophic delamination growth. Fail-safety is assessed by accounting for the accumulation of delaminations through the thickness. A tension fatigue life prediction for composite laminates is presented as a case study to illustrate how this approach may be implemented. Suggestions are made for applying the damage-threshold/fail-safe approach to compression fatigue, tension/compression fatigue, and compression strength following low velocity impact.

  8. Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, A. K.; Cordillot, C.; Fornier, A.

    1998-07-28

    Fused silica windows were artificially contaminated to estimate the resistance of target chamber debris shields against laser damage during NIF operation. Uniform contamination thin films (1 to 5 nm thick) were prepared by sputtering various materials (Au, Al, Cu, and B 4C). The loss of transmission of the samples was first measured. They were then tested at 355 nm in air with an 8-ns Nd:YAG laser. The damage morphologies were characterized by Nomarski optical microscopy and SEM. Both theory and experiments showed that metal contamination for films as thin as 1 nm leads to a substantial loss of transmission. Themore » laser damage resistance dropped very uniformly across the entire surface (e.g. 6 J/cm 2 for 5 nm of Cu). The damage morphology characterization showed that contrary to clean silica, metal coated samples did not produce pits on the surface. B 4C coated silica, on the other hand, led to a higher density of such damage pits. A model for light absorption in the thin film was coupled with a simple heat deposition and diffusion model to perform preliminary theoretical estimates of damage thresholds. The estimates of the loss due to light absorption and reflection pointed out significant .differences between metals (e.g. Al and Au). The damage threshold predictions were in qualitative agreement with experimental measurements.« less

  9. Determination of ultra-short laser induced damage threshold of KH{sub 2}PO{sub 4} crystal: Numerical calculation and experimental verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jian; Department of Physics, The Ohio State University, 191 W. Woodruff Ave, Columbus, OH 43210; Chen, Mingjun, E-mail: chenmj@hit.edu.cn, E-mail: chowdhury.24@osu.edu

    Rapid growth and ultra-precision machining of large-size KDP (KH{sub 2}PO{sub 4}) crystals with high laser damage resistance are tough challenges in the development of large laser systems. It is of high interest and practical significance to have theoretical models for scientists and manufacturers to determine the laser-induced damage threshold (LIDT) of actually prepared KDP optics. Here, we numerically and experimentally investigate the laser-induced damage on KDP crystals in ultra-short pulse laser regime. On basis of the rate equation for free electron generation, a model dedicated to predicting the LIDT is developed by considering the synergistic effect of photoionization, impact ionizationmore » and decay of electrons. Laser damage tests are performed to measure the single-pulse LIDT with several testing protocols. The testing results combined with previously reported experimental data agree well with those calculated by the model. By taking the light intensification into consideration, the model is successfully applied to quantitatively evaluate the effect of surface flaws inevitably introduced in the preparation processes on the laser damage resistance of KDP crystals. This work can not only contribute to further understanding of the laser damage mechanisms of optical materials, but also provide available models for evaluating the laser damage resistance of exquisitely prepared optical components used in high power laser systems.« less

  10. Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.

    PubMed

    Matsuura, Yuji; Tsuchiuchi, Akio; Noguchi, Hiroshi; Miyagi, Mitsunobu

    2007-03-10

    To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.

  11. Chitinase enzyme activity in CSF is a powerful biomarker of Alzheimer disease.

    PubMed

    Watabe-Rudolph, M; Song, Z; Lausser, L; Schnack, C; Begus-Nahrmann, Y; Scheithauer, M-O; Rettinger, G; Otto, M; Tumani, H; Thal, D R; Attems, J; Jellinger, K A; Kestler, H A; von Arnim, C A F; Rudolph, K L

    2012-02-21

    DNA damage accumulation in brain is associated with the development of Alzheimer disease (AD), but newly identified protein markers of DNA damage have not been evaluated in the diagnosis of AD and other forms of dementia. Here, we analyzed the level of novel biomarkers of DNA damage and telomere dysfunction (chitinase activity, N-acetyl-glucosaminidase activity, stathmin, and EF-1α) in CSF of 94 patients with AD, 41 patients with non-AD dementia, and 40 control patients without dementia. Enzymatic activity of chitinase (chitotriosidase activity) and stathmin protein level were significantly increased in CSF of patients with AD and non-AD dementia compared with that of no dementia control patients. As a single marker, chitinase activity was most powerful for distinguishing patients with AD from no dementia patients with an accuracy of 85.8% using a single threshold. Discrimination was even superior to clinically standard CSF markers that showed an accuracy of 78.4% (β-amyloid) and 77.6% (tau). Combined analysis of chitinase with other markers increased the accuracy to a maximum of 91%. The biomarkers of DNA damage were also increased in CSF of patients with non-AD dementia compared with no dementia patients, and the new biomarkers improved the diagnosis of non-AD dementia as well as the discrimination of AD from non-AD dementia. Taken together, the findings in this study provide experimental evidence that DNA damage markers are significantly increased in AD and non-AD dementia. The biomarkers identified outperformed the standard CSF markers for diagnosing AD and non-AD dementia in the cohort investigated.

  12. Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current

    NASA Astrophysics Data System (ADS)

    Luo, X. M.; Zhang, B.; Zhang, G. P.

    2014-09-01

    Thermal fatigue failure of metallization interconnect lines subjected to alternating currents (AC) is becoming a severe threat to the long-term reliability of micro/nanodevices with increasing electrical current density/power. Here, thermal fatigue failure behaviors and damage mechanisms of nanocrystalline Au interconnect lines on the silicon glass substrate have been investigated by applying general alternating currents (the pure alternating current coupled with a direct current (DC) component) with different frequencies ranging from 0.05 Hz to 5 kHz. We observed both thermal fatigue damages caused by Joule heating-induced cyclic strain/stress and electromigration (EM) damages caused by the DC component. Besides, the damage formation showed a strong electrically-thermally-mechanically coupled effect and frequency dependence. At lower frequencies, thermal fatigue damages were dominant and the main damage forms were grain coarsening with grain boundary (GB) cracking/voiding and grain thinning. At higher frequencies, EM damages took over and the main damage forms were GB cracking/voiding of smaller grains and hillocks. Furthermore, the healing effect of the reversing current was considered to elucidate damage mechanisms of the nanocrystalline Au lines generated by the general AC. Lastly, a modified model was proposed to predict the lifetime of the nanocrystalline metal interconnect lines, i.e., that was a competing drift velocity-based approach based on the threshold time required for reverse diffusion/healing to occur.

  13. Repeated freezing induces a trade-off between cryoprotection and egg production in the goldenrod gall fly, Eurosta solidaginis.

    PubMed

    Marshall, Katie E; Sinclair, Brent J

    2018-06-12

    Internal ice formation leads to wholesale changes in ionic, osmotic and pH homeostasis, energy metabolism, and mechanical damage, across a small range of temperatures, and is thus an abiotic stressor that acts at a distinct, physiologically-relevant, threshold. Insects that experience repeated freeze-thaw cycles over winter will cross this stressor threshold many times over their lifespan. Here we examine the effect of repeatedly crossing the freezing threshold on short-term physiological parameters (metabolic reserves and cryoprotectant concentration) as well as long-term fitness-related performance (survival and egg production) in the freeze-tolerant goldenrod gall fly Eurosta solidaginis We exposed overwintering prepupae to a series of low temperatures (-10, -15, or -20 °C) with increasing numbers of freezing events (3, 6, or 10) with differing recovery periods between events (1, 5, or 10 days). Repeated freezing increased sorbitol concentration by about 50% relative to a single freezing episode, and prompted prepupae to modify long chain triacylglycerols to acetylated triacylglycerols. Long-term, repeated freezing did not significantly reduce survival, but did reduce egg production by 9.8% relative to a single freezing event. Exposure temperature did not affect any of these measures, suggesting that threshold crossing events may be more important to fitness than the intensity of stress in E. solidaginis overwintering. © 2018. Published by The Company of Biologists Ltd.

  14. Real-time seismic monitoring and functionality assessment of a building

    USGS Publications Warehouse

    Celebi, M.; ,

    2005-01-01

    This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.

  15. Recent advances to obtain real - Time displacements for engineering applications

    USGS Publications Warehouse

    Celebi, M.

    2005-01-01

    This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.

  16. Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films

    NASA Astrophysics Data System (ADS)

    Pu, Yunti; Ma, Ping; Chen, Songlin; Zhu, Jiliang; Wang, Gang; Pan, Feng; Sun, Ping; Zhu, Xiaohong; Zhu, Jianguo; Xiao, Dingquan

    2012-07-01

    We show in this paper single-shot and multi-shot laser-induced damage thresholds (LIDTs) of HfO2/SiO2 high reflective films (the reflectance = 99.9%) are affected by the presence of a water layer absorbed on the surface of the porous films. When the water layer was removed with the process of pumping, the single-shot LIDT measured in vacuum dropped to ˜48% of that measured in air, while the multi-shot LIDT in vacuum dropped to ˜47% of its atmospheric value for the high reflective films. Typical damage micrographs of the films in air and in vacuum were obtained, showing distinct damage morphologies. Such atmosphere dependence of the laser damage morphology was found to originate from that formation of a water layer on the surface of porous films could cause an increase of horizontal thermal conductivity and a reduction of vertical thermal conductivity. Moreover, laser-induced periodic ripple damages in air were found in the SiO2 layer from the micrographs. A model of deformation kinematics was used to illustrate the occurrence of the periodic ripple damage, showing that it could be attributed to a contraction of the HfO2 layer under irradiation by the 5-ns laser pulses in air.

  17. Dynamics of retinal photocoagulation and rupture

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis; Nomoto, Hiroyuki; Huie, Phil; Brown, Jefferson; Palanker, Daniel

    2009-05-01

    In laser retinal photocoagulation, short (<20 ms) pulses have been found to reduce thermal damage to the inner retina, decrease treatment time, and minimize pain. However, the safe therapeutic window (defined as the ratio of power for producing a rupture to that of mild coagulation) decreases with shorter exposures. To quantify the extent of retinal heating and maximize the therapeutic window, a computational model of millisecond retinal photocoagulation and rupture was developed. Optical attenuation of 532-nm laser light in ocular tissues was measured, including retinal pigment epithelial (RPE) pigmentation and cell-size variability. Threshold powers for vaporization and RPE damage were measured with pulse durations ranging from 1 to 200 ms. A finite element model of retinal heating inferred that vaporization (rupture) takes place at 180-190°C. RPE damage was accurately described by the Arrhenius model with activation energy of 340 kJ/mol. Computed photocoagulation lesion width increased logarithmically with pulse duration, in agreement with histological findings. The model will allow for the optimization of beam parameters to increase the width of the therapeutic window for short exposures.

  18. Diffraction measurements using the LHC Beam Loss Monitoring System

    NASA Astrophysics Data System (ADS)

    Kalliokoski, Matti

    2017-03-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider protects the machine from beam induced damage by measuring the absorbed dose rates of beam losses, and by triggering beam dump if the rates increase above the allowed threshold limits. Although the detection time scales are optimized for multi-turn losses, information on fast losses can be recovered from the loss data. In this paper, methods in using the BLM system in diffraction studies are discussed.

  19. Mechanism and Safety at the Threshold of the Blood-Brain Barrier Opening In Vivo

    NASA Astrophysics Data System (ADS)

    Konofagou, Elisa E.; Choi, James; Baseri, Babak; Selert, Kirsten; Tung, Yao-Sheng

    2010-03-01

    Current treatments of neurological and neurodegenerative diseases are limited due to the blood-brain barrier (BBB). In this paper, the threshold of BBB opening and its dependence on the microbubble diameter as well as the associated mechanism and safety are identified in vivo. In vivo BBB opening in mice (n = 13) was achieved by systemically injecting microbubbles (Definity and 1-2 and 4-5-μm lipid-shelled, gas-filled) and applying pulsed FUS (frequency: 1.525 MHz, peak-rarefactional pressure: 150-600 kPa) to the left hippocampus through the intact skin and skull. Systemically administered, BBB-impermeable, fluorescent-tagged dextrans at 3 kDa were injected to confirm BBB opening. H&E histology was also performed to determine any associated vascular or neuronal damage. Detection of stable and inertial cavitation was performed using a passive cavitation device (PCD) in a blood vessel phantom at the same pressure amplitudes as those used in vivo. Larger microbubbles (4-5 μm) resulted in a lower threshold of BBB opening. Cavitation studies confirmed that stable cavitation occurs at the threshold of BBB opening. The mechanism of BBB opening at the threshold was identified to be mainly related to stable cavitation. Histological studies indicated that, at the BBB opening threshold, no red-blood cell extravasation or neuronal damage was noted.

  20. Structural Health Monitoring: Leveraging Pain in the Human Body

    NASA Astrophysics Data System (ADS)

    Nayak, Subhadarshi

    2012-07-01

    Tissue damage, or the perception thereof, is managed through pain experience. The neurobiological process of pain triggers most effective defense mechanisms for our safety. Structural health monitoring (SHM) is also a very similar function, albeit in engineering systems. SHM technology can leverage many aspects of pain mechanisms to progress in several critical areas. Discrimination between features from the undamaged and damaged structures can follow the threshold gate mechanism of the pain perception. Furthermore, the sensing mechanisms can be adaptive to changes by adjusting the threshold as does the pain perception. A distributed sensor network, often advanced by SHM, can be made fault-tolerant and robust by following the perception way of self-organization and redundancy. Data handling in real life is a huge challenge for large-scale SHM. As sensory data of pain is first cleaned, the threshold is then processed through experiential information gathering and use.

  1. Quantification of a thermal damage threshold for astrocytes using infrared laser generated heat gradients.

    PubMed

    Liljemalm, Rickard; Nyberg, Tobias

    2014-04-01

    The response of cells and tissues to elevated temperatures is highly important in several research areas, especially in the area of infrared neural stimulation. So far, only the heat response of neurons has been considered. In this study, primary rat astrocytes were exposed to infrared laser pulses of various pulse lengths and the resulting cell morphology changes and cell migration was studied using light microscopy. By using a finite element model of the experimental setup the temperature distribution was simulated and the temperatures and times to induce morphological changes and migration were extracted. These threshold temperatures were used in the commonly used first-order reaction model according to Arrhenius to extract the kinetic parameters, i.e., the activation energy, E a, and the frequency factor, A c, for the system. A damage signal ratio threshold was defined and calculated to be 6% for the astrocytes to change morphology and start migrating.

  2. Refinement of determination of critical thresholds of stress-strain behaviour by using AE data: potential for evaluation of durability of natural stone

    NASA Astrophysics Data System (ADS)

    Prikryl, Richard; Lokajíček, Tomáš

    2017-04-01

    According to previous studies, evaluation of stress-strain behaviour (in uniaxial compression) of various rocks appears to be effective tool allowing for prediction of resistance of natural stone to some physical weathering processes. Precise determination of critical thresholds, specifically of 'crack initiation' and 'crack damage' is fundamental issue in this approach. In contrast to 'crack damage stress/strain threshold', which can be easily read from deflection point on volumetric curve, detection of 'crack initiation' is much more difficult. Besides previously proposed mathematical processing of axial stress-strain curve, recording of acoustic emission (AE) data and their processing provide direct measure of various stress/strain thresholds, specifically of 'crack initiation'. This specific parameter is required during successive computation of energetic parameters (mechanical work), that can be stored by a material without formation of new defects (microcracks) due to acting stress. Based on our experimental data, this mechanical work seems to be proportional to the resistance of a material to formation of mode I (tensile) cracks that are responsible for destruction of subsurface below exposed faces of natural stone.

  3. Assessment of multi-pulse laser-induced damage threshold of metallic mirrors for Thomson scattering system.

    PubMed

    Sato, Masaya; Kajita, Shin; Yasuhara, Ryo; Ohno, Noriyasu; Tokitani, Masayuki; Yoshida, Naoaki; Tawara, Yuzuru

    2013-04-22

    Multi-pulse laser-induced damage threshold (LIDT) was experimentally investigated up to ~10(6) pulses for Cu, Ag mirrors. The surface roughness and the hardness dependence on the LIDT were also examined. The LIDT of OFHC-Cu decreased with the pulse number and was 1.0 J/cm(2) at 1.8 × 10(6) pulses. The expected LIDT of cutting Ag at 10(7) pulses was the highest; Ag mirror would be one of the best choices for ITER Thomson scattering system. For the roughness and hardness, material dependences of LIDT are discussed with experimental results.

  4. Effect of low-level laser treatment on cochlea hair-cell recovery after ototoxic hearing loss

    NASA Astrophysics Data System (ADS)

    Rhee, Chung-Ku; He, Peijie; Jung, Jae Yun; Ahn, Jin-Chul; Chung, Phil-Sang; Lee, Min Young; Suh, Myung-Whan

    2013-12-01

    The primary cause of hearing loss includes damage to cochlear hair cells. Low-level laser therapy (LLLT) has become a popular treatment for damaged nervous systems. Based on the idea that cochlea hair cells and neural cells are from same developmental origin, the effect of LLLT on hearing loss in animal models is evaluated. Hearing loss animal models were established, and the animals were irradiated by 830-nm diode laser once a day for 10 days. Power density of the laser treatment was 900 mW/cm2, and the fluence was 162 to 194 J. The tympanic membrane was evaluated after LLLT. Thresholds of auditory brainstem responses were evaluated before treatment, after gentamicin, and after 10 days of LLLT. Quantitative scanning electron microscopic (SEM) observations were done by counting remaining hair cells. Tympanic membranes were intact at the end of the experiment. No adverse tissue reaction was found. On SEM images, LLLT significantly increased the number of hair cells in middle and basal turns. Hearing was significantly improved by laser irradiation. After LLLT treatment, both the hearing threshold and hair-cell count significantly improved.

  5. Clinical disorders and pressure-pain threshold of the forearm and hand among automobile assembly line workers.

    PubMed

    Byström, S; Hall, C; Welander, T; Kilbom, A

    1995-12-01

    The prevalence of forearm and hand disorders was examined by questionnaire and clinical examination in 199 automobile assembly line workers and in 186 controls. The pressure-pain threshold, hand grip force and hand anthropometry were also studied. There was an increased prevalence of de Quervain's disease for male automobile assembly line workers, and of carpal tunnel syndrome in female workers. The prevalence of symptoms in the forearm and hand during the last 7 days were twice as high among automobile assembly line workers than controls for both men and women. The occurrence of symptoms in the last 7 days was associated with de Quervain's disease, carpal tunnel syndrome and sick-leave due to forearm or hand problems, and it also influenced activities of daily living. Hand grip strength and anthropometrics were not associated with findings in the clinical examination or the occurrence of symptoms in the last 7 days. Low pressure-pain threshold was not associated with findings in the clinical examination, except for reported occurrence of symptoms in the last 7 days for women. Pressure-pain threshold as an indicator of tissue damage is discussed.

  6. Flux threshold determination for tungsten nano-fuzz formation using an 80 eV He-ion beam

    NASA Astrophysics Data System (ADS)

    Meyer, Fred W.; Bannister, Mark E.; Parish, Chad M.

    2017-10-01

    At the ORNL Multicharged Ion Research Facility (MIRF), we have extended our investigation of flux thresholds for He-ion induced nano-fuzz formation on hot tungsten surfaces down to plasma-edge-relevant energies of 80 eV. We measured the size of the incident ion beam by accurate flux-profile measurements, and the size of the region where tungsten nano-fuzz was formed by post-exposure SEM surface analysis and real-time monitoring of the hot W surface-emissivity change throughout the beam exposure. If tungsten nano-fuzz formation had a fluence threshold, the size of the observed nano-fuzz region would be expected to increase with exposure time, eventually filling the entire ion beam spot. Instead, we found that the region of nano-fuzz formation (1) was always smaller than the beam spot itself and (2) did not increase in size with time, i.e. with accumulated He ion fluence. By comparison of the flux profile and the spatial extent of the fuzz region we determined a flux threshold of 9.5 +-3×1019/m2s at 80 eV He ion impact energy. We show that the observed flux-threshold energy dependence for nano-fuzz formation, which we have now mapped out from 80 eV to 8.5 keV, is well reproduced by the combined energy dependences of He-ion reflection, He-ion range and target-damage creation, determined using SRIM. Research sponsored by the LDRD program at ORNL, managed by UT-Battelle for the USDOE, and by the DOE OFES.

  7. [Effects of sildenafil citrate on mice hearing].

    PubMed

    Luo, Xiaoqin; Guo, Xuyao; Chen, Lin; Chen, Xiaohong; Zhang, Xueyuan; Yuan, Wei

    2014-06-01

    The purpose of this investigation was to study the effects of the Sildenafil citrate on mice hearing. Seven-week-old adult male Kunming mice were used. The mice were randomly divided into four groups with 10 mice in each group.Sildenafil groups were orally administered daily with sildenafil [0.1 mg/(kg·d), 1 mg/(kg·d), 10 mg/(kg·d)] and control group was orally administered with normal saline. Then mice were tested for auditory brainstem response (ABR) to observe the changes of ABR's thresholds at before administration and 1, 5, 10, 15, 20 day afterwards. The mice basilar membrane samples were studied by immunofluorescent labeling.High performance liquid chromatography was used for determination the concentration of sildenafil in endolymph of mice cochlea. Statistical analysis was performed using SPSS 13.0. After 30 min following administration, the Sildenafil in endolymph of mice cochlear could be assayed by high performance liquid chromatography, and it was dose-related.Sildenafil increased the hearing thresholds with the time of administration. Hearing thresholds increased significantly in the sildenafil group at 20 d compared to the control group (P < 0.05). After administered high dose of Sildenafil, on the 20th day, the ABR thresholds average threshold was (60.0 ± 10.0) dBnHL, and the control group was (14.5 ± 6.0) dBnHL.Hair cells damages in the base ring of cochlea could be observed in experimental group in a concentration-dependent manner. Sildenafil can pass through blood-labyrinth barrier to the inner ear, and doses of sildenafil administration can induce hearing impairment in mice.

  8. Characterization of laser damage performance of fused silica using photothermal absorption technique

    NASA Astrophysics Data System (ADS)

    Wan, Wen; Shi, Feng; Dai, Yifan; Peng, Xiaoqiang

    2017-06-01

    The subsurface damage and metal impurities have been the main laser damage precursors of fused silica while subjected to high power laser irradiation. Light field enhancement and thermal absorption were used to explain the appearance of damage pits while the laser energy is far smaller than the energy that can reach the intrinsic threshold of fused silica. For fused silica optics manufactured by magnetorheological finishing or advanced mitigation process, no scratch-related damage site occurs can be found on the surface. In this work, we implemented a photothermal absorption technique based on thermal lens method to characterize the subsurface defects of fused silica optics. The pump beam is CW 532 nm wavelength laser. The probe beam is a He-Ne laser. They are collinear and focused through the same objective. When pump beam pass through the sample, optical absorption induces the local temperature rise. The lowest absorptance that we can detect is about the order of magnitude of 0.01 ppm. When pump beam pass through the sample, optical absorption induces the local temperature rise. The photothermal absorption value of fused silica samples range from 0.5 to 10 ppm. The damage densities of the samples were plotted. The damage threshold of samples at 8J/cm2 were gived to show laser damage performance of fused silica.The results show that there is a strong correlation between the thermal absorption and laser damage density. The photothermal absorption technique can be used to predict and evaluate the laser damage performance of fused silica optics.

  9. Implications of Sensory Stimulation in Self-Destructive Behavior.

    ERIC Educational Resources Information Center

    Edelson, Stephen M.

    1984-01-01

    The author extends the self stimulatory theory of self destructive behavior in autistic, schizophrenic, and mentally retarded individuals to suggest that damage of the skin's nerve structure lowers the tactile sensory threshold for physical input and enables individuals to obtain sensory stimulation by repeatedly depressing the damaged area. (CL)

  10. Visible lesion thresholds and model predictions for Q-switched 1318-nm and 1540-nm laser exposures to porcine skin

    NASA Astrophysics Data System (ADS)

    Zohner, Justin J.; Schuster, Kurt J.; Chavey, Lucas J.; Stolarski, David J.; Kumru, Semih S.; Rockwell, Benjamin A.; Thomas, Robert J.; Cain, Clarence P.

    2006-02-01

    Skin damage thresholds were measured and compared with theoretical predictions using a skin thermal model for near-IR laser pulses at 1318 nm and 1540 nm. For the 1318-nm data, a Q-switched, 50-ns pulse with a spot size of 5 mm was applied to porcine skin and the damage thresholds were determined at 1 hour and 24 hours postexposure using Probit analysis. The same analysis was conducted for a Q-switched, 30-ns pulse at 1540 nm with a spot size of 5 mm. The Yucatan mini-pig was used as the skin model for human skin due to its similarity to pigmented human skin. The ED 50 for these skin exposures at 24 hours postexposure was 10.5 J/cm2 for the 1318-nm exposures, and 6.1 J/cm2 for the 1540-nm exposures. These results were compared to thermal model predictions. We show that the thermal model fails to account for the ED 50 values observed. A brief discussion of the possible causes of this discrepancy is presented. These thresholds are also compared with previously published skin minimum visible lesion (MVL) thresholds and with the ANSI Standard's MPE for 1318-nm lasers at 50 ns and 1540-nm lasers at 30 ns.

  11. Thresholds for thermal damage to normal tissues: an update.

    PubMed

    Yarmolenko, Pavel S; Moon, Eui Jung; Landon, Chelsea; Manzoor, Ashley; Hochman, Daryl W; Viglianti, Benjamin L; Dewhirst, Mark W

    2011-01-01

    The purpose of this review is to summarise a literature survey on thermal thresholds for tissue damage. This review covers published literature for the consecutive years from 2002-2009. The first review on this subject was published in 2003. It included an extensive discussion of how to use thermal dosimetric principles to normalise all time-temperature data histories to a common format. This review utilises those same principles to address sensitivity of a variety of tissues, but with particular emphasis on brain and testis. The review includes new data on tissues that were not included in the original review. Several important observations have come from this review. First, a large proportion of the papers examined for this review were discarded because time-temperature history at the site of thermal damage assessment was not recorded. It is strongly recommended that future research on this subject include such data. Second, very little data is available examining chronic consequences of thermal exposure. On a related point, the time of assessment of damage after exposure is critically important for assessing whether damage is transient or permanent. Additionally, virtually no data are available for repeated thermal exposures which may occur in certain recreational or occupational activities. For purposes of regulatory guidelines, both acute and lasting effects of thermal damage should be considered.

  12. Viewpoint: "Alcohol Consumption in Late Adolescence is Associated with an Increased Risk of Severe Liver Disease Later in Life".

    PubMed

    Tamburello, Adriana; Marando, Marco; Bellentani, Stefano

    2018-04-09

    Drinking alcohol during adolescence predispose to severe liver disease in the adult phase. This is the main message of this prospective study. Each daily gram of alcohol men consumed in their youth was linked with a two percent increase in the risk of severe liver disease. No threshold level emerged for liver damage and this is a warning for all the sociologists and politics. New legiferation and educational campaigns addressed to young people, with particular attention to the access to alcohol, prices and advertising are necessary.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    Understanding how energy deposited in electronic and atomic subsystems may affect defect dynamics is a long-standing fundamental challenge in materials research. The coupling of displacement cascades and in-cascade ionization-induced annealing are investigated in silicon carbide (SiC). A delayed damage accumulation under ion irradiation is revealed with a linear dependence as a function of both increasing ionization and increasing ratio of electronic to nuclear energy deposition. An in-cascade healing mechanism is suggested with a low threshold value of electronic energy loss (~1.0 keV nm-1). The in-cascade ionization effects must be considered in predicting radiation performance of SiC.

  14. Role of tool marks inside spherical mitigation pit fabricated by micro-milling on repairing quality of damaged KH2PO4 crystal

    PubMed Central

    Chen, Ming-Jun; Cheng, Jian; Yuan, Xiao-Dong; Liao, Wei; Wang, Hai-Jun; Wang, Jing-He; Xiao, Yong; Li, Ming-Quan

    2015-01-01

    Repairing initial slight damage site into stable structures by engineering techniques is the leading strategy to mitigate the damage growth on large-size components used in laser-driven fusion facilities. For KH2PO4 crystals, serving as frequency converter and optoelectronic switch-Pockels cell, micro-milling has been proven the most promising method to fabricate these stable structures. However, tool marks inside repairing pit would be unavoidably introduced due to the wearing of milling cutter in actual repairing process. Here we quantitatively investigate the effect of tool marks on repairing quality of damaged crystal components by simulating its induced light intensification and testing the laser-induced damage threshold. We found that due to the formation of focusing hot spots and interference ripples, the light intensity is strongly enhanced with the presence of tool marks, especially for those on rear surfaces. Besides, the negative effect of tool marks is mark density dependent and multiple tool marks would aggravate the light intensification. Laser damage tests verified the role of tool marks as weak points, reducing the repairing quality. This work offers new criterion to comprehensively evaluate the quality of repaired optical surfaces to alleviate the bottleneck issue of low laser damage threshold for optical components in laser-driven fusion facilities. PMID:26399624

  15. Effects of stress waves on cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, H L; Da Silva, L B; Visuri, S R

    Laser induced stress waves are being used in a variety of medical applications, including drug delivery and targeted tissue disruption. Stress waves can also be an undesirable side effect in laser procedures such as ophthalmology and angioplasty. Thus, a study of the effects of stress waves on a cellular level is useful. Thermoelastic stress waves were produced using a Q-switched frequency-doubled Nd:YAG laser (@.=532nm) with a pulse duration of 4 ns. The laser radiation was delivered to an absorbing media. A thermoelastic stress wave was produced in the absorbing media and propagated into plated cells. The energy per pulse deliveredmore » to a sample and the spot size were varied. Stress waves were quantified. We assayed for cell viability and damage using two methods. The laser parameters within which cells maintain viability were investigated and thresholds for cell damage were defined. A comparison of cell damage thresholds for different cell lines was made.« less

  16. Laser-induced damage of intrinsic and extrinsic defects by picosecond pulses on multilayer dielectric coatings for petawatt-class lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negres, Raluca A.; Carr, Christopher W.; Laurence, Ted A.

    2016-08-01

    Here, we describe a damage testing system and its use in investigating laser-induced optical damage initiated by both intrinsic and extrinsic precursors on multilayer dielectric coatings suitable for use in high-energy, large-aperture petawatt-class lasers. We employ small-area damage test methodologies to evaluate the intrinsic damage resistance of various coatings as a function of deposition methods and coating materials under simulated use conditions. In addition, we demonstrate that damage initiation by raster scanning at lower fluences and growth threshold testing are required to probe the density of extrinsic defects, which will limit large-aperture optics performance.

  17. Photothermal damage is correlated to the delivery rate of time-integrated temperature

    NASA Astrophysics Data System (ADS)

    Denton, Michael L.; Noojin, Gary D.; Gamboa, B. Giovanna; Ahmed, Elharith M.; Rockwell, Benjamin A.

    2016-03-01

    Photothermal damage rate processes in biological tissues are usually characterized by a kinetics approach. This stems from experimental data that show how the transformation of a specified biological property of cells or biomolecule (plating efficiency for viability, change in birefringence, tensile strength, etc.) is dependent upon both time and temperature. However, kinetic methods require determination of kinetic rate constants and knowledge of substrate or product concentrations during the reaction. To better understand photothermal damage processes we have identified temperature histories of cultured retinal cells receiving minimum lethal thermal doses for a variety of laser and culture parameters. These "threshold" temperature histories are of interest because they inherently contain information regarding the fundamental thermal dose requirements for damage in individual cells. We introduce the notion of time-integrated temperature (Tint) as an accumulated thermal dose (ATD) with units of °C s. Damaging photothermal exposure raises the rate of ATD accumulation from that of the ambient (e.g. 37 °C) to one that correlates with cell death (e.g. 52 °C). The degree of rapid increase in ATD (ΔATD) during photothermal exposure depends strongly on the laser exposure duration and the ambient temperature.

  18. Pressure threshold for shock wave induced renal hemorrhage.

    PubMed

    Mayer, R; Schenk, E; Child, S; Norton, S; Cox, C; Hartman, C; Cox, C; Carstensen, E

    1990-12-01

    Studies were performed with an interest in determining a pressure threshold for extracorporeal shock wave induced renal damage. Histological evidence of intraparenchymal hemorrhage was used as an indicator of tissue trauma. Depilated C3H mice were anesthetized and placed on a special frame to enhance visualization and treatment of the kidneys in situ. A Wolf electrohydraulic generator and 9 French probe designed for endoscopic use were utilized to expose the kidneys to 10 double spherically divergent shock waves. Measurements of the shock waves revealed two positive pressure peaks of similar magnitude for each spark discharge. The kidneys were exposed to different peak pressures by choice of distance from the spark source and were removed immediately after treatment for histologic processing. A dose response was noted with severe corticomedullary damage apparent following 15 to 20 MPa shocks. Hemorrhage was more apparent in the medulla where evidence of damage could be seen following pressures as low as three to five MPa. When a latex membrane was interposed to prevent possible collapse of the initial bubble from the spark source against the skin surface, histological evaluation revealed substantial reduction of severe tissue damage associated with the highest pressures tested, 20 MPa. However, the threshold level for evidence of hemorrhage remained about three to five MPa. Hydrophonic measurements indicated that the membrane allowed transmission of the acoustic shock waves and suggested that collapse of the bubble generated by electrohydraulic probes may have local effects due to a cavitation-like mechanism.

  19. [Does music influence visual perception in campimetric measurements of the visual field?].

    PubMed

    Gall, Carolin; Geier, Jens-Stefan; Sabel, Bernhard A; Kasten, Erich

    2009-01-01

    21 subjects (mean age 28,4 +/- 10,9, M +/- SD) without any damage of the visual system were examined with computer-based campimetric tests of near threshold stimulus detection whereby an artificial tunnel vision was induced. Campimetry was performed in four trials in randomized order using a within-subjects-design: 1. classical music, 2. Techno music, 3. music for relaxation and 4. no music. Results were slightly better in all music conditions. Performance was best when subjects were listening to Techno music. The average increase of correctly recognized stimuli and fixation controls amounted to 3 %. To check the stability of the effects 9 subjects were tested three times. A moderating influence of personality traits and habits of listening to music was tested but could not be found. We conclude that music has at least no negative influence on performance in the campimetric measurement. Reasons for the positive effects of music can be seen in a general increase of vigilance and a modulation of perceptual thresholds.

  20. Press forging and optical properties of lithium fluoride

    NASA Astrophysics Data System (ADS)

    Ready, J. F.; Vora, H.

    1980-07-01

    Lithium fluoride is an important candidate material for windows on high power, short-pulse ultraviolet and visible lasers. Lithium fluoride crystals were press forged in one step over the temperature range 300 to 600 C to obtain fine grained polycrystalline material with improved mechanical properties. The deformation that can be given to a lithium fluoride crystal during forging is limited by the formation of internal cloudiness (veiling) with the deformation limit increasing with increasing forging temperature from about 40 percent at 400 C to 65 percent at 600 C. To suppress veiling, lithium fluoride crystals were forged in two steps over the temperature range 300 to 600 C, to total deformations of 69 to 76 percent, with intermediate annealing at 700 C. This technique yields a material which has lower scattering with more homogeneous microstructure than that obtained in one step forging. The results of characterization of various optical and mechanical properties of single crystal and forged lithium fluoride, including scattering, optical homogeneity, residual absorption, damage thresholds, environmental stability, and thresholds for microyield are described.

  1. The One-Meter Criterion for Tsunami Warning: Time for a Reevaluation?

    NASA Astrophysics Data System (ADS)

    Fryer, G. J.; Weinstein, S.

    2013-12-01

    The U.S. tsunami warning centers issue warnings when runup is anticipated to exceed one meter. The origins of the one-meter criterion are unclear, though Whitmore, et al (2008) showed from tsunami history that one meter is roughly the threshold above which damage occurs. Recent experiences in Hawaii, however, suggest that the threshold could be raised. Tsunami Warnings were issued for 2010 Chile, 2011 Tohoku, and 2012 Haida Gwaii tsunamis; each exceeded one meter runup somewhere in the State. Evacuation, however, was necessary only in 2011, and even then onshore damage (as opposed to damage from currents) occurred only where runup exceeded 1.5m. During both Chile and Haida Gwaii tsunamis the existing criteria led to unnecessary evacuation. Maximum runup during the Chile tsunami was 1.1m at Hilo's Wailoa Boat Harbor, while the Haida Gwaii tsunami peaked at 1.2m at Honouliwai Bay on Molokai. Both tsunamis caused only minor damage and minimal flooding; in both cases a Tsunami Advisory (i.e., there is no need to evacuate, but stay off the beach and out of the water) would have been adequate. The Advisory was originally developed as an ad hoc response to the mildly threatening 2006 Kuril tsunami and has since been formalized as the product we issue when maximum runup is expected to be 0.3-1.0 m. At the time it was introduced, however, there was no discussion that this new low-level warning might allow the criterion for Tsunami Warning itself to be adjusted. We now suggest that the divide between Advisory and Warning be raised from 1.0 to something greater, possibly 1.2m. If the warning threshold were raised to 1.2m, the over-warning for the Chile tsunami still could not have been avoided. Models calibrated against DART data consistently forecast runup just over 1.2m for that event. For Haida Gwaii, adjusting the models to match the DART data increased the forecast runup to almost 2m, which again meant a warning, though in retrospect we should have been skeptical. The nearest DART to Haida Gwaii was off the Washington coast in line with the long axis (strike direction) of the rupture and so provided little constraint on the tsunami directed towards Hawaii (the dip direction). The finite fault model obtained by inverting the DART data extended the rupture too far along strike and pushed the rupture to the wrong (east) side of Haida Gwaii, in conflict with the W-phase CMT. The inferred wave height at the Langara Point tide gauge, just outside the epicentral region, was also too large by a factor of two. Forcing the tsunami inversion to be consistent with the CMT would have rendered the inferred rupture much closer to reality, matched the Langara Point record well, and forecast a maximum runup at Kahului of only 1.0 m (the actual runup there was 0.8m). If the warning criterion had been 1.2m the unnecessary coastal evacuation for the Haida Gwaii tsunami could have been avoided. So increasing the warning threshold by only 20 cm would eliminate one of the two recent unnecessary evacuations. Can the threshold be be raised even more? We are considering that possibility, though the uncertainties and time constraints of an actual warning demand that we remain very conservative.

  2. A comparison of LIDT behavior of metal-dielectric mirrors in ns and ps pulse regime at 1030 nm with regard to the coating technology

    NASA Astrophysics Data System (ADS)

    Škoda, Václav; Vanda, Jan; Uxa, Štěpán

    2017-11-01

    Several sets of mirror samples with multilayer system Ta2O5/SiO2 on silver metal layer were manufactured using either PVD or IAD coating technology. Both BK7 and fused silica substrates were used for preparation of samples. Laserinduced- damage-threshold (LIDT) of metal-dielectric mirrors was tested using a laser apparatus working at 1030 nm wavelength, in ns and ps pulse length domains in S-on-1 test mode. The measured damage threshold values at 45 deg angle of incidence and P-polarization were compared for different pulse length, substrate materials and coating technology.

  3. Optimization design and laser damage threshold analysis of pulse compression multilayer dielectric gratings

    NASA Astrophysics Data System (ADS)

    Fan, Shuwei; Bai, Liang; Chen, Nana

    2016-08-01

    As one of the key elements of high-power laser systems, the pulse compression multilayer dielectric grating is required for broader band, higher diffraction efficiency and higher damage threshold. In this paper, the multilayer dielectric film and the multilayer dielectric gratings(MDG) were designed by eigen matrix and optimized with the help of generic algorithm and rigorous coupled wave method. The reflectivity was close to 100% and the bandwith were over 250nm, twice compared to the unoptimized film structure. The simulation software of standing wave field distribution within MDG was developed and the electric field of the MDG was calculated. And the key parameters which affected the electric field distribution were also studied.

  4. Developments in seismic monitoring for risk reduction

    USGS Publications Warehouse

    Celebi, M.

    2007-01-01

    This paper presents recent state-of-the-art developments to obtain displacements and drift ratios for seismic monitoring and damage assessment of buildings. In most cases, decisions on safety of buildings following seismic events are based on visual inspections of the structures. Real-time instrumental measurements using GPS or double integration of accelerations, however, offer a viable alternative. Relevant parameters, such as the type of connections and structural characteristics (including storey geometry), can be estimated to compute drifts corresponding to several pre-selected threshold stages of damage. Drift ratios determined from real-time monitoring can then be compared to these thresholds in order to estimate damage conditions drift ratios. This approach is demonstrated in three steel frame buildings in San Francisco, California. Recently recorded data of strong shaking from these buildings indicate that the monitoring system can be a useful tool in rapid assessment of buildings and other structures following an earthquake. Such systems can also be used for risk monitoring, as a method to assess performance-based design and analysis procedures, for long-term assessment of structural characteristics of a building, and as a possible long-term damage detection tool.

  5. Atomic layer deposition for fabrication of HfO2/Al2O3 thin films with high laser-induced damage thresholds.

    PubMed

    Wei, Yaowei; Pan, Feng; Zhang, Qinghua; Ma, Ping

    2015-01-01

    Previous research on the laser damage resistance of thin films deposited by atomic layer deposition (ALD) is rare. In this work, the ALD process for thin film generation was investigated using different process parameters such as various precursor types and pulse duration. The laser-induced damage threshold (LIDT) was measured as a key property for thin films used as laser system components. Reasons for film damaged were also investigated. The LIDTs for thin films deposited by improved process parameters reached a higher level than previously measured. Specifically, the LIDT of the Al2O3 thin film reached 40 J/cm(2). The LIDT of the HfO2/Al2O3 anti-reflector film reached 18 J/cm(2), the highest value reported for ALD single and anti-reflect films. In addition, it was shown that the LIDT could be improved by further altering the process parameters. All results show that ALD is an effective film deposition technique for fabrication of thin film components for high-power laser systems.

  6. Bringing social standards into project evaluation under dynamic uncertainty.

    PubMed

    Knudsen, Odin K; Scandizzo, Pasquale L

    2005-04-01

    Society often sets social standards that define thresholds of damage to society or the environment above which compensation must be paid to the state or other parties. In this article, we analyze the interdependence between the use of social standards and investment evaluation under dynamic uncertainty where a negative externality above a threshold established by society requires an assessment and payment of damages. Under uncertainty, the party considering implementing a project or new technology must not only assess when the project is economically efficient to implement but when to abandon a project that could potentially exceed the social standard. Using real-option theory and simple models, we demonstrate how such a social standard can be integrated into cost-benefit analysis through the use of a development option and a liability option coupled with a damage function. Uncertainty, in fact, implies that both parties interpret the social standard as a target for safety rather than an inflexible barrier that cannot be overcome. The larger is the uncertainty, in fact, the greater will be the tolerance for damages in excess of the social standard from both parties.

  7. Radiation damage to amorphous carbon thin films irradiated by multiple 46.9 nm laser shots below the single-shot damage threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juha, L.; Hajkova, V.; Vorlicek, V.

    2009-05-01

    High-surface-quality amorphous carbon (a-C) optical coatings with a thickness of 45 nm, deposited by magnetron sputtering on a silicon substrate, were irradiated by the focused beam of capillary-discharge Ne-like Ar extreme ultraviolet laser (CDL=capillary-discharge laser; XUV=extreme ultraviolet, i.e., wavelengths below 100 nm). The laser wavelength and pulse duration were 46.9 nm and 1.7 ns, respectively. The laser beam was focused onto the sample surface by a spherical Sc/Si multilayer mirror with a total reflectivity of about 30%. The laser pulse energy was varied from 0.4 to 40 muJ on the sample surface. The irradiation was carried out at five fluencemore » levels between 0.1 and 10 J/cm{sup 2}, accumulating five different series of shots, i.e., 1, 5, 10, 20, and 40. The damage to the a-C thin layer was investigated by atomic force microscopy (AFM) and Nomarski differential interference contrast (DIC) optical microscopy. The dependence of the single-shot-damaged area on pulse energy makes it possible to determine a beam spot diameter in the focus. Its value was found to be equal to 23.3+-3.0 mum using AFM data, assuming the beam to have a Gaussian profile. Such a plot can also be used for a determination of single-shot damage threshold in a-C. A single-shot threshold value of 1.1 J/cm{sup 2} was found. Investigating the consequences of the multiple-shot exposure, it has been found that an accumulation of 10, 20, and 40 shots at a fluence of 0.5 J/cm{sup 2}, i.e., below the single-shot damage threshold, causes irreversible changes of thin a-C layers, which can be registered by both the AFM and the DIC microscopy. In the center of the damaged area, AFM shows a-C removal to a maximum depth of 0.3, 1.2, and 1.5 nm for 10-, 20- and 40-shot exposure, respectively. Raman microprobe analysis does not indicate any change in the structure of the remaining a-C material. The erosive behavior reported here contrasts with the material expansion observed earlier [L. Juha et al., Proc. SPIE 5917, 91 (2005)] on an a-C sample irradiated by a large number of femtosecond pulses of XUV high-order harmonics.« less

  8. Simulations of threshold displacement in beryllium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Matthew L.; Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB; Fossati, Paul C. M.

    Atomic scale molecular dynamics simulations of radiation damage have been performed on beryllium. Direct threshold displacement simulations along a geodesic projection of directions were used to investigate the directional dependence with a high spatial resolution. It was found that the directionally averaged probability of displacement increases from 0 at 35 eV, with the energy at which there is a 50% chance of a displacement occurring is 70 eV and asymptotically approaching 1 for higher energies. This is, however, strongly directionally dependent with a 50% probability of displacement varying from 35 to 120 eV, with low energy directions corresponding to the nearest neighbour directions.more » A new kinetic energy dependent expression for the average maximum displacement of an atom as a function of energy is derived which closely matches the simulated data.« less

  9. Weak silica nanomaterial-induced genotoxicity can be explained by indirect DNA damage as shown by the OGG1-modified comet assay and genomic analysis.

    PubMed

    Pfuhler, Stefan; Downs, Thomas R; Allemang, Ashley J; Shan, Yuching; Crosby, Meredith E

    2017-01-01

    In a previous study, 15-nm silica nanoparticles (NPs) caused small increases in DNA damage in liver as measured in the in vivo comet and micronucleus assays after intravenous administration to rats at their maximum tolerated dose, a worst-case exposure scenario. Histopathological examination supported a particle-induced, tissue damage-mediated inflammatory response. This study used a targeted approach to provide insight into the mode of action (MoA) by examining transcriptional regulation of genes in liver in a time and dose-dependent manner at 1, 2, 4, 8 and 24 h after intravenous administration of 15-nm silica NPs. DNA damage was assessed using the standard comet assay and hOGG1 glycosylase-modified comet assay that also measures oxidative DNA damage. Potassium bromate, an IARC Class 2B carcinogen that specifically operates via an oxidative stress MoA, was used as a positive control for the hOGG1 comet assay and gave a strong signal in its main target organ, the kidney, while showing less activity in liver. Treatment of rats with silica NPs at 50 mg/kg body weight (bw) caused small, statistically insignificant increases in DNA damage in liver measured by the standard comet assay, while a statistically significant increase was observed at 4 h with the hOGG1 comet assay, consistent with a MoA involving reactive oxygen species. Histopathology showed liver damage and neutrophil involvement while genomic analysis and response pattern of key genes involved in inflammation and oxidative stress supported a tissue damage-mediated inflammatory response involving the complement system for removing/phagocytising damaged cells. No changes were observed for histopathology or gene array for the low-dose (5 mg/kg bw) silica NPs. The results of this study confirm our hypothesis that the weak DNA damage observed by silica NPs occurs secondary to inflammation/immune response, indicating that a threshold can be applied in the risk assessment of these materials. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Investigation of retinal damage during refractive eye surgery

    NASA Astrophysics Data System (ADS)

    Schumacher, S.; Sander, M.; Dopke, C.; Grone, A.; Ertmer, W.; Lubatschowski, H.

    2005-04-01

    Ultrashort laser pulses are increasingly used in refractive eye surgery to cut inside transparent corneal tissue. This is exploited by the fs-LASIK procedure which affords the opportunity to correct ametropia without any mechanical effects. The cutting process is caused by the optical breakdown occurring in the laser focus. During this process only a certain amount of the pulse energy is deposited into the tissue. The remaining pulse energy propagates further through the eye and interacts with the retina and the strong absorbing tissue layers behind. Therefore this investigation shall clarify if the intensity of the remaining laser pulse and the resulting temperature field can damage the retina and the surrounding tissue. Threshold values of the retinal tissue and theoretical calculations of the temperature field will be presented.

  11. Improving the therapeutic window of retinal photocoagulation by spatial and temporal modulation of the laser beam

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Leung, Loh-Shan; Leng, Theodore; Brown, Jefferson; Paulus, Yannis M.; Schuele, Georg; Palanker, Daniel

    2011-02-01

    Decreasing the pulse duration helps confine damage, shorten treatment time, and minimize pain during retinal photocoagulation. However, the safe therapeutic window (TW), the ratio of threshold powers for thermomechanical rupture of Bruch's membrane and mild coagulation, also decreases with shorter exposures. Two potential approaches toward increasing TW are investigated: (a) decreasing the central irradiance of the laser beam and (b) temporally modulating the pulse. An annular beam with adjustable central irradiance was created by coupling a 532-nm laser into a 200-μm core multimode optical fiber at a 4-7 deg angle to normal incidence. Pulse shapes were optimized using a computational model, and a waveform generator was used to drive a PASCAL photocoagulator (532 nm), producing modulated laser pulses. Acute thresholds for mild coagulation and rupture were measured in Dutch-Belted rabbit in vivo with an annular beam (154-163 μm retinal diameter) and modulated pulse (132 μm, uniform irradiance ``flat-top'' beam) with 2-50 ms pulse durations. Thresholds with conventional constant-power pulse and a flat-top beam were also determined. Both annular beam and modulated pulse provided a 28% increase in TW at 10-ms duration, affording the same TW as 20-ms pulses with conventional parameters.

  12. Relationship between carrot weevil infestation and parsley yield.

    PubMed

    Torres, Angel N; Hoy, Casey W

    2005-08-01

    The relationship between numbers of carrot weevil, Listronotus oregonensis (LeConte), oviposition scars and parsley fresh weight and plant mortality was measured in research plots during 1999 and 2000. Fresh weight was measured in one to two cuttings of parsley planted on two planting dates. The average weight declined with increasing numbers of oviposition scars in the later planting in 1999. Compensatory growth in surviving plants may reduce this effect. Plant mortality increased as number of oviposition scars per plant increased in the second planting in both years and in the first cutting of the first planting in 2000. One oviposition scar per plant is sufficient to result in significant reduction in fresh weight per plant. In commercial parsley fields, the relationship between fresh weight of parsley per 30-cm row section of parsley was best described as a linear function of the proportion of plants with root feeding. Economic damage to parsley that is equivalent to the cost of controlling carrot weevil was estimated to result from approximately 1% of plants with root damage. Based upon this estimated economic injury level, we suggest an action threshold of 1% of plants containing carrot weevil oviposition scars earlier in the growing season when controls could be applied to prevent the damage.

  13. Facing the music: pre- and postconcert assessment of hearing in teenagers.

    PubMed

    Derebery, M Jennifer; Vermiglio, Andrew; Berliner, Karen I; Potthoff, Marilee; Holguin, Kirsten

    2012-09-01

    Determine the effect of exposure to a single rock/pop concert on pure-tone hearing thresholds and outer hair cell function in teenagers. Repeated measures pre- and postconcert assessment of hearing. Mobile hearing conservation test vehicle and large indoor concert venue. Twenty-nine normal-hearing teenagers and young adults ages 13 to 20 years. Attendance at a public rock/pop concert. Pre- and postconcert pure-tone thresholds in both ears from 500 Hz to 8 kHz, pure-tone average (PTA) for 2, 3, and 4 kHz, distortion product otoacoustic emissions (DPOAEs), proportion of subjects experiencing a PTA change of 10 dB or greater. Concert sound levels at the subjects' position averaged 98.5 dBA. Only 3 subjects used the hearing protection provided. Thresholds for 2 to 6 kHz increased significantly from pre- to postconcert (p ≤ 0.001). The increase in PTA (2, 3, and 4 kHz) between test intervals averaged 6.3 and 6.5 dB for the right and left ears, respectively, and 33.3% of subjects had a threshold shift of 10 dB or greater in the PTA in at least 1 ear (p ≤ 0.001). The number of subjects experiencing a reduction in DPOAE amplitude (17/25) and the change in mean amplitude were statistically significant (p ≤ 0.001 and p ≤ 0.004, respectively). Exposure to a single live-music rock/pop concert can produce a threshold shift and decrease in otoacoustic emissions amplitude indicating impact on outer hair cell function. Results clearly indicate a need for research on this public health issue regarding "safe" listening levels, especially in younger people with more years for accrual of damage.

  14. Physical Interpretation of Laboratory Friction Laws in the Context of Damage Physics

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Tiampo, K. F.; Martins, J. S.; Klein, W.

    2002-12-01

    Frictional on sliding surfaces is ultimately related to processes of surface damage, and can be understood in the context of the physics of dynamical threshold systems. Threshold systems are known to be some of the most important nonlinear, self-organizing systems in nature, including networks of earthquake faults, neural networks, superconductors and semiconductors, and the World Wide Web, as well as political, social, and ecological systems. All of these systems have dynamics that are strongly correlated in space and time, and all typically display a multiplicity of spatial and temporal scales. Here we discuss the physics of self-organization and damage in earthquake threshold systems at the "microscopic" laboratory scale, in which consideration of results from simulations leads to dynamical equations that can be used to derive results obtained from sliding friction experiments, specifically, the empirical "rate-and-state" friction equations of Ruina. Paradoxically, in all of these dissipative systems, long-range interactions induce the existence of locally ergodic dynamics, even though the dissipation of energy is involved. The existence of dissipative effects leads to the appearance of a "leaky threshold" dynamics, equivalent to a new scaling field that controls the size of nucleation events relative to the size of the background fluctuations. The corresponding appearance of a mean field spinodal leads to a general coarse-grained equation, which expresses the balance between rate of stress supplied, and rate of stress dissipated in the processes leading to surface damage. We can use ideas from thermodynamics and kinetics of phase transitions to develop the exact form of the rate-and-state equations, giving clear physical meaning to all terms and variables. Ultimately, the self-organizing dynamics arise from the appearance of an energy landscape in these systems, which in turn arises from the strong correlations and mean field nature of the physics.

  15. Surface assessment of CaF2 deep-ultraviolet and vacuum-ultraviolet optical components by the quasi-Brewster angle technique.

    PubMed

    Wang, Jue; Maier, Robert L

    2006-08-01

    The requirements for optical components have drastically increased for the deep-ultraviolet and vacuum-ultraviolet spectral regions. Low optical loss, high laser damage threshold, and long lifetime fluoride optics are required for microlithographic applications. A nondestructive quasi-Brewster angle technique (qBAT) has been developed for evaluating the quality of optical surfaces including both top surface and subsurface information. By using effective medium approximation, the negative quasi-Brewster angle shift at wavelengths longer than 200 nm has been used to model the distribution of subsurface damage, whereas the positive quasi-Brewster angle shift for wavelengths shorter than 200 nm has been explained by subsurface contamination. The top surface roughness depicted by the qBAT is consistent with atomic force microscopy measurements. The depth and the microporous structure of the subsurface damage measured by the qBAT has been confirmed by magnetorheological finishing. The technique has been extended to evaluate both polished and antireflection-coated CaF(2) components.

  16. Recent advancements in anti-reflective surface structures (ARSS) for near- to mid-infrared optics

    NASA Astrophysics Data System (ADS)

    Florea, Catalin M.; Busse, Lynda E.; Bayya, Shyam S.; Shaw, Brandon; Aggarwal, Ish D.; Sanghera, Jas S.

    2013-06-01

    Fused silica, YAG crystals, and spinel ceramics substrates have been successfully patterned through reactive ion etching (RIE). Reflection losses as low as 0.1% have been demonstrated for fused silica at 1.06 microns. Laser damage thresholds have been measured for substrates with ARSS and compared with uncoated and/or thin-film anti-reflection (AR) coated substrates. Thresholds as high as 100 J/cm2 have been demonstrated in fused silica with ARSS at 1.06 microns, with ARSS substrates showing improved thresholds when compared with uncoated substrates.

  17. Color vision testing with a computer graphics system: preliminary results.

    PubMed

    Arden, G; Gündüz, K; Perry, S

    1988-06-01

    We report a method for computer enhancement of color vision tests. In our graphics system 256 colors are selected from a much larger range and displayed on a screen divided into 768 x 288 pixels. Eight-bit digital-to-analogue converters drive a high quality monitor with separate inputs to the red, green, and blue amplifiers and calibrated gun chromaticities. The graphics are controlled by a PASCAL program written for a personal computer, which calculates the values of the red, green, and blue signals and specifies them in Commité Internationale d'Eclairage X, Y, and Z fundamentals, so changes in chrominance occur without changes in luminance. The system for measuring color contrast thresholds with gratings is more than adequate in normal observers. In patients with mild retinal damage in whom other tests of visual function are normal, this method of testing color vision shows specific increases in contrast thresholds along tritan color-confusion lines. By the time the Hardy-Rand-Rittler and Farnsworth-Munsell 100-hue tests disclose abnormalities, gross defects in color contrast threshold can be seen with our system.

  18. Development of binomial sequential sampling plans for forecasting Listronotus maculicollis (Coleoptera: Curculionidae) larvae based on the relationship to adult counts and turfgrass damage.

    PubMed

    McGraw, Benjamin A; Koppenhöfer, Albrecht M

    2009-06-01

    Binomial sequential sampling plans were developed to forecast weevil Listronotus maculicollis Kirby (Coleoptera: Curculionidae), larval damage to golf course turfgrass and aid in the development of integrated pest management programs for the weevil. Populations of emerging overwintered adults were sampled over a 2-yr period to determine the relationship between adult counts, larval density, and turfgrass damage. Larval density and composition of preferred host plants (Poa annua L.) significantly affected the expression of turfgrass damage. Multiple regression indicates that damage may occur in moderately mixed P. annua stands with as few as 10 larvae per 0.09 m2. However, > 150 larvae were required before damage became apparent in pure Agrostis stolonifera L. plots. Adult counts during peaks in emergence as well as cumulative counts across the emergence period were significantly correlated to future densities of larvae. Eight binomial sequential sampling plans based on two tally thresholds for classifying infestation (T = 1 and two adults) and four adult density thresholds (0.5, 0.85, 1.15, and 1.35 per 3.34 m2) were developed to forecast the likelihood of turfgrass damage by using adult counts during peak emergence. Resampling for validation of sample plans software was used to validate sampling plans with field-collected data sets. All sampling plans were found to deliver accurate classifications (correct decisions were made between 84.4 and 96.8%) in a practical timeframe (average sampling cost < 22.7 min).

  19. Damage of multilayer optics with varying capping layers induced by focused extreme ultraviolet beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jody Corso, Alain; Nicolosi, Piergiorgio; Nardello, Marco

    2013-05-28

    Extreme ultraviolet Mo/Si multilayers protected by capping layers of different materials were exposed to 13.5 nm plasma source radiation generated with a table-top laser to study the irradiation damage mechanism. Morphology of single-shot damaged areas has been analyzed by means of atomic force microscopy. Threshold fluences were evaluated for each type of sample in order to determine the capability of the capping layer to protect the structure underneath.

  20. The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading.

    PubMed

    Loerakker, S; Manders, E; Strijkers, G J; Nicolay, K; Baaijens, F P T; Bader, D L; Oomens, C W J

    2011-10-01

    Deep tissue injury (DTI) is a severe form of pressure ulcer where tissue damage starts in deep tissues underneath intact skin. In the present study, the contributions of deformation, ischemia, and reperfusion to skeletal muscle damage development were examined in a rat model during a 6-h period. Magnetic resonance imaging (MRI) was used to study perfusion (contrast-enhanced MRI) and tissue integrity (T2-weighted MRI). The levels of tissue deformation were estimated using finite element models. Complete ischemia caused a gradual homogeneous increase in T2 (∼20% during the 6-h period). The effect of reperfusion on T2 was highly variable, depending on the anatomical location. In experiments involving deformation, inevitably associated with partial ischemia, a variable T2 increase (17-66% during the 6-h period) was observed reflecting the significant variation in deformation (with two-dimensional strain energies of 0.60-1.51 J/mm) and ischemia (50.8-99.8% of the leg) between experiments. These results imply that deformation, ischemia, and reperfusion all contribute to the damage process during prolonged loading, although their importance varies with time. The critical deformation threshold and period of ischemia that cause muscle damage will certainly vary between individuals. These variations are related to intrinsic factors, such as pathological state, which partly explain the individual susceptibility to the development of DTI and highlight the need for regular assessments of individual subjects.

  1. Lead induced oxidative DNA damage in battery-recycling child workers from Bangladesh.

    PubMed

    Arif, Mohammad; Islam, Mm Towhidul; Shekhar, Hossain Uddin

    2018-04-01

    Lead exposure can damage cells directly by effecting DNA or indirectly by modifying proteins and enzymes. In Bangladesh, many working children are exposed to a very high level of lead during their early life due to their involvement with lead-oriented professions. This imposes a severe threat to the growth and development of the children. Therefore to study the effect of lead, we enrolled 60 age-matched male children, from an area of old Dhaka city, where battery-recycling shops are located, depending on their blood lead concentration. If the children had a plasma lead concentration above the WHO recommended threshold level of 10 µg/dl, we grouped them as test subjects and others as control subjects to determine the effect of lead on different biochemical parameters of the body. Compared to the controls, acculumlation of the lipid peroxidation product, malondialdehyde, increased significantly in test subjects ( p < 0.01). Lead exposure also increased the protein carbonyl content ( p < 0.05) and significantly decreased the plasma glutathione levels of test subjects compared to the controls ( p < 0.05). While comparing the lead-exposed group against controls, it was found that the percentage of damaged DNA, as measured using the Comet assay, significantly increased in tail ( p < 0.01) and decreased in head regions. All of these results suggest that high-plasma lead content may induce an oxidative stress to the study population, which may lead to DNA damage.

  2. Non-damaging laser therapy of the macula: Titration algorithm and tissue response

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Lavinsky, Daniel; Dalal, Roopa; Huie, Philip

    2014-02-01

    Retinal photocoagulation typically results in permanent scarring and scotomata, which limit its applicability to the macula, preclude treatments in the fovea, and restrict the retreatments. Non-damaging approaches to laser therapy have been tested in the past, but the lack of reliable titration and slow treatment paradigms limited their clinical use. We developed and tested a titration algorithm for sub-visible and non-damaging treatments of the retina with pulses sufficiently short to be used with pattern laser scanning. The algorithm based on Arrhenius model of tissue damage optimizes the power and duration for every energy level, relative to the threshold of lesion visibility established during titration (and defined as 100%). Experiments with pigmented rabbits established that lesions in the 50-75% energy range were invisible ophthalmoscopically, but detectable with Fluorescein Angiography and OCT, while at 30% energy there was only very minor damage to the RPE, which recovered within a few days. Patients with Diabetic Macular Edema (DME) and Central Serous Retinopathy (CSR) have been treated over the edematous areas at 30% energy, using 200μm spots with 0.25 diameter spacing. No signs of laser damage have been detected with any imaging modality. In CSR patients, subretinal fluid resolved within 45 days. In DME patients the edema decreased by approximately 150μm over 60 days. After 3-4 months some patients presented with recurrence of edema, and they responded well to retreatment with the same parameters, without any clinically visible damage. This pilot data indicates a possibility of effective and repeatable macular laser therapy below the tissue damage threshold.

  3. Refinement of a thermal threshold probe to prevent burns.

    PubMed

    Dixon, M J; Taylor, P M; Slingsby, L C; Murrell, J C

    2016-02-01

    Thermal threshold testing is commonly used for pain research. The stimulus may cause burning and merits prevention. Thermal probe modifications hypothesized to reduce burning were evaluated for practicality and effect. Studies were conducted on two humans and eight cats. Unmodified probe 0 was tested on two humans and promising modifications were also evaluated on cats. Probe 1 incorporated rapid cooling after threshold was reached: probe 1a used a Peltier system and probe 1b used water cooling. Probe 2 released skin contact immediately after threshold. Probe 3 (developed in the light of evidence of 'hot spots' in probe 0) incorporated reduced thermal mass and even heating across the skin contact area. Human skin was heated to 48℃ (6℃ above threshold) and the resulting burn was evaluated using area of injury and a simple descriptive scale (SDS). Probe 1a cooled the skin but required further heat dissipation, excessive power, was not 'fail-safe' and was inappropriate for animal mounting. Probe 1b caused less damage than no cooling (27 ± 13 and 38 ± 11 mm(2) respectively, P = 0.0266; median SDS 1.5 and 4 respectively, P = 0.0317) but was cumbersome. Probe 2 was unwieldy and was not evaluated further. Probe 3 produced even heating without blistering in humans. With probe 3 in cats, after opioid treatment, thermal threshold reached cut-out (55℃) on 24 occasions, exceeded 50℃ in a further 32 tests and exceeded 48℃ in the remainder. No skin damage was evident immediately after testing and mild hyperaemia in three cats at 2-3 days resolved rapidly. Probe 3 appeared to be suitable for thermal threshold testing. © The Author(s) 2015.

  4. Quaternary IPM (integrated pest management)--concept for the control of powdery mildew in sugar beets.

    PubMed

    Wolf, P F J; Verreet, A

    2008-01-01

    Powdery mildew, caused by Erysiphe betae (Vanha) Weltzien, may be assumed as an important leaf disease in sugar beet growing areas of central Europe. Although the causal agent is mainly adapted to arid climatic zones, the disease is appearing every year, where the extent of infection is mainly dependent on weather conditions and susceptibility of cultivar. The losses caused by powdery mildew seldom exceed 10% of sugar yield; moreover, losses are likely only under the condition that the epidemic onset occurs before end-August. Nevertheless, the epidemic onset varies in a wide range, as there are years with high incidence followed by growing periods without severe infection. Therefore, in order to have a flexible control of the disease, where the use of fungicides could be minimised to an essential amount, a quaternary IPM (Integrated Pest Management) -concept was developed. The development is based on epidemiological field studies (Germany, 1993-2004, n = 76) of sugar beet leaf diseases under variation of year, site and cultivar. Efficacy of fungicide treatment timing was assessed in relation to the epidemic development. Comparison of treatments comprised fungicide sprays carried out from disease initiation till later stages of the epidemic. Additionally, the assessments were performed in relation to an untreated and a healthy control--the latter was three times treated according to a treatment regime with three to four week intervals. The effect of different application timings was measured by the potential of disease and yield loss control. The quaternary concept combines the advantages of four elements in order to compensate the constraints of the single tools: The period without disease risk is determined by a so-called negative-prognosis (i). First symptoms appear in the period from mid-July till the beginning of September. If disease initiation cannot be excluded, field observations by a sample of 100 leaves are advised. The disease scores enable the appliance of action thresholds (ii). The latter are defined as early stages of the epidemic in order to optimize the efficiency of fungicide treatments. For an initial treatment a threshold of 5% infected leaves is defined. However, incidence in the height of action thresholds is not affecting an instant damage. The stage when a sugar beet is damaged effectively is rather defined by the economic damage threshold (iii). As a consequence, because exceeding of action threshold doesn't implicate immediate yield risk, loss prediction (iv) is required. The loss prediction assesses the likelihood of disease progress will exceed the economic damage threshold at harvest time. Loss risk is existent in case of action threshold exceeding till mid-August if cultivar susceptibility is low respectively end-August if susceptibility is high.

  5. Identifying Hail Signatures in Satellite Imagery from the 9-10 August 2011 Severe Weather Event

    NASA Technical Reports Server (NTRS)

    Dryden, Rachel L.; Molthan, Andrew L.; Cole, Tony A.; Bell, Jordan R.

    2014-01-01

    Hail scars are identifiable in MODIS satellite imagery based on NDVI change, which was dominantly negative. Hail damage spatially correlates with SPC hail reports and MESH. This study developed a proxy for quantifying crop loss at varying thresholds to address the gap between SPC damage estimates and insurance payouts.

  6. Subthreshold transpupillary thermotherapy reduces experimental choroidal neovascularization in the mouse without collateral damage to the neural retina.

    PubMed

    Ming, Yue; Algvere, Peep V; Odergren, Anne; Berglin, Lennart; van der Ploeg, Ingeborg; Seregard, Stefan; Kvanta, Anders

    2004-06-01

    Transpupillary thermotherapy (TTT) is currently being evaluated for treatment of choroidal neovascularization (CNV) in age-related macular degeneration. To optimize TTT for CNV, the effect was analyzed of invisible (subthreshold) or visible (threshold) doses of TTT on the normal mouse retina and on experimental CNV. TTT was delivered to the normal retina of 42 mice with a diode laser at increasing power settings (50, 60, 70, or 80 mW), to obtain thermal lesions ranging from invisible (subthreshold) to visible (threshold) burns. CNV was induced in 53 mice by krypton laser photocoagulation of the fundus, after which the CNV lesions were treated with TTT (50, 60, or 80 mW). Eyes were enucleated 7 days after TTT and prepared for histology, and the CNV complex was evaluated on hematoxylin-eosin stained serial sections by measuring the maximum height of the CNV lesions. Ultrastructural changes were examined by transmission electron microscopy. Increasing the TTT laser power yielded gradually more visible effects. At 50 mW, which induced subthreshold burns, no damage was seen in the neural retina, retinal pigment epithelium (RPE), or choroid at any time point. By contrast, eyes treated with higher power exhibited progressively more damage to the neural retina, including a complete disruption of the outer nuclear layer. When TTT was applied to the laser-induced CNV lesions, the height of lesions was significantly reduced (P < 0.001) in response to all three power settings at 7 days after treatment. The mean relative thickness of the CNV lesion was 3.29 +/- 0.89 in untreated mice, whereas in TTT-treated mice it was 1.69 +/- 0.35, 1.69 +/- 0.41 and 1.70 +/- 0.17 at power settings of 50, 60, and 80 mW, respectively. The overlying neural retina showed no apparent damage with the 50- or 60-mW settings, whereas outer nuclear layer disruption occurred with a power of 80 mW. Electron microscopy confirmed the presence of vascular occlusion at 1 day and a fibrotic scar at 7 days after TTT. Subthreshold TTT can effectively occlude newly formed vessels and cause regression of the experimental CNV complex without damaging the neural retina. The results demonstrate the importance of using subthreshold laser power in experimental and clinical evaluation of TTT.

  7. Improved LIDT values for dielectric dispersive compensating mirrors applying ternary composites

    NASA Astrophysics Data System (ADS)

    Willemsen, T.; Schlichting, S.; Gyamfi, M.; Jupé, M.; Ehlers, H.; Morgner, U.; Ristau, D.

    2016-12-01

    The present contribution is addressed to an improved method to fabricate dielectric dispersive compensating mirrors (CMs) with an increased laser induced damage threshold (LIDT) by the use of ternary composite layers. Taking advantage of a novel in-situ phase monitor system, it is possible to control the sensitive deposition process more precisely. The study is initiated by a design synthesis, to achieve optimum reflection and GDD values for a conventional high low stack (HL)n. Afterwards the field intensity is analyzed, and layers affected by highest electric field intensities are exchanged by ternary composites of TaxSiyOz. Both designs have similar target specifications whereby one design is using ternary composites and the other one is distinguished by a (HL)n. The first layers of the stack are switched applying in-situ optical broad band monitoring in conjunction with a forward re-optimization algorithm, which also manipulates the layers remaining for deposition at each switching event. To accomplish the demanded GDD-spectra, the last layers are controlled by a novel in-situ white light interferometer operating in the infrared spectral range. Finally the CMs are measured in a 10.000 on 1 procedure according to ISO 21254 applying pulses with a duration of 130 fs at a central wavelength of 775 nm to determine the laser induced damage threshold.

  8. Clinical multiple sclerosis occurs at one end of a spectrum of CNS pathology: a modified threshold liability model leads to new ways of thinking about the cause of clinical multiple sclerosis.

    PubMed

    Haegert, David G

    2005-01-01

    Multiple sclerosis (MS) is a complex trait, the causes of which are elusive. A threshold liability model influences thinking about the causes of this disorder. According to this model, a population has a normal distribution of genetic liability to MS. In addition, a threshold exists, so that MS begins when an individual's liability exceeds the MS threshold; environmental and other causative factors may increase or decrease an individual's MS liability. It is argued here, however, that this model is misleading, as it is based on the incorrect assumption that MS is a disorder that one either has or does not have. This paper hypothesizes, instead, that patients with a diagnosis of MS share identical CNS pathology, termed MS pathology, with some individuals who have a diagnosis of possible MS and with some apparently healthy individuals, who may never have a diagnosis of MS. In order to accommodate this hypothesis, the current threshold liability model is modified as follows. (1) In addition to a normal distribution of MS liability within a population, a spectrum of MS pathology occurs in some who have a high MS liability. (2) A clinical MS threshold exists at a point on this liability distribution, where the burden and distribution of MS pathology permits a diagnosis of clinical MS. (3) Additional thresholds exist that correspond to a lower MS liability and a lesser burden of MS pathology than occur at the clinical MS threshold. This modified threshold model leads to the postulate that causes act at various time points to increase MS liability and induce MS pathology. The accumulation of MS pathology sometimes leads to a diagnosis of clinical MS. One implication of this model is that the MS pathology in clinical MS and in some with possible MS differs only in the extent but not in the type of CNS injury. Thus, it may be possible to obtain insight into the causative environmental factors that increase MS liability and induce MS pathology by focusing on patients who have clinical MS; some environmental factors that induce new lesions in patients with clinical MS may be identical to those that induce MS pathology in genetically susceptible individuals who do not have clinical MS. Identification of these causative factors has importance, as specific treatment may prevent the accumulation of MS pathology that leads to the significant CNS damage associated with clinical MS.

  9. Development of post-fire crown damage mortality thresholds in ponderosa pine

    Treesearch

    James F. Fowler; Carolyn Hull Sieg; Joel McMillin; Kurt K. Allen; Jose F. Negron; Linda L. Wadleigh; John A. Anhold; Ken E. Gibson

    2010-01-01

    Previous research has shown that crown scorch volume and crown consumption volume are the major predictors of post-fire mortality in ponderosa pine. In this study, we use piecewise logistic regression models of crown scorch data from 6633 trees in five wildfires from the Intermountain West to locate a mortality threshold at 88% scorch by volume for trees with no crown...

  10. A study and comparison of the effects of low speed change vehicle collisions on the human body.

    PubMed

    Hoyes, Philip; Henderson, Brian

    2013-03-01

    In motor vehicle collisions there is a well-established relationship between the level of damage sustained by the vehicle, its change in speed during the collision period, the movement of occupants and the potential for their injury. Greater damage, with respect to structure, means a greater potential for injury. In terms of rear-end impacts, speed change thresholds for injury have been suggested in previous literature. This research uses human test subjects and three full-scale vehicle, rear-end collisions to investigate the correlation between speed change and occupant movement and uses it to test the suggestion of a second threshold where the accelerations are similar to an everyday activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Delivery of high-energy radiation in midinfrared spectral region by hollow waveguides

    NASA Astrophysics Data System (ADS)

    Nemec, Michal; Jelinkova, Helena; Sulc, Jan; Cerny, Pavel; Miyagi, Mitsunobu; Iwai, Katsumasa; Abe, Yukio; Shi, Yi-Wei; Matsuura, Yuji

    2003-07-01

    Due to increasing number of requirements dealing with the application of a high energy mid-infrared radiation in various branches of medicine (cardiology, dentistry, dermatology, urology, gastroenterology), an enough flexible and lossless delivery system is required. For a transport of this high energy pulses in a mid-infrared region special cyclic olefin polymer-coated silver (COP/Ag) hollow glass waveguides were prepared and tested. A length of the waveguides was 0.5 m and inner diameter 1 mm. As a radiation source, an Er:YAG laser was used. The system generated the energy up to 2.16 J or 2.35 J (in dependence on a repetition rate used - 3 Hz or 4 Hz, respectively). The length of transmitted pulses was measured to be from 110 up to 550 usec in dependence on output energy used. The output radiation was coupled into the COP/Ag waveguide and a throughput and losses values were measured in dependence to input radiation parameters. The transmission obtained was 91%. The maximum delivered energy was dependent on a damage threshold of the waveguide. It was found that the damage threshold is dependent on the repetition rate which shows the dependences on the heat dissipated in the waveguide wall. The value of the damage was 1.7 J and 1.5 J for 3 Hz and 4 Hz repetition rate, respectively. The safe delivered power reached the value of 5 W. The characteristics obtained make this specially constructed COP/Ag hollow glass waveguide promising for the delivery of high-energy laser pulses in medicine and also in other applications.

  12. Frequency tripling of convergent beam employing crystals tiling in large-aperture high-energy laser facilities

    NASA Astrophysics Data System (ADS)

    Wang, Junhua; Li, Dazhen; Wang, Bo; Yang, Jing; Yang, Houwen; Wang, Xiaoqian; Cheng, Wenyong

    2017-11-01

    In inertial confinement fusion, ultraviolet laser damage of the fused silica lens is an important limiting factor for load capability of the laser driver. To solve this problem, a new configuration of frequency tripling is proposed in this paper. The frequency tripling crystal is placed on downstream of the focusing lens, thus sum frequency generation of fundamental frequency light and doubling frequency light occurs in the beam convergence path. The focusing lens is only irradiated by fundamental light and doubling frequency lights. Thus, its damage threshold will increase. LiB3O5 (LBO) crystals are employed as frequency tripling crystals for its larger acceptance angle and higher damage threshold than KDP/DKDP crystals'. With the limitation of acceptance angle and crystal growth size are taken into account, the tiling scheme of LBO crystals is proposed and designed optimally to adopt to the total convergence angle of 36.0 mrad. Theoretical results indicate that 3 LBO crystals titling with different cutting angles in θ direction can meet the phase matching condition. Compared with frequency tripling of parallel beam using one LBO crystal, 83.8% (93.1% with 5 LBO crystals tiling) of the frequency tripling conversion efficiency can be obtained employing this new configuration. The results of a principle experiment also support this scheme. By employing this new design, not only the load capacity of a laser driver will be significantly improved, but also the fused silica lens can be changed to K9 glass lens which has the mature technology and low cost.

  13. Effect of Impact Damage on the Fatigue Response of TiAl Alloy-ABB-2

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Pereira, J. M.; Nathal, M. V.; Nazmy, M. Y.; Staubli, M.; Clemens, D. R.

    2001-01-01

    The ability of gamma-TiAl to withstand potential foreign or domestic object damage is a technical risk to the implementation of gamma-TiAl in low pressure turbine (LPT) blade applications. In the present study, the impact resistance of TiAl alloy ABB-2 was determined and compared to the impact resistance of Ti(48)Al(2)Nb(2)Cr. Specimens were impacted with four different impact conditions with impact energies ranging from 0.22 to 6.09 J. After impacting, the impact damage was characterized by crack lengths on both the front and backside of the impact. Due to the flat nature of gamma-TiAl's S-N (stress vs. cycles to failure) curve, step fatigue tests were used to determine the fatigue strength after impacting. Impact damage increased with increasing impact energy and led to a reduction in the fatigue strength of the alloy. For similar crack lengths, the fatigue strength of impacted ABB-2 was similar to the fatigue strength of impacted Ti(48)Al(2)Nb(2)Cr, even though the tensile properties of the two alloys are significantly different. Similar to Ti(48)Al(2)Nb(2)Cr, ABB-2 showed a classical mean stress dependence on fatigue strength. The fatigue strength of impacted ABB-2 could be accurately predicted using a threshold analysis.

  14. EFFECTS OF LASER RADIATION ON MATTER: Laser damage behaviour of titania coatings

    NASA Astrophysics Data System (ADS)

    Skvortsov, L. A.

    2010-01-01

    A model is proposed for the generation of defects responsible for laser damage in thin titania films during repetitive exposure to nanosecond near-IR laser pulses. The model relies on the hypothesis that there is charge transfer between two point defect centres differing in photoionisation cross section, one of which has an adsorptive nature. The model's predictions agree well with the experimentally determined accumulation curve and the temperature dependence of the damage threshold at low temperatures and clarify the role of protective coatings.

  15. Strategic reasoning and bargaining in catastrophic climate change games

    NASA Astrophysics Data System (ADS)

    Verendel, Vilhelm; Johansson, Daniel J. A.; Lindgren, Kristian

    2016-03-01

    Two decades of international negotiations show that agreeing on emission levels for climate change mitigation is a hard challenge. However, if early warning signals were to show an upcoming tipping point with catastrophic damage, theory and experiments suggest this could simplify collective action to reduce greenhouse gas emissions. At the actual threshold, no country would have a free-ride incentive to increase emissions over the tipping point, but it remains for countries to negotiate their emission levels to reach these agreements. We model agents bargaining for emission levels using strategic reasoning to predict emission bids by others and ask how this affects the possibility of reaching agreements that avoid catastrophic damage. It is known that policy elites often use a higher degree of strategic reasoning, and in our model this increases the risk for climate catastrophe. Moreover, some forms of higher strategic reasoning make agreements to reduce greenhouse gases unstable. We use empirically informed levels of strategic reasoning when simulating the model.

  16. Ab initio and Molecular Dynamic models of displacement damage in crystalline and turbostratic graphite

    NASA Astrophysics Data System (ADS)

    McKenna, Alice

    One of the functions of graphite is as a moderator in several nuclear reactor designs, including the Advanced Gas-cooled Reactor (AGR). In the reactor graphite is used to thermalise the neutrons produced in the fission reaction thus allowing a self-sustained reaction to occur. The graphite blocks, acting as the moderator, are constantly irradiated and consequently suffer damage. This thesis examines the types of damage caused using molecular dynamic (MD) simulations and ab intio calculations. Neutron damage starts with a primary knock-on atom (PKA), which is travelling so fast that it creates damage through electronic and thermal excitation (this is addressed with thermal spike simulations). When the PKA has lost energy the subsequent cascade is based on ballistic atomic displacement. These two types of simulations were performed on single crystal graphite and other carbon structures such as diamond and amorphous carbon as a comparison. The thermal spike in single crystal graphite produced results which varied from no defects to a small number of permanent defects in the structure. It is only at the high energy range that more damage is seen but these energies are less likely to occur in the nuclear reactor. The thermal spike does not create damage but it is possible that it can heal damaged sections of the graphite, which can be demonstrated with the motion of the defects when a thermal spike is applied. The cascade simulations create more damage than the thermal spike even though less energy is applied to the system. A new damage function is found with a threshold region that varies with the square root of energy in excess of the energy threshold. This is further broken down in to contributions from primary and subsequent knock-on atoms. The threshold displacement energy (TDE) is found to be Ed=25eV at 300K. In both these types of simulation graphite acts very differently to the other carbon structures. There are two types of polycrystalline graphite structures which simulations have been performed on. The difference between the two is at the grain boundaries with one having dangling bonds and the other one being bonded. The cascade showed the grain boundaries acting as a trap for the knock-on atoms which produces more damage compared with the single crystal. Finally the effects of turbostratic disorder on damage is considered. Density functional theory (DFT) was used to look at interstitials in (002) twist boundaries and how they act compared to AB stacked graphite. The results of these calculations show that the spiro interstitial is more stable in these grain boundaries, so at temperatures where the interstitial can migrate along the c direction they will segregate to (002) twist boundaries.

  17. Nanosecond multiple pulse measurements and the different types of defects

    NASA Astrophysics Data System (ADS)

    Wagner, Frank R.; Natoli, Jean-Yves; Beaudier, Alexandre; Commandré, Mireille

    2017-11-01

    Laser damage measurements with multiple pulses at constant fluence (S-on-1 measurements) are of high practical importance for design and validation of high power photonic instruments. Using nanosecond lasers, it has been recognized long ago that single pulse laser damage is linked to fabrication related defects. Models describing the laser damage probability as the probability of encounter between the high fluence region of the laser beam and the fabrication related defects are thus widely used to analyze the measurements. Nanosecond S-on-1 tests often reveal the "fatigue effect", i.e. a decrease of the laser damage threshold with increasing pulse number. Most authors attribute this effect to cumulative material modifications operated by the first pulses. In this paper we discuss the different situations that are observed upon nanosecond S-on-1 measurements of several different materials using different wavelengths and speak in particular about the defects involved in the laser damage mechanism. These defects may be fabrication-related or laser-induced, stable or evolutive, cumulative or of short lifetime. We will show that the type of defect that is dominating an S-on-1 experiment depends on the wavelength and the material under test and give examples from measurements of nonlinear optical crystals, fused silica and oxide mixture coatings.

  18. Ecological carrying capacity assessment of diving site: A case study of Mabul Island, Malaysia.

    PubMed

    Zhang, Li-Ye; Chung, Shan-Shan; Qiu, Jian-Wen

    2016-12-01

    Despite considered a non-consumptive use of the marine environment, diving-related activities can cause damages to coral reefs. It is imminent to assess the maximum numbers of divers that can be accommodated by a diving site before it is subject to irreversible deterioration. This study aimed to assess the ecological carrying capacity of a diving site in Mabul Island, Malaysia. Photo-quadrat line transect method was used in the benthic survey. The ecological carrying capacity was assessed based on the relationship between the number of divers and the proportion of diver damaged hard corals in Mabul Island. The results indicated that the proportion of diver damaged hard corals occurred exponentially with increasing use. The ecological carrying capacity of Mabul Island is 15,600-16,800 divers per diving site per year at current levels of diver education and training with a quarterly threshold of 3900-4200 per site. Our calculation shows that management intervention (e.g. limiting diving) is justified at 8-14% of hard coral damage. In addition, the use of coral reef dominated diving sites should be managed according to their sensitivity to diver damage and the depth of the reefs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Resilience of networks to environmental stress: From regular to random networks

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho

    2018-04-01

    Despite the huge interest in network resilience to stress, most of the studies have concentrated on internal stress damaging network structure (e.g., node removals). Here we study how networks respond to environmental stress deteriorating their external conditions. We show that, when regular networks gradually disintegrate as environmental stress increases, disordered networks can suddenly collapse at critical stress with hysteresis and vulnerability to perturbations. We demonstrate that this difference results from a trade-off between node resilience and network resilience to environmental stress. The nodes in the disordered networks can suppress their collapses due to the small-world topology of the networks but eventually collapse all together in return. Our findings indicate that some real networks can be highly resilient against environmental stress to a threshold yet extremely vulnerable to the stress above the threshold because of their small-world topology.

  20. The development of fluorides for high power laser optics

    NASA Astrophysics Data System (ADS)

    Ready, J. F.; Vora, H.

    1980-07-01

    The laser assisted thermonuclear fusion program has need for improved optical materials with high transmission in the ultraviolet, and with low values of nonlinear index of refraction. Lithium fluoride possesses a combination of optical properties which are of use. Single crystalline LiF is limited by low mechanical strength. The technique of press forging to increase the mechanical strength is investigated. LiF single crystals were press forged over the temperature range 300 - 600 deg C to produce fine grained polycrystalline material. Optical homogenity at 633, stress birefringence, scattering at 633, residual absorption over the spectral range 339 - 3800 nm, and laser damage thresholds for 1 ns, 1064 nm and 700 ps, 266 nm laser pulses are evaluated. Single crystals can be press forged without seriously degrading their optical properties. Yield strength in compression, proportional limit and fracture strength in 3 and 4 point bending, fracture energy, and threshold for microyield are discussed.

  1. Diagnostics for the detection and evaluation of laser induced damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheehan, L.; Kozlowski, M.; Rainer, F.

    1995-12-31

    The Laser Damage and Conditioning Group at LLNL is evaluating diagnostics which will help make damage testing more efficient and reduce the risk of damage during laser conditioning. The work to date has focused on photoacoustic and scattered light measurements on 1064-nm wavelength HfO{sub 2}/SiO{sub 2} multilayer mirror and polarizer coatings. Both the acoustic and scatter diagnostics have resolved 10 {mu}m diameter damage points in these coatings. Using a scanning stage, the scatter diagnostic can map both intrinsic and laser-induced scatter. Damage threshold measurements obtained using scatter diagnostics compare within experimental error with those measured using 100x Nomarski microscopy. Scattermore » signals measured during laser conditioning can be used to detect damage related to nodular defects.« less

  2. Diagnostics for the detection and evaluation of laser induced damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheehan, L.; Kozlowski, M.; Rainer, F.

    1995-01-03

    The Laser Damage and Conditioning Group at LLNL is evaluating diagnostics which will help make damage testing more efficient and reduce the risk of damage during laser conditioning. The work to date has focused on photoacoustic and scattered light measurements on 1064-nm wavelength HfO{sub 2}/SiO{sub 2} multilayer mirror and polarizer coatings. Both the acoustic and scatter diagnostics have resolved 10 {mu}m diameter damage points in these coatings. Using a scanning stage, the scatter diagnostic can map both intrinsic and laser-induced scatter. Damage threshold measurements obtained using scatter diagnostics compare within experimental error with those measured using 100x Nomarski microscopy. Scattermore » signals measured during laser conditioning can be used to detect damage related to nodular defects.« less

  3. Forest management under changing climate conditions: Is timing a tool for Sustainable Forest Management? Relevant questions for research development

    NASA Astrophysics Data System (ADS)

    D'Aprile, Fabrizio; McShane, Paul; Tapper, Nigel

    2013-04-01

    Change of climate conditions influence energy fluxes applicable to forest ecosystems. These affect cycles of nutrients and materials, primary productivity of the ecosystem, biodiversity, ecological functionality and, consequently, carbon equilibria of the forest ecosystem. Temporal factors influence physical, biological, ecological, and climatic processes and functions. For example, seasonality, cycles, periodicity, and trends in climate variables; tree growth, forest growth, and forest metabolic activities (i.e., photosynthesis and respiration) are commonly known to be time-related. In tropical forests, the impacts of changing climate conditions may exceed temperature and/or precipitation thresholds critical to forest tree growth or health. Historically, forest management emphasises growth rates and financial returns as affected by species and site. Until recently, the influence of climate variability on growth dynamics has not been influential in forest planning and management. Under this system, especially in climatic and forest regions where most of species are stenoecious, periodical wood harvesting may occur in any phase of growth (increasing, decreasing, peak, and trough). This scenario presents four main situations: a) harvesting occurs when the rate of growth is decreasing: future productivity is damaged; the minimum biomass capital may be altered, and CO2 storage is negatively affected; b) harvesting occurs during a trough of the rate of growth: the minimum biomass capital necessary to preserve the resilience of the forest is damaged; the damage can be temporary (decades) or permanent; CO2 storage capacity is deficient - which may be read as an indirect emission of CO2 since the balance appears negative; c) harvesting occurs when the rate of growth is increasing: the planned wood mass can be used without compromising the resilience and recovery of the forest; CO2 storage remains increasing; d) harvesting occurs during a peak period of growth: the wood mass harvested can be even higher than planned, and the rate of CO2 storage can be above the average. A real risk for SFM under changing climatic conditions is that negative effects may be amplified; critical thresholds of temperature and/or rainfall for tree growth and stress may be exceeded with impacts on growth response, resilience, and CO2 balance that are not completely known. Furthermore, temporal changes in silvicultural and harvesting operations may lead to increased carbon emissions. Under this scenario and the consequent risks to SFM forestry operations should be planned or scheduled in periods when climate variables influencing tree growth and stress are within the relative thresholds. In this way, silvicultural operations and harvesting are going to be optimised to climate variability and forest growth responses, rather than just forest timber production.

  4. The segmentation of Thangka damaged regions based on the local distinction

    NASA Astrophysics Data System (ADS)

    Xuehui, Bi; Huaming, Liu; Xiuyou, Wang; Weilan, Wang; Yashuai, Yang

    2017-01-01

    Damaged regions must be segmented before digital repairing Thangka cultural relics. A new segmentation algorithm based on local distinction is proposed for segmenting damaged regions, taking into account some of the damaged area with a transition zone feature, as well as the difference between the damaged regions and their surrounding regions, combining local gray value, local complexity and local definition-complexity (LDC). Firstly, calculate the local complexity and normalized; secondly, calculate the local definition-complexity and normalized; thirdly, calculate the local distinction; finally, set the threshold to segment local distinction image, remove the over segmentation, and get the final segmentation result. The experimental results show that our algorithm is effective, and it can segment the damaged frescoes and natural image etc.

  5. Intraocular laser surgical probe for membrane disruption by laser-induced breakdown.

    PubMed

    Hammer, D X; Noojin, G D; Thomas, R J; Clary, C E; Rockwell, B A; Toth, C A; Roach, W P

    1997-03-01

    A fiber probe has been designed as a surgical aid to cut intraocular membranes with laser-induced breakdown as the mechanism. The design of the intraocular laser surgical probe is discussed. A preliminary retinal damage distance has been calculated with breakdown threshold, spot size, and shielding measurements. Collateral mechanical-damage effects caused by shock wave and cavitation are discussed.

  6. The potential dysfunction of otolith organs in patients after mumps infection

    PubMed Central

    Tian, Liang; Han, Zhao; Wang, Jing; Chi, Fang-Lu

    2017-01-01

    Objective To investigate the relationship between mumps and the extent of hearing impairment and otolith organ damage. Methods A total of 27 patients with unilateral hearing impairment following mumps were enrolled. The degrees of hearing loss and otolith organ damage were confirmed by audiometric and vestibular evoked myogenic potential [VEMP] tests. All the results were compared and analyzed using Stata 13.0 software for Windows. Results The VEMP thresholds of the affected ears were significantly higher than those of the unaffected ears in both tests (cervical VEMP [cVEMP] test and ocular VEMP [oVEMP] test; p = 0.000 and 0.001, respectively). The mean cVEMP and oVEMP threshold values of the affected ears with hearing impairment for ≤10 years were significantly lower than those of affected ears with hearing impairment for >10 years [p = 0.009 and 0.004, respectively]. Conclusions Deafness resulting from mumps is usually profound and permanent, which indicates severe damage to the cochlea due to the disease. The functions of otolith organs in the vestibular system are also impaired. Over time, the function of the otolith organs or their neural pathway may suffer secondary damage. PMID:28746415

  7. Damage thresholds of silica fibers in holmium:YAG laser energy delivery for medical applications

    NASA Astrophysics Data System (ADS)

    Marolda, Matthew D.; Perrault, Donald F., Jr.; Pankratov, Michail M.; Shapshay, Stanley M.

    1993-07-01

    Pulsed Holmium:YAG (Ho:YAG) laser has been approved for some clinical applications and is under investigation for others. There is little published evidence on the durability or damage parameters for the fibers used in delivering energy from pulsed Ho:YAG laser. This study makes an initial attempt to investigate the damage threshold of different silica fibers under various conditions. Three types of fibers supplied by different manufacturers underwent laboratory testing. The overall finding of the study is that a new `perfect' fiber sustains no damage when fired without a target in air or in saline at energies up to 1.5 J/pulse and repetition rate up to 10 Hz. This study suggests that one may need to chose a fiber according to the clinical procedure to be performed: in cases where only soft tissue is to be manipulated - - any fiber may fare well, in cases where bone or calcified tissue is to be lased -- one may need fiber with aluminized or other hard coating. We also conclude that only professional refinishing with the removal of all exposed core-cladding material can insure trouble free performance.

  8. How reduced vacuum pumping capability in a coating chamber affects the laser damage resistance of HfO 2/SiO 2 antireflection and high reflection coatings.

    DOE PAGES

    Field, Ella Suzanne; Bellum, John Curtis; Kletecka, Damon E.

    2016-06-01

    Optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out ofmore » commission. In light of this circumstance, we explored how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. Finally, the coatings of this study consist of HfO 2 and SiO 2 layer materials and include antireflection coatings for 527 nm at normal incidence, and high reflection coatings for 527 nm, 45⁰ angle of incidence (AOI), in P-polarization (P-pol).« less

  9. How reduced vacuum pumping capability in a coating chamber affects the laser damage resistance of HfO 2/SiO 2 antireflection and high-reflection coatings

    DOE PAGES

    Field, Ella S.; Bellum, John C.; Kletecka, Damon E.

    2016-07-15

    Here, optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low-base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out ofmore » commission. In light of this circumstance, we explored how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. The coatings of this study consist of HfO 2 and SiO 2 layer materials and include antireflection coatings for 527 nm at normal incidence and high-reflection coatings for 527 nm at 45-deg angle of incidence in P-polarization.« less

  10. A threshold dose distribution approach for the study of PDT resistance development: A threshold distribution approach for the study of PDT resistance.

    PubMed

    de Faria, Clara Maria Gonçalves; Inada, Natalia Mayumi; Vollet-Filho, José Dirceu; Bagnato, Vanderlei Salvador

    2018-05-01

    Photodynamic therapy (PDT) is a technique with well-established principles that often demands repeated applications for sequential elimination of tumor cells. An important question concerns the way surviving cells from a treatment behave in the subsequent one. Threshold dose is a core concept in PDT dosimetry, as the minimum amount of energy to be delivered for cell destruction via PDT. Concepts of threshold distribution have shown to be an important tool for PDT results analysis in vitro. In this study, we used some of these concepts for demonstrating subsequent treatments with partial elimination of cells modify the distribution, which represents an increased resistance of the cells to the photodynamic action. HepG2 and HepaRG were used as models of tumor and normal liver cells and a protocol to induce resistance, consisted of repeated PDT sessions using Photogem® as a photosensitizer, was applied to the tumor ones. The response of these cells to PDT was assessed using a standard viability assay and the dose response curves were used for deriving the threshold distributions. The changes in the distribution revealed that the resistance protocol effectively eliminated the most sensitive cells. Nevertheless, HepaRG cell line was the most resistant one among the cells analyzed, which indicates a specificity in clinical applications that enables the use of high doses and drug concentrations with minimal damage to the surrounding normal tissue. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Mechanical assessment of grit blasting surface treatments of dental implants.

    PubMed

    Shemtov-Yona, K; Rittel, D; Dorogoy, A

    2014-11-01

    This paper investigates the influence of surface preparation treatments of dental implants on their potential (mechanical) fatigue failure, with emphasis on grit-blasting. The investigation includes limited fatigue testing of implants, showing the relationship between fatigue life and surface damage condition. Those observations are corroborated by a detailed failure analysis of retrieved fracture dental implants. In both cases, the negative effect of embedded alumina particles related to the grit-blasting process is identified. The study also comprises a numerical simulation part of the grit blasting process that reveals, for a given implant material and particle size, the existence of a velocity threshold, below which the rough surface is obtained without damage, and beyond which the creation of significant surface damage will severely reduce the fatigue life, thus increasing fracture probability. The main outcome of this work is that the overall performance of dental implants comprises, in addition to the biological considerations, mechanical reliability aspects. Fatigue fracture is a central issue, and this study shows that uncontrolled surface roughening grit-blasting treatments can induce significant surface damage which accelerate fatigue fracture under certain conditions, even if those treatments are beneficial to the osseointegration process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Probability of growth of small damage sites on the exit surface of fused silica optics.

    PubMed

    Negres, Raluca A; Abdulla, Ghaleb M; Cross, David A; Liao, Zhi M; Carr, Christopher W

    2012-06-04

    Growth of laser damage on fused silica optical components depends on several key parameters including laser fluence, wavelength, pulse duration, and site size. Here we investigate the growth behavior of small damage sites on the exit surface of SiO₂ optics under exposure to tightly controlled laser pulses. Results demonstrate that the onset of damage growth is not governed by a threshold, but is probabilistic in nature and depends both on the current size of a damage site and the laser fluence to which it is exposed. We also develop models for use in growth prediction. In addition, we show that laser exposure history also influences the behavior of individual sites.

  13. Role of HfO 2/SiO 2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage

    DOE PAGES

    Papernov, Semyon; Kozlov, Alexei A.; Oliver, James B.; ...

    2016-07-15

    Here, the role of thin-film interfaces in the near-ultraviolet (near-UV) absorption and pulsed laser-induced damage was studied for ion-beam-sputtered and electron-beam-evaporated coatings comprised from HfO 2 and SiO 2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO 2 single-layer film and for a film containing seven narrow HfO 2 layers separated by SiO 2 layers. The seven-layer film was designed to have a total optical thickness of HfO 2 layers, equal to one wave at 355 nm and anmore » E-field peak and average intensity similar to a single-layer HfO 2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces as compared to HfO 2 film material. The relevance of obtained absorption data to coating near-UV, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO 2 film in both sputtered and evaporated coatings. The results are explained through the similarity of interfacial film structure with structure formed during the codeposition of HfO 2 and SiO 2 materials.« less

  14. The improvement of laser induced damage resistance of optical workpiece surface by hydrodynamic effect polishing

    NASA Astrophysics Data System (ADS)

    Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi; Wang, Zhuo

    2016-10-01

    Surface and subsurface damage in optical element will greatly decrease the laser induced damage threshold (LIDT) in the intense laser optical system. Processing damage on the workpiece surface can be inevitably caused when the material is removed in brittle or plastic mode. As a non-contact polishing technology, hydrodynamic effect polishing (HEP) shows very good performance on generating an ultra-smooth surface without damage. The material is removed by chemisorption between nanoparticle and workpiece surface in the elastic mode in HEP. The subsurface damage and surface scratches can be effectively removed after the polishing process. Meanwhile ultra-smooth surface with atomic level surface roughness can be achieved. To investigate the improvement of LIDT of optical workpiece, polishing experiment was conducted on a magnetorheological finishing (MRF) silica glass sample. AFM measurement results show that all the MRF directional plastic marks have been removed clearly and the root-mean-square (rms) surface roughness has decreased from 0.673nm to 0.177nm after HEP process. Laser induced damage experiment was conducted with laser pulse of 1064nm wavelength and 10ns time width. Compared with the original state, the LEDT of the silica glass sample polished by HEP has increased from 29.78J/cm2 to 45.47J/cm2. It demonstrates that LIDT of optical element treated by HEP can be greatly improved for ultra low surface roughness and nearly defect-free surface/subsurface.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papernov, Semyon; Kozlov, Alexei A.; Oliver, James B.

    Here, the role of thin-film interfaces in the near-ultraviolet (near-UV) absorption and pulsed laser-induced damage was studied for ion-beam-sputtered and electron-beam-evaporated coatings comprised from HfO 2 and SiO 2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO 2 single-layer film and for a film containing seven narrow HfO 2 layers separated by SiO 2 layers. The seven-layer film was designed to have a total optical thickness of HfO 2 layers, equal to one wave at 355 nm and anmore » E-field peak and average intensity similar to a single-layer HfO 2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces as compared to HfO 2 film material. The relevance of obtained absorption data to coating near-UV, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO 2 film in both sputtered and evaporated coatings. The results are explained through the similarity of interfacial film structure with structure formed during the codeposition of HfO 2 and SiO 2 materials.« less

  16. eIF4E Threshold Levels Differ in Governing Normal and Neoplastic Expansion of Mammary Stem and Luminal Progenitor cells

    PubMed Central

    Avdulov, Svetlana; Herrera, Jeremy; Smith, Karen; Peterson, Mark; Gomez-Garcia, Jose R.; Beadnell, Thomas C.; Schwertfeger, Kathryn L.; Benyumov, Alexey O.; Manivel, J. Carlos; Li, Shunan; Bielinsky, Anja-Katrin; Yee, Douglas; Bitterman, Peter B.; Polunovsky, Vitaly A.

    2015-01-01

    Translation initiation factor eIF4E mediates normal cell proliferation, yet induces tumorigenesis when overexpressed. The mechanisms by which eIF4E directs such distinct biological outputs remains unknown. We found that mouse mammary morphogenesis during pregnancy and lactation is accompanied by increased cap-binding capability of eIF4E and activation of the eIF4E-dependent translational apparatus, but only subtle oscillations in eIF4E abundance. Using a transgenic mouse model engineered so that lactogenic hormones stimulate a sustained increase in eIF4E abundance in stem/progenitor cells of lactogenic mammary epithelium during successive pregnancy/lactation cycles, eIF4E overexpression increased cell self-renewal, triggered DNA replication stress, and induced formation of pre-malignant and malignant lesions. Using complementary in vivo and ex vivo approaches, we found that increasing eIF4E levels rescued cells harboring oncogenic c-Myc or H-RasV12 from DNA replication stress and oncogene-induced replication catastrophe. Our findings indicate that distinct threshold levels of eIF4E govern its biological output in lactating mammary glands, and that eIF4E overexpression in the context of stem/progenitor cell population expansion can initiate malignant transformation by enabling cells to evade DNA damage checkpoints activated by oncogenic stimuli. Maintaining eIF4E levels below its pro-neoplastic threshold is an important anticancer defense in normal cells, with important implications for understanding pregnancy-associated breast cancer. PMID:25524901

  17. eIF4E threshold levels differ in governing normal and neoplastic expansion of mammary stem and luminal progenitor cells.

    PubMed

    Avdulov, Svetlana; Herrera, Jeremy; Smith, Karen; Peterson, Mark; Gomez-Garcia, Jose R; Beadnell, Thomas C; Schwertfeger, Kathryn L; Benyumov, Alexey O; Manivel, J Carlos; Li, Shunan; Bielinsky, Anja-Katrin; Yee, Douglas; Bitterman, Peter B; Polunovsky, Vitaly A

    2015-02-15

    Translation initiation factor eIF4E mediates normal cell proliferation, yet induces tumorigenesis when overexpressed. The mechanisms by which eIF4E directs such distinct biologic outputs remain unknown. We found that mouse mammary morphogenesis during pregnancy and lactation is accompanied by increased cap-binding capability of eIF4E and activation of the eIF4E-dependent translational apparatus, but only subtle oscillations in eIF4E abundance. Using a transgenic mouse model engineered so that lactogenic hormones stimulate a sustained increase in eIF4E abundance in stem/progenitor cells of lactogenic mammary epithelium during successive pregnancy/lactation cycles, eIF4E overexpression increased self-renewal, triggered DNA replication stress, and induced formation of premalignant and malignant lesions. Using complementary in vivo and ex vivo approaches, we found that increasing eIF4E levels rescued cells harboring oncogenic c-Myc or H-RasV12 from DNA replication stress and oncogene-induced replication catastrophe. Our findings indicate that distinct threshold levels of eIF4E govern its biologic output in lactating mammary glands and that eIF4E overexpression in the context of stem/progenitor cell population expansion can initiate malignant transformation by enabling cells to evade DNA damage checkpoints activated by oncogenic stimuli. Maintaining eIF4E levels below its proneoplastic threshold is an important anticancer defense in normal cells, with important implications for understanding pregnancy-associated breast cancer. ©2014 American Association for Cancer Research.

  18. Growth, structural, optical, thermal and laser damage threshold studies of an organic single crystal: 1,3,5 – triphenylbenzene (TPB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raja, R. Subramaniyan; Babu, G. Anandha; Ramasamy, P., E-mail: E-mail-ramasamyp@ssn.edu.in

    2016-05-23

    Good quality single crystals of pure hydrocarbon 1,3,5-Triphenylbenzene (TPB) have been successfully grown using toluene as a solvent using controlled slow cooling solution growth technique. TPB crystallizes in orthorhombic structure with the space group Pna2{sub 1}. The structural perfection of the grown crystal has been analysed by high resolution X-ray diffraction measurements. The range and percentage of the optical transmission are ascertained by recording the UV-vis spectrum. Thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study its thermal properties. Powder second harmonic generation studies were carried out to explore its NLO properties. Laser damage threshold valuemore » has been determined using Nd:YAG laser operating at 1064 nm.« less

  19. Simple and robust generation of ultrafast laser pulse trains using polarization-independent parallel-aligned thin films

    NASA Astrophysics Data System (ADS)

    Wang, Andong; Jiang, Lan; Li, Xiaowei; Wang, Zhi; Du, Kun; Lu, Yongfeng

    2018-05-01

    Ultrafast laser pulse temporal shaping has been widely applied in various important applications such as laser materials processing, coherent control of chemical reactions, and ultrafast imaging. However, temporal pulse shaping has been limited to only-in-lab technique due to the high cost, low damage threshold, and polarization dependence. Herein we propose a novel design of ultrafast laser pulse train generation device, which consists of multiple polarization-independent parallel-aligned thin films. Various pulse trains with controllable temporal profile can be generated flexibly by multi-reflections within the splitting films. Compared with other pulse train generation techniques, this method has advantages of compact structure, low cost, high damage threshold and polarization independence. These advantages endow it with high potential for broad utilization in ultrafast applications.

  20. Very high laser-damage threshold of polymer-derived Si(B)CN-carbon nanotube composite coatings.

    PubMed

    Bhandavat, R; Feldman, A; Cromer, C; Lehman, J; Singh, G

    2013-04-10

    We study the laser irradiance behavior and resulting structural evolution of polymer-derived silicon-boron-carbonitride (Si(B)CN) functionalized multiwall carbon nanotube (MWCNT) composite spray coatings on copper substrate. We report a damage threshold value of 15 kWcm(-2) and an optical absorbance of 0.97 after irradiation. This is an order of magnitude improvement over MWCNT (1.4 kWcm(-2), 0.76), SWCNT (0.8 kWcm(-2), 0.65) and carbon paint (0.1 kWcm(-2), 0.87) coatings previously tested at 10.6 μm (2.5 kW CO2 laser) exposure. Electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy suggests partial oxidation of Si(B)CN forming a stable protective SiO2 phase upon irradiation.

  1. Structural damage detection in wind turbine blades based on time series representations of dynamic responses

    NASA Astrophysics Data System (ADS)

    Hoell, Simon; Omenzetter, Piotr

    2015-03-01

    The development of large wind turbines that enable to harvest energy more efficiently is a consequence of the increasing demand for renewables in the world. To optimize the potential energy output, light and flexible wind turbine blades (WTBs) are designed. However, the higher flexibilities and lower buckling capacities adversely affect the long-term safety and reliability of WTBs, and thus the increased operation and maintenance costs reduce the expected revenue. Effective structural health monitoring techniques can help to counteract this by limiting inspection efforts and avoiding unplanned maintenance actions. Vibration-based methods deserve high attention due to the moderate instrumentation efforts and the applicability for in-service measurements. The present paper proposes the use of cross-correlations (CCs) of acceleration responses between sensors at different locations for structural damage detection in WTBs. CCs were in the past successfully applied for damage detection in numerical and experimental beam structures while utilizing only single lags between the signals. The present approach uses vectors of CC coefficients for multiple lags between measurements of two selected sensors taken from multiple possible combinations of sensors. To reduce the dimensionality of the damage sensitive feature (DSF) vectors, principal component analysis is performed. The optimal number of principal components (PCs) is chosen with respect to a statistical threshold. Finally, the detection phase uses the selected PCs of the healthy structure to calculate scores from a current DSF vector, where statistical hypothesis testing is performed for making a decision about the current structural state. The method is applied to laboratory experiments conducted on a small WTB with non-destructive damage scenarios.

  2. Residual stress and damage-induced critical fracture on CO2 laser treated fused silica

    NASA Astrophysics Data System (ADS)

    Matthews, M. J.; Stolken, J. S.; Vignes, R. M.; Norton, M. A.; Yang, S.; Cooke, J. D.; Guss, G. M.; Adams, J. J.

    2009-10-01

    Localized damage repair and polishing of silica-based optics using mid- and far-IR CO2 lasers has been shown to be an effective method for increasing optical damage threshold in the UV. However, it is known that CO2 laser heating of silicate surfaces can lead to a level of residual stress capable of causing critical fracture either during or after laser treatment. Sufficient control of the surface temperature as a function of time and position is therefore required to limit this residual stress to an acceptable level to avoid critical fracture. In this work we present the results of 351 nm, 3ns Gaussian damage growth experiments within regions of varying residual stress caused by prior CO2 laser exposures. Thermally stressed regions were non-destructively characterized using polarimetry and confocal Raman microscopy to measure the stress induced birefringence and fictive temperature respectively. For 1~40s square pulse CO2 laser exposures created over 0.5-1.25kW/cm2 with a 1-3mm 1/e2 diameter beam (Tmax~1500-3000K), the critical damage site size leading to fracture increases weakly with peak temperature, but shows a stronger dependence on cooling rate, as predicted by finite element hydrodynamics simulations. Confocal micro-Raman was used to probe structural changes to the glass over different thermal histories and indicated a maximum fictive temperature of 1900K for Tmax>=2000K. The effect of cooling rate on fictive temperature caused by CO2 laser heating are consistent with finite element calculations based on a Tool-Narayanaswamy relaxation model.

  3. Surgical implications of perimodiolar cochlear implant electrode design: avoiding intracochlear damage and scala vestibuli insertion.

    PubMed

    Briggs, R J; Tykocinski, M; Saunders, E; Hellier, W; Dahm, M; Pyman, B; Clark, G M

    2001-09-01

    To review the mechanisms and nature of intracochlear damage associated with cochlear implant electrode array insertion, in particular, the various perimodiolar electrode designs. Make recommendations regarding surgical techniques for the Nucleus Contour electrode to ensure correct position and minimal insertion trauma. The potential advantages of increased modiolar proximity of intracochlear multichannel electrode arrays are a reduction in stimulation thresholds, an increase in dynamic range and more localized neural excitation. This may improve speech perception and reduce power consumption. These advantages may be negated if increased intracochlear damage results from the method used to position the electrodes close to the modiolus. A review of the University of Melbourne Department of Otolaryngology experience with temporal bone safety studies using the Nucleus standard straight electrode array and a variety of perimodiolar electrode array designs; comparison with temporal bone insertion studies from other centres and postmortem histopathology studies reported in the literature. Review of our initial clinical experience using the Nucleus Contour electrode array. The nature of intracochlear damage resulting from electrode insertion trauma ranges from minor, localized, spiral ligament tear to diffuse organ of Corti disruption and osseous spiral lamina fracture. The type of damage depends on the mechanical characteristics of the electrode array, the stiffness, curvature and size of the electrode in relation to the scala, and the surgical technique. The narrow, flexible, straight arrays are the least traumatic. Pre-curved or stiffer arrays are associated with an incidence of basilar membrane perforation. The cochleostomy must be correctly sited in relation to the round window to ensure scala tympani insertion. A cochleostomy anterior to the round window rather than inferior may lead to scala media or scala vestibuli insertion. Proximity of electrodes to the modiolus can be achieved without intracochlear damage provided the electrode array is a free fit within the scala, of appropriate size and shape, and accurate scala tympani insertion is performed.

  4. Effect of weather on Ips typographus (Coleoptera Curculionidae) phenology, voltinism, and associated spruce mortality in the southeastern Alps.

    PubMed

    Faccoli, Massimo

    2009-04-01

    Summer drought associated with high temperatures recorded in the last few years has given rise to outbreaks of bark beetles developing in weakened host trees. The aim of this study was to investigate the possible weather effect on the biology of and damage caused by Ips typographus L. in the southeastern Alps. The study was carried out recording temperature (1962-2007), precipitation (1922-2007), and the damage caused by I. typographus (1993-2007). In addition, data from pheromone-baited traps (1996-2005) provided information on the main periods of flight activity of I. typographus. From 1922 to 2007, precipitation during March-July has decreased approximately 200 mm (-22%), whereas since 1962-2007, mean temperatures during March-July increased approximately 2 degrees C (+13%). Damage caused by I. typographus was inversely correlated with March-July precipitation from the previous year but not correlated with temperature. Increases in spring temperature did not affect the development timing of the first generation, but only changed its onset. Earlier swarming of both overwintering beetles and first-generation offspring ( approximately 20 d sooner over 10 yr), and the early start of the second generation permitted more complete development of the second brood. Voltinism in this species is discussed in relation to thermal and photoperiodic thresholds, indicating that the occurrence of a third generation is limited by the summer photoperiod rather than by temperature. In conclusion, results suggest that spring drought increases damage caused by I. typographus in the following year, whereas warmer spring affects insect phenology.

  5. Serum S100B level increases after running but not cycling exercise.

    PubMed

    Stocchero, Cintia Mussi Alvim; Oses, Jean Pierre; Cunha, Giovani Santos; Martins, Jocelito Bijoldo; Brum, Liz Marina; Zimmer, Eduardo Rigon; Souza, Diogo Onofre; Portela, Luis Valmor; Reischak-Oliveira, Alvaro

    2014-03-01

    The objective of this study was to investigate the effect of running versus cycling exercises upon serum S100B levels and typical markers of skeletal muscle damage such as creatine kinase (CK), aspartate aminotransferase (AST) and myoglobin (Mb). Although recent work demonstrates that S100B is highly expressed and exerts functional properties in skeletal muscle, there is no previous study that tries to establish a relationship between muscle damage and serum S100B levels after exercise. We conducted a cross-sectional study on 13 male triathletes. They completed 2 submaximal exercise protocols at anaerobic threshold intensity. Running was performed on a treadmill with no inclination (RUN) and cycling (CYC) using a cycle-simulator. Three blood samples were taken before (PRE), immediately after (POST) and 1 h after exercise for CK, AST, Mb and S100B assessments. We found a significant increase in serum S100B levels and muscle damage markers in RUN POST compared with RUN PRE. Comparing groups, POST S100B, CK, AST and Mb serum levels were higher in RUN than CYC. Only in RUN, the area under the curve (AUC) of serum S100B is positively correlated with AUC of CK and Mb. Therefore, immediately after an intense exercise such as running, but not cycling, serum levels of S100B protein increase in parallel with levels of CK, AST and Mb. Additionally, the positive correlation between S100B and CK and Mb points to S100B as an acute biomarker of muscle damage after running exercise.

  6. KDP crystal doped with L-arginine amino acid: growth, structure perfection, optical and strength characteristics

    NASA Astrophysics Data System (ADS)

    Pritula, I. M.; Kostenyukova, E. I.; Bezkrovnaya, O. N.; Kolybaeva, M. I.; Sofronov, D. S.; Dolzhenkova, E. F.; Kanaev, A.; Tsurikov, V.

    2016-07-01

    Potassium Dihydrogen Phosphate (KDP) crystal doped with L-arginine (L-arg) amino acid with 1.4 wt% concentration in the solution was grown onto a point seed by the method of temperature reduction. For the first time an attempt was made to grow large-size (7 × 6 × 8 cm3) optically transparent crystals, which allowed to analyze the effect of L-arg additive on the physical properties of the different growth sectors ({100} and {101}) of KDP. The incorporation of L-arg into both growth sectors of the crystal was confirmed by the methods of optical and IR spectroscopy and found to be caused by the ability of the amino acid to form hydrogen bonds with the face {100} and electrostatically interact with the positively charged face {101} of KDP crystal. A slight variation in the unit cell parameters was reported, the elementary cell volume of KDP:L-arg crystal increased in comparison with the one of pure KDP by 2·10-2 and 2.07·10-2 Å3 in the sectors {100} and {101}, respectively. It was found that the doping of L-arg enhanced the SHG efficiency of KDP and depended on the crystal growth sectors. The SHG efficiency of KDP:L-arg was by a factor 2.53 and 3.95 higher in comparison with those of pure KDP for {101} and {100} growth sector, respectively. The doping was found to lead to softening of both faces by ∼3-10% and ∼14-17% in the sectors {101} and {100}, respectively. Investigation of the influence of L-arg molecules on the bulk laser damage threshold of the crystals showed that the bulk laser damage threshold of the samples of KDP:L-arg crystal was higher than the one of the pure crystal in the sector {101} and lower in the sector {100}. The correlation between microhardness and laser damage threshold were discussed. The study is helpful for further searching, designing and simulation of hybrid NLO materials.

  7. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    PubMed

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.

  8. Forecasting Corrosion of Steel in Concrete Introducing Chloride Threshold Dependence on Steel Potential

    NASA Astrophysics Data System (ADS)

    Sanchez, Andrea Nathalie

    Corrosion initiates in reinforced concrete structures exposed to marine environments when the chloride ion concentration at the surface of an embedded steel reinforcing bar exceeds the chloride corrosion threshold (CT) value. The value of CT is generally assumed to have a conservative fixed value ranging from 0.2% to - 0.5 % of chloride ions by weight of cement. However, extensive experimental investigations confirmed that C T is not a fixed value and that the value of CT depends on many variables. Among those, the potential of passive steel embedded in concrete is a key influential factor on the value of CT and has received little attention in the literature. The phenomenon of a potential-dependent threshold (PDT) permits accounting for corrosion macrocell coupling between active and passive steel assembly components in corrosion forecast models, avoiding overly conservative long-term damage projections and leading to more efficient design. The objectives of this investigation was to 1) expand by a systematic experimental assessment the knowledge and data base on how dependent the chloride threshold is on the potential of the steel embedded in concrete and 2) introduce the chloride threshold dependence on steel potential as an integral part of corrosion-related service life prediction of reinforced concrete structures. Experimental assessments on PDT were found in the literature but for a limited set of conditions. Therefore, experiments were conducted with mortar and concrete specimens and exposed to conditions more representative of the field than those previously available. The experimental results confirmed the presence of the PDT effect and provided supporting information to use a value of -550 mV per decade of Cl- for the cathodic prevention slope betaCT, a critical quantitative input for implementation in a practical model. A refinement of a previous corrosion initiation-propagation model that incorporated PDT in a partially submerged reinforced concrete column in sea water was developed. Corrosion was assumed to start when the chloride corrosion threshold was reached in an active steel zone of a given size, followed by recalculating the potential distribution and update threshold values over the entire system at each time step. Notably, results of this work indicated that when PDT is ignored, as is the case in present forecasting model practice, the corrosion damage prediction can be overly conservative which could lead to structural overdesign or misguided future damage management planning. Implementation of PDT in next-generation models is therefore highly desirable. However, developing a mathematical model that forecasts the corrosion damage of an entire marine structure with a fully implemented PDT module can result in excessive computational complexity. Hence, a provisional simplified approach for incorporating the effect of PDT was developed. The approach uses a correction function to be applied to projections that have been computed using the traditional procedures.

  9. Ascending-ramp biphasic waveform has a lower defibrillation threshold and releases less troponin I than a truncated exponential biphasic waveform.

    PubMed

    Huang, Jian; Walcott, Gregory P; Ruse, Richard B; Bohanan, Scott J; Killingsworth, Cheryl R; Ideker, Raymond E

    2012-09-11

    We tested the hypothesis that the shape of the shock waveform affects not only the defibrillation threshold but also the amount of cardiac damage. Defibrillation thresholds were determined for 11 waveforms-3 ascending-ramp waveforms, 3 descending-ramp waveforms, 3 rectilinear first-phase biphasic waveforms, a Gurvich waveform, and a truncated exponential biphasic waveform-in 6 pigs with electrodes in the right ventricular apex and superior vena cava. The ascending, descending, and rectilinear waveforms had 4-, 8-, and 16-millisecond first phases and a 3.5-millisecond rectilinear second phase that was half the voltage of the first phase. The exponential biphasic waveform had a 60% first-phase and a 50% second-phase tilt. In a second study, we attempted to defibrillate after 10 seconds of ventricular fibrillation with a single ≈30-J shock (6 pigs successfully defibrillated with 8-millisecond ascending, 8-millisecond rectilinear, and truncated exponential biphasic waveforms). Troponin I blood levels were determined before and 2 to 10 hours after the shock. The lowest-energy defibrillation threshold was for the 8-milliseconds ascending ramp (14.6±7.3 J [mean±SD]), which was significantly less than for the truncated exponential (19.6±6.3 J). Six hours after shock, troponin I was significantly less for the ascending-ramp waveform (0.80±0.54 ng/mL) than for the truncated exponential (1.92±0.47 ng/mL) or the rectilinear waveform (1.17±0.45 ng/mL). The ascending ramp has a significantly lower defibrillation threshold and at ≈30 J causes 58% less troponin I release than the truncated exponential biphasic shock. Therefore, the shock waveform affects both the defibrillation threshold and the amount of cardiac damage.

  10. Sequence of Changes in Maize Responding to Soil Water Deficit and Related Critical Thresholds

    PubMed Central

    Ma, Xueyan; He, Qijin; Zhou, Guangsheng

    2018-01-01

    The sequence of changes in crop responding to soil water deficit and related critical thresholds are essential for better drought damage classification and drought monitoring indicators. This study was aimed to investigate the critical thresholds of maize growth and physiological characteristics responding to changing soil water and to reveal the sequence of changes in maize responding to soil water deficit both in seedling and jointing stages based on 2-year’s maize field experiment responding to six initial soil water statuses conducted in 2013 and 2014. Normal distribution tolerance limits were newly adopted to identify critical thresholds of maize growth and physiological characteristics to a wide range of soil water status. The results showed that in both stages maize growth characteristics related to plant water status [stem moisture content (SMC) and leaf moisture content (LMC)], leaf gas exchange [net photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs)], and leaf area were sensitive to soil water deficit, while biomass-related characteristics were less sensitive. Under the concurrent weather conditions and agronomic managements, the critical soil water thresholds in terms of relative soil moisture of 0–30 cm depth (RSM) of maize SMC, LMC, net Pn, Tr, Gs, and leaf area were 72, 65, 62, 60, 58, and 46%, respectively, in seedling stage, and 64, 64, 51, 53, 48, and 46%, respectively, in jointing stage. It indicated that there is a sequence of changes in maize responding to soil water deficit, i.e., their response sequences as soil water deficit intensified: SMC ≥ LMC > leaf gas exchange > leaf area in both stages. This sequence of changes in maize responding to soil water deficit and related critical thresholds may be better indicators of damage classification and drought monitoring. PMID:29765381

  11. Damage in a Thin Metal Film by High-Power Terahertz Radiation.

    PubMed

    Agranat, M B; Chefonov, O V; Ovchinnikov, A V; Ashitkov, S I; Fortov, V E; Kondratenko, P S

    2018-02-23

    We report on the experimental observation of high-power terahertz-radiation-induced damage in a thin aluminum film with a thickness less than a terahertz skin depth. Damage in a thin metal film produced by a single terahertz pulse is observed for the first time. The damage mechanism induced by a single terahertz pulse could be attributed to thermal expansion of the film causing debonding of the film from the substrate, film cracking, and ablation. The damage pattern induced by multiple terahertz pulses at fluences below the damage threshold is quite different from that observed in single-pulse experiments. The observed damage pattern resembles an array of microcracks elongated perpendicular to the in-plane field direction. A mechanism related to microcracks' generation and based on a new phenomenon of electrostriction in thin metal films is proposed.

  12. Damage in a Thin Metal Film by High-Power Terahertz Radiation

    NASA Astrophysics Data System (ADS)

    Agranat, M. B.; Chefonov, O. V.; Ovchinnikov, A. V.; Ashitkov, S. I.; Fortov, V. E.; Kondratenko, P. S.

    2018-02-01

    We report on the experimental observation of high-power terahertz-radiation-induced damage in a thin aluminum film with a thickness less than a terahertz skin depth. Damage in a thin metal film produced by a single terahertz pulse is observed for the first time. The damage mechanism induced by a single terahertz pulse could be attributed to thermal expansion of the film causing debonding of the film from the substrate, film cracking, and ablation. The damage pattern induced by multiple terahertz pulses at fluences below the damage threshold is quite different from that observed in single-pulse experiments. The observed damage pattern resembles an array of microcracks elongated perpendicular to the in-plane field direction. A mechanism related to microcracks' generation and based on a new phenomenon of electrostriction in thin metal films is proposed.

  13. An investigation of heat transfer to the implant-bone interface when drilling through a zirconia crown attached to a titanium or zirconia abutment.

    PubMed

    Mason, Amy G; Sutton, Alan; Turkyilmaz, Ilser

    2014-11-01

    Thermal injury to the implant-bone interface may lead to bone necrosis and loss of osseointegration. This is a concern during manipulation of the implant throughout the restorative phase of treatment. The risk of heat transfer to the implant-bone interface during abutment preparation or prosthesis removal should be considered. The purpose of the study was to examine the amount of heat transferred to the implant-bone interface when a zirconia crown is drilled to access the screw channel or section a crown with a high-speed dental handpiece. Of the 64 ceramic-veneered zirconia crowns fabricated, 32 had a coping thickness of 0.5 mm and 32 had a coping thickness of 1.0 mm. The crowns were cemented on either titanium stock abutments or zirconia stock abutments. Each group was further subdivided to evaluate heat transfer when the screw channel was accessed or the crown was sectioned with a high-speed handpiece with or without irrigation. Temperature change was recorded for each specimen at the cervical and apical aspect of the implant with thermocouples and a logging thermometer. ANOVA was used to assess the statistical significance in temperature change between the test combinations, and nonparametric Mann-Whitney U tests were used to evaluate the findings. The use of irrigation during both crown removal processes yielded an average temperature increase of 3.59 ±0.35°C. Crown removal in the absence of irrigation yielded an average temperature increase of 18.76 ±3.09°C. When all parameter combinations in the presence of irrigation were evaluated, the maximum temperature change was below the threshold of thermal injury to bone. The maximum temperature change was above the threshold for thermal injury at the coronal aspect of the implant and below the threshold at the apical aspect in the absence of irrigation. Within the limitations of this investigation, the use of irrigation with a high-speed dental handpiece to remove a ceramic-veneered zirconia crown results in a temperature increase at the implant-bone interface insufficient to cause irreversible damage. Conversely, a lack of irrigation may yield a temperature increase capable of producing irreversible damage at the coronal aspect of the implant. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Modeling electrical power absorption and thermally-induced biological tissue damage.

    PubMed

    Zohdi, T I

    2014-01-01

    This work develops a model for thermally induced damage from high current flow through biological tissue. Using the first law of thermodynamics, the balance of energy produced by the current and the energy absorbed by the tissue are investigated. The tissue damage is correlated with an evolution law that is activated upon exceeding a temperature threshold. As an example, the Fung material model is used. For certain parameter choices, the Fung material law has the ability to absorb relatively significant amounts of energy, due to its inherent exponential response character, thus, to some extent, mitigating possible tissue damage. Numerical examples are provided to illustrate the model's behavior.

  15. Damage mechanisms of MoN/SiN multilayer optics for next-generation pulsed XUV light sources.

    PubMed

    Sobierajski, R; Bruijn, S; Khorsand, A R; Louis, E; van de Kruijs, R W E; Burian, T; Chalupsky, J; Cihelka, J; Gleeson, A; Grzonka, J; Gullikson, E M; Hajkova, V; Hau-Riege, S; Juha, L; Jurek, M; Klinger, D; Krzywinski, J; London, R; Pelka, J B; Płociński, T; Rasiński, M; Tiedtke, K; Toleikis, S; Vysin, L; Wabnitz, H; Bijkerk, F

    2011-01-03

    We investigated the damage mechanism of MoN/SiN multilayer XUV optics under two extreme conditions: thermal annealing and irradiation with single shot intense XUV pulses from the free-electron laser facility in Hamburg - FLASH. The damage was studied "post-mortem" by means of X-ray diffraction, interference-polarizing optical microscopy, atomic force microscopy, and scanning transmission electron microscopy. Although the timescale of the damage processes and the damage threshold temperatures were different (in the case of annealing it was the dissociation temperature of Mo2N and in the case of XUV irradiation it was the melting temperature of MoN) the main damage mechanism is very similar: molecular dissociation and the formation of N2, leading to bubbles inside the multilayer structure.

  16. Optical coatings for laser fusion applications

    NASA Astrophysics Data System (ADS)

    Lowdermilk, W. H.; Milam, D.; Rainer, F.

    1980-04-01

    Lasers for fusion experiments use thin-film dielectric coatings for reflecting antireflecting and polarizing surface elements. Coatings are most important to the Nd:glass laser application. The most important requirements of these coatings are accuracy of the average value of reflectance and transmission, uniformity of amplitude and phase front of the reflected or transmitted light, and laser damage threshold. Damage resistance strongly affects the laser's design and performance. The success of advanced lasers for future experiments and for reactor applications requires significant developments in damage resistant coatings for ultraviolet laser radiation.

  17. Landslide triggering thresholds for Switzerland based on a new gridded precipitation dataset

    NASA Astrophysics Data System (ADS)

    Leonarduzzi, Elena; Molnar, Peter; McArdell, Brian W.

    2017-04-01

    In Switzerland floods are responsible for most of the damage caused by rainfall-triggered natural hazards (89%), followed by landslides (6%, ca. 520 M Euros) as reported in Hilker et al. (2009) for the period 1972-2007. The prediction of landslide occurrence is particularly challenging because of their wide distribution in space and the complex interdependence of predisposing and triggering factors. The overall goal of our research is to develop an Early Warning System for landsliding in Switzerland based on hydrological modelling and rainfall forecasts. In order to achieve this, we first analyzed rainfall triggering thresholds for landslides from a new gridded daily precipitation dataset (RhiresD, MeteoSwiss) for Switzerland combined with landslide events recorded in the Swiss Damage Database (Hilker et al.,2009). The high-resolution gridded precipitation dataset allows us to collocate rainfall and landslides accurately in space, which is an advantage over many previous studies. Each of the 2272 landslides in the database in the period 1972-2012 was assigned to the corresponding 2x2 km precipitation cell. For each of these cells, precipitation events were defined as series of consecutive rainy days and the following event parameters were computed: duration (day), maximum and mean daily intensity (mm/day), total rainfall depth (mm) and maximum daily intensity divided by Mean Daily Precipitation (MDP). The events were classified as triggering or non-triggering depending on whether a landslide was recorded in the cell during the event. This classification of observations was compared to predictions based on a threshold for each of the parameters. The predictive power of each parameter and the best threshold value were quantified by ROC analysis and statistics such as AUC and the True Skill Statistic (TSS). Event parameters based on rainfall intensity were found to have similarly high predictive power (TSS=0.54-0.59, AUC=0.85-0.86), while rainfall duration had a significantly lower predictive power (TSS=0.24 and AUC=0.65). Slightly better performances were obtained when considering a typical power law intensity-duration curve as threshold (TSS=0.6). The analysis was repeated for sub-regions of the country based on erosivity and climate, using MDP and erodibility (Kuehni and Pfiffner, 2001), or a combination thereof, in the classification. When defining regional maximum intensity thresholds, the performances were further improved in all cases: for erodibility (TSS +1.3%), for MDP (TSS +3%), and for a combination of the two (TSS +5.1%). The regional maximum daily intensity thresholds varied greatly among classes, with differences of up to 43 mm/day, and they increased with decreasing erodibility and increasing MDP. This result was confirmed by considering the conditional probability of a landslide, which showed that for a given rainfall intensity the probability of a landslide in a region with wetter climate (higher MDP) is lower than that in a drier climate (lower MDP). This suggests the existence of a landscape balance between climate, erosion and soil formation. In order to demonstrate the quality and robustness of the results, we also show reference cases obtained by randomization of landslides in space and time, and resampling the data to equal sample size between triggering and non-triggering events (prevalence). Hilker, N., Badoux, A., & Hegg, C. (2009). The swiss flood and landslide damage database 1972-2007. Natural Hazards and Earth System Science, 9(3), 913-925. https://doi.org/10.1002/asl.183 Kühni, A., & Pfiffner, O. A. (2001). The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: Topographic analysis from a 250-m DEM. Geomorphology, 41(4), 285-307. https://doi.org/10.1016/S0169-555X(01)00060-5

  18. Ablation-cooled material removal with ultrafast bursts of pulses

    NASA Astrophysics Data System (ADS)

    Kerse, Can; Kalaycıoğlu, Hamit; Elahi, Parviz; Çetin, Barbaros; Kesim, Denizhan K.; Akçaalan, Önder; Yavaş, Seydi; Aşık, Mehmet D.; Öktem, Bülent; Hoogland, Heinar; Holzwarth, Ronald; Ilday, Fatih Ömer

    2016-09-01

    The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.

  19. Ablation-cooled material removal with ultrafast bursts of pulses.

    PubMed

    Kerse, Can; Kalaycıoğlu, Hamit; Elahi, Parviz; Çetin, Barbaros; Kesim, Denizhan K; Akçaalan, Önder; Yavaş, Seydi; Aşık, Mehmet D; Öktem, Bülent; Hoogland, Heinar; Holzwarth, Ronald; Ilday, Fatih Ömer

    2016-09-01

    The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.

  20. Thermal perception thresholds among workers in a cold climate.

    PubMed

    Burström, Lage; Björ, Bodil; Nilsson, Tohr; Pettersson, Hans; Rödin, Ingemar; Wahlström, Jens

    2017-10-01

    To investigate whether exposure to cold could influence the thermal perception thresholds in a working population. This cross-sectional study was comprised of 251 males and females and was carried out at two mines in the northern part of Norway and Sweden. The testing included a baseline questionnaire, a clinical examination and measurements of thermal perception thresholds, on both hands, the index (Digit 2) and little (Digit 5) fingers, for heat and cold. The thermal perception thresholds were affected by age, gender and test site. The thresholds were impaired by experiences of frostbite in the fingers and the use of medication that potentially could affect neurosensory functions. No differences were found between the calculated normative values for these workers and those in other comparative investigations conducted in warmer climates. The study provided no support for the hypothesis that living and working in cold climate will lead to impaired thermal perception thresholds. Exposure to cold that had caused localized damage in the form of frostbite was shown to lead to impaired thermal perception.

  1. How citizen seismology is transforming rapid public earthquake information: the example of LastQuake smartphone application and Twitter QuakeBot

    NASA Astrophysics Data System (ADS)

    Bossu, R.; Etivant, C.; Roussel, F.; Mazet-Roux, G.; Steed, R.

    2014-12-01

    Smartphone applications have swiftly become one of the most popular tools for rapid reception of earthquake information for the public. Wherever someone's own location is, they can be automatically informed when an earthquake has struck just by setting a magnitude threshold and an area of interest. No need to browse the internet: the information reaches you automatically and instantaneously! One question remains: are the provided earthquake notifications always relevant for the public? A while after damaging earthquakes many eyewitnesses scrap the application they installed just after the mainshock. Why? Because either the magnitude threshold is set too high and many felt earthquakes are missed, or it is set too low and the majority of the notifications are related to unfelt earthquakes thereby only increasing anxiety among the population at each new update. Felt and damaging earthquakes are the ones of societal importance even when of small magnitude. LastQuake app and Twitter feed (QuakeBot) focuses on these earthquakes that matter for the public by collating different information threads covering tsunamigenic, damaging and felt earthquakes. Non-seismic detections and macroseismic questionnaires collected online are combined to identify felt earthquakes regardless their magnitude. Non seismic detections include Twitter earthquake detections, developed by the USGS, where the number of tweets containing the keyword "earthquake" is monitored in real time and flashsourcing, developed by the EMSC, which detect traffic surges on its rapid earthquake information website caused by the natural convergence of eyewitnesses who rush to the Internet to investigate the cause of the shaking that they have just felt. We will present the identification process of the felt earthquakes, the smartphone application and the 27 automatically generated tweets and how, by providing better public services, we collect more data from citizens.

  2. Analysis of Ricefield Land Damage in Denpasar City, Bali, Indonesia

    NASA Astrophysics Data System (ADS)

    Suyarto, R.; Wiyanti; Dibia, I. N.

    2018-02-01

    Soil as a natural resource, living area, environmental media, and factors of production including biomass production that supports human life and other living beings must be preserved, on the other hand, uncontrolled biomass production activities can cause soil damage, ultimately can threaten the survival of humans and other living things. Therefore, in order to control soil damage, first must inventories the soil condition data and its damage which then visualised in soil damage potential and soil damage status. The activities of the study are the preparation of a map of the initial soil conditions and the delineation of potentially land degradation distribution. Mapping results are used as work maps for verification on the field to take soil samples and create soil damage status. In general, Denpasar City have soil damage potential at very low, low until medium rate. Soil damage status in Denpasar City generally is low damage of bulk volume, total porosity, soil permeability and electrolyte conductivity which beyond limitation thresholds.

  3. Damage Propagation Modeling for Aircraft Engine Prognostics

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai; Simon, Don; Eklund, Neil

    2008-01-01

    This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are generated via a thermo-dynamical simulation model for the engine as a function of variations of flow and efficiency of the modules of interest. An exponential rate of change for flow and efficiency loss was imposed for each data set, starting at a randomly chosen initial deterioration set point. The rate of change of the flow and efficiency denotes an otherwise unspecified fault with increasingly worsening effect. The rates of change of the faults were constrained to an upper threshold but were otherwise chosen randomly. Damage propagation was allowed to continue until a failure criterion was reached. A health index was defined as the minimum of several superimposed operational margins at any given time instant and the failure criterion is reached when health index reaches zero. Output of the model was the time series (cycles) of sensed measurements typically available from aircraft gas turbine engines. The data generated were used as challenge data for the Prognostics and Health Management (PHM) data competition at PHM 08.

  4. Stem cells: Balancing resistance and sensitivity to DNA damage

    PubMed Central

    Liu, Julia C.; Lerou, Paul H.; Lahav, Galit

    2015-01-01

    Embryonic stem cells are known to be very sensitive to DNA damage and undergo rapid apoptosis even after low damage doses. In contrast, adult stem cells show variable sensitivity to damage. Here we describe the multiple pathways that have been proposed to affect the sensitivity of stem cells to damage, including proximity to the apoptotic threshold (mitochondrial priming) and the p53 signaling pathway, through activation of transcription or direct interaction with pro apoptotic proteins in the cytoplasm. We also discuss which cellular factors might connect mitochondrial priming with pluripotency and the potential therapeutic advances that can be achieved by better understanding the molecular mechanisms leading to sensitivity or resistance of embryonic or adult stem cells from different tissues. PMID:24721782

  5. Individual variations in the correlation between erythemal threshold, UV-induced DNA damage and sun-burn cell formation.

    PubMed

    Heenen, M; Giacomoni, P U; Golstein, P

    2001-10-01

    A linear correlation between erythema intensity and DNA damage upon exposure to UV has not been firmly established. Many of the deleterious effects of UV exposure do occur after exposure to suberythemal doses. After DNA damage, cells undergo DNA repair. It is commonly accepted that when the burden of damage is beyond the repair capacities, the cell undergoes programmed cell death or apoptosis. The aim of this study is to quantify the amount of UV-induced DNA damage (estimated via the measurement of DNA repair or unscheduled DNA synthesis or UDS) and cellular damage (estimated via the determination of the density of sunburn cells or SBC). If DNA damage and erythema are correlated, similar intensity of UDS and similar density of SBC should be found in volunteers irradiated with a UV dose equal to two minimal erythema doses (MED). Our results show that in 15 different individuals the same relative dose (2 MEDs) provokes UDS values, which vary within a factor of 4. An even larger variability affects SBC counts after the same relative dose. When DNA damage or SBC are plotted versus the absolute dose (i.e. the dose expressed in J/m(2)), there is a rough correlation (with several exceptions) between dose and extent of UDS and SBC counts. It seems possible to divide the volunteers into two subpopulations with different susceptibilities to UV damage. It is well known that UDS and SBC measurements are often affected by large experimental indeterminacy, yet, the analysis of our results makes it plausible to suggest that for the triggering of erythema, a common threshold value for DNA damage or for SBC count are not to be found. In conclusion, the erythema response seems to be loosely correlated with DNA damage. This suggests that the protection offered by the sunscreens against DNA damage, the molecular basis of UV-induced mutagenesis, might not be related to the sun protection factor (SPF) indicated on the label of sunscreens, which is evaluated using the erythema as an endpoint.

  6. The role of film interfaces in near-ultraviolet absorption and pulsed-laser damage in ion-beam-sputtered coatings based on HfO 2/SiO 2 thin-film pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ristau, Detlev; Papernov, S.; Kozlov, A. A.

    2015-11-23

    The role of thin-film interfaces in the near-ultraviolet absorption and pulsed-laser–induced damage was studied for ion-beam–sputtered and electron-beam–evaporated coatings comprised from HfO 2 and SiO 2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage-threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO 2 single-layer film and for a film containing seven narrow HfO 2 layers separated by SiO 2 layers. The seven-layer film was designed to have a total optical thickness of HfO 2 layers, equal to one wave at 355 nm and an E-field peak and averagemore » intensity similar to a single-layer HfO 2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces, as compared to HfO 2 film material. The relevance of obtained absorption data to coating near-ultraviolet, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO 2 film in both sputtered and evaporated coatings. Here, the results are explained through the similarity of interfacial film structure with structure formed during the co-deposition of HfO 2 and SiO 2 materials.« less

  7. Thermal damage study of beryllium windows used as vacuum barriers in synchrotron radiation beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdener, F.R.; Johnson, G.L.; Karpenko, V.P.

    An experimental study to investigate thermal-induced damage to SSRL-designed beryllium foil windows was performed at LLNL's Laser Welding Research Facility. The primary goal of this study was to determine the threshold at which thermal-stress-induced damage occurs in these commonly used vacuum barriers. An Nd:Yag pulsed laser with cylindrical optics and a carefully designed test cell provided a test environment that closely resembles the actual beamline conditions at SSRL. Tests performed on two beryllium window geometries, with different vertical aperture dimensions but equal foil thicknesses of 0.254 mm, resulted in two focused total-power thresholds at which incipient damage was determined. Formore » a beam spot size similar to that of the Beamline-X Wiggler Line, onset of surface damage for a 5-mm by 25-mm aperture window was observed at 170 W after 174,000 laser pulses (1.2-ms pulse at 100 pps). A second window with double the vertical aperture dimension (10 mm by 25 mm) was observed to have surface cracking after 180,000 laser pulses with 85 W impinging its front surface. It failed after approximately 1,000,000 pulses. Another window of the same type (10 mm by 25 mm) received 2,160,000 laser pulses at 74.4 W, and subsequent metallographic sectioning revealed no signs of through-thickness damage. Comparison of windows with equal foil thicknesses and aperture dimensions has effectively identified the heat flux limit for incipient failure. The data show that halving the aperture's vertical dimension allows doubling the total incident power for equivalent onsets of thermal-induced damage.« less

  8. Plant safety margin against frost damages has declined in Switzerland over the last four decades

    NASA Astrophysics Data System (ADS)

    Vitasse, Yann; Schneider, Léonard; Klein, Geoffrey; Rixen, Christian; Rebetez, Martine

    2017-04-01

    Winters and early springs have become warmer over the last decades which has in turn promoted earlier plant development in temperate regions. While temperatures will on average continue to increase in the coming decades due to the rise of greenhouse gases concentration in the atmosphere, there is no consensus about how the occurrence of late spring frosts will change. If the frequency and the severity of late spring frosts remain unchanged in the future or advance less than vegetation onset, vulnerable plant organs (young leaves, flowers or dehardened buds) may be more exposed to frost damage. Here we analyzed long-term series of temperature data during the period 1975-2016 at 50 locations in Switzerland. We used different thresholds of growing degree days (GDD) as a proxy for spring phenology of fruit trees based on long-term series of phenological observations. Finally, we tested whether the time lag between the date when the GDD is reached and the latest occurrence of frost has changed over the study period. Overall we found that the safety margin against potential frost damage to plants has slightly decreased during the study period, irrespective of elevation (from 203 to 2283 m). Our results suggest that the cost for preventing frost damages on fruit trees could increase in the coming decades and the introduction of new varieties of fruit trees adapted to warmer climate should be carefully considered as they generally exhibit earlier spring phenology.

  9. Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold

    PubMed Central

    Makhotkin, Igor A.; Sobierajski, Ryszard; Chalupský, Jaromir; Tiedtke, Kai; de Vries, Gosse; Störmer, Michael; Scholze, Frank; Siewert, Frank; van de Kruijs, Robbert W. E.; Milov, Igor; Louis, Eric; Jacyna, Iwanna; Jurek, Marek; Klinger, Dorota; Syryanyy, Yevgen; Juha, Libor; Hájková, Věra; Saksl, Karel; Faatz, Bart; Keitel, Barbara; Plönjes, Elke; Toleikis, Sven; Loch, Rolf; Hermann, Martin; Strobel, Sebastian; Nienhuys, Han-Kwang; Gwalt, Grzegorz; Mey, Tobias; Enkisch, Hartmut

    2018-01-01

    The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface. PMID:29271755

  10. Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold.

    PubMed

    Makhotkin, Igor A; Sobierajski, Ryszard; Chalupský, Jaromir; Tiedtke, Kai; de Vries, Gosse; Störmer, Michael; Scholze, Frank; Siewert, Frank; van de Kruijs, Robbert W E; Milov, Igor; Louis, Eric; Jacyna, Iwanna; Jurek, Marek; Klinger, Dorota; Nittler, Laurent; Syryanyy, Yevgen; Juha, Libor; Hájková, Věra; Vozda, Vojtěch; Burian, Tomáš; Saksl, Karel; Faatz, Bart; Keitel, Barbara; Plönjes, Elke; Schreiber, Siegfried; Toleikis, Sven; Loch, Rolf; Hermann, Martin; Strobel, Sebastian; Nienhuys, Han Kwang; Gwalt, Grzegorz; Mey, Tobias; Enkisch, Hartmut

    2018-01-01

    The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface.

  11. Application of outlier analysis for baseline-free damage diagnosis

    NASA Astrophysics Data System (ADS)

    Kim, Seung Dae; In, Chi Won; Cronin, Kelly E.; Sohn, Hoon; Harries, Kent

    2006-03-01

    As carbon fiber-reinforced polymer (CFRP) laminates have been widely accepted as valuable materials for retrofitting civil infrastructure systems, an appropriate assessment of bonding conditions between host structures and CFRP laminates becomes a critical issue to guarantee the performance of CFRP strengthened structures. This study attempts to develop a continuous performance monitoring system for CFRP strengthened structures by autonomously inspecting the bonding conditions between the CFRP layers and the host structure. The uniqueness of this study is to develop a new concept and theoretical framework of nondestructive testing (NDT), in which debonding is detected "without using past baseline data." The proposed baseline-free damage diagnosis is achieved in two stages. In the first step, features sensitive to debonding of the CFPR layers but insensitive to loading conditions are extracted based on a concept referred to as a time reversal process. This time reversal process allows extracting damage-sensitive features without direct comparison with past baseline data. Then, a statistical damage classifier will be developed in the second step to make a decision regarding the bonding condition of the CFRP layers. The threshold necessary for decision making will be adaptively determined without predetermined threshold values. Monotonic and fatigue load tests of full-scale CFRP strengthened RC beams are conducted to demonstrate the potential of the proposed reference-free debonding monitoring system.

  12. Delayed Onset Muscle Soreness After Inspiratory Threshold Loading in Healthy Adults

    PubMed Central

    Mathur, Sunita; Sheel, A. William; Road, Jeremy D.; Reid, W. Darlene

    2010-01-01

    Purpose: Skeletal muscle damage occurs following high-intensity or unaccustomed exercise; however, it is difficult to monitor damage to the respiratory muscles, particularly in humans. The aim of this study was to use clinical measures to investigate the presence of skeletal muscle damage in the inspiratory muscles. Methods: Ten healthy subjects underwent 60 minutes of voluntary inspiratory threshold loading (ITL) at 70% of maximal inspiratory pressure. Maximal inspiratory and expiratory mouth pressures, delayed onset muscle soreness on a visual analogue scale and plasma creatine kinase were measured prior to ITL, and at repeated time points after ITL (4, 24 and 48 hours post-ITL). Results: Delayed onset muscle soreness was present in all subjects 24 hours following ITL (intensity = 22 ± 6 mm; significantly higher than baseline p = 0.02). Muscle soreness was reported primarily in the anterior neck region, and was correlated to the amount of work done by the inspiratory muscles during ITL (r = 0.72, p = 0.02). However, no significant change was observed in maximal inspiratory or expiratory pressures or creatine kinase. Conclusions: These findings suggest that an intense bout of ITL results in muscle soreness primarily in the accessory muscles of inspiration, however, may be insufficient to cause significant muscle damage in healthy adults. PMID:20467514

  13. Preventive Effects of Poloxamer 188 on Muscle Cell Damage Mechanics Under Oxidative Stress.

    PubMed

    Wong, Sing Wan; Yao, Yifei; Hong, Ye; Ma, Zhiyao; Kok, Stanton H L; Sun, Shan; Cho, Michael; Lee, Kenneth K H; Mak, Arthur F T

    2017-04-01

    High oxidative stress can occur during ischemic reperfusion and chronic inflammation. It has been hypothesized that such oxidative challenges could contribute to clinical risks such as deep tissue pressure ulcers. Skeletal muscles can be challenged by inflammation-induced or reperfusion-induced oxidative stress. Oxidative stress reportedly can lower the compressive damage threshold of skeletal muscles cells, causing actin filament depolymerization, and reduce membrane sealing ability. Skeletal muscles thus become easier to be damaged by mechanical loading under prolonged oxidative exposure. In this study, we investigated the preventive effect of poloxamer 188 (P188) on skeletal muscle cells against extrinsic oxidative challenges (H 2 O 2 ). It was found that with 1 mM P188 pre-treatment for 1 h, skeletal muscle cells could maintain their compressive damage threshold. The actin polymerization dynamics largely remained stable in term of the expression of cofilin, thymosin beta 4 and profilin. Laser photoporation demonstrated that membrane sealing ability was preserved even as the cells were challenged by H 2 O 2 . These findings suggest that P188 pre-treatment can help skeletal muscle cells retain their normal mechanical integrity in oxidative environments, adding a potential clinical use of P188 against the combined challenge of mechanical-oxidative stresses. Such effect may help to prevent deep tissue ulcer development.

  14. Laser Induced Damage of Potassium Dihydrogen Phosphate (KDP) Optical Crystal Machined by Water Dissolution Ultra-Precision Polishing Method

    PubMed Central

    Gao, Hang; Wang, Xu; Guo, Dongming; Liu, Ziyuan

    2018-01-01

    Laser induced damage threshold (LIDT) is an important optical indicator for nonlinear Potassium Dihydrogen Phosphate (KDP) crystal used in high power laser systems. In this study, KDP optical crystals are initially machined with single point diamond turning (SPDT), followed by water dissolution ultra-precision polishing (WDUP) and then tested with 355 nm nanosecond pulsed-lasers. Power spectral density (PSD) analysis shows that WDUP process eliminates the laser-detrimental spatial frequencies band of micro-waviness on SPDT machined surface and consequently decreases its modulation effect on the laser beams. The laser test results show that LIDT of WDUP machined crystal improves and its stability has a significant increase by 72.1% compared with that of SPDT. Moreover, a subsequent ultrasonic assisted solvent cleaning process is suggested to have a positive effect on the laser performance of machined KDP crystal. Damage crater investigation indicates that the damage morphologies exhibit highly thermal explosion features of melted cores and brittle fractures of periphery material, which can be described with the classic thermal explosion model. The comparison result demonstrates that damage mechanisms for SPDT and WDUP machined crystal are the same and WDUP process reveals the real bulk laser resistance of KDP optical crystal by removing the micro-waviness and subsurface damage on SPDT machined surface. This improvement of WDUP method makes the LIDT more accurate and will be beneficial to the laser performance of KDP crystal. PMID:29534032

  15. Skeletal Muscle Cell Damage Indicators in Volleyball Players after the Competitive Phase of the Annual Training Cycle.

    PubMed

    Radojewski, Mateusz; Podgórski, Tomasz; Pospieszna, Barbara; Kryściak, Jakub; Śliwicka, Ewa; Karolkiewicz, Joanna

    2018-06-01

    The aim of the study was to evaluate the impact of the competitive phase on physiological and metabolic indices and selected markers of skeletal muscle damage in male volleyball players. The study group consisted of 24 young male volleyball players. During the study, participants underwent two series of measurements, before and after the competitive phase of the annual training cycle. In both study terms, players performed an incremental treadmill running test to determine their ventilatory threshold and maximal oxygen uptake. Venous and capillary blood samples were taken for biochemical analysis. There was no significant difference in the physical fitness level, values of biochemical variables and the level of antioxidant status in the surveyed athletes between the two study terms. Significant changes within skeletal muscle damage markers were observed between the beginning and the end of the competitive period: an increase in the concentration of cellular DNA damage products (8-hydroxy-2'-deoxyguanosine; p < 0.0001) and a decrease in muscle activity of creatine kinase (p<0.05). In spite of the increment in cell damage markers, the unaffected level of physiological and biochemical markers may indicate that the experienced cell destruction did not negatively affect the level of physical fitness. When designing the annual training plan, coaches and athletes need to take into consideration that temporary physiological states - oxidative stress and inflammation - may be required to attain training adaptation.

  16. Methodology trends on gamma and electron radiation damage simulation studies in solids under high fluency irradiation environments

    NASA Astrophysics Data System (ADS)

    Cruz Inclán, Carlos M.; González Lazo, Eduardo; Rodríguez Rodríguez, Arturo; Guzmán Martínez, Fernando; Abreu Alfonso, Yamiel; Piñera Hernández, Ibrahin; Leyva Fabelo, Antonio

    2017-09-01

    The present work deals with the numerical simulation of gamma and electron radiation damage processes under high brightness and radiation particle fluency on regard to two new radiation induced atom displacement processes, which concern with both, the Monte Carlo Method based numerical simulation of the occurrence of atom displacement process as a result of gamma and electron interactions and transport in a solid matrix and the atom displacement threshold energies calculated by Molecular Dynamic methodologies. The two new radiation damage processes here considered in the framework of high brightness and particle fluency irradiation conditions are: 1) The radiation induced atom displacement processes due to a single primary knockout atom excitation in a defective target crystal matrix increasing its defect concentrations (vacancies, interstitials and Frenkel pairs) as a result of a severe and progressive material radiation damage and 2) The occurrence of atom displacements related to multiple primary knockout atom excitations for the same or different atomic species in an perfect target crystal matrix due to subsequent electron elastic atomic scattering in the same atomic neighborhood during a crystal lattice relaxation time. In the present work a review numeral simulation attempts of these two new radiation damage processes are presented, starting from the former developed algorithms and codes for Monte Carlo simulation of atom displacements induced by electron and gamma in

  17. Tornado Intensity Estimated from Damage Path Dimensions

    PubMed Central

    Elsner, James B.; Jagger, Thomas H.; Elsner, Ian J.

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s−1 for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242

  18. Tornado intensity estimated from damage path dimensions.

    PubMed

    Elsner, James B; Jagger, Thomas H; Elsner, Ian J

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1) for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width.

  19. Nanopore formation in neuroblastoma cells following ultrashort electric pulse exposure

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.

    2011-03-01

    Ultrashort or nanosecond electrical pulses (USEP) cause repairable damage to the plasma membranes of cells through formation of nanopores. These nanopores are able to pass small ions such as sodium, calcium, and potassium, but remain impermeable to larger molecules like trypan blue and propidium iodide. What remains uncertain is whether generation of nanopores by ultrashort electrical pulses can inhibit action potentials in excitable cells. In this paper, we explored the sensitivity of excitable cells to USEP using Calcium Green AM 1 ester fluorescence to measure calcium uptake indicative of nanopore formation in the plasma membrane. We determined the threshold for nanopore formation in neuroblastoma cells for three pulse parameters (amplitude, pulse width, and pulse number). Measurement of such thresholds will guide future studies to determine if USEP can inhibit action potentials without causing irreversible membrane damage.

  20. Numerical modelling of a fibre reflection filter based on a metal–dielectric diffraction structure with an increased optical damage threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terentyev, V S; Simonov, V A

    2016-02-28

    Numerical modelling demonstrates the possibility of fabricating an all-fibre multibeam two-mirror reflection interferometer based on a metal–dielectric diffraction structure in its front mirror. The calculations were performed using eigenmodes of a double-clad single-mode fibre. The calculation results indicate that, using a metallic layer in the structure of the front mirror of such an interferometer and a diffraction effect, one can reduce the Ohmic loss by a factor of several tens in comparison with a continuous thin metallic film. (laser crystals and braggg ratings)

  1. CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?

    PubMed

    van Rhoon, Gerard C; Samaras, Theodoros; Yarmolenko, Pavel S; Dewhirst, Mark W; Neufeld, Esra; Kuster, Niels

    2013-08-01

    To define thresholds of safe local temperature increases for MR equipment that exposes patients to radiofrequency fields of high intensities for long duration. These MR systems induce heterogeneous energy absorption patterns inside the body and can create localised hotspots with a risk of overheating. The MRI + EUREKA research consortium organised a "Thermal Workshop on RF Hotspots". The available literature on thresholds for thermal damage and the validity of the thermal dose (TD) model were discussed. The following global TD threshold guidelines for safe use of MR are proposed: 1. All persons: maximum local temperature of any tissue limited to 39 °C 2. Persons with compromised thermoregulation AND (a) Uncontrolled conditions: maximum local temperature limited to 39 °C (b) Controlled conditions: TD < 2 CEM43°C 3. Persons with uncompromised thermoregulation AND (a) Uncontrolled conditions: TD < 2 CEM43°C (b) Controlled conditions: TD < 9 CEM43°C The following definitions are applied: Controlled conditions A medical doctor or a dedicated trained person can respond instantly to heat-induced physiological stress Compromised thermoregulation All persons with impaired systemic or reduced local thermoregulation • Standard MRI can cause local heating by radiofrequency absorption. • Monitoring thermal dose (in units of CEM43°C) can control risk during MRI. • 9 CEM43°C seems an acceptable thermal dose threshold for most patients. • For skin, muscle, fat and bone,16 CEM43°C is likely acceptable.

  2. Intraoperative identification of the facial nerve by needle electromyography stimulation with a burr

    PubMed Central

    KHAMGUSHKEEVA, N.N.; ANIKIN, I.A.; KORNEYENKOV, A.A.

    2016-01-01

    The purpose of this research is to improve the safety of surgery for patients with a pathology of the middle and inner ear by preventing damage to the facial nerve by conducting intraoperative monitoring of the facial nerve by needle electromyography with continuous stimulation with a burr. Patients and Methods The clinical part of the prospective study was carried out on 48 patients that were diagnosed with suppurative otitis media. After the surgery with intraoperative monitoring, the facial nerve with an intact bone wall was stimulated electrically in the potentially dangerous places of damage. Minimum (threshold) stimulation (mA) of the facial nerve with a threshold event of 100 μV was used to register EMG events. The anatomical part of the study was carried out on 30 unformalinized cadaver temporal bones from adult bodies. The statistical analysis of obtained data was carried out with parametric methods (Student’s t-test), non-parametric correlation (Spearman’s method) and regression analysis. Results It was found that 1 mA of threshold amperage corresponded to 0.8 mm thickness of the bone wall of the facial canal. Values of transosseous threshold stimulation in potentially dangerous sections of the injury to the facial nerve were obtained. Conclusion These data lower the risk of paresis (paralysis) of the facial muscles during otologic surgery. PMID:27142821

  3. Characterization of laser induced damage of HR coatings with picosecond pulses

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Zhao, Yuan'an; Cui, Yun; Wang, Yueliang; Peng, Xiaocong; Shan, Chong; Zhu, Meiping; Wang, Jianguo; Shao, Jianda

    2017-11-01

    The effect of protective layer on the picosecond laser-induced damage behaviors of HfO2/SiO2 high-reflective (HR) coatings are explored. Two kinds of 1064nm HR coatings with and without protective layer are deposited by electron beam evaporation. Laser-induced damage tests are conducted with 1064nm, 30ps S-polarized and P-polarized pulses with different angle of incidence (AOI) to make the electric fields intensity in the HR coatings discrepantly. Damage morphology and cross section of damage sites were characterized by scanning electron microscope (SEM) and focused ion beam (FIB), respectively. It is found that SiO2 protective layer have a certain degree of improvement on laser induced damage threshold (LIDT) for every AOIs. The onset damage initiated very near to the Max peak of e-field, after which forms ripple-like pits. The damage morphology presents as layer delamination at high fluence. The Laser damage resistance is correspond with the maximum E-intensity in the coating stacks.

  4. Damage and strength of composite materials: Trends, predictions, and challenges

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin

    1994-01-01

    Research on damage mechanisms and ultimate strength of composite materials relevant to scaling issues will be addressed in this viewgraph presentation. The use of fracture mechanics and Weibull statistics to predict scaling effects for the onset of isolated damage mechanisms will be highlighted. The ability of simple fracture mechanics models to predict trends that are useful in parametric or preliminary designs studies will be reviewed. The limitations of these simple models for complex loading conditions will also be noted. The difficulty in developing generic criteria for the growth of these mechanisms needed in progressive damage models to predict strength will be addressed. A specific example for a problem where failure is a direct consequence of progressive delamination will be explored. A damage threshold/fail-safety concept for addressing composite damage tolerance will be discussed.

  5. Speech-in-Noise Tests and Supra-threshold Auditory Evoked Potentials as Metrics for Noise Damage and Clinical Trial Outcome Measures.

    PubMed

    Le Prell, Colleen G; Brungart, Douglas S

    2016-09-01

    In humans, the accepted clinical standards for detecting hearing loss are the behavioral audiogram, based on the absolute detection threshold of pure-tones, and the threshold auditory brainstem response (ABR). The audiogram and the threshold ABR are reliable and sensitive measures of hearing thresholds in human listeners. However, recent results from noise-exposed animals demonstrate that noise exposure can cause substantial neurodegeneration in the peripheral auditory system without degrading pure-tone audiometric thresholds. It has been suggested that clinical measures of auditory performance conducted with stimuli presented above the detection threshold may be more sensitive than the behavioral audiogram in detecting early-stage noise-induced hearing loss in listeners with audiometric thresholds within normal limits. Supra-threshold speech-in-noise testing and supra-threshold ABR responses are reviewed here, given that they may be useful supplements to the behavioral audiogram for assessment of possible neurodegeneration in noise-exposed listeners. Supra-threshold tests may be useful for assessing the effects of noise on the human inner ear, and the effectiveness of interventions designed to prevent noise trauma. The current state of the science does not necessarily allow us to define a single set of best practice protocols. Nonetheless, we encourage investigators to incorporate these metrics into test batteries when feasible, with an effort to standardize procedures to the greatest extent possible as new reports emerge.

  6. He diffusion in zircon: Observations from (U-Th)/He age suites and 4He diffusion experiments and implications for radiation damage and anisotropic effects

    NASA Astrophysics Data System (ADS)

    Guenthner, W. R.; Reiners, P. W.

    2009-12-01

    Despite widespread use of zircon (U-Th)/He thermochronometry in many geologic applications, our understanding of the kinetics of He diffusion in this system is rudimentary. Previous studies have shown that both radiation damage and crystallographic anisotropy may strongly influence diffusion kinetics and ages. We present observations of zircon He ages from multiple single-grain analyses from both detrital and bedrock suites from a wide variety of locations, showing relationships consistent with effects arising from the interaction of radiation damage and anisotropy. Individual zircons in each suite have experienced the same post-depositional or exhumational t-T history but grains appear to have experienced differential He loss that is correlated with effective uranium (eU) content, a proxy for the relative extent of radiation damage within each suite. Several suites of zircons heated to partial resetting upon burial or that have experienced slow cooling show positive correlations between age and eU. Examples of partially reset detrital samples include Cretaceous Sevier foreland basin sandstones buried to ~6-8 km depth, with ages ranging from 88-309 Ma across an eU range of 215-1453 ppm, and Apennines and Olympics greywackes heated to >~120 °C, showing similar trends. Some slowly-cooled bedrock samples also show positive age-eU correlations, suggesting increasing closure temperature with higher extents of radiation damage. Conversely, zircons from cratonal bedrock samples with high levels of radiation damage—measured as accumulated alpha dosage (in this case >~10^18 α/g)—generally show negative age-eU correlations. We interpret these contrasting age-eU relationships as a manifestation of the interaction of radiation damage and anisotropic diffusion: at low damage, He diffusivity is relatively high and preferentially through c-axis-parallel channels. As suggested by Farley (2007), however, with increasing damage, channels are progressively blocked and He diffusivity decreases. Eventually, a crystal reaches a threshold level (>~10^18 α/g ) wherein radiation damage is so extensive that damage zones become interconnected and He diffusivity increases once again. In order to evaluate these assertions, we conducted a series of step-heating experiments on several pairs of zircon slabs. Individual slabs were crystallographically oriented either orthogonal or parallel to the c-axis and each pair possessed varying degrees of radiation damage. Results from these experiments provide new closure temperature estimates, explain age-eU correlations within a data set, and allow us to construct diffusion models that more accurately describe the t-T history of a given sample.

  7. Cochlear perfusion with a viscous fluid.

    PubMed

    Wang, Yi; Olson, Elizabeth S

    2016-07-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and then clearance of viscous fluid within the cochlea, or to a temporary position shift of the Organ of Corti. After 0.5% HA perfusion, a short latency positive peak (P0) appeared in the CAP waveform. This P0 might be due to a change in the cochlea's traveling-wave pattern, or distortion in the cochlear microphonic. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Cochlear perfusion with a viscous fluid

    PubMed Central

    Wang, Yi; Olson, Elizabeth S.

    2016-01-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawnfrom basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner’s membrane, while in cochleae perfused with 0.125% and 0.25% HA Reissner’s membrane (RM) was torn. Thus, the CAP threshold elevation was likely due to the broken of RM, which likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and then clearance of viscous fluid within the cochlea, or to a temporary position shift of the Organ of Corti. After 0.5% HA perfusion, a short latency positive peak (P0) appeared in the CAP wavefrom. This P0 might be due to a change in the cochlea’s traveling-wave pattern, or distortion in the cochlear microphonic. PMID:27220484

  9. Heart in space: effect of the extraterrestrial environment on the cardiovascular system.

    PubMed

    Hughson, Richard L; Helm, Alexander; Durante, Marco

    2018-03-01

    National space agencies and private corporations aim at an extended presence of humans in space in the medium to long term. Together with currently suboptimal technology, microgravity and cosmic rays raise health concerns about deep-space exploration missions. Both of these physical factors affect the cardiovascular system, whose gravity-dependence is pronounced. Heart and vascular function are, therefore, susceptible to substantial changes in weightlessness. The altered cardiovascular function in space causes physiological problems in the postflight period. A compromised cardiovascular system can be excessively vulnerable to space radiation, synergistically resulting in increased damage. The space radiation dose is significantly lower than in patients undergoing radiotherapy, in whom cardiac damage is well-documented following cancer therapy in the thoracic region. Nevertheless, epidemiological findings suggest an increased risk of late cardiovascular disease even with low doses of radiation. Moreover, the peculiar biological effectiveness of heavy ions in cosmic rays might increase this risk substantially. However, whether radiation-induced cardiovascular effects have a threshold at low doses is still unclear. The main countermeasures to mitigate the effect of the space environment on cardiac function are physical exercise, antioxidants, nutraceuticals, and radiation shielding.

  10. Subepidermal moisture detection of pressure induced tissue damage on the trunk: The pressure ulcer detection study outcomes.

    PubMed

    Bates-Jensen, Barbara M; McCreath, Heather E; Patlan, Anabel

    2017-05-01

    We examined the relationship between subepidermal moisture measured using surface electrical capacitance and visual skin assessment of pressure ulcers at the trunk location (sacral, ischial tuberosities) in 417 nursing home residents residing in 19 facilities. Participants were on average older (mean age of 77 years), 58% were female, over half were ethnic minorities (29% African American, 12% Asian American, and 21% Hispanic), and at risk for pressure ulcers (mean score for Braden Scale for Predicting Pressure Ulcer Risk of 15.6). Concurrent visual assessments and subepidermal moisture were obtained at the sacrum and right and left ischium weekly for 16 weeks. Visual assessment was categorized as normal, erythema, stage 1 pressure ulcer, Deep Tissue Injury or stage 2+ pressure ulcer using the National Pressure Ulcer Advisory Panel 2009 classification system. Incidence of any skin damage was 52%. Subepidermal moisture was measured with a dermal phase meter where higher readings indicate greater moisture (range: 0-70 tissue dielectric constant), with values increasing significantly with the presence of skin damage. Elevated subepidermal moisture values co-occurred with concurrent skin damage in generalized multinomial logistic models (to control for repeated observations) at the sacrum, adjusting for age and risk. Higher subepidermal moisture values were associated with visual damage 1 week later using similar models. Threshold values for subepidermal moisture were compared to visual ratings to predict skin damage 1 week later. Subepidermal moisture of 39 tissue dielectric constant units predicted 41% of future skin damage while visual ratings predicted 27%. Thus, this method of detecting early skin damage holds promise for clinicians, especially as it is objective and equally valid for all groups of patients. © 2017 by the Wound Healing Society.

  11. Are flowers vulnerable to xylem cavitation during drought?

    PubMed

    Zhang, Feng-Ping; Brodribb, Timothy J

    2017-05-17

    Water stress is known to cause xylem cavitation in the leaves, roots and stems of plants, but little is known about the vulnerability of flowers to xylem damage during drought. This is an important gap in our understanding of how and when plants become damaged by water stress. Here we address fundamental questions about if and when flowers suffer cavitation damage, using a new technique of cavitation imaging to resolve the timing of cavitation in water-stressed flower petals compared with neighbouring leaves. Leaves and flowers from a sample of two herbaceous and two woody eudicots were exposed to a severe water stress while the spatial and temporal propagation of embolism through veins was recorded. Although in most cases water potentials inducing 50% embolism of herbaceous flower veins were more negative than neighbouring leaves, there was no significant difference between the average vulnerability of leaves and petals of herbaceous species. In both woody species, petals were more vulnerable to cavitation than leaves, in one case by more than 3 MPa. Early cavitation and subsequent damage of flowers in the two woody species would thus be expected to precede leaf damage during drought. Similar cavitation thresholds of flowers and leaves in the herb sample suggest that cavitation during water shortage in these species will occur simultaneously among aerial tissues. Species-specific differences in the cavitation thresholds of petals provide a new axis of variation that may explain contrasting flowering ecology among plant species. © 2017 The Author(s).

  12. Laser induced damage in optical materials: tenth ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1979-07-01

    The tenth annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 12-14 September 1978. The symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy, and the Office of Naval Research. About 175 scientists attended, including representatives of the United Kingdom, France, Canada, Japan, West Germany, and the Soviet Union. The symposium was divided into sessions concerning the measurement of absorption characteristics, bulk material properties, mirrors and surfaces, thin film damage, coating materials and design, and breakdown phenomena. As in previous years, the emphasis of the papers presented was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was also discussed. In commemoration of the tenth symposium in this series, a number of comprehensive review papers were presented to assess the state of the art in various facets of laser induced damage in optical materials. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The eleventh annual symposium is scheduled for 30-31 October 1979 at the National Bureau of Standards, Boulder, Colorado.

  13. Differential dpa calculations with SPECTRA-PKA

    NASA Astrophysics Data System (ADS)

    Gilbert, M. R.; Sublet, J.-Ch.

    2018-06-01

    The processing code SPECTRA-PKA produces energy spectra of primary atomic recoil events (or primary knock-on atoms, PKAs) for any material composition exposed to an irradiation spectrum. Such evaluations are vital inputs for simulations aimed at understanding the evolution of damage in irradiated material, which is generated in cascade displacement events initiated by PKAs. These PKA spectra present the full complexity of the input (to SPECTRA-PKA) nuclear data-library evaluations of recoil events. However, the commonly used displacements per atom (dpa) measure, which is an integral measure over all possible recoil events of the displacement damage dose, is still widely used and has many useful applications - as both a comparative and correlative quantity. This paper describes the methodology employed that allows the SPECTRA-PKA code to evaluate dpa rates using the energy-dependent recoil (PKA) cross section data used for the PKA distributions. This avoids the need for integral displacement kerma cross sections and also provides new insight into the relative importance of different reaction channels (and associated different daughter residual and emitted particles) to the total integrated dpa damage dose. Results are presented for Fe, Ni, W, and SS316. Fusion dpa rates are compared to those in fission, highlighting the increased contribution to damage creation in the former from high-energy threshold reactions.

  14. Increased hs-CRP and decreased 1,25-dihydroxyvitamin D are associated with increased left ventricle lead threshold.

    PubMed

    Gözübüyük, Gökhan; Koç, Mevlüt; Kaypaklı, Onur; Şahin, Durmuş Yıldıray

    2016-11-01

    There are not enough data about threshold changes in patients with CRT. In this study, we aimed to investigate frequency of significant threshold increase of left ventricle lead and to determine clinical, demographic, medical and laboratory parameters that associated with threshold increase in CRT implanted patients. We included CRT implanted 200 patients (124 males, 76 females; mean age 65.8 ± 10.3 years) to this study. Basal and third month LV R wave amplitude, electrode impedance, and threshold values were recorded. Threshold increase was accepted as ≥0.1 V and significant increase as >1 V. Patients were divided into two groups: increased threshold and non-increased threshold for LV lead. Number of patients with increased LV threshold was 68 (37.6 %). Furthermore, 8 % of patients had severe increase (≥1 V) in LV threshold. We observed that serum levels of hs-CRP and 1,25 (OH)2 vitamin D were independently associated with increased LV threshold. We showed that 1 mg/dl increase in hs-CRP and the 1 mg/dl decrease in vitamin D are associated with 25.3 and 4.5 % increase in the odds of increased LV threshold, respectively. Increased hs-CRP and decreased 1,25 (OH)2 vitamin D are the strongest predictors of increased LV lead thresholds. We suggest that hs-CRP and 1,25 (OH)2 vitamin D may be used as markers to predict and follow the patients with increased thresholds. It may be useful to finalize CRT procedure with more appropriate basal threshold in patients with high serum hs-CRP and low 1,25 (OH)2 vitamin D levels.

  15. Health diagnosis of arch bridge suspender by acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Ou, Jinping

    2007-01-01

    Conventional non-destructive methods can't be dynamically monitored the suspenders' damage levels and types, so acoustic emission (AE) technique is proposed to monitor its activity. The validity signals are determined by the relationship with risetime and duration. The ambient noise is eliminated using float threshold value and placing a guard sensor. The cement mortar and steel strand damage level is analyzed by AE parameter method and damage types are judged by waveform analyzing technique. Based on these methods, all the suspenders of Sichuan Ebian Dadu river arch bridge have been monitored using AE techniques. The monitoring results show that AE signal amplitude, energy, counts can visually display the suspenders' damage levels, the difference of waveform and frequency range express different damage type. The testing results are well coincide with the practical situation.

  16. [Temperature conditions of the formation of frost damages in conifer trees in the high latitudes of Western Siberia].

    PubMed

    Gurskaia, M A

    2014-01-01

    Frost damage to the bottom of the stem at a height of 0.2 m and at the height of the position of the thermometer in the weather station (2 m) and higher in the Siberian spruce (Picea obovata Ledeb.) and Siberian larch (Larix sibirica Ledeb.) growing at the northern limits of their natural habitat were studied in order to reveal the upper threshold temperature conditions of their formation. Possible causes of differences in the distribution of frost damage in the stem of the spruce and larch are discussed.

  17. Prediction and measurement of radiation damage to CMOS devices on board spacecraft

    NASA Technical Reports Server (NTRS)

    Cliff, R. A.; Danchenko, V.; Stassinopoulos, E. G.; Sing, M.; Brucker, G. J.; Ohanian, R. S.

    1976-01-01

    The initial results obtained from the Complementary Metal Oxide Semiconductors Radiation Effects Measurement experiment are presented. Predictions of radiation damage to C-MOS devices are based on standard environment models and computational techniques. A comparison of the shifts in CMOS threshold potentials, that is, those measured in space to those obtained from the on the ground simulation experiment with Co 60, indicated that the measured space damage is greater than predicted by a factor of two for shields thicker than 100 mils (2.54 mm), but agrees well with predictions for the thinner shields.

  18. Numerical analysis of static strength for different damages of hydraulic structures when changing stressed and strained state

    NASA Astrophysics Data System (ADS)

    Volosukhin, V. A.; Bandurin, M. A.; Vanzha, V. V.; Mikheev, A. V.; Volosukhin, Y. V.

    2018-05-01

    The results of finite element state simulation of stressed and strained changes under different damages of hydraulic structures are presented. As a result of the experiment, a solidstate model of bearing elements was built. Stressed and strained state of reinforced concrete bearing elements under different load combinations is considered. Intensive threshold of danger to form longitudinal cracks and defects in reinforced concrete elements is determined.

  19. Propagation Effects in the Assessment of Laser Damage Thresholds to the Eye and Skin

    DTIC Science & Technology

    2007-01-01

    Conference on Optical Interactions with Tissue and Cells [18th] Held in San Jose, California on January 22-24, 2007 To order the complete compilation report...evaluation of the role of propagation with regard to laser damage to tissues. Regions of the optical spectrum, where linear and non-linear propagation...photo-chemical toxicity. Exposure limits commonly address skin and eye hazards through separate definitions. Differing optical absorption and scattering

  20. Computational Prediction of Shock Ignition Thresholds and Ignition Probability of Polymer-Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Wei, Yaochi; Kim, Seokpum; Horie, Yasuyuki; Zhou, Min

    2017-06-01

    A computational approach is developed to predict the probabilistic ignition thresholds of polymer-bonded explosives (PBXs). The simulations explicitly account for microstructure, constituent properties, and interfacial responses and capture processes responsible for the development of hotspots and damage. The specific damage mechanisms considered include viscoelasticity, viscoplasticity, fracture, post-fracture contact, frictional heating, and heat conduction. The probabilistic analysis uses sets of statistically similar microstructure samples to mimic relevant experiments for statistical variations of material behavior due to inherent material heterogeneities. The ignition thresholds and corresponding ignition probability maps are predicted for PBX 9404 and PBX 9501 for the impact loading regime of Up = 200 --1200 m/s. James and Walker-Wasley relations are utilized to establish explicit analytical expressions for the ignition probability as a function of load intensities. The predicted results are in good agreement with available experimental measurements. The capability to computationally predict the macroscopic response out of material microstructures and basic constituent properties lends itself to the design of new materials and the analysis of existing materials. The authors gratefully acknowledge the support from Air Force Office of Scientific Research (AFOSR) and the Defense Threat Reduction Agency (DTRA).

  1. Ocular hazards of Q-switched near-infrared lasers

    NASA Astrophysics Data System (ADS)

    Lund, David J.; Edsall, Peter R.; Stuck, Bruce E.

    2003-06-01

    The threshold for laser-induced retinal damage in the rhesus eye was determined for wavelengths between 900 nm and 1300 nm. The laser source was a tunable Optical Parametric Oscillator (OPO) pumped by the 3rd harmonic of a Nd:YAG laser. The laser pulse duration was 3.5 ns. The wavelength dependence of the injury threshold is consistent with the prediction of a model based on the transmission of the preretinal ocular media, absorption in the retinal pigment epithelium, and variation of irradiance diameter resulting from chromatic aberration of the eye optics for wavelengths shorter than 1150 nm but was less consistent for longer wavelengths. The threshold for 24-hour observation was slightly lower than the threshold for 1-hour observation. These data form a basis for reexamination of the currently defined MPEs for wavelengths longer than 1100 nm.

  2. Fatigue Crack Growth Threshold Testing of Metallic Rotorcraft Materials

    NASA Technical Reports Server (NTRS)

    Newman, John A.; James, Mark A.; Johnson, William M.; Le, Dy D.

    2008-01-01

    Results are presented for a program to determine the near-threshold fatigue crack growth behavior appropriate for metallic rotorcraft alloys. Four alloys, all commonly used in the manufacture of rotorcraft, were selected for study: Aluminum alloy 7050, 4340 steel, AZ91E Magnesium, and Titanium alloy Ti-6Al-4V (beta-STOA). The Federal Aviation Administration (FAA) sponsored this research to advance efforts to incorporate damage tolerance design and analysis as requirements for rotorcraft certification. Rotorcraft components are subjected to high cycle fatigue and are typically subjected to higher stresses and more stress cycles per flight hour than fixed-wing aircraft components. Fatigue lives of rotorcraft components are generally spent initiating small fatigue cracks that propagate slowly under near-threshold cracktip loading conditions. For these components, the fatigue life is very sensitive to the near-threshold characteristics of the material.

  3. Effects of wet etch processing on laser-induced damage of fused silica surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battersby, C.L.; Kozlowski, M.R.; Sheehan, L.M.

    1998-12-22

    Laser-induced damage of transparent fused silica optical components by 355 nm illumination occurs primarily at surface defects produced during the grinding and polishing processes. These defects can either be surface defects or sub-surface damage.Wet etch processing in a buffered hydrogen fluoride (HF) solution has been examined as a tool for characterizing such defects. A study was conducted to understand the effects of etch depth on the damage threshold of fused silica substrates. The study used a 355 nm, 7.5 ns, 10 Hz Nd:YAG laser to damage test fused silica optics through various wet etch processing steps. Inspection of the surfacemore » quality was performed with Nomarski microscopy and Total Internal Reflection Microscopy. The damage test data and inspection results were correlated with polishing process specifics. The results show that a wet etch exposes subsurface damage while maintaining or improving the laser damage performance. The benefits of a wet etch must be evaluated for each polishing process.« less

  4. Effect of annealing on the laser induced damage of polished and CO2 laser-processed fused silica surfaces

    NASA Astrophysics Data System (ADS)

    Doualle, T.; Gallais, L.; Cormont, P.; Donval, T.; Lamaignère, L.; Rullier, J. L.

    2016-06-01

    We investigate the effect of different heat treatments on the laser-induced damage probabilities of fused silica samples. Isothermal annealing in a furnace is applied, with different temperatures in the range 700-1100 °C and 12 h annealing time, to super-polished fused silica samples. The surface flatness and laser damage probabilities at 3 ns, 351 nm are measured before and after the different annealing procedures. We have found a significant improvement of the initial laser damage probabilities of the silica surface after annealing at 1050 °C for 12 h. A similar study has been conducted on CO2 laser-processed sites on the surface of the samples. Before and after annealing, we have studied the morphology of the sites, the evolution of residual stress, and the laser-induced damage threshold measured at 351 nm, 3 ns. In this case, we observe that the laser damage resistance of the laser created craters can reach the damage level of the bare fused silica surface after the annealing process, with a complete stress relieve. The obtained results are then compared to the case of local annealing process by CO2 laser irradiation during 1 s, and we found similar improvements in both cases. The different results obtained in the study are compared to numerical simulations made with a thermo-mechanical model based on finite-element method that allows the simulation of the isothermal or the local annealing process, the evolution of stress and fictive temperature. The simulation results were found to be very consistent with experimental observations for the stresses evolution after annealing and estimation of the heat affected area during laser-processing based on the density dependence with fictive temperature. Following this work, the temperature for local annealing should reach 1330-1470 °C for an optimized reduction of damage probability and be below the threshold for material removal, whereas furnace annealing should be kept below the annealing point to avoid sample deformation.

  5. Effect of increasing dietary antioxidants on concentrations of vitamin E and total alkenals in serum of dogs and cats.

    PubMed

    Jewell, D E; Toll, P W; Wedekind, K J; Zicker, S C

    2000-01-01

    Oxidative damage to DNA, proteins, and lipids has been implicated as a contributor to aging and various chronic diseases. The presence of total alkenals (malondialdehyde and 4-hydroxyalkenals) in blood or tissues is an indicator of lipid peroxidation, which may be a result of in vivo oxidative reactions. Vitamin E functions as a chain-breaking antioxidant that prevents propagation of free radical damage in biologic membranes. This 6-week dose-titration study was conducted to assess the effect of selected dietary vitamin E levels on byproducts of in vivo oxidative reactions in dogs and cats. Forty healthy adult dogs and 40 healthy adult cats were assigned to four equal groups per species in a complete random block design. A control group for both dogs and cats was fed dry food containing 153 and 98 IU vitamin E/kg of food (as fed), respectively. Canine and feline treatment groups were fed the same basal dry food with vitamin E added at three different concentrations. The total analyzed dietary vitamin E levels for the canine treatment groups were 293, 445, and 598 IU vitamin E/kg of food, as fed. The total analyzed dietary vitamin E levels for the feline treatment groups were 248, 384, and 540 IU vitamin E/kg of food, as fed. Increasing levels of dietary vitamin E in dog and cat foods caused significant increases in serum vitamin E levels compared with baseline values. Although all treatments increased concentrations of vitamin E in serum, all were not effective at decreasing serum alkenal levels. The thresholds for significant reduction of serum alkenal concentrations in dogs and cats were 445 and 540 IU vitamin E/kg of food, respectively, on an as-fed basis. The results of this study show that normal dogs and cats experience oxidative damage and that increased dietary levels of antioxidants may decrease in vivo measures of oxidative damage.

  6. Effects of cancer cell permeability control on the efficiency of cell damage through surface plasmon resonance of gold nanoparticle (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hsiao, Jen-Hung; Yu, Jian-He; He, Yulu; Tu, Yi-Chou; Hua, Wei-Hsiang; Low, Meng Chun; Hsieh, Cheng-Che; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    Cancer cell killing efficiencies based on the photothermal effect caused by the surface plasmon resonance of metal nanoparticles (NPs) and the photodynamic effect caused by the singlet oxygen generation of a photosensitizer rely on the cell uptake efficiency of metal NP and photosensitizer. Perforation and heating can increase cell membrane permeability and hence can increase the cell uptake efficiency of NPs and drugs. In this paper, we demonstrate the variations of the cell damage efficiency under the illuminations of different lasers, which can produce mainly photothermal effect, mainly photodynamic effect, and mixed effect, when a pre-perforation and a pre-heating processes are applied. Au nanorings (NRIs) with their localized surface plasmon resonance wavelength around 1064 nm are used. The perforation process is undertaken by illuminating the cell samples by a femtosecond laser at 1064 nm with the power density lower than the cell damage threshold intensity. The heating process is implemented by illuminating cells with a low power continuous laser at 1064 nm. It is found that with the pre-perforation and pre-heating processes, the photodynamic effect is enhanced because the internalized Au NRI number and hence the internalized photosensitizer (AlPcS) molecule number are increased. However, the photothermal effect can be reduced because the adsorbed Au NRIs on cell membrane are effectively internalized during the pre-perforation and pre-heating processes. The photothermal effect is more effective when Au NRIs are adsorbed on cell membrane.

  7. Epidermal protection with cryogen spray cooling during high fluence pulsed dye laser irradiation: an ex vivo study.

    PubMed

    Tunnell, J W; Nelson, J S; Torres, J H; Anvari, B

    2000-01-01

    Higher laser fluences than currently used in therapy (5-10 J/cm(2)) are expected to result in more effective treatment of port wine stain (PWS) birthmarks. However, higher incident fluences increase the risk of epidermal damage caused by absorption of light by melanin. Cryogen spray cooling offers an effective method to reduce epidermal injury during laser irradiation. The objective of this study was to determine whether high laser incident fluences (15-30 J/cm(2)) could be used while still protecting the epidermis in ex vivo human skin samples. Non-PWS skin from a human cadaver was irradiated with a Candela ScleroPlus Laser (lambda = 585 nm; pulse duration = 1.5 msec) by using various incident fluences (8-30 J/cm(2)) without and with cryogen spray cooling (refrigerant R-134a; spurt durations: 40-250 msec). Assessment of epidermal damage was based on histologic analysis. Relatively short spurt durations (40-100 msec) protected the epidermis for laser incident fluences comparable to current therapeutic levels (8-10 J/cm(2)). However, longer spurt durations (100-250 msec) increased the fluence threshold for epidermal damage by a factor of three (up to 30 J/cm(2)) in these ex vivo samples. Results of this ex vivo study show that epidermal protection from high laser incident fluences can be achieved by increasing the cryogen spurt duration immediately before pulsed laser exposure. Copyright 2000 Wiley-Liss, Inc.

  8. Sensorineural hearing loss in patients with chronic suppurative otitis media: Is there a significant correlation?

    PubMed

    Amali, Amin; Hosseinzadeh, Nima; Samadi, Shahram; Nasiri, Shirin; Zebardast, Jayran

    2017-02-01

    Hearing loss as a sequel of chronic suppurative otitis media (CSOM) is often conductive, but recent studies have found an additional sensorineural component in these patients, thus demonstrating inner ear damage. The aim of the study was to determine the association between CSOM and sensorineural hearing loss (SNHL) and to assess the influence of patient's age, duration of disease, and presence of cholesteatoma and ossicular erosion on the degree of SNHL. In a retrospective study, the medical records of 119 patients who underwent surgery was reviewed. Seventy patients met the inclusion criteria of unilateral otorrhea, normal contralateral ear on otoscopy, and age between 10-65 years with no history of head trauma or ear surgery or familial hearing loss. Bone conduction (BC) thresholds for affected and contralateral ear were measured at frequencies of 500, 1000, 2000, and 4000 Hz. Data analysis was performed using SPSS 13 with independent-samples t-test, Pearson correlation test, and two-tailed analysis. A p ≤ 0.05 was considered statistically significant. Significant higher BC thresholds were found in the affected ear than in the normal ear for each frequency (p < 0.001), which increased with increasing frequency (7.00 dB at the 500 Hz and 9.71 dB at the 4000 Hz). There was a significant correlation between age and degree of SNHL (r = 0.422, p < 0.001) but no significant correlation was in duration of the disease (r = 0.119, p > 0.05). There was no relationship between presence of cholesteatoma and ossicular erosion with SNHL (p > 0.05). These findings demonstrate that CSOM is associated with some degree of SNHL and cochlear damage, and higher frequencies are more affected. Aging can act as a precipitating factor in this pathological process.

  9. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation

    PubMed Central

    Abdel-Daiem, A. M.; Ansari, M. Shahnawaze; Babkair, Saeed S.; Salah, Numan A.; Al-Mujtaba, A.

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169

  10. Process Control for Precipitation Prevention in Space Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.

  11. Mechanical Damage of Tympanic Membrane in Relation to Impulse Pressure Waveform – A Study in Chinchillas

    PubMed Central

    Gan, Rong Z.; Nakmali, Don; Ji, Xiao D.; Leckness, Kegan; Yokell, Zachary

    2016-01-01

    Mechanical damage to middle ear components in blast exposure directly causes hearing loss, and the rupture of the tympanic membrane (TM) is the most frequent injury of the ear. However, it is unclear how the severity of injury graded by different patterns of TM rupture is related to the overpressure waveforms induced by blast waves. In the present study, the relationship between the TM rupture threshold and the impulse or overpressure waveform has been investigated in chinchillas. Two groups of animals were exposed to blast overpressure simulated in our lab under two conditions: open field and shielded with a stainless steel cup covering the animal head. Auditory brainstem response (ABR) and wideband tympanometry were measured before and after exposure to check the hearing threshold and middle ear function. Results show that waveforms recorded in the shielded case were different from those in the open field and the TM rupture threshold in the shielded case was lower than that in the open field (3.4±0.7 vs. 9.1±1.7 psi or 181±1.6 vs. 190±1.9 dB SPL). The impulse pressure energy spectra analysis of waveforms demonstrates that the shielded waveforms include greater energy at high frequencies than that of the open field waves. Finally, a 3D finite element (FE) model of the chinchilla ear was used to compute the distributions of stress in the TM and the TM displacement with impulse pressure waves. The FE model-derived change of stress in response to pressure loading in the shielded case was substantially faster than that in the open case. This finding provides the biomechanical mechanisms for blast induced TM damage in relation to overpressure waveforms. The TM rupture threshold difference between the open and shielded cases suggests that an acoustic role of helmets may exist, intensifying ear injury during blast exposure. PMID:26807796

  12. Optical characterization in wide spectral range by a coherent spectrophotometer

    NASA Astrophysics Data System (ADS)

    Sirutkaitis, Valdas; Eckardt, Robert C.; Balachninaite, Ona; Grigonis, Rimantas; Melninkaitis, A.; Rakickas, T.

    2003-11-01

    We report on the development and use of coherent spectrophotometers specialized for the unusual requirements of characterizing nonlinear optical materials and multilayer dielectric coatings used in laser systems. A large dynamic range is required to measure the linear properties of transmission, reflection and absorption and nonlinear properties of laser-induced damage threshold and nonlinear frequency conversion. Optical parametric oscillators generate coherent radiation that is widely tunable with instantaneous powers that can range from milliwatts to megawatts and are well matched to this application. As particular example a laser spectrophotometer based on optical parametric oscillators and a diode-pumped, Q-switched Nd:YAG laser and suitable for optical characterization in the spectral range 420-4500 nm is described. Measurements include reflectance and transmittance, absorption, scattering and laser-induced damage thresholds. Possibilities of a system based on a 130-fs Ti:sapphire laser and optical parametric generators are also discussed.

  13. Synthesis, Hirshfeld surface analysis, laser damage threshold, third-order nonlinear optical property and DFT computation studies of Dichlorobis(DL-valine)zinc(II): A spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Chitrambalam, S.; Manimaran, D.; Hubert Joe, I.; Rastogi, V. K.; Ul Hassan, Israr

    2018-01-01

    The organometallic crystal of Dichlorobis(DL-valine)zinc(II) was grown by solution growth method. The computed structural geometry, vibrational wavenumbers and UV-visible spectra were compared with experimental results. Hirshfeld surface map was used to locate electron density and the fingerprint plots percentages are responsible for the stabilization of intermolecular interactions in molecular crystal. The second-order hyperpolarizability value of the molecule was also calculated at density functional theory method. The surface resistance and third-order nonlinear optical property of the crystal were studied by laser induced surface damage threshold and Z-scan techniques, respectively using Nd:YAG laser with wavelength 532 nm. The open aperture result exhibits the reverse saturation absorption, which indicate that this material has potential candidate for optical limiting and optoelectronic applications.

  14. Feasibility of Ionization-Mediated Pathway for Ultraviolet-Induced Melanin Damage.

    PubMed

    Mandal, Mukunda; Das, Tamal; Grewal, Baljinder K; Ghosh, Debashree

    2015-10-22

    Melanin is the pigment found in human skin that is responsible for both photoprotection and photodamage. Recently there have been reports that greater photodamage of DNA occurs when cells containing melanin are irradiated with ultraviolet (UV) radiation, thus suggesting that the photoproducts of melanin cause DNA damage. Photoionization processes have also been implicated in the photodegradation of melanin. However, not much is known about the oxidation potential of melanin and its monomers. In this work we calculate the ionization energies of monomers, dimers, and few oligomers of eumelanin to estimate the threshold energy required for the ionization of eumelanin. We find that this threshold is within the UV-B region for eumelanin. We also look at the charge and spin distributions of the various ionized states of the monomers that are formed to understand which of the ionization channels might favor monomerization from a covalent dimer.

  15. Laser megajoule 1.06-μm mirror production with very high laser damage threshold

    NASA Astrophysics Data System (ADS)

    Pinot, B.; Leplan, Herve; Houbre, Francois; Lavastre, Eric; Poncetta, Jean-Christophe; Chabassier, Genevieve

    2002-03-01

    As part of the LMJ (Laser Megajoule) program, CEA is building the LIL laser with full size optics and LMJ requirements. SAGEM has been selected as the supplier of large optical components and coatings with very high laser- induced damage threshold. Including spare parts, about 100 mirrors 610*430 mm2 with LIDT-3ns>25 J/cm2 have to be produced. Using a 5 m3 vacuum chamber and the 100 J/cm2 mirror coating process developed at CEA-LETI, with Hafnium and SiO2 materials, we are now typically in a serial production phase. To date, about thirty mirrors have been delivered. This paper focuses on the acceptance tests performed after coating, at SAGEM then CEA: LIDT measurement and Raster-Scan on samples; reflectance mapping on CEA automatic photometer; reflected wavefront deformation with \

  16. Thermomechanical fatigue life prediction for several solders

    NASA Astrophysics Data System (ADS)

    Wen, Shengmin

    Since solder connections operate at high homologous temperature, solders are high temperature materials. This feature makes their mechanical behavior and fatigue phenomena unique. Based on experimental findings, a physical damage mechanism is introduced for solders. The mechanism views the damage process as a series of independent local damage events characterized by the failure of individual grains, while the structural damage is the eventual percolation result of such local events. Fine's dislocation energy density concept and Mura's microcrack initiation theory are adopted to derive the fatigue formula for an individual grain. A physical damage metric is introduced to describe the material with damage. A unified creep and plasticity constitutive model is adopted to simulate the mechanical behavior of solders. The model is cast into a continuum damage mechanics framework to simulate material with damage. The model gives good agreement with the experimental results of 96.5Pb-3.5Sn and 96.5Sn-3.5Ag solders under uniaxial strain-controlled cyclic loading. The model is convenient for implementation into commercial computational packages. Also presented is a fatigue theory with its failure criterion for solders based on physical damage mechanism. By introducing grain orientation into the fatigue formula, an m-N curve (m is Schmid factor) at constant loading condition is suggested for fatigue of grains with different orientations. A solder structure is defined as fatigued when the damage metric reaches a critical threshold, since at this threshold the failed grains may form a cluster and percolate through the structure according to percolation theory. Fatigue data of 96.5Pb-3.5Sn solder bulk specimens under various uniaxial tension tests were analyzed. Results show that the theory gives consistent predictions under broad conditions, while inelastic strain theory does not. The theory is anisotropic with no size limitation to its application, which could be suitable for anisotropic small-scale (micron or nano scale) solder joints. More importantly, the theory is materials science based so that the parameters of the fatigue formula can be worked out by testing of bulk specimens while the formula can be applicable to small-scale structures. The theory suggests metallurgical control in the manufacturing process to optimize the fatigue life of solder structures.

  17. Multi-scale landscape factors influencing stream water quality in the state of Oregon.

    PubMed

    Nash, Maliha S; Heggem, Daniel T; Ebert, Donald; Wade, Timothy G; Hall, Robert K

    2009-09-01

    Enterococci bacteria are used to indicate the presence of human and/or animal fecal materials in surface water. In addition to human influences on the quality of surface water, a cattle grazing is a widespread and persistent ecological stressor in the Western United States. Cattle may affect surface water quality directly by depositing nutrients and bacteria, and indirectly by damaging stream banks or removing vegetation cover, which may lead to increased sediment loads. This study used the State of Oregon surface water data to determine the likelihood of animal pathogen presence using enterococci and analyzed the spatial distribution and relationship of biotic (enterococci) and abiotic (nitrogen and phosphorous) surface water constituents to landscape metrics and others (e.g. human use, percent riparian cover, natural covers, grazing, etc.). We used a grazing potential index (GPI) based on proximity to water, land ownership and forage availability. Mean and variability of GPI, forage availability, stream density and length, and landscape metrics were related to enterococci and many forms of nitrogen and phosphorous in standard and logistic regression models. The GPI did not have a significant role in the models, but forage related variables had significant contribution. Urban land use within stream reach was the main driving factor when exceeding the threshold (> or =35 cfu/100 ml), agriculture was the driving force in elevating enterococci in sites where enterococci concentration was <35 cfu/100 ml. Landscape metrics related to amount of agriculture, wetlands and urban all contributed to increasing nutrients in surface water but at different scales. The probability of having sites with concentrations of enterococci above the threshold was much lower in areas of natural land cover and much higher in areas with higher urban land use within 60 m of stream. A 1% increase in natural land cover was associated with a 12% decrease in the predicted odds of having a site exceeding the threshold. Opposite to natural land cover, a one unit change in each of manmade barren and urban land use led to an increase of the likelihood of exceeding the threshold by 73%, and 11%, respectively. Change in urban land use had a higher influence on the likelihood of a site exceeding the threshold than that of natural land cover.

  18. Considerations for theoretical modeling of thermal ablation with catheter-based ultrasonic sources: implications for treatment planning, monitoring and control

    PubMed Central

    Prakash, Punit; Diederich, Chris J.

    2012-01-01

    Purpose To determine the impact of including dynamic changes in tissue physical properties during heating on feedback controlled thermal ablation with catheter-based ultrasound. Additionally, we compared impact several indicators of thermal damage on predicted extents of ablation zones for planning and monitoring ablations with this modality. Methods A 3D model of ultrasound ablation with interstitial and transurethral applicators incorporating temperature based feedback control was used to simulate thermal ablations in prostate and liver tissue. We investigated five coupled models of heat dependent changes in tissue acoustic attenuation/absorption and blood perfusion of varying degrees of complexity.. Dimensions of the ablation zone were computed using temperature, thermal dose, and Arrhenius thermal damage indicators of coagulative necrosis. A comparison of the predictions by each of these models was illustrated on a patient-specific anatomy in the treatment planning setting. Results Models including dynamic changes in blood perfusion and acoustic attenuation as a function of thermal dose/damage predicted near-identical ablation zone volumes (maximum variation < 2.5%). Accounting for dynamic acoustic attenuation appeared to play a critical role in estimating ablation zone size, as models using constant values for acoustic attenuation predicted ablation zone volumes up to 50% larger or 47% smaller in liver and prostate tissue, respectively. Thermal dose (t43 ≥ 240min) and thermal damage (Ω ≥ 4.6) thresholds for coagulative necrosis are in good agreement for all heating durations, temperature thresholds in the range of 54 °C for short (< 5 min) duration ablations and 50 °C for long (15 min) ablations may serve as surrogates for determination of the outer treatment boundary. Conclusions Accounting for dynamic changes in acoustic attenuation/absorption appeared to play a critical role in predicted extents of ablation zones. For typical 5—15 min ablations with this modality, thermal dose and Arrhenius damage measures of ablation zone dimensions are in good agreement, while appropriately selected temperature thresholds provide a computationally cheaper surrogate. PMID:22235787

  19. High-Burnup-Structure (HBS): Model Development in MARMOT for HBS Formation and Stability Under Radiation and High Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, K.; Bai, X.; Zhang, Y.

    2016-09-01

    A detailed phase field model for the formation of High Burnup Structure (HBS) was developed and implemented in MARMOT. The model treats the HBS formation as an irradiation-induced recrystallization. The model takes into consideration the stored energy associated with dislocations formed under irradiation. The accumulation of radiation damage, hence, increases the system free energy and triggers recrystallization. The increase in the free energy due to the formation of new grain boundaries is offset by the reduction in the free energy by creating dislocation-free grains at the expense of the deformed grains. The model was first used to study the growthmore » of recrystallized flat and circular grains. The model reults were shown to agree well with theorrtical predictions. The case of HBS formation in UO2 was then investigated. It was found that a threshold dislocation density of (or equivalently a threshold burn-up of 33-40 GWd/t) is required for HBS formation at 1200K, which is in good agrrement with theory and experiments. In future studies, the presence of gas bubbles and their effect on the formation and evolution of HBS will be considered.« less

  20. A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangote, B.; Gallais, L.; Zerrad, M.

    2012-01-15

    A laser damage test facility delivering pulses from 100 fs to 3 ps and designed to operate at 1030 nm is presented. The different details of its implementation and performances are given. The originality of this system relies the online damage detection system based on Nomarski microscopy and the use of a non-conventional energy detection method based on the utilization of a cooled CCD that offers the possibility to obtain the laser induced damage threshold (LIDT) with high accuracy. Applications of this instrument to study thin films under laser irradiation are presented. Particularly the deterministic behavior of the sub-picosecond damagemore » is investigated in the case of fused silica and oxide films. It is demonstrated that the transition of 0-1 damage probability is very sharp and the LIDT is perfectly deterministic at few hundreds of femtoseconds. The damage process in dielectric materials being the results of electronic processes, specific information such as the material bandgap is needed for the interpretation of results and applications of scaling laws. A review of the different approaches for the estimation of the absorption gap of optical dielectric coatings is conducted and the results given by the different methods are compared and discussed. The LIDT and gap of several oxide materials are then measured with the presented instrument: Al{sub 2}O{sub 3}, Nb{sub 2}O{sub 5}, HfO{sub 2}, SiO{sub 2}, Ta{sub 2}O{sub 5}, and ZrO{sub 2}. The obtained relation between the LIDT and gap at 1030 nm confirms the linear evolution of the threshold with the bandgap that exists at 800 nm, and our work expands the number of tested materials.« less

  1. Statistical analysis of the uncertainty related to flood hazard appraisal

    NASA Astrophysics Data System (ADS)

    Notaro, Vincenza; Freni, Gabriele

    2015-12-01

    The estimation of flood hazard frequency statistics for an urban catchment is of great interest in practice. It provides the evaluation of potential flood risk and related damage and supports decision making for flood risk management. Flood risk is usually defined as function of the probability, that a system deficiency can cause flooding (hazard), and the expected damage, due to the flooding magnitude (damage), taking into account both the exposure and the vulnerability of the goods at risk. The expected flood damage can be evaluated by an a priori estimation of potential damage caused by flooding or by interpolating real damage data. With regard to flood hazard appraisal several procedures propose to identify some hazard indicator (HI) such as flood depth or the combination of flood depth and velocity and to assess the flood hazard corresponding to the analyzed area comparing the HI variables with user-defined threshold values or curves (penalty curves or matrixes). However, flooding data are usually unavailable or piecemeal allowing for carrying out a reliable flood hazard analysis, therefore hazard analysis is often performed by means of mathematical simulations aimed at evaluating water levels and flow velocities over catchment surface. As results a great part of the uncertainties intrinsic to flood risk appraisal can be related to the hazard evaluation due to the uncertainty inherent to modeling results and to the subjectivity of the user defined hazard thresholds applied to link flood depth to a hazard level. In the present work, a statistical methodology was proposed for evaluating and reducing the uncertainties connected with hazard level estimation. The methodology has been applied to a real urban watershed as case study.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachman, D., E-mail: bachman@ualberta.ca; Fedosejevs, R.; Tsui, Y. Y.

    An optical damage threshold for crystalline silicon from single femtosecond laser pulses was determined by detecting a permanent change in the refractive index of the material. This index change could be detected with unprecedented sensitivity by measuring the resonant wavelength shift of silicon integrated optics microring resonators irradiated with femtosecond laser pulses at 400 nm and 800 nm wavelengths. The threshold for permanent index change at 400 nm wavelength was determined to be 0.053 ± 0.007 J/cm{sup 2}, which agrees with previously reported threshold values for femtosecond laser modification of crystalline silicon. However, the threshold for index change at 800 nm wavelength was found to be 0.044 ± 0.005 J/cm{supmore » 2}, which is five times lower than the previously reported threshold values for visual change on the silicon surface. The discrepancy is attributed to possible modification of the crystallinity of silicon below the melting temperature that has not been detected before.« less

  3. Successful application of Low Voltage Electron Microscopy to practical materials problems.

    PubMed

    Bell, David C; Mankin, Max; Day, Robert W; Erdman, Natasha

    2014-10-01

    Low-voltage High-Resolution Electron Microscopy (LVHREM) has several advantages, including increased cross-sections for inelastic and elastic scattering, increased contrast per electron, decreased delocalization effects and reduced knock-on damage. Imaging at differing voltages has shown advantages for imaging materials that are knock-on damage sensitive. We show experimentally that different materials systems benefit from low voltage high-resolution microscopy. There are advantages for imaging single layer materials such as graphene at below the knock-on threshold; we present an example of imaging a graphene sheet at 40kV. We have also examined mesoporous silica decorated with Pd nanoparticles and carbon black functionalized with Pd/Pt nanoparticles. In these cases we show that the lower voltage imaging maintains the structure of the surrounding matrix during imaging, whereas aberration correction provides the higher resolution for imaging the nanoparticle lattice. Perhaps surprisingly we show that zeolites damage preferentially by ionization effects (radiolysis). The current literature suggests that below incident energies of 40kV the damage is mainly radiolitic, whereas at incident energies above 200kV the knock-on damage and material sputtering will be the dominant effect. Our experimental observations support this conclusion and the effects we have observed at 40kV are not indicative of knock-on damage. Other nanoscale materials such as thin silicon nanowires also benefit from lower voltage imaging. LVHREM imaging provides an excellent option to avoid beam damage to nanowires; our results suggest that LVHREM is suitable for nanowire-biological composites. Our experimental observations serve as a clear demonstration that even at 40keV accelerating voltage, LVHREM can be used without inducing beam damage to locate dislocations and other crystalline defects, which may have adverse effects on nanowire device performance. Low voltage operation will likely become the new mode of imaging for many electron microscopes, with the instrument being, in essence, tuned to extract all the information possible from each electron that transits the sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. An improved probit method for assessment of domino effect to chemical process equipment caused by overpressure.

    PubMed

    Mingguang, Zhang; Juncheng, Jiang

    2008-10-30

    Overpressure is one important cause of domino effect in accidents of chemical process equipments. Damage probability and relative threshold value are two necessary parameters in QRA of this phenomenon. Some simple models had been proposed based on scarce data or oversimplified assumption. Hence, more data about damage to chemical process equipments were gathered and analyzed, a quantitative relationship between damage probability and damage degrees of equipment was built, and reliable probit models were developed associated to specific category of chemical process equipments. Finally, the improvements of present models were evidenced through comparison with other models in literatures, taking into account such parameters: consistency between models and data, depth of quantitativeness in QRA.

  5. Evaluating the potential genotoxicity of phthalates esters (PAEs) in perfumes using in vitro assays.

    PubMed

    Al-Saleh, Iman; Al-Rajudi, Tahreer; Al-Qudaihi, Ghofran; Manogaran, Pulicat

    2017-10-01

    We previously reported high levels of phthalate esters (PAEs) added as solvents or fixatives in 47 brands of perfumes. Diethyl phthalate was the most abundant compound (0.232-23,649 ppm), and 83.3% of the perfumes had levels >1 ppm, the threshold limit cited by a Greenpeace investigation. All samples had dimethyl phthalate levels higher than its threshold limit of 0.1 ppm, and 88, 38, and 7% of the perfumes had benzyl butyl phthalate, di(2-ethylhexyl) phthalate, and dibutyl phthalate levels, respectively, above their threshold limits. The role of PAEs as endocrine disruptors has been well documented, but their effect on genotoxic behavior has received little attention. We used in vitro single-cell gel electrophoresis (comet) and micronucleus (MN) assays with human lymphoblastoid TK6 cells to evaluate the genotoxic potency of 42 of the same perfumes and to determine its association with PAEs. All perfumes induced more DNA damage than a negative control (NEG), ≥ 90% of the samples caused more damage than cells treated with the vehicles possibly used in perfume's preparations such as methanol (ME) and ethanol (ET), and 11.6% of the perfumes caused more DNA damage than a positive control (hydrogen peroxide). Chromosome breakage expressed as MN frequency was higher in cells treated with 71.4, 64.3, 57.1, and 4.8% of the perfumes than in NEG, cells treated with ME or ET, and another positive control (x-rays), respectively. The genotoxic responses in the comet and MN assays were not correlated. The comet assay indicated that the damage in TK6 cells treated with five PAEs at concentrations of 0.05 and 0.2 ppm either individually or as a mixture did not differ significantly from the damage in cells treated with the perfumes. Unlike the comet assay, the sensitivity of the MN assay to PAEs was weak at both low and high concentrations, and MN frequencies were generally low. This study demonstrates for the first time the possible contribution of PAEs in perfumes to DNA damage and suggests that their use as solvents or fixatives should be regulated. Other ingredients with mutagenic/genotoxic properties, however, may also have contributed to the DNA damage. Future studies should focus on applying a series of assays that use different cellular models with various endpoints to identify the spectrum of genotoxic mechanisms involved.

  6. Outstanding laser damage threshold in Li2MnGeS4 and tunable optical nonlinearity in diamond-like semiconductors.

    PubMed

    Brant, Jacilynn A; Clark, Daniel J; Kim, Yong Soo; Jang, Joon I; Weiland, Ashley; Aitken, Jennifer A

    2015-03-16

    The new Li2MnGeS4 and Li2CoSnS4 compounds result from employing a rational and simple design strategy that guides the discovery of diamond-like semiconductors (DLSs) with wide regions of optical transparency, high laser damage threshold, and efficient second-order optical nonlinearity. Single-crystal X-ray diffraction was used to solve and refine the crystal structures of Li2MnGeS4 and Li2CoSnS4, which crystallize in the noncentrosymmetric space groups Pna21 and Pn, respectively. Synchrotron X-ray powder diffraction (SXRPD) was used to assess the phase purity, and diffuse reflectance UV-vis-NIR spectroscopy was used to estimate the bandgaps of Li2MnGeS4 (Eg = 3.069(3) eV) and Li2CoSnS4 (Eg = 2.421(3) eV). In comparison with Li2FeGeS4, Li2FeSnS4, and Li2CoSnS4 DLSs, Li2MnGeS4 exhibits the widest region of optical transparency (0.60-25 μm) and phase matchability (≥1.6 μm). All four of the DLSs exhibit second-harmonic generation and are compared with the benchmark NLO material, AgGaSe2. Most remarkably, Li2MnGeS4 does not undergo two- or three-photon absorption upon exposure to a fundamental Nd:YAG beam (λ = 1.064 μm) and exhibits a laser damage threshold > 16 GW/cm(2).

  7. A New Integrated Threshold Selection Methodology for Spatial Forecast Verification of Extreme Events

    NASA Astrophysics Data System (ADS)

    Kholodovsky, V.

    2017-12-01

    Extreme weather and climate events such as heavy precipitation, heat waves and strong winds can cause extensive damage to the society in terms of human lives and financial losses. As climate changes, it is important to understand how extreme weather events may change as a result. Climate and statistical models are often independently used to model those phenomena. To better assess performance of the climate models, a variety of spatial forecast verification methods have been developed. However, spatial verification metrics that are widely used in comparing mean states, in most cases, do not have an adequate theoretical justification to benchmark extreme weather events. We proposed a new integrated threshold selection methodology for spatial forecast verification of extreme events that couples existing pattern recognition indices with high threshold choices. This integrated approach has three main steps: 1) dimension reduction; 2) geometric domain mapping; and 3) thresholds clustering. We apply this approach to an observed precipitation dataset over CONUS. The results are evaluated by displaying threshold distribution seasonally, monthly and annually. The method offers user the flexibility of selecting a high threshold that is linked to desired geometrical properties. The proposed high threshold methodology could either complement existing spatial verification methods, where threshold selection is arbitrary, or be directly applicable in extreme value theory.

  8. Interactive effects of pests increase seed yield.

    PubMed

    Gagic, Vesna; Riggi, Laura Ga; Ekbom, Barbara; Malsher, Gerard; Rusch, Adrien; Bommarco, Riccardo

    2016-04-01

    Loss in seed yield and therefore decrease in plant fitness due to simultaneous attacks by multiple herbivores is not necessarily additive, as demonstrated in evolutionary studies on wild plants. However, it is not clear how this transfers to crop plants that grow in very different conditions compared to wild plants. Nevertheless, loss in crop seed yield caused by any single pest is most often studied in isolation although crop plants are attacked by many pests that can cause substantial yield losses. This is especially important for crops able to compensate and even overcompensate for the damage. We investigated the interactive impacts on crop yield of four insect pests attacking different plant parts at different times during the cropping season. In 15 oilseed rape fields in Sweden, we estimated the damage caused by seed and stem weevils, pollen beetles, and pod midges. Pest pressure varied drastically among fields with very low correlation among pests, allowing us to explore interactive impacts on yield from attacks by multiple species. The plant damage caused by each pest species individually had, as expected, either no, or a negative impact on seed yield and the strongest negative effect was caused by pollen beetles. However, seed yield increased when plant damage caused by both seed and stem weevils was high, presumably due to the joint plant compensatory reaction to insect attack leading to overcompensation. Hence, attacks by several pests can change the impact on yield of individual pest species. Economic thresholds based on single species, on which pest management decisions currently rely, may therefore result in economically suboptimal choices being made and unnecessary excessive use of insecticides.

  9. Electrofishing for crappies: Electrical settings influence immobilization efficiency, injury, and mortality

    USGS Publications Warehouse

    Dolan, C.R.; Miranda, L.E.; Henry, T.B.

    2002-01-01

    Continuous direct current (DC) and pulsed DC (PDC) of varying frequency and pulse period are commonly used to immobilize and collect crappies Pomoxis spp. in freshwater. However, little information is available about the minimum electrical-setting thresholds required for immobilization or how the settings relate to incidence of injury. We investigated the effect of increasing power densities on the immobilization and injury of black crappies P. nigromaculatus (average total length = 154 mm) treated with DC and various PDC settings. Forced swimming toward the electrodes was observed in black crappies exposed to DC, but that was less apparent for PDC. The minimum peak power densities required to immobilize black crappies ranged from 0.10 to 6.5 mW/cm3 and depended on pulse frequency and period. The incidence of hemorrhaging ranged from 0% to 50% and that of spinal damage from 9% to 45%. However, the severity of injury also depended on pulse frequency and period. No fish suffered mortality at or below the immobilization thresholds, but mortality ranged from 0% to 15% at settings above the thresholds. Mortality was observed with PDC settings of 15 Hz only. Fish that were tetanized following electrical treatment were more prone to injury than those that exhibited narcosis.

  10. Considerable knock-on displacement of metal atoms under a low energy electron beam.

    PubMed

    Gu, Hengfei; Li, Geping; Liu, Chengze; Yuan, Fusen; Han, Fuzhou; Zhang, Lifeng; Wu, Songquan

    2017-03-15

    Under electron beam irradiation, knock-on atomic displacement is commonly thought to occur only when the incident electron energy is above the incident-energy threshold of the material in question. However, we report that when exposed to intense electrons at room temperature at a low incident energy of 30 keV, which is far below the theoretically predicted incident-energy threshold of zirconium, Zircaloy-4 (Zr-1.50Sn-0.25Fe-0.15Cr (wt.%)) surfaces can undergo considerable displacement damage. We demonstrate that electron beam irradiation of the bulk Zircaloy-4 surface resulted in a striking radiation effect that nanoscale precipitates within the surface layer gradually emerged and became clearly visible with increasing the irradiation time. Our transmission electron microscope (TEM) observations further reveal that electron beam irradiation of the thin-film Zircaly-4 surface caused the sputtering of surface α-Zr atoms, the nanoscale atomic restructuring in the α-Zr matrix, and the amorphization of precipitates. These results are the first direct evidences suggesting that displacement of metal atoms can be induced by a low incident electron energy below threshold. The presented way to irradiate may be extended to other materials aiming at producing appealing properties for applications in fields of nanotechnology, surface technology, and others.

  11. Biomarkers of oxidative stress and cataract. Novel drug delivery therapeutic strategies targeting telomere reduction and the expression of telomerase activity in the lens epithelial cells with N-acetylcarnosine lubricant eye drops: anti-cataract which helps to prevent and treat cataracts in the eyes of dogs and other animals.

    PubMed

    Babizhayev, Mark A; Yegorov, Yegor E

    2014-01-01

    Cataracts in small animals are shown to be at least partially caused by oxidative damage to lens epithelial cells (LECs) and the internal lens; biomarkers of oxidative stress in the lens are considered as general biomarkers for life expectancy in the canine and other animals. Telomeres lengths and expressed telomerase activity in canine LECs may serve as important monitors of oxidative damage in normal LECs with documented higher levels of telomerase activity in cataractous LECs during cells' lifespan. Loss of functional telomere length below a critical threshold in LECs of canines during the effect of UV and chronic oxidative stress or metabolic failure, can activate programs leading to LEC senescence or death. Telomerase is induced in LECs of canines at critical stages of cataractogenesis initiation and exposure to oxidative stress through the involvement of catalytically active prooxidant transition metal (iron) ions. This work documents that transition metal ions (such as, ferrous ions- catalytic oxidants) might induce premature senescence in LECs of canines, telomere shortening with increased telomerase activity as adaptive response to UV light, oxidative and metabolic stresses. The therapeutic treatment with 1% N-acetylcarnosine (NAC) prodrug delivery is beneficial for prevention and dissolution of ripe cataracts in canines. This biological activity is based on the findings of ferroxidase activity pertinent to the dipeptide carnosine released ophthalmically from NAC prodrug of L-carnosine, stabilizing properties of carnosine on biological membranes based on the ability of the imidazole-containing dipeptides to interact with lipid peroxidation products and reactive oxygen species (ROS), to prevent membrane damage and delute the associated with membrane fragements protein aggregates. The advent of therapeutic treatment of cataracts in canines with N-acetylcarnosine lubricant eye drops through targeting the prevention of loss of functional telomere length below a critical threshold and "flirting" with an indirect effect with telomerase expression in LECs of canines during the effects of UV, chronic oxidative stress increases the successful rate of cataract management challenges in home veterinary care.

  12. Cell rejuvenation and social behaviors promoted by LPS exchange in myxobacteria.

    PubMed

    Vassallo, Christopher; Pathak, Darshankumar T; Cao, Pengbo; Zuckerman, David M; Hoiczyk, Egbert; Wall, Daniel

    2015-06-02

    Bacterial cells in their native environments must cope with factors that compromise the integrity of the cell. The mechanisms of coping with damage in a social or multicellular context are poorly understood. Here we investigated how a model social bacterium, Myxococcus xanthus, approaches this problem. We focused on the social behavior of outer membrane exchange (OME), in which cells transiently fuse and exchange their outer membrane (OM) contents. This behavior requires TraA, a homophilic cell surface receptor that identifies kin based on similarities in a polymorphic region, and the TraB cohort protein. As observed by electron microscopy, TraAB overexpression catalyzed a prefusion OM junction between cells. We then showed that damage sustained by the OM of one population was repaired by OME with a healthy population. Specifically, LPS mutants that were defective in motility and sporulation were rescued by OME with healthy donors. In addition, a mutant with a conditional lethal mutation in lpxC, an essential gene required for lipid A biosynthesis, was rescued by Tra-dependent interactions with a healthy population. Furthermore, lpxC cells with damaged OMs, which were more susceptible to antibiotics, had resistance conferred to them by OME with healthy donors. We also show that OME has beneficial fitness consequences to all cells. Here, in merged populations of damaged and healthy cells, OME catalyzed a dilution of OM damage, increasing developmental sporulation outcomes of the combined population by allowing it to reach a threshold density. We propose that OME is a mechanism that myxobacteria use to overcome cell damage and to transition to a multicellular organism.

  13. Effects of taurine on markers of muscle damage, inflammatory response and physical performance in triathletes.

    PubMed

    Martinez Galan, Bryan S; Giolo de Carvalho, Flavia; Carvalho Santos, Priscila; Bucken Gobbi, Ronaldo; Kalva-Filho, Carlos; Papoti, Marcelo; Sanchez Silva, Adelino; Freitas, Ellen C

    2017-07-25

    The practice of prolonged exercise with high intensity, as seen in triathlon training, can cause physiological imbalances that might result in muscle fatigue, muscle damage and changes in systemic inflammatory response, thus reduce the athletes physical performance, therefore, both adequate total caloric and macronutrient intake also the use of a specific ergogenic aid, as taurine supplementation would be an alternative to prevent inflammation and muscle damage. In order to verify the effects of 8 weeks of taurine and chocolate milk supplementation, markers of muscle damage, inflammation, and aerobic capacity were quantified in triathletes. A double-blind, crossover, randomized study was conducted with 9 male long distance triathletes, aged 25-35 years. Supplementation of 3 g of taurine (TAU) or placebo (PLA) associated with 400 ml low fat chocolate milk was performed during an 8-week period. In order to verify the effects of the supplementation protocol markers of muscle damage as lactate dehydrogenase (LDH) and creatine kinase (CK), and inflammatory markers tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were quantified, also triathletes performance was evaluated by exhaust test on a treadmill. It was observed a significant increase in taurine and CK plasma levels after TAU supplementation (p=0.02 and p=0.01, respectively). However, LDH concentrations did not differ significantly after the supplementations performed, and there were no changes in physical performance parameters; anaerobic threshold, perceived exertion, heart rate, and the concentrations of IL-6 and TNF-α. Taurine supplementation did not provide benefits on performance and muscle damage in triathletes.

  14. Large core fiber optic cleaver

    DOEpatents

    Halpin, John M.

    1996-01-01

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 .mu.m.

  15. Predictors of hearing threshold levels and distortion product otoacoustic emissions among noise exposed young adults.

    PubMed

    Seixas, N S; Kujawa, S G; Norton, S; Sheppard, L; Neitzel, R; Slee, A

    2004-11-01

    To examine the relations between noise exposure and other risk factors with hearing function as measured by audiometric thresholds and distortion product otoacoustic emissions. A total of 456 subjects were studied (393 apprentices in construction trades and 63 graduate students). Hearing and peripheral auditory function were quantified using standard, automated threshold audiometry, tympanometry, and distortion product otoacoustic emissions (DPOAEs). The analysis addressed relations of noise exposure history and other risk factors with hearing threshold levels (HTLs) and DPOAEs at the baseline test for the cohort. The cohort had a mean age of 27 (7) years. The construction apprentices reported more noise exposure than students in both their occupational and non-occupational exposure histories. A strong effect of age and years of work in construction was observed at 4, 6, and 8 kHz for both HTLs and DPOAEs. Each year of construction work reported prior to baseline was associated with a 0.7 dB increase in HTL or 0.2 dB decrease DPOAE amplitude. Overall, there was a very similar pattern of effects between the HTLs and DPOAEs. This analysis shows a relatively good correspondence between the associations of noise exposures and other risk factors with DPOAEs and the associations observed with pure-tone audiometric thresholds in a young adult working population. The results provide further evidence that DPOAEs can be used to assess damage to hearing from a variety of exposures including noise. Clarifying advantages of DPOAEs or HTLs in terms of sensitivity to early manifestations of noise insults, or their utility in predicting future loss in hearing will require longitudinal follow up.

  16. Evaluation of plasma-induced damage and bias temperature instability depending on type of antenna layer using current-starved ring oscillators

    NASA Astrophysics Data System (ADS)

    Kishida, Ryo; Furuta, Jun; Kobayashi, Kazutoshi

    2018-04-01

    Plasma-induced damage (PID) and bias temperature instability (BTI) are inevitable reliability issues that degrade the performance of transistors. In this study, PID and BTI, depending on the type of antenna layer, are evaluated in current-starved ring oscillators (ROs) to separate degradations in PMOS and NMOS transistors in a 65 nm silicon-on-insulator (SOI) process. Oscillation frequencies of ROs fluctuate with the performance of MOSFET switches between power/ground rails and virtual power/ground nodes. The initial frequencies of ROs with PMOS switches having antennas on upper layers decrease. However, those with NMOS switches become higher than those without PID because high-k dielectrics are damaged by positive charges. The degradation induced by negative BTI (NBTI) in PMOS is 1.5 times larger than that induced by positive BTI (PBTI) in NMOS. However, both NBTI- and PBTI-induced degradations are the same among different antenna layers. The frequency fluctuation caused by PID is converted to threshold voltage shifts by circuit simulations. Threshold voltages shift by 8.4 and 11% owing to PID in PMOS and NMOS transistors, respectively.

  17. Impaired Expression of Neuronal Nitric Oxide Synthase in the Gracile Nucleus Is Involved in Neuropathic Changes in Zucker Diabetic Fatty Rats with and without 2,5-Hexanedione Intoxication

    PubMed Central

    Ma, Sheng-Xing; Peterson, Richard G.; Magee, Edward M.; Lee, Paul; Lee, Wai-Nang Paul; Li, Xi-Yan

    2015-01-01

    These studies examined the influence of 2,5-hexanedione (2,5-HD) intoxication on expression of neuronal nitric oxide synthase (nNOS) in the brainstem nuclei in Zucker Diabetic Fatty (ZDF) vs. lean control (LC) rats. Functional neuropathic changes were also investigated following axonal damage and impaired axonal transport induced by the treatment. Animals were intoxicated by i.p. injection of 2,5-HD plus unilateral administration of 2,5-HD over the sciatic nerve. The mechanical thresholds and withdrawal latencies to heat and cold stimuli on the foot were measured at baseline and after intoxication. The medulla sections were examined by nNOS immunohistochemistry and NADPH-diaphorase histochemistry at the end of the treatments. The mechanical thresholds and withdrawal latencies were significantly decreased while nNOS immunostained neurons and NADPH-diaphorase positive cells were selectively reduced in the gracile nucleus at baseline in ZDF vs. LC rats. NADPH-diaphorase reactivity and nNOS positive neurons were increased in the ipsilateral gracile nucleus in LC rats following 2,5-HD intoxication, but its up-regulation was attenuated in ZDF rats. These results suggest that diabetic and chemical intoxication-induced nNOS expression is selectively reduced in the gracile nucleus in ZDF rats. Impaired axonal damage-induced nNOS expression in the gracile nucleus is involved in neuropathic pathophysiology in type II diabetic rats. PMID:26519861

  18. Rainfall thresholds for the triggering of landslides in Slovenia

    NASA Astrophysics Data System (ADS)

    Peternel, Tina; Jemec Auflič, Mateja; Rosi, Ascanio; Segoni, Samuele; Komac, Marko; Casagli, Nicola

    2017-04-01

    Both at the worldwide level and in Slovenia, precipitation and related phenomena represent one of the most important triggering factors for the occurrence of slope mass movements. In the past decade, extreme rainfall events with a very high amount of precipitation occurs in a relatively short rainfall period have become increasingly important and more frequent, that causing numerous undesirable consequences. Intense rainstorms cause flash floods and mostly trigger shallow landslides and soil slips. On the other hand, the damage of long lasting rainstorms depends on the region's adaptation and its capacity to store or infiltrate excessive water from the rain. The amount and, consequently, the intensity of daily precipitation that can cause floods in the eastern part of Slovenia is a rather common event for the north-western part of the country. Likewise, the effect of rainfall is very dependent on the prior soil moisture, periods of full soil saturation and the creation of drifts in groundwater levels due to the slow melting of snow, growing period, etc. Landslides could be identified and to some extent also prevent with better knowledge of the relation between landslides and rainfall. In this paper the definition of rainfall thresholds for rainfall-induced landslides in Slovenia is presented. The thresholds have been calculated by collecting approximately 900 landslide data and the relative rainfall amounts, which have been collected from 41 rain gauges all over the country. The thresholds have been defined by the (1) use of an existing procedure, characterized by a high degree of objectiveness and (2) software that was developed for a test site with very different geological and climatic characteristics (Tuscany, central Italy). Firstly, a single national threshold has been defined, later the country was divided into four zones, on the basis of major the river basins and a single threshold has been calculated for each of them. Validation of the calculated thresholds has been verified by the use of several statistical parameters. Equations of thresholds of each specific zone are quite different mainly due to different climate regime and the density of the rain gauge network. In general, all thresholds have good capacity of avoiding false alarms, but at the same time, some missed alarm can be expected from local threshold, while the national threshold will lead to less missed alarm. Beside the setting of a threshold system, directly usable for civil protection purposes at national scale, an additional outcome of this work is possibility of applying methodology to another region, therefore testing its degree of exportability in different geological and climatological settings.

  19. Surface modification and deuterium retention in reduced-activation steels under low-energy deuterium plasma exposure. Part II: steels pre-damaged with 20 MeV W ions and high heat flux

    NASA Astrophysics Data System (ADS)

    Ogorodnikova, O. V.; Zhou, Z.; Sugiyama, K.; Balden, M.; Pintsuk, G.; Gasparyan, Yu.; Efimov, V.

    2017-03-01

    The reduced-activation ferritic/martensitic (RAFM) steels including Eurofer (9Cr) and oxide dispersion strengthened (ODS) steels by the addition of Y2O3 particles investigated in Part I were pre-damaged either with 20 MeV W ions at room temperature at IPP (Garching) or with high heat flux at FZJ (Juelich) and subsequently exposed to low energy (~20-200 eV per D) deuterium (D) plasma up to a fluence of 2.9  ×  1025 D m-2 in the temperature range from 290 K to 700 K. The pre-irradiation with 20 MeV W ions at room temperature up to 1 displacement per atom (dpa) has no noticeable influence on the steel surface morphology before and after the D plasma exposure. The pre-irradiation with W ions leads to the same concentration of deuterium in all kinds of investigated steels, regardless of the presence of nanoparticles and Cr content. It was found that (i) both kinds of irradiation with W ions and high heat flux increase the D retention in steels compared to undamaged steels and (ii) the D retention in both pre-damaged and undamaged steels decreases with a formation of surface roughness under the irradiation of steels with deuterium ions with incident energy which exceeds the threshold of sputtering. The increase in the D retention in RAFM steels pre-damaged either with W ions (damage up to ~3 µm) or high heat flux (damage up to ~10 µm) diminishes with increasing the temperature. It is important to mention that the near surface modifications caused by either implantation of high energy ions or a high heat flux load, significantly affect the total D retention at low temperatures or low fluences but have a negligible impact on the total D retention at elevated temperatures and high fluences because, in these cases, the D retention is mainly determined by bulk diffusion.

  20. Using Continuum Damage Mechanics to Simulate Iceberg Calving from Tidewater Outlet Glaciers

    NASA Astrophysics Data System (ADS)

    Mercenier, R.; Lüthi, M.; Vieli, A.

    2017-12-01

    Many ocean terminating glaciers in the Arctic are currently undergoingrapid retreat, thinning and strong accelerations in flow. The processof iceberg calving plays a crucial role for the related dynamical masslosses and occurs when the stresses at the calving front exceed thefracture strength of ice, driving the propagation of cracks andeventually leading to the detachment of ice blocks from the glacierfront. However, the understanding of the processes involved in icebergcalving as well as the capability of flow models to represent thecalving mechanism remain limited.Here, we use a time-dependent two-dimensional finite-element flowmodel coupled to a damage model to simulate the break-off of ice atthe front of idealized tidewater outlet glaciers. The flow modelcomputes flow velocities and the resulting stresses, which are in turnused to calculate the evolution of the glacier geometry anddamage. Damage is defined as a change of rheological properties, e.g.viscosity, due to increasing material degradation. Elements of ice areremoved when the damage variable reaches a critical threshold. Theeffects of material properties and of geometrical parameters such aswater depth, ice thickness and submarine frontal melting on thesimulated calving rates are explored through systematic sensitivityanalyses.The coupled ice flow/damage model allows for successful reproductionof calving front geometries typically observed for different waterdepths. We further use detailed observations from real glaciergeometries to better constrain the model parameters. Theproposed model approach should be applicable to simulate icebergcalving on arbitrary glaciers, and thus be used to analyse theevolution of tidewater glacier variations from the past to the future.

  1. Atomistic simulation of damage accumulation and amorphization in Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez-Selles, Jose L., E-mail: joseluis.gomezselles@imdea.org; Martin-Bragado, Ignacio; Claverie, Alain

    2015-02-07

    Damage accumulation and amorphization mechanisms by means of ion implantation in Ge are studied using Kinetic Monte Carlo and Binary Collision Approximation techniques. Such mechanisms are investigated through different stages of damage accumulation taking place in the implantation process: from point defect generation and cluster formation up to full amorphization of Ge layers. We propose a damage concentration amorphization threshold for Ge of ∼1.3 × 10{sup 22} cm{sup −3} which is independent on the implantation conditions. Recombination energy barriers depending on amorphous pocket sizes are provided. This leads to an explanation of the reported distinct behavior of the damage generated by different ions.more » We have also observed that the dissolution of clusters plays an important role for relatively high temperatures and fluences. The model is able to explain and predict different damage generation regimes, amount of generated damage, and extension of amorphous layers in Ge for different ions and implantation conditions.« less

  2. Damage Resistant Optical Glasses for High Power Lasers: A Continuing Glass Science and Technology Challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, J H

    2002-08-28

    A major challenge in the development of optical glasses for high-power lasers is reducing or eliminating laser-induced damage to the interior (bulk) and the polished surface of the glass. Bulk laser damage in glass generally originates from inclusions. With the development of novel glass melting and forming processes it is now possible to make both fused silica and a suit of meta-phosphate laser glasses in large sizes ({approx}>0.5-lm diameter), free of inclusions and with high optical homogeneity ({approx} 10{sup -6}). Considerable attention also has been focused on improving the laser damage resistance to polished optical glass surfaces. Studies have shownmore » that laser-induced damage to surfaces grows exponentially with the number of shots when illuminated with nano-second pulses at 351-nm above a given fluence threshold. A new approach for reducing and eliminating laser-induced surface damage relies on a series of post-polishing treatment steps. This damage improvement method is briefly reviewed.« less

  3. Modeling Proton Irradiation in AlGaN/GaN HEMTs: Understanding the Increase of Critical Voltage

    NASA Astrophysics Data System (ADS)

    Patrick, Erin; Law, Mark E.; Liu, Lu; Cuervo, Camilo Velez; Xi, Yuyin; Ren, Fan; Pearton, Stephen J.

    2013-12-01

    A combination of TRIM and FLOODS models the effect of radiation damage on AlGaN/GaN HEMTs. While excellent fits are obtained for threshold voltage shift, the models do not fully explain the increased reliability observed experimentally. In short, the addition of negatively-charged traps in the GaN buffer layer does not significantly change the electric field at the gate edges at radiation fluence levels seen in this study. We propose that negative trapped charge at the nitride/AlGaN interface actually produces the virtual-gate effect that results in decreasing the magnitude of the electric field at the gate edges and thus the increase in critical voltage. Simulation results including nitride interface charge show significant changes in electric field profiles while the I-V device characteristics do not change.

  4. High effectiveness of tailored flower strips in reducing pests and crop plant damage.

    PubMed

    Tschumi, Matthias; Albrecht, Matthias; Entling, Martin H; Jacot, Katja

    2015-09-07

    Providing key resources to animals may enhance both their biodiversity and the ecosystem services they provide. We examined the performance of annual flower strips targeted at the promotion of natural pest control in winter wheat. Flower strips were experimentally sown along 10 winter wheat fields across a gradient of landscape complexity (i.e. proportion non-crop area within 750 m around focal fields) and compared with 15 fields with wheat control strips. We found strong reductions in cereal leaf beetle(CLB) density (larvae: 40%; adults of the second generation: 53%) and plant damage caused by CLB (61%) in fields with flower strips compared with control fields. Natural enemies of CLB were strongly increased in flower strips and in part also in adjacent wheat fields. Flower strip effects on natural enemies, pests and crop damage were largely independent of landscape complexity(8-75% non-crop area). Our study demonstrates a high effectiveness of annual flower strips in promoting pest control, reducing CLB pest levels below the economic threshold. Hence, the studied flower strip offers a viable alternative to insecticides. This highlights the high potential of tailored agri-environment schemes to contribute to ecological intensification and may encourage more farmers to adopt such schemes.

  5. Laser-driven mechanical fracture in fused silica

    NASA Astrophysics Data System (ADS)

    Dahmani, Faiz

    1999-10-01

    Fused silica, widely used as optical-window material in high-fluence requirements on glass and KrF lasers, experiences optical damage. Under fatigue conditions, the damage is initiated by slow crack growth and culminates, if not arrested, with catastrophic crack growth and implosive failure when the stress intensity approaches the critical value. Since laser-induced cracks cannot be eliminated entirely, the behavior of cracked structures under service conditions must be quantified to be predicted. Systematic scientific rules must be devised to characterize laser-induced cracks and their effects, and to predict if and when it may become necessary to replace the damaged components. This thesis makes a contribution toward this end. Measurements of fatigue failure strength of laser-cracked fused silica in air at room temperature for different number of laser pulses and laser fluences are presented. The failure-strength variability is found to be due mainly to the spectrum of crack depths. Agreement with theory suggests the incorporation of a residual term into the failure-strength equation. Experiments on residual stresses induced in fused silica by the presence of a laser-induced crack are carried out using two different techniques. Theoretical modelings show that this residual stress field is of shear nature and mouth-opening. A correlation between the reduction in fracture strength of fused silica and the increase of the residual-stress field is established, providing laser systems designers and operators with guidance on the rate of crack growth as well as on the stress-related ramifications such as laser-driven cracks entail. Specifically, a hoop-stress in the immediate vicinity of a crack growing along the beam propagation direction is identified as strongly coupling to both the laser fluence and the crack growth. This coupling prompted the question of whether or not breaking the hoop stress symmetry by some external perturbation will accelerate or stymie crack growth. Experimental results on stress-inhibited laser-driven crack growth and stress-delayed-laser-damage initiation thresholds in fused silica and borosilicate glass (BK7) are presented. The results obtained show that, for very low compressive stresses (<10 psi), the damage initiation threshold is raised by as much as 78%, while the crack growth is arrested by 70%. Different loading- geometries are tested, giving different crack growth rates and raising the distinction between uniaxial and biaxial states of stresses.

  6. Quantitative assessment of current and future risks related rainfall in processing tomato in the Guadiana river basin (SW Spain)

    NASA Astrophysics Data System (ADS)

    Castañeda-Vera, Alba; Garrido, Alberto; Ruiz-Ramos, Margarita; Sánchez-Sánchez, Enrique; Inés Mínguez, M.

    2013-04-01

    An extension of risk coverages in the insurance policies for processing tomato, mainly related to rainfall events, has resulted in an important increase in claims. This suggests that damages related to extreme or ill-timed showers have been underestimated in previous years. An estimation of damages related to rainfall in the last thirty years and the impact of climate change in the risk related to rainfall in processing tomato crops in the Guadiana river basin (SW Spain) were studied through a risk index. First, the risk index was defined with temperature and relative humidity thresholds related to different damage magnitudes. Then, this index was applied to current climate and to future climate scenarios in nine weather stations representative of the studied area to determine the trends in losses related to extreme or inopportune rainfall events. Thresholds of temperature and relative humidity were obtained from cross-checking agricultural insurance records and meteorological data from local weather stations (REDAREX, http://sw-aperos.juntaex.es/redarex). To consider longer time series, the reanalysis database ERA-INTERIM (Dee et al., 2011) was used. Simulated climate was obtained from the European Project ENSEMBLES (http://www.ensembles-eu.org/). Trends in climatic risk were analysed by applying the risk index to three sets of data defining current climate (1980-2010), mid-future climate (2010-2040) and long-term future climate (2040-2070). An algorithm to choose the surrounding cell that minimizes the temperature and precipitation climatic biases and maximizes seasonal correlation when comparing ENSEMBLES regional climate model simulations and observed climate was applied before index calculation. The results show the trends in frequency and magnitude of the risk of suffering damages related to rainfall events. The methodology decreased the uncertainty on risk levels. Results contribute to detect the periods during the growing season with larger risk of damage in order to provide information to assist research on risk management practices and to support insurance policy makers to extend guaranties and to adapt the insurance conditions and costs to real crop risks. This research is being financed by MULCLIVAR project (CGL2012-38923-C02-02), MINECO, Spain Keywords: climate change, risk, rainfall, processing tomato. References Dee, D. P., with 35 co-authors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. R. Meteorol. Soc., 137, 553-597.

  7. Lens epithelium-derived growth factor promotes photoreceptor survival in light-damaged and RCS rats.

    PubMed

    Machida, S; Chaudhry, P; Shinohara, T; Singh, D P; Reddy, V N; Chylack, L T; Sieving, P A; Bush, R A

    2001-04-01

    To investigate possible protective effects of lens epithelium-derived growth factor (LEDGF) against photoreceptor death in light-damaged, Royal College of Surgeons (RCS) and P23H rhodopsin transgenic rats. Twelve-week-old Sprague-Dawley (SD), 6-week-old RCS, and 10-day-old P23H (line 1, heterozygote) rats received an intravitreal injection of LEDGF fused with glutathione-S-transferase (GST-LEDGF). Fellow eyes received vehicle and served as control specimens. Two days after the injections, the SD rats were exposed to light of 2000 lux for 48 hours. Corneal Ganzfeld ERGs were recorded 10 days after light damage, at 10 weeks of age in RCS rats, and at 4 weeks of age in P23H rats. The eyes were then processed for histologic analysis. Heat shock protein (hsp) content in the sensory retina was analyzed quantitatively by protein immunoblot. In light-damaged rats, the ERG indicated retinal protection in GST-LEDGF-injected eyes, with b-wave and STR thresholds being 1.14 +/- 0.50 (mean +/- SD) and 0.60 +/- 0.26 log candela (cd)/m2 lower, respectively, than in vehicle-injected eyes (P < 0.01). The GST-LEDGF-treated eyes had maximum b-wave amplitudes that were significantly larger (P < 0.0005), had more than twice as many remaining photoreceptors, and had better organized outer segments than the control eyes. In RCS rats, the treated eyes had 2.76 +/- 0.73 and 0.83 +/- 0.09 log cd/m(2) lower thresholds for the b-wave and STR, respectively (P < 0.005), and had significantly larger maximum b-wave amplitude (P < 0.0005). GST-LEDGF-treated eyes of RCS rats also had more photoreceptors remaining (P < 0.005) and a thinner debris layer than control eyes. In P23H rats, GST-LEDGF treatment did not protect either retinal function or structure. The retinas from GST-LEDGF-treated eyes of SD and RCS rats had higher levels of hsp25 and alphaB-crystallin than vehicle-injected eyes. GST-LEDGF protects photoreceptor structure and function in both light-damaged and RCS rats. The increased expression of hsp25 and alphaB-crystallin may play a role in this protection. The absence of rescue in P23H raises the possibility that some forms of inherited retinal degeneration may not be amenable to treatment by intraocular injection of LEDGF.

  8. Managing moral hazard in motor vehicle accident insurance claims.

    PubMed

    Ebrahim, Shanil; Busse, Jason W; Guyatt, Gordon H; Birch, Stephen

    2013-05-01

    Motor vehicle accident (MVA) insurance in Canada is based primarily on two different compensation systems: (i) no-fault, in which policyholders are unable to seek recovery for losses caused by other parties (unless they have specified dollar or verbal thresholds) and (ii) tort, in which policyholders may seek general damages. As insurance companies pay for MVA-related health care costs, excess use of health care services may occur as a result of consumers' (accident victims) and/or producers' (health care providers) behavior - often referred to as the moral hazard of insurance. In the United States, moral hazard is greater for low dollar threshold no-fault insurance compared with tort systems. In Canada, high dollar threshold or pure no-fault versus tort systems are associated with faster patient recovery and reduced MVA claims. These findings suggest that high threshold no-fault or pure no-fault compensation systems may be associated with improved outcomes for patients and reduced moral hazard.

  9. Optimal control of population recovery--the role of economic restoration threshold.

    PubMed

    Lampert, Adam; Hastings, Alan

    2014-01-01

    A variety of ecological systems around the world have been damaged in recent years, either by natural factors such as invasive species, storms and global change or by direct human activities such as overfishing and water pollution. Restoration of these systems to provide ecosystem services entails significant economic benefits. Thus, choosing how and when to restore in an optimal fashion is important, but has not been well studied. Here we examine a general model where population growth can be induced or accelerated by investing in active restoration. We show that the most cost-effective method to restore an ecosystem dictates investment until the population approaches an 'economic restoration threshold', a density above which the ecosystem should be left to recover naturally. Therefore, determining this threshold is a key general approach for guiding efficient restoration management, and we demonstrate how to calculate this threshold for both deterministic and stochastic ecosystems. © 2013 John Wiley & Sons Ltd/CNRS.

  10. Determinants of hepatotoxicity after repeated supratherapeutic paracetamol ingestion: systematic review of reported cases.

    PubMed

    Acheampong, Paul; Thomas, Simon H L

    2016-10-01

    To evaluate the role of reported daily dose, age and other risk factors, and to assess the value of quantifying serum transaminase activity and paracetamol (acetaminophen) concentration at initial assessment for identifying patients at risk of hepatotoxicity following repeated supratherapeutic paracetamol ingestion (RSPI). Systematic literature review with collation and analysis of individual-level data from reported cases of RSPI associated with liver damage. In 199 cases meeting the selection criteria, severe liver damage (ALT/AST ≥1000 IU l(-1) , liver failure or death) was reported in 186 (93%) cases including 77/78 (99%) children aged ≤6 years. Liver failure occurred in 127 (64%) cases; of these 49 (39%) died. Maximum ingested daily paracetamol doses were above UK recommendations in 143 (72%) patients. US-Australasian thresholds for repeated supratherapeutic ingestions requiring intervention were not met in 71 (36%) cases; of these 35 (49%) developed liver failure and 10 (14%) died. No cases developing liver damage had paracetamol concentration < 20 mg l(-1) and a normal ALT/AST on initial presentation or when RSPI was first suspected, but both of these values were only available for 79 (40%) cases. Severe liver damage is reported after RSPI in adults and children, sometimes involving reported doses below current thresholds for intervention. Paracetamol concentrations <20 mg l(-1) with normal serum ALT/AST activity on initial assessment suggests a low risk of subsequent liver damage. These findings are, however, limited by low patient numbers, publication bias and the accuracy of the histories in reported cases. © 2016 The British Pharmacological Society.

  11. Derivation of critical rainfall thresholds for landslide in Sicily

    NASA Astrophysics Data System (ADS)

    Caracciolo, Domenico; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    Rainfall is the primary trigger of shallow landslides that can cause fatalities, damage to properties and economic losses in many areas of the world. For this reason, determining the rainfall amount/intensity responsible for landslide occurrence is important, and may contribute to mitigate the related risk and save lives. Efforts have been made in different countries to investigate triggering conditions in order to define landslide-triggering rainfall thresholds. The rainfall thresholds are generally described by a functional relationship of power in terms of cumulated or intensity event rainfall-duration, whose parameters are estimated empirically from the analysis of historical rainfall events that triggered landslides. The aim of this paper is the derivation of critical rainfall thresholds for landslide occurrence in Sicily, southern Italy, by focusing particularly on the role of the antecedent wet conditions. The creation of the appropriate landslide-rainfall database likely represents one of main efforts in this type of analysis. For this work, historical landslide events occurred in Sicily from 1919 to 2001 were selected from the archive of the Sistema Informativo sulle Catastrofi Idrogeologiche, developed under the project Aree Vulnerabili Italiane. The corresponding triggering precipitations were screened from the raingauges network in Sicily, maintained by the Osservatorio delle Acque - Agenzia Regionale per i Rifiuti e le Acque. In particular, a detailed analysis was carried out to identify and reconstruct the hourly rainfall events that caused the selected landslides. A bootstrapping statistical technique has been used to determine the uncertainties associated with the threshold parameters. The rainfall thresholds at different exceedance probability levels, from 1% to 10%, were defined in terms of cumulated event rainfall, E, and rainfall duration, D. The role of rainfall prior to the damaging events was taken into account by including in the analysis the rainfall fallen 6, 15 and 30 days before each landslide. The antecedent rainfall turned out to be particularly important in triggering landslides. The rainfall thresholds obtained for the Sicily were compared with the regional curves proposed by various authors confirming a good agreement with these.

  12. Damage Accumulation in Cyclically-Loaded Glass-Ceramic Matrix Composites Monitored by Acoustic Emission

    PubMed Central

    Aggelis, D. G.; Dassios, K. G.; Kordatos, E. Z.; Matikas, T. E.

    2013-01-01

    Barium osumilite (BMAS) ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE) sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism. PMID:24381524

  13. Evaluation of corneal ablation by an optical parametric oscillator (OPO) at 2.94 μm and an Er:YAG laser and comparison to ablation by a 193-nm excimer laser

    NASA Astrophysics Data System (ADS)

    Telfair, William B.; Hoffman, Hanna J.; Nordquist, Robert E.; Eiferman, Richard A.

    1998-06-01

    Purpose: This study first evaluated the corneal ablation characteristics of (1) an Nd:YAG pumped OPO (Optical Parametric Oscillator) at 2.94 microns and (2) a short pulse Er:YAG laser. Secondly, it compared the histopathology and surface quality of these ablations with (3) a 193 nm excimer laser. Finally, the healing characteristics over 4 months of cat eyes treated with the OPO were evaluated. Methods: Custom designed Nd:YAG/OPO and Er:YAG lasers were integrated with a new scanning delivery system to perform PRK myopic correction procedures. After initial ablation studies to determine ablation thresholds and rates, human cadaver eyes and in-vivo cat eyes were treated with (1) a 6.0 mm Dia, 30 micron deep PTK ablation and (2) a 6.0 mm Dia, -5.0 Diopter PRK ablation. Cadaver eyes were also treated with a 5.0 mm Dia, -5.0 Diopter LASIK ablation. Finally, cats were treated with the OPO in a 4 month healing study. Results: Ablation thresholds below 100 mJ/cm2 and ablation rates comparable to the excimer were demonstrated for both infrared systems. Light Microscopy (LM) showed no thermal damage for low fluence treatments, but noticeable thermal damage at higher fluences. SEM and TEM revealed morphologically similar surfaces for low fluence OPO and excimer samples with a smooth base and no evidence of collagen shrinkage. The Er:YAG and higher fluence OPO treated samples revealed more damage along with visible collagen coagulation and shrinkage in some cases. Healing was remarkably unremarkable. All eyes had a mild healing response with no stromal haze and showed topographic flattening. LM demonstrated nothing except a moderate increase in keratocyte activity in the upper third of the stroma. TEM confirmed this along with irregular basement membranes. Conclusions: A non- thermal ablation process called photospallation is demonstrated for the first time using short pulse infrared lasers yielding damage zones comparable to the excimer and healing which is also comparable to the excimer. Such Infrared sources are, therefore, potentially attractive competitors to the excimer to perform PRK and LASIK.

  14. 3-ω damage threshold evaluation of final optics components using Beamlet Mule and off-line testing

    NASA Astrophysics Data System (ADS)

    Kozlowski, Mark R.; Maricle, Stephen M.; Mouser, Ron P.; Schwartz, Sheldon; Wegner, Paul J.; Weiland, Timothy L.

    1999-07-01

    A statistics-based model is being develop to predict the laser-damage-limited lifetime of UV optical components on the NIF laser. In order to provide data for the mode, laser damage experiments were performed on the Beamlet laser system at LLNL. An early protoype NIF focus lens was exposed to twenty 351 nm pulses at an average fluence of 5 J/cm2, 3ns. Using a high resolution optic inspection inspection system a total of 353 damage sites was detected within the 1160 cm2 beam aperture. Through inspections of the lens before, after and, in some cases, during the campaign, pulse to pulse damage growth rates were measured for damage initiating both on the surface and at bulk inclusions. Growth rates as high as 79 micrometers /pulse were observed for damage initiating at pre-existing scratches in the surface. For most damage sites on the optic, both on the surface and at bulk inclusions. Growth rates as high as 79 micrometers /pulse were observed for damage initiating at per- existing scratches in the surface. For most damage sites on the optic, both surface and bulk, the damage growth rate was approximately 10(Mu) m/pulse.

  15. Laser damage initiation and growth of antireflection coated S-FAP crystal surfaces prepared by pitch lap and magnetorheological finishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolz, C J; Menapace, J A; Schaffers, K I

    Antireflection (AR) coatings typically damage at the interface between the substrate and coating. Therefore the substrate finishing technology can have an impact on the laser resistance of the coating. For this study, AR coatings were deposited on Yb:S-FAP [Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F] crystals that received a final polish by both conventional pitch lap finishing as well as magnetorheological finishing (MRF). SEM images of the damage morphology reveals laser damage originates at scratches and at substrate coating interfacial absorbing defects. Previous damage stability tests on multilayer mirror coatings and bare surfaces revealed damage growth can occur at fluences below themore » initiation fluence. The results from this study suggest the opposite trend for AR coatings. Investigation of unstable HR and uncoated surface damage morphologies reveals significant radial cracking that is not apparent with AR damage due to AR delamination from the coated surface with few apparent cracks at the damage boundary. Damage stability tests show that coated Yb:S-FAP crystals can operate at 1057 nm at fluences around 20 J/cm{sup 2} at 10 ns; almost twice the initiation damage threshold.« less

  16. Sparing of normal urothelium in hexyl-aminolevulinate-mediated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Vaucher, Laurent; Jichlinski, Patrice; Lange, Norbert; Ritter-Schenk, Celine; van den Bergh, Hubert; Kucera, Pavel

    2005-04-01

    This work determines on an in vitro porcine urothelium model the threshold values of different parameters such as photosensitizer concentration, irradiation parameters and production of reactive oxygen species in order to control the damage on normal urothelium and spare about 50% of normal mucosa. For a three hours HAL incubation time, these threshold values were with blue light (0.75J/cm at 75 mW/cm2 or 0.15J/cm2 at 30 mW/cm2) and with white light (0.55J/cm2, at 30 mW/cm2). This means that for identical fluence rates, the threshold value for white light irradiation may be 3 times higher than for blue light irradiation.

  17. Large core fiber optic cleaver

    DOEpatents

    Halpin, J.M.

    1996-03-26

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 {micro}m. 30 figs.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doualle, T.; Gallais, L., E-mail: laurent.gallais@fresnel.fr; Cormont, P.

    We investigate the effect of different heat treatments on the laser-induced damage probabilities of fused silica samples. Isothermal annealing in a furnace is applied, with different temperatures in the range 700–1100 °C and 12 h annealing time, to super-polished fused silica samples. The surface flatness and laser damage probabilities at 3 ns, 351 nm are measured before and after the different annealing procedures. We have found a significant improvement of the initial laser damage probabilities of the silica surface after annealing at 1050 °C for 12 h. A similar study has been conducted on CO{sub 2} laser-processed sites on the surface of the samples. Before andmore » after annealing, we have studied the morphology of the sites, the evolution of residual stress, and the laser-induced damage threshold measured at 351 nm, 3 ns. In this case, we observe that the laser damage resistance of the laser created craters can reach the damage level of the bare fused silica surface after the annealing process, with a complete stress relieve. The obtained results are then compared to the case of local annealing process by CO{sub 2} laser irradiation during 1 s, and we found similar improvements in both cases. The different results obtained in the study are compared to numerical simulations made with a thermo-mechanical model based on finite-element method that allows the simulation of the isothermal or the local annealing process, the evolution of stress and fictive temperature. The simulation results were found to be very consistent with experimental observations for the stresses evolution after annealing and estimation of the heat affected area during laser-processing based on the density dependence with fictive temperature. Following this work, the temperature for local annealing should reach 1330–1470 °C for an optimized reduction of damage probability and be below the threshold for material removal, whereas furnace annealing should be kept below the annealing point to avoid sample deformation.« less

  19. Modeling the roles of damage accumulation and mechanical healing on rainfall-induced landslides

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2014-05-01

    The abrupt release of rainfall-induced shallow landslides is preceded by local failures that may abruptly coalesce and form a continuous failure plane within a hillslope. The mechanical status of hillslopes reflects a competition between the extent of severity of accumulated local damage during prior rainfall events and the rates of mechanically healing (i.e. regaining of strength) by closure of micro-cracks, regrowth of roots, etc. The interplay of these processes affects the initial conditions for landslide modeling and shapes potential failure patterns during future rainfall events. We incorporated these competing mechanical processes in a hydro-mechanical landslide triggering model subjected to a sequence of rainfall scenarios. The model employs the Fiber Bundle Model (FBM) with bonds (fiber bundle) with prescribed threshold linking adjacent soil columns and soil to bedrock. Prior damage was represented by a fraction of broken fibers during previous rainfall events, and the healing of broken fibers was described by strength regaining models for soil and roots at different characteristic time scales. Results show that prior damage and healing introduce highly nonlinear response to landslide triggering. For small prior damage, mechanical bonds at soil-bedrock interface may fail early in next rainfall event but lead to small perturbations onto lateral bonds without triggering a landslide. For more severe damage weakening lateral bonds, excess load due to failure at soil-bedrock interface accumulates at downslope soil columns resulting in early soil failure with patterns strongly correlated with prior damage distribution. Increasing prior damage over the hillslope decreases the volume of first landslide and prolongs the time needed to trigger the second landslide due to mechanical relaxation of the system. The mechanical healing of fibers diminishes effects of prior damage on the time of failure, and shortens waiting time between the first and second landslides. These findings highlight the need to improve definition of initial conditions and the shortcomings of assuming pristine hillslopes.

  20. Multiphoton Absorption is Probably Not the Primary Threshold Damage Mechanism for Femtosecond Laser Pulse Exposures in the Retinal Pigment Epithelium

    DTIC Science & Technology

    2004-01-01

    Tromberg, and E. Gratton, "Two-photon excited lifetime imaging of autofluorescence in cells during UTVA and NIR photostress", J. Micros. 183, pp. 197-204...1996. 4. K. Konig, Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, " Autofluorescence spectroscopy of optically trapped cells", Photochem...34, Photochem. Photobiol. 70, pp. 146-151, 1999. 10. R. D. Glickman, "Phototoxicity to the retina : Mechanisms of damage", International Journal of

Top