Science.gov

Sample records for damaged mammalian spinal

  1. Central pattern generators of the mammalian spinal cord.

    PubMed

    Frigon, Alain

    2012-02-01

    Neuronal networks within the spinal cord of mammals are responsible for generating various rhythmic movements, such as walking, running, swimming, and scratching. The ability to generate multiple rhythmic movements highlights the complexity and flexibility of the mammalian spinal circuitry. The present review describes features of some rhythmic motor behaviors generated by the mammalian spinal cord and discusses how the spinal circuitry is able to produce different rhythmic movements with their own sets of goals and demands.

  2. Repair of radiation damage in mammalian cells

    SciTech Connect

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  3. Novel combination strategies to repair the injured mammalian spinal cord.

    PubMed

    Bunge, Mary Bartlett

    2008-01-01

    Due to the varied and numerous changes in spinal cord tissue following injury, successful treatment for repair may involve strategies combining neuroprotection (pharmacological prevention of some of the damaging intracellular cascades that lead to secondary tissue loss), axonal regeneration promotion (cell transplantation, genetic engineering to increase growth factors, neutralization of inhibitory factors, reduction in scar formation), and rehabilitation. Our goal has been to find effective combination strategies to improve outcome after injury to the adult rat thoracic spinal cord. Combination interventions tested have been implantation of Schwann cells (SCs) plus neuroprotective agents and growth factors administered in various ways, olfactory ensheathing cell (OEC) implantation, chondroitinase addition, or elevation of cyclic AMP. The most efficacious strategy in our hands for the acute complete transection/SC bridge model, including improvement in locomotion [Basso, Beattie, Bresnahan Scale (BBB)], is the combination of SCs, OECs, and chondroitinase administration (BBB 2.1 vs 6.6, 3 times more myelinated axons in the SC bridge, increased serotonergic axons in the bridge and beyond, and significant correlation between the number of bridge myelinated axons and functional improvement). We found the most successful combination strategy for a subacute spinal cord contusion injury (12.5-mm, 10-g weight, MASCIS impactor) to be SCs and elevation of cyclic AMP (BBB 10.4 vs 15, significant increases in white matter sparing, in myelinated axons in the implant, and in responding reticular formation and red and raphe nuclei, and a significant correlation between the number of serotonergic fibers and improvement in locomotion). Thus, in two injury paradigms, these combination strategies as well as others studied in our laboratory have been found to be more effective than SCs alone and suggest ways in which clinical application may be developed.

  4. Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of Spinal Muscular Atrophy (SMA).

    PubMed

    Fayzullina, Saniya; Martin, Lee J

    2014-01-01

    Spinal Muscular Atrophy (SMA) is a hereditary childhood disease that causes paralysis by progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. The mechanisms by which lack of SMN causes SMA pathology are not known, making it very difficult to develop effective therapies. We investigated whether DNA damage is a perinatal pathological event in SMA, and whether DNA damage and cell death first occur in skeletal muscle or spinal cord of SMA mice. We used a mouse model of severe SMA to ascertain the extent of cell death and DNA damage throughout the body of prenatal and newborn mice. SMA mice at birth (postnatal day 0) exhibited internucleosomal fragmentation in genomic DNA from hindlimb skeletal muscle, but not in genomic DNA from spinal cord. SMA mice at postnatal day 5, compared with littermate controls, exhibited increased apoptotic cell death profiles in skeletal muscle, by hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling, and electron microscopy. SMA mice had no increased cell death, no loss of choline acetyl transferase (ChAT)-positive motor neurons, and no overt pathology in the ventral horn of the spinal cord. At embryonic days 13 and 15.5, SMA mice did not exhibit statistically significant increases in cell death profiles in spinal cord or skeletal muscle. Motor neuron numbers in the ventral horn, as identified by ChAT immunoreactivity, were comparable in SMA mice and control littermates at embryonic day 15.5 and postnatal day 5. These observations demonstrate that in SMA, disease in skeletal muscle emerges before pathology in spinal cord, including loss of motor neurons. Overall, this work identifies DNA damage and cell death in skeletal muscle as therapeutic targets for SMA.

  5. Noncholinergic excitatory actions of motoneurons in the neonatal mammalian spinal cord

    PubMed Central

    Mentis, George Z.; Alvarez, Francisco J.; Bonnot, Agnes; Richards, Dannette S.; Gonzalez-Forero, David; Zerda, Ricardo; O'Donovan, Michael J.

    2005-01-01

    Mammalian spinal motoneurons are considered to be output elements of the spinal cord that generate exclusively cholinergic actions on Renshaw cells, their intraspinal synaptic targets. Here, we show that antidromic stimulation of motor axons evokes depolarizing monosynaptic potentials in Renshaw cells that are depressed, but not abolished, by cholinergic antagonists. This residual potential was abolished by 2-amino-5-phosphonovaleric acid and 6-cyano-7-nitroquinoxaline-2,3-dione. In the presence of cholinergic antagonists, motor axon stimulation triggered locomotor-like activity that was blocked by 2-amino-5-phosphonovaleric acid. Some cholinergic motoneuronal terminals on both Renshaw cells and motoneurons were enriched in glutamate, but none expressed vesicular glutamate transporters. Our results raise the possibility that motoneurons release an excitatory amino acid in addition to acetylcholine and that they may be more directly involved in the genesis of mammalian locomotion than previously believed. PMID:15883359

  6. Noncholinergic excitatory actions of motoneurons in the neonatal mammalian spinal cord.

    PubMed

    Mentis, George Z; Alvarez, Francisco J; Bonnot, Agnes; Richards, Dannette S; Gonzalez-Forero, David; Zerda, Ricardo; O'Donovan, Michael J

    2005-05-17

    Mammalian spinal motoneurons are considered to be output elements of the spinal cord that generate exclusively cholinergic actions on Renshaw cells, their intraspinal synaptic targets. Here, we show that antidromic stimulation of motor axons evokes depolarizing monosynaptic potentials in Renshaw cells that are depressed, but not abolished, by cholinergic antagonists. This residual potential was abolished by 2-amino-5-phosphonovaleric acid and 6-cyano-7-nitroquinoxaline-2,3-dione. In the presence of cholinergic antagonists, motor axon stimulation triggered locomotor-like activity that was blocked by 2-amino-5-phosphonovaleric acid. Some cholinergic motoneuronal terminals on both Renshaw cells and motoneurons were enriched in glutamate, but none expressed vesicular glutamate transporters. Our results raise the possibility that motoneurons release an excitatory amino acid in addition to acetylcholine and that they may be more directly involved in the genesis of mammalian locomotion than previously believed.

  7. Choreography of oxidative damage repair in mammalian genomes.

    PubMed

    Mitra, Sankar; Izumi, Tadahide; Boldogh, Istvan; Bhakat, Kishor K; Hill, Jeff W; Hazra, Tapas K

    2002-07-01

    The lesions induced by reactive oxygen species in both nuclear and mitochondrial genomes include altered bases, abasic (AP) sites, and single-strand breaks, all repaired primarily via the base excision repair (BER) pathway. Although the basic BER process (consisting of five sequential steps) could be reconstituted in vitro with only four enzymes, it is now evident that repair of oxidative damage, at least in mammalian cell nuclei, is more complex, and involves a number of additional proteins, including transcription- and replication-associated factors. These proteins may be required in sequential repair steps in concert with other cellular changes, starting with nuclear targeting of the early repair enzymes in response to oxidative stress, facilitation of lesion recognition, and access by chromatin unfolding via histone acetylation, and formation of metastable complexes of repair enzymes and other accessory proteins. Distinct, specific subclasses of protein complexes may be formed for repair of oxidative lesions in the nucleus in transcribed vs. nontranscribed sequences in chromatin, in quiescent vs. cycling cells, and in nascent vs. parental DNA strands in replicating cells. Characterizing the proteins for each repair subpathway, their signaling-dependent modifications and interactions in the nuclear as well as mitochondrial repair complexes, will be a major focus of future research in oxidative damage repair.

  8. Non-mammalian model systems for studying neuro-immune interactions after spinal cord injury.

    PubMed

    Bloom, Ona

    2014-08-01

    Mammals exhibit poor recovery after injury to the spinal cord, where the loss of neurons and neuronal connections can be functionally devastating. In contrast, it has long been appreciated that many non-mammalian vertebrate species exhibit significant spontaneous functional recovery after spinal cord injury (SCI). Identifying the biological responses that support an organism's inability or ability to recover function after SCI is an important scientific and medical question. While recent advances have been made in understanding the responses to SCI in mammals, we remain without an effective clinical therapy for SCI. A comparative biological approach to understanding responses to SCI in non-mammalian vertebrates will yield important insights into mechanisms that promote recovery after SCI. Presently, mechanistic studies aimed at elucidating responses, both intrinsic and extrinsic to neurons, that result in different regenerative capacities after SCI across vertebrates are just in their early stages. There are several inhibitory mechanisms proposed to impede recovery from SCI in mammals, including reactive gliosis and scarring, myelin associated proteins, and a suboptimal immune response. One hypothesis to explain the robust regenerative capacity of several non-mammalian vertebrates is a lack of some or all of these inhibitory signals. This review presents the current knowledge of immune responses to SCI in several non-mammalian species that achieve anatomical and functional recovery after SCI. This subject is of growing interest, as studies increasingly show both beneficial and detrimental roles of the immune response following SCI in mammals. A long-term goal of biomedical research in all experimental models of SCI is to understand how to promote functional recovery after SCI in humans. Therefore, understanding immune responses to SCI in non-mammalian vertebrates that achieve functional recovery spontaneously may identify novel strategies to modulate immune

  9. Bacillus thuringiensis membrane-damaging toxins acting on mammalian cells.

    PubMed

    Celandroni, Francesco; Salvetti, Sara; Senesi, Sonia; Ghelardi, Emilia

    2014-12-01

    Bacillus thuringiensis is widely used as a biopesticide in forestry and agriculture, being able to produce potent species-specific insecticidal toxins and considered nonpathogenic to other animals. More recently, however, repeated observations are documenting the association of this microorganism with various infectious diseases in humans, such as food-poisoning-associated diarrheas, periodontitis, bacteremia, as well as ocular, burn, and wound infections. Similar to B. cereus, B. thuringiensis produces an array of virulence factors acting against mammalian cells, such as phosphatidylcholine- and phosphatidylinositol-specific phospholipase C (PC-PLC and PI-PLC), hemolysins, in particular hemolysin BL (HBL), and various enterotoxins. The contribution of some of these toxins to B. thuringiensis pathogenicity has been studied in animal models of infection, following intravitreous, intranasal, or intratracheal inoculation. These studies lead to the speculation that the activities of PC-PLC, PI-PLC, and HBL are responsible for most of the pathogenic properties of B. thuringiensis in nongastrointestinal infections in mammals. This review summarizes data regarding the biological activity, the genetic basis, and the structural features of these membrane-damaging toxins.

  10. DNA damage in mammalian cells following heavy-ion irradiation

    SciTech Connect

    Rosander, K.; Frankel, K.A.; Cerda, H.; Phillips, M.H.; Lo, E.H.; Fabrikant, I.; Fabrikant, J.I.; Levy, R.P.

    1989-09-01

    In our laboratory we have been investigating DNA damage and repair in the endothelial and oligodendroglial cells of the mouse brain after irradiation using two different types of heavy ions, helium and neon. The method used, the unwinding technique with subsequent staining of the DNA with acridine orange, has been proven to be useful for nondividing cells and analysis using a microscope photometric technique. Our primary goal has been to obtain a measure of RBE, in the dose range used in clinical treatment of various brain disorders using heavy charged particle radiosurgery. 12 refs., 5 figs.

  11. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells.

    PubMed

    Kalghatgi, Sameer; Spina, Catherine S; Costello, James C; Liesa, Marc; Morones-Ramirez, J Ruben; Slomovic, Shimyn; Molina, Anthony; Shirihai, Orian S; Collins, James J

    2013-07-03

    Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics-quinolones, aminoglycosides, and β-lactams-cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic-induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-l-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people.

  12. Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells

    PubMed Central

    Costello, James C.; Liesa, Marc; Morones-Ramirez, J Ruben; Slomovic, Shimyn; Molina, Anthony; Shirihai, Orian S.; Collins, James J.

    2013-01-01

    Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics—quinolones, aminoglycosides, and β-lactams—cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic–induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-L-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people. PMID:23825301

  13. Reconstitution of the cellular response to DNA damage in vitro using damage-activated extracts from mammalian cells

    SciTech Connect

    Roper, Katherine; Coverley, Dawn

    2012-03-10

    In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naieve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naieve nuclei. At the same time, H2AX is phosphorylated in naieve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naieve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002. -- Highlights: Black-Right-Pointing-Pointer A cell free system that reconstitutes the response to DNA damage in the absence of DNA lesions. Black-Right-Pointing-Pointer Damage-activated extracts impose the cellular response to DNA damage on naieve nuclei. Black-Right-Pointing-Pointer PIKK-dependent response impacts positively and negatively on two separate fluorescent outputs. Black-Right-Pointing-Pointer Can be used to screen for inhibitors that impact on the response to damage but not on DNA repair. Black-Right-Pointing-Pointer LY294002 and wortmannin demonstrate the system's potential as a pathway focused screening

  14. (Studies on the repair of damaged DNA in bacteriophage, bacterial and mammalian systems): Final report

    SciTech Connect

    Friedberg, E.C.

    1987-08-01

    This study sought to exploit the use of uv radiation as a source of genomic damage. We explored the molecular mechanism of the repair of DNA damage at a number of different levels of biological organization, by investigating bacteriophage, bacterial, yeast and mammalian cells. Not only have observations obtained in one biological system suggested specific experimental approaches in others, but we have also learned that some biochemical pathways for DNA repair are unique to specific organisms. Our studies are summarized in terms of 4 major areas of research activity that span the past 16 years. 86 refs.

  15. Organization of left–right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling

    PubMed Central

    Shevtsova, Natalia A; Talpalar, Adolfo E; Markin, Sergey N; Harris-Warrick, Ronald M; Kiehn, Ole; Rybak, Ilya A

    2015-01-01

    Different locomotor gaits in mammals, such as walking or galloping, are produced by coordinated activity in neuronal circuits in the spinal cord. Coordination of neuronal activity between left and right sides of the cord is provided by commissural interneurons (CINs), whose axons cross the midline. In this study, we construct and analyse two computational models of spinal locomotor circuits consisting of left and right rhythm generators interacting bilaterally via several neuronal pathways mediated by different CINs. The CIN populations incorporated in the models include the genetically identified inhibitory (V0D) and excitatory (V0V) subtypes of V0 CINs and excitatory V3 CINs. The model also includes the ipsilaterally projecting excitatory V2a interneurons mediating excitatory drive to the V0V CINs. The proposed network architectures and CIN connectivity allow the models to closely reproduce and suggest mechanistic explanations for several experimental observations. These phenomena include: different speed-dependent contributions of V0D and V0V CINs and V2a interneurons to left–right alternation of neural activity, switching gaits between the left–right alternating walking-like activity and the left–right synchronous hopping-like pattern in mutants lacking specific neuron classes, and speed-dependent asymmetric changes of flexor and extensor phase durations. The models provide insights into the architecture of spinal network and the organization of parallel inhibitory and excitatory CIN pathways and suggest explanations for how these pathways maintain alternating and synchronous gaits at different locomotor speeds. The models propose testable predictions about the neural organization and operation of mammalian locomotor circuits. Key points Coordination of neuronal activity between left and right sides of the mammalian spinal cord is provided by several sets of commissural interneurons (CINs) whose axons cross the midline. Genetically identified inhibitory V

  16. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells

    SciTech Connect

    Ahamed, Maqusood; Karns, Michael; Goodson, Michael; Rowe, John; Hussain, Saber M.; Schlager, John J.

    2008-12-15

    Silver nanoparticles (Ag NPs) have recently received much attention for their possible applications in biotechnology and life sciences. Ag NPs are of interest to defense and engineering programs for new material applications as well as for commercial purposes as an antimicrobial. However, little is known about the genotoxicity of Ag NPs following exposure to mammalian cells. This study was undertaken to examine the DNA damage response to polysaccharide surface functionalized (coated) and non-functionalized (uncoated) Ag NPs in two types of mammalian cells; mouse embryonic stem (mES) cells and mouse embryonic fibroblasts (MEF). Both types of Ag NPs up-regulated the cell cycle checkpoint protein p53 and DNA damage repair proteins Rad51 and phosphorylated-H2AX expression. Furthermore both of them induced cell death as measured by the annexin V protein expression and MTT assay. Our observations also suggested that the different surface chemistry of Ag NPs induce different DNA damage response: coated Ag NPs exhibited more severe damage than uncoated Ag NPs. The results suggest that polysaccharide coated particles are more individually distributed while agglomeration of the uncoated particles limits the surface area availability and access to membrane bound organelles.

  17. GABAergic responses of mammalian ependymal cells in the central canal neurogenic niche of the postnatal spinal cord.

    PubMed

    Corns, Laura F; Deuchars, Jim; Deuchars, Susan A

    2013-10-11

    The area surrounding the central canal of the postnatal mammalian spinal cord is a highly plastic region that exhibits many similarities to other postnatal neurogenic niches, such as the subventricular zone. Within this region, ependymal cells have been identified as neural stem cells however very little is known about their properties and how the local environment, including neurotransmitters, is capable of affecting them. The neurotransmitter GABA is present around the central canal and is known to affect cells within other postnatal neurogenic niches. This study used whole cell patch clamp electrophysiology and intracellular dye-loading in in vitro Wistar rat spinal cord slices to characterise ependymal cells and their ability to respond to GABA. Ependymal cells were defined by their passive response properties and low input resistances. Extensive dye-coupling was observed between ependymal cells; this was confirmed as gap junction coupling using the gap junction blocker, 18β-glycyrrhetinic acid, which significantly increased the input resistance of ependymal cells. GABA depolarised all ependymal cells tested; the partial antagonism of this response by bicuculline and gabazine indicates that GABA(A) receptors contribute to this response. A lack of effect by baclofen suggests that GABA(B) receptors do not contribute to the GABAergic response. The ability of ependymal cells to respond to GABA suggests that GABA could be capable of influencing the proliferation and differentiation of cells within the neurogenic niche of the postnatal spinal cord.

  18. Quantitation of heavy ion damage to the mammalian brain - Some preliminary findings

    NASA Technical Reports Server (NTRS)

    Cox, A. B.; Kraft, L. M.

    1984-01-01

    For several years, studies have been conducted regarding late effects of particulate radiations in mammalian tissues, taking into account the brains of rodents and lagomorphs. Recently, it has become feasible to quantify pathological damage and morpho-physiologic alterations accurately in large numbers of histological specimens. New investigative procedures make use of computer-assisted automated image analysis systems. Details regarding the employed methodology are discussed along with the results of the information. The radiations of high linear energy transfer (LET) cause apparently earlier and more dramatic shrinkage of olfactory glomeruli in exposed rabbit brains than comparable doses of Co-60 gamma photons.

  19. Complex interactions between the DNA-damage response and mammalian telomeres

    PubMed Central

    Arnoult, Nausica; Karlseder, Jan

    2016-01-01

    Natural chromosome ends resemble double-stranded DNA breaks, but they do not activate a damage response in healthy cells. Telomeres therefore have evolved to solve the ‘end-protection problem’ by inhibiting multiple DNA damage–response pathways. During the past decade, the view of telomeres has progressed from simple caps that hide chromosome ends to complex machineries that have an active role in organizing the genome. Here we focus on mammalian telomeres and summarize and interpret recent discoveries in detail, focusing on how repair pathways are inhibited, how resection and replication are controlled and how these mechanisms govern cell fate during senescence, crisis and transformation. PMID:26581520

  20. Harnessing neural activity to promote repair of the damaged corticospinal system after spinal cord injury

    PubMed Central

    Martin, John H.

    2016-01-01

    As most spinal cord injuries (SCIs) are incomplete, an important target for promoting neural repair and recovery of lost motor function is to promote the connections of spared descending spinal pathways with spinal motor circuits. Among the pathways, the corticospinal tract (CST) is most associated with skilled voluntary functions in humans and many animals. CST loss, whether at its origin in the motor cortex or in the white matter tracts subcortically and in the spinal cord, leads to movement impairments and paralysis. To restore motor function after injury will require repair of the damaged CST. In this review, I discuss how knowledge of activity-dependent development of the CST—which establishes connectional specificity through axon pruning, axon outgrowth, and synaptic competition among CST terminals—informed a novel activity-based therapy for promoting sprouting of spared CST axons after injur in mature animals. This therapy, which comprises motor cortex electrical stimulation with and without concurrent trans-spinal direct current stimulation, leads to an increase in the gray matter axon length of spared CST axons in the rat spinal cord and, after a pyramidal tract lesion, restoration of skilled locomotor movements. I discuss how this approach is now being applied to a C4 contusion rat model. PMID:27857728

  1. Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Shinn, Judy L.

    1991-01-01

    The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space.

  2. Modification of radiation damage in rat spinal cord by mitotane

    SciTech Connect

    Glicksman, A.S.; Bliven, S.F.; Leith, J.T.

    1982-07-01

    Modification of the paralytic response in rats after 6-MV photon irradiation of the spinal cord with either single or split exposures (two equal fractions given in a 24-hour period) by mitotane was investigated. Mitotane was administered as a suspension in physiologic saline (300 mg/kg/day) for either 5 days prior to or 5 days after irradiation. For rats receiving split doses of 6-MV photons, either the last two doses of mitotane were given 2 hours prior to each radiation fraction or mitotane was begun 2 hours after the second fraction and continued for 5 days. The data to 6 months after irradiation indicate that, in rats given mitotane for 5 days prior to single-dose photon irradiation, the paralytic response (as defined by the dose needed to produce paralysis in 50% of the irradiated groups of rats) was enhanced by a dose-enhancement factor (DEF) of 1.40. The DEF in the group of rats given mitotane after single doses of 6-MV photons was 1.15. In the split-dose irradiation experiments, the DEF for the groups of rats given mitotane prior to each radiation fraction was 1.36; while the DEF for the group of rats receiving mitotane beginning after the second fraction was 1.18. These data indicate that mitotane can potentiate the effects of 6-MV photon irradiation to the central nervous system, with mitotane administered prior to irradiation being the most effective sequence.

  3. Development of a 3D matrix for modeling mammalian spinal cord injury in vitro.

    PubMed

    Diaz Quiroz, Juan Felipe; Li, Yuping; Aparicio, Conrado; Echeverri, Karen

    2016-11-01

    Spinal cord injury affects millions of people around the world, however, limited therapies are available to improve the quality of life of these patients. Spinal cord injury is usually modeled in rats and mice using contusion or complete transection models and this has led to a deeper understanding of the molecular and cellular complexities of the injury. However, it has not to date led to development of successful novel therapies, this is in part due to the complexity of the injury and the difficulty of deciphering the exact roles and interactions of different cells within this complex environment. Here we developed a collagen matrix that can be molded into the 3D tubular shape with a lumen and can hence support cell interactions in a similar architecture to a spinal cord. We show that astrocytes can be successfully grown on this matrix in vitro and when injured, the cells respond as they do in vivo and undergo reactive gliosis, one of the steps that lead to formation of a glial scar, the main barrier to spinal cord regeneration. In the future, this system can be used to quickly assess the effect of drugs on glial scar protein activity or to perform live imaging of labeled cells after exposure to drugs.

  4. Development of a 3D matrix for modeling mammalian spinal cord injury in vitro

    PubMed Central

    Diaz Quiroz, Juan Felipe; Li, Yuping; Aparicio, Conrado; Echeverri, Karen

    2016-01-01

    Spinal cord injury affects millions of people around the world, however, limited therapies are available to improve the quality of life of these patients. Spinal cord injury is usually modeled in rats and mice using contusion or complete transection models and this has led to a deeper understanding of the molecular and cellular complexities of the injury. However, it has not to date led to development of successful novel therapies, this is in part due to the complexity of the injury and the difficulty of deciphering the exact roles and interactions of different cells within this complex environment. Here we developed a collagen matrix that can be molded into the 3D tubular shape with a lumen and can hence support cell interactions in a similar architecture to a spinal cord. We show that astrocytes can be successfully grown on this matrix in vitro and when injured, the cells respond as they do in vivo and undergo reactive gliosis, one of the steps that lead to formation of a glial scar, the main barrier to spinal cord regeneration. In the future, this system can be used to quickly assess the effect of drugs on glial scar protein activity or to perform live imaging of labeled cells after exposure to drugs. PMID:28123426

  5. An Optogenetic Demonstration of Motor Modularity in the Mammalian Spinal Cord

    PubMed Central

    Caggiano, Vittorio; Cheung, Vincent C. K.; Bizzi, Emilio

    2016-01-01

    Motor modules are neural entities hypothesized to be building blocks of movement construction. How motor modules are underpinned by neural circuits has remained obscured. As a first step towards dissecting these circuits, we optogenetically evoked motor outputs from the lumbosacral spinal cord of two strains of transgenic mice – the Chat, with channelrhodopsin (ChR2) expressed in motoneurons, and the Thy1, expressed in putatively excitatory neurons. Motor output was represented as a spatial field of isometric ankle force. We found that Thy1 force fields were more complex and diverse in structure than Chat fields: the Thy1 fields comprised mostly non-parallel vectors while the Chat fields, mostly parallel vectors. In both, most fields elicited by co-stimulation of two laser beams were well explained by linear combination of the separately-evoked fields. We interpreted the Thy1 force fields as representations of spinal motor modules. Our comparison of the Chat and Thy1 fields allowed us to conclude, with reasonable certainty, that the structure of neuromotor modules originates from excitatory spinal interneurons. Our results not only demonstrate, for the first time using optogenetics, how the spinal modules follow linearity in their combinations, but also provide a reference against which future optogenetic studies of modularity can be compared. PMID:27734925

  6. Inhibition of Epidermal Growth Factor Receptor Improves Myelination and Attenuates Tissue Damage of Spinal Cord Injury.

    PubMed

    Zhang, Si; Ju, Peijun; Tjandra, Editha; Yeap, Yeeshan; Owlanj, Hamed; Feng, Zhiwei

    2016-10-01

    Preventing demyelination and promoting remyelination of denuded axons are promising therapeutic strategies for spinal cord injury (SCI). Epidermal growth factor receptor (EGFR) inhibition was reported to benefit the neural functional recovery and the axon regeneration after SCI. However, its role in de- and remyelination of axons in injured spinal cord is unclear. In the present study, we evaluated the effects of EGFR inhibitor, PD168393 (PD), on the myelination in mouse contusive SCI model. We found that expression of myelin basic protein (MBP) in the injured spinal cords of PD treated mice was remarkably elevated. The density of glial precursor cells and oligodendrocytes (OLs) was increased and the cell apoptosis in lesions was attenuated after PD168393 treatment. Moreover, PD168393 treatment reduced both the numbers of OX42 + microglial cells and glial fibrillary acidic protein + astrocytes in damaged area of spinal cords. We thus conclude that the therapeutic effects of EGFR inhibition after SCI involves facilitating remyelination of the injured spinal cord, increasing of oligodendrocyte precursor cells and OLs, as well as suppressing the activation of astrocytes and microglia/macrophages.

  7. Presynaptic inhibition of muscle spindle and tendon organ afferents in the mammalian spinal cord.

    PubMed

    Rudomin, P

    1990-12-01

    More than 30 years ago, Frank and Fuortes proposed that the synaptic effectiveness of muscle spindle afferents associated with spinal motoneurones could be diminished by the activation of nerves from flexor muscles. Since that time, research has focused on disclosing the mode of operation and the spinal pathways involved in this presynaptic inhibitory control. Initially, it was assumed that the same last-order interneurones mediated presynaptic inhibition of both muscle spindle and tendon organ afferent fibres. More recent evidence indicates that the synaptic effectiveness of these two groups of afferents is controlled by separate sets of GABAergic interneurones synapsing directly with the intraspinal terminals of the afferent fibres. This unique arrangement allows for selective control of the information on muscle length or muscle tension, despite the convergence of muscle spindle and tendon organ afferents on second-order interneurones.

  8. N-nitroso-N-ethylurea activates DNA damage surveillance pathways and induces transformation in mammalian cells

    PubMed Central

    2014-01-01

    treatment indicating NEU to have the potential to cause early transformation in the cells. Conclusion NEU causes damage in mammalian cells in the form of double strand and single strand breaks that temporally activate the major checkpoint signalling kinases without the occurrence of cross-talk between the pathways. NEU also appear to cause transformation in three-dimensional spheroid cultures. PMID:24758542

  9. GDNF plasma levels in spina bifida: correlation with severity of spinal damage and motor function.

    PubMed

    Chiaretti, Antonio; Rendeli, Claudia; Antonelli, Alessia; Barone, Giuseppe; Focarelli, Benedetta; Tabacco, Fabrizia; Massimi, Luca; Ausili, Emanuele

    2008-12-01

    Glial-derived neurotrophic factor (GDNF) is one of several powerful survival factors for spinal motoneurons that play a key role in sprouting, synaptic plasticity, and reorganization after spinal cord damage. The aim of this study was to investigate the expression of GDNF in plasma of children with spina bifida (SB) and to determine its correlation with both the severity of spinal cord damage and the motor function of these patients. To measure the GDNF expression, we collected plasma samples from 152 children with SB and in 149 matched controls. Endogenous GDNF levels were quantified using a two-site immuno-enzymatic assay. The statistical analysis was performed using the Mann-Whitney two-tailed two-sample test. In children with SB the mean levels of GDNF (131.2 +/- 69.6 pg/mL) were significantly higher (p < 0.001) with respect to the mean levels of the control group (102.7 +/- 6.8 pg/mL). Moreover, in open SB, the GDNF levels (139.2 +/- 81.1 pg/mL) were significantly higher (p < 0.05) with respect to closed SB (117.2 +/- 41.3 pg/mL). In terms of the motor function of patients, we found that in children with poorer motor function, the GDNF levels (134.5 +/- 67.4 pg/mL) were higher, but not statistically significant (p < 0.1), than in patients with better motor outcome (122.3 +/- 72.2 pg/mL). Our study demonstrates GDNF over-expression in children with SB. This upregulation is significantly associated with the severity of spinal cord damage in SB patients and appears to correlate with poor motor function of children, representing an important biochemical marker of the severity of spine injury.

  10. Reduction of NaCl increases survival of mammalian spinal neurons subjected to dendrite transection injury.

    PubMed

    Rosenberg, L J; Lucas, J H

    1996-09-23

    Neurites were transected from spinal neurons in media with normal (125 microM) or reduced NaCl (sucrose substitution). After 12 h the normal ionic environment (conditioned medium with serum) was restored. A one-factor ANOVA comparison found a significant difference in 48 h survival (P = 0.0001). Survival was highest when NaCl was reduced 50% (74% +/- 19 vs. 22% +/- 19 in normal NaCl). Na(+)- and Cl-mediated deterioration may contribute to both gray and white matter injury in CNS trauma.

  11. Modulation of Rhythmic Activity in Mammalian Spinal Networks Is Dependent on Excitability State

    PubMed Central

    2017-01-01

    Neuromodulators play an important role in activating rhythmically active motor networks; however, what remains unclear are the network interactions whereby neuromodulators recruit spinal motor networks to produce rhythmic activity. Evidence from invertebrate systems has demonstrated that the effect of neuromodulators depends on the pre-existing state of the network. We explored how network excitation state affects the ability of dopamine to evoke rhythmic locomotor activity in the neonatal mouse isolated spinal cord. We found that dopamine can evoke unique patterns of motor activity that are dependent on the excitability state of motor networks. Different patterns of motor activity ranging from tonic, nonrhythmic activity to multirhythmic, nonlocomotor activity to locomotor activity were produced by altering global motor network excitability through manipulations of the extracellular potassium and bath NMDA concentration. A similar effect was observed when network excitation was manipulated during an unstable multirhythm evoked by a low concentration (15 µm) of 5-HT, suggesting that our results are not neuromodulator specific. Our data show in vertebrate systems that modulation is a two-way street and that modulatory actions are largely influenced by the network state. The level of network excitation can account for variability between preparations and is an additional factor to be considered when circuit elements are removed from the network. PMID:28144626

  12. SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage.

    PubMed

    Jangi, Mohini; Fleet, Christina; Cullen, Patrick; Gupta, Shipra V; Mekhoubad, Shila; Chiao, Eric; Allaire, Norm; Bennett, C Frank; Rigo, Frank; Krainer, Adrian R; Hurt, Jessica A; Carulli, John P; Staropoli, John F

    2017-03-21

    Spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disease, is the leading monogenic cause of infant mortality. Homozygous loss of the gene survival of motor neuron 1 (SMN1) causes the selective degeneration of lower motor neurons and subsequent atrophy of proximal skeletal muscles. The SMN1 protein product, survival of motor neuron (SMN), is ubiquitously expressed and is a key factor in the assembly of the core splicing machinery. The molecular mechanisms by which disruption of the broad functions of SMN leads to neurodegeneration remain unclear. We used an antisense oligonucleotide (ASO)-based inducible mouse model of SMA to investigate the SMN-specific transcriptome changes associated with neurodegeneration. We found evidence of widespread intron retention, particularly of minor U12 introns, in the spinal cord of mice 30 d after SMA induction, which was then rescued by a therapeutic ASO. Intron retention was concomitant with a strong induction of the p53 pathway and DNA damage response, manifesting as γ-H2A.X positivity in neurons of the spinal cord and brain. Widespread intron retention and markers of the DNA damage response were also observed with SMN depletion in human SH-SY5Y neuroblastoma cells and human induced pluripotent stem cell-derived motor neurons. We also found that retained introns, high in GC content, served as substrates for the formation of transcriptional R-loops. We propose that defects in intron removal in SMA promote DNA damage in part through the formation of RNA:DNA hybrid structures, leading to motor neuron death.

  13. SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage

    PubMed Central

    Jangi, Mohini; Fleet, Christina; Cullen, Patrick; Gupta, Shipra V.; Mekhoubad, Shila; Chiao, Eric; Allaire, Norm; Bennett, C. Frank; Rigo, Frank; Krainer, Adrian R.; Hurt, Jessica A.; Carulli, John P.; Staropoli, John F.

    2017-01-01

    Spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disease, is the leading monogenic cause of infant mortality. Homozygous loss of the gene survival of motor neuron 1 (SMN1) causes the selective degeneration of lower motor neurons and subsequent atrophy of proximal skeletal muscles. The SMN1 protein product, survival of motor neuron (SMN), is ubiquitously expressed and is a key factor in the assembly of the core splicing machinery. The molecular mechanisms by which disruption of the broad functions of SMN leads to neurodegeneration remain unclear. We used an antisense oligonucleotide (ASO)-based inducible mouse model of SMA to investigate the SMN-specific transcriptome changes associated with neurodegeneration. We found evidence of widespread intron retention, particularly of minor U12 introns, in the spinal cord of mice 30 d after SMA induction, which was then rescued by a therapeutic ASO. Intron retention was concomitant with a strong induction of the p53 pathway and DNA damage response, manifesting as γ-H2A.X positivity in neurons of the spinal cord and brain. Widespread intron retention and markers of the DNA damage response were also observed with SMN depletion in human SH-SY5Y neuroblastoma cells and human induced pluripotent stem cell-derived motor neurons. We also found that retained introns, high in GC content, served as substrates for the formation of transcriptional R-loops. We propose that defects in intron removal in SMA promote DNA damage in part through the formation of RNA:DNA hybrid structures, leading to motor neuron death. PMID:28270613

  14. Distinct domains of the spinal muscular atrophy protein SMN are required for targeting to Cajal bodies in mammalian cells.

    PubMed

    Renvoisé, Benoît; Khoobarry, Kevinee; Gendron, Marie-Claude; Cibert, Christian; Viollet, Louis; Lefebvre, Suzie

    2006-02-15

    Mutations of the survival motor neuron gene SMN1 cause the inherited disease spinal muscular atrophy (SMA). The ubiquitous SMN protein facilitates the biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs). The protein is detected in the cytoplasm, nucleoplasm and enriched with snRNPs in nuclear Cajal bodies. It is structurally divided into at least an amino-terminal region rich in basic amino acid residues, a central Tudor domain, a self-association tyrosine-glycine-box and an exon7-encoded C-terminus. To examine the domains required for the intranuclear localization of SMN, we have used fluorescently tagged protein mutants transiently overexpressed in mammalian cells. The basic amino acid residues direct nucleolar localization of SMN mutants. The Tudor domain promotes localization of proteins in the nucleus and it cooperates with the basic amino acid residues and the tyrosine-glycine-box for protein localization in Cajal bodies. Moreover, the most frequent disease-linked mutant SMNDeltaex7 reduces accumulation of snRNPs in Cajal bodies, suggesting that the C-terminus of SMN participates in targeting to Cajal bodies. A reduced number of Cajal bodies in patient fibroblasts associates with the absence of snRNPs in Cajal bodies, revealing that intranuclear snRNA organization is modified in disease. These results indicate that direct and indirect mechanisms regulate localization of SMN in Cajal bodies.

  15. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells

    PubMed Central

    Cuevas-Ramos, Gabriel; Petit, Claude R.; Marcq, Ingrid; Boury, Michèle; Oswald, Eric; Nougayrède, Jean-Philippe

    2010-01-01

    Escherichia coli is a normal inhabitant of the human gut. However, E. coli strains of phylogenetic group B2 harbor a genomic island called “pks” that codes for the production of a polyketide-peptide genotoxin, Colibactin. Here we report that in vivo infection with E. coli harboring the pks island, but not with a pks isogenic mutant, induced the formation of phosphorylated H2AX foci in mouse enterocytes. We show that a single, short exposure of cultured mammalian epithelial cells to live pks+ E. coli at low infectious doses induced a transient DNA damage response followed by cell division with signs of incomplete DNA repair, leading to anaphase bridges and chromosome aberrations. Micronuclei, aneuploidy, ring chromosomes, and anaphase bridges persisted in dividing cells up to 21 d after infection, indicating occurrence of breakage–fusion–bridge cycles and chromosomal instability. Exposed cells exhibited a significant increase in gene mutation frequency and anchorage-independent colony formation, demonstrating the infection mutagenic and transforming potential. Therefore, colon colonization with these E. coli strains harboring the pks island could contribute to the development of sporadic colorectal cancer. PMID:20534522

  16. Preferential repair of UV damage in highly transcribed DNA diminishes UV-induced intrachromosomal recombination in mammalian cells.

    PubMed Central

    Deng, W P; Nickoloff, J A

    1994-01-01

    The relationships among transcription, recombination, DNA damage, and repair in mammalian cells were investigated. We monitored the effects of transcription on UV-induced intrachromosomal recombination between neomycin repeats including a promoterless allele and an inducible heteroallele regulated by the mouse mammary tumor virus promoter. Although transcription and UV light separately stimulated recombination, increasing transcription levels reduced UV-induced recombination. Preferential repair of UV damage in transcribed strands was shown in highly transcribed DNA, suggesting that recombination is stimulated by unrepaired UV damage and that increased DNA repair in highly transcribed alleles removes recombinogenic lesions. This study indicates that the genetic consequences of DNA damage depend on transcriptional states and provides a basis for understanding tissue- and gene-specific responses to DNA-damaging agents. Images PMID:8264606

  17. Nutritional management of a patient with brain damage and spinal cord injury.

    PubMed

    Bildsten, C; Lamid, S

    1983-08-01

    Few reports on nutritional management of patients with both brain damage and spinal-cord-injury appear in the literature. We present a case of a 20-year-old male quadriplegic, C4 complete, who also sustained brain damage secondary to cerebral anoxia. When the patient was transferred to our rehabilitation unit, deterioration in nutritional status was noted, as evidenced by weight loss and depressed serum albumin and hemoglobin. Nutritional rehabilitation consisted of weaning from nasogastric tube feedings to an oral diet providing snacks and commercial supplements. This resulted in a positive nitrogen balance. Other factors, such as mobilization, exercises, and closure of a pressure sore, contributed favorably to improvement of nutritional status.

  18. Ceruloplasmin protects injured spinal cord from iron-mediated oxidative damage.

    PubMed

    Rathore, Khizr I; Kerr, Bradley J; Redensek, Adriana; López-Vales, Rubèn; Jeong, Suh Young; Ponka, Prem; David, Samuel

    2008-11-26

    CNS injury-induced hemorrhage and tissue damage leads to excess iron, which can cause secondary degeneration. The mechanisms that handle this excess iron are not fully understood. We report that spinal cord contusion injury (SCI) in mice induces an "iron homeostatic response" that partially limits iron-catalyzed oxidative damage. We show that ceruloplasmin (Cp), a ferroxidase that oxidizes toxic ferrous iron, is important for this process. SCI in Cp-deficient mice demonstrates that Cp detoxifies and mobilizes iron and reduces secondary tissue degeneration and functional loss. Our results provide new insights into how astrocytes and macrophages handle iron after SCI. Importantly, we show that iron chelator treatment has a delayed effect in improving locomotor recovery between 3 and 6 weeks after SCI. These data reveal important aspects of the molecular control of CNS iron homeostasis after SCI and suggest that iron chelator therapy may improve functional recovery after CNS trauma and hemorrhagic stroke.

  19. Reduced inflammatory cell recruitment and tissue damage in spinal cord injury by acellular spinal cord scaffold seeded with mesenchymal stem cells.

    PubMed

    Wang, Yu-Hai; Chen, Jian; Zhou, Jing; Nong, Feng; Lv, Jin-Han; Liu, Jia

    2017-01-01

    Therapy using acellular spinal cord (ASC) scaffolds seeded with bone marrow stromal cells (BMSCs) has previously been shown to restore function of the damaged spinal cord and improve functional recovery in a rat model of acute hemisected spinal cord injury (SCI). The aim of the present study was to determine whether BMSCs and ASC scaffolds promote the functional recovery of the damaged spinal cord in a rat SCI model through regulation of apoptosis and immune responses. Whether this strategy regulates secondary inflammation, which is characterized by the infiltration of immune cells and inflammatory mediators to the lesion site, in SCI repair was investigated. Basso, Beattie, and Bresnahan scores revealed that treatment with BMSCs seeded into an ASC scaffold led to a significant improvement in motor function recovery compared with treatment with an ASC scaffold alone or untreated controls at 2 and 8 weeks after surgery (P<0.05). Two weeks after transplantation, the BMSCs seeded into an ASC scaffold significantly decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells, as compared with the ASC scaffold only and control groups. These results suggested that the use of BMSCs decreased the apoptosis of neural cells and thereby limited tissue damage at the lesion site. Notably, the use of BMSCs with an ASC scaffold also decreased the recruitment of macrophages (microglia; P<0.05) and T lymphocytes (P<0.05) around the SCI site, as indicated by immunofluorescent markers. By contrast, there was no inhibition of the inflammatory response in the control and ASC scaffold only groups. BMSCs regulated inflammatory cell recruitment to promote functional recovery. However, there was no significant difference in IgM-positive expression among the three groups (P>0.05). The results of this study demonstrated that BMSCs seeded into ASC scaffolds for repair of spinal cord hemisection defects promoted functional recovery through the early

  20. Reduced inflammatory cell recruitment and tissue damage in spinal cord injury by acellular spinal cord scaffold seeded with mesenchymal stem cells

    PubMed Central

    Wang, Yu-Hai; Chen, Jian; Zhou, Jing; Nong, Feng; Lv, Jin-Han; Liu, Jia

    2017-01-01

    Therapy using acellular spinal cord (ASC) scaffolds seeded with bone marrow stromal cells (BMSCs) has previously been shown to restore function of the damaged spinal cord and improve functional recovery in a rat model of acute hemisected spinal cord injury (SCI). The aim of the present study was to determine whether BMSCs and ASC scaffolds promote the functional recovery of the damaged spinal cord in a rat SCI model through regulation of apoptosis and immune responses. Whether this strategy regulates secondary inflammation, which is characterized by the infiltration of immune cells and inflammatory mediators to the lesion site, in SCI repair was investigated. Basso, Beattie, and Bresnahan scores revealed that treatment with BMSCs seeded into an ASC scaffold led to a significant improvement in motor function recovery compared with treatment with an ASC scaffold alone or untreated controls at 2 and 8 weeks after surgery (P<0.05). Two weeks after transplantation, the BMSCs seeded into an ASC scaffold significantly decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells, as compared with the ASC scaffold only and control groups. These results suggested that the use of BMSCs decreased the apoptosis of neural cells and thereby limited tissue damage at the lesion site. Notably, the use of BMSCs with an ASC scaffold also decreased the recruitment of macrophages (microglia; P<0.05) and T lymphocytes (P<0.05) around the SCI site, as indicated by immunofluorescent markers. By contrast, there was no inhibition of the inflammatory response in the control and ASC scaffold only groups. BMSCs regulated inflammatory cell recruitment to promote functional recovery. However, there was no significant difference in IgM-positive expression among the three groups (P>0.05). The results of this study demonstrated that BMSCs seeded into ASC scaffolds for repair of spinal cord hemisection defects promoted functional recovery through the early

  1. The organization of spinal motor neurons in a monotreme is consistent with a six-region schema of the mammalian spinal cord.

    PubMed

    Mitchelle, Amer; Watson, Charles

    2016-09-01

    The motor neurons in the spinal cord of an echidna (Tachyglossus aculeatus) have been mapped in Nissl-stained sections from spinal cord segments defined by spinal nerve anatomy. A medial motor column of motor neurons is found at all spinal cord levels, and a hypaxial column is found at most levels. The organization of the motor neuron clusters in the lateral motor column of the brachial (C5 to T3) and crural (L2 to S3) limb enlargements is very similar to the pattern previously revealed by retrograde tracing in placental mammals, and the motor neuron clusters have been tentatively identified according to the muscle groups they are likely to supply. The region separating the two limb enlargements (T4 to L1) contains preganglionic motor neurons that appear to represent the spinal sympathetic outflow. Immediately caudal to the crural limb enlargement is a short column of preganglionic motor neurons (S3 to S4), which it is believed represents the pelvic parasympathetic outflow. The rostral and caudal ends of the spinal cord contain neither a lateral motor column nor a preganglionic column. Branchial motor neurons (which are believed to supply the sternomastoid and trapezius muscles) are present at the lateral margin of the ventral horn in rostral cervical segments (C2-C4). These same segments contain the phrenic nucleus, which belongs to the hypaxial column. The presence or absence of the main spinal motor neuron columns in the different regions echidna spinal cord (and also in that of other amniote vertebrates) provides a basis for dividing the spinal cord into six main regions - prebrachial, brachial, postbrachial, crural, postcrural and caudal. The considerable biological and functional significance of this subdivision pattern is supported by recent studies on spinal cord hox gene expression in chicks and mice. On the other hand, the familiar 'segments' of the spinal cord are defined only by the anatomy of adjacent vertebrae, and are not demarcated by intrinsic gene

  2. Cornel Iridoid Glycoside Improves Locomotor Impairment and Decreases Spinal Cord Damage in Rats

    PubMed Central

    Tang, Wen-jing; Ma, Deng-lei; Yang, Cui-cui; Zhang, Li; Li, Ya-li

    2016-01-01

    Purpose. This study was to investigate the effects of cornel iridoid glycoside (CIG) on spinal cord injury (SCI) in rats. Methods. The thoracic cord (at T9) of rats was injured by clip compression for 30 sec. Locomotor function was assessed using the Basso, Beattie, and Bresnahan (BBB) rating scale. Neuroanatomic stereological parameters as well as Nogo-A, p75 neurotrophin receptor (p75NTR), and ROCKII expression were measured by histological processing, immunohistochemistry, and stereological analyses. The axons passing through the lesion site were detected by BDA tracing. Results. Intragastric administration of CIG (60 and 180 mg/kg) improved the locomotor impairment at 10, 17, 24, and 31 days post-injury (dpi) compared with untreated SCI model rats. CIG treatment decreased the volume of the lesion epicenter (LEp) and increased the volume of spared tissue and the number of surviving neurons in the injured spinal cord at 31 dpi. CIG promoted the growth of BDA-positive axons and their passage through the lesion site and decreased the expression of Nogo-A, p75NTR, and ROCKII both in and around the LEp. Conclusion. CIG improved the locomotor impairment, decreased tissue damage, and downregulated the myelin-associated inhibition signaling pathway in SCI rats. The results suggest that CIG may be beneficial for SCI therapy. PMID:27990434

  3. An Integrated Approach for Analysis of the DNA Damage Response in Mammalian Cells: NUCLEOTIDE EXCISION REPAIR, DNA DAMAGE CHECKPOINT, AND APOPTOSIS.

    PubMed

    Choi, Jun-Hyuk; Kim, So-Young; Kim, Sook-Kyung; Kemp, Michael G; Sancar, Aziz

    2015-11-27

    DNA damage by UV and UV-mimetic agents elicits a set of inter-related responses in mammalian cells, including DNA repair, DNA damage checkpoints, and apoptosis. Conventionally, these responses are analyzed separately using different methodologies. Here we describe a unified approach that is capable of quantifying all three responses in parallel using lysates from the same population of cells. We show that a highly sensitive in vivo excision repair assay is capable of detecting nucleotide excision repair of a wide spectrum of DNA lesions (UV damage, chemical carcinogens, and chemotherapeutic drugs) within minutes of damage induction. This method therefore allows for a real-time measure of nucleotide excision repair activity that can be monitored in conjunction with other components of the DNA damage response, including DNA damage checkpoint and apoptotic signaling. This approach therefore provides a convenient and reliable platform for simultaneously examining multiple aspects of the DNA damage response in a single population of cells that can be applied for a diverse array of carcinogenic and chemotherapeutic agents.

  4. Efficient repairing effect of PEG based tri-block copolymer on mechanically damaged PC12 cells and isolated spinal cord.

    PubMed

    Rad, Iman; Mobasheri, Hamid; Najafi, Farhood; Rezaei, Maryam

    2014-06-01

    Membrane sealing effects of polymersomes made of tri-block copolymer, PEG-co-FA/SC-co-PEG, (PFSP) were studied on isolated spinal cord strips, PC12 cell lines and artificial bilayer following mechanical impact implemented by aneurism clip, sonication and electric shock, respectively. The homogeneity and size of PFSP, membrane permeability and cell viability were assessed by dynamic light scattering, LDH release and MTT assays. According to the results, the biocompatible, physico-chemical, size, surface charge and amphipathic nature of PFSP polymersome makes it an ideal macromolecule to rapidly reseal damaged membranes of cells in injured spinal cord as well as in culture medium. Compound action potentials recorded from intentionally damaged spinal cord strips incubated with PFSP showed restoration of neural excitability by 82.24 % and conduction velocity by 96.72 % after 5 min that monitored in real time. Thus, they triggered efficient instant and sustained sealing of membrane and reactivation of temporarily inactivated axons. Treatment of ultrasonically damaged PC12 cells by PFSP caused efficient cell membrane repair and led to their increased viability. The optimum effects of PFSP on stabilization and impermeabilizing of the lipid bilayer occurred at the same concentrations applied to the damaged cells and spinal cord fibers and was approved by restoration of membrane conductance and calcein release manifested by NanoDrop technique. The unique physico-chemical characteristics of novel polymersomes introduced here, make them capable to reorganize membrane lipid molecules, reseal the breaches and restore the hydrophobic insulation in spinal cord damaged cells. Thus, they might be considered in the clinical treatment of SCI at early stages.

  5. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells

    PubMed Central

    Loonstra, Ate; Vooijs, Marc; Beverloo, H. Berna; Allak, Bushra Al; van Drunen, Ellen; Kanaar, Roland; Berns, Anton; Jonkers, Jos

    2001-01-01

    The use of Cre/loxP recombination in mammalian cells has expanded rapidly. We describe here that Cre expression in cultured mammalian cells may result in a markedly reduced proliferation and that this effect is dependent on the endonuclease activity of Cre. Chromosome analysis after Cre expression revealed numerous chromosomal aberrations and an increased number of sister chromatid exchanges. Titration experiments in mouse embryo fibroblasts with a ligand-regulatable Cre-ERT show that toxicity is dependent on the level of Cre activity. Prolonged, low levels of Cre activity permit recombination without concomitant toxicity. This urges for a careful titration of Cre activity in conditional gene modification in mammalian cells. PMID:11481484

  6. Co-visualization of DNA damage and ion traversals in live mammalian cells using a fluorescent nuclear track detector.

    PubMed

    Kodaira, Satoshi; Konishi, Teruaki; Kobayashi, Alisa; Maeda, Takeshi; Ahmad, Tengku Ahbrizal Farizal Tengku; Yang, Gen; Akselrod, Mark S; Furusawa, Yoshiya; Uchihori, Yukio

    2015-03-01

    The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080-53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments.

  7. Differential introduction of DNA damage and repair in mammalian genes transcribed by RNA polymerase I and II

    SciTech Connect

    Vos, J.H.; Wauthier, E.L. )

    1991-04-01

    The authors have developed a general quantitative method for comparing the levels of drug-induced DNA crosslinking in specific mammalian genes. They observed a dramatic difference between the efficiency of the removal of both psoralen monoadducts and interstrand crosslinks from the rRNA genes and the efficiency of their removal from the dihydrofolate reductase (DHFR) gene in cultured human and hamster cells. While 90% of the interstrand crosslinks were removed from the human DHFR gene in 48 h, less than 25% repair occurred in the rRNA genes. Similarly, in Chinese hamster ovary cells, 85% repair of interstrand crosslinks within 8 h in the DHFR gene versus only 20% repair in the rRNA genes. The preferential repair of the DHFR gene relative to that of the rRNA genes was also observed for psoralen monoadducts in cells from both mammalian species. In human-mouse hybrid cells, the active mouse rRNA genes were five times more susceptible to psoralen modification than are the silent rRNA human genes, but adduct removal was similarly inefficient for both classes. They conclude that the repair of chemical damage such as psoralen photadducts in an expressed mammalian gene may depend upon the class of transcription to which it belongs.

  8. DNA damage in mammalian neural stem cells leads to astrocytic differentiation mediated by BMP2 signaling through JAK-STAT.

    PubMed

    Schneider, Leonid; Pellegatta, Serena; Favaro, Rebecca; Pisati, Federica; Roncaglia, Paola; Testa, Giuseppe; Nicolis, Silvia K; Finocchiaro, Gaetano; d'Adda di Fagagna, Fabrizio

    2013-01-01

    The consequences of DNA damage generation in mammalian somatic stem cells, including neural stem cells (NSCs), are poorly understood despite their potential relevance for tissue homeostasis. Here, we show that, following ionizing radiation-induced DNA damage, NSCs enter irreversible proliferative arrest with features of cellular senescence. This is characterized by increased cytokine secretion, loss of stem cell markers, and astrocytic differentiation. We demonstrate that BMP2 is necessary to induce expression of the astrocyte marker GFAP in irradiated NSCs via a noncanonical signaling pathway engaging JAK-STAT. This is promoted by ATM and antagonized by p53. Using a SOX2-Cre reporter mouse model for cell-lineage tracing, we demonstrate irradiation-induced NSC differentiation in vivo. Furthermore, glioblastoma assays reveal that irradiation therapy affects the tumorigenic potential of cancer stem cells by ablating self-renewal and inducing astroglial differentiation.

  9. Interpreting sperm DNA damage in a diverse range of mammalian sperm by means of the two-tailed comet assay

    PubMed Central

    Cortés-Gutiérrez, Elva I.; López-Fernández, Carmen; Fernández, José Luis; Dávila-Rodríguez, Martha I.; Johnston, Stephen D.; Gosálvez, Jaime

    2014-01-01

    Key Concepts The two-dimensional Two-Tailed Comet assay (TT-comet) protocol is a valuable technique to differentiate between single-stranded (SSBs) and double-stranded DNA breaks (DSBs) on the same sperm cell.Protein lysis inherent with the TT-comet protocol accounts for differences in sperm protamine composition at a species-specific level to produce reliable visualization of sperm DNA damage.Alkaline treatment may break the sugar–phosphate backbone in abasic sites or at sites with deoxyribose damage, transforming these lesions into DNA breaks that are also converted into ssDNA. These lesions are known as Alkali Labile Sites “ALSs.”DBD–FISH permits the in situ visualization of DNA breaks, abasic sites or alkaline-sensitive DNA regions.The alkaline comet single assay reveals that all mammalian species display constitutive ALS related with the requirement of the sperm to undergo transient changes in DNA structure linked with chromatin packing.Sperm DNA damage is associated with fertilization failure, impaired pre-and post- embryo implantation and poor pregnancy outcome.The TT is a valuable tool for identifying SSBs or DSBs in sperm cells with DNA fragmentation and can be therefore used for the purposes of fertility assessment. Sperm DNA damage is associated with fertilization failure, impaired pre-and post- embryo implantation and poor pregnancy outcome. A series of methodologies to assess DNA damage in spermatozoa have been developed but most are unable to differentiate between single-stranded DNA breaks (SSBs) and double-stranded DNA breaks (DSBs) on the same sperm cell. The two-dimensional Two-Tailed Comet assay (TT-comet) protocol highlighted in this review overcomes this limitation and emphasizes the importance in accounting for the difference in sperm protamine composition at a species-specific level for the appropriate preparation of the assay. The TT-comet is a modification of the original comet assay that uses a two dimensional electrophoresis to

  10. Mats made from fibronectin support oriented growth of axons in the damaged spinal cord of the adult rat.

    PubMed

    King, Von R; Henseler, Manuel; Brown, Robert A; Priestley, John V

    2003-08-01

    A variety of biological as well as synthetic implants have been used to attempt to promote regeneration into the damaged spinal cord. We have implanted mats made from fibronectin (FN) into the damaged spinal cord to determine their effectiveness as a substrate for regeneration of axons. These mats contain oriented pores and can take up and release growth factors. Lesion cavities 1 mm in width and depth and 2 mm in length were created on one side of the spinal cord of adult rats. FN mats containing neurotrophins or saline were placed into the lesion. Mats were well integrated into surrounding tissue and showed robust well-oriented growth of calcitonin gene-related peptide, substance P, GABAergic, cholinergic, glutamatergic, and noradrenergic axons into FN mats. Transganglionic tracing using cholera toxin B indicated large-diameter primary afferents had grown into FN implants. Schwann cells had also infiltrated FN mats. Electron microscopy confirmed the presence of axons within implants sites, with most axons either ensheathed or myelinated by Schwann cells. Mats incubated in brain-derived neurotrophic factor and neurotrophin-3 showed significantly more neurofilament-positive and glutamatergic fibers compared to saline- and nerve growth factor-incubated mats, while mats incubated with nerve growth factor showed more calcitonin gene-related peptide-positive axons. In contrast, neurotrophin treatment had no effect on PGP 9.5-positive axons. In addition, in some animals with neurotrophin-3-incubated mats, cholera toxin B-labelled fibers had grown from the mat into adjoining intact areas of spinal cord. The results indicate that FN mats provide a substrate that is permissive for robust oriented axonal growth in the damaged spinal cord, and that this growth is supported by Schwann cells.

  11. Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord.

    PubMed

    Hamilton, L K; Truong, M K V; Bednarczyk, M R; Aumont, A; Fernandes, K J L

    2009-12-15

    A stem cell's microenvironment, or "niche," is a critical regulator of its behaviour. In the adult mammalian spinal cord, central canal ependymal cells possess latent neural stem cell properties, but the ependymal cell niche has not yet been described. Here, we identify important similarities and differences between the central canal ependymal zone and the forebrain subventricular zone (SVZ), a well-characterized niche of neural stem cells. First, direct immunohistochemical comparison of the spinal cord ependymal zone and the forebrain SVZ revealed distinct patterns of neural precursor marker expression. In particular, ependymal cells in the spinal cord were found to be bordered by a previously uncharacterized sub-ependymal layer, which is relatively less elaborate than that of the SVZ and comprised of small numbers of astrocytes, oligodendrocyte progenitors and neurons. Cell proliferation surrounding the central canal occurs in close association with blood vessels, but unlike in the SVZ, involves mainly ependymal rather than sub-ependymal cells. These proliferating ependymal cells typically self-renew rather than produce transit-amplifying progenitors, as they generate doublets of progeny that remain within the ependymal layer and show no evidence of a lineage relationship to sub-ependymal cells. Interestingly, the dorsal pole of the central canal was found to possess a sub-population of tanycyte-like cells that express markers of both ependymal cells and neural precursors, and their presence correlates with higher numbers of dorsally proliferating ependymal cells. Together, these data identify key features of the spinal cord ependymal cell niche, and suggest that dorsal ependymal cells possess the potential for stem cell activity. This work provides a foundation for future studies aimed at understanding ependymal cell regulation under normal and pathological conditions.

  12. Nanoscale imaging of untreated mammalian cells in a medium with low radiation damage using scanning electron-assisted dielectric microscopy

    PubMed Central

    Okada, Tomoko; Ogura, Toshihiko

    2016-01-01

    Imaging of untreated living cells in a medium at a nanometre-scale resolution under physiological conditions is a significant challenge. Scanning electron microscopy (SEM) is widely used to observe cells in various atmospheric holders or special equipment. However, untreated biological specimens in aqueous solution generally incur heavy radiation damage from the direct electron beam (EB); and these images exhibit very poor contrast. Therefore, a new method for generating high-contrast images of living cells under physiological conditions without radiation damage has been strongly desired. Here, we demonstrate the first nanoscale observation of living cultured mammalian cells using our newly developed scanning-electron assisted dielectric microscopy (SE-ADM) method with a culture dish holder. Using the difference in relative permittivity between water and specimens, our SE-ADM system aids in the visualisation of untreated biological samples in aqueous solution. In addition, specimens incurred only a low level of radiation damage because the tungsten (W)-coated silicon nitride (SiN) film absorbs irradiated electrons. Untreated cells and organelles are clearly visible in high-contrast and high-resolution images without staining and fixation. Furthermore, our method enables the detection of changes in organelle structures within cells via time-lapse imaging with minimal radiation damage. PMID:27375121

  13. Nanoscale imaging of untreated mammalian cells in a medium with low radiation damage using scanning electron-assisted dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Okada, Tomoko; Ogura, Toshihiko

    2016-07-01

    Imaging of untreated living cells in a medium at a nanometre-scale resolution under physiological conditions is a significant challenge. Scanning electron microscopy (SEM) is widely used to observe cells in various atmospheric holders or special equipment. However, untreated biological specimens in aqueous solution generally incur heavy radiation damage from the direct electron beam (EB); and these images exhibit very poor contrast. Therefore, a new method for generating high-contrast images of living cells under physiological conditions without radiation damage has been strongly desired. Here, we demonstrate the first nanoscale observation of living cultured mammalian cells using our newly developed scanning-electron assisted dielectric microscopy (SE-ADM) method with a culture dish holder. Using the difference in relative permittivity between water and specimens, our SE-ADM system aids in the visualisation of untreated biological samples in aqueous solution. In addition, specimens incurred only a low level of radiation damage because the tungsten (W)-coated silicon nitride (SiN) film absorbs irradiated electrons. Untreated cells and organelles are clearly visible in high-contrast and high-resolution images without staining and fixation. Furthermore, our method enables the detection of changes in organelle structures within cells via time-lapse imaging with minimal radiation damage.

  14. Supreme EnLIGHTenment: damage recognition and signaling in the mammalian UV response.

    PubMed

    Herrlich, Peter; Karin, Michael; Weiss, Carsten

    2008-02-15

    Like their prokaryotic counterparts, mammalian cells can sense light, especially in the ultraviolet (UV) range of the spectrum. After UV exposure, cells mount an elaborate response--called the UV response--that mimics physiological signaling responses except that it targets multiple pathways, thereby lacking the defined specificity of receptor-triggered signal transduction. Despite many years of research, it is still not fully clear how UV radiation is sensed and converted into the "language of cells"--signal reception and transduction. This review focuses on how photonic energy and its primary cellular products are sensed to elicit the UV response.

  15. Oxidative Stress Induces Persistent Telomeric DNA Damage Responsible for Nuclear Morphology Change in Mammalian Cells

    PubMed Central

    Coluzzi, Elisa; Colamartino, Monica; Cozzi, Renata; Leone, Stefano; Meneghini, Carlo; O’Callaghan, Nathan; Sgura, Antonella

    2014-01-01

    One main function of telomeres is to maintain chromosome and genome stability. The rate of telomere shortening can be accelerated significantly by chemical and physical environmental agents. Reactive oxygen species are a source of oxidative stress and can produce modified bases (mainly 8-oxoG) and single strand breaks anywhere in the genome. The high incidence of guanine residues in telomeric DNA sequences makes the telomere a preferred target for oxidative damage. Our aim in this work is to evaluate whether chromosome instability induced by oxidative stress is related specifically to telomeric damage. We treated human primary fibroblasts (MRC-5) in vitro with hydrogen peroxide (100 and 200 µM) for 1 hr and collected data at several time points. To evaluate the persistence of oxidative stress-induced DNA damage up to 24 hrs after treatment, we analysed telomeric and genomic oxidative damage by qPCR and a modified comet assay, respectively. The results demonstrate that the genomic damage is completely repaired, while the telomeric oxidative damage persists. The analysis of telomere length reveals a significant telomere shortening 48 hrs after treatment, leading us to hypothesise that residual telomere damage could be responsible for the telomere shortening observed. Considering the influence of telomere length modulation on genomic stability, we quantified abnormal nuclear morphologies (Nucleoplasmic Bridges, Nuclear Buds and Micronuclei) and observed an increase of chromosome instability in the same time frame as telomere shortening. At subsequent times (72 and 96 hrs), we observed a restoration of telomere length and a reduction of chromosome instability, leaving us to conjecture a correlation between telomere shortening/dysfunction and chromosome instability. We can conclude that oxidative base damage leads to abnormal nuclear morphologies and that telomere dysfunction is an important contributor to this effect. PMID:25354277

  16. Meta-analysis of attitudes toward damage-causing mammalian wildlife.

    PubMed

    Kansky, Ruth; Kidd, Martin; Knight, Andrew T

    2014-08-01

    Many populations of threatened mammals persist outside formally protected areas, and their survival depends on the willingness of communities to coexist with them. An understanding of the attitudes, and specifically the tolerance, of individuals and communities and the factors that determine these is therefore fundamental to designing strategies to alleviate human-wildlife conflict. We conducted a meta-analysis to identify factors that affected attitudes toward 4 groups of terrestrial mammals. Elephants (65%) elicited the most positive attitudes, followed by primates (55%), ungulates (53%), and carnivores (44%). Urban residents presented the most positive attitudes (80%), followed by commercial farmers (51%) and communal farmers (26%). A tolerance to damage index showed that human tolerance of ungulates and primates was proportional to the probability of experiencing damage while elephants elicited tolerance levels higher than anticipated and carnivores elicited tolerance levels lower than anticipated. Contrary to conventional wisdom, experiencing damage was not always the dominant factor determining attitudes. Communal farmers had a lower probability of being positive toward carnivores irrespective of probability of experiencing damage, while commercial farmers and urban residents were more likely to be positive toward carnivores irrespective of damage. Urban residents were more likely to be positive toward ungulates, elephants, and primates when probability of damage was low, but not when it was high. Commercial and communal farmers had a higher probability of being positive toward ungulates, primates, and elephants irrespective of probability of experiencing damage. Taxonomic bias may therefore be important. Identifying the distinct factors explaining these attitudes and the specific contexts in which they operate, inclusive of the species causing damage, will be essential for prioritizing conservation investments.

  17. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Roy, R. R.; Hodgson, J. A.; Prober, R. J.; de Guzman, C. P.; de Leon, R.

    1992-01-01

    The neural circuitry of the lumbar spinal cord can generate alternating extension and flexion of the hindlimbs. The hindlimbs of adult cats with complete transection of the spinal cord at a low thoracic level (T12-T13) can perform full weight-supporting locomotion on a treadmill belt moving at a range of speeds. Some limitations in the locomotor capacity can be associated with a deficit in the recruitment level of the fast extensors during the stance phase and the flexors during the swing phase of a step cycle. The level of locomotor performance, however, can be enhanced by daily training on a treadmill while emphasizing full weight-support stepping and by providing appropriately timed sensory stimulation, loading, and/or pharmacologic stimulation of the hindlimb neuromuscular apparatus. Furthermore, there appears to be an interactive effect of these interventions. For example, the maximum treadmill speed that a spinal adult cat can attain and maintain is significantly improved with daily full weight-supporting treadmill training, but progressive recruitment of fast extensors becomes apparent only when the hindlimbs are loaded by gently pulling down on the tail during the stepping. Stimulation of the sural nerve at the initiation of the flexion phase of the step cycle can likewise markedly improve the locomotor capability. Administration of clonidine, in particular in combination with an elevated load, resulted in the most distinct and consistent alternating bursts of electromyographic activity during spinal stepping. These data indicate that the spinal cord has the ability to execute alternating activation of the extensor and flexor musculature of the hindlimbs (stepping) and that this ability can be improved by several interventions such as training, sensory stimulation, and use of some pharmacologic agents. Thus, it appears that the spinal cord, without supraspinal input, is highly plastic and has the potential to "learn," that is, to acquire and improve its

  18. Fetal grafts alter chronic behavioral outcome after contusion damage to the adult rat spinal cord.

    PubMed

    Stokes, B T; Reier, P J

    1992-04-01

    In the present experiments, we have examined the capacity of intraspinal transplants to effect alterations in certain locomotor behaviors after spinal contusion injuries. An electromechanical impactor that was sensitive to tissue biomechanical characteristics was used to produce rapid (20 ms) compression injuries to the thoracic spinal cord (T8). Suspensions of fetal spinal tissue (14-day) were placed at 10 days postinjury into the intraspinal cavity created by these reproducible spinal injuries. In the pre- and postinjury period, a number of general and sensitive motor behaviors were used to characterize the immediate and long-term progress of hindlimb behavioral recovery over an extended period of time (73 days). Our data reveal that a lasting alteration in some motor behaviors can be achieved by suspension grafts. While little improvement in some generalized motor tasks (inclined plane analysis, grid walking) takes place, fetal transplants precipitate a rapid and enduring change in certain motivated fine motor behaviors (gait analysis). The base of support and stride length of the hindlimbs were improved by 7 days post-transplantation and the effect was stable over time. The angle of rotation was, however, not altered. The lasting effect in two gait parameters noted was accompanied by the presence of well-developed spinal grafts that often fused with the host spinal parenchyma. These results provide the first documentation of an influence of fetal transplants on motivated locomotor capacity in a well-characterized spinal injury model that mimics lesions seen in the contused adult human spinal cord.

  19. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    SciTech Connect

    Feinendegen, L.E.; Bond, V.P.; Sondhaus, C.A.; Altman, K.I.

    1998-12-31

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts.

  20. Enhanced replication of UV-damaged Simian virus 40 DNA in carcinogen-treated mammalian cells

    SciTech Connect

    Maga, J.A.

    1983-01-01

    The replication of UV-damaged Simian virus 40 (SV40) in carcinogen-treated monkey cells has been studied to elucidate the mechanism of carcinogen-enhanced reactivation. Carcinogen enhanced reactivation is the observed increase in UV-irradiated virus survival in host cells treated with low doses of carcinogen compared to UV-irradiated virus survival in untreated hosts. Carcinogen treatment of monkey kidney cells with either N-acetoxy-2-acetylaminofluorene (AAAF) or UV radiation leads to an enhanced capacity to replicate UV-damaged virus during the first round of infection. To further define the mechanism leading to enhanced replication, a detailed biochemical analysis of replication intermediates in carcinogen-treated cells was performed. Several conclusions can be drawn. First enhanced replication can be observed in the first four rounds of replication after UV irradiation of viral templates. The second major finding is that the relaxed circular intermediate model proposed for the replication of UV-damaged templates in untreated cells appears valid for replication of UV-damaged templates in carcinogen-treated cells. Possible mechanisms and the supporting evidence are discussed and future experiments outlined.

  1. Tissue Damage Markers after a Spinal Manipulation in Healthy Subjects: A Preliminary Report of a Randomized Controlled Trial

    PubMed Central

    Achalandabaso, A.; Plaza-Manzano, G.; Lomas-Vega, R.; Martínez-Amat, A.; Camacho, M. V.; Gassó, M.; Hita-Contreras, F.; Molina, F.

    2014-01-01

    Spinal manipulation (SM) is a manual therapy technique frequently applied to treat musculoskeletal disorders because of its analgesic effects. It is defined by a manual procedure involving a directed impulse to move a joint past its physiologic range of movement (ROM). In this sense, to exceed the physiologic ROM of a joint could trigger tissue damage, which might represent an adverse effect associated with spinal manipulation. The present work tries to explore the presence of tissue damage associated with SM through the damage markers analysis. Thirty healthy subjects recruited at the University of Jaén were submitted to a placebo SM (control group; n = 10), a single lower cervical manipulation (cervical group; n = 10), and a thoracic manipulation (n = 10). Before the intervention, blood samples were extracted and centrifuged to obtain plasma and serum. The procedure was repeated right after the intervention and two hours after the intervention. Tissue damage markers creatine phosphokinase (CPK), lactate dehydrogenase (LDH), C-reactive protein (CRP), troponin-I, myoglobin, neuron-specific enolase (NSE), and aldolase were determined in samples. Statistical analysis was performed through a 3 × 3 mixed-model ANOVA. Neither cervical manipulation nor thoracic manipulation did produce significant changes in the CPK, LDH, CRP, troponin-I, myoglobin, NSE, or aldolase blood levels. Our data suggest that the mechanical strain produced by SM seems to be innocuous to the joints and surrounding tissues in healthy subjects. PMID:25609853

  2. Tissue damage markers after a spinal manipulation in healthy subjects: a preliminary report of a randomized controlled trial.

    PubMed

    Achalandabaso, A; Plaza-Manzano, G; Lomas-Vega, R; Martínez-Amat, A; Camacho, M V; Gassó, M; Hita-Contreras, F; Molina, F

    2014-01-01

    Spinal manipulation (SM) is a manual therapy technique frequently applied to treat musculoskeletal disorders because of its analgesic effects. It is defined by a manual procedure involving a directed impulse to move a joint past its physiologic range of movement (ROM). In this sense, to exceed the physiologic ROM of a joint could trigger tissue damage, which might represent an adverse effect associated with spinal manipulation. The present work tries to explore the presence of tissue damage associated with SM through the damage markers analysis. Thirty healthy subjects recruited at the University of Jaén were submitted to a placebo SM (control group; n = 10), a single lower cervical manipulation (cervical group; n = 10), and a thoracic manipulation (n = 10). Before the intervention, blood samples were extracted and centrifuged to obtain plasma and serum. The procedure was repeated right after the intervention and two hours after the intervention. Tissue damage markers creatine phosphokinase (CPK), lactate dehydrogenase (LDH), C-reactive protein (CRP), troponin-I, myoglobin, neuron-specific enolase (NSE), and aldolase were determined in samples. Statistical analysis was performed through a 3 × 3 mixed-model ANOVA. Neither cervical manipulation nor thoracic manipulation did produce significant changes in the CPK, LDH, CRP, troponin-I, myoglobin, NSE, or aldolase blood levels. Our data suggest that the mechanical strain produced by SM seems to be innocuous to the joints and surrounding tissues in healthy subjects.

  3. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones.

    PubMed

    Salford, Leif G; Brun, Arne E; Eberhardt, Jacob L; Malmgren, Lars; Persson, Bertil R R

    2003-06-01

    The possible risks of radio-frequency electromagnetic fields for the human body is a growing concern for our society. We have previously shown that weak pulsed microwaves give rise to a significant leakage of albumin through the blood-brain barrier. In this study we investigated whether a pathologic leakage across the blood-brain barrier might be combined with damage to the neurons. Three groups each of eight rats were exposed for 2 hr to Global System for Mobile Communications (GSM) mobile phone electromagnetic fields of different strengths. We found highly significant (p< 0.002) evidence for neuronal damage in the cortex, hippocampus, and basal ganglia in the brains of exposed rats.

  4. Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord

    PubMed Central

    Gozal, Elizabeth A.; O'Neill, Brannan E.; Sawchuk, Michael A.; Zhu, Hong; Halder, Mallika; Chou, Ching-Chieh; Hochman, Shawn

    2014-01-01

    The trace amines (TAs), tryptamine, tyramine, and β-phenylethylamine, are synthesized from precursor amino acids via aromatic-L-amino acid decarboxylase (AADC). We explored their role in the neuromodulation of neonatal rat spinal cord motor circuits. We first showed that the spinal cord contains the substrates for TA biosynthesis (AADC) and for receptor-mediated actions via trace amine-associated receptors (TAARs) 1 and 4. We next examined the actions of the TAs on motor activity using the in vitro isolated neonatal rat spinal cord. Tyramine and tryptamine most consistently increased motor activity with prominent direct actions on motoneurons. In the presence of N-methyl-D-aspartate, all applied TAs supported expression of a locomotor-like activity (LLA) that was indistinguishable from that ordinarily observed with serotonin, suggesting that the TAs act on common central pattern generating neurons. The TAs also generated distinctive complex rhythms characterized by episodic bouts of LLA. TA actions on locomotor circuits did not require interaction with descending monoaminergic projections since evoked LLA was maintained following block of all Na+-dependent monoamine transporters or the vesicular monoamine transporter. Instead, TA (tryptamine and tyramine) actions depended on intracellular uptake via pentamidine-sensitive Na+-independent membrane transporters. Requirement for intracellular transport is consistent with the TAs having much slower LLA onset than serotonin and for activation of intracellular TAARs. To test for endogenous actions following biosynthesis, we increased intracellular amino acid levels with cycloheximide. LLA emerged and included distinctive TA-like episodic bouts. In summary, we provided anatomical and functional evidence of the TAs as an intrinsic spinal monoaminergic modulatory system capable of promoting recruitment of locomotor circuits independent of the descending monoamines. These actions support their known sympathomimetic function

  5. Protection against UVA-induced photooxidative damage in mammalian cell lines expressing increased levels of metallothionein

    SciTech Connect

    Dudek, E.J. Illinois Inst. of Tech., Chicago, IL . Dept. of Biology); Peak, J.G.; Peak, M.J. ); Roth, R.M. . Dept. of Biology)

    1990-01-01

    Metallothionein (MT) is an endogenous low molecular weight protein that is inducible in a variety of eukaryotic cells and has the ability to selectivity bind heavy metal ions such as zinc and the cadmium. Although the exact physiological role of MT is still not understood, there is strong evidence that MT is involved in providing cellular resistance against the damaging effects of heavy metals and in the regulation of intracellular zinc and copper. Recently, it has been demonstrated that MT can scavenge radiation-induced reactive oxygen intermediates in vitro, specifically hydroxyl and superoxide radicals, and because of these observations it has been suggested that MT may provide protection against radiation-induced oxidative stress in vivo. Cell lines expressing increased levels of MT have demonstrated resistance to ionizing radiation, to ultraviolet radiation, and also to various DNA damaging agents including melphalan and cis-diaminedichloroplatinum. It is therefore important to gain some insight into the relationship between cellular MT content and cellular resistance to radiation and other DNA damaging agents. In this study we investigated the role of MT in providing protection against monochromatic 365-nm UVA radiation, which is known to generate intracellular reactive oxygen species that are involved in both DNA damage and cell killing. For this purpose, we used zinc acetate, a potent inducer of MT, to elevate MT levels in V79 Chinese hamster fibroblasts prior to UVA exposure and determined cell survival for uninduced and induced cultures. In order to eliminate any zinc effects other than MT induction, we also isolated and characterized cadmium chloride-resistant clones of V79 cells that have increased steady-state levels of both MT mRNA and protein, and we examined their survival characteristics against 365-nm radiation in the absence of zinc acetate. 14 refs., 3 figs.

  6. Spinal Cord Injury

    MedlinePlus

    ... care for people with spinal cord injuries and aggressive treatment and rehabilitation can minimize damage to the ... care for people with spinal cord injuries and aggressive treatment and rehabilitation can minimize damage to the ...

  7. Bacillus amyloliquefaciens strains isolated from moisture-damaged buildings produced surfactin and a substance toxic to mammalian cells.

    PubMed

    Mikkola, Raimo; Andersson, Maria A; Grigoriev, Pavel; Teplova, Vera V; Saris, Nils-Erik L; Rainey, Frederick A; Salkinoja-Salonen, Mirja S

    2004-04-01

    Fungicidic Bacillus amyloliquefaciens strains isolated from the indoor environment of moisture-damaged buildings contained heat-stable, methanol-soluble substances that inhibited motility of boar spermatozoa within 15 min of exposure and killed feline lung cells in high dilution in 1 day. Boar sperm cells lost motility, cellular ATP, and NADH upon contact to the bacterial extract (0.2 microg dry wt/ml). Two bioactive substances were purified from biomass of the fungicidal isolates. One partially characterized substance, 1,197 Da, was moderately hydrophobic and contained leucine, proline, serine, aspartic acid, glutamic acid and tyrosine, in addition to chromophore(s) absorbing at 365 nm. In boar sperm and human neural cells (Paju), the compound depolarized the transmembrane potentials of mitochondria (Delta Psi(m)) and the plasma membrane (Delta Psi(p)) after a 20-min exposure and formed cation-selective channels in lipid membranes, with a selectivity K(+):Na(+):Ca(2+) of 26:15:3.5. The other substance was identified as a plasma-membrane-damaging lipopeptide surfactin. Plate-grown biomass of indoor Bacillus amyloliquefaciens contained ca. 7% of dry weight of the two substances, 1,197 Da and surfactin, in a ratio of 1:6 (w:w). The in vitro observed simultaneous collapse of both cytosolic and mitochondrial ATP in the affected mammalian cell, induced by the 1,197-Da cation channel, suggests potential health risks for occupants of buildings contaminated with such toxins.

  8. Meta-Analysis of Attitudes toward Damage-Causing Mammalian Wildlife

    PubMed Central

    KANSKY, RUTH; KIDD, MARTIN; KNIGHT, ANDREW T

    2014-01-01

    Many populations of threatened mammals persist outside formally protected areas, and their survival depends on the willingness of communities to coexist with them. An understanding of the attitudes, and specifically the tolerance, of individuals and communities and the factors that determine these is therefore fundamental to designing strategies to alleviate human-wildlife conflict. We conducted a meta-analysis to identify factors that affected attitudes toward 4 groups of terrestrial mammals. Elephants (65%) elicited the most positive attitudes, followed by primates (55%), ungulates (53%), and carnivores (44%). Urban residents presented the most positive attitudes (80%), followed by commercial farmers (51%) and communal farmers (26%). A tolerance to damage index showed that human tolerance of ungulates and primates was proportional to the probability of experiencing damage while elephants elicited tolerance levels higher than anticipated and carnivores elicited tolerance levels lower than anticipated. Contrary to conventional wisdom, experiencing damage was not always the dominant factor determining attitudes. Communal farmers had a lower probability of being positive toward carnivores irrespective of probability of experiencing damage, while commercial farmers and urban residents were more likely to be positive toward carnivores irrespective of damage. Urban residents were more likely to be positive toward ungulates, elephants, and primates when probability of damage was low, but not when it was high. Commercial and communal farmers had a higher probability of being positive toward ungulates, primates, and elephants irrespective of probability of experiencing damage. Taxonomic bias may therefore be important. Identifying the distinct factors explaining these attitudes and the specific contexts in which they operate, inclusive of the species causing damage, will be essential for prioritizing conservation investments. Meta-Análisis de las Posturas hacia la Mam

  9. Mammalian cell DNA damage and repair kinetics of monohaloacetic acid drinking water disinfection by-products.

    PubMed

    Komaki, Yukako; Pals, Justin; Wagner, Elizabeth D; Mariñas, Benito J; Plewa, Michael J

    2009-11-01

    Haloacetic acids (HAAs) are the second most common class of chlorinated water disinfection by-products (DBPs). The single cell gel electrophoresis genotoxicity assay using Chinese hamster ovary (CHO) cells was modified to include liquid holding recovery time to measure genomic DNA damage and repair kinetics of three monoHAAs: chloroacetic acid (CAA), bromoacetic acid (BAA), and iodoacetic acid (IAA). The rank order of genotoxic potency was IAA > BAA > CAA from previous research. The concentration of each HAA was chosen to generate approximately the same level of genotoxic damage. No cytotoxicity was expressed during the 24 h liquid holding period. Nuclei from CHO cells treated with BAA showed the lowest rate of DNA repair (t(50) = 296 min) compared to that of CAA or IAA (t(50) = 134 and 84 min, respectively). The different rates of genomic repair expressed by IAA or CAA versus BAA suggest that different distributions of DNA lesions are induced. The use of DNA repair coupled with genomic technologies may lead to the understanding of the biological and genetic mechanisms involved in toxic responses induced by DBPs.

  10. Mitigation of whole-body gamma radiation-induced damages by Clerodendron infortunatum in mammalian organisms.

    PubMed

    Chacko, Tiju; Menon, Aditya; Majeed, Teeju; Nair, Sivaprabha V; John, Nithu Sara; Nair, Cherupally Krishnan Krishnan

    2016-11-17

    Several phytoceuticals and extracts of medicinal plants are reported to mitigate deleterious effects of ionizing radiation. The potential of hydro-alcoholic extract of Clerodendron infortunatum (CIE) for providing protection to mice exposed to gamma radiation was investigated. Oral administration of CIE bestowed a survival advantage to mice exposed to lethal doses of gamma radiation. Radiation-induced depletion of the total blood count and bone marrow cellularity were prevented by treatment with CIE. Damage to the cellular DNA (as was evident from the comet assay and the micronucleus index) was also found to be decreased upon CIE administration. Radiation-induced damages to intestinal crypt cells was also reduced by CIE. Studies on gene expression in intestinal cells revealed that there was a marked increase in the Bax/Bcl-2 ratio in mice exposed to whole-body 4 Gy gamma radiation, and that administration of CIE resulted in significant lowering of this ratio, suggestive of reduction of radiation-induced apoptosis. Also, in the intestinal tissue of irradiated animals, following CIE treatment, levels of expression of the DNA repair gene Atm were found to be elevated, and there was reduction in the expression of the inflammatory Cox-2 gene. Thus, our results suggest a beneficial use of Clerodendron infortunatum for mitigating radiation toxicity.

  11. Progesterone Reduces Secondary Damage, Preserves White Matter, and Improves Locomotor Outcome after Spinal Cord Contusion

    PubMed Central

    Garcia-Ovejero, Daniel; González, Susana; Paniagua-Torija, Beatriz; Lima, Analía; Molina-Holgado, Eduardo; De Nicola, Alejandro F.

    2014-01-01

    Abstract Progesterone is an anti-inflammatory and promyelinating agent after spinal cord injury, but its effectiveness on functional recovery is still controversial. In the current study, we tested the effects of chronic progesterone administration on tissue preservation and functional recovery in a clinically relevant model of spinal cord lesion (thoracic contusion). Using magnetic resonance imaging, we observed that progesterone reduced both volume and rostrocaudal extension of the lesion at 60 days post-injury. In addition, progesterone increased the number of total mature oligodendrocytes, myelin basic protein immunoreactivity, and the number of axonal profiles at the epicenter of the lesion. Further, progesterone treatment significantly improved motor outcome as assessed using the Basso-Bresnahan-Beattie scale for locomotion and CatWalk gait analysis. These data suggest that progesterone could be considered a promising therapeutical candidate for spinal cord injury. PMID:24460450

  12. Systematic analysis of axonal damage and inflammatory response in different white matter tracts of acutely injured rat spinal cord.

    PubMed

    Gomes-Leal, W; Corkill, D J; Picanço-Diniz, C W

    2005-12-20

    The mechanisms of white matter (WM) damage during secondary degeneration are a fundamental issue in the pathophysiology of central nervous system (CNS) diseases. Our main goal was to describe the pattern of an acute inflammatory response and secondary damage to axons in different WM tracts of acutely injured rat spinal cord. Adult rats were deeply anesthetized and injected with 20 nmol of NMDA into the spinal cord ventral horn on T7. Animals were perfused after survival times of 1 day, 3 days and 7 days. Ten micrometer sections were submitted to immunocytochemical analysis for activated macrophages/microglia, neutrophils and damaged axons. There were inflammatory response and progressive tissue destruction of ventral WM (VWM) with formation of microcysts in both VWM and lateral WM (LWM). In the VWM, the number of beta-amyloid precursor protein (beta-APP) end-bulbs increased from 1 day with a peak at 3 days, decreasing by 7 days following the injection. APP end-bulbs were present in the dorsal WM (DWM) at 3 days survival time but were not in the LWM. Electron microscopic analysis revealed different degrees of myelin disruption and axonal pathology in the vacuolated WM up to 14 mm along the rostrocaudal axis. Quantitative analysis revealed a significant loss of medium and large axons (P < 0.05), but not of small axons (P > 0.05). Our results suggest that bystander axonal damage and myelin vacuolation are important secondary component of the pathology of WM tracts following rat SCI. Further studies are needed to understand the mechanisms of these pathological events.

  13. Neonatal Tissue Damage Promotes Spike Timing-Dependent Synaptic Long-Term Potentiation in Adult Spinal Projection Neurons

    PubMed Central

    Li, Jie

    2016-01-01

    Mounting evidence from both humans and rodents suggests that tissue damage during the neonatal period can “prime” developing nociceptive pathways such that a subsequent injury during adulthood causes an exacerbated degree of pain hypersensitivity. However, the cellular and molecular mechanisms that underlie this priming effect remain poorly understood. Here, we demonstrate that neonatal surgical injury relaxes the timing rules governing long-term potentiation (LTP) at mouse primary afferent synapses onto mature lamina I projection neurons, which serve as a major output of the spinal nociceptive network and are essential for pain perception. In addition, whereas LTP in naive mice was only observed if the presynaptic input preceded postsynaptic firing, early tissue injury removed this temporal requirement and LTP was observed regardless of the order in which the inputs were activated. Neonatal tissue damage also reduced the dependence of spike-timing-dependent LTP on NMDAR activation and unmasked a novel contribution of Ca2+-permeable AMPARs. These results suggest for the first time that transient tissue damage during early life creates a more permissive environment for the production of LTP within adult spinal nociceptive circuits. This persistent metaplasticity may promote the excessive amplification of ascending nociceptive transmission to the mature brain and thereby facilitate the generation of chronic pain after injury, thus representing a novel potential mechanism by which early trauma can prime adult pain pathways in the CNS. SIGNIFICANCE STATEMENT Tissue damage during early life can “prime” developing nociceptive pathways in the CNS, leading to greater pain severity after repeat injury via mechanisms that remain poorly understood. Here, we demonstrate that neonatal surgical injury widens the timing window during which correlated presynaptic and postsynaptic activity can evoke long-term potentiation (LTP) at sensory synapses onto adult lamina I

  14. Reduction in antioxidant enzyme expression and sustained inflammation enhance tissue damage in the subacute phase of spinal cord contusive injury

    PubMed Central

    2011-01-01

    contribute to extensive inflammation, causing time-dependent spread of tissue damage after severe SCI. The interventions by supplement of anti-oxidant enzymes right after SCI or delayed administration with chABC can facilitate spinal neural cell survival and tissue repair. PMID:21299884

  15. Function of microglia and macrophages in secondary damage after spinal cord injury

    PubMed Central

    Zhou, Xiang; He, Xijing; Ren, Yi

    2014-01-01

    Spinal cord injury (SCI) is a devastating type of neurological trauma with limited therapeutic opportunities. The pathophysiology of SCI involves primary and secondary mechanisms of injury. Among all the secondary injury mechanisms, the inflammatory response is the major contributor and results in expansion of the lesion and further loss of neurologic function. Meanwhile, the inflammation directly and indirectly dominates the outcomes of SCI, including not only pain and motor dysfunction, but also preventingneuronal regeneration. Microglia and macrophages play very important roles in secondary injury. Microglia reside in spinal parenchyma and survey the microenvironment through the signals of injury or infection. Macrophages are derived from monocytes recruited to injured sites from the peripheral circulation. Activated resident microglia and monocyte-derived macrophages induce and magnify immune and inflammatory responses not only by means of their secretory moleculesand phagocytosis, but also through their influence on astrocytes, oligodendrocytes and demyelination. In this review, we focus on the roles of microglia and macrophages in secondary injury and how they contribute to the sequelae of SCI. PMID:25422640

  16. Genotoxicity of the herbicide imazethapyr in mammalian cells by oxidative DNA damage evaluation using the Endo III and FPG alkaline comet assays.

    PubMed

    Soloneski, Sonia; Ruiz de Arcaute, Celeste; Nikoloff, Noelia; Larramendy, Marcelo L

    2017-03-07

    We evaluated the role of oxidative stress in the genotoxic damage induced by imazethapyr (IMZT) and its formulation Pivot® in mammalian CHO-K1 cell line. Using the alkaline comet assay, we observed that a concentration of 0.1 μg/mL of IMZT or Pivot® was able to induce DNA damage by increasing the frequency of damaged nucleoids. To test whether the DNA lesions were caused by oxidative stress, the DNA repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), which convert base damage to strand breaks, were used. Our results demonstrate that after treatment of CHO-K1 cells with the pure active ingredient as well as the commercial formulation Pivot®, an increase in DNA strand breaks was observed after incubation of both Endo III and Fpg enzymes, indicating that both compounds induce DNA damage involving both pyrimidine and purine-based oxidations, at least in CHO-K1 cells. Our findings confirm the genotoxic potential of IMZT and suggest that this herbicide formulation must be employed with great caution, especially not only for exposed occupational workers but also for other living species.

  17. Protection Against Epithelial Damage During Candida albicans Infection Is Mediated by PI3K/Akt and Mammalian Target of Rapamycin Signaling

    PubMed Central

    Moyes, David L.; Shen, Chengguo; Murciano, Celia; Runglall, Manohursingh; Richardson, Jonathan P.; Arno, Matthew; Aldecoa-Otalora, Estibaliz; Naglik, Julian R.

    2014-01-01

    Background. The ability of epithelial cells (ECs) to discriminate between commensal and pathogenic microbes is essential for healthy living. Key to these interactions are mucosal epithelial responses to pathogen-induced damage. Methods. Using reconstituted oral epithelium, we assessed epithelial gene transcriptional responses to Candida albicans infection by microarray. Signal pathway activation was monitored by Western blotting and transcription factor enzyme-linked immunosorbent assay, and the role of these pathways in C. albicans–induced damage protection was determined using chemical inhibitors. Results. Transcript profiling demonstrated early upregulation of epithelial genes involved in immune responses. Many of these genes constituted components of signaling pathways, but only NF-κB, MAPK, and PI3K/Akt pathways were functionally activated. We demonstrate that PI3K/Akt signaling is independent of NF-κB and MAPK signaling and plays a key role in epithelial immune activation and damage protection via mammalian target of rapamycin (mTOR) activation. Conclusions. PI3K/Akt/mTOR signaling may play a critical role in protecting epithelial cells from damage during mucosal fungal infections independent of NF-κB or MAPK signaling. PMID:24357630

  18. Not just the brain: methamphetamine disrupts blood-spinal cord barrier and induces acute glial activation and structural damage of spinal cord cells.

    PubMed

    Kiyatkin, Eugene A; Sharma, Hari S

    2015-01-01

    Acute methamphetamine (METH) intoxication induces metabolic brain activation as well as multiple physiological and behavioral responses that could result in life-threatening health complications. Previously, we showed that METH (9 mg/kg) used in freely moving rats induces robust leakage of blood-brain barrier, acute glial activation, vasogenic edema, and structural abnormalities of brain cells. These changes were tightly correlated with drug-induced brain hyperthermia and were greatly potentiated when METH was used at warm ambient temperatures (29°C), inducing more robust and prolonged hyperthermia. Extending this line of research, here we show that METH also strongly increases the permeability of the blood-spinal cord barrier as evidenced by entry of Evans blue and albumin immunoreactivity in T9-12 segments of the spinal cord. Similar to the blood-brain barrier, leakage of bloodspinal cord barrier was associated with acute glial activation, alterations of ionic homeostasis, water tissue accumulation (edema), and structural abnormalities of spinal cord cells. Similar to that in the brain, all neurochemical alterations correlated tightly with drug-induced elevations in brain temperature and they were enhanced when the drug was used at 29°C and brain hyperthermia reached pathological levels (>40°C). We discuss common features and differences in neural responses between the brain and spinal cord, two inseparable parts of the central nervous system affected by METH exposure.

  19. The peptide toxin amylosin of Bacillus amyloliquefaciens from moisture-damaged buildings is immunotoxic, induces potassium efflux from mammalian cells, and has antimicrobial activity.

    PubMed

    Rasimus-Sahari, Stiina; Teplova, Vera V; Andersson, Maria A; Mikkola, Raimo; Kankkunen, Päivi; Matikainen, Sampsa; Gahmberg, Carl G; Andersson, Leif C; Salkinoja-Salonen, Mirja

    2015-04-01

    Amylosin, a heat-stable channel-forming non-ribosomally synthesized peptide toxin produced by strains of Bacillus amyloliquefaciens isolated from moisture-damaged buildings, is shown in this paper to have immunotoxic and cytotoxic effects on human cells as well as antagonistic effects on microbes. Human macrophages exposed to 50 ng of amylosin ml(-1) secreted high levels of cytokines interleukin-1β (IL-1β) and IL-18 within 2 h, indicating activation of the NLRP3 inflammasome, an integral part of the innate immune system. At the same exposure level, expression of IL-1β and IL-18 mRNA increased. Amylosin caused dose-dependent potassium ion efflux from all tested mammalian cells (human monocytes and keratinocytes and porcine sperm cells) at 1 to 2 μM exposure. Amylosin also inhibited the motility of porcine sperm cells and depolarized the mitochondria of human keratinocytes. Amylosin may thus trigger the activation of the NLRP3 inflammasome and subsequently cytokine release by causing potassium efflux from exposed cells. The results of this study indicate that exposure to amylosin activates the innate immune system, which could offer an explanation for the inflammatory symptoms experienced by occupants of moisture-damaged buildings. In addition, the amylosin-producing B. amyloliquefaciens inhibited the growth of both prokaryotic and eukaryotic indoor microbes, and purified amylosin also had an antimicrobial effect. These antimicrobial effects could make amylosin producers dominant and therefore significant causal agents of health problems in some moisture-damaged sites.

  20. Measurement of DNA damage in mammalian cells exposed in vitro to radiofrequency fields at SARs of 3-5 W/kg.

    PubMed

    Li, L; Bisht, K S; LaGroye, I; Zhang, P; Straube, W L; Moros, E G; Roti Roti, J L

    2001-09-01

    In the present study, we determined whether exposure of mammalian cells to 3.2-5.1 W/kg specific absorption rate (SAR) radiofrequency fields could induce DNA damage in murine C3H 10T(1/2) fibroblasts. Cell cultures were exposed to 847.74 MHz code-division multiple access (CDMA) and 835.62 frequency-division multiple access (FDMA) modulated radiations in radial transmission line (RTL) irradiators in which the temperature was regulated to 37.0 +/- 0.3 degrees C. Using the alkaline comet assay to measure DNA damage, we found no statistically significant differences in either comet moment or comet length between sham-exposed cells and those exposed for 2, 4 or 24 h to CDMA or FDMA radiations in either exponentially growing or plateau-phase cells. Further, a 4-h incubation after the 2-h exposure resulted in no significant changes in comet moment or comet length. Our results show that exposure of cultured C3H 10T(1/2) cells at 37 degrees C CDMA or FDMA at SAR values of up to 5.1 W/kg did not induce measurable DNA damage.

  1. Epidural Injections for Spinal Pain

    MedlinePlus

    ... back or leg pain after spinal surgery) Other injuries to spinal nerves, vertebrae and surrounding tissues Bone ... Bleeding if a blood vessel is inadvertently damaged. Injury to the nerves at the injection site. Temporary ...

  2. Yields of biologically significant damage produced in mammalian DNA by irradiation associated with radon decay. Final progress report

    SciTech Connect

    Ward, J.F.

    1994-03-01

    The objective of this project was to characterize the difference between damage to DNA caused by alpha particles and by low LET radiation. Estimation of the risk posed by exposure to high LET radiation (such as that from radon) relies at present on epidemiological data, and is therefore largely empirical. This empiricism is evident from the concepts of quality factor or RBE that find use for describing the biological effects of high LET radiation. The author argues that some effort should be made to address the mechanisms of DNA damage by high and low LET forms of radiation, and how these mechanisms might relate to the biological endpoints. This report summarizes the results of the author`s investigations and the current understanding of these mechanisms.

  3. A novel single-cell method provides direct evidence of persistent DNA damage in senescent cells and aged mammalian tissues.

    PubMed

    Galbiati, Alessandro; Beauséjour, Christian; d'Adda di Fagagna, Fabrizio

    2017-01-26

    The DNA damage response (DDR) arrests cell cycle progression until DNA lesions, like DNA double-strand breaks (DSBs), are repaired. The presence of DSBs in cells is usually detected by indirect techniques that rely on the accumulation of proteins at DSBs, as part of the DDR. Such detection may be biased, as some factors and their modifications may not reflect physical DNA damage. The dependency on DDR markers of DSB detection tools has left questions unanswered. In particular, it is known that senescent cells display persistent DDR foci, that we and others have proposed to be persistent DSBs, resistant to endogenous DNA repair activities. Others have proposed that these peculiar DDR foci might not be sites of damaged DNA per se but instead stable chromatin modifications, termed DNA-SCARS. Here, we developed a method, named 'DNA damage in situ ligation followed by proximity ligation assay' (DI-PLA) for the detection and imaging of DSBs in cells. DI-PLA is based on the capture of free DNA ends in fixed cells in situ, by ligation to biotinylated double-stranded DNA oligonucleotides, which are next recognized by antibiotin anti-bodies. Detection is enhanced by PLA with a partner DDR marker at the DSB. We validated DI-PLA by demonstrating its ability to detect DSBs induced by various genotoxic insults in cultured cells and tissues. Most importantly, by DI-PLA, we demonstrated that both senescent cells in culture and tissues from aged mammals retain true unrepaired DSBs associated with DDR markers.

  4. Effects of silica on the outcome from experimental spinal cord injury: implication of macrophages in secondary tissue damage.

    PubMed

    Blight, A R

    1994-05-01

    A model of spinal cord trauma in guinea-pigs, using lateral compression to a set thickness, produces a delayed functional loss at one to two days, followed by a partial recovery over several weeks, as measured using hindlimb motor behavior, vestibulospinal reflex testing, and mapping the receptive field of the cutaneous trunci muscle reflex. The role of inflammatory events in these secondary changes, was investigated with intraperitoneal injections of the macrophage toxin, silica. In one experiment, 11 matched pairs of animals were injured. One of each pair was selected randomly and injected with a suspension of 1.2 g of silica dust in sterile saline, immediately after injury and surgical closure. In a second experiment, involving 10 pairs of guinea-pigs, a similar dose of silica was administered to one of each pair at either one or two days before the injury. The animals survived up to three months, then were fixed by perfusion with glutaraldehyde. Histopathology of the lesion was quantified by line sampling of myelinated axons, and by measurement of blood vessels, in plastic sections through the center of the lesion. Surgery, injury, analysis of behavior and histology were all performed without knowledge of the experimental status of the animal. The secondary onset of functional loss below the lesion appeared to be delayed by one to two days in silica-treated animals with respect to controls. The number of myelinated axons at the center of the lesion, examined at two weeks to three months after injury was higher in the animals injected with silica immediately after surgery, most significantly in the dorsal quadrant of the cord. Myelin sheath thickness and axon caliber distribution were not different. Hypervascularity of the lesion was significantly reduced in animals injected with silica within one day of injury. These findings support the hypothesis that inflammatory activity plays an important role in secondary tissue damage, and that it may be responsible for

  5. X-ray-induced chromosome damage in live mammalian cells, and improved measurements of its effects on their colony-forming ability.

    PubMed

    Joshi, G P; Nelson, W J; Revell, S H; Shaw, C A

    1982-02-01

    We have improved the precision of the technique described by Grote et al. (1981 a,b) for the observation of the radiation responses of live cultured mammalian cells with an incubated phase-contrast microscope: the colony-forming abilities of single cells obtained by selective detachment of mitoses (instead of cell pairs as previously) may now be followed individually and may be directly compared with chromosome damage detected after post-radiation mitosis (M1). An X-ray dose of 1.4 Gy to diploid Syrian hamster cells (BHK 21 C13) in G1 had no effect on cell ability to reach M1. If chromosome fragment loss was then detected (as micronuclei) in the daughter-cell pair then colony-forming ability nearly always deteriorated, and either a stop-growth (79 per cent) or a slow-growth (21 per cent) colony resulted; but chromosomal bridges which persisted beyond M1 broke during interphase 1 and themselves caused no detectable cell damage additional to that attributable to the micronuclei which accompanied them.

  6. Camptothecin enhances the frequency of oligonucleotide-directed gene repair in mammalian cells by inducing DNA damage and activating homologous recombination.

    PubMed

    Ferrara, Luciana; Kmiec, Eric B

    2004-01-01

    Camptothecin (CPT) is an anticancer drug that promotes DNA breakage at replication forks and the formation of lesions that activate the processes of homologous recombination (HR) and nonhomologous end joining. We have taken advantage of the CPT-induced damage response by coupling it to gene repair directed by synthetic oligonucleotides, a process in which a mutant base pair is converted into a wild-type one. Here, we show that pretreating DLD-1 cells with CPT leads to a significant stimulation in the frequency of correction of an integrated mutant enhanced green fluorescent protein gene. The stimulation is dose-dependent and coincident with the formation of double-strand DNA breaks. Caffeine, but not vanillin, blocks the enhancement of gene repair suggesting that, in this system, HR is the pathway most responsible for elevating the frequency of correction. The involvement of HR is further proven by studies in which wortmannin was seen to inhibit gene repair at high concentrations but not at lower levels that are known to inhibit DNA-PK activity. Taken together, our results suggest that DNA damage induced by CPT activates a cellular response that stimulates gene repair in mammalian cells.

  7. Roles of Caenorhabditis elegans WRN Helicase in DNA Damage Responses, and a Comparison with Its Mammalian Homolog: A Mini-Review.

    PubMed

    Ryu, Jin-Sun; Koo, Hyeon-Sook

    2016-01-01

    Werner syndrome protein (WRN) is unusual among RecQ family DNA helicases in having an additional exonuclease activity. WRN is involved in the repair of double-strand DNA breaks via the homologous recombination and nonhomologous end joining pathways, and also in the base excision repair pathway. In addition, the protein promotes the recovery of stalled replication forks. The helicase activity is thought to unwind DNA duplexes, thereby moving replication forks or Holliday junctions. The targets of the exonuclease could be the nascent DNA strands at a replication fork or the ends of double-strand DNA breaks. However, it is not clear which enzyme activities are essential for repairing different types of DNA damage. Model organisms such as mice, flies, and worms deficient in WRN homologs have been investigated to understand the physiological results of defects in WRN activity. Premature aging, the most remarkable characteristic of Werner syndrome, is also seen in the mutant mice and worms, and hypersensitivity to DNA damage has been observed in WRN mutants of all three model organisms, pointing to conservation of the functions of WRN. In the nematode Caenorhabditis elegans, the WRN homolog contains a helicase domain but no exonuclease domain, so that this animal is very useful for studying the in vivo functions of the helicase without interference from the activity of the exonuclease. Here, we review the current status of investigations of C. elegans WRN-1 and discuss its functional differences from the mammalian homologs.

  8. Protection of mammalian cells by o-phenanthroline from lethal and DNA-damaging effects produced by active oxygen species.

    PubMed

    de Mello Filho, A C; Meneghini, R

    1985-10-30

    Active oxygen species are suspected as being a cause of the cellular damage that occurs at the site of inflammation. Phagocytic cells accumulate at these sites and produce superoxide ion, hydrogen peroxide and hydroxyl radical. The ultimate killing species, the cellular target and the mechanism whereby the lethal injury is produced are unknown. We exposed mouse fibroblasts to xanthine oxidase and acetaldehyde, a system which mimics the membrane of phagocytic cells in terms of production of oxygen species. We observed that the generation of these species produced DNA strand breaks and cellular death. The metal chelator o-phenanthroline completely abolished the former effect, and at the same time it effectively protected the cells from lethal injuries. Because complexing iron o-phenanthroline prevents the formation of hydroxyl radical by the Fendon reaction (Fe(II) + H2O2----Fe(III) + OH- + OH.), it is proposed that most of the cell death and DNA damage are brought about by OH radical, produced from other species by iron-mediated reactions.

  9. 4(α-l-rhamnosyloxy)-benzyl isothiocyanate, a bioactive phytochemical that attenuates secondary damage in an experimental model of spinal cord injury.

    PubMed

    Giacoppo, Sabrina; Galuppo, Maria; De Nicola, Gina Rosalinda; Iori, Renato; Bramanti, Placido; Mazzon, Emanuela

    2015-01-01

    4(α-l-Rhamnosyloxy)-benzyl isothiocyanate (glucomoringin isothiocyanate; GMG-ITC) is released from the precursor 4(α-l-rhamnosyloxy)-benzyl glucosinolate (glucomoringin; GMG) by myrosinase (β-thioglucoside glucohydrolase; E.C. 3.2.1.147) catalyzed hydrolysis. GMG is an uncommon member of the glucosinolate group as it presents a unique characteristic consisting in a second glycosidic residue within the side chain. It is a typical glucosinolate found in large amounts in the seeds of Moringa oleifera Lam., the most widely distributed plant of the Moringaceae family. GMG was purified from seed-cake of M. oleifera and was hydrolyzed by myrosinase at neutral pH in order to form the corresponding GMG-ITC. This bioactive phytochemical can play a key role in counteracting the inflammatory response connected to the oxidative-related mechanisms as well as in the control of the neuronal cell death process, preserving spinal cord tissues after injury in mice. Spinal cord trauma was induced in mice by the application of vascular clips (force of 24g) for 1 min., via four-level T5-T8 after laminectomy. In particular, the purpose of this study was to investigate the dynamic changes occurring in the spinal cord after ip treatment with bioactive GMG-ITC produced 15 min before use from myrosinase-catalyzed hydrolysis of GMG (10mg/kg body weight+5 μl Myr mouse/day). The following parameters, such as histological damage, distribution of reticular fibers in connective tissue, nuclear factor (NF)-κB translocation and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α) degradation, expression of inducible Nitric Oxide Synthases (iNOS), as well as apoptosis, were evaluated. In conclusion, our results show a protective effect of bioactive GMG-ITC on the secondary damage, following spinal cord injury, through an antioxidant mechanism of neuroprotection. Therefore, the bioactive phytochemical GMG-ITC freshly produced before use by myrosinase

  10. Spinal Headaches

    MedlinePlus

    ... undergo a spinal tap (lumbar puncture) or spinal anesthesia. Both procedures require a puncture of the tough ... is withdrawn from your spinal canal. During spinal anesthesia, medication is injected into your spinal canal to ...

  11. Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms.

    PubMed

    Acevedo, JeanMarie; Santana-Almansa, Alexandra; Matos-Vergara, Nikol; Marrero-Cordero, Luis René; Cabezas-Bou, Ernesto; Díaz-Ríos, Manuel

    2016-02-01

    Caffeine is a potent psychostimulant that can have significant and widely variable effects on the activity of multiple neuronal pathways. The most pronounced caffeine-induced behavioral effect seen in rodents is to increase locomotor activity which has been linked to a dose-dependent inhibition of A1 and A(2A) receptors. The effects of caffeine at the level of the lumbar spinal central pattern generator (CPG) network for hindlimb locomotion are lacking. We assessed the effects of caffeine to the locomotor function of the spinal CPG network via extracellular ventral root recordings using the isolated neonatal mouse spinal cord preparation. Addition of caffeine and of an A1 receptor antagonist significantly decreased the cycle period accelerating the ongoing locomotor rhythm, while decreasing burst duration reversibly in most preparations suggesting the role of A1 receptors as the primary target of caffeine. Caffeine and an A1 receptor antagonist failed to stimulate ongoing locomotor activity in the absence of dopamine or in the presence of a D1 receptor antagonist supporting A1/D1 receptor-dependent mechanism of action. The use of caffeine or an A1 receptor blocker failed to stimulate an ongoing locomotor rhythm in the presence of a blocker of the cAMP-dependent protein kinase (PKA) supporting the need of this intracellular pathway for the modulatory effects of caffeine to occur. These results support a stimulant effect of caffeine on the lumbar spinal network controlling hindlimb locomotion through the inhibition of A1 receptors and subsequent activation of D1 receptors via a PKA-dependent intracellular mechanism.

  12. The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury.

    PubMed

    Ceruti, Stefania; Villa, Giovanni; Genovese, Tiziana; Mazzon, Emanuela; Longhi, Renato; Rosa, Patrizia; Bramanti, Placido; Cuzzocrea, Salvatore; Abbracchio, Maria P

    2009-08-01

    Upon central nervous system injury, the extracellular concentrations of nucleotides and cysteinyl-leukotrienes, two unrelated families of endogenous signalling molecules, are markedly increased at the site of damage, suggesting that they may act as 'danger signals' to alert responses to tissue damage and start repair. Here we show that, in non-injured spinal cord parenchyma, GPR17, a P2Y-like receptor responding to both uracil nucleotides (e.g. UDP-glucose) and cysteinyl-leukotrienes (e.g. LTD4 and LTC4), is present on a subset of neurons and of oligodendrocytes at different stages of maturation, whereas it is not expressed by astrocytes. GPR17 immunoreactivity was also found on ependymal cells lining the central canal that still retain some of the characteristics of stem/progenitor cells during adulthood. Induction of spinal cord injury (SCI) by acute compression resulted in marked cell death of GPR17+ neurons and oligodendrocytes inside the lesion followed by the appearance of proliferating GPR17+ microglia/macrophages migrating to and infiltrating into the lesioned area. Moreover, 72 h after SCI, GPR17+ ependymal cells started to proliferate and to express GFAP, suggesting their activation and 'de-differentiation' to pluripotent progenitor cells. The in vivo knock down of GPR17 by an antisense oligonucleotide strategy during SCI induction markedly reduced tissue damage and related histological and motor deficits, thus confirming the crucial role played by this receptor in the early phases of tissue damage development. Taken together, our findings suggest a dual and spatiotemporal-dependent role for GPR17 in SCI. At very early times after injury, GPR17 mediates neuronal and oligodendrocyte death inside the lesioned area. At later times, GPR17+ microglia/macrophages are recruited from distal parenchymal areas and move toward the lesioned zone, to suggest a role in orchestrating local remodelling responses. At the same time, the induction of the stem cell marker

  13. Surface modification of amorphous nanosilica particles suppresses nanosilica-induced cytotoxicity, ROS generation, and DNA damage in various mammalian cells

    SciTech Connect

    Yoshida, Tokuyuki; Yoshioka, Yasuo; Matsuyama, Keigo; Nakazato, Yasutaro; Tochigi, Saeko; Hirai, Toshiro; Kondoh, Sayuri; Nagano, Kazuya; Abe, Yasuhiro; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Tsutsumi, Yasuo

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer There is increasing concern regarding the potential health risks of nanomaterials. Black-Right-Pointing-Pointer We evaluated the effect of surface properties of nanomaterials on cellular responses. Black-Right-Pointing-Pointer We showed that the surface properties play an important in determining its safety. Black-Right-Pointing-Pointer These data provide useful information for producing safer nanomaterials. -- Abstract: Recently, nanomaterials have been utilized in various fields. In particular, amorphous nanosilica particles are increasingly being used in a range of applications, including cosmetics, food technology, and medical diagnostics. However, there is concern that the unique characteristics of nanomaterials might induce undesirable effects. The roles played by the physical characteristics of nanomaterials in cellular responses have not yet been elucidated precisely. Here, by using nanosilica particles (nSPs) with a diameter of 70 nm whose surface was either unmodified (nSP70) or modified with amine (nSP70-N) or carboxyl groups (nSP70-C), we examined the relationship between the surface properties of nSPs and cellular responses such as cytotoxicity, reactive oxygen species (ROS) generation, and DNA damage. To compare the cytotoxicity of nSP70, nSP70-N, or nSP70-C, we examined in vitro cell viability after nSP treatment. Although the susceptibility of each cell line to the nSPs was different, nSP70-C and nSP70-N showed lower cytotoxicity than nSP70 in all cell lines. Furthermore, the generation of ROS and induction of DNA damage in nSP70-C- and nSP70-N-treated cells were lower than those in nSP70-treated cells. These results suggest that the surface properties of nSP70 play an important role in determining its safety, and surface modification of nSP70 with amine or carboxyl groups may be useful for the development of safer nSPs. We hope that our results will contribute to the development of safer nanomaterials.

  14. Induction and repair of X-ray damage in mammalian cell cultures treated with membrane-active drugs.

    PubMed Central

    Bertsche, U.

    1984-01-01

    Cultures of Ehrlich ascites tumour cells (EATC) were treated before and after X-irradiation with the membrane active drugs chlorpromazine (CPZ) and procaine. Under hypoxic conditions of irradiation CPZ sensitized cells and was most effective at about 50 microM, whereas at higher drug concentrations the extent of sensitization was less. Sensitization was however not observed in cultures supplemented with vitamin E. Likewise, CPZ inhibited repair of potentially lethal damage (RPLD) measured by delayed plating of stationary cell cultures either using the colony forming ability or micronucleus formation as endpoints. Procaine, on the other hand, was found to sensitize cells only slightly under hypoxia and protected slightly under oxic conditions in the concentration range from 10-100 mM. Both drugs induced an increase in ATP content at these concentrations. Since it has also been observed that these drugs cause depletion of intracellular sulfhydryl groups which may serve for protection of membrane sites, it is assumed that the radiobiological effects observed arise mainly from an influence on cellular and nuclear membranes where lipid bilayer fluidity and conformational status of membrane-bound enzymes may be changed. The possible role of heterochromatin anchored or near to the nuclear membrane as a radiation sensitive compartment of the cell is discussed. PMID:6582901

  15. Damage to cellular DNA from particulate radiations, the efficacy of its processing and the radiosensitivity of mammalian cells. Emphasis on DNA double strand breaks and chromatin breaks

    NASA Technical Reports Server (NTRS)

    Lett, J. T.

    1992-01-01

    For several years, it has been evident that cellular radiation biology is in a necessary period of consolidation and transition (Lett 1987, 1990; Lett et al. 1986, 1987). Both changes are moving apace, and have been stimulated by studies with heavy charged particles. From the standpoint of radiation chemistry, there is now a consensus of opinion that the DNA hydration shell must be distinguished from bulk water in the cell nucleus and treated as an integral part of DNA (chromatin) (Lett 1987). Concomitantly, sentiment is strengthening for the abandonment of the classical notions of "direct" and "indirect" action (Fielden and O'Neill 1991; O'Neill 1991; O'Neill et al. 1991; Schulte-Frohlinde and Bothe 1991 and references therein). A layer of water molecules outside, or in the outer edge of, the DNA (chromatin) hydration shell influences cellular radiosensitivity in ways not fully understood. Charge and energy transfer processes facilitated by, or involving, DNA hydration must be considered in rigorous theories of radiation action on cells. The induction and processing of double stand breaks (DSBs) in DNA (chromatin) seem to be the predominant determinants of the radiotoxicity of normally radioresistant mammalian cells, the survival curves of which reflect the patterns of damage induced and the damage present after processing ceases, and can be modelled in formal terms by the use of reaction (enzyme) kinetics. Incongruities such as sublethal damage are neither scientifically sound nor relevant to cellular radiation biology (Calkins 1991; Lett 1990; Lett et al. 1987a). Increases in linear energy transfer (LET infinity) up to 100-200 keV micron-1 cause increases in the extents of neighboring chemical and physical damage in DNA denoted by the general term DSB. Those changes are accompanied by decreasing abilities of cells normally radioresistant to sparsely ionizing radiations to process DSBs in DNA and chromatin and to recover from radiation exposure, so they make

  16. Genetic damage in mammalian somatic cells exposed to radiofrequency radiation: a meta-analysis of data from 63 publications (1990-2005).

    PubMed

    VIjayalaxmi; Prihoda, Thomas J

    2008-05-01

    During the last several decades, numerous researchers have examined the potential of in vitro and /or in vivo exposure of radiofrequency( RF) radiation to damage the genetic material in mammalian somatic cells. A meta-analysis of reported data was conducted to obtain a quantitative estimate ( with 95% confidence intervals) of genotoxicity in RF-radiation-exposed cells compared with sham-exposed/unexposed control cells. The extent of genotoxicity was assessed for various end points, including single- and double-strand breaks in the DNA, incidence of chromosomal aberrations, micronuclei and sister chromatid exchanges. Among the several variables in the experimental protocols used in individual investigations, the influence of three specific variables related to RF-radiation exposure characteristics was examined in the meta-analysis: frequency, specific absorption rate, and exposure as continuous-wave, pulsed-wave and occupationally exposed/cell phone users. The overall data indicated that (1) the difference between RF-radiation exposure was small with few exceptions; (2) at certain RF radiation exposure conditions, there were statistically significant increases in genotoxicity for some end points; and (3) the mean indices for chromosomal aberrations and micronuclei in RF-radiation -exposed and sham-/unexposed controls were within the spontaneous levels reported in the historical database. Considerable evidence for publication bias was found in the meta-analysis.

  17. Methods for assisting recovery of damaged brain and spinal cord using arrays of X-Ray microplanar beams

    DOEpatents

    Dilmanian, F. Avraham; McDonald, III, John W.

    2007-12-04

    A method of assisting recovery of an injury site of brain or spinal cord injury includes providing a therapeutic dose of X-ray radiation to the injury site through an array of parallel microplanar beams. The dose at least temporarily removes regeneration inhibitors from the irradiated regions. Substantially unirradiated cells surviving between the microplanar beams migrate to the in-beam irradiated portion and assist in recovery. The dose may be administered in dose fractions over several sessions, separated in time, using angle-variable intersecting microbeam arrays (AVIMA). Additional doses may be administered by varying the orientation of the microplanar beams. The method may be enhanced by injecting stem cells into the injury site.

  18. Methods for assisting recovery of damaged brain and spinal cord using arrays of X-ray microplanar beams

    DOEpatents

    Dilmanian, F. Avraham; McDonald, III, John W.

    2007-01-02

    A method of assisting recovery of an injury site of brain or spinal cord injury includes providing a therapeutic dose of X-ray radiation to the injury site through an array of parallel microplanar beams. The dose at least temporarily removes regeneration inhibitors from the irradiated regions. Substantially unirradiated cells surviving between the microplanar beams migrate to the in-beam irradiated portion and assist in recovery. The dose may be administered in dose fractions over several sessions, separated in time, using angle-variable intersecting microbeam arrays (AVIMA). Additional doses may be administered by varying the orientation of the microplanar beams. The method may be enhanced by injecting stem cells into the injury site.

  19. Magnitude of spinal muscle damage is not statistically associated with exercise-induced low back pain intensity

    PubMed Central

    Bishop, Mark D.; Horn, Maggie E.; Lott, Donovan J.; Arpan, Ishu; George, Steven Z.

    2012-01-01

    BACKGROUND CONTEXT Findings on imaging of noncontractile anatomic abnormalities and the intensity of low back pain have weak associations because of false-positive rates among asymptomatic individuals. This association might be stronger for contractile tissues. PURPOSE The purpose of this study was to examine the relationship between location and reports of pain intensity in the low back and exercise-induced muscle damage to the lumbar paraspinal muscles. STUDY DESIGN Nondiagnostic observational study in a laboratory setting. METHODS Delayed onset muscle soreness was induced in the low back of healthy pain-free volunteers. Measures of pain intensity (100-mm visual analog scale [VAS]) and location (area on the pain diagram) were taken before and 48 hours after exercise. Muscle damage was quantified using mechanical pain thresholds, motor performance deficits, and transverse relaxation time (T2)–weighted magnetic resonance imaging (MRI). Changes pre- to postexercise in signal intensity on T2-weighted imaging within the erector spinae, pain intensity, pain area, mechanical pain threshold, and isometric torque were assessed using paired t tests. Bivariate correlations were conducted to assess associations among muscle damage, pain intensity, and pain drawing area. RESULTS Twenty participants volunteered (11 women; average age, 22.3 years; average body mass index, 23.5) for study participation. Reports of pain intensity at 48 hours ranged from 0 to 59 mm on the VAS. Muscle damage was confirmed by reductions in mechanical threshold (p=.011) and motor performance (p<.001) and by changes in T2-weighted MRI (p=.007). This study was powered to find an association of at least r=0.5 to be statistically significant. Correlations of continuous variables revealed no significant correlations between pain intensity and measures of muscle damage (ranging between −0.075 and 0.151). There was a significant association between the remaining torque deficit at 48 hours and pain area

  20. The Mammalian Brain in the Electromagnetic Fields Designed by Man with Special Reference to Blood-Brain Barrier Function, Neuronal Damage and Possible Physical Mechanisms

    NASA Astrophysics Data System (ADS)

    Salford, L. G.; Nittby, H.; Brun, A.; Grafström, G.; Malmgren, L.; Sommarin, M.; Eberhardt, J.; Widegren, B.; Persson, B. R.

    Life on earth was formed during billions of years, exposed to,and shaped by the original physical forces such as gravitation, cosmic irradiation, atmospheric electric fields and the terrestrial magnetism. The Schumann resonances at 7.4 Hz are an example of oscillations possibly important for life. The existing organisms are created to function in harmony with these forces. However, in the late 19th century mankind introduced the use of electricity, in the early 20th century long-wave radio and in the 1940-ies short-wave radio. High frequency RF was introduced in the 50-ies as FM and television and during the very last decades, microwaves of the modern communication society spread around the world. Today, however, one third of the world's population is owner of the microwave-producing mobile phones and an even larger number is exposed to the cordless RF emitting systems. To what extent are all living organisms affected by these, almost everywhere present radio freque ncy fields? And what will be the effects of many years of continuing exposure? Since 1988 our group has studied the effects upon the mammalian blood-brain barrier (BBB) in rats by non-thermal radio frequency electromagnetic fields (RF-EMF). These have been shown to cause significantly increased leakage of the rats' own blood albumin through the BBB of exposed rats, at energy levels of 1W/kg and below, as compared to non-exposed animals in a total series of about two thousand animals.-6)} One remarkable observation is the fact that the lowest energy levels, with whole-body average power densities below 10mW/kg, give rise to the most pronounced albumin leakage. If mobile communication, even at extremely low energy levels, causes the users' own albumin to leak out through the BBB, also other unwanted and toxic molecules in the blood, may leak into the brain tissue and concentrate in and damage the neurons and glial cells of the brain. In later studies we have shown that a 2-h exposure to GSM 915 MHz, at

  1. Heme Oxygenase-1 Protects Neurons from Ischemic Damage by Upregulating Expression of Cu,Zn-Superoxide Dismutase, Catalase, and Brain-Derived Neurotrophic Factor in the Rabbit Spinal Cord.

    PubMed

    Jung, Hyo Young; Kim, Dae Won; Yim, Hee Sun; Yoo, Dae Young; Kim, Jong Whi; Won, Moo-Ho; Yoon, Yeo Sung; Choi, Soo Young; Hwang, In Koo

    2016-04-01

    In the present study, we investigated the protective effects of heme oxygenase (HO-1) against ischemic damage in motor neurons of the rabbit spinal cord. A PEP-1-HO-1 fusion protein was made to and confirmed the effective the penetration of HO-1 into spinal cord neurons at 8 h after treatment. Transient spinal cord ischemia was induced by occlusion of the abdominal aorta for 15 min. Vehicle (glycerol) or 0.375 mg/kg PEP-1-HO-1 was administered intraperitoneally to rabbits immediately after ischemia/reperfusion. Animals were sacrificed 15 min after reperfusion to measure lactate levels; 24 h after reperfusion to measure caspase 3 and myeloperoxidase levels, lipid peroxidation, and the activity of Cu,Zn-superoxide dismutase (SOD1) and catalase (CAT); or 72 h after reperfusion to assess neuronal survival and measure the levels of brain-derived neurotrophic factor (BDNF) in spinal cord homogenates. Administration of PEP-1-HO-1 did not significantly alter arterial blood gases (PaCO2 and PaO2), pH, or blood glucose levels before ischemia, 10 min after occlusion, or 10 min after reperfusion. Mean arterial pressure was selectively reduced 10 min after occlusion. Administration of PEP-1-HO-1 improved the rabbit Tarlov scores, and increased neuronal survival, as assessed by NeuN immunohistochemical staining 72 h after ischemia/reperfusion. In addition, administration of PEP-1-HO-1 significantly ameliorated lactate accumulation 15 min after reperfusion, and the increases in caspase 3, myeloperoxidase, and lipid peroxidation 24 h after reperfusion. PEP-1-HO-1 administration significantly mitigated the decrease in SOD1 and CAT 24 h after reperfusion, and reversed the decrease in BDNF levels in spinal cord homogenates 72 h after ischemia/reperfusion. These results suggest that PEP-1-HO-1 can protect against neuronal damage after transient spinal cord ischemia by limiting early lactic acidosis and increasing SOD1, CAT, and BDNF levels.

  2. Spinal Stenosis

    MedlinePlus

    ... center of the column of bones (vertebral or spinal column) through which the spinal cord and nerve roots ... be acquired at birth. Poor alignment of the spinal column when a vertebra slips forward onto the one ...

  3. Intrathecal infusion of BMAA induces selective motor neuron damage and astrogliosis in the ventral horn of the spinal cord

    PubMed Central

    Yin, Hong Z.; Yu, Stephen; Hsu, Cheng-I; Liu, Joe; Acab, Allan; Wu, Richard; Tao, Anna; Chiang, Benjamin J.; Weiss, John H.

    2014-01-01

    The neurotoxin beta-N-methylamino-L-alanine (BMAA) was first identified as a “toxin of interest” in regard to the amyotrophic lateral sclerosis–Parkinsonism Dementia Complex of Guam (ALS/PDC); studies in recent years highlighting widespread environmental sources of BMAA exposure and providing new clues to toxic mechanisms have suggested possible relevance to sporadic ALS as well. However, despite clear evidence of uptake into tissues and a range of toxic effects in cells and animals, an animal model in which BMAA induces a neurodegenerative picture resembling ALS is lacking, possibly in part reflecting limited understanding of critical factors pertaining to its absorption, biodistribution and metabolism. To bypass some of these issues and ensure delivery to a key site of disease pathology, we examined effects of prolonged (30 day) intrathecal infusion in wild type (WT) rats, and rats harboring the familial ALS associated G93A SOD1 mutation, over an age range (80±2 to 110±2 days) during which the G93A rats are developing disease pathology yet remain asymptomatic. The BMAA exposures induced changes that in many ways resembles those seen in the G93A rats, with degenerative changes in ventral horn motor neurons (MNs) with relatively little dorsal horn pathology, marked ventral horn astrogliosis and increased 3-nitrotyrosine labeling in and surrounding MNs, a loss of labeling for the astrocytic glutamate transporter, GLT-1, surrounding MNs, and mild accumulation and aggregation of TDP-43 in the cytosol of some injured and degenerating MNs. Thus, prolonged intrathecal infusion of BMAA can reproduce a picture in spinal cord incorporating many of the pathological hallmarks of diverse forms of human ALS, including substantial restriction of overt pathological changes to the ventral horn, consistent with the possibility that environmental BMAA exposure could be a risk factor and/or contributor to some human disease. PMID:24918341

  4. Intrathecal infusion of BMAA induces selective motor neuron damage and astrogliosis in the ventral horn of the spinal cord.

    PubMed

    Yin, Hong Z; Yu, Stephen; Hsu, Cheng-I; Liu, Joe; Acab, Allan; Wu, Richard; Tao, Anna; Chiang, Benjamin J; Weiss, John H

    2014-11-01

    The neurotoxin beta-N-methylamino-l-alanine (BMAA) was first identified as a "toxin of interest" in regard to the amyotrophic lateral sclerosis-Parkinsonism Dementia Complex of Guam (ALS/PDC); studies in recent years highlighting widespread environmental sources of BMAA exposure and providing new clues to toxic mechanisms have suggested possible relevance to sporadic ALS as well. However, despite clear evidence of uptake into tissues and a range of toxic effects in cells and animals, an animal model in which BMAA induces a neurodegenerative picture resembling ALS is lacking, possibly in part reflecting limited understanding of critical factors pertaining to its absorption, biodistribution and metabolism. To bypass some of these issues and ensure delivery to a key site of disease pathology, we examined effects of prolonged (30day) intrathecal infusion in wild type (WT) rats, and rats harboring the familial ALS associated G93A SOD1 mutation, over an age range (80±2 to 110±2days) during which the G93A rats are developing disease pathology yet remain asymptomatic. The BMAA exposures induced changes that in many ways resemble those seen in the G93A rats, with degenerative changes in ventral horn motor neurons (MNs) with relatively little dorsal horn pathology, marked ventral horn astrogliosis and increased 3-nitrotyrosine labeling in and surrounding MNs, a loss of labeling for the astrocytic glutamate transporter, GLT-1, surrounding MNs, and mild accumulation and aggregation of TDP-43 in the cytosol of some injured and degenerating MNs. Thus, prolonged intrathecal infusion of BMAA can reproduce a picture in spinal cord incorporating many of the pathological hallmarks of diverse forms of human ALS, including substantial restriction of overt pathological changes to the ventral horn, consistent with the possibility that environmental BMAA exposure could be a risk factor and/or contributor to some human disease.

  5. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury

    PubMed Central

    Yang, Zhaoyang; Zhang, Aifeng; Duan, Hongmei; Zhang, Sa; Hao, Peng; Ye, Keqiang; Sun, Yi E.; Li, Xiaoguang

    2015-01-01

    Neural stem cells (NSCs) in the adult mammalian central nervous system (CNS) hold the key to neural regeneration through proper activation, differentiation, and maturation, to establish nascent neural networks, which can be integrated into damaged neural circuits to repair function. However, the CNS injury microenvironment is often inhibitory and inflammatory, limiting the ability of activated NSCs to differentiate into neurons and form nascent circuits. Here we report that neurotrophin-3 (NT3)-coupled chitosan biomaterial, when inserted into a 5-mm gap of completely transected and excised rat thoracic spinal cord, elicited robust activation of endogenous NSCs in the injured spinal cord. Through slow release of NT3, the biomaterial attracted NSCs to migrate into the lesion area, differentiate into neurons, and form functional neural networks, which interconnected severed ascending and descending axons, resulting in sensory and motor behavioral recovery. Our study suggests that enhancing endogenous neurogenesis could be a novel strategy for treatment of spinal cord injury. PMID:26460015

  6. Assessment of Crop Damage by Protected Wild Mammalian Herbivores on the Western Boundary of Tadoba-Andhari Tiger Reserve (TATR), Central India

    PubMed Central

    Bayani, Abhijeet; Tiwade, Dilip; Dongre, Ashok; Dongre, Aravind P.; Phatak, Rasika; Watve, Milind

    2016-01-01

    Crop raiding by wild herbivores close to an area of protected wildlife is a serious problem that can potentially undermine conservation efforts. Since there is orders of magnitude difference between farmers’ perception of damage and the compensation given by the government, an objective and realistic estimate of damage was found essential. We employed four different approaches to estimate the extent of and patterns in crop damage by wild herbivores along the western boundary of Tadoba-Andhari Tiger Reserve in the state of Maharashtra, central India. These approaches highlight different aspects of the problem but converge on an estimated damage of over 50% for the fields adjacent to the forest, gradually reducing in intensity with distance. We found that the visual damage assessment method currently employed by the government for paying compensation to farmers was uncorrelated to and grossly underestimated actual damage. The findings necessitate a radical rethinking of policies to assess, mitigate as well as compensate for crop damage caused by protected wildlife species. PMID:27093293

  7. Assessment of Crop Damage by Protected Wild Mammalian Herbivores on the Western Boundary of Tadoba-Andhari Tiger Reserve (TATR), Central India.

    PubMed

    Bayani, Abhijeet; Tiwade, Dilip; Dongre, Ashok; Dongre, Aravind P; Phatak, Rasika; Watve, Milind

    2016-01-01

    Crop raiding by wild herbivores close to an area of protected wildlife is a serious problem that can potentially undermine conservation efforts. Since there is orders of magnitude difference between farmers' perception of damage and the compensation given by the government, an objective and realistic estimate of damage was found essential. We employed four different approaches to estimate the extent of and patterns in crop damage by wild herbivores along the western boundary of Tadoba-Andhari Tiger Reserve in the state of Maharashtra, central India. These approaches highlight different aspects of the problem but converge on an estimated damage of over 50% for the fields adjacent to the forest, gradually reducing in intensity with distance. We found that the visual damage assessment method currently employed by the government for paying compensation to farmers was uncorrelated to and grossly underestimated actual damage. The findings necessitate a radical rethinking of policies to assess, mitigate as well as compensate for crop damage caused by protected wildlife species.

  8. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors.

  9. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  10. Studies on the repair of damaged DNA in bacteriophage, bacterial and mammalian systems. Comprehensive report, 1 February 1981-15 September 1983

    SciTech Connect

    Friedberg, E.C.

    1983-01-01

    We have explored the molecular mechanism of the repair of DNA at a number of different levels of biological organization, by investigating bacteriophage, bacterial, yeast and mammalian (including human) cells. We have demonstrated that uv endonuclease of phage T4 not only possesses pyrimidine dimer (PD)-DNA glycosylase activity but also apyrimidinic (AP) endonuclease activity. The demonstration of both activities provided an explanation for the specific endonucleosytic cleavage of DNA at sites of pyrimidine dimers catalyzed by this small protein. A new apurinic/apyrimidinic (AP) endonuclease, specific for sites of of base loss in single stranded DNA has been isolated from E. celi and presumably recognizes these lesions in single stranded regions of duplex DNA. We have partially purified this enzyme and have carried out a preliminary characterization of the activity. We treated xeroderma pigmentosum and normal cells with sodium butyrate in the hope of restoring normal levels of excision repair to the former. Although this result was not obtained, we established that all cells treated with sodium butyrate show enhanced levels of repair synthesis, thus providing a means for increasing the sensitivity of this commonly used technique for measuring DNA repair in mammalian cells in culture.

  11. The mitochondrial uncoupling agent 2,4-dinitrophenol improves mitochondrial function, attenuates oxidative damage, and increases white matter sparing in the contused spinal cord.

    PubMed

    Jin, Ying; McEwen, Melanie L; Nottingham, Stephanie A; Maragos, William F; Dragicevic, Natasha B; Sullivan, Patrick G; Springer, Joe E

    2004-10-01

    The purpose of this study was to investigate the potential neuroprotective efficacy of the mitochondrial uncoupler 2,4-dinitrophenol (DNP) in rats following a mild to moderate spinal cord contusion injury. Animals received intraperitoneal injections of vehicle (DMSO) or 5 mg/mL of DNP prior to injury. Twenty-four hours following surgery, mitochondrial function was assessed in mitochondria isolated from spinal cord synaptosomes. In addition, synaptosomes were used to measure indicators of reactive oxygen species formation, lipid peroxidation, and protein oxidation. Relative to vehicle-treated animals, pretreatment with DNP maintained mitochondrial bioenergetics and significantly decreased reactive oxygen species levels, lipid peroxidation, and protein carbonyl content following spinal cord injury. Furthermore, pretreatment with DNP significantly increased the amount of remaining white matter at the injury epicenter 6 weeks after injury. These results indicate that treatment with mitochondrial uncoupling agents may provide a novel approach for the treatment of secondary injury following spinal cord contusion.

  12. Spinal Stenosis

    MedlinePlus

    ... Spinal stenosis is a narrowing of the open spaces within your spine, which can put pressure on ... stenosis, doctors may recommend surgery to create additional space for the spinal cord or nerves. Many people ...

  13. Spinal stenosis

    MedlinePlus

    ... stenosis; Foraminal spinal stenosis; Degenerative spine disease; Back pain - spinal stenosis; Low back pain - stenosis; LBP - stenosis ... involve both legs. Symptoms include: Numbness , cramping, or pain in the back, buttocks, thighs, or calves, or ...

  14. Spinal injury

    MedlinePlus

    ... and drive. Do not dive into pools, lakes, rivers, and other bodies of water, particularly if you cannot determine the depth of the ... Central nervous system Spinal cord injury Spinal anatomy Two person roll - ...

  15. DSB repair model for mammalian cells in early S and G1 phases of the cell cycle: application to damage induced by ionizing radiation of different quality.

    PubMed

    Taleei, Reza; Girard, Peter M; Nikjoo, Hooshang

    2015-02-01

    The purpose of this work is to test the hypothesis that kinetics of double strand breaks (DSB) repair is governed by complexity of DSB. To test the hypothesis we used our recent published mechanistic mathematical model of DSB repair for DSB induced by selected protons, deuterons, and helium ions of different energies representing radiations of different qualities. In light of recent advances in experimental and computational techniques, the most appropriate method to study cellular responses in radiation therapy, and exposures to low doses of ionizing radiations is using mechanistic approaches. To this end, we proposed a 'bottom-up' approach to study cellular response that starts with the DNA damage. Monte Carlo track structure method was employed to simulate initial damage induced in the genomic DNA by direct and indirect effects. Among the different types of DNA damage, DSB are known to be induced in simple and complex forms. The DSB repair model in G1 and early S phases of the cell cycle was employed to calculate the repair kinetics. The model considers the repair of simple and complex DSB, and the DSB produced in the heterochromatin. The inverse sampling method was used to calculate the repair kinetics for each individual DSB. The overall repair kinetics for 500 DSB induced by single tracks of the radiation under test were compared with experimental results. The results show that the model is capable of predicting the repair kinetics for the DSB induced by radiations of different qualities within an accepted range of uncertainty.

  16. Transcription inhibition by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) causes DNA damage and triggers homologous recombination repair in mammalian cells.

    PubMed

    Stoimenov, Ivaylo; Gottipati, Ponnari; Schultz, Niklas; Helleday, Thomas

    2011-01-10

    Transcription, replication and homologous recombination are intrinsically connected and it is well established that an increase of transcription is associated with an increase in homologous recombination. Here, we have studied how homologous recombination is affected during transcription inhibition by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), a compound that prevents activating phosphorylations of the RNA Pol II C-terminal domain. We identify that DRB triggers an increase in homologous recombination within the hprt gene as well as increasing RAD51 foci formation in mammalian cells. Furthermore, we find that DRB-induced transcriptional stress is associated with formation of the nuclear foci of the phosphorylated form of H2AX (γH2AX). We accounted that about 72% of RAD51 foci co-localized with the observed γH2AX foci. Interestingly, we find that XRCC3 mutated, homologous recombination defective cells are hypersensitive to the toxic effect of DRB and fail to form RAD51 foci. In conclusion, we show that DRB-induced transcription inhibition is associated with the formation of a lesion that triggers RAD51-dependent homologous recombination repair, required for survival under transcriptional stress.

  17. Structural changes in mammalian cell DNA induced by low-dose x-ray damage and subsequent postirradiation incubation in the presence and absence of caffeine

    SciTech Connect

    Wun, K.L.W.; Shafer, R.H.

    1982-05-01

    DNA damage and postirradiation incubation effects from X-ray doses of 30-2000 rad delivered to rat 9L cells in vitro were detemined by viscoelastic analysis of neutral (pH 7) cell lysates. Damage studies showed first an increase in the principal viscoelastic retardation time, T, with increasing dose, followed by a decrease, with the maximum retardation time occurring at 1000 rad. Also, the variation of retardation time with increasing postirradiation incubation time at 37/sup 0/C was determined. At doses greater than 50 rad, this variation was quite complicated; e.g., following 100 rad, the retardation time showed a minimum followed by a maximum as a function of incubation time. All doses showed an initial return of T to close to control values at early times. Following 50 rad, control viscoelastic behavior was recovered in 1 hr. For doses of 100 rad and higher, 5 hr or more were required for complete return to control behavior has determined by both the value of T and the viscoelastic response to a probe dose of 200 rad immediately prior to lysis. These results are analyzed in terms of the dependence of the principal retardation time T on DNA molecular weight and conformation. Evidence is discussed indicating that the observed changes in T during postirradiation incubation reflect repair of DNA damage. Postirradiation incubation in the presence of 0.5 mM caffeine appeared to result in an inhibition of repair. In this case, both 30- and 50-rad doses required 5 hr for complete recovery of control behavior and showed the minimum and maximum in the T vs incubation time curve observed for incubation in the absence of caffeine following a dose of 100 rad.

  18. Cancer-associated variants and a common polymorphism of MUTYH exhibit reduced repair of oxidative DNA damage using a GFP-based assay in mammalian cells.

    PubMed

    Raetz, Alan G; Xie, Yali; Kundu, Sucharita; Brinkmeyer, Megan K; Chang, Cindy; David, Sheila S

    2012-11-01

    Biallelic germline mutations in the base excision repair enzyme gene MUTYH lead to multiple colorectal adenomas and carcinomas referred to as MUTYH-associated polyposis. MUTYH removes adenine misincorporated opposite the DNA oxidation product, 8-oxoguanine (OG), thereby preventing accumulation of G:C to T:A transversion mutations. The most common cancer-associated MUTYH variant proteins when expressed in bacteria exhibit reduced OG:A mismatch affinity and adenine removal activity. However, direct evaluation of OG:A mismatch repair efficiency in mammalian cells has not been assessed due to the lack of an appropriate assay. To address this, we developed a novel fluorescence-based assay of OG:A repair and measured the repair capacity of MUTYH-associated polyposis variants expressed in Mutyh-/- mouse embryonic fibroblasts (MEFs). The repair of a single site-specific synthetic lesion in a green fluorescent protein reporter leads to green fluorescent protein expression with co-expression of a red fluorescent protein serving as the transfection control. Cell lines that stably express the MUTYH-associated polyposis variants G382D and Y165C have significantly lower OG:A repair versus wild-type MEFs and MEFs expressing human wild-type MUTYH. The MUTYH allele that encodes the Q324H variant is found at a frequency above 40% in samples from different ethnic groups and has long been considered phenotypically silent but has recently been associated with increased cancer risk in several clinical studies. In vitro analysis of Q324H MUTYH expressed in insect cells showed that it has reduced enzyme activity similar to that of the known cancer variant G382D. Moreover, we find that OG:A repair in MEFs expressing Q324H was significantly lower than wild-type controls, establishing that Q324H is functionally impaired and providing further evidence that this common variant may lead to increased cancer risk.

  19. Spinal infections.

    PubMed

    Tay, Bobby K-B; Deckey, Jeffrey; Hu, Serena S

    2002-01-01

    Spinal infections can occur in a variety of clinical situations. Their presentation ranges from the infant with diskitis who is unwilling to crawl or walk to the adult who develops an infection after a spinal procedure. The most common types of spinal infections are hematogenous bacterial or fungal infections, pediatric diskitis, epidural abscess, and postoperative infections. Prompt and accurate diagnosis of spinal infections, the cornerstone of treatment, requires a high index of suspicion in at-risk patients and the appropriate evaluation to identify the organism and determine the extent of infection. Neurologic function and spinal stability also should be carefully evaluated. The goals of therapy should include eradicating the infection, relieving pain, preserving or restoring neurologic function, improving nutrition, and maintaining spinal stability.

  20. Spinal brucellosis.

    PubMed

    Tali, E Turgut; Koc, A Murat; Oner, A Yusuf

    2015-05-01

    Spinal involvement in human brucellosis is a common condition and a significant cause of morbidity and mortality, particularly in endemic areas, because it is often associated with therapeutic failure. Most chronic brucellosis cases are the result of inadequate treatment of the initial episode. Recognition of spinal brucellosis is challenging. Early diagnosis is important to ensure proper treatment and decrease morbidity and mortality. Radiologic evaluation has gained importance in diagnosis and treatment planning, including interventional procedures and monitoring of all spinal infections.

  1. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  2. Iron oxide nanoparticles and magnetic field exposure promote functional recovery by attenuating free radical-induced damage in rats with spinal cord transection

    PubMed Central

    Pal, Ajay; Singh, Anand; Nag, Tapas C; Chattopadhyay, Parthaprasad; Mathur, Rashmi; Jain, Suman

    2013-01-01

    Background Iron oxide nanoparticles (IONPs) can attenuate oxidative stress in a neutral pH environment in vitro. In combination with an external electromagnetic field, they can also facilitate axon regeneration. The present study demonstrates the in vivo potential of IONPs to recover functional deficits in rats with complete spinal cord injury. Methods The spinal cord was completely transected at the T11 vertebra in male albino Wistar rats. Iron oxide nanoparticle solution (25 μg/mL) embedded in 3% agarose gel was implanted at the site of transection, which was subsequently exposed to an electromagnetic field (50 Hz, 17.96 μT for two hours daily for five weeks). Results Locomotor and sensorimotor assessment as well as histological analysis demonstrated significant functional recovery and a reduction in lesion volume in rats with IONP implantation and exposure to an electromagnetic field. No collagenous scar was observed and IONPs were localized intracellularly in the immediate vicinity of the lesion. Further, in vitro experiments to explore the cytotoxic effects of IONPs showed no effect on cell survival. However, a significant decrease in H2O2-mediated oxidative stress was evident in the medium containing IONPs, indicating their free radical scavenging properties. Conclusion These novel findings indicate a therapeutic role for IONPs in spinal cord injury and other neurodegenerative disorders mediated by reactive oxygen species. PMID:23818782

  3. [Osteoporosis associated with spinal cord lesion].

    PubMed

    Miladinović, Ksenija; Vavra-Hadziahmetović, Narcisa; Muftić, Mirsad; Sakota, Slavica

    2007-01-01

    One of the complications caused by spinal lesion is osteoporosis which development is induced by lesion itself, and its mechanism is not explained enough. Risk factor of this kind of osteoporosis is fracture which management is difficult and is cause of further complications which aggravate already damaged quality of life of patients with spinal cord injury, and demand additional health insurance expenses. Importance of prevention and treatment of spinal cord injury induced osteoporosis is enlightened by case report.

  4. Aquaporins in the Spinal Cord

    PubMed Central

    Oklinski, Michal K.; Skowronski, Mariusz T.; Skowronska, Agnieszka; Rützler, Michael; Nørgaard, Kirsten; Nieland, John D.; Kwon, Tae-Hwan; Nielsen, Søren

    2016-01-01

    Aquaporins (AQPs) are water channel proteins robustly expressed in the central nervous system (CNS). A number of previous studies described the cellular expression sites and investigated their major roles and function in the brain and spinal cord. Among thirteen different mammalian AQPs, AQP1 and AQP4 have been mainly studied in the CNS and evidence has been presented that they play important roles in the pathogenesis of CNS injury, edema and multiple diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, amyotrophic lateral sclerosis, glioblastoma multiforme, Alzheimer’s disease and Parkinson’s disease. The objective of this review is to highlight the current knowledge about AQPs in the spinal cord and their proposed roles in pathophysiology and pathogenesis related to spinal cord lesions and injury. PMID:27941618

  5. DNA damage induced by the drinking water mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-furanone (MX) in mammalian cells in vitro and in mice.

    PubMed

    Holme, J A; Haddeland, U; Haug, K; Brunborg, G

    1999-04-26

    3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-furanone (MX) formed during chlorination of water containing natural organic substances, is a very potent bacterial mutagen. Recently, tumours at multiple sites were reported in rats given MX-containing drinking water. We have investigated the genotoxicity of MX in mammalian cells exposed in vitro and in vivo using alkaline filter elution to detect DNA single-strand breaks and/or alkali-labile sites (SSBs). Concentrations as high as 100 and 300 microM MX were required to induce detectable levels of SSBs in the HL-60 cells. If MX treatment was carried out in the presence of DNA repair inhibitors (AraC plus hydroxyurea), the sensitivity of the assay to detect MX-induced SSBs was increased by a factor of 100. The presence of serum proteins during exposure resulted in a minor reduction of the MX-induced DNA damage in HL-60 cells at the lowest MX concentrations. In primary cultures of testicular cells as well as in resting human peripheral blood mononuclear cells (PBMC), a slightly increased level of SSBs was observed at MX-concentrations above 30 microM, this effect was not further increased by repair inhibitors. In LLC-PK1 renal proximal tubular epithelial cells and in growth stimulated human peripheral PBMC, increased SSBs were detected at MX concentrations as low as low as 3-10 microM and higher using repair inhibitors, and at 10 times higher concentrations without repair inhibitors. No dose dependent DNA damage was detected in the liver, kidney, spleen and colon of male B6C3F1 mice administrated high doses of MX (40 and 80 mg kg-1). Moderately increased and dose dependent SSBs were detected in the liver and kidney in the presence of DNA repair inhibitors during MX treatment, but no such increase was observed in the spleen and colon.

  6. Spinal Fusion

    MedlinePlus

    ... concept of fusion is similar to that of welding in industry. Spinal fusion surgery, however, does not ... bone taken from the patient has a long history of use and results in predictable healing. Autograft ...

  7. Spinal tumor

    MedlinePlus

    ... Livingstone; 2014:chap 49. Read More Brain tumor - children Hodgkin lymphoma Metastasis Spinal cord trauma Review Date 8/15/2016 Updated by: Todd Gersten, MD, Hematology/Oncology, Florida Cancer Specialists & Research Institute, Wellington, FL. Review ...

  8. Spinal Infections

    MedlinePlus

    ... spinal infection include fever, chills, headache, neck stiffness, pain, wound redness and tenderness, and wound drainage. In some cases, patients may notice new weakness, numbness or tingling sensations in the arms and/or legs. The symptoms ...

  9. Spinal deformity.

    PubMed

    Bunnell, W P

    1986-12-01

    Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis.

  10. Spinal fusion - series (image)

    MedlinePlus

    ... vertebrae are the bones that make up the spinal column, which surrounds and protects the spinal cord. The ... cushions between vertebrae, and absorb energy while the spinal column flexes, extends, and twists. Nerves from the spinal ...

  11. Spinal Cord Tumor

    MedlinePlus

    Spinal cord tumor Overview By Mayo Clinic Staff A spinal tumor is a growth that develops within your ... as vertebral tumors. Tumors that begin within the spinal cord itself are called spinal cord tumors. There are ...

  12. Neuroprotective effects of N-acetyl-cysteine and acetyl-L-carnitine after spinal cord injury in adult rats.

    PubMed

    Karalija, Amar; Novikova, Liudmila N; Kingham, Paul J; Wiberg, Mikael; Novikov, Lev N

    2012-01-01

    Following the initial acute stage of spinal cord injury, a cascade of cellular and inflammatory responses will lead to progressive secondary damage of the nerve tissue surrounding the primary injury site. The degeneration is manifested by loss of neurons and glial cells, demyelination and cyst formation. Injury to the mammalian spinal cord results in nearly complete failure of the severed axons to regenerate. We have previously demonstrated that the antioxidants N-acetyl-cysteine (NAC) and acetyl-L-carnitine (ALC) can attenuate retrograde neuronal degeneration after peripheral nerve and ventral root injury. The present study evaluates the effects of NAC and ALC on neuronal survival, axonal sprouting and glial cell reactions after spinal cord injury in adult rats. Tibial motoneurons in the spinal cord were pre-labeled with fluorescent tracer Fast Blue one week before lumbar L5 hemisection. Continuous intrathecal infusion of NAC (2.4 mg/day) or ALC (0.9 mg/day) was initiated immediately after spinal injury using Alzet 2002 osmotic minipumps. Neuroprotective effects of treatment were assessed by counting surviving motoneurons and by using quantitative immunohistochemistry and Western blotting for neuronal and glial cell markers 4 weeks after hemisection. Spinal cord injury induced significant loss of tibial motoneurons in L4-L6 segments. Neuronal degeneration was associated with decreased immunostaining for microtubular-associated protein-2 (MAP2) in dendritic branches, synaptophysin in presynaptic boutons and neurofilaments in nerve fibers. Immunostaining for the astroglial marker GFAP and microglial marker OX42 was increased. Treatment with NAC and ALC rescued approximately half of the motoneurons destined to die. In addition, antioxidants restored MAP2 and synaptophysin immunoreactivity. However, the perineuronal synaptophysin labeling was not recovered. Although both treatments promoted axonal sprouting, there was no effect on reactive astrocytes. In contrast, the

  13. Alkylation damage repair in mammalian genomes

    SciTech Connect

    Mitra, S.; Roy, R.; Kim, N.K. . Sealy Center for Molecular Science Oak Ridge National Lab., TN ); Tano, K. Oak Ridge National Lab., TN ); Ibeanu, G.C. Oak Ridge National Lab., TN ); Dunn, W.C. (

    1992-01-01

    The repair of O{sup 6} -alkylguanine in DNA involves only O{sup 6} -methyltransferase (MGMT) while the repair of N-alkylpurines requires multiple proteins including N-methylpurine-DNA glycosylase (MPG). While the biochemical properties human and mouse MGMTs are very similar, the mouse MPG removes 7-methylguanine more efficiently than the human protein. An increased level of MGMT, without a change in the level of MPG associated with gene amplification, was observed in a mouse cell line resistant to 2-chloroethyl-N-nitrosourea. In contrast, no correlation was observed between MPG level and resistance to methyl methanesulfonate in Chinese hamster ovary (CHO) cells. This result suggests a protein other than MPG limits the repair rate of N-alkylpurine in CHO cells.

  14. Alkylation damage repair in mammalian genomes

    SciTech Connect

    Mitra, S.; Roy, R.; Kim, N.K. |; Tano, K. |; Ibeanu, G.C. |; Dunn, W.C.; Natarajan, A.T.; Hartenstein, B.; Kaina, B.

    1992-11-01

    The repair of O{sup 6} -alkylguanine in DNA involves only O{sup 6} -methyltransferase (MGMT) while the repair of N-alkylpurines requires multiple proteins including N-methylpurine-DNA glycosylase (MPG). While the biochemical properties human and mouse MGMTs are very similar, the mouse MPG removes 7-methylguanine more efficiently than the human protein. An increased level of MGMT, without a change in the level of MPG associated with gene amplification, was observed in a mouse cell line resistant to 2-chloroethyl-N-nitrosourea. In contrast, no correlation was observed between MPG level and resistance to methyl methanesulfonate in Chinese hamster ovary (CHO) cells. This result suggests a protein other than MPG limits the repair rate of N-alkylpurine in CHO cells.

  15. Damage and repair of irradiated mammalian brain

    SciTech Connect

    Frankel, K.; Lo, E.; Phillips, M.; Fabrikant, J.; Brennan, K.; Valk, P.; Poljak, A.; Delapaz, R.; Woodruff, K.; Stanford Univ., CA . Medical Center; Brookside Hospital, San Pablo, CA )

    1989-07-01

    We have demonstrated that focal charged particle irradiation of the rabbit brain can create well-defined lesions which are observable by nuclear magnetic resonance imaging (NMR) and positron emission tomography (PET) imaging techniques. These are similar, in terms of location and characteristic NMR and PET features, to those that occur in the brain of about 10% of clinical research human subjects, who have been treated for intracranial vascular malformations with stereotactic radiosurgery. These lesions have been described radiologically as vasogenic edema of the deep white matter,'' and the injury is of variable intensity and temporal duration, can recede or progress to serious neurologic sequelae, and persist for a considerable period of time, frequently 18 mon to 3 yr. 8 refs., 6 figs.

  16. Therapeutic approaches for spinal cord injury

    PubMed Central

    Cristante, Alexandre Fogaça; de Barros Filho, Tarcísio Eloy Pessoa; Marcon, Raphael Martus; Letaif, Olavo Biraghi; da Rocha, Ivan Dias

    2012-01-01

    This study reviews the literature concerning possible therapeutic approaches for spinal cord injury. Spinal cord injury is a disabling and irreversible condition that has high economic and social costs. There are both primary and secondary mechanisms of damage to the spinal cord. The primary lesion is the mechanical injury itself. The secondary lesion results from one or more biochemical and cellular processes that are triggered by the primary lesion. The frustration of health professionals in treating a severe spinal cord injury was described in 1700 BC in an Egyptian surgical papyrus that was translated by Edwin Smith; the papyrus reported spinal fractures as a “disease that should not be treated.” Over the last two decades, several studies have been performed to obtain more effective treatments for spinal cord injury. Most of these studies approach a patient with acute spinal cord injury in one of four manners: corrective surgery or a physical, biological or pharmacological treatment method. Science is unraveling the mechanisms of cell protection and neuroregeneration, but clinically, we only provide supportive care for patients with spinal cord injuries. By combining these treatments, researchers attempt to enhance the functional recovery of patients with spinal cord injuries. Advances in the last decade have allowed us to encourage the development of experimental studies in the field of spinal cord regeneration. The combination of several therapeutic strategies should, at minimum, allow for partial functional recoveries for these patients, which could improve their quality of life. PMID:23070351

  17. [The use micro-polarization in spinal cord lesions].

    PubMed

    Sheliakin, A M; Preobrazhenskaia, I G; Komantsev, V N; Makarovskiĭ, A N; Bogdanov, O V

    1998-01-01

    Transdermal micropolarization of the spinal cord was made in patients with consequences of the spinal cord injury or tuberculous spondylitis. Changes in clinical and electrophysiologic status were evaluated. It was found that local direct current through dermal electrodes promotes an improvement of both motor and autonomic functions in such patients. This corresponded to a positive dynamics both of the spinal cord state and cardiac activity. Possible mechanisms of influence of the direct current on the spinal cord as well as perspectives of application of micropolarization in spinal cord's damage are outlined.

  18. Spinal Osteosarcoma

    PubMed Central

    Katonis, P.; Datsis, G.; Karantanas, A.; Kampouroglou, A.; Lianoudakis, S.; Licoudis, S.; Papoutsopoulou, E.; Alpantaki, K.

    2013-01-01

    Although osteosarcoma represents the second most common primary bone tumor, spinal involvement is rare, accounting for 3%–5% of all osteosarcomas. The most frequent symptom of osteosarcoma is pain, which appears in almost all patients, whereas more than 70% exhibit neurologic deficit. At a molecular level, it is a tumor of great genetic complexity and several genetic disorders have been associated with its appearance. Early diagnosis and careful surgical staging are the most important factors in accomplishing sufficient management. Even though overall prognosis remains poor, en-block tumor removal combined with adjuvant radiotherapy and chemotherapy is currently the treatment of choice. This paper outlines histopathological classification, epidemiology, diagnostic procedures, and current concepts of management of spinal osteosarcoma. PMID:24179411

  19. Spinal fixation. Part 3. Complications of spinal instrumentation.

    PubMed

    Slone, R M; MacMillan, M; Montgomery, W J

    1993-07-01

    Spinal fixation devices can be used to form a rigid construct with the spine to replace bone, restore alignment, maintain position, and prevent motion in the treatment of fractures, degenerative disease, neoplasm, and congenital deformities. Because most spinal constructs will eventually fail if bone fusion does not occur, bone graft material is often used along with the implant to promote fusion. Conventional radiographs, obtained in two projections, remain the mainstay of implant evaluation, demonstrating the position of the spinal elements, hardware, graft material, and evidence of complication. Possible complications connected with use of fixation devices include intraoperative soft-tissue injuries, postoperative hematomas, and infection. The components (through incorrect use, malpositioning at surgery, and later dislodgment or fracture) may also contribute to complications such as instability; failure of fusion; or pain, with possible resultant neurologic damage. Bone graft material can migrate or hypertrophy, resulting in impingement on the spinal canal or neural foramen. Radiologists should be familiar with the various spinal fixation devices and techniques to better identify evolving complications.

  20. Bilateral cerebellar and brain stem infarction resulting from vertebral artery injury following cervical trauma without radiographic damage of the spinal column: a case report.

    PubMed

    Mimata, Yoshikuni; Murakami, Hideki; Sato, Kotaro; Suzuki, Yoshiaki

    2014-01-01

    Vertebral artery injury can be a complication of cervical spine injury. Although most cases are asymptomatic, the rare case progresses to severe neurological impairment and fatal outcomes. We experienced a case of bilateral cerebellar and brain stem infarction with fatal outcome resulting from vertebral artery injury associated with cervical spine trauma. A 69-year-old male was admitted to our hospital because of tetraplegia after falling down the stairs and hitting his head on the floor. Marked bony damage of the cervical spine was not apparent on radiographs and CT scans, so the injury was initially considered to be a cervical cord injury without bony damage. However, an intensity change in the intervertebral disc at C5/C6, and a ventral epidural hematoma were observed on MRI. A CT angiogram of the neck showed the right vertebral artery was completely occluded at the C4 level of the spine. Forty-eight hours after injury, the patient lapsed into drowsy consciousness. The cranial CT scan showed a massive low-density area in the bilateral cerebellar hemispheres and brain stem. Anticoagulation was initiated after a diagnosis of the right vertebral artery injury, but the patient developed bilateral cerebellar and brain stem infarction. The patient's brain herniation progressed and the patient died 52 h after injury. We considered that not only anticoagulation but also treatment for thrombosis would have been needed to prevent cranial embolism. We fully realize that early and appropriate treatment are essential to improve the treatment results, and constructing a medical system with a team of orthopedists, radiologists, and neurosurgeons is also very important.

  1. Spinal Bracing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Dr. Arthur Copes of the Copes Foundation, Baton Rouge, LA, says that 35 percent of the 50 technical reports he received from the NASA/Southern University Industrial Applications Center in Baton Rouge and the Central Industrial Applications Center, Durant, OK, were vital to the development of his Copes Scoliosis Braces, which are custom designed and feature a novel pneumatic bladder that exerts constant corrective pressure to the torso to slowly reduce or eliminate the spinal curve.

  2. Spinal Cord Injury

    MedlinePlus

    ... Types of illnesses and disabilities Spinal cord injury Spinal cord injury Read advice from Dr. Jeffrey Rabin , a ... your health on a daily basis. Living with spinal cord injury — your questions answered top What are pediatric ...

  3. Tethered Spinal Cord Syndrome

    MedlinePlus

    ... the movement of the spinal cord within the spinal column. Attachments may occur congenitally at the base of ... or may be due to narrowing of the spinal column (stenosis) with age. Tethering may also develop after ...

  4. Spinal Cord Injury Map

    MedlinePlus

    ... Counseling About Blog Facing Disability Jeff Shannon Donate Spinal Cord Injury Map Loss of function depends on what ... control. Learn more about spinal cord injuries. A spinal cord injury affects the entire family FacingDisability is designed ...

  5. Spinal injury - resources

    MedlinePlus

    Resources - spinal injury ... The following organizations are good resources for information on spinal injury : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/Disorders/All-Disorders/Spinal-Cord- ...

  6. Spinal surgery -- cervical - series (image)

    MedlinePlus

    The cervical spinal column is made up of vertebral bodies which protect the spinal cord. ... spinal nerves, trauma, and narrowing (stenosis) of the spinal column around the spinal cord. Symptoms of cervical spine ...

  7. Organization of ascending spinal projections in Caiman crocodilus.

    PubMed

    Ebbesson, S O; Goodman, D C

    1981-01-01

    Ascending spinal projections in the caiman (Caiman crocodilus) were demonstrated with Nauta and Fink-Heimer methods following hemisections of the third spinal segment in a series of twelve animals. These results were compared with earlier data in the literature obtained from a turtle, a snake, and a lizard using the same experimental and histological procedures. The results show remarkable similarities considering that each species represents a different reptilian order with different evolutionary history and habitat. However, the caiman displays several important peculiarities. Although the dorsal funiculus of the caiman contains the largest number of ascending spinal projections of the four species examined, this funiculus has not differentiated into cuneate and gracile fasciculi as is the case in the tegu lizard. The ventro-lateral ascending spinal projections follow a fundamentally similar general morphologic pattern in the four species with only minor variations. The anatomical arrangement in the caiman and tegu lizard appears most similar in the high cervical and the medullary regions; however, this is not the case in midbrain and thalamic regions where considerably more extensive projections are seen in the caiman. In the caiman an extensive spinal connection to the ventro-lateral nucleus of the dorsal thalamus is present; this connection is reminiscent of the mammalian spinal projection to the ventro-basal complex. The caiman has in common with the other three reptilian species a small projection to another dorsal thalamic region that is apparently homologous to the mammalian intralaminar nuclei, which are the destination of the mammalian paleospinothalamic tract.

  8. Dopamine is produced in the rat spinal cord and regulates micturition reflex after spinal cord injury.

    PubMed

    Hou, Shaoping; Carson, David M; Wu, Di; Klaw, Michelle C; Houlé, John D; Tom, Veronica J

    2016-11-01

    Dopamine (DA) neurons in the mammalian central nervous system are thought to be restricted to the brain. DA-mediated regulation of urinary activity is considered to occur through an interaction between midbrain DA neurons and the pontine micturition center. Here we show that DA is produced in the rat spinal cord and modulates the bladder reflex. We observed numerous tyrosine hydroxylase (TH)(+) neurons in the autonomic nuclei and superficial dorsal horn in L6-S3 spinal segments. These neurons are dopamine-β-hydroxylase (DBH)(-) and some contain detectable dopamine decarboxylase (DDC), suggesting their capacity to produce DA. Interestingly, following a complete thoracic spinal cord injury (SCI) to interrupt supraspinal projections, more TH(+) neurons emerged in the lumbosacral spinal cord, coincident with a sustained, low level of DA expression there and a partially recovered micturition reflex. Non-selective blockade of spinal DA receptors reduced bladder activity whereas activation of spinal D2-like receptors increased bladder activity and facilitated voiding. Additionally, depletion of lumbosacral TH(+) neurons with 6-hydroxydopamine (6-OHDA) decreased bladder non-voiding contractions and voiding efficiency. Furthermore, injecting the transsynaptic neuronal tracer pseudorabies virus (PRV) into the bladder detrusor labeled TH(+) cells in the lumbosacral cord, confirming their involvement in spinal micturition reflex circuits. These results illustrate that DA is synthesized in the rat spinal cord; plasticity of lumbosacral TH(+) neurons following SCI may contribute to DA expression and modulate the spinal bladder reflex. Thus, spinally-derived DA and receptors could be a novel therapeutic target to improve micturition recovery after SCI.

  9. Degenerative spinal disease in large felids.

    PubMed

    Kolmstetter, C; Munson, L; Ramsay, E C

    2000-03-01

    Degenerative spinal disorders, including intervertebral disc disease and spondylosis, seldom occur in domestic cats. In contrast, a retrospective study of 13 lions (Panthera leo), 16 tigers (Panthera tigris), 4 leopards (Panthera pardis), 1 snow leopard (Panthera uncia), and 3 jaguars (Panthera onca) from the Knoxville Zoo that died or were euthanatized from 1976 to 1996 indicated that degenerative spinal disease is an important problem in large nondomestic felids. The medical record, radiographic data, and the necropsy report of each animal were examined for evidence of intervertebral disc disease or spondylosis. Eight (three lions, four tigers, and one leopard) animals were diagnosed with degenerative spinal disease. Clinical signs included progressively decreased activity, moderate to severe rear limb muscle atrophy, chronic intermittent rear limb paresis, and ataxia. The age at onset of clinical signs was 10-19 yr (median = 18 yr). Radiographic evaluation of the spinal column was useful in assessing the severity of spinal lesions, and results were correlated with necropsy findings. Lesions were frequently multifocal, included intervertebral disc mineralization or herniation with collapsed intervertebral disc spaces, and were most common in the lumbar area but also involved cervical and thoracic vertebrae. Marked spondylosis was present in the cats with intervertebral disc disease, presumably subsequent to vertebral instability. Six of the animals' spinal cords were examined histologically, and five had acute or chronic damage to the spinal cord secondary to disc protrusion. Spinal disease should be suspected in geriatric large felids with decreased appetite or activity. Radiographic evaluation of the spinal column is the most useful method to assess the type and severity of spinal lesions.

  10. DISCUSSION ON SPINAL INJURIES

    PubMed Central

    1928-01-01

    (1).—Varieties of spinal injuries, the three groups of common usage: fractures, dislocations, fracture-dislocations. Shall not refer in detail to fractures of the spinous or transverse processes. (2) Mechanics of injury to vertebræ. Two variables: (1) the nature of the bones; (2) the qualities of the force. Spinal injury usually caused by indirect violence. (3) The different results of injuries applied to the head; may break skull, failing that, the neck. Atlas fracture. Difference in qualities of the force causing atlas fracture and low cervical dislocation. (4) The compound nature of the vertebral body. The two columns, anterior, spongy; posterior, compact. The nature of wedge-compression of the vertebral body. Variations in the shape of the wedge. Reasons. Occur at all levels, including cervical spine. (5) Frequency of injury at different levels of vertebral column. “Localization” of injury. The two places of the graph of injury. The cervical at C. 5. Reason. The thoracic-lumbar peak at T. 12, L. 1 industrial. Is there a third peak at C. 2? (6) The effects of violent flexion of the spine: cervical flexion causes luxation at C. 5 or so. Extension causes fracture of odontoid. Violent flexion and extension therefore cause injury at very different levels. Thoracic region, why is there no “peak” of injury at T.6, 7? Lumbar region. (7) Displacement of fragments. Continuation of violence after the essential injury has been effected. Kümmell's disease, no inflammatory process involved. (8) Injury to the intervertebral discs, essential for displacement. Imperfect rupture a cause for difficulty in reducing luxations. The worst cases those in which it is most easily done, but most of these have cord damage. (9) Spinal injury from minimal violence. Examples of trivial cases, diving, brushing hair and so forth. Vertebral displacement in disease a much more serious thing. (10) Curious stability of many cervical luxations. Reasons. Locking of the inferior

  11. Percutaneous Radiofrequency Ablation of Painful Spinal Tumors Adjacent to the Spinal Cord with Real-Time Monitoring of Spinal Canal Temperature: A Prospective Study

    SciTech Connect

    Nakatsuka, Atsuhiro Yamakado, Koichiro; Takaki, Haruyuki; Uraki, Junji; Makita, Masashi; Oshima, Fumiyoshi; Takeda, Kan

    2009-01-15

    PurposeTo prospectively evaluate the feasibility, safety, and clinical utility of bone radiofrequency (RF) ablation with real-time monitoring of the spinal canal temperature for the treatment of spinal tumors adjacent to the spinal cord.Materials and MethodsOur Institutional Review Board approved this study. Patients gave informed consent. The inclusion criteria were (a) a painful spinal metastasis and (b) a distance of 1 cm or less between the metastasis and the spinal cord. The thermocouple was placed in the spinal canal under CT fluoroscopic guidance. When the spinal canal temperature reached 45{sup o}C, RF application was immediately stopped. RF ablation was considered technically successful when the procedure was performed without major complications. Clinical success was defined as a fall in the visual analogue scale score of at least 2 points.ResultsTen patients with spinal tumors measuring 3-8 cm (mean, 4.9 {+-} 1.5 cm) were enrolled. The distance between the tumor and the spinal cord was 1-6 mm (mean, 2.4 {+-} 1.6 mm). All procedures were judged technically successful (100%). The spinal canal temperature did not exceed 45{sup o}C in 9 of the 10 patients (90%). In the remaining patient, the temperature rose to 48{sup o}C, resulting in transient neural damage, although RF application was immediately stopped when the temperature reached 45{sup o}C. Clinical success was achieved within 1 week in all patients (100%).ConclusionBone RF ablation with real-time monitoring of the spinal canal temperature is feasible, safe, and clinically useful for the treatment of painful spinal metastases adjacent to the spinal cord.

  12. Current therapeutic strategies for inflammation following traumatic spinal cord injury☆

    PubMed Central

    Singh, Priyanka L.; Agarwal, Nitin; Barrese, James C.; Heary, Robert F.

    2012-01-01

    Damage from spinal cord injury occurs in two phases – the trauma of the initial mechanical insult and a secondary injury to nervous tissue spared by the primary insult. Apart from damage sustained as a result of direct trauma to the spinal cord, the post-traumatic inflammatory response contributes significantly to functional motor deficits exacerbated by the secondary injury. Attenuating the detrimental aspects of the inflammatory response is a promising strategy to potentially ameliorate the secondary injury, and promote significant functional recovery. This review details how the inflammatory component of secondary injury to the spinal cord can be treated currently and in the foreseeable future. PMID:25624806

  13. Spinal Cord Diseases

    MedlinePlus

    ... diseases Autoimmune diseases Degenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy Symptoms vary but might include pain, numbness, loss of sensation and muscle weakness. These symptoms can occur around the spinal ...

  14. Spinal Cord Injuries

    MedlinePlus

    ... your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually begin with a blow that fractures or ... bone disks that make up your spine. Most injuries don't cut through your spinal cord. Instead, ...

  15. Defining recovery neurobiology of injured spinal cord by synthetic matrix-assisted hMSC implantation.

    PubMed

    Ropper, Alexander E; Thakor, Devang K; Han, InBo; Yu, Dou; Zeng, Xiang; Anderson, Jamie E; Aljuboori, Zaid; Kim, Soo-Woo; Wang, Hongjun; Sidman, Richard L; Zafonte, Ross D; Teng, Yang D

    2017-01-31

    Mesenchymal stromal stem cells (MSCs) isolated from adult tissues offer tangible potential for regenerative medicine, given their feasibility for autologous transplantation. MSC research shows encouraging results in experimental stroke, amyotrophic lateral sclerosis, and neurotrauma models. However, further translational progress has been hampered by poor MSC graft survival, jeopardizing cellular and molecular bases for neural repair in vivo. We have devised an adult human bone marrow MSC (hMSC) delivery formula by investigating molecular events involving hMSCs incorporated in a uniquely designed poly(lactic-co-glycolic) acid scaffold, a clinically safe polymer, following inflammatory exposures in a dorsal root ganglion organotypic coculture system. Also, in rat T9-T10 hemisection spinal cord injury (SCI), we demonstrated that the tailored scaffolding maintained hMSC stemness, engraftment, and led to robust motosensory improvement, neuropathic pain and tissue damage mitigation, and myelin preservation. The scaffolded nontransdifferentiated hMSCs exerted multimodal effects of neurotrophism, angiogenesis, neurogenesis, antiautoimmunity, and antiinflammation. Hindlimb locomotion was restored by reestablished integrity of submidbrain circuits of serotonergic reticulospinal innervation at lumbar levels, the propriospinal projection network, neuromuscular junction, and central pattern generator, providing a platform for investigating molecular events underlying the repair impact of nondifferentiated hMSCs. Our approach enabled investigation of recovery neurobiology components for injured adult mammalian spinal cord that are different from those involved in normal neural function. The uncovered neural circuits and their molecular and cellular targets offer a biological underpinning for development of clinical rehabilitation therapies to treat disabilities and complications of SCI.

  16. Mammalian development in space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  17. Mammalian development in space.

    PubMed

    Ronca, April E

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  18. Corticospinal circuit plasticity in motor rehabilitation from spinal cord injury.

    PubMed

    Serradj, Najet; Agger, Sydney F; Hollis, Edmund R

    2016-12-06

    Restoring corticospinal function after spinal cord injury is a significant challenge as the corticospinal tract elicits no substantive, spontaneous regeneration, and its interruption leaves a permanent deficit. The corticospinal circuit serves multiple motor and sensory functions within the mammalian nervous system as the direct link between isocortex and spinal cord. Maturation of the corticospinal circuit involves the refinement of projections within the spinal cord and a subsequent refinement of motor maps within the cortex. The plasticity of these cortical motor maps mirrors the acquisition of skilled motor learning, and both the maps and motor skills are disrupted following injury to the corticospinal tract. The motor cortex exhibits the capacity to incorporate changes in corticospinal projections induced by both spontaneous and therapeutic-mediated plasticity of corticospinal axons through appropriate rehabilitation. An understanding of the mechanisms of corticospinal plasticity in motor learning will undoubtedly help inform strategies to improve motor rehabilitation after spinal cord injury.

  19. Intranasal nerve growth factor bypasses the blood-brain barrier and affects spinal cord neurons in spinal cord injury

    PubMed Central

    Aloe, Luigi; Bianchi, Patrizia; De Bellis, Alberto; Soligo, Marzia; Rocco, Maria Luisa

    2014-01-01

    The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an increased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deficits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells. PMID:25206755

  20. Damage and repair in mammalian cells after exposure to non-ionizing radiations. II. Photoreactivation and killing of rat kangaroo cells (Potorous tridactylus) and Herpes simplex virus-1 by exposure to fluorescent "white" light or sunlight.

    PubMed

    Harm, H

    1980-01-01

    Photoreactivation (PR) of ultraviolet (254 nm)-inactivated cornea cells of the potoroo (or rat kangaroo; Potorous tridacylus) has been studied at wavelengths greater than 375 nm from either fluorescent "white" light or sunlight. In both cases the PR kinetics curves pass through maxima, which most likely result from the superposition of concomitant inactivation by the photoreactivating light. The inactivating effect of light was directly demonstrated for non-UV-irradiated cells, permitting correction of the PR curves. Wavelengths greater than 475 nm, and even greater than 560 nm, which do not noticeably damage cells, still photoreactivate, though less effectively than shorter wavelengths. Light treatment of UV-inactivated Herpes simplex Virus-1 (HSV-1) after infection leads to PR effects resembling those observed for cells, while light treatment of unirradiated virus after infection likewise causes inactivation. The "fluence-reduction factor" of PR, which is greater than 3 for the virus, exceeds that for the cells, where it decreases with increasing UV fluence. In vitro tests have indicated that sunlight greater than 375 nm causes photorepairable DNA lesions which are virtually fully repaired by the same light. Thus cell inactivation resulting from these solar wavelengths must be due to non-photorepairable damage.

  1. Netrin-1 Improves Functional Recovery through Autophagy Regulation by Activating the AMPK/mTOR Signaling Pathway in Rats with Spinal Cord Injury

    PubMed Central

    Bai, Liangjie; Mei, Xifan; Shen, Zhaoliang; Bi, Yunlong; Yuan, Yajiang; Guo, Zhanpeng; Wang, Hongyu; Zhao, Haosen; Zhou, Zipeng; Wang, Chen; Zhu, Kunming; Li, Gang; Lv, Gang

    2017-01-01

    Autophagy is an process for the degradation of cytoplasmic aggregated proteins and damaged organelles and plays an important role in the development of SCI. In this study, we investigated the therapeutic effect of Netrin-1 and its potential mechanism for autophagy regulation after SCI. A rat model of SCI was established and used for analysis. Results showed that administration of Netrin-1 not only significantly enhanced the phosphorylation of AMP-activated protein kinase (AMPK) but also reduced the phosphorylation of mammalian target of rapamycin (mTOR) and P70S6K. In addition, the expression of Beclin-1 and the ratio of the light-chain 3B-II (LC3B-II)/LC3B-I in the injured spinal cord significantly increased in Netrin-1 group than those in SCI group. Moreover, the ratio of apoptotic neurons in the anterior horn of the spinal cord and the cavity area of spinal cord significantly decreased in Netrin-1 group compared with those in SCI group. In addition, Netrin-1 not only preserved motor neurons but also significantly improved motor fuction of injured rats. These results suggest that Netrin-1 improved functional recovery through autophagy stimulation by activating the AMPK/mTOR signaling pathway in rats with SCI. Thus, Netrin-1 treatment could be a novel therapeutic strategy for SCI. PMID:28186165

  2. Autophagosome formation in mammalian cells.

    PubMed

    Burman, Chloe; Ktistakis, Nicholas T

    2010-12-01

    Autophagy is a fundamental intracellular trafficking pathway conserved from yeast to mammals. It is generally thought to play a pro-survival role, and it can be up regulated in response to both external and intracellular factors, including amino acid starvation, growth factor withdrawal, low cellular energy levels, endoplasmic reticulum (ER) stress, hypoxia, oxidative stress, pathogen infection, and organelle damage. During autophagy initiation a portion of the cytosol is surrounded by a flat membrane sheet known as the isolation membrane or phagophore. The isolation membrane then elongates and seals itself to form an autophagosome. The autophagosome fuses with normal endocytic traffic to mature into a late autophagosome, before fusing with lysosomes. The molecular machinery that enables formation of an autophagosome in response to the various autophagy stimuli is almost completely identified in yeast and-thanks to the observed conservation-is also being rapidly elucidated in higher eukaryotes including mammals. What are less clear and currently under intense investigation are the mechanism by which these various autophagy components co-ordinate in order to generate autophagosomes. In this review, we will discuss briefly the fundamental importance of autophagy in various pathophysiological states and we will then review in detail the various players in early autophagy. Our main thesis will be that a conserved group of heteromeric protein complexes and a relatively simple signalling lipid are responsible for the formation of autophagosomes in mammalian cells.

  3. 40 CFR 798.5395 - In vivo mammalian bone marrow cytogenetics tests: Micronucleus assay.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cytogenetics tests: Micronucleus assay. 798.5395 Section 798.5395 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5395 In vivo mammalian bone marrow cytogenetics tests: Micronucleus assay. (a) Purpose. The micronucleus test is a mammalian in vivo test which detects damage of the chromosomes...

  4. Mammalian glycosylation in immunity.

    PubMed

    Marth, Jamey D; Grewal, Prabhjit K

    2008-11-01

    Glycosylation produces a diverse and abundant repertoire of glycans, which are collectively known as the glycome. Glycans are one of the four fundamental macromolecular components of all cells, and are highly regulated in the immune system. Their diversity reflects their multiple biological functions that encompass ligands for proteinaceous receptors known as lectins. Since the discovery that selectins and their glycan ligands are important for the regulation of leukocyte trafficking, it has been shown that additional features of the vertebrate immune system are also controlled by endogenous cellular glycosylation. This Review focuses on the emerging immunological roles of the mammalian glycome.

  5. Acetylcholinesterase Inhibitors on the Spinal Cord: Actions of Organophosphates in the Mammalian Spinal Cord

    DTIC Science & Technology

    1990-08-22

    J. Pharmacol. Exp. Ther. 145, 252-265. 10. Clement, 1.G. (1978) Efficacy of pro-PAM (N-methyl-l,6- dihydropyridine -2-carbaildoxime hydrochloride) as...Higuchi, T., and Bodor, N. (1976) Improved delivery through biological membranes. 3. Delivery of N-methyl-1,6. dihydropyridine -2-carbaldoxime chloride...through the blocd-brain barrier in its dihydropyridine pro-drug form. J. Med. Chem. 19, 113-117. 13. Kokshareva, N.V., Kovtun, S.D., Kagan, Y.S

  6. Spinal dysraphism and cavovarus foot deformity: a case report

    PubMed Central

    Hains, François; Dzus, Ann K; Cassidy, J David

    1992-01-01

    Neurological impairment secondary to spinal dysraphism most commonly presents as unilateral cavovarus foot in children. The deformity usually develops in the growing child around the age of five or six. The presence of a cavovarus foot of unknown origin in a child should lead to a complete neurological examination, including an assessment of the spine for spinal dysraphism. The early recognition of pathology may prevent severe neurological sequelae. A case of lipomyelomeningocele is presented to illustrate that cord damage in children with spinal dysraphism can present initially as a cavovarus foot. ImagesFigure 1 (a, b and c)Figure 2Figure 3Figure 4

  7. [Mortality structure following spine and spinal cord injuries].

    PubMed

    Bazilevskaia, Z V; Golovnykh, L L; Kirkinskaia, T A

    1980-01-01

    In a group of 520 patients with injury to the spine and spinal cord 125 died within 10 years. The highest fatality rate (76.0 +/0 3.8) is recorded in the first year after the injury. In the following 10 years the fatality rate was uniform and ranged between 1.6 and 4.1%. This value increases with the patient's age, the severity of the spinal cord injury, and the degree of damage to the spinal ligamento-bursal apparatus. Among the total number of injured, 76% have a survival period of more than 10 years.

  8. Mammalian sperm morphometry.

    PubMed Central

    Gage, M J

    1998-01-01

    Understanding the adaptive significance of sperm form and function has been a challenge to biologists because sperm are highly specialized cells operating at a microscopic level in a complex environment. A fruitful course of investigation has been to use the comparative approach. This comparative study attempts to address some fundamental questions of the evolution of mammalian sperm morphometry. Data on sperm morphometry for 445 mammalian species were collated from published sources. I use contemporary phylogenetic analysis to control for the inherent non-independence of species and explore relationships between the morphometric dimensions of the three essential spermatozoal components: head, mid-piece and flagellum. Energy for flagellar action is metabolized by the mitochondrial-dense mid-piece and these combine to propel the sperm head, carrying the male haplotype, to the ovum. I therefore search for evolutionary associations between sperm morphometry and body mass, karyotype and the duration of oestrus. In contrast to previous findings, there is no inverse correlation between body weight and sperm length. Sperm mid-piece and flagellum lengths are positively associated with both head length and area, and the slopes of these relationships are discussed. Flagellum length is positively associated with mid-piece length but, in contrast to previous research and after phylogenetic control, I find no relationship between flagellum length and the volume of the mitochondrial sheath. Sperm head dimensions are not related to either genome mass or chromosome number, and there are no relationships between sperm morphometry and the duration of oestrus. PMID:9474794

  9. Some principles of regeneration in mammalian systems.

    PubMed

    Carlson, Bruce M

    2005-11-01

    This article presents some general principles underlying regenerative phenomena in vertebrates, starting with the epimorphic regeneration of the amphibian limb and continuing with tissue and organ regeneration in mammals. Epimorphic regeneration following limb amputation involves wound healing, followed shortly by a phase of dedifferentiation that leads to the formation of a regeneration blastema. Up to the point of blastema formation, dedifferentiation is guided by unique regenerative pathways, but the overall developmental controls underlying limb formation from the blastema generally recapitulate those of embryonic limb development. Damaged mammalian tissues do not form a blastema. At the cellular level, differentiation follows a pattern close to that seen in the embryo, but at the level of the tissue and organ, regeneration is strongly influenced by conditions inherent in the local environment. In some mammalian systems, such as the liver, parenchymal cells contribute progeny to the regenerate. In others, e.g., skeletal muscle and bone, tissue-specific progenitor cells constitute the main source of regenerating cells. The substrate on which regeneration occurs plays a very important role in determining the course of regeneration. Epimorphic regeneration usually produces an exact replica of the structure that was lost, but in mammalian tissue regeneration the form of the regenerate is largely determined by the mechanical environment acting on the regenerating tissue, and it is normally an imperfect replica of the original. In organ hypertophy, such as that occurring after hepatic resection, the remaining liver mass enlarges, but there is no attempt to restore the original form.

  10. Mammalian sperm nuclear organization: resiliencies and vulnerabilities.

    PubMed

    Champroux, A; Torres-Carreira, J; Gharagozloo, P; Drevet, J R; Kocer, A

    2016-01-01

    Sperm cells are remarkably complex and highly specialized compared to somatic cells. Their function is to deliver to the oocyte the paternal genomic blueprint along with a pool of proteins and RNAs so a new generation can begin. Reproductive success, including optimal embryonic development and healthy offspring, greatly depends on the integrity of the sperm chromatin structure. It is now well documented that DNA damage in sperm is linked to reproductive failures both in natural and assisted conception (Assisted Reproductive Technologies [ART]). This manuscript reviews recent important findings concerning - the unusual organization of mammalian sperm chromatin and its impact on reproductive success when modified. This review is focused on sperm chromatin damage and their impact on embryonic development and transgenerational inheritance.

  11. Spinal Muscular Atrophy (SMA)

    MedlinePlus

    ... Lessons? Visit KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding Your 1- to 3-Month-Old Feeding Your 4- to 7-Month-Old Feeding Your 8- to 12-Month-Old Feeding Your 1- to 2-Year-Old Spinal ... > For Parents > Spinal Muscular Atrophy (SMA) Print A A A ...

  12. What Is Spinal Stenosis?

    MedlinePlus

    ... and problems with joints. Rheumatoid arthritis:  Affects most people at a younger age than osteoarthritis.  Causes the soft tissues of the joints to swell and can affect the internal organs and systems.  Is not a common cause of spinal ... Conditions Some people are born with conditions that cause spinal stenosis. ...

  13. The Therapeutic Effectiveness of Delayed Fetal Spinal Cord Tissue Transplantation on Respiratory Function Following Mid-Cervical Spinal Cord Injury.

    PubMed

    Lin, Chia-Ching; Lai, Sih-Rong; Shao, Yu-Han; Chen, Chun-Lin; Lee, Kun-Ze

    2017-01-17

    Respiratory impairment due to damage of the spinal respiratory motoneurons and interruption of the descending drives from brainstem premotor neurons to spinal respiratory motoneurons is the leading cause of morbidity and mortality following cervical spinal cord injury. The present study was designed to evaluate the therapeutic effectiveness of delayed transplantation of fetal spinal cord (FSC) tissue on respiratory function in rats with mid-cervical spinal cord injury. Embryonic day-14 rat FSC tissue was transplanted into a C4 spinal cord hemilesion cavity in adult male rats at 1 week postinjury. The histological results showed that FSC-derived grafts can survive, fill the lesion cavity, and differentiate into neurons and astrocytes at 8 weeks post-transplantation. Some FSC-derived graft neurons exhibited specific neurochemical markers of neurotransmitter (e.g., serotonin, noradrenalin, or acetylcholine). Moreover, a robust expression of glutamatergic and γ-aminobutyric acid-ergic fibers was observed within FSC-derived grafts. Retrograde tracing results indicated that there was a connection between FSC-derived grafts and host phrenic nucleus. Neurophysiological recording of the phrenic nerve demonstrated that phrenic burst amplitude ipsilateral to the lesion was significantly greater in injured animals that received FSC transplantation than in those that received buffer transplantation under high respiratory drives. These results suggest that delayed FSC transplantation may have the potential to repair the injured spinal cord and promote respiratory functional recovery after mid-cervical spinal cord injury.

  14. Magnetic resonance imaging and motor-evoked potentials in spinal cord infarction: report of two cases.

    PubMed

    Nardone, Raffaele; Bergmann, Jürgen; Kronbichler, Martin; Lochner, Piergiorgio; Caleri, Francesca; Tezzon, Frediano; Ladurner, Gunther; Golaszewski, Stefan

    2010-08-01

    Because in the early phases of spinal cord ischemia magnetic resonance imaging (MRI) can be normal, its clinical diagnosis is often difficult. We aimed to explore if motor-evoked potentials (MEPs) recordings may contribute to earlier diagnosis of spinal cord stroke. The clinical, MRI, and MEP findings in one case each of cervical and lumbar spinal cord infarction were reported. Spinal MRI at admission was unremarkable in both patients. At this time, MEPs were abnormal in both patients, to the upper and lower limbs in the first patient, exclusively to the lower limbs in the second. Follow-up MRI examinations documented an infarction in the territory of the anterior spinal artery and of the Adamkiewicz artery, respectively. MEP study can be useful in demonstrating spinal cord involvement also when radiological evidence for spinal cord damage is absent or equivocal. Early diagnosis may allow earlier intervention and contribute to improved patient management.

  15. The mammalian blastocyst.

    PubMed

    Frankenberg, Stephen R; de Barros, Flavia R O; Rossant, Janet; Renfree, Marilyn B

    2016-01-01

    The blastocyst is a mammalian invention that carries the embryo from cleavage to gastrulation. For such a simple structure, it exhibits remarkable diversity in its mode of formation, morphology, longevity, and intimacy with the uterine endometrium. This review explores this diversity in the light of the evolution of viviparity, comparing the three main groups of mammals: monotremes, marsupials, and eutherians. The principal drivers in blastocyst evolution were loss of yolk coupled with evolution of the placenta. An important outcome of blastocyst development is differentiation of two extraembryonic lineages (trophoblast and hypoblast) that contribute to the placenta. While in many species trophoblast segregation is often coupled with blastocyst formation, in marsupials and at least some Afrotherians, these events do not coincide. Thus, many questions regarding the conservation of molecular mechanisms controlling these events are of great interest but currently unresolved. For further resources related to this article, please visit the WIREs website.

  16. Spinal Myoclonus After Spinal Cord Injury

    PubMed Central

    Calancie, Blair

    2006-01-01

    Background/Objective: In the course of examining spinal motor function in many hundreds of people with traumatic spinal cord injury, we encountered 6 individuals who developed involuntary and rhythmic contractions in muscles of their legs. Although there are many reports of unusual muscle activation patterns associated with different forms of myoclonus, we believe that certain aspects of the patterns seen with these 6 subjects have not been previously reported. These patterns share many features with those associated with a spinal central pattern generator for walking. Methods: Subjects in this case series had a history of chronic injury to the cervical spinal cord, resulting in either complete (ASIA A; n = 4) or incomplete (ASIA D; n = 2) quadriplegia. We used multi-channel electromyography recordings of trunk and leg muscles of each subject to document muscle activation patterns associated with different postures and as influenced by a variety of sensory stimuli. Results: Involuntary contractions spanned multiple leg muscles bilaterally, sometimes including weak abdominal contractions. Contractions were smooth and graded and were highly reproducible in rate for a given subject (contraction rates were 0.3–0.5 Hz). These movements did not resemble the brief rapid contractions (ie, "jerks") ascribed to some forms of spinal myoclonus. For all subjects, the onset of involuntary muscle contraction was dependent upon hip angle; contractions did not occur unless the hips (and knees) were extended (ie, subjects were supine). In the 4 ASIA A subjects, contractions occurred simultaneously in all muscles (agonists and antagonists) bilaterally. In sharp contrast, contractions in the 2 ASIA D subjects were reciprocal between agonists and antagonists within a limb and alternated between limbs, such that movements in these 2 subjects looked just like repetitive stepping. Finally, each of the 6 subjects had a distinct pathology of their spinal cord, nerve roots, distal trunk

  17. Transplantation of Glial Cells Enhances Action Potential Conduction of Amyelinated Spinal Cord Axons in the Myelin-Deficient Rat

    NASA Astrophysics Data System (ADS)

    Utzschneider, David A.; Archer, David R.; Kocsis, Jeffery D.; Waxman, Stephen G.; Duncan, Ian D.

    1994-01-01

    A central issue in transplantation research is to determine how and when transplantation of neural tissue can influence the development and function of the mammalian central nervous system. Of particular interest is whether electrophysiological function in the traumatized or diseased mammalian central nervous system can be improved by the replacement of cellular elements that are missing or damaged. Although it is known that transplantation of neural tissue can lead to functional improvement in models of neurological disease characterized by neuronal loss, less is known about results of transplantation in disorders of myelin. We report here that transplantation of glial cells into the dorsal columns of neonatal myelin-deficient rat spinal cords leads to myelination and a 3-fold increase in conduction velocity. We also show that impulses can propagate into and out of the transplant region and that axons myelinated by transplanted cells do not have impaired frequency-response properties. These results demonstrate that myelination following central nervous system glial cell transplantation enhances action potential conduction in myelin-deficient axons, with conduction velocity approaching normal values.

  18. Role of DSCAM in the development of the spinal locomotor and sensorimotor circuits.

    PubMed

    Thiry, Louise; Lemieux, Maxime; D Laflamme, Olivier; Bretzner, Frédéric

    2016-03-01

    Locomotion is controlled by spinal circuits that generate rhythm and coordinate left-right and flexor-extensor motoneuronal activities. The outputs of motoneurons and spinal interneuronal circuits are shaped by sensory feedback, relaying peripheral signals that are critical to the locomotor and postural control. Several studies in invertebrates and vertebrates have argued that the Down syndrome cell adhesion molecule (DSCAM) would play an important role in the normal development of neural circuits through cell spacing and targeting, axonal and dendritic branching, and synapse establishment and maintenance. Although there is evidence that DSCAM is important for the normal development of neural circuits, little is known about its functional contribution to spinal motor circuits. We show here that adult DSCAM(2J) mutant mice, lacking DSCAM, exhibit a higher variability in their locomotor pattern and rhythm during treadmill locomotion. Retrograde tracing studies in neonatal isolated spinal cords show an increased number of spinal commissural interneurons, which likely contributes to reducing the left-right alternation and to increasing the flexor/swing duration during neonatal and adult locomotion. Moreover, our results argue that, by reducing the peripheral excitatory drive onto spinal motoneurons, the DSCAM mutation reduces or abolishes spinal reflexes in both neonatal isolated spinal cords and adult mice, thus likely impairing sensorimotor control. Collectively, our functional, electrophysiological, and anatomical studies suggest that the mammalian DSCAM protein is involved in the normal development of spinal locomotor and sensorimotor circuits.

  19. Rehabilitation of spinal cord injuries

    PubMed Central

    Nas, Kemal; Yazmalar, Levent; Şah, Volkan; Aydın, Abdulkadir; Öneş, Kadriye

    2015-01-01

    Spinal cord injury (SCI) is the injury of the spinal cord from the foramen magnum to the cauda equina which occurs as a result of compulsion, incision or contusion. The most common causes of SCI in the world are traffic accidents, gunshot injuries, knife injuries, falls and sports injuries. There is a strong relationship between functional status and whether the injury is complete or not complete, as well as the level of the injury. The results of SCI bring not only damage to independence and physical function, but also include many complications from the injury. Neurogenic bladder and bowel, urinary tract infections, pressure ulcers, orthostatic hypotension, fractures, deep vein thrombosis, spasticity, autonomic dysreflexia, pulmonary and cardiovascular problems, and depressive disorders are frequent complications after SCI. SCI leads to serious disability in the patient resulting in the loss of work, which brings psychosocial and economic problems. The treatment and rehabilitation period is long, expensive and exhausting in SCI. Whether complete or incomplete, SCI rehabilitation is a long process that requires patience and motivation of the patient and relatives. Early rehabilitation is important to prevent joint contractures and the loss of muscle strength, conservation of bone density, and to ensure normal functioning of the respiratory and digestive system. An interdisciplinary approach is essential in rehabilitation in SCI, as in the other types of rehabilitation. The team is led by a physiatrist and consists of the patients’ family, physiotherapist, occupational therapist, dietician, psychologist, speech therapist, social worker and other consultant specialists as necessary. PMID:25621206

  20. Rehabilitation of spinal cord injuries.

    PubMed

    Nas, Kemal; Yazmalar, Levent; Şah, Volkan; Aydın, Abdulkadir; Öneş, Kadriye

    2015-01-18

    Spinal cord injury (SCI) is the injury of the spinal cord from the foramen magnum to the cauda equina which occurs as a result of compulsion, incision or contusion. The most common causes of SCI in the world are traffic accidents, gunshot injuries, knife injuries, falls and sports injuries. There is a strong relationship between functional status and whether the injury is complete or not complete, as well as the level of the injury. The results of SCI bring not only damage to independence and physical function, but also include many complications from the injury. Neurogenic bladder and bowel, urinary tract infections, pressure ulcers, orthostatic hypotension, fractures, deep vein thrombosis, spasticity, autonomic dysreflexia, pulmonary and cardiovascular problems, and depressive disorders are frequent complications after SCI. SCI leads to serious disability in the patient resulting in the loss of work, which brings psychosocial and economic problems. The treatment and rehabilitation period is long, expensive and exhausting in SCI. Whether complete or incomplete, SCI rehabilitation is a long process that requires patience and motivation of the patient and relatives. Early rehabilitation is important to prevent joint contractures and the loss of muscle strength, conservation of bone density, and to ensure normal functioning of the respiratory and digestive system. An interdisciplinary approach is essential in rehabilitation in SCI, as in the other types of rehabilitation. The team is led by a physiatrist and consists of the patients' family, physiotherapist, occupational therapist, dietician, psychologist, speech therapist, social worker and other consultant specialists as necessary.

  1. Spinal cordectomy: A new hope for morbid spinal conditions.

    PubMed

    Konar, Subhas K; Maiti, Tanmoy K; Bir, Shyamal C; Nanda, Anil

    2017-01-01

    A spinal cordectomy is a treatment option for several disorders of the spinal cord like post-traumatic syringomyelia, spinal cord tumor and myelomeningocele. We have done a systematic analysis of all reported cases of spinal cordectomy to investigate the possible outcomes and complications. A PubMed search was performed for literature published from 1949 to 2015 with search words "spinal cordectomy", "spinal cord transection" and "cordectomy for malignant spinal cord tumors" to select articles containing information about the indication, outcome and complication of spinal cordectomy performed for diverse etiologies. Spinal cordectomy was performed for post-traumatic syrinx (76 cases), SPAM (2 cases), Central pain of spinal cord origin (22 cases), Spasticity (8 cases), Spinal tumors (16 cases) and Myelomeningocele (30 cases). Among the 76 cases, 60 cases fulfilled the inclusion criteria for our outcome analysis in terms of improvement, stabilization or deterioration after spinal cordectomy. The results showed 78.3% excellent improvement, 13.4% stable and 8.3% (5 cases) deterioration. The reported causes of failure of spinal cordectomy for post-traumatic syrinx were scarring of a proximal stump and severe arachnoid adhesion. Sixteen cases of spinal cordectomy related with spinal cord tumors have been reported. Also reported were seven cases of GBM, two cases of AA and one each case of anaplastic tanycytic ependymoma, schwanoma, neurofibroma, atypical meningioma and malignant ganglioglioma. Cordectomy shouldbe strongly considered in patients having malignant spinal cord tumors with complete motor loss and sensory loss below the level of the lesion as a means of preventing the spread of disease from the original tumor focus. Spinal cordectomy is a treatment option with a good outcome for post-traumatic spinal morbidity, spinal cord tumors and myelomeningocele. However, since it is an invasive and irreversible procedure, it is only considered when other options have

  2. Alterations in cardiac autonomic control in spinal cord injury.

    PubMed

    Biering-Sørensen, Fin; Biering-Sørensen, Tor; Liu, Nan; Malmqvist, Lasse; Wecht, Jill Maria; Krassioukov, Andrei

    2017-02-15

    A spinal cord injury (SCI) interferes with the autonomic nervous system (ANS). The effect on the cardiovascular system will depend on the extent of damage to the spinal/central component of ANS. The cardiac changes are caused by loss of supraspinal sympathetic control and relatively increased parasympathetic cardiac control. Decreases in sympathetic activity result in heart rate and the arterial blood pressure changes, and may cause arrhythmias, in particular bradycardia, with the risk of cardiac arrest in those with cervical or high thoracic injuries. The objective of this review is to give an update of the current knowledge related to the alterations in cardiac autonomic control following SCI. With this purpose the review includes the following subheadings: 2. Neuro-anatomical plasticity and cardiac control 2.1 Autonomic nervous system and the heart 2.2 Alteration in autonomic control of the heart following spinal cord injury 3. Spinal shock and neurogenic shock 3.1 Pathophysiology of spinal shock 3.2 Pathophysiology of neurogenic shock 4. Autonomic dysreflexia 4.1 Pathophysiology of autonomic dysreflexia 4.2 Diagnosis of autonomic dysreflexia 5. Heart rate/electrocardiography following spinal cord injury 5.1 Acute phase 5.2 Chronic phase 6. Heart rate variability 6.1 Time domain analysis 6.2 Frequency domain analysis 6.3 QT-variability index 6.4 Nonlinear (fractal) indexes 7. Echocardiography 7.1 Changes in cardiac structure following spinal cord injury 7.2 Changes in cardiac function following spinal cord injury 8. International spinal cord injury cardiovascular basic data set and international standards to document the remaining autonomic function in spinal cord injury.

  3. Spinal epidural abscess.

    PubMed

    Johnson, Katherine G

    2013-09-01

    Spinal epidural abscess is a rare bacterial infection located within the spinal canal. Early diagnosis and rapid treatment are important because of its potential to cause rapidly progressive spinal cord compression and irreversible paralysis. A staphylococcus bacterial infection is the cause in most cases. Treatment includes antibiotics and possible surgical drainage of the abscess. A favorable neurologic outcome correlates with the severity and duration of neurologic deficits before surgery and the timeliness of the chosen intervention. It is important for the critical care nurse to monitor the patient's neurologic status and provide appropriate interventions.

  4. Mammalian clock output mechanisms.

    PubMed

    Kalsbeek, Andries; Yi, Chun-Xia; Cailotto, Cathy; la Fleur, Susanne E; Fliers, Eric; Buijs, Ruud M

    2011-06-30

    In mammals many behaviours (e.g. sleep-wake, feeding) as well as physiological (e.g. body temperature, blood pressure) and endocrine (e.g. plasma corticosterone concentration) events display a 24 h rhythmicity. These 24 h rhythms are induced by a timing system that is composed of central and peripheral clocks. The highly co-ordinated output of the hypothalamic biological clock not only controls the daily rhythm in sleep-wake (or feeding-fasting) behaviour, but also exerts a direct control over many aspects of hormone release and energy metabolism. First, we present the anatomical connections used by the mammalian biological clock to enforce its endogenous rhythmicity on the rest of the body, especially the neuro-endocrine and energy homoeostatic systems. Subsequently, we review a number of physiological experiments investigating the functional significance of this neuro-anatomical substrate. Together, this overview of experimental data reveals a highly specialized organization of connections between the hypothalamic pacemaker and neuro-endocrine system as well as the pre-sympathetic and pre-parasympathetic branches of the autonomic nervous system.

  5. The Mammalian Septin Interactome

    PubMed Central

    Neubauer, Katharina; Zieger, Barbara

    2017-01-01

    Septins are GTP-binding and membrane-interacting proteins with a highly conserved domain structure involved in various cellular processes, including cytoskeleton organization, cytokinesis, and membrane dynamics. To date, 13 different septin genes have been identified in mammals (SEPT1 to SEPT12 and SEPT14), which can be classified into four distinct subgroups based on the sequence homology of their domain structure (SEPT2, SEPT3, SEPT6, and SEPT7 subgroup). The family members of these subgroups have a strong affinity for other septins and form apolar tri-, hexa-, or octameric complexes consisting of multiple septin polypeptides. The first characterized core complex is the hetero-trimer SEPT2-6-7. Within these complexes single septins can be exchanged in a subgroup-specific manner. Hexamers contain SEPT2 and SEPT6 subgroup members and SEPT7 in two copies each whereas the octamers additionally comprise two SEPT9 subgroup septins. The various isoforms seem to determine the function and regulation of the septin complex. Septins self-assemble into higher-order structures, including filaments and rings in orders, which are typical for different cell types. Misregulation of septins leads to human diseases such as neurodegenerative and bleeding disorders. In non-dividing cells such as neuronal tissue and platelets septins have been associated with exocytosis. However, many mechanistic details and roles attributed to septins are poorly understood. We describe here some important mammalian septin interactions with a special focus on the clinically relevant septin interactions. PMID:28224124

  6. A Rosetta stone of mammalian genetics.

    PubMed

    Nadeau, J H; Grant, P L; Mankala, S; Reiner, A H; Richardson, J E; Eppig, J T

    1995-01-26

    The Mammalian Comparative Database provides genetic maps of mammalian species. Comparative maps are valuable aids for predicting linkages, developing animal models and studying genome organization and evolution.

  7. Stem Cells in Mammalian Gonads.

    PubMed

    Wu, Ji; Ding, Xinbao; Wang, Jian

    Stem cells have great value in clinical application because of their ability to self-renew and their potential to differentiate into many different cell types. Mammalian gonads, including testes for males and ovaries for females, are composed of germline and somatic cells. In male mammals, spermatogonial stem cells maintain spermatogenesis which occurs continuously in adult testis. Likewise, a growing body of evidence demonstrated that female germline stem cells could be found in mammalian ovaries. Meanwhile, prior studies have shown that somatic stem cells exist in both testes and ovaries. In this chapter, we focus on mammalian gonad stem cells and discuss their characteristics as well as differentiation potentials.

  8. What Is Spinal Stenosis?

    MedlinePlus

    ... To order the Sports Injuries Handout on Health full-text version, please contact NIAMS using the contact information ... publication. To order the Spinal Stenosis Q&A full-text version, please contact NIAMS using the contact information ...

  9. Spinal cord trauma

    MedlinePlus

    ... Oh's Intensive Care Manual . 7th ed. Philadelphia, PA: Elsevier; 2014:chap 78. Bryce TN. Spinal cord injury. ... Physical Medicine and Rehabilitation . 5th ed. Philadelphia, PA: Elsevier; 2016:chap 49. Dalzell K, Nouri A, Fehlings ...

  10. Spinal Cord Injury 101

    MedlinePlus Videos and Cool Tools

    ... is "Braingate" research? What is the status of stem-cell research? How would stem-cell therapies work in the treatment of spinal cord injuries? What does stem-cell research on animals tell us? When can we ...

  11. Spinal Muscular Atrophy (SMA)

    MedlinePlus

    ... children with SMA develop spinal deformities, such as scoliosis (sideways curvature of the spine) and kyphosis (front- ... Magnetic Resonance Imaging (MRI) Brain and Nervous System Scoliosis Contact Us Print Resources Send to a friend ...

  12. Complications after spinal anesthesia in adult tethered cord syndrome

    PubMed Central

    Liu, Jing-Jie; Guan, Zheng; Gao, Zhen; Xiang, Li; Zhao, Feng; Huang, Sheng-Li

    2016-01-01

    Abstract Since little has been reported about complications of spinal anesthesia in adult tethered cord syndrome (TCS), we sought to delineate the characteristics of the condition. A total of 4 cases of adult TCS after spinal anesthesia were reviewed. The medical charts of the patients were obtained. Anesthesia, which was combined spinal and epidural anesthesia or spinal anesthesia was performed, and follow-up were carried out in all patients. The most common neurological symptom of adult TCS before surgery was occasional severe pain in back, perineal region, or legs. Frequent micturition, diminished knee and ankle reflexes, and difficulty in bending were exhibited in partial patients. Paraesthesia of perineal region or/and lower extremities existed 2 to 3 days after spinal anesthesia in all the cases. Weakness of lower extremities existed in 1 case. Lumbar magnetic resonance imaging showed the low location of conus medullaris. At follow-up, 3 cases recovered completely within 3 weeks, and 1 case underwent permanent disability. These cases suggest anesthesiologists and surgeons alert to the association of adult TCS and spinal anesthesia. Spinal anesthesia should be prohibited in patients with adult TCS to prevent neurological damages. PMID:27442670

  13. The Spinal Ependymal Layer in Health and Disease.

    PubMed

    Moore, S A

    2016-07-01

    Ependymal cells are epithelial support cells that line the central canal and ventricular cavities of the central nervous system, providing the interface between the cerebrospinal fluid and the parenchyma of the brain and spinal cord. The spinal ependymal layer (SEL) is composed of 3 main cell types: tanycytes, ependymocytes, and cerebrospinal fluid-contacting neurons. A fourth cell type, termed the supraependymal cell, is also occasionally described. Cells of the SEL show restricted proliferative capacity in health but display neural stem cell properties both in vitro and in vivo in various disease states. A growing body of literature is devoted to the regenerative roles of the SEL, particularly in the context of spinal cord injury, where mechanical damage to the spinal cord leads to a significant increase in SEL proliferation. SEL-derived cell progeny migrate to sites of injury within the injured spinal cord parenchyma and contribute primarily to glial scar formation. In additional to their role as endogenous neural stem cells, cells of the SEL may be an important source of cytokines and other cell signaling molecules, such as tumor necrosis factor, heat shock proteins, and various growth factors. The SEL has become of recent interest to neuroscience researchers because of its potential to participate in and respond to diseases affecting the spinal cord (eg, traumatic spinal cord injury) and neurodegenerative disease. The intimate association of the SEL with the cerebrospinal fluid makes intrathecal therapies a viable option, and recent studies highlight the potential promise of treatments that augment SEL responses to disease.

  14. Quantification of DNA photoproducts in mammalian cell DNA using radioimmunoassay.

    PubMed

    Berton, Thomas R; Mitchell, David L

    2012-01-01

    Over the past 25 years, the use of polyclonal and monoclonal antibodies to quantify DNA damage has burgeoned. Immunoassays offer distinct advantages over other analytical procedures currently used to measure DNA damage including adaptability, sensitivity, and selectivity. This combination of attributes allows for the development of powerful analytical techniques to visualize and quantify specific types of DNA damage in cells, tissue, and organisms exposed to subtoxic levels of xenobiotics with distinct advantages over the other procedures in the analysis of DNA damage in human and environmental samples. Radioimmunoassay (RIA) is readily applied to a variety of biological materials and has typically been used to measure DNA damage in cell and organ cultures, tissue sections and biopsies, buccal cells, bone marrow aspirates, peripheral blood lymphocytes, and urine. Here we describe the use of a very sensitive RIA for the specific quantitation of cyclobutane dimers and (6-4) photoproducts in DNA extracted from mammalian cells and tissues.

  15. [Meningitis after spinal anesthesia].

    PubMed

    Mouchrif, Issam; Berdaii, Adnane; Labib, Ismail; Harrandou, Moustapha

    2016-01-01

    Meningitis is a rare but serious complication of epidural and spinal anesthesia. Bacterial meningitis is mainly caused by Gram-positive cocci, implying an exogenous contamination which suggests a lack of asepsis. The evolution is usually favorable after treatment, but at the expense of increased health care costs and, sometimes, of significant neurological sequelae. We report a case of bacterial meningitis after spinal anesthesia for caesarean section.

  16. Movement Symmetries and the Mammalian Vestibular System

    NASA Astrophysics Data System (ADS)

    McCollum, Gin; Boyle, Richard

    2000-03-01

    Unity of movement requires vertebrates to have an ability to symmetrize along the midline. For example, human erect stance involves symmetry with respect to gravity. The mammalian vestibular system provides a mechanism for maintaining symmetries, which is also open to influence and adaptation by the rest of the organism. The vestibular system includes the inner ear endorgans and central nuclei, along with projections to oculomotor, cerebellar, thalamic, and spinal motor centers. The vestibular endorgans - the semicircular canals and the otoliths - use sensory hairs to register inertia. The vestibular endorgans are right-left symmetric and the semicircular canals form an approximately orthogonal coordinate system for angular motion. Primary afferent axons project from the endorgans to the vestibular nuclei (and a few other places). The vestibular nuclei integrate vestibular, visual, and somatosensory signals, along with a proposed copy of the voluntary motor command and signals from other central structures. The relationship between the canals and the otoliths gives rise to symmetries among neurons, in the organization among the several vestibular nuclei, and in the projections from the vestibular nuclei. These symmetries organize the space of body movements so that functional relationships are maintained in spite of the many free variables of body movement. They also provide a foundation for adaptive reinterpretation of the relationship between canal and otolith signals, for example in freefall.

  17. Upper cervical spinal cord gunshot injury without bone destruction☆☆☆

    PubMed Central

    Seçer, Mehmet; Ulutaş, Murat; Yayla, Erdal; Çınar, Kadir

    2014-01-01

    INTRODUCTION This report describes a rare case of the gunshot injury of the spine and spinal cord. PRESENTATION OF CASE A rare case of the bullet lodged intra-durally in the upper cervical region without damaging the vertebrae or the spinal cord. The bullet was removed as microneurosurgical and duraplasty was performed. DISCUSSION Surgical management of the gunshot wounds of the spine and spinal cord is not widely advocated and controversial. CONCLUSION Advances in microneurosurgical instrumentation and microscopic techniques may open up a new era of surgical treatment of spinal cord gunshot wounds. PMID:24566426

  18. Modeling spinal cord biomechanics

    NASA Astrophysics Data System (ADS)

    Luna, Carlos; Shah, Sameer; Cohen, Avis; Aranda-Espinoza, Helim

    2012-02-01

    Regeneration after spinal cord injury is a serious health issue and there is no treatment for ailing patients. To understand regeneration of the spinal cord we used a system where regeneration occurs naturally, such as the lamprey. In this work, we analyzed the stress response of the spinal cord to tensile loading and obtained the mechanical properties of the cord both in vitro and in vivo. Physiological measurements showed that the spinal cord is pre-stressed to a strain of 10%, and during sinusoidal swimming, there is a local strain of 5% concentrated evenly at the mid-body and caudal sections. We found that the mechanical properties are homogeneous along the body and independent of the meninges. The mechanical behavior of the spinal cord can be characterized by a non-linear viscoelastic model, described by a modulus of 20 KPa for strains up to 15% and a modulus of 0.5 MPa for strains above 15%, in agreement with experimental data. However, this model does not offer a full understanding of the behavior of the spinal cord fibers. Using polymer physics we developed a model that relates the stress response as a function of the number of fibers.

  19. Canine spinal cord glioma.

    PubMed

    Rissi, Daniel R; Barber, Renee; Burnum, Annabelle; Miller, Andrew D

    2017-01-01

    Spinal cord glioma is uncommonly reported in dogs. We describe the clinicopathologic and diagnostic features of 7 cases of canine spinal cord glioma and briefly review the veterinary literature on this topic. The median age at presentation was 7.2 y. Six females and 1 male were affected and 4 dogs were brachycephalic. The clinical course lasted from 3 d to 12 wk, and clinical signs were progressive and associated with multiple suspected neuroanatomic locations in the spinal cord. Magnetic resonance imaging of 6 cases revealed T2-weighted hyperintense lesions with variable contrast enhancement in the spinal cord. All dogs had a presumptive clinical diagnosis of intraparenchymal neoplasia or myelitis based on history, advanced imaging, and cerebrospinal fluid analysis. Euthanasia was elected in all cases because of poor outcome despite anti-inflammatory or immunosuppressive treatment or because of poor prognosis at the time of diagnosis. Tumor location during autopsy ranged from C1 to L6, with no clear predilection for a specific spinal cord segment. The diagnosis was based on histopathology and the immunohistochemistry expression of glial fibrillary acidic protein, oligodendrocyte lineage transcription factor 2, 2',3'-cyclic-nucleotide 3'-phosphodiesterase, neuron-specific enolase, synaptophysin, and Ki-67. Diagnoses consisted of 4 cases of oligodendroglioma, 2 cases of gliomatosis cerebri, and 1 astrocytoma. This case series further defines the clinicopathologic features of canine spinal glioma and highlights the need for comprehensive immunohistochemistry in addition to routine histopathology to confirm the diagnosis of these tumors.

  20. Maturation of the mammalian secretome

    PubMed Central

    Simpson, Jeremy C; Mateos, Alvaro; Pepperkok, Rainer

    2007-01-01

    A recent use of quantitative proteomics to determine the constituents of the endoplasmic reticulum and Golgi complex is discussed in the light of other available methodologies for cataloging the proteins associated with the mammalian secretory pathway. PMID:17472737

  1. Mammalian DNA Repair. Final Report

    SciTech Connect

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  2. Regulation of Müller Glial Dependent Neuronal Regeneration in the Damaged Adult Zebrafish Retina

    PubMed Central

    Gorsuch, Ryne A.; Hyde, David R.

    2013-01-01

    This article examines our current knowledge underlying the mechanisms involved in neuronal regeneration in the adult zebrafish retina. Zebrafish, which has the capacity to regenerate a wide variety of tissues and organs (including the fins, kidney, heart, brain, and spinal cord), has become the premier model system to study retinal regeneration due to the robustness and speed of the response and the variety of genetic tools that can be applied to study this question. It is now well documented that retinal damage induces the resident Müller glia to dedifferentiate and reenter the cell cycle to produce neuronal progenitor cells that continue to proliferate, migrate to the damaged retinal layer and differentiate into the missing neuronal cell types. Increasing our understanding of how these cellular events are regulated and occur in response to neuronal damage may provide critical information that can be applied to stimulating a regeneration response in the mammalian retina. In this review, we will focus on the genes/proteins that regulate zebrafish retinal regeneration and will attempt to critically evaluate how these factors may interact to correctly orchestrate the definitive cellular events that occur during regeneration. PMID:23880528

  3. Regulation of Müller glial dependent neuronal regeneration in the damaged adult zebrafish retina.

    PubMed

    Gorsuch, Ryne A; Hyde, David R

    2014-06-01

    This article examines our current knowledge underlying the mechanisms involved in neuronal regeneration in the adult zebrafish retina. Zebrafish, which has the capacity to regenerate a wide variety of tissues and organs (including the fins, kidney, heart, brain, and spinal cord), has become the premier model system to study retinal regeneration due to the robustness and speed of the response and the variety of genetic tools that can be applied to study this question. It is now well documented that retinal damage induces the resident Müller glia to dedifferentiate and reenter the cell cycle to produce neuronal progenitor cells that continue to proliferate, migrate to the damaged retinal layer and differentiate into the missing neuronal cell types. Increasing our understanding of how these cellular events are regulated and occur in response to neuronal damage may provide critical information that can be applied to stimulating a regeneration response in the mammalian retina. In this review, we will focus on the genes/proteins that regulate zebrafish retinal regeneration and will attempt to critically evaluate how these factors may interact to correctly orchestrate the definitive cellular events that occur during regeneration.

  4. Mechanism of UV-Induced Damage to Mammalian Collagen

    DTIC Science & Technology

    2014-12-12

    other properties (e.g. electrophoresis , appearance) may not be sensitive to age and temperature, probably because these fluorophores form a very small...component of the interstitial gel . Collagen has several covalently – bound fluorescent molecules that are unstable to solar UV wavelengths. Very...correlate these viscosity measurements with electrophoresis Year 02 : Period 01 September, 2011 – 31 August, 2012 Aim (1) In the previous year we

  5. Redox regulation of mammalian sperm capacitation

    PubMed Central

    O’Flaherty, Cristian

    2015-01-01

    Capacitation is a series of morphological and metabolic changes necessary for the spermatozoon to achieve fertilizing ability. One of the earlier happenings during mammalian sperm capacitation is the production of reactive oxygen species (ROS) that will trigger and regulate a series of events including protein phosphorylation, in a time-dependent fashion. The identity of the sperm oxidase responsible for the production of ROS involved in capacitation is still elusive, and several candidates are discussed in this review. Interestingly, ROS-induced ROS formation has been described during human sperm capacitation. Redox signaling during capacitation is associated with changes in thiol groups of proteins located on the plasma membrane and subcellular compartments of the spermatozoon. Both, oxidation of thiols forming disulfide bridges and the increase on thiol content are necessary to regulate different sperm proteins associated with capacitation. Reducing equivalents such as NADH and NADPH are necessary to support capacitation in many species including humans. Lactate dehydrogenase, glucose-6-phospohate dehydrogenase, and isocitrate dehydrogenase are responsible in supplying NAD (P) H for sperm capacitation. Peroxiredoxins (PRDXs) are newly described enzymes with antioxidant properties that can protect mammalian spermatozoa; however, they are also candidates for assuring the regulation of redox signaling required for sperm capacitation. The dysregulation of PRDXs and of enzymes needed for their reactivation such as thioredoxin/thioredoxin reductase system and glutathione-S-transferases impairs sperm motility, capacitation, and promotes DNA damage in spermatozoa leading to male infertility. PMID:25926608

  6. Biomechanics of the spine. Part I: spinal stability.

    PubMed

    Izzo, Roberto; Guarnieri, Gianluigi; Guglielmi, Giuseppe; Muto, Mario

    2013-01-01

    Biomechanics, the application of mechanical principles to living organisms, helps us to understand how all the bony and soft spinal components contribute individually and together to ensure spinal stability, and how traumas, tumours and degenerative disorders exert destabilizing effects. Spine stability is the basic requirement to protect nervous structures and prevent the early mechanical deterioration of spinal components. The literature reports a number of biomechanical and clinical definitions of spinal stability, but a consensus definition is lacking. Any vertebra in each spinal motion segment, the smallest functional unit of the spine, can perform various combinations of the main and coupled movements during which a number of bony and soft restraints maintain spine stability. Bones, disks and ligaments contribute by playing a structural role and by acting as transducers through their mechanoreceptors. Mechanoreceptors send proprioceptive impulses to the central nervous system which coordinates muscle tone, movement and reflexes. Damage to any spinal structure gives rise to some degree of instability. Instability is classically considered as a global increase in the movements associated with the occurrence of back and/or nerve root pain. The assessment of spinal instability remains a major challenge for diagnostic imaging experts. Knowledge of biomechanics is essential in view of the increasing involvement of radiologists and neuroradiologists in spinal interventional procedures and the ongoing development of new techniques and devices. Bioengineers and surgeons are currently focusing on mobile stabilization systems. These systems represent a new frontier in the treatment of painful degenerative spine and aim to neutralize noxious forces, restore the normal function of spinal segments and protect the adjacent segments. This review discusses the current concepts of spine stability.

  7. Complications in the management of metastatic spinal disease

    PubMed Central

    Dunning, Eilis Catherine; Butler, Joseph Simon; Morris, Seamus

    2012-01-01

    . This however, does not come without complications, regardless of the surgical intervention technique used. These complication range from the general surgical complications of bleeding, infection, damage to surrounding structures and post operative DT/PE to spinal specific complications of persistent neurologic deficit and paralysis. PMID:22919567

  8. Dual function of suppressor of fused in Hh pathway activation and mouse spinal cord patterning.

    PubMed

    Liu, Jinling; Heydeck, Westley; Zeng, Huiqing; Liu, Aimin

    2012-02-15

    The morphogen Sonic hedgehog, one of the Hedgehog (Hh) family of secreted proteins, plays a key role in patterning the mammalian spinal cord along its dorsoventral (D/V) axis through the activation of Glioma-associated oncogene (Gli) family of transcription factors. Suppressor of Fused (Sufu), a Gli-interacting protein, modulates the D/V patterning of the spinal cord by antagonizing Hh signaling. The molecular mechanisms underlying the function of Sufu in Hh pathway activation and spinal cord D/V patterning remain controversial, particularly in light of recent findings that Sufu protects Gli2 and Gli3 proteins from proteasomal degradation. In the current study, we show that Hh pathway activation and dorsal expansion of ventral spinal cord cell types in the absence of Sufu depend on the activator activities of all three Gli family proteins. We also show that Sufu plays a positive role in the maximal activation of Hh signaling that defines the ventral-most cell fate in the mammalian spinal cord, likely through protecting Gli2 and Gli3 proteins from degradation. Finally, by altering the level of Gli3 repressor on a background of reduced Gli activator activities, we reveal an important contribution of Gli3 repressor activity to the Hh pathway activation and the D/V patterning of the spinal cord.

  9. Hydrogels in Spinal Cord Injury Repair Strategies

    PubMed Central

    2011-01-01

    Nowadays there are at present no efficient therapies for spinal cord injury (SCI), and new approaches have to be proposed. Recently, a new regenerative medicine strategy has been suggested using smart biomaterials able to carry and deliver cells and/or drugs in the damaged spinal cord. Among the wide field of emerging materials, research has been focused on hydrogels, three-dimensional polymeric networks able to swell and absorb a large amount of water. The present paper intends to give an overview of a wide range of natural, synthetic, and composite hydrogels with particular efforts for the ones studied in the last five years. Here, different hydrogel applications are underlined, together with their different nature, in order to have a clearer view of what is happening in one of the most sparkling fields of regenerative medicine. PMID:22816020

  10. Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation

    PubMed Central

    Lukovic, Dunja; Moreno-Manzano, Victoria; Lopez-Mocholi, Eric; Rodriguez-Jiménez, Francisco Javier; Jendelova, Pavla; Sykova, Eva; Oria, Marc; Stojkovic, Miodrag; Erceg, Slaven

    2015-01-01

    Spinal cord injury (SCI) results in neural loss and consequently motor and sensory impairment below the injury. There are currently no effective therapies for the treatment of traumatic SCI in humans. Various animal models have been developed to mimic human SCI. Widely used animal models of SCI are complete or partial transection or experimental contusion and compression, with both bearing controversy as to which one more appropriately reproduces the human SCI functional consequences. Here we present in details the widely used procedure of complete spinal cord transection as a faithful animal model to investigate neural and functional repair of the damaged tissue by exogenous human transplanted cells. This injury model offers the advantage of complete damage to a spinal cord at a defined place and time, is relatively simple to standardize and is highly reproducible. PMID:25860664

  11. Therapeutic Potential of Olfactory Ensheathing Cells and Mesenchymal Stem Cells in Spinal Cord Injuries

    PubMed Central

    Anna, Zadroga; Joanna, Czarzasta; Barczewska, Monika; Wojciech, Maksymowicz

    2017-01-01

    Spinal cord injury (SCI) is a devastating neurological condition that affects individuals worldwide, significantly reducing quality of life, for both patients and their families. In recent years there has been a growing interest in cell therapy potential in the context of spinal cord injuries. The present review aims to discuss and compare the restorative approaches based on the current knowledge, available spinal cord restorative cell therapies, and use of selected cell types. However, treatment options for spinal cord injury are limited, but rehabilitation and experimental technologies have been found to help maintain or improve remaining nerve function in some cases. Mesenchymal stem cells as well as olfactory ensheathing cells seem to show therapeutic impact on damaged spinal cord and might be useful in neuroregeneration. Recent research in animal models and first human trials give patients with spinal cord injuries hope for recovery. PMID:28298927

  12. Therapeutic Potential of Olfactory Ensheathing Cells and Mesenchymal Stem Cells in Spinal Cord Injuries.

    PubMed

    Anna, Zadroga; Katarzyna, Jezierska-Woźniak; Joanna, Czarzasta; Barczewska, Monika; Joanna, Wojtkiewicz; Wojciech, Maksymowicz

    2017-01-01

    Spinal cord injury (SCI) is a devastating neurological condition that affects individuals worldwide, significantly reducing quality of life, for both patients and their families. In recent years there has been a growing interest in cell therapy potential in the context of spinal cord injuries. The present review aims to discuss and compare the restorative approaches based on the current knowledge, available spinal cord restorative cell therapies, and use of selected cell types. However, treatment options for spinal cord injury are limited, but rehabilitation and experimental technologies have been found to help maintain or improve remaining nerve function in some cases. Mesenchymal stem cells as well as olfactory ensheathing cells seem to show therapeutic impact on damaged spinal cord and might be useful in neuroregeneration. Recent research in animal models and first human trials give patients with spinal cord injuries hope for recovery.

  13. Living with Spinal Cord Injury

    MedlinePlus

    ... to send and receive messages to and from the brain. About 200,000 people in the United States have spinal cord injuries. Most injuries occur from a traumatic event, according to the National Spinal Cord Injury ...

  14. Effect of lycopene on the blood-spinal cord barrier after spinal cord injury in mice.

    PubMed

    Zhang, Qian; Wang, Jianbo; Gu, Zhengsong; Zhang, Qing; Zheng, Hong

    2016-09-05

    The current study aimed to investigate the effect of lycopene on the blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) in a mouse model. Lycopene inhibited lipid peroxidation and oxidative DNA damage as a highly efficient antioxidant and free radical scavenger. Lycopene (4 mg/kg/d) was administrated immediately following SCI. The permeability of the BSCB and water content in the spinal cord tissue were evaluated. Additionally, levels of expression of tight junction proteins and heme oxygenase-1 (HO-1) were determined with Western blotting. An enzyme-linked immunosorbent assay analysis of spinal cord tissue homogenates was performed 48 h after SCI to evaluate the expression of inflammation-related cytokines. In addition, recovery of motor function was assessed 1 d, 2 d, 5 d, 10 d, and 15 d after SCI using the Basso Mouse Scale to score locomotion. Compared to the group with an untreated SCI, mice with an SCI treated with lycopene had significantly reduced spinal cord tissue water content and BSCB permeability. Furthermore, motor function of mice with an SCI was also greatly improved by lycopene administration. The expression of the proinflammatory factors TNF-α and NF-kB increased markedly 48 h after SCI, and their upregulation was significantly attenuated by lycopene treatment. The expression of molecules that protect tight junctions, zonula occluden-1 and claudin-5, was upregulated by lycopene treatment after SCI. Taken together, these results clearly indicate that lycopene attenuated SCI by promoting repair of the damaged BSCB, so lycopene is a novel and promising treatment for SCI in humans.

  15. Spinal Injuries in Children

    PubMed Central

    Basu, Saumyajit

    2012-01-01

    About 5% of spinal injuries occur in children – however the consequences to the society are devastating, all the more so because the cervical spine is more commonly affected. Anatomical differences with adults along with the inherent elasticity of the pediatric spine, makes these injuries a biomechanically separate entity. Hence clinical manifestations are unique, one of which is the Spinal Cord Injury Without Radiological Abnormality. With the advent of high quality MRI and CT scan along with digital X-ray, it is now possible to exactly delineate the anatomical location, geometrical configuration, and the pathological extent of the injury. This has improved the management strategies of these unfortunate children and the role of surgical stabilization in unstable injuries can be more sharply defined. However these patients should be followed up diligently because of the recognized long term complications of spinal deformity and syringomyelia. PMID:22855681

  16. Lumbar spinal stenosis.

    PubMed Central

    Ciricillo, S F; Weinstein, P R

    1993-01-01

    Lumbar spinal stenosis, the results of congenital and degenerative constriction of the neural canal and foramina leading to lumbosacral nerve root or cauda equina compression, is a common cause of disability in middle-aged and elderly patients. Advanced neuroradiologic imaging techniques have improved our ability to localize the site of nerve root entrapment in patients presenting with neurogenic claudication or painful radiculopathy. Although conservative medical management may be successful initially, surgical decompression by wide laminectomy or an intralaminar approach should be done in patients with serious or progressive pain or neurologic dysfunction. Because the early diagnosis and treatment of lumbar spinal stenosis may prevent intractable pain and the permanent neurologic sequelae of chronic nerve root entrapment, all physicians should be aware of the different neurologic presentations and the treatment options for patients with spinal stenosis. Images PMID:8434469

  17. Correlations between severity of clinical signs and histopathological changes in 60 dogs with spinal cord injury associated with acute thoracolumbar intervertebral disc disease.

    PubMed

    Henke, D; Vandevelde, M; Doherr, M G; Stöckli, M; Forterre, F

    2013-10-01

    The outcome of spinal surgery in dogs with absent voluntary motor function and nociception following intervertebral disc (IVD) herniation is highly variable, which likely attests to differences in the severity of spinal cord damage. This retrospective study evaluated the extent to which neurological signs correlated with histologically detected spinal cord damage in 60 dogs that were euthanased because of thoracolumbar IVD herniation. Clinical neurological grades correlated significantly with the extent of white matter damage (P<0.001). However, loss of nociception also occurred in 6/31 (19%) dogs with relatively mild histological changes. The duration of clinical signs, Schiff-Sherrington posture, loss of reflexes and pain on spinal palpation were not significantly associated with the severity of spinal cord damage. Although clinical-pathological correlation was generally good, some clinical signs frequently thought to indicate severe cord injury did not always correlate with the degree of cord damage, suggesting functional rather than structural impairment in some cases.

  18. Electroporation into Cultured Mammalian Embryos

    NASA Astrophysics Data System (ADS)

    Nomura, Tadashi; Takahashi, Masanori; Osumi, Noriko

    Over the last century, mammalian embryos have been used extensively as a common animal model to investigate fundamental questions in the field of developmental biology. More recently, the establishment of transgenic and gene-targeting systems in laboratory mice has enabled researchers to unveil the genetic mechanisms under lying complex developmental processes (Mak, 2007). However, our understanding of cell—cell interactions and their molecular basis in the early stages of mammalian embryogenesis is still very fragmentary. One of the major problems is the difficulty of precise manipulation and limited accessibility to mammalian embryos via uterus wall. Unfortunately, existing tissue and organotypic culture systems per se do not fully recapitulate three-dimensional, dynamic processes of organogenesis observed in vivo. Although transgenic animal technology and virus-mediated gene delivery are useful to manipulate gene expression, these techniques take much time and financial costs, which limit their use.

  19. Changes in spinal alignment.

    PubMed

    Veintemillas Aráiz, M T; Beltrán Salazar, V P; Rivera Valladares, L; Marín Aznar, A; Melloni Ribas, P; Valls Pascual, R

    2016-04-01

    Spinal misalignments are a common reason for consultation at primary care centers and specialized departments. Misalignment has diverse causes and is influenced by multiple factors: in adolescence, the most frequent misalignment is scoliosis, which is idiopathic in 80% of cases and normally asymptomatic. In adults, the most common cause is degenerative. It is important to know the natural history and to detect factors that might predict progression. The correct diagnosis of spinal deformities requires specific imaging studies. The degree of deformity determines the type of treatment. The aim is to prevent progression of the deformity and to recover the flexibility and balance of the body.

  20. Ischemic spinal cord infarction in children without vertebral fracture

    PubMed Central

    Nance, Jessica R.; Golomb, Meredith R.

    2007-01-01

    Spinal cord infarction in children is a rare condition which is becoming more widely recognized. There are few reports in the pediatric literature characterizing etiology, diagnosis, treament and prognosis. The risk factors for pediatric ischemic spinal cord infarction include obstruction of blood flow associated with cardiovascular compromise or malformation, iatrogenic or traumatic vascular inujury, cerebellar herniation, thrombotic or embolic disease, infection, and vasculitis. In many children the cause of spinal cord ischemia in the absence of vertebral fracture is unknown. Imaging diagnosis of spinal cord ischemia is often difficult due to the small transverse area of the cord, cerebrospinal fluid artifact and inadequate resolution of MRI. Physical therapy is the most important treatment option. The prognosis is dependent on the level of spinal cord damage, early identification and reversal of ischemia, and follow-up with intensive physical therapy and medical support. In addition to summarizing the literature regarding spinal cord infarction in children without vertebral fracture, this review article adds two cases to the literature which highlight the difficulties and controversies in the management of this condition. PMID:17437902

  1. Idiopathic normal pressure hydrocephalus: theoretical concept of a spinal etiology.

    PubMed

    Hamlat, Abderrahmane; Abderrahmane, Hamlat; Sid-Ahmed, Seddik; Seddik, Sid-Ahmed; Adn, Mahmoudreza; Mahmoudreza, Adn; Askar, Brahim; Brahim, Askar; Pasqualini, Edouardo; Edouardo, Pasqualini

    2006-01-01

    Normal pressure hydrocephalus (NPH) is an adult syndrome characterised by a combination of gait disturbance, varying degrees of cognitive decline, urinary incontinence, ventricular enlargement and normal mean intracranial pressure. Since this syndrome was first described, its pathophysiology has been a matter of great debate, although it is now considered that NPH could be divided into two groups: cases with unknown etiology (idiopathic normal pressure hydrocephalus, or INPH) and those which develop from several known causes (such as trauma, meningitis or subarachnoid haemorrhage). The pathophysiology of INPH is still unclear and a matter of debate. In this manuscript, the current pathophysiological conditions of INPH are analysed and the authors put forward the theory that the disease is a dynamic syndrome which occurs in patients who have suffered a significant loss of spinal compliance over time. Consequently, intracranial pressure increases more during systole in INPH patients because it cannot be compensated for by the escape of CSF into the spinal canal as effectively, due to the reduced volume or lack of distension of the spinal canal. This leads to an increase in ventricular size and causes cumulative brain damage over a long period of time and accounts for the slow, progressive nature of NPH. The loss of spinal compliance with age is fundamental to the proposed theory which provides a theoretical justification for studying the spinal canal in INPH and investigating the relationship between the progressive narrowing of the spinal canal and the compensating ability of the craniospinal system.

  2. In Vivo Measurement of Cervical Spinal Cord Deformation During Traumatic Spinal Cord Injury in a Rodent Model.

    PubMed

    Bhatnagar, Tim; Liu, Jie; Yung, Andrew; Cripton, Peter A; Kozlowski, Piotr; Oxland, Thomas

    2016-04-01

    The spinal cord undergoes physical deformation during traumatic spinal cord injury (TSCI), which results in biological damage. This study demonstrates a novel approach, using magnetic resonance imaging and image registration techniques, to quantify the three-dimensional deformation of the cervical spinal cord in an in vivo rat model. Twenty-four male rats were subjected to one of two clinically relevant mechanisms of TSCI (i.e. contusion and dislocation) inside of a MR scanner using a novel apparatus, enabling imaging of the deformed spinal cords. The displacement fields demonstrated qualitative differences between injury mechanisms. Three-dimensional Lagrangian strain fields were calculated, and the results from the contusion injury mechanism were deemed most reliable. Strain field error was assessed using a Monte Carlo approach, which showed that simulated normal strain error experienced a bias, whereas shear strain error did not. In contusion injury, a large region of dorso-ventral compressive strain was observed under the impactor which extended into the ventral region of the spinal cord. High tensile lateral strains under the impactor and compressive lateral strains in the lateral white matter were also observed in contusion. The ability to directly observe and quantify in vivo spinal cord deformation informs our knowledge of the mechanics of TSCI.

  3. Quantifying the Nonlinear, Anisotropic Material Response of Spinal Ligaments

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel J.

    Spinal ligaments may be a significant source of chronic back pain, yet they are often disregarded by the clinical community due to a lack of information with regards to their material response, and innervation characteristics. The purpose of this dissertation was to characterize the material response of spinal ligaments and to review their innervation characteristics. Review of relevant literature revealed that all of the major spinal ligaments are innervated. They cause painful sensations when irritated and provide reflexive control of the deep spinal musculature. As such, including the neurologic implications of iatrogenic ligament damage in the evaluation of surgical procedures aimed at relieving back pain will likely result in more effective long-term solutions. The material response of spinal ligaments has not previously been fully quantified due to limitations associated with standard soft tissue testing techniques. The present work presents and validates a novel testing methodology capable of overcoming these limitations. In particular, the anisotropic, inhomogeneous material constitutive properties of the human supraspinous ligament are quantified and methods for determining the response of the other spinal ligaments are presented. In addition, a method for determining the anisotropic, inhomogeneous pre-strain distribution of the spinal ligaments is presented. The multi-axial pre-strain distributions of the human anterior longitudinal ligament, ligamentum flavum and supraspinous ligament were determined using this methodology. Results from this work clearly demonstrate that spinal ligaments are not uniaxial structures, and that finite element models which account for pre-strain and incorporate ligament's complex material properties may provide increased fidelity to the in vivo condition.

  4. Activation of Lysophosphatidic Acid Receptor Type 1 Contributes to Pathophysiology of Spinal Cord Injury

    PubMed Central

    Santos-Nogueira, Eva; López-Serrano, Clara; Hernández, Joaquim; Lago, Natalia; Astudillo, Alma M.; Balsinde, Jesús; Estivill-Torrús, Guillermo; de Fonseca, Fernando Rodriguez; Chun, Jerold

    2015-01-01

    Lysophosphatidic acid (LPA) is an extracellular lipid mediator involved in many physiological functions that signals through six known G-protein-coupled receptors (LPA1–LPA6). A wide range of LPA effects have been identified in the CNS, including neural progenitor cell physiology, astrocyte and microglia activation, neuronal cell death, axonal retraction, and development of neuropathic pain. However, little is known about the involvement of LPA in CNS pathologies. Herein, we demonstrate for the first time that LPA signaling via LPA1 contributes to secondary damage after spinal cord injury. LPA levels increase in the contused spinal cord parenchyma during the first 14 d. To model this potential contribution of LPA in the spinal cord, we injected LPA into the normal spinal cord, revealing that LPA induces microglia/macrophage activation and demyelination. Use of a selective LPA1 antagonist or mice lacking LPA1 linked receptor-mediated signaling to demyelination, which was in part mediated by microglia. Finally, we demonstrate that selective blockade of LPA1 after spinal cord injury results in reduced demyelination and improvement in locomotor recovery. Overall, these results support LPA–LPA1 signaling as a novel pathway that contributes to secondary damage after spinal cord contusion in mice and suggest that LPA1 antagonism might be useful for the treatment of acute spinal cord injury. SIGNIFICANCE STATEMENT This study reveals that LPA signaling via LPA receptor type 1 activation causes demyelination and functional deficits after spinal cord injury. PMID:26180199

  5. Spinal tuberculosis: diagnosis and management.

    PubMed

    Rasouli, Mohammad R; Mirkoohi, Maryam; Vaccaro, Alexander R; Yarandi, Kourosh Karimi; Rahimi-Movaghar, Vafa

    2012-12-01

    The spinal column is involved in less than 1% of all cases of tuberculosis (TB). Spinal TB is a very dangerous type of skeletal TB as it can be associated with neurologic deficit due to compression of adjacent neural structures and significant spinal deformity. Therefore, early diagnosis and management of spinal TB has special importance in preventing these serious complications. In order to extract current trends in diagnosis and medical or surgical treatment of spinal TB we performed a narrative review with analysis of all the articles available for us which were published between 1990 and 2011. Althoug h the development of more accurate imaging modalities such as magnetic resonance imaging and advanced surgical techniques have made the early diagnosis and management of spinal TB much easier, these are still very challenging topics. In this review we aim to discuss the diagnosis and management of spinal TB based on studies with acceptable design, clearly explained results and justifiable conclusions.

  6. Impaired blood-brain/spinal cord barrier in ALS patients.

    PubMed

    Garbuzova-Davis, Svitlana; Hernandez-Ontiveros, Diana G; Rodrigues, Maria C O; Haller, Edward; Frisina-Deyo, Aric; Mirtyl, Santhia; Sallot, Sebastian; Saporta, Samuel; Borlongan, Cesario V; Sanberg, Paul R

    2012-08-21

    Vascular pathology, including blood-brain/spinal cord barrier (BBB/BSCB) alterations, has recently been recognized as a key factor possibly aggravating motor neuron damage, identifying a neurovascular disease signature for ALS. However, BBB/BSCB competence in sporadic ALS (SALS) is still undetermined. In this study, BBB/BSCB integrity in postmortem gray and white matter of medulla and spinal cord tissue from SALS patients and controls was investigated. Major findings include (1) endothelial cell damage and pericyte degeneration, (2) severe intra- and extracellular edema, (3) reduced CD31 and CD105 expressions in endothelium, (4) significant accumulation of perivascular collagen IV, and fibrin deposits (5) significantly increased microvascular density in lumbar spinal cord, (6) IgG microvascular leakage, (7) reduced tight junction and adhesion protein expressions. Microvascular barrier abnormalities determined in gray and white matter of the medulla, cervical, and lumbar spinal cord of SALS patients are novel findings. Pervasive barrier damage discovered in ALS may have implications for disease pathogenesis and progression, as well as for uncovering novel therapeutic targets.

  7. Spinal epidural abscess.

    PubMed

    Miftode, E; Luca, V; Mihalache, D; Leca, D; Stefanidis, E; Anuţa, C; Sabadis, L

    2001-01-01

    In a retrospective study, 68 patients with Spinal Epidural Abscess (SEA) were reviewed. Of these, 66% had different predisposing factors such as staphylococcal skin infections, surgical procedures, rachicentesis, trauma, spondilodiscitis. Abscess had a lumbar region location in 53% of cases. Staphylococcus aureus was the most frequent etiological agent (81%). The overall rate of mortality in SEA patients was 13.2%.

  8. Hydraulic Extrusion of the Spinal Cord and Isolation of Dorsal Root Ganglia in Rodents

    PubMed Central

    Richner, Mette; Jager, Sara B.; Siupka, Piotr; Vaegter, Christian B.

    2017-01-01

    Traditionally, the spinal cord is isolated by laminectomy, i.e. by breaking open the spinal vertebrae one at a time. This is both time consuming and may result in damage to the spinal cord caused by the dissection process. Here, we show how the spinal cord can be extruded using hydraulic pressure. Handling time is significantly reduced to only a few minutes, likely decreasing protein damage. The low risk of damage to the spinal cord tissue improves subsequent immunohistochemical analysis. By performing hydraulic spinal cord extrusion instead of traditional laminectomy, the rodents can further be used for DRG isolation, thereby lowering the number of animals and allowing analysis across tissues from the same rodent. We demonstrate a consistent method to identify and isolate the DRGs according to their localization relative to the costae. It is, however, important to adjust this method to the particular animal used, as the number of spinal cord segments, both thoracic and lumbar, may vary according to animal type and strain. In addition, we illustrate further processing examples of the isolated tissues. PMID:28190031

  9. Evaluation and management of spinal epidural abscess.

    PubMed

    DeFroda, Steven F; DePasse, J Mason; Eltorai, Adam E M; Daniels, Alan H; Palumbo, Mark A

    2016-02-01

    Spinal epidural abscess (SEA) is an uncommon and potentially catastrophic condition. SEA often presents a diagnostic challenge, as the "classic triad" of fever, spinal pain, and neurological deficit is evident in only a minority of patients. When diagnosis is delayed, irreversible neurological damage may ensue. To minimize morbidity, an appropriate level of suspicion and an understanding of the diagnostic evaluation are essential. Infection should be suspected in patients presenting with axial pain, fever, or elevated inflammatory markers. Although patients with no known risk factors can develop SEA, clinical concern should be heightened in the presence of diabetes, intravenous drug use, chronic renal failure, immunosuppressant therapy, or a recent invasive spine procedure. When the clinical profile is consistent with the diagnosis of SEA, gadolinium-enhanced magnetic resonance imaging of the spinal column should be obtained on an emergent basis to delineate the location and neural compressive effect of the abscess. Rapid diagnosis allows for efficient treatment, which optimizes the potential for a positive outcome.

  10. Tracking Changes following Spinal Cord Injury

    PubMed Central

    Curt, Armin; Friston, Karl; Thompson, Alan

    2013-01-01

    Traumatic spinal cord injury is often disabling and recovery of function is limited. As a consequence of damage, both spinal cord and brain undergo anatomical and functional changes. Besides clinical measures of recovery, biomarkers that can detect early anatomical and functional changes might be useful in determining clinical outcome—during the course of rehabilitation and recovery—as well as furnishing a tool to evaluate novel treatment interventions and their mechanisms of action. Recent evidence suggests an interesting three-way relationship between neurological deficit and changes in the spinal cord and of the brain and that, importantly, noninvasive magnetic resonance imaging techniques, both structural and functional, provide a sensitive tool to lay out these interactions. This review describes recent findings from multimodal imaging studies of remote anatomical changes (i.e., beyond the lesion site), cortical reorganization, and their relationship to clinical disability. These developments in this field may improve our understanding of effects on the nervous system that are attributable to the injury itself and will allow their distinction from changes that result from rehabilitation (i.e., functional retraining) and from interventions affecting the nervous system directly (i.e., neuroprotection or regeneration). PMID:22730072

  11. Emerging concepts in myeloid cell biology after spinal cord injury.

    PubMed

    Hawthorne, Alicia L; Popovich, Phillip G

    2011-04-01

    Traumatic spinal cord injury (SCI) affects the activation, migration, and function of microglia, neutrophils and monocyte/macrophages. Because these myeloid cells can positively and negatively affect survival of neurons and glia, they are among the most commonly studied immune cells. However, the mechanisms that regulate myeloid cell activation and recruitment after SCI have not been adequately defined. In general, the dynamics and composition of myeloid cell recruitment to the injured spinal cord are consistent between mammalian species; only the onset, duration, and magnitude of the response vary. Emerging data, mostly from rat and mouse SCI models, indicate that resident and recruited myeloid cells are derived from multiple sources, including the yolk sac during development and the bone marrow and spleen in adulthood. After SCI, a complex array of chemokines and cytokines regulate myelopoiesis and intraspinal trafficking of myeloid cells. As these cells accumulate in the injured spinal cord, the collective actions of diverse cues in the lesion environment help to create an inflammatory response marked by tremendous phenotypic and functional heterogeneity. Indeed, it is difficult to attribute specific reparative or injurious functions to one or more myeloid cells because of convergence of cell function and difficulties in using specific molecular markers to distinguish between subsets of myeloid cell populations. Here we review each of these concepts and include a discussion of future challenges that will need to be overcome to develop newer and improved immune modulatory therapies for the injured brain or spinal cord.

  12. The spinal cord of the common marmoset (Callithrix jacchus).

    PubMed

    Watson, Charles; Sengul, Gulgun; Tanaka, Ikuko; Rusznak, Zoltan; Tokuno, Hironobu

    2015-04-01

    The marmoset spinal cord possesses all the characteristic features of a typical mammalian spinal cord, but with some interesting variation in the levels of origin of the limb nerves. In our study Nissl and ChAT sections of the each segment of the spinal cord in two marmosets (Ma5 and Ma8), we found that the spinal cord can be functionally and anatomically divided into six regions: the prebrachial region (C1 to C3); the brachial region (C4 to C8) - segments supplying the upper limb; the post-brachial region (T1 to L1) - containing the sympathetic outflow, and supplying the hypaxial muscles of the body wall; the crural region (L2 to L5) - segments supplying the lower limb; the postcrural region (L6) - containing the parasympathetic outflow; and the caudal region (L7 to Co4) - supplying the tail. In the rat, mouse, and rhesus monkey, the prebrachial region consists of segments C1 to C4 (with the phrenic nucleus located at the C4 segment), and the brachial region extends from C5 to T1 inclusive. The prefixing of the upper limb outflow in these two marmosets mirrors the finding in the literature that a large C4 contribution to the brachial plexus is common in humans.

  13. Calcium imaging of network function in the developing spinal cord.

    PubMed

    O'Donovan, Michael J; Bonnot, Agnès; Wenner, Peter; Mentis, George Z

    2005-05-01

    We have used calcium imaging to visualize the spatiotemporal organization of activity generated by in vitro spinal cord preparations of the developing chick embryo and the neonatal mouse. During each episode of spontaneous activity, we found that chick spinal neurons were activated rhythmically and synchronously throughout the transverse extent of the spinal cord. At the onset of a spontaneous episode, optical activity originated in the ventrolateral part of the cord. Back-labeling of spinal interneurons with calcium dyes suggested that this ventrolateral initiation was mediated by activation of a class of interneurons, located dorsomedial to the motor nucleus, that receive direct monosynaptic input from motoneurons. Studies of locomotor-like activity in the anterior lumbar segments of the neonatal mouse cord revealed the existence of a rostrocaudal wave in the oscillatory component of each cycle of rhythmic motoneuron activity. This finding raises the possibility that the activation of mammalian motoneurons during locomotion may share some of the same rostrocaudally organized mechanisms that evolved to control swimming in fishes.

  14. Rat models of spinal cord injury: from pathology to potential therapies

    PubMed Central

    2016-01-01

    ABSTRACT A long-standing goal of spinal cord injury research is to develop effective spinal cord repair strategies for the clinic. Rat models of spinal cord injury provide an important mammalian model in which to evaluate treatment strategies and to understand the pathological basis of spinal cord injuries. These models have facilitated the development of robust tests for assessing the recovery of locomotor and sensory functions. Rat models have also allowed us to understand how neuronal circuitry changes following spinal cord injury and how recovery could be promoted by enhancing spontaneous regenerative mechanisms and by counteracting intrinsic inhibitory factors. Rat studies have also revealed possible routes to rescuing circuitry and cells in the acute stage of injury. Spatiotemporal and functional studies in these models highlight the therapeutic potential of manipulating inflammation, scarring and myelination. In addition, potential replacement therapies for spinal cord injury, including grafts and bridges, stem primarily from rat studies. Here, we discuss advantages and disadvantages of rat experimental spinal cord injury models and summarize knowledge gained from these models. We also discuss how an emerging understanding of different forms of injury, their pathology and degree of recovery has inspired numerous treatment strategies, some of which have led to clinical trials. PMID:27736748

  15. Rat models of spinal cord injury: from pathology to potential therapies.

    PubMed

    Kjell, Jacob; Olson, Lars

    2016-10-01

    A long-standing goal of spinal cord injury research is to develop effective spinal cord repair strategies for the clinic. Rat models of spinal cord injury provide an important mammalian model in which to evaluate treatment strategies and to understand the pathological basis of spinal cord injuries. These models have facilitated the development of robust tests for assessing the recovery of locomotor and sensory functions. Rat models have also allowed us to understand how neuronal circuitry changes following spinal cord injury and how recovery could be promoted by enhancing spontaneous regenerative mechanisms and by counteracting intrinsic inhibitory factors. Rat studies have also revealed possible routes to rescuing circuitry and cells in the acute stage of injury. Spatiotemporal and functional studies in these models highlight the therapeutic potential of manipulating inflammation, scarring and myelination. In addition, potential replacement therapies for spinal cord injury, including grafts and bridges, stem primarily from rat studies. Here, we discuss advantages and disadvantages of rat experimental spinal cord injury models and summarize knowledge gained from these models. We also discuss how an emerging understanding of different forms of injury, their pathology and degree of recovery has inspired numerous treatment strategies, some of which have led to clinical trials.

  16. Mammalian embryonic cerebrospinal fluid proteome has greater apolipoprotein and enzyme pattern complexity than the avian proteome.

    PubMed

    Parada, Carolina; Gato, Angel; Bueno, David

    2005-01-01

    During early stages of embryo development, the brain cavity is filled with Embryonic Cerebro-Spinal Fluid, which has an essential role in the survival, proliferation and neurogenesis of the neuroectodermal stem cells. We identified and analyzed the proteome of Embryonic Cerebro-Spinal Fluid from rat embryos (Rattus norvegicus), which includes proteins involved in the regulation of Central Nervous System development. The comparison between mammalian and avian Embryonic Cerebro-Spinal Fluid proteomes reveals great similarity, but also greater complexity in some protein groups. The pattern of apolipoproteins and enzymes in CSF is more complex in the mammals than in birds. This difference may underlie the greater neural complexity and synaptic plasticity found in mammals. Fourteen Embryonic Cerebro-Spinal Fluid gene products were previously identified in adult human Cerebro-Spinal Fluid proteome, and interestingly they are altered in patients with neurodegenerative diseases and/or neurological disorders. Understanding these molecules and the mechanisms they control during embryonic neurogenesis may contribute to our understanding of Central Nervous System development and evolution, and these human diseases.

  17. Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin.

    PubMed

    Ogrodnik, Mikołaj; Salmonowicz, Hanna; Brown, Rachel; Turkowska, Joanna; Średniawa, Władysław; Pattabiraman, Sundararaghavan; Amen, Triana; Abraham, Ayelet-chen; Eichler, Noam; Lyakhovetsky, Roman; Kaganovich, Daniel

    2014-06-03

    Aging is associated with the accumulation of several types of damage: in particular, damage to the proteome. Recent work points to a conserved replicative rejuvenation mechanism that works by preventing the inheritance of damaged and misfolded proteins by specific cells during division. Asymmetric inheritance of misfolded and aggregated proteins has been shown in bacteria and yeast, but relatively little evidence exists for a similar mechanism in mammalian cells. Here, we demonstrate, using long-term 4D imaging, that the vimentin intermediate filament establishes mitotic polarity in mammalian cell lines and mediates the asymmetric partitioning of damaged proteins. We show that mammalian JUNQ inclusion bodies containing soluble misfolded proteins are inherited asymmetrically, similarly to JUNQ quality-control inclusions observed in yeast. Mammalian IPOD-like inclusion bodies, meanwhile, are not always inherited by the same cell as the JUNQ. Our study suggests that the mammalian cytoskeleton and intermediate filaments provide the physical scaffold for asymmetric inheritance of dynamic quality-control JUNQ inclusions. Mammalian IPOD inclusions containing amyloidogenic proteins are not partitioned as effectively during mitosis as their counterparts in yeast. These findings provide a valuable mechanistic basis for studying the process of asymmetric inheritance in mammalian cells, including cells potentially undergoing polar divisions, such as differentiating stem cells and cancer cells.

  18. Combination of melatonin and Wnt-4 promotes neural cell differentiation in bovine amniotic epithelial cells and recovery from spinal cord injury.

    PubMed

    Gao, Yuhua; Bai, Chunyu; Zheng, Dong; Li, Changli; Zhang, Wenxiu; Li, Mei; Guan, Weijun; Ma, Yuehui

    2016-04-01

    Although melatonin has been shown to exhibit a wide variety of biological functions, its effects on promoting differentiation of neural cells remain unknown. Wnt signaling mediates major developmental processes during embryogenesis and regulates maintenance, self-renewal, and differentiation of adult mammalian stem cells. However, the role of the noncanonical Wnt pathway during neurogenesis remains poorly understood. In this study, the amniotic epithelial cells ( AECs) were isolated from bovine amnion and incubated with various melatonin concentrations (0.01, 0.1, 1, 10, or 100 μm) and 5 × 10(-5) m all-trans retinoic acid (RA) for screening optimum culture medium of neural differentiation, compared with each groups, 1 μm melatonin and 5 × 10(-5) m RA were selected to induce neural differentiation of AECs, and then siMT1, siMT2, oWnt-4, and siWnt-4 were expressed in AECs to research role of these genes in neural differentiation. Efficiency of neural differentiation was evaluated after expressed above genes using flow cytometry. Cell function of neural cells was demonstrated in vivo using spinal cord injury model after cell transplantation, and damage repair of spinal cord was assessed using cell tracking and Basso, Beattie, Bresnahan Locomotor Rating Scale scores. Results demonstrated that melatonin stimulated melatonin receptor 1, which subsequently increased bovine amniotic epithelial cell vitality and promoted differentiation into neural cells. This took place through cooperation with Wnt-4. Additionally, following cotreatment with melatonin and Wnt-4, neurogenesis gene expression was significantly altered. Furthermore, single inhibition of melatonin receptor 1 or Wnt-4 expression decreased expression of neurogenesis-related genes, and bovine amniotic epithelial cell-derived neural cells were successfully colonized into injured spinal cord, which suggested participation in tissue repair.

  19. Projections from the brain to the spinal cord in the mouse.

    PubMed

    Liang, Huazheng; Paxinos, George; Watson, Charles

    2011-01-01

    The cells that project from the brain to the spinal cord have previously been mapped in a wide range of mammalian species, but have not been comprehensively studied in the mouse. We have mapped these cells in the mouse using retrograde tracing after large unilateral Fluoro-Gold (FG) and horseradish peroxidase (HRP) injections in the C1 and C2 spinal cord segments. We have identified over 30 cell groups that project to the spinal cord, and have confirmed that the pattern of major projections from the cortex, diencephalon, midbrain, and hindbrain in the mouse is typically mammalian, and very similar to that found in the rat. However, we report two novel findings: we found labeled neurons in the precuneiform area (an area which has been associated with the midbrain locomotor center in other species), and the epirubrospinal nucleus. We also found labeled cells in the medial division of central nucleus of the amygdala in a small number of cases. Our findings should be of value to researchers engaged in evaluating the impact of spinal cord injury and other spinal cord pathologies on the centers which give rise to descending pathways.

  20. DNA repair and radiation sensitivity in mammalian cells

    SciTech Connect

    Chen, D.J.C.; Stackhouse, M. ); Chen, D.S. . Dept. of Radiation Oncology)

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  1. DNA repair and radiation sensitivity in mammalian cells

    SciTech Connect

    Chen, D.J.C.; Stackhouse, M.; Chen, D.S.

    1993-02-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  2. Spinal Cord Injury and Related Clinical Trials

    PubMed Central

    Ha, Kee-Yong; Kim, Sang-Il

    2017-01-01

    Spinal cord injury (SCI) has been considered an incurable condition and it often causes devastating sequelae. In terms of the pathophysiology of SCI, reducing secondary damage is the key to its treatment. Various researches and clinical trials have been performed, and some of them showed promising results; however, there is still no gold standard treatment with sufficient evidence. Two therapeutic concepts for SCI are neuroprotective and neuroregenerative strategies. The neuroprotective strategy modulates the pathomechanism of SCI. The purpose of neuroprotective treatment is to minimize secondary damage following direct injury. The aim of neuroregenerative treatment is to enhance the endogenous regeneration process and to alter the intrinsic barrier. With advancement in biotechnology, cell therapy using cell transplantation is currently under investigation. This review discusses the pathophysiology of SCI and introduces the therapeutic candidates that have been developed so far. PMID:28261421

  3. Spinal Arteriovenous Fistula with Progressive Paraplegia after Spinal Anaesthesia

    PubMed Central

    Argyrakis, Nikolaos; Matis, Georgios K.; Mpata-Tshibemba, Stephanie

    2014-01-01

    A case of an iatrogenic spinal arteriovenous fistula with progressive paraplegia in a young woman is reported. The fistula was eventually created after repetitive lumbar punctures performed in the process of spinal anaesthesia. Her symptoms were progressed to paraplegia over a period of 2 years. The digital subtraction angiography demonstrated a single-hole fistula, involving the anterior spinal artery and vein. The lesion was occluded by embolization with immediate improvement. The potential mechanism is discussed. PMID:24653807

  4. [Therapy progress of spinal cord compression by metastatic spinal tumor].

    PubMed

    Liu, Yao-sheng; He, Qi-zhen; Liu, Shu-bin; Jiang, Wei-gang; Lei, Ming-xing

    2016-01-01

    Metastatic epidural compression of the spinal cord is a significant source of morbidity in patients with systemic cancer. With improvment of oncotheray, survival period in the patients is improving and metastatic cord compression is en- countered increasingly often. Surgical management performed for early circumferential decompression for the spinal cord com- pression with spine instability, and spine reconstruction performed. Patients with radiosensitive tumours without spine instabili- ty, radiotherapy is an effective therapy. Spinal stereotactic radiosurgery and minimally invasive techniques, such as vertebro- plasty and kyphoplasty, percutaneous pedicle screw fixation, radiofrequency ablation are promising options for treatment of cer- tain selected patients with spinal metastases.

  5. Image-guidance technology and the surgical resection of spinal column tumors.

    PubMed

    Desai, Bhargav; Hobbs, Jonathan; Hartung, Grant; Xu, Guoren; Gokaslan, Ziya L; Linninger, Andreas; Mehta, Ankit I

    2017-02-01

    Precision imaging is paramount to achieving success in surgical resection of many spinal tumors, whether the goal involves guiding a surgical cure for primary tumors or improving neurological decompression for metastatic lesions. Pre-operatively, image visualization is intimately involved with defining a clear target and surgical planning. Intra-operatively, image-guidance technology allows for surgeons to maximize the probability for gross total resection of spinal cord tumors and minimize damage to adjacent structures. Through this review, it is evident that spinal surgery has undergone significant advancements with the continued technological progression of different modalities of imaging guided technologies. Sophisticated imaging techniques compliment the surgeon's knowledge by providing an intraoperative reference to spinal column anatomy. This review discusses research efforts focusing on immersive imaging guided interactions with subject specific medical images that could enhance a surgeon's ability to plan and perform complex spinal oncology procedures with safety and efficiency.

  6. Spinal epidural abscess.

    PubMed

    Krishnamohan, Prashanth; Berger, Joseph R

    2014-11-01

    Spinal epidural abscess (SEA) remains a relatively infrequent diagnosis. Staphylococcus aureus is the most common organism identified, and the infectious source in SEA emanates from skin and soft tissue infections in about 20 % of instances. The thoracic spine is most often involved followed by the lumbar spine. The classic triad of fever, spinal pain, and neurological deficit is present in but a minority of patients. The appearance of neurological deficits with SEA has a significant impact on the prognosis; therefore, early diagnosis is imperative. Magnetic resonance imaging has permitted earlier diagnosis, although significant delays in diagnosis are common due to the nonspecific symptoms that frequently attend the disorder. Due to the rarity of this condition, there have been few randomized controlled trials to evaluate new treatment strategies, and most recommendations regarding treatment are based on case series studies often derived from the experiences at a single center.

  7. Bioenergetics of Mammalian Sperm Capacitation

    PubMed Central

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-01-01

    After ejaculation, the mammalian male gamete must undergo the capacitation process, which is a prerequisite for egg fertilization. The bioenergetics of sperm capacitation is poorly understood despite its fundamental role in sustaining the biochemical and molecular events occurring during gamete activation. Glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) are the two major metabolic pathways producing ATP which is the primary source of energy for spermatozoa. Since recent data suggest that spermatozoa have the ability to use different metabolic substrates, the main aim of this work is to present a broad overview of the current knowledge on the energy-producing metabolic pathways operating inside sperm mitochondria during capacitation in different mammalian species. Metabolism of glucose and of other energetic substrates, such as pyruvate, lactate, and citrate, is critically analyzed. Such knowledge, besides its obvious importance for basic science, could eventually translate into the development of novel strategies for treatment of male infertility, artificial reproduction, and sperm selection methods. PMID:24791005

  8. Area and mammalian elevational diversity.

    PubMed

    McCain, Christy M

    2007-01-01

    Elevational gradients hold enormous potential for understanding general properties of biodiversity. Like latitudinal gradients, the hypotheses for diversity patterns can be grouped into historical explanations, climatic drivers, and spatial hypotheses. The spatial hypotheses include the species-area effect and spatial constraint (mid-domain effect null models). I test these two spatial hypotheses using regional diversity patterns for mammals (non-volant small mammals and bats) along 34 elevational gradients spanning 24.4 degrees S-40.4 degrees N latitude. There was high variability in the fit to the species-area hypothesis and the mid-domain effect. Both hypotheses can be eliminated as primary drivers of elevational diversity. Area and spatial constraint both represent sources of error rather than mechanisms underlying these mammalian diversity patterns. Similar results are expected for other vertebrate taxa, plants, and invertebrates since they show comparable distributions of elevational diversity patterns to mammalian patterns.

  9. Aspergillus spinal epidural abscess

    SciTech Connect

    Byrd, B.F. III; Weiner, M.H.; McGee, Z.A.

    1982-12-17

    A spinal epidural abscess developed in a renal transplant recipient; results of a serum radioimmunoassay for Aspergillus antigen were positive. Laminectomy disclosed an abscess of the L4-5 interspace and L-5 vertebral body that contained hyphal forms and from which Aspergillus species was cultured. Serum Aspergillus antigen radioimmunoassay may be a valuable, specific early diagnostic test when systemic aspergillosis is a consideration in an immunosuppressed host.

  10. Spontaneous spinal epidural abscess.

    PubMed

    Ellanti, P; Morris, S

    2011-10-01

    Spinal epidural abscess is an uncommon entity, the frequency of which is increasing. They occur spontaneously or as a complication of intervention. The classical triad of fever, back pain and neurological symptoms are not always present. High index of suspicion is key to diagnosis. Any delay in diagnosis and treatment can have significant neurological consequences. We present the case of a previously well man with a one month history of back pain resulting from an epidural abscess.

  11. Potential associations between chronic whiplash and incomplete spinal cord injury

    PubMed Central

    Smith, AC; Parrish, TB; Hoggarth, MA; McPherson, JG; Tysseling, VM; Wasielewski, M; Kim, HE; Hornby, TG; Elliott, JM

    2015-01-01

    Study Design: This research utilized a cross-sectional design with control group inclusion. Objectives: Preliminary evidence suggests that a portion of the patient population with chronic whiplash may have sustained spinal cord damage. Our hypothesis is that in some cases of chronic whiplash-associated disorders (WAD), observed muscle weakness in the legs will be associated with local signs of a partial spinal cord injury of the cervical spine. Setting: University based laboratory in Chicago, IL, USA. Methods: Five participants with chronic WAD were compared with five gender/age/height/weight/body mass index (BMI) control participants. For a secondary investigation, the chronic WAD group was compared with five unmatched participants with motor incomplete spinal cord injury (iSCI). Spinal cord motor tract integrity was assessed using magnetization transfer imaging. Muscle fat infiltration (MFI) was quantified using fat/water separation magnetic resonance imaging. Central volitional muscle activation of the plantarflexors was assessed using a burst superimposition technique. Results: We found reduced spinal cord motor tract integrity, increased MFI of the neck and lower extremity muscles and significantly impaired voluntary plantarflexor muscle activation in five participants with chronic WAD. The lower extremity structural changes and volitional weakness in chronic WAD were comparable to participants with iSCI. Conclusion: The results support the position that a subset of the chronic whiplash population may have sustained partial damage to the spinal cord. Sponsorship: NIH R01HD079076-01A1, NIH T32 HD057845 and the Foundation for Physical Therapy Promotion of Doctoral Studies program. PMID:27630770

  12. Mammalian Polyamine Metabolism and Function

    PubMed Central

    Pegg, Anthony E.

    2009-01-01

    Summary Polyamines are ubiquitous small basic molecules that play multiple essential roles in mammalian physiology. Their cellular content is highly regulated and there is convincing evidence that altered metabolism is involvement in many disease states. Drugs altering polyamine levels may therefore have a variety of important targets. This review will summarize the current state of understanding of polyamine metabolism and function, the regulation of polyamine content, and heritable pathological conditions that may be derived from altered polyamine metabolism. PMID:19603518

  13. Spinal arteriovenous shunts in children.

    PubMed

    Davagnanam, Indran; Toma, Ahmed K; Brew, Stefan

    2013-11-01

    Pediatric spinal arteriovenous shunts are rare and, in contrast to those in adults, are often congenital or associated with underlying genetic disorders. These are thought to be a more severe and complete phenotypic spectrum of all spinal arteriovenous shunts seen in the overall spinal shunt population. The pediatric presentation thus accounts for its association with significant morbidity and, in general, a more challenging treatment process compared with the adult presentation.

  14. [Information analysis of spinal ganglia].

    PubMed

    Lobko, P I; Kovaleva, D V; Kovalchuk, I E; Pivchenko, P G; Rudenok, V V; Davydova, L A

    2000-01-01

    Information parameters (entropia and redundancy) of cervical and thoracic spinal ganglia of albino rat foetuses, mature animals (cat and dog) and human subjects were analysed. Information characteristics of spinal ganglia were shown to be level-specified and to depend on their functional peculiarities. Information parameters of thoracic spinal ganglia of man and different animals are specie specified and may be used in assessment of morphological structures as information systems.

  15. GLUTs and mammalian sperm metabolism.

    PubMed

    Bucci, Diego; Rodriguez-Gil, Juan Enrique; Vallorani, Claudia; Spinaci, Marcella; Galeati, Giovanna; Tamanini, Carlo

    2011-01-01

    Mammalian cells use glucides as a substrate that can be catabolized through glycolitic pathways or oxidative phosphorylation, used as a source of reducing potential, or used for anabolic aims. An important role in supplying cells with energy is played by different membrane proteins that can actively (sodium-dependent glucose transporters) or passively (glucose transporters; GLUT) transport hexoses through the lipidic bilayer. In particular, GLUTs are a family of 13 proteins that facilitate the transport of sugars and have a peculiar distribution in different tissues as well as a particular affinity for substrates. These proteins are also present in mature sperm cells, which, in fact, need carriers for uptake energetic sources that are important for maintaining cell basic activity as well as specific functions, such as motility and fertilization ability. Likewise, several GLUTs have been studied in various mammalian species (man, bull, rat, mouse, boar, dog, stallion, and donkey) to point out both their actual presence or absence and their localization on plasma membrane. The aim of this work is to give an overall picture of the studies available on GLUTs in mammalian spermatozoa at this moment, pointing out the species peculiarity, the possible role of these proteins, and the potential future research on this item.

  16. Sprouting, regeneration and circuit formation in the injured spinal cord: factors and activity

    PubMed Central

    Maier, Irin C; Schwab, Martin E

    2006-01-01

    Central nervous system (CNS) injuries are particularly traumatic, owing to the limited capabilities of the mammalian CNS for repair. Nevertheless, functional recovery is observed in patients and experimental animals, but the degree of recovery is variable. We review the crucial characteristics of mammalian spinal cord function, tract development, injury and the current experimental therapeutic approaches for repair. Regenerative or compensatory growth of neurites and the formation of new, functional circuits require spontaneous and experimental reactivation of developmental mechanisms, suppression of the growth-inhibitory properties of the adult CNS tissue and specific targeted activation of new connections by rehabilitative training. PMID:16939978

  17. Disability, atrophy and cortical reorganization following spinal cord injury.

    PubMed

    Freund, Patrick; Weiskopf, Nikolaus; Ward, Nick S; Hutton, Chloe; Gall, Angela; Ciccarelli, Olga; Craggs, Michael; Friston, Karl; Thompson, Alan J

    2011-06-01

    The impact of traumatic spinal cord injury on structural integrity, cortical reorganization and ensuing disability is variable and may depend on a dynamic interaction between the severity of local damage and the capacity of the brain for plastic reorganization. We investigated trauma-induced anatomical changes in the spinal cord and brain, and explored their relationship to functional changes in sensorimotor cortex. Structural changes were assessed using cross-sectional cord area, voxel-based morphometry and voxel-based cortical thickness of T1-weighted images in 10 subjects with cervical spinal cord injury and 16 controls. Cortical activation in response to right-sided (i) handgrip; and (ii) median and tibial nerve stimulation were assessed using functional magnetic resonance imaging. Regression analyses explored associations between cord area, grey and white matter volume, cortical activations and thickness, and disability. Subjects with spinal cord injury had impaired upper and lower limb function bilaterally, a 30% reduced cord area, smaller white matter volume in the pyramids and left cerebellar peduncle, and smaller grey matter volume and cortical thinning in the leg area of the primary motor and sensory cortex compared with controls. Functional magnetic resonance imaging revealed increased activation in the left primary motor cortex leg area during handgrip and the left primary sensory cortex face area during median nerve stimulation in subjects with spinal cord injury compared with controls, but no increased activation following tibial nerve stimulation. A smaller cervical cord area was associated with impaired upper limb function and increased activations with handgrip and median nerve stimulation, but reduced activations with tibial nerve stimulation. Increased sensory deficits were associated with increased activations in the left primary sensory cortex face area due to median nerve stimulation. In conclusion, spinal cord injury leads to cord atrophy

  18. Electrophysiological and Anatomical Correlates of Spinal Cord Optical Coherence Tomography

    PubMed Central

    Valente, Maurizio; Krstajic, Nikola; Biella, Gabriele E. M.

    2016-01-01

    Despite the continuous improvement in medical imaging technology, visualizing the spinal cord poses severe problems due to structural or incidental causes, such as small access space and motion artifacts. In addition, positional guidance on the spinal cord is not commonly available during surgery, with the exception of neuronavigation techniques based on static pre-surgical data and of radiation-based methods, such as fluoroscopy. A fast, bedside, intraoperative real-time imaging, particularly necessary during the positioning of endoscopic probes or tools, is an unsolved issue. The objective of our work, performed on experimental rats, is to demonstrate potential intraoperative spinal cord imaging and probe guidance by optical coherence tomography (OCT). Concurrently, we aimed to demonstrate that the electromagnetic OCT irradiation exerted no particular effect at the neuronal and synaptic levels. OCT is a user-friendly, low-cost and endoscopy-compatible photonics-based imaging technique. In particular, by using a Fourier-domain OCT imager, operating at 850 nm wavelength and scanning transversally with respect to the spinal cord, we have been able to: 1) accurately image tissue structures in an animal model (muscle, spine bone, cerebro-spinal fluid, dura mater and spinal cord), and 2) identify the position of a recording microelectrode approaching and inserting into the cord tissue 3) check that the infrared radiation has no actual effect on the electrophysiological activity of spinal neurons. The technique, potentially extendable to full three-dimensional image reconstruction, shows prospective further application not only in endoscopic intraoperative analyses and for probe insertion guidance, but also in emergency and adverse situations (e.g. after trauma) for damage recognition, diagnosis and fast image-guided intervention. PMID:27050096

  19. Electrode Array Development for Recovery of Stepping Following Spinal Cord Injury

    DTIC Science & Technology

    2010-04-01

    the region marked C in Figure 4, resulting in a spring effect that applied pressure on the spinal cord. Figure 4C show the current design, which... pressure by surrounding soft tissue. Since the U-turn is much more flexible with this approach, it no longer applies undue pressure to the spinal...can cause skin damage and ensuing infectious complications. As we increased the number of signal wires in our complex array designs, the bundle of

  20. Two-step production of monoamines in monoenzymatic cells in the spinal cord: a different control strategy of neurotransmitter supply?

    PubMed Central

    Zhang, Mengliang

    2016-01-01

    Monoamine neurotransmitters play an important role in the modulation of sensory, motor and autonomic functions in the spinal cord. Although traditionally it is believed that in mammalian spinal cord, monoamine neurotransmitters mainly originate from the brain, accumulating evidence indicates that especially when the spinal cord is injured, they can also be produced in the spinal cord. In this review, I will present evidence for a possible pathway for two-step synthesis of dopamine and serotonin in the spinal cord. Published data from different sources and unpublished data from my own ongoing projects indicate that monoenzymatic cells expressing aromatic L-amino acid decarboxylase (AADC), tyrosine hydroxylase (TH) or tryptophan hydroxylase (TPH) are present in the spinal cord and that these TH and THP cells often lie in close proximity to AADC cells. Prompted by the above evidence, I hypothesize that dopamine and serotonin could be synthesized sequentially in two monoenzymatic cells in the spinal cord via a TH-AADC and a TPH-AADC cascade respectively. The monoamines synthesized through this pathway may compensate for lost neurotransmitters following spinal cord injury and also may play specific roles in the recovery of sensory, motor and autonomic functions. PMID:28197177

  1. Neuromuscular interaction is required for neurotrophins-mediated locomotor recovery following treadmill training in rat spinal cord injury

    PubMed Central

    Wu, Qinfeng; Cao, Yana; Dong, Chuanming; Wang, Hongxing; Wang, Qinghua; Tong, Weifeng; Li, Xiangzhe

    2016-01-01

    Recent results have shown that exercise training promotes the recovery of injured rat distal spinal cords, but are still unclear about the function of skeletal muscle in this process. Herein, rats with incomplete thoracic (T10) spinal cord injuries (SCI) with a dual spinal lesion model were subjected to four weeks of treadmill training and then were treated with complete spinal transection at T8. We found that treadmill training allowed the retention of hind limb motor function after incomplete SCI, even with a heavy load after complete spinal transection. Moreover, treadmill training alleviated the secondary injury in distal lumbar spinal motor neurons, and enhanced BDNF/TrkB expression in the lumbar spinal cord. To discover the influence of skeletal muscle contractile activity on motor function and gene expression, we adopted botulinum toxin A (BTX-A) to block the neuromuscular activity of the rat gastrocnemius muscle. BTX-A treatment inhibited the effects of treadmill training on motor function and BDNF/TrKB expression. These results indicated that treadmill training through the skeletal muscle-motor nerve-spinal cord retrograde pathway regulated neuralplasticity in the mammalian central nervous system, which induced the expression of related neurotrophins and promoted motor function recovery. PMID:27190721

  2. Two-step production of monoamines in monoenzymatic cells in the spinal cord: a different control strategy of neurotransmitter supply?

    PubMed

    Zhang, Mengliang

    2016-12-01

    Monoamine neurotransmitters play an important role in the modulation of sensory, motor and autonomic functions in the spinal cord. Although traditionally it is believed that in mammalian spinal cord, monoamine neurotransmitters mainly originate from the brain, accumulating evidence indicates that especially when the spinal cord is injured, they can also be produced in the spinal cord. In this review, I will present evidence for a possible pathway for two-step synthesis of dopamine and serotonin in the spinal cord. Published data from different sources and unpublished data from my own ongoing projects indicate that monoenzymatic cells expressing aromatic L-amino acid decarboxylase (AADC), tyrosine hydroxylase (TH) or tryptophan hydroxylase (TPH) are present in the spinal cord and that these TH and THP cells often lie in close proximity to AADC cells. Prompted by the above evidence, I hypothesize that dopamine and serotonin could be synthesized sequentially in two monoenzymatic cells in the spinal cord via a TH-AADC and a TPH-AADC cascade respectively. The monoamines synthesized through this pathway may compensate for lost neurotransmitters following spinal cord injury and also may play specific roles in the recovery of sensory, motor and autonomic functions.

  3. Medicolegal cases for spinal epidural hematoma and spinal epidural abscess.

    PubMed

    French, Keisha L; Daniels, Eldra W; Ahn, Uri M; Ahn, Nicholas U

    2013-01-01

    Spinal epidural hematoma and spinal epidural abscess are rare surgical emergencies resulting in significant neurologic deficits. Making the diagnosis for spinal epidural hematoma and spinal epidural abscess can be challenging; however, a delay in recognition and treatment can be devastating. The objective of this retrospective analysis study was to identify risk factors for an adverse outcome for the provider. The LexisNexis Academic legal search database was used to identify a total of 19 cases of spinal epidural hematoma and spinal epidural abscess filed against medical providers. Outcome data on trial verdicts, age, sex, initial site of injury, time to consultation, time to appropriate imaging studies, time to surgery, and whether a rectal examination was performed or not were recorded. The results demonstrated a significant association between time to surgery more than 48 hours and an unfavorable verdict for the provider. The degree of permanent neurologic impairment did not appear to affect the verdicts. Fifty-eight percent of the cases did not present with an initial deficit, including loss of bowel or bladder control. All medical professionals must maintain a high level of suspicion and act quickly. Physicians who are able to identify early clinical features, appropriately image, and treat within a 48 hour time frame have demonstrated a more favorable medicolegal outcome compared with their counterparts in filed lawsuits for spinal epidural hematoma and spinal epidural abscess cases.

  4. Use of quadrupedal step training to re-engage spinal interneuronal networks and improve locomotor function after spinal cord injury.

    PubMed

    Shah, Prithvi K; Garcia-Alias, Guillermo; Choe, Jaehoon; Gad, Parag; Gerasimenko, Yury; Tillakaratne, Niranjala; Zhong, Hui; Roy, Roland R; Edgerton, V Reggie

    2013-11-01

    Can lower limb motor function be improved after a spinal cord lesion by re-engaging functional activity of the upper limbs? We addressed this issue by training the forelimbs in conjunction with the hindlimbs after a thoracic spinal cord hemisection in adult rats. The spinal circuitries were more excitable, and behavioural and electrophysiological analyses showed improved hindlimb function when the forelimbs were engaged simultaneously with the hindlimbs during treadmill step-training as opposed to training only the hindlimbs. Neuronal retrograde labelling demonstrated a greater number of propriospinal labelled neurons above and below the thoracic lesion site in quadrupedally versus bipedally trained rats. The results provide strong evidence that actively engaging the forelimbs improves hindlimb function and that one likely mechanism underlying these effects is the reorganization and re-engagement of rostrocaudal spinal interneuronal networks. For the first time, we provide evidence that the spinal interneuronal networks linking the forelimbs and hindlimbs are amenable to a rehabilitation training paradigm. Identification of this phenomenon provides a strong rationale for proceeding toward preclinical studies for determining whether training paradigms involving upper arm training in concert with lower extremity training can enhance locomotor recovery after neurological damage.

  5. Spinal cord regeneration: where fish, frogs and salamanders lead the way, can we follow?

    PubMed

    Diaz Quiroz, Juan Felipe; Echeverri, Karen

    2013-05-01

    Major trauma to the mammalian spinal cord often results in irreversible loss of function, i.e. paralysis, and current therapies ranging from drugs, implantations of stem cells and/or biomaterials, and electrically stimulated nerve regrowth, have so far offered very limited success in improving quality-of-life. However, in marked contrast with this basic shortcoming of ours, certain vertebrate species, including fish and salamanders, display the amazing ability to faithfully regenerate various complex body structures after injury or ablation, restoring full functionality, even in the case of the spinal cord. Despite the inherently strong and obvious translational potential for improving treatment strategies for human patients, our in-depth molecular-level understanding of these decidedly more advanced repair systems remains in its infancy. In the present review, we will discuss the current state of this field, focusing on recent progress in such molecular analyses using various regenerative species, and how these so far relate to the mammalian situation.

  6. From Immunity and Vaccines to Mammalian Regeneration

    PubMed Central

    Heber-Katz, Ellen

    2015-01-01

    Our current understanding of major histocompatibility complex (MHC)-mediated antigen presentation in self and nonself immune recognition was derived from immunological studies of autoimmunity and virus-host interactions, respectively. The trimolecular complex of the MHC molecule, antigen, and T-cell receptor accounts for the phenomena of immunodominance and MHC degeneracy in both types of responses and constrains vaccine development. Out of such considerations, we developed a simple peptide vaccine construct that obviates immunodominance, resulting in a broadly protective T-cell response in the absence of antibody. In the course of autoimmunity studies, we identified the MRL mouse strain as a mammalian model of amphibian-like regeneration. A significant level of DNA damage in the cells from this mouse pointed to the role of the cell cycle checkpoint gene CDKN1a, or p21cip1/waf1. The MRL mouse has highly reduced levels of this molecule, and a genetic knockout of this single gene in otherwise nonregenerating strains led to an MRL-type regenerative response, indicating that the ability to regenerate has not been lost during evolution. PMID:26116734

  7. Functional amyloid formation within mammalian tissue.

    PubMed

    Fowler, Douglas M; Koulov, Atanas V; Alory-Jost, Christelle; Marks, Michael S; Balch, William E; Kelly, Jeffery W

    2006-01-01

    Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin) may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  8. Critical ischemia time in a model of spinal cord section. A study performed on dogs

    PubMed Central

    Garcia Martinez, David; Rosales Corral, Sergio A.; Flores Soto, Mario E.; Velarde Silva, Gustavo; Portilla de Buen, Eliseo

    2006-01-01

    Vascular changes after acute spinal cord trauma are important factors that predispose quadriplegia, in most cases irreversible. Repair of the spinal blood flow helps the spinal cord recovery. The average time to arrive and perform surgery is 3 h in most cases. It is important to determine the critical ischemia time in order to offer better functional prognosis. A spinal cord section and vascular clamping of the spinal anterior artery at C5–C6 model was used to determine critical ischemia time. The objective was to establish a critical ischemia time in a model of acute spinal cord section. Four groups of dogs were used, anterior approach and vascular clamp of spinal anterior artery with 1, 2, 3, and 4 h of ischemia and posterior hemisection of spinal cord at C5–C6 was performed. Clinical evaluation was made during 12 weeks and morphological evaluation at the end of this period. We obtained a maximal neurological coordination at 23 days average. Two cases showed sequels of right upper limb paresis at 1 and 3 ischemia hours. There was nerve conduction delay of 56% at 3 h of ischemia. Morphological examination showed 25% of damaged area. The VIII and IX Rexed’s laminae were the most affected. The critical ischemia time was 3 h. Dogs with 4 h did not exhibit any recovery. PMID:17024402

  9. Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells

    PubMed Central

    2012-01-01

    Background In contrast to mammals, amphibians, such as adult urodeles (for example, newts) and anuran larvae (for example, Xenopus) can regenerate their spinal cord after injury. However, the cellular and molecular mechanisms involved in this process are still poorly understood. Results Here, we report that tail amputation results in a global increase of Sox2 levels and proliferation of Sox2+ cells. Overexpression of a dominant negative form of Sox2 diminished proliferation of spinal cord resident cells affecting tail regeneration after amputation, suggesting that spinal cord regeneration is crucial for the whole process. After spinal cord transection, Sox2+ cells are found in the ablation gap forming aggregates. Furthermore, Sox2 levels correlated with regenerative capabilities during metamorphosis, observing a decrease in Sox2 levels at non-regenerative stages. Conclusions Sox2+ cells contribute to the regeneration of spinal cord after tail amputation and transection. Sox2 levels decreases during metamorphosis concomitantly with the lost of regenerative capabilities. Our results lead to a working hypothesis in which spinal cord damage activates proliferation and/or migration of Sox2+ cells, thus allowing regeneration of the spinal cord after tail amputation or reconstitution of the ependymal epithelium after spinal cord transection. PMID:22537391

  10. Functional characterization of mammalian Wntless homolog in mammalian system.

    PubMed

    Wang, Li-Ting; Wang, Shih-Jong; Hsu, Shih-Hsien

    2012-07-01

    Wntless (GPR177) protein is a newly identified regulator of Wnt signals in Drosophila, but its cellular function in mammals is still unclear. In this study, we explored the expression pattern and potential cellular function of Wntless in mammalian cells. Wntless mRNA was expressed in many mouse tissues, including the spleen, lung, kidney, thymus, and stomach, and lower levels of expression were detected in the mouse brain and testis. Expression of Wntless protein analyzed by Western blot and immunohistochemical staining was only detected in the submucosa, muscle, ganglia, and nerve cells of murine large intestines. Both immunofluorescence staining and subcellular fraction extraction analysis revealed that endogenous Wntless protein was expressed predominantly in the cytoplasmic organelles with a morphologically dot-shaped distribution. Furthermore, overexpression of Wntless could be corrected by and may activate the nuclear factor-κB (NF-κB) signaling pathway in cancer (HeLa) cells. These results suggest that Wntless plays a role in signaling regulation during the formation of cancer in addition to its role as a retromer protein in mammalian systems.

  11. Imaging modalities in spinal disorders

    SciTech Connect

    Kricun, M.E.

    1986-01-01

    This book provides an approach to the various imaging modalities used to view the spine. It discusses the indications, limitations and practical use of each in the diagnosis, work-up and staging of various spinal disorders, and compares each of them in various clinical settings. Topics covered include low back pain syndrome, disk disease, spinal cord lesions, congenital abnormalities, and trauma.

  12. Cytometry of deoxyribonuclei acid content and morphology of mammalian sperm

    SciTech Connect

    Gledhill, B.L.

    1983-01-01

    Because spermatogenesis is exquisitely sensitive to external influences, sperm can serve as a biological dosimeter. Advances in interpreting induced sperm abnormalities require a better understanding of sperm characteristics. This report reviews the application of several methods for automated, quantitative detection of shape changes, methods that are faster and more sensitive than conventional subjective technqiues. Variability of sperm deoxyribonucleic acid content as a bioassay of genetic damage is explored, and limitations of the bioassay are discussed. New flow cytometric techniques that could lead to sexing mammalian sperm are examined.

  13. Evolutionary paths to mammalian cochleae.

    PubMed

    Manley, Geoffrey A

    2012-12-01

    Evolution of the cochlea and high-frequency hearing (>20 kHz; ultrasonic to humans) in mammals has been a subject of research for many years. Recent advances in paleontological techniques, especially the use of micro-CT scans, now provide important new insights that are here reviewed. True mammals arose more than 200 million years (Ma) ago. Of these, three lineages survived into recent geological times. These animals uniquely developed three middle ear ossicles, but these ossicles were not initially freely suspended as in modern mammals. The earliest mammalian cochleae were only about 2 mm long and contained a lagena macula. In the multituberculate and monotreme mammalian lineages, the cochlea remained relatively short and did not coil, even in modern representatives. In the lineage leading to modern therians (placental and marsupial mammals), cochlear coiling did develop, but only after a period of at least 60 Ma. Even Late Jurassic mammals show only a 270 ° cochlear coil and a cochlear canal length of merely 3 mm. Comparisons of modern organisms, mammalian ancestors, and the state of the middle ear strongly suggest that high-frequency hearing (>20 kHz) was not realized until the early Cretaceous (~125 Ma). At that time, therian mammals arose and possessed a fully coiled cochlea. The evolution of modern features of the middle ear and cochlea in the many later lineages of therians was, however, a mosaic and different features arose at different times. In parallel with cochlear structural evolution, prestins in therian mammals evolved into effective components of a new motor system. Ultrasonic hearing developed quite late-the earliest bat cochleae (~60 Ma) did not show features characteristic of those of modern bats that are sensitive to high ultrasonic frequencies.

  14. Thermoelectric device for treatment of radiculitis and spinal massage

    NASA Astrophysics Data System (ADS)

    Anatychuk, L. I.; Kobylyansky, R. R.

    2012-06-01

    Results of development of a thermoelectric device that enables controlled cyclic temperature impact on the damaged area of human organism are presented. Unlike the existing medical devices employing direct supply current for thermoelectric module, the present device controls supply current according to time dependence of temperature change assigned by doctor. It is established that such a device is an efficient means of therapy at herniation of intervertebral disks with marked radiculitis and tunicary syndromes, at meningitis, other spinal diseases and back traumas.

  15. Spinal adhesive arachnoiditis.

    PubMed

    Dolan, R A

    1993-06-01

    Forty-one cases of spinal adhesive arachnoiditis are presented. The key points are, first, that lumbar disc lesions, their investigations and surgical treatment and the use of nonabsorbable contrast materials are the most common etiological factors and, secondly, that operation is the best treatment. It is our contention that the majority of patients so treated do experience some improvement in what otherwise can be an unbearable amount of pain and disability. The use of adsorbable, nonirritative contrast materials such as Iohexol Parenteral will result in a marked reduction in the frequency of occurrence of arachnoiditis.

  16. CNS and spinal tumors.

    PubMed

    Furtado, Andre D; Panigrahy, Ashok; Fitz, Charles R

    2016-01-01

    Primary CNS tumors consist of a diverse group of neoplasms originating from various cell types in the CNS. Brain tumors are the most common solid malignancy in children under the age of 15 years and the second leading cause of cancer death after leukemia. The most common brain neoplasms in children differ consistently from those in older age groups. Pediatric brain tumors demonstrate distinct patterns of occurrence and biologic behavior according to sex, age, and race. This chapter highlights the imaging features of the most common tumors that affect the child's CNS (brain and spinal cord).

  17. MAMMALIAN DNA IN PCR REAGENTS

    EPA Science Inventory

    Ancient DNA analysis is becoming widespread. These studies use polymerase chain reaction (PCR) to amplify minute quantities of heavily damaged template. Unusual steps are taken to achieve the sensitivity necessary to detect ancient DNA, including high- cycle PCR amplification t...

  18. Totally Ossified Metaplastic Spinal Meningioma

    PubMed Central

    Hida, Kazutoshi; Yamauchi, Tomohiro; Houkin, Kiyohiro

    2013-01-01

    A 61-year-old woman with a very rare case of totally ossified large thoracic spinal metaplastic meningioma, showing progressing myelopathy is presented. Computed tomographic images showed a large totally ossfied intradural round mass occupying the spinal canal on T9-10 level. Magnetic resonance imaging revealed a large T9-10 intradural extramedullary mass that was hypointense to spinal cord on T1- and T2-weighted sequences, partial enhancement was apparent after Gadolinium administration. The spinal cord was severely compressed and displaced toward the right at the level of T9-10. Surgical removal of the tumor was successfully accomplished via the posterior midline approach and the histological diagnosis verified an ossified metaplastic meningioma. The clinical neurological symptoms of patient were improved postoperatively. In this article we discuss the surgical and pathological aspects of rare case of spinal totally ossified metaplastic meningioma. PMID:24278660

  19. Retraining the injured spinal cord

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Leon, R. D.; Harkema, S. J.; Hodgson, J. A.; London, N.; Reinkensmeyer, D. J.; Roy, R. R.; Talmadge, R. J.; Tillakaratne, N. J.; Timoszyk, W.; Tobin, A.

    2001-01-01

    The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.

  20. Biodegradable biomatrices and bridging the injured spinal cord: the corticospinal tract as a proof of principle.

    PubMed

    Joosten, Elbert A J

    2012-07-01

    Important advances in the development of smart biodegradable implants for axonal regeneration after spinal cord injury have recently been reported. These advances are evaluated in this review with special emphasis on the regeneration of the corticospinal tract. The corticospinal tract is often considered the ultimate challenge in demonstrating whether a repair strategy has been successful in the regeneration of the injured mammalian spinal cord. The extensive know-how of factors and cells involved in the development of the corticospinal tract, and the advances made in material science and tissue engineering technology, have provided the foundations for the optimization of the biomatrices needed for repair. Based on the findings summarized in this review, the future development of smart biodegradable bridges for CST regrowth and regeneration in the injured spinal cord is discussed.

  1. Ceramide signaling in mammalian epidermis.

    PubMed

    Uchida, Yoshikazu

    2014-03-01

    Ceramide, the backbone structure of all sphingolipids, as well as a minor component of cellular membranes, has a unique role in the skin, by forming the epidermal permeability barrier at the extracellular domains of the outermost layer of the skin, the stratum corneum, which is required for terrestrial mammalian survival. In contrast to the role of ceramide in forming the permeability barrier, the signaling roles of ceramide and its metabolites have not yet been recognized. Ceramide and/or its metabolites regulate proliferation, differentiation, and apoptosis in epidermal keratinocytes. Recent studies have further demonstrated that a ceramide metabolite, sphingosine-1-phosphate, modulates innate immune function. Ceramide has already been applied to therapeutic approaches for treatment of eczema associated with attenuated epidermal permeability barrier function. Pharmacological modulation of ceramide and its metabolites' signaling can also be applied to cutaneous disease prevention and therapy. The author here describes the signaling roles of ceramide and its metabolites in mammalian cells and tissues, including the epidermis. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.

  2. Age-Related Uptake of Heavy Metals in Human Spinal Interneurons

    PubMed Central

    Kum Jew, Stephen

    2016-01-01

    Toxic heavy metals have been implicated in the loss of spinal motoneurons in amyotrophic lateral sclerosis/motor neuron disease (ALS/MND). Motoneuron loss in the spinal anterior horn is severe in ALS/MND at the time of death, making this tissue unsuitable for examination. We therefore examined spinal cords of people without muscle weakness to look for any presence of heavy metals that could make these neurons susceptible to damage. Spinal cord samples from 50 individuals aged 1–95 y who had no clinical or histopathological evidence of spinal motoneuron loss were studied. Seven μm formalin-fixed paraffin-embedded sections were stained for heavy metals with silver nitrate autometallography (AMGHM) which detects intracellular mercury, silver or bismuth. Neurons in the spinal cord were classified as interneurons or α-motoneurons based on their site and cell body diameter. Spinal interneurons containing heavy metals were present in 8 of 24 people (33%) aged 61–95 y, but not at younger ages. These AMGHM interneurons were most numerous in the lumbar spinal cord, with moderate numbers in the caudal cervical cord, few in the rostral cervical cord, and almost none in the thoracic cord. All people with AMGHM interneurons had occasional AMGHM staining in α-motoneurons as well. In one man AMGHM staining was present in addition in dorsomedial nucleus and sensory neurons. In conclusion, heavy metals are present in many spinal interneurons, and in a few α-motoneurons, in a large proportion of older people. Damage to inhibitory interneurons from toxic metals in later life could result in excitotoxic injury to motoneurons and may underlie motoneuron injury or loss in conditions such as ALS/MND, multiple sclerosis, sarcopenia and calf fasciculations. PMID:27611334

  3. Juxtafacet Spinal Synovial Cysts

    PubMed Central

    2016-01-01

    Study Design This was a retrospective study. Purpose To study the surgical outcome of synovial cysts of the lumbar spine through posterior laminectomy in combination with transpedicular screw fixation. Overview of Literature Synovial cysts of the lumbar spine contribute significantly to narrowing of the spinal canal and lateral thecal sac and nerve root compression. Cysts form as a result of arthrotic disruption of the facet joint, leading to degenerative spondylolisthesis in up to 40% of patients. Methods Retrospective data from 6 patients, treated during the period of March 2007 to February 2011, were analyzed. All preoperative and postoperative manifestations, extension/flexion radiographs, magnetic resonance imaging, and computed tomography records were reviewed. All underwent surgery for synovial cysts with excision and decompression combined with posterior fixation. The result of surgery was evaluated with Macnab's classification. An excellent or good outcome was considered as satisfactory. Japanese Orthopedic Association Scale was used for evaluation of back pain. Results All patients included in this study had excellent outcomes as regarding to improvement of all preoperative manifestations and returning to normal daily activities. Only 2 cases developed postoperative transient cerebro-spinal fluid leak and were treated conservatively and improved during the follow up period. Conclusions Although this study included a small number of cases and we could not have statistically significant results, the good outcome of decompression of synovial cysts combined with posterior fixation and fusion encouraged us to recommend this approach for patients with juxtafacet synovial cysts. PMID:26949457

  4. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish

    PubMed Central

    Hui, Subhra Prakash; Nag, Tapas Chandra; Ghosh, Sukla

    2015-01-01

    Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration. PMID:26630262

  5. Space radiation effects on plant and mammalian cells

    NASA Astrophysics Data System (ADS)

    Arena, C.; De Micco, V.; Macaeva, E.; Quintens, R.

    2014-11-01

    The study of the effects of ionizing radiation on organisms is related to different research aims. The current review emphasizes the studies on the effects of different doses of sparsely and densely ionizing radiation on living organisms, with the final purpose of highlighting specific and common effects of space radiation in mammals and plants. This topic is extremely relevant in the context of radiation protection from space environment. The response of different organisms to ionizing radiation depends on the radiation quality/dose and/or the intrinsic characteristics of the living system. Macromolecules, in particular DNA, are the critical targets of radiation, even if there is a strong difference between damages encountered by plant and mammalian cells. The differences in structure and metabolism between the two cell types are responsible for the higher resistance of the plant cell compared with its animal counterpart. In this review, we report some recent findings from studies performed in Space or on Earth, simulating space-like levels of radiation with ground-based facilities, to understand the effect of ionizing radiation on mammalian and plant cells. In particular, our attention is focused on genetic alterations and repair mechanisms in mammalian cells and on structures and mechanisms conferring radioresistance to plant cells.

  6. [Surgical anatomy of spinal cord tumors].

    PubMed

    Peltier, J; Chenin, L; Hannequin, P; Page, C; Havet, É; Foulon, P; Le Gars, D

    2015-08-03

    In this article, we respectively describe the morphology of the spinal cord, spinal meningeal layers, main fiber tracts, and both arterial and venous distribution in order to explain signs of spinal cord compression. We will then describe a surgical technique for spinal cord tumor removal.

  7. Attitudes Towards Individuals with Spinal Cord Injuries

    ERIC Educational Resources Information Center

    Conway, Cassandra Sligh D.; Gooden, Randy; Nowell, Jennifer; Wilson, Navodda

    2010-01-01

    This paper will shed light on the lives of persons with spinal cord injuries by revealing the literature on spinal cord injuries that focuses on research that can shed light on attitudes towards persons with spinal cord injuries. The background literature related to incidences, the definition of spinal cord injury, and vocational opportunities are…

  8. Spinal Cord Repair with Engineered Nervous Tissue

    DTIC Science & Technology

    2014-04-01

    in order to minimize scarring and injected dissociated adult DRGs rostral to a dorsal column transection of the spinal cord. From the sensory... columns were dissected and post-fixed overnight in 4% paraformaldehyde, and then spinal cords were dissected from spinal columns and cryoprotected...AD______________ Award Number: W81XWH-10-1-0941 TITLE: Spinal Cord Repair with Engineered Nervous Tissue

  9. Recombinant DNA vaccine against inhibition of neurite outgrowth promotes functional recovery associated with endogeous NGF expression in spinal cord hemisected adult rats.

    PubMed

    Zhang, Yi; Hao, Chun-Guang; Hu, Li-Qun; Dong, Jian; Wei, Peng; Xu, Dan; Xiao, Zhi-Cheng; Wang, Ting-Hua

    2009-09-01

    Axonal regeneration across the site of spinal cord lesion is often aborted in adult mammalian species. The use of DNA vaccine to nullify the inhibitory molecules has been shown to be effective in promoting axonal regeneration in injured spinal cord. The possible molecular mechanisms, however, remain to be elucidated. The present study showed that the administration of recombinant DNA vaccine encoding multiple domains, Nogo-66, Nogo-N, TnR, and MAG, significantly improved hindlimb locomotor functions in rats subjected to ablation of the dorsal halves of the cord. Western blot analysis demonstrated that nerve growth factor (NGF) levels in the spinal cord of immunized rats were significantly upregulated than those of control rats. Immunohistochemistry as well as in situ hybridization confirmed that NGF was expressed in neurons of the spinal cord. These findings indicated that functional recovery in immunized rats could be correlated with endogeous NGF expression in hemisected rat spinal cords.

  10. Identification and characterization of a cell surface marker for embryonic rat spinal accessory motor neurons.

    PubMed

    Schubert, W; Kaprielian, Z

    2001-10-22

    The developing mammalian spinal cord contains distinct populations of motor neurons that can be distinguished by their cell body positions, by the expression of specific combinations of regulatory genes, and by the paths that their axons take to exit the central nervous system (CNS). Subclasses of spinal motor neurons are also thought to express specific cell surface proteins that function as receptors which control the guidance of their axons. We identified monoclonal antibody (mAb) SAC1 in a screen aimed at generating markers for specific subsets of neurons/axons in the developing rat spinal cord. During early embryogenesis, mAb SAC1 selectively labels a small subset of Isl1-positive motor neurons located exclusively within cervical segments of the spinal cord. Strikingly, these neurons extend mAb SAC1-positive axons along a dorsally directed trajectory toward the lateral exit points. Consistent with the finding that mAb SAC1 also labels spinal accessory nerves, these observations identify mAb SAC1 as a specific marker of spinal accessory motor neurons/axons. During later stages of embryogenesis, mAb SAC1 is transiently expressed on both dorsally and ventrally projecting spinal motor neurons/axons. Interestingly, mAb SAC1 also labels the notochord and floor plate during most stages of spinal cord development. The mAb SAC1 antigen is a 100-kD glycoprotein that is likely to be the rat homolog of SC1/BEN/DM-GRASP, a homophilic adhesion molecule that mediates axon outgrowth and fasciculation.

  11. Finding New Components of the Mammalian Immune System*

    PubMed Central

    Beutler, Bruce

    2016-01-01

    The use of forward genetics to analyze mammalian biology has been dramatically accelerated by methods that make it possible instantly to determine which mutation causes a phenotype. Now it is possible to discover gene function as rapidly as mutations can be created and screened: approximately 1,000 coding changes per week are interrogated in our laboratory. Moreover, it is possible to know approximately how much damage has been done to the genome over time. We estimate that we have damaged or destroyed about one-quarter of all protein encoding genes and tested the effects of variant alleles within these genes three times or more in a set of phenotypic assays that interest us. Only about two years were required to reach this level of saturation. PMID:27487306

  12. Relating Histopathology and Mechanical Strain in Experimental Contusion Spinal Cord Injury in a Rat Model

    PubMed Central

    Liu, Jie; Yung, Andrew; Cripton, Peter; Kozlowski, Piotr; Tetzlaff, Wolfram; Oxland, Thomas

    2016-01-01

    Abstract During traumatic spinal cord injury (SCI), the spinal cord is subject to external displacements that result in damage of neural tissues. These displacements produce complex internal deformations, or strains, of the spinal cord parenchyma. The aim of this study is to determine a relationship between these internal strains during SCI and primary damage to spinal cord gray matter (GM) in an in vivo rat contusion model. Using magnetic resonance imaging and novel image registration methods, we measured three-dimensional (3D) mechanical strain in in vivo rat cervical spinal cord (n = 12) during an imposed contusion injury. We then assessed expression of the neuronal transcription factor, neuronal nuclei (NeuN), in ventral horns of GM (at the epicenter of injury as well as at intervals cranially and caudally), immediately post-injury. We found that minimum principal strain was most strongly correlated with loss of NeuN stain across all animals (R2 = 0.19), but varied in strength between individual animals (R2 = 0.06–0.52). Craniocaudal distribution of anatomical damage was similar to measured strain distribution. A Monte Carlo simulation was used to assess strain field error, and minimum principal strain (which ranged from 8% to 36% in GM ventral horns) exhibited a standard deviation of 2.6% attributed to the simulated error. This study is the first to measure 3D deformation of the spinal cord and relate it to patterns of ensuing tissue damage in an in vivo model. It provides a platform on which to build future studies addressing the tolerance of spinal cord tissue to mechanical deformation. PMID:26729511

  13. Relating Histopathology and Mechanical Strain in Experimental Contusion Spinal Cord Injury in a Rat Model.

    PubMed

    Bhatnagar, Tim; Liu, Jie; Yung, Andrew; Cripton, Peter; Kozlowski, Piotr; Tetzlaff, Wolfram; Oxland, Thomas

    2016-09-15

    During traumatic spinal cord injury (SCI), the spinal cord is subject to external displacements that result in damage of neural tissues. These displacements produce complex internal deformations, or strains, of the spinal cord parenchyma. The aim of this study is to determine a relationship between these internal strains during SCI and primary damage to spinal cord gray matter (GM) in an in vivo rat contusion model. Using magnetic resonance imaging and novel image registration methods, we measured three-dimensional (3D) mechanical strain in in vivo rat cervical spinal cord (n = 12) during an imposed contusion injury. We then assessed expression of the neuronal transcription factor, neuronal nuclei (NeuN), in ventral horns of GM (at the epicenter of injury as well as at intervals cranially and caudally), immediately post-injury. We found that minimum principal strain was most strongly correlated with loss of NeuN stain across all animals (R(2) = 0.19), but varied in strength between individual animals (R(2) = 0.06-0.52). Craniocaudal distribution of anatomical damage was similar to measured strain distribution. A Monte Carlo simulation was used to assess strain field error, and minimum principal strain (which ranged from 8% to 36% in GM ventral horns) exhibited a standard deviation of 2.6% attributed to the simulated error. This study is the first to measure 3D deformation of the spinal cord and relate it to patterns of ensuing tissue damage in an in vivo model. It provides a platform on which to build future studies addressing the tolerance of spinal cord tissue to mechanical deformation.

  14. A Neonatal Mouse Spinal Cord Compression Injury Model

    PubMed Central

    Züchner, Mark; Glover, Joel C.; Boulland, Jean-Luc

    2016-01-01

    Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life1, this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques1. Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections1. PMID:27078037

  15. Potential Clinical Applications for Spinal Functional MRI

    PubMed Central

    Kornelsen, Jennifer; Mackey, Sean

    2010-01-01

    Functional MRI (fMRI) of the spinal cord is a noninvasive technique for obtaining information regarding spinal cord neuronal function. This article provides a brief overview of recent developments in spinal cord fMRI and outlines potential applications, as well as the limitations that must be overcome, for using spinal fMRI in the clinic. This technique is currently used for research purposes, but significant potential exists for spinal fMRI to become an important clinical tool. PMID:17504642

  16. The mammalian cervical vertebrae blueprint depends on the T (brachyury) gene.

    PubMed

    Kromik, Andreas; Ulrich, Reiner; Kusenda, Marian; Tipold, Andrea; Stein, Veronika M; Hellige, Maren; Dziallas, Peter; Hadlich, Frieder; Widmann, Philipp; Goldammer, Tom; Baumgärtner, Wolfgang; Rehage, Jürgen; Segelke, Dierck; Weikard, Rosemarie; Kühn, Christa

    2015-03-01

    A key common feature all but three known mammalian genera is the strict seven cervical vertebrae blueprint, suggesting the involvement of strong conserving selection forces during mammalian radiation. This is further supported by reports indicating that children with cervical ribs die before they reach reproductive age. Hypotheses were put up, associating cervical ribs (homeotic transformations) to embryonal cancer (e.g., neuroblastoma) or ascribing the constraint in cervical vertebral count to the development of the mammalian diaphragm. Here, we describe a spontaneous mutation c.196A > G in the Bos taurus T gene (also known as brachyury) associated with a cervical vertebral homeotic transformation that violates the fundamental mammalian cervical blueprint, but does not preclude reproduction of the affected individual. Genome-wide mapping, haplotype tracking within a large pedigree, resequencing of target genome regions, and bioinformatic analyses unambiguously confirmed the mutant c.196G allele as causal for this previously unknown defect termed vertebral and spinal dysplasia (VSD) by providing evidence for the mutation event. The nonsynonymous VSD mutation is located within the highly conserved T box of the T gene, which plays a fundamental role in eumetazoan body organization and vertebral development. To our knowledge, VSD is the first unequivocally approved spontaneous mutation decreasing cervical vertebrae number in a large mammal. The spontaneous VSD mutation in the bovine T gene is the first in vivo evidence for the hypothesis that the T protein is directly involved in the maintenance of the mammalian seven-cervical vertebra blueprint. It therefore furthers our knowledge of the T-protein function and early mammalian notochord development.

  17. The Mammalian Cervical Vertebrae Blueprint Depends on the T (brachyury) Gene

    PubMed Central

    Kromik, Andreas; Ulrich, Reiner; Kusenda, Marian; Tipold, Andrea; Stein, Veronika M.; Hellige, Maren; Dziallas, Peter; Hadlich, Frieder; Widmann, Philipp; Goldammer, Tom; Baumgärtner, Wolfgang; Rehage, Jürgen; Segelke, Dierck; Weikard, Rosemarie; Kühn, Christa

    2015-01-01

    A key common feature of all but three known mammalian genera is the strict seven cervical vertebrae blueprint, suggesting the involvement of strong conserving selection forces during mammalian radiation. This is further supported by reports indicating that children with cervical ribs die before they reach reproductive age. Hypotheses were put up, associating cervical ribs (homeotic transformations) to embryonal cancer (e.g., neuroblastoma) or ascribing the constraint in cervical vertebral count to the development of the mammalian diaphragm. Here, we describe a spontaneous mutation c.196A > G in the Bos taurus T gene (also known as brachyury) associated with a cervical vertebral homeotic transformation that violates the fundamental mammalian cervical blueprint, but does not preclude reproduction of the affected individual. Genome-wide mapping, haplotype tracking within a large pedigree, resequencing of target genome regions, and bioinformatic analyses unambiguously confirmed the mutant c.196G allele as causal for this previously unknown defect termed vertebral and spinal dysplasia (VSD) by providing evidence for the mutation event. The nonsynonymous VSD mutation is located within the highly conserved T box of the T gene, which plays a fundamental role in eumetazoan body organization and vertebral development. To our knowledge, VSD is the first unequivocally approved spontaneous mutation decreasing cervical vertebrae number in a large mammal. The spontaneous VSD mutation in the bovine T gene is the first in vivo evidence for the hypothesis that the T protein is directly involved in the maintenance of the mammalian seven-cervical vertebra blueprint. It therefore furthers our knowledge of the T-protein function and early mammalian notochord development. PMID:25614605

  18. Effects of iloprost on vasospasm after experimental spinal cord injury: an electron and light microscopic study.

    PubMed

    Attar, A; Tuna, H; Ugur, H C; Sargon, M F; Egemen, N

    2001-12-01

    It has been increasingly reported that traumatic and ischemic insults to the spinal cord may produce tissue damage through both direct and indirect mechanisms. In spite of many theories about post-traumatic spinal cord injury, there is still no satisfactory account of the exact mechanism. Vasospasm may be related to the trauma and release of vasoconstrictor or vasoactive amines. This study aims at studying the possible protective mechanisms of iloprost, a stable analogue of prostacyclin, after spinal cord injury on the rabbit. Forty-two adult male rabbits (New Zealand albino) were inflicted injuries by epidural application of an aneurysm clip to the spinal cord. Twenty-one rabbits received an i.v. infusion of 25 microg kg(-1) x h(-1) iloprost. The remaining twenty-one rabbits received an i.v. infusion of saline as the control group. Intravenous treatment started immediately after the infliction of the spinal cord injury and lasted for 1 h. Iloprost treatment had no side effects on the general physiological parameters in the rabbits. Control and iloprost treatment groups were divided into three sub-groups. The first group of animals was deeply anesthetized and spinal cords were removed 15 min after treatment. Second and third group animals were sacrificed in the 3rd and 24th hours respectively. All spinal cords were removed for light and electron microscopic examination. The width of anteriolar smooth muscle cells and the ultrastructural analysis of sulcal arterioles and venules in the ventral median fissure of spinal cords treated by iloprost revealed less thickening in all groups especially on the 24th hour group (p < 0.01), but less thickening was observed on the 3rd hour group. Iloprost-treated groups had limited edema and moderate protection of myelin and axons. These results suggest that iloprost treatment after spinal cord injury has a highly protective effect, and the possible protective effect of iloprost is resolution of vasospasm due to spinal cord injury.

  19. Nestin-Positive Ependymal Cells Are Increased in the Human Spinal Cord after Traumatic Central Nervous System Injury.

    PubMed

    Cawsey, Thomas; Duflou, Johan; Weickert, Cynthia Shannon; Gorrie, Catherine Anne

    2015-09-15

    Endogenous neural progenitor cell niches have been identified in adult mammalian brain and spinal cord. Few studies have examined human spinal cord tissue for a neural progenitor cell response in disease or after injury. Here, we have compared cervical spinal cord sections from 14 individuals who died as a result of nontraumatic causes (controls) with 27 who died from injury with evidence of trauma to the central nervous system. Nestin immunoreactivity was used as a marker of neural progenitor cell response. There were significant increases in the percentage of ependymal cells that were nestin positive between controls and trauma cases. When sections from lumbar and thoracic spinal cord were available, nestin positivity was seen at all three spinal levels, suggesting that nestin reactivity is not simply a localized reaction to injury. There was a positive correlation between the percentage of ependymal cells that were nestin positive and post-injury survival time but not for age, postmortem delay, or glial fibrillary acidic protein (GFAP) immunoreactivity. No double-labelled nestin and GFAP cells were identified in the ependymal, subependymal, or parenchymal regions of the spinal cord. We need to further characterize this subset of ependymal cells to determine their role after injury, whether they are a population of neural progenitor cells with the potential for proliferation, migration, and differentiation for spinal cord repair, or whether they have other roles more in line with hypothalamic tanycytes, which they closely resemble.

  20. Producing Newborn Synchronous Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  1. Body Size in Mammalian Paleobiology

    NASA Astrophysics Data System (ADS)

    Damuth, John; MacFadden, Bruce J.

    1990-11-01

    This valuable collection of essays presents and evaluates techniques of body-mass estimation and reviews current and potential applications of body-size estimates in paleobiology. Papers discuss explicitly the errors and biases of various regression techniques and predictor variables, and the identification of functionally similar groups of species for improving the accuracy of estimates. At the same time other chapters review and discuss the physiological, ecological, and behavioral correlates of body size in extant mammals; the significance of body-mass distributions in mammalian faunas; and the ecology and evolution of body size in particular paleofaunas. Coverage is particularly detailed for carnivores, primates, and ungulates, but information is also presented on marsupials, rodents, and proboscideans.

  2. Mammalian skin evolution: a reevaluation.

    PubMed

    Maderson, P F A

    2003-06-01

    A 1972 model for the evolutionary origin of hair suggested a primary mechanoreceptor role improving behavioral thermoregulation contributed to the success of late Paleozoic mammal-like reptiles. An insulatory role appeared secondarily subsequent to protohair multiplication. That model is updated in light of new data on (a) palaeoecology of mammalian ancestors; (b) involvement of HRPs in keratinization; (c) lipogenic lamellar bodies that form the barrier to cutaneous water loss; and (d) growth factors involved in hair follicle embryogenesis and turnover. It is now proposed that multiplication of sensory protohairs caused by mutations in patterning genes initially protected the delicate barrier tissues and eventually produced the minimal morphology necessary for an insulatory pelage. The latter permitted Mesozoic mammals to occupy the nocturnal niche 'in the shadow of dinosaurs'. When the giant reptiles became extinct, mammals underwent rapid radiation and reemerged as the dominant terrestrial vertebrates.

  3. Mammalian glutaminase isozymes in brain.

    PubMed

    Márquez, Javier; Cardona, Carolina; Campos-Sandoval, José A; Peñalver, Ana; Tosina, Marta; Matés, José M; Martín-Rufián, Mercedes

    2013-06-01

    Glutamine/glutamate homeostasis must be exquisitely regulated in mammalian brain and glutaminase (GA, E.C. 3.5.1.2) is one of the main enzymes involved. The products of GA reaction, glutamate and ammonia, are essential metabolites for energy and biosynthetic purposes but they are also hazardous compounds at concentrations beyond their normal physiological thresholds. The classical pattern of GA expression in mammals has been recently challenged by the discovery of novel transcript variants and protein isoforms. Furthermore, the interactome of brain GA is also starting to be uncovered adding a new level of regulatory complexity. GA may traffic in brain and unexpected locations, like cytosol and nucleus, have been found for GA isoforms. Finally, the expression of GA in glial cells has been reported and its potential implications in ammonia homeostasis are discussed.

  4. Pharmacology of mammalian olfactory receptors.

    PubMed

    Smith, Richard S; Peterlin, Zita; Araneda, Ricardo C

    2013-01-01

    Mammalian species have evolved a large and diverse number of odorant receptors (ORs). These proteins comprise the largest family of G-protein-coupled receptors (GPCRs) known, amounting to ~1,000-different receptors in the rodent. From the perspective of olfactory coding, the availability of such a vast number of chemosensory receptors poses several fascinating questions; in addition, such a large repertoire provides an attractive biological model to study ligand-receptor interactions. The limited functional expression of these receptors in heterologous systems, however, has greatly hampered attempts to deorphanize them. We have employed a successful approach that combines electrophysiological and imaging techniques to analyze the response profiles of single sensory neurons. Our approach has enabled us to characterize the "odor space" of a population of native aldehyde receptors and the molecular range of a genetically engineered receptor, OR-I7.

  5. Interaction theory of mammalian mitochondria.

    PubMed

    Nakada, K; Inoue, K; Hayashi, J

    2001-11-09

    We generated mice with deletion mutant mtDNA by its introduction from somatic cells into mouse zygotes. Expressions of disease phenotypes are limited to tissues expressing mitochondrial dysfunction. Considering that all these mice share the same nuclear background, these observations suggest that accumulation of the mutant mtDNA and resultant expressions of mitochondrial dysfunction are responsible for expression of disease phenotypes. On the other hand, mitochondrial dysfunction and expression of clinical abnormalities were not observed until the mutant mtDNA accumulated predominantly. This protection is due to the presence of extensive and continuous interaction between exogenous mitochondria from cybrids and recipient mitochondria from embryos. Thus, we would like to propose a new hypothesis on mitochondrial biogenesis, interaction theory of mitochondria: mammalian mitochondria exchange genetic contents, and thus lost the individuality and function as a single dynamic cellular unit.

  6. Determinants of Mammalian Nucleolar Architecture

    PubMed Central

    Farley, Katherine I.; Surovtseva, Yulia; Merkel, Janie; Baserga, Susan J.

    2015-01-01

    The nucleolus is responsible for the production of ribosomes, essential machines which synthesize all proteins needed by the cell. The structure of human nucleoli is highly dynamic and is directly related to its functions in ribosome biogenesis. Despite the importance of this organelle, the intricate relationship between nucleolar structure and function remains largely unexplored. How do cells control nucleolar formation and function? What are the minimal requirements for making a functional nucleolus? Here we review what is currently known regarding mammalian nucleolar formation at nucleolar organizer regions (NORs), which can be studied by observing the dissolution and reformation of the nucleolus during each cell division. Additionally, the nucleolus can be examined by analyzing how alterations in nucleolar function manifest in differences in nucleolar architecture. Furthermore, changes in nucleolar structure and function are correlated with cancer, highlighting the importance of studying the determinants of nucleolar formation. PMID:25670395

  7. Idiopathic hypertrophic spinal pachymeningitis: a case report.

    PubMed Central

    Park, S. H.; Whang, C. J.; Sohn, M.; Oh, Y. C.; Lee, C. H.; Whang, Y. J.

    2001-01-01

    Idiopathic hypertrophic pachymeningitis (IHP) is a rare, chronic nonspecific and granulomatous inflammatory disorder of the dura with unknown etiology. The diagnosis can be established by open biopsy and exclusion of all other specific granulomatous and infectious diseases. We report a typical case of spinal IHP occurring in a long segment of cervical and thoracic dura from C6 to T8. The patient was 56-yr-old female, who had been suffered from pain on her upper back and both arms for 3 months and recent onset motor weakness of both legs. During the 9 months of follow-up period, she experienced the improvement of her neurologic symptoms with combined therapy of partial excision and corticosteroid medication. Since early surgical intervention and subsequent pulse steroid therapy are mandatory for this disease to avoid irreversible damage of nervous system, the identification of this unique disease entity is essential on frozen diagnosis. A few cases have been reported in Korean literature. PMID:11641545

  8. The dura causes spinal cord compression after spinal cord injury.

    PubMed

    Saadoun, Samira; Werndle, Melissa C; Lopez de Heredia, Luis; Papadopoulos, Marios C

    2016-10-01

    MR scans from 65 patients with traumatic spinal cord injury were analysed; on admission 95% had evidence of cord compression - in 26% due to the dura, and in the remaining 74% due to extradural factors. Compression due to dural factors resolved with a half-life of 5.5 days. These findings suggest that bony decompression alone may not relieve spinal cord compression in the quarter of patients in whom dural factors are significant.

  9. Genome regulation in mammalian cells.

    PubMed

    Puck, T T; Krystosek, A; Chan, D C

    1990-05-01

    A theory is presented proposing that genetic regulation in mammalian cells is at least a two-tiered effect; that one level of regulation involves the transition between gene exposure and sequestration; that normal differentiation requires a different spectrum of genes to be exposed in each separate state of differentiation; that the fiber systems of the cell cytoskeleton and the nuclear matrix together control the degree of gene exposure; that specific phosphorylation of these elements causes them to assume a different organizational network and to impose a different pattern of sequestration and exposure on the elements of the genome; that the varied gene phosphorylation mechanisms in the cell are integrated in this function; that attachment of this network system to specific parts of the chromosomes brings about sequestration or exposure of the genes in their neighborhood in a fashion similar to that observed when microtubule elements attach through the kinetochore to the centromeric DNA; that one function of repetitive sequences is to serve as elements for the final attachment of this fibrous network to the specific chromosomal loci; and that at least an important part of the calcium manifestation as a metabolic trigger of different differentiation states involves its acting as a binding agent to centers of electronegativity, in particular proteins and especially phosphorylated groups, so as to change the conformation of the fiber network that ultimately controls gene exposure in the mammalian cell. It would appear essential to determine what abnormal gene exposures and sequestrations are characteristic of each type of cancer; which agonists, if any, will bring about reverse transformation; and whether these considerations can be used in therapy.

  10. The mammalian Cretaceous cochlear revolution.

    PubMed

    Manley, Geoffrey A

    2016-12-19

    The hearing organs of amniote vertebrates show large differences in their size and structure between the species' groups. In spite of this, their performance in terms of hearing sensitivity and the frequency selectivity of auditory-nerve units shows unexpectedly small differences. The only substantial difference is that therian, defined as live-bearing, mammalian groups are able to hear ultrasonic frequencies (above 15-20 kHz), whereas in contrast monotreme (egg laying) mammals and all non-mammalian amniotes cannot. This review compares the structure and physiology of the cochleae of the main groups and asks the question as to why the many structural differences seen in therian mammals arose, yet did not result in greater differences in physiology. The likely answers to this question are found in the history of the mammals during the Cretaceous period that ended 65 million years ago. During that period, the therian cochlea lost its lagenar macula, leading to a fall in endolymph calcium levels. This likely resulted in a small revolution and an auditory crisis that was compensated for by a subsequent series of structural and physiological adaptations. The end result was a system of equivalent performance to that independently evolved in other amniotes but with the additional - and of course "unforeseen" - advantage that ultrasonic-frequency responses became an available option. That option was not always availed of, but in most groups of therian mammals it did evolve and is used for communication and orientation based on improved sound localization, with micro-bats and toothed whales relying on it for prey capture.

  11. Oestrogen regulates mitochondrial respiratory chain enzyme transcription in the mouse spinal cord.

    PubMed

    Johann, S; Dahm, M; Kipp, M; Beyer, C; Arnold, S

    2010-08-01

    The regulation of mitochondrial energy metabolism is not only important for normal functioning of neurones, but also appears to be essential during acute damage and neurodegeneration in the central nervous system. This makes mitochondria an interesting regulatory target for therapeutic approaches. Oestrogen is well-recognised as a protective hormone in the central nervous system under pathological threats. In the present study, we analysed the influence of oestrogen on the expression of mitochondria-encoded genes and mitochondrial activity in spinal cord cells both in vitro and vivo. Hormone application increased the transcription of mitochondrial respiratory chain enzymes (MRCE). This effect was observed in cultured spinal cord neurones, where it was inhibited by a nuclear oestrogen receptor (ER) antagonist and mainly mediated by the activation of ERbeta. No effect of oestrogen was observed in cultured spinal cord astroglia. In addition, the mitochondrial transcription factor A and nuclear respiratory factor 1 were up-regulated by oestrogen in a similar way as MRCE in vitro, and ATP levels were elevated after the application of the specific ERbeta agonist 2,3-bis(4-hydroxyphenyl)-propionitrile in cultured spinal cord nerve cells. The exposure of young male mice to oestrogen yielded increased levels of MRCE transcripts in the spinal cord. These data clearly show that systemic application of oestrogen stimulates MRCE expression in the spinal cord and predominantly in neurones. Further studies are required to demonstrate the potency of oestrogen to counteract pathological damage by stabilising mitochondrial performance.

  12. Rebuilding motor function of the spinal cord based on functional electrical stimulation.

    PubMed

    Shen, Xiao-Yan; Du, Wei; Huang, Wei; Chen, Yi

    2016-08-01

    Rebuilding the damaged motor function caused by spinal cord injury is one of the most serious challenges in clinical neuroscience. The function of the neural pathway under the damaged sites can be rebuilt using functional electrical stimulation technology. In this study, the locations of motor function sites in the lumbosacral spinal cord were determined with functional electrical stimulation technology. A three-dimensional map of the lumbosacral spinal cord comprising the relationship between the motor function sites and the corresponding muscle was drawn. Based on the individual experimental parameters and normalized coordinates of the motor function sites, the motor function sites that control a certain muscle were calculated. Phasing pulse sequences were delivered to the determined motor function sites in the spinal cord and hip extension, hip flexion, ankle plantarflexion, and ankle dorsiflexion movements were successfully achieved. The results show that the map of the spinal cord motor function sites was valid. This map can provide guidance for the selection of electrical stimulation sites during the rebuilding of motor function after spinal cord injury.

  13. Rebuilding motor function of the spinal cord based on functional electrical stimulation

    PubMed Central

    Shen, Xiao-yan; Du, Wei; Huang, Wei; Chen, Yi

    2016-01-01

    Rebuilding the damaged motor function caused by spinal cord injury is one of the most serious challenges in clinical neuroscience. The function of the neural pathway under the damaged sites can be rebuilt using functional electrical stimulation technology. In this study, the locations of motor function sites in the lumbosacral spinal cord were determined with functional electrical stimulation technology. A three-dimensional map of the lumbosacral spinal cord comprising the relationship between the motor function sites and the corresponding muscle was drawn. Based on the individual experimental parameters and normalized coordinates of the motor function sites, the motor function sites that control a certain muscle were calculated. Phasing pulse sequences were delivered to the determined motor function sites in the spinal cord and hip extension, hip flexion, ankle plantarflexion, and ankle dorsiflexion movements were successfully achieved. The results show that the map of the spinal cord motor function sites was valid. This map can provide guidance for the selection of electrical stimulation sites during the rebuilding of motor function after spinal cord injury. PMID:27651782

  14. Simulation in spinal diseases.

    PubMed

    Aso Escario, José; Martínez Quiñones, José Vicente; Aso Vizán, Alberto; Arregui Calvo, Ricardo; Bernal Lafuente, Marta; Alcázar Crevillén, Andrés

    2014-01-01

    Simulation is frequent in spinal disease, resulting in problems for specialists like Orthopedic Surgeons, Neurosurgeons, Reumathologists, etc. Simulation requires demonstration of the intentional production of false or exaggerated symptoms following an external incentive. The clinician has difficulties in demonstrating these criteria, resulting in misdiagnosis of simulation or misinterpretation of the normal patient as a simulator, with the possibility of iatrogenic distress and litigation. We review simulation-related problems in spine, proposing a terminological, as well as a diagnostic strategy including clinical and complementary diagnosis, as a way to avoid misinterpretation and minimize the iatrogenic distress and liability Based on the clinical-Forensic author's expertise, the literature is analyzed and the terminology readdressed to develop new terms (inconsistences, incongruences, discrepancies and contradictions). Clinical semiology and complementary test are adapted to the new scenario. Diagnostic strategy relies on anamnesis, clinical and complementary tests, adapting them to a uniform terminology with clear meaning of signs and symptoms.

  15. Autophagy in DNA damage response.

    PubMed

    Czarny, Piotr; Pawlowska, Elzbieta; Bialkowska-Warzecha, Jolanta; Kaarniranta, Kai; Blasiak, Janusz

    2015-01-23

    DNA damage response (DDR) involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1). mTORC1 represses autophagy via phosphorylation of the ULK1/2-Atg13-FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADP)ribose polymerase 1 (PARP-1), Mre11-Rad50-Nbs1 (MRN) complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy.

  16. Management of severe spinal cord injury following hyperbaric exposure.

    PubMed

    Mathew, Bruce; Laden, Gerard

    2015-09-01

    There is an increasing body of evidence that drainage of lumbar cerebrospinal fluid (CSF) improves functional neurological outcome after reperfusion injury to the spinal cord that occasionally follows aortic reconstructive surgery. This beneficial effect is considered owing to lowering of the CSF pressure thereby normalising spinal cord blood flow and reducing the 'secondary' cord injury caused by vascular congestion and cord swelling in the relatively confined spinal canal. Whilst lacking definitive proof, there are convincing randomised controlled trials (RCTs), cohort data and systematic reviews supporting this intervention. The therapeutic window for lumbar CSF drainage requires further elucidation; however, it appears to be days rather than hours post insult. We contend that the same benefit is likely to be achieved following other primary spinal cord injuries that cause cord swelling and elicit the 'secondary' injury. Traditionally the concept of CSF drainage has been considered more applicable to the brain as contained in a 'closed box' by lowering intracranial pressure (ICP) to improve cerebral perfusion pressure (CPP). The control of CPP is intended to limit 'secondary' brain injury and is a key concept of brain injury management. Using microdialysis in the spinal cords of trauma patients, it has been shown that intraspinal pressure (ISP) needs to be kept below 20 mmHg and spinal cord perfusion pressure (SCPP) above 70 mmHg to avoid biochemical evidence of secondary cord damage. Vasopressor have also been used in spinal cord injury to improve perfusion, however complications are common, typically cardiac in nature, and require very careful monitoring; the evidence supporting this approach is notably less convincing. Decompression illness (DCI) of the spinal cord is treated with recompression, hyperbaric oxygen, various medications designed to reduce the inflammatory response and fluid administration to normalise blood pressure and haematocrit. These

  17. Relationship between Spinal Cord Volume and Spinal Cord Injury due to Spinal Shortening

    PubMed Central

    Qiu, Feng; Yang, Jin-Cheng; Ma, Xiang-Yang; Xu, Jun-Jie; Yang, Qing-Lei; Zhou, Xin; Xiao, Yao-Sheng; Hu, Hai-Sheng; Xia, Li-Hui

    2015-01-01

    Vertebral column resection is associated with a risk of spinal cord injury. In the present study, using a goat model, we aimed to investigate the relationship between changes in spinal cord volume and spinal cord injury due to spinal shortening, and to quantify the spinal cord volume per 1-mm height in order to clarify a safe limit for shortening. Vertebral column resection was performed at T10 in 10 goats. The spinal cord was shortened until the somatosensory-evoked potential was decreased by 50% from the baseline amplitude or delayed by 10% relative to the baseline peak latency. A wake-up test was performed, and the goats were observed for two days postoperatively. Magnetic resonance imaging was used to measure the spinal cord volume, T10 height, disc height, osteotomy segment height, and spinal segment height pre- and postoperatively. Two of the 10 goats were excluded, and hence, only data from eight goats were analyzed. The somatosensory-evoked potential of these eight goats demonstrated meaningful changes. With regard to neurologic function, five and three goats were classified as Tarlov grades 5 and 4 at two days postoperatively. The mean shortening distance was 23.6 ± 1.51 mm, which correlated with the d-value (post-pre) of the spinal cord volume per 1-mm height of the osteotomy segment (r = 0.95, p < 0.001) and with the height of the T10 body (r = 0.79, p = 0.02). The mean d-value (post-pre) of the spinal cord volume per 1-mm height of the osteotomy segment was 142.87 ± 0.59 mm3 (range, 142.19–143.67 mm3). The limit for shortening was approximately 106% of the vertebral height. The mean volumes of the osteotomy and spinal segments did not significantly change after surgery (t = 0.310, p = 0.765 and t = 1.241, p = 0.255, respectively). Thus, our results indicate that the safe limit for shortening can be calculated using the change in spinal cord volume per 1-mm height. PMID:26001196

  18. Currarino syndrome and spinal dysraphism.

    PubMed

    Kole, Matthew J; Fridley, Jared S; Jea, Andrew; Bollo, Robert J

    2014-06-01

    Currarino syndrome is a rare constellation of congenital anomalies characterized by the triad of sacral dysgenesis, presacral mass, and anorectal malformation. It is frequently associated with other congenital anomalies, often including occult spinal dysraphism. Mutations in the MNX1 gene are identified in the majority of cases. The authors report a rare case of Currarino syndrome in an infant with tethered cord syndrome and a dorsal lipomyelomeningocele continuous with a presacral intradural spinal lipoma, in addition to an imperforate anus and a scimitar sacrum. They review the literature to highlight patterns of occult spinal dysraphism in patients with Currarino syndrome and their relationship to tethered cord syndrome. Approximately 60% of the patients with Currarino syndrome reported in the literature have an occult spinal dysraphism. Published studies suggest that the risk of tethered cord syndrome may be higher among patients with a lipoma and lower among those with a teratoma or anterior meningocele.

  19. Overview of Spinal Cord Disorders

    MedlinePlus

    ... cord consists of gray matter shaped like a butterfly: The front "wings" (anterior or motor horns) contain ... In the center of the spinal cord, a butterfly-shaped area of gray matter helps relay impulses ...

  20. Depression and Spinal Cord Injury

    MedlinePlus

    ... colleagues, with an educational grant from Pfizer Inc. University of Washington-operated SCI Clinics: Harborview Medical Center ... Spinal Cord Injury Clinic nurses: 206-744-5862 University of Washington Medical Center Rehabilitation Medicine Clinic 1959 ...

  1. Surgical treatment for bacterial meningitis after spinal surgery

    PubMed Central

    Zhang, Li-Min; Ren, Liang; Zhao, Zhen-Qi; Zhao, Yan-Rui; Zheng, Yin-Feng; Zhou, Jun-Lin

    2017-01-01

    Abstract Rationale: Bacterial meningitis (BM) has been recognized as a rare complication of spinal surgery. However, there are few reports on the management of postoperative BM in patients who have undergone spinal surgery. The initial approach to the treatment of patients suspected with acute BM depends on the stage at which the syndrome is recognized, the speed of the diagnostic evaluation, and the need for antimicrobial and adjunctive therapy. Patient concerns: Here, we report the case of a patient with lumbar spinal stenosis and underwent a transforaminal lumbar interbody fusion at L4–L5. The dura mater was damaged intraoperatively. After the surgery, the patient displayed dizziness and vomiting. A CSF culture revealed Pseudomonas aeruginosa infection. Diagnoses: The patient was diagnosed with postoperative BM. Interventions: Antibiotic was administered intravenously depends on the organism isolated. Nevertheless, the patient's clinical condition continued to deteriorate. The patient underwent 2 open revision surgeries for dural lacerations and cyst debridement repair. Outcomes: The patient's mental status returned to normal and her headaches diminished. The patient did not have fever and the infection healed. Lessons: Surgical intervention is an effective method to treat BM after spinal operation in cases where conservative treatments have failed. Further, early surgical repair of dural lacerations and cyst debridement can be a treatment option for selected BM patients with complications including pseudomeningocele, wound infection, or cerebrospinal fluid leakage. PMID:28296723

  2. Photodynamic inactivation of mammalian viruses and bacteriophages.

    PubMed

    Costa, Liliana; Faustino, Maria Amparo F; Neves, Maria Graça P M S; Cunha, Angela; Almeida, Adelaide

    2012-07-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  3. Recent advances in mammalian protein production

    PubMed Central

    Bandaranayake, Ashok D.; Almo, Steven C.

    2014-01-01

    Mammalian protein production platforms have had a profound impact in many areas of basic and applied research, and an increasing number of blockbuster drugs are recombinant mammalian proteins. With global sales of these drugs exceeding US$120 billion per year, both industry and academic research groups continue to develop cost effective methods for producing mammalian proteins to support preclinical and clinical evaluations of potential therapeutics. While a wide range of platforms have been successfully exploited for laboratory use, the bulk of recent biologics have been produced in mammalian cell lines due to the requirement for post translational modification and the biosynthetic complexity of the target proteins. In this review we highlight the range of mammalian expression platforms available for recombinant protein production, as well as advances in technologies for the rapid and efficient selection of highly productive clones. PMID:24316512

  4. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  5. The change tendency of PI3K/Akt pathway after spinal cord injury

    PubMed Central

    Zhang, Peixun; Zhang, Luping; Zhu, Lei; Chen, Fangmin; Zhou, Shuai; Tian, Ting; Zhang, Yuqiang; Jiang, Xiaorui; Li, Xuekun; Zhang, Chuansen; Xu, Lin; Huang, Fei

    2015-01-01

    Spinal cord injury (SCI) refers to the damage of spinal cord’s structure and function due to a variety of causes. At present, many scholars have confirmed that apoptosis is the main method of secondary injury in spinal cord injury. In view of understanding the function of PI3K/Akt pathway on spinal cord injury, this study observed the temporal variation of key molecules (PI3K, Akt, p-Akt) in the PI3K/Akt pathway after spinal cord injury by immunohistochemistry and Western-blot. The results showed that the expression of PI3K, Akt and p-Akt display a sharp increase one day after the spinal cord injury, and then it decreased gradually with the time passing by, but the absolute expression was certainly higher than the normal group. These results indicate that the PI3K/Akt signaling pathway is involved in the spinal cord injury and the mechanism may be related to apoptosis. PMID:26807170

  6. Quantitative analysis of the toxicity of human amniotic fluid to cultured rat spinal cord.

    PubMed

    Drewek, M J; Bruner, J P; Whetsell, W O; Tulipan, N

    1997-10-01

    It has been proposed that the myelodysplastic components of a myelomeningocele are secondarily damaged as the result of exposure to amniotic fluid, the so-called 'two-hit' hypothesis. The critical time at which this secondary insult might occur has not been clearly defined. The present study addresses this issue by quantitatively assessing the toxic effects of human amniotic fluid of various gestational ages upon organotypic cultures of rat spinal cord. Using an assay for lactate dehydrogenase efflux to evaluate toxicity in such spinal cord cultures, we found that the amniotic fluid became toxic at approximately 34 weeks' gestation. This toxic effect of amniotic fluid appears to emerge rather suddenly. Accordingly, it seems reasonable to suggest that prevention of exposure of vulnerable spinal cord tissue to this toxicity by surgical closure of a myelomeningocele defect prior to the emergence of toxicity in amniotic fluid may prevent injury to vulnerable myelodysplastic spinal cord tissue.

  7. Cytokine-regulated neutrophil recruitment is required for brain but not spinal cord inflammation during EAE

    PubMed Central

    Simmons, Sarah B.; Liggitt, Denny; Goverman, Joan M.

    2014-01-01

    Multiple sclerosis (MS) is an autoimmune disease in which inflammatory lesions lead to tissue injury in the brain and/or spinal cord. The specific sites of tissue injury are strong determinants of clinical outcome in MS, but the pathways that determine whether damage occurs in the brain or spinal cord are not understood. Previous studies in mouse models of MS demonstrated that IFN-γ and IL-17 regulate lesion localization within the brain, however, the mechanisms by which these cytokines mediate their effects have not been identified. Here we show that IL-17 promoted, but IFN-γ inhibited, ELR+ chemokine-mediated neutrophil recruitment to the brain, and that neutrophil infiltration was required for parenchymal tissue damage in the brain. In contrast, IFN-γ promoted ELR+ chemokine expression and neutrophil recruitment to the spinal cord. Surprisingly, tissue injury in the spinal cord did not exhibit the same dependence on neutrophil recruitment that was observed for the brain. Our results demonstrate that the brain and spinal cord exhibit distinct sensitivities to cellular mediators of tissue damage, and that IL-17 and IFN-γ differentially regulate recruitment of these mediators to each microenvironment. These findings suggest an approach toward tailoring therapies for patients with distinct patterns of neuroinflammation. PMID:24913979

  8. Spinal anomalies in Pfeiffer syndrome.

    PubMed

    Moore, M H; Lodge, M L; Clark, B E

    1995-05-01

    Review of the spinal radiographs of a consecutive series of 11 patients with Pfeiffer syndrome presenting to the Australian Craniofacial Unit was performed. The prevalence of cervical spine fusions was high, and the pattern of fusion complex. Isolated anomalies were evident at lower levels, including two cases of sacrococcygeal eversion. Spinal anomalies occur more frequently in the more severely involved cases of Pfeiffer syndrome emphasizing the generalized dysostotic nature of this condition.

  9. Prevalence of sleep apnoea in patients over 40 years of age with spinal cord lesions.

    PubMed Central

    Short, D J; Stradling, J R; Williams, S J

    1992-01-01

    Twenty two patients over the age of 40 with stable spinal cord damage underwent overnight sleep studies to investigate the prevalence of sleep apnoea. Ten patients had some evidence of obstructive sleep apnoea (OSA). Hypoxic events were scored as number of dips of SaO2 more than 4% below the preceding 10 minute average (> 4% SaO2 dip rate). All the patients had more than five such dips per hour and six had clearly abnormal dip rates of more than 15 per hour. Two other patients had dip rates above 10 per hour without apnoeas but periods of central hypoventilation mainly during rapid eye movement (REM) sleep. OSA appears to be more common in older patients with spinal cord injury than in the general population. Possible relevant factors include patient selection, reduced ventilatory function secondary to spinal cord damage, sleep posture and medication. PMID:1469399

  10. Spinal muscular atrophy

    PubMed Central

    2011-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by degeneration of alpha motor neurons in the spinal cord, resulting in progressive proximal muscle weakness and paralysis. Estimated incidence is 1 in 6,000 to 1 in 10,000 live births and carrier frequency of 1/40-1/60. This disease is characterized by generalized muscle weakness and atrophy predominating in proximal limb muscles, and phenotype is classified into four grades of severity (SMA I, SMAII, SMAIII, SMA IV) based on age of onset and motor function achieved. This disease is caused by homozygous mutations of the survival motor neuron 1 (SMN1) gene, and the diagnostic test demonstrates in most patients the homozygous deletion of the SMN1 gene, generally showing the absence of SMN1 exon 7. The test achieves up to 95% sensitivity and nearly 100% specificity. Differential diagnosis should be considered with other neuromuscular disorders which are not associated with increased CK manifesting as infantile hypotonia or as limb girdle weakness starting later in life. Considering the high carrier frequency, carrier testing is requested by siblings of patients or of parents of SMA children and are aimed at gaining information that may help with reproductive planning. Individuals at risk should be tested first and, in case of testing positive, the partner should be then analyzed. It is recommended that in case of a request on carrier testing on siblings of an affected SMA infant, a detailed neurological examination should be done and consideration given doing the direct test to exclude SMA. Prenatal diagnosis should be offered to couples who have previously had a child affected with SMA (recurrence risk 25%). The role of follow-up coordination has to be managed by an expert in neuromuscular disorders and in SMA who is able to plan a multidisciplinary intervention that includes pulmonary, gastroenterology/nutrition, and orthopedic care. Prognosis depends on the phenotypic

  11. Technology of mammalian cell encapsulation.

    PubMed

    Uludag, H; De Vos, P; Tresco, P A

    2000-08-20

    Entrapment of mammalian cells in physical membranes has been practiced since the early 1950s when it was originally introduced as a basic research tool. The method has since been developed based on the promise of its therapeutic usefulness in tissue transplantation. Encapsulation physically isolates a cell mass from an outside environment and aims to maintain normal cellular physiology within a desired permeability barrier. Numerous encapsulation techniques have been developed over the years. These techniques are generally classified as microencapsulation (involving small spherical vehicles and conformally coated tissues) and macroencapsulation (involving larger flat-sheet and hollow-fiber membranes). This review is intended to summarize techniques of cell encapsulation as well as methods for evaluating the performance of encapsulated cells. The techniques reviewed include microencapsulation with polyelectrolyte complexation emphasizing alginate-polylysine capsules, thermoreversible gelation with agarose as a prototype system, interfacial precipitation and interfacial polymerization, as well as the technology of flat sheet and hollow fiber-based macroencapsulation. Four aspects of encapsulated cells that are critical for the success of the technology, namely the capsule permeability, mechanical properties, immune protection and biocompatibility, have been singled out and methods to evaluate these properties were summarized. Finally, speculations regarding future directions of cell encapsulation research and device development are included from the authors' perspective.

  12. Chemosignals, hormones and mammalian reproduction.

    PubMed

    Petrulis, Aras

    2013-05-01

    Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as "pheromones" but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking.

  13. Structure of the mammalian kinetochore.

    PubMed

    Ris, H; Witt, P L

    1981-01-01

    The structure of the mammalian trilaminar kinetochore was investigated using stereo electron microscopy of chromosomes in hypotonic solutions which unraveled the chromosome but maintained microtubules. Mouse and Chinese hamster ovary cells were arrested in Colcemid and allowed to reform microtubules after Colcemid was removed. Recovered cells were then swelled, lysed or spread in hypotonic solutions which contained D2O to preserve microtubules. The chromosomes were observed in thin and thick sections and as whole mounts using high voltage electron microscopy. Bundles of microtubules were seen directly attached to chromatin, indicating that the kinetochore outer layer represents a differential arrangement of chromatin, continuous with the body of the chromosome. In cells fixed wihout pretreatment, the outer layer could be seen to be composed of hairpin loops of chromatin stacked together to form a solid layer. The hypotonically-induced unraveling of the outer layer was found to be reversible, and the typical 300 nm thick disk reformed when cells were returned to isotonic solutions. Short microtubules, newly nucleated after Colcemid removal, were found not to be attached to the kinetochore out layer, but were situated in the fibrous corona on the external surface of the outer layer. This was verified by observation of thick sections in stereo which made it possible to identify microtubules ends within the section. Thus, kinetochore microtubules are nucleated within the fibrous corona, and subsequently become attached to the outer layer.

  14. Mammalian cell cultivation in space

    NASA Astrophysics Data System (ADS)

    Gmünder, Felix K.; Suter, Robert N.; Kiess, M.; Urfer, R.; Nordau, C.-G.; Cogoli, A.

    Equipment used in space for the cultivation of mammalian cells does not meet the usual standard of earth bound bioreactors. Thus, the development of a space worthy bioreactor is mandatory for two reasons: First, to investigate the effect on single cells of the space environment in general and microgravity conditions in particular, and second, to provide researchers on long term missions and the Space Station with cell material. However, expertise for this venture is not at hand. A small and simple device for animal cell culture experiments aboard Spacelab (Dynamic Cell Culture System; DCCS) was developed. It provides 2 cell culture chambers, one is operated as a batch system, the other one as a perfusion system. The cell chambers have a volume of 200 μl. Medium exchange is achieved with an automatic osmotic pump. The system is neither mechanically stirred nor equipped with sensors. Oxygen for cell growth is provided by a gas chamber that is adjacent to the cell chambers. The oxygen gradient produced by the growing cells serves to maintain the oxygen influx by diffusion. Hamster kidney cells growing on microcarriers were used to test the biological performance of the DCCS. On ground tests suggest that this system is feasible.

  15. Enhanced p62 expression triggers concomitant autophagy and apoptosis in a rat chronic spinal cord compression model.

    PubMed

    Chen, Zhi; Fu, Qingge; Shen, Baoliang; Huang, Xuan; Wang, Kun; He, Ping; Li, Fengning; Zhang, Fan; Shen, Hongxing

    2014-06-01

    Chronic spinal cord compression is the result of mechanical pressure on the spinal cord, which in contrast to traumatic spinal cord injury, leads to slowly progressing nerve degeneration. These two types of spinal cord injuries may trigger similar mechanisms, including motoric nerve cell apoptosis and autophagy, however, depending on differences in the underlying injury severity, nerve reactions may predominantly involve the conservation of function or the initiation of functions for the removal of irreversibly damaged cells. p62 is a multidomain adapter protein, which is involved in apoptosis and cell survival as well as autophagy, and is a common component of protein aggregations in neurodegenerative diseases. In the present study, a rat chronic spinal cord compression model was used, in which the spinal cord was progressively compressed for six weeks and then constantly compressed for another 10 weeks. As a result Basso, Beattie and Bresnahan locomotor scaling revealed a gradual score decrease until the 6th week followed by constant recovery until the 16th week after spinal cord compression was initiated. During the first eight weeks of the experiment, p62 and nuclear factor-κB (NF-κB) were increasingly expressed up to a constant plateau at 12-16 weeks, whereas caspase 3 exhibited a marginally enhanced expression at 8 weeks, however, reached a constant maximum peak 12-16 weeks after the beginning of spinal cord compression. It was hypothesized that, in the initial phase of spinal cord compression, enhanced p62 expression triggered NF-κB activity, directing the cell responses mainly to cell survival and autophagy, whereas following eight weeks of spinal cord compression, caspase 3 was additionally activated indicating cumulative elimination of irreversibly damaged nerve cells with highly activated autophagy.

  16. Right Hemisphere Brain Damage

    MedlinePlus

    ... Language and Swallowing / Disorders and Diseases Right Hemisphere Brain Damage [ en Español ] What is right hemisphere brain ... right hemisphere brain damage ? What is right hemisphere brain damage? Right hemisphere brain damage (RHD) is damage ...

  17. Spinal trauma. Pathophysiology and management of traumatic spinal injuries.

    PubMed

    Shores, A

    1992-07-01

    Spinal trauma can originate from internal or external sources. Injuries to the spinal cord can be classified as either concussive or compressive and concussive. The pathophysiologic events surrounding spinal cord injury include the primary injury (compression, concussion) and numerous secondary injury mechanisms (vascular, biochemical, electrolyte), which are mediated by excessive oxygen free radicles, neurotransmitter and electrolyte alterations in cell membrane permeability, excitotoxic amino acids, and various other biochemical factors that collectively result in reduced SCBF, ischemia, and eventual necrosis of the gray and white matter. Management of acute spinal cord injuries includes the use of a high-dose corticosteroid regimen within the initial 8 hours after trauma. Sodium prednisolone and methylprednisolone, at recommended doses, act as oxygen radical scavengers and are anti-inflammatory. Additional considerations are the stability of the vertebral column, other conditions associated with trauma (i.e., pneumothorax), and the presence or absence of spinal cord compression, which may warrant surgical therapy. Vertebral fractures or luxations can occur in any area of the spine but most commonly occur at the junction of mobile and immobile segments. Dorsal and dorsolateral surgical approaches are applicable to the lumbosacral and thoracolumbar spine and dorsal and ventral approaches to the cervical spine. Indications for surgical intervention include spinal cord compression and vertebral instability. Instability can be determined from the type of fracture, how many of the three compartments of the vertebrae are disrupted, and on occasion, by carefully positioned stress studies of fluoroscopy. Decompression (dorsal laminectomy, hemilaminectomy, or ventral cervical slot) is employed when compression of the spinal cord exists. The hemilaminectomy (unilateral or bilateral) causes less instability than dorsal laminectomy and therefore should be used when practical

  18. [Acute spinal subdural hematoma after attempted spinal anesthesia].

    PubMed

    Likar, R; Mathiaschitz, K; Spendel, M; Krumpholz, R; Martin, E

    1996-01-01

    This is a report of a case of a subdural haematoma with resulting paraplegia after attempted spinal anaesthesia. Epidural and subdural haematomas are rare complications after central neural blockade. The complication described here was the result of an unsuccessful attempt to puncture the spinal channel. The patient was a 72-year-old woman with a fracture of the left femoral neck, which it was intended to stabilize operatively. Findings that made lumbar spinal puncture difficult were severe overweight, and lordosis and scoliosis of the lumbar spine resulting from degenerative changes. Spinal anaesthesia was suggested because the patient had eaten shortly before and because she suffered from asthma. From the aspect of haemostasis no contraindications were present, and the anaesthesist was experienced in spinal anaesthesia even under difficult anatomical conditions. Several unsuccessful attempts were made to puncture the lumbar spinal channel while the patient was lying on her right side. It was also impossible to reach the spinal channel from a median or left paramedian approach. We used atraumatic pencil-point needles (Sprotte gauge 24, 90 mm). No blood was aspirated during any of the attempts. The surgical intervention was finally performed under a general anaesthetic in view of the urgency. No significant complications occurred during the operation, and no neurological abnormalities were observed immediately after or in the next 8 h after the operation. At 12 h after the operation a paraparesis was found caudal to L3. After this had been verified by radiological and neurological tests, neurosurgical decompression was carried out as quickly as possible. During the operation a distinct subdural haematoma without any detectable source of bleeding was discovered. Even after surgical revision and evacuation of the remaining haematoma it was not possible to reverse the paraplegia, in spite of rehabilitation measures. Despite a certain fragility of the vessel and

  19. High resolution thermal denaturation of mammalian DNAs.

    PubMed Central

    Guttmann, T; Vítek, A; Pivec, L

    1977-01-01

    High resolution melting profiles of different mammalian DNAs are presented. Melting curves of various mammalian DNAs were compared with respect to the degree of asymmetry, first moment, transition breath and Tmi of individual subtransitions. Quantitative comparison of the shape of all melting curves was made. Correlation between phylogenetical relations among mammals and shape of the melting profiles of their DNAs was demonstrated. The difference between multi-component heterogeneity of mammalian DNAs found by optical melting analysis and sedimentation in CsCl-netropsin density gradient is also discussed. PMID:840642

  20. Ghrelin Receptors in Non-Mammalian Vertebrates

    PubMed Central

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2012-01-01

    The growth hormone secretagogue-receptor (GHS-R) was discovered in humans and pigs in 1996. The endogenous ligand, ghrelin, was discovered 3 years later, in 1999, and our understanding of the physiological significance of the ghrelin system in vertebrates has grown steadily since then. Although the ghrelin system in non-mammalian vertebrates is a subject of great interest, protein sequence data for the receptor in non-mammalian vertebrates has been limited until recently, and related biological information has not been well organized. In this review, we summarize current information related to the ghrelin receptor in non-mammalian vertebrates. PMID:23882259

  1. Effects of Enhanced Oxygen Delivery by Perfluorocarbons in Spinal Cord Injury

    DTIC Science & Technology

    2013-10-01

    limiting the cascade of ongoing damage which is at least in part mediated by anaerobic metabolism and lipid peroxidation. Historically, ventilation...graded alcohols , stained for TUNEL positive cells. Dead TUNEL positive cells were counted from section rostral and caudal to the epicenter of the...injured spinal cord in hopes of limiting the cascade of ongoing damage which is at least in part mediated by anaerobic metabolism and lipid

  2. ASIC channel inhibition enhances excitotoxic neuronal death in an in vitro model of spinal cord injury.

    PubMed

    Mazzone, Graciela L; Veeraraghavan, Priyadharishini; Gonzalez-Inchauspe, Carlota; Nistri, Andrea; Uchitel, Osvaldo D

    2017-02-20

    In the spinal cord high extracellular glutamate evokes excitotoxic damage with neuronal loss and severe locomotor impairment. During the cell dysfunction process, extracellular pH becomes acid and may activate acid-sensing ion channels (ASICs) which could be important contributors to neurodegenerative pathologies. Our previous studies have shown that transient application of the glutamate analog kainate (KA) evokes delayed excitotoxic death of spinal neurons, while white matter is mainly spared. The present goal was to enquire if ASIC channels modulated KA damage in relation to locomotor network function and cell death. Mouse spinal cord slices were treated with KA (0.01 or 0.1mM) for 1h, and then washed out for 24h prior to analysis. RT-PCR results showed that KA (at 0.01mM concentration that is near-threshold for damage) increased mRNA expression of ASIC1a, ASIC1b, ASIC2 and ASIC3, an effect reversed by the ASIC inhibitor 4',6-diamidino-2-phenylindole (DAPI). A KA neurotoxic dose (0.1mM) reduced ASIC1a and ASIC2 expression. Cell viability assays demonstrated KA-induced large damage in spinal slices from mice with ASIC1a gene ablation. Likewise, immunohistochemistry indicated significant neuronal loss when KA was followed by the ASIC inhibitors DAPI or amiloride. Electrophysiological recording from ventral roots of isolated spinal cords showed that alternating oscillatory cycles were slowed down by 0.01mMKA, and intensely inhibited by subsequently applied DAPI or amiloride. Our data suggest that early rise in ASIC expression and function counteracted deleterious effects on spinal networks by raising the excitotoxicity threshold, a result with potential implications for improving neuroprotection.

  3. Radiation Dose-Volume Effects in the Spinal Cord

    SciTech Connect

    Kirkpatrick, John P.; Kogel, Albert J. van der; Schultheiss, Timothy E.

    2010-03-01

    Dose-volume data for myelopathy in humans treated with radiotherapy (RT) to the spine is reviewed, along with pertinent preclinical data. Using conventional fractionation of 1.8-2 Gy/fraction to the full-thickness cord, the estimated risk of myelopathy is <1% and <10% at 54 Gy and 61 Gy, respectively, with a calculated strong dependence on dose/fraction (alpha/beta = 0.87 Gy.) Reirradiation data in animals and humans suggest partial repair of RT-induced subclinical damage becoming evident about 6 months post-RT and increasing over the next 2 years. Reports of myelopathy from stereotactic radiosurgery to spinal lesions appear rare (<1%) when the maximum spinal cord dose is limited to the equivalent of 13 Gy in a single fraction or 20 Gy in three fractions. However, long-term data are insufficient to calculate a dose-volume relationship for myelopathy when the partial cord is treated with a hypofractionated regimen.

  4. Molecular Imaging in Stem Cell Therapy for Spinal Cord Injury

    PubMed Central

    Tian, Mei; Zhang, Hong

    2014-01-01

    Spinal cord injury (SCI) is a serious disease of the center nervous system (CNS). It is a devastating injury with sudden loss of motor, sensory, and autonomic function distal to the level of trauma and produces great personal and societal costs. Currently, there are no remarkable effective therapies for the treatment of SCI. Compared to traditional treatment methods, stem cell transplantation therapy holds potential for repair and functional plasticity after SCI. However, the mechanism of stem cell therapy for SCI remains largely unknown and obscure partly due to the lack of efficient stem cell trafficking methods. Molecular imaging technology including positron emission tomography (PET), magnetic resonance imaging (MRI), optical imaging (i.e., bioluminescence imaging (BLI)) gives the hope to complete the knowledge concerning basic stem cell biology survival, migration, differentiation, and integration in real time when transplanted into damaged spinal cord. In this paper, we mainly review the molecular imaging technology in stem cell therapy for SCI. PMID:24701583

  5. Spinal Extradural Arachnoid Cyst

    PubMed Central

    Woo, Joon Bum; Kang, Kyung Taek; Lee, Jun Seok; Song, Geun Seong; Sung, Soon Ki; Lee, Sang Weon

    2016-01-01

    A spinal extradural arachnoid cyst (SEAC) results from a rare small defect of the dura matter that leads to cerebrospinal fluid accumulation and communication defects between the cyst and the subarachnoid space. There is consensus for the treatment of the dural defect, but not for the treatment of the cyst. Some advocate a total resection of the cysts and repair of the communication site to prevent the recurrence of a SEAC, while others recommended more conservative therapy. Here we report the outcomes of selective laminectomy and closure of the dural defect for a 72-year-old and a 33-year-old woman. Magnetic resonance imaging of these patients showed an extradural cyst from T12 to L4 and an arachnoid cyst at the posterior epidural space of T12 to L2. For both patients, we surgically fenestrated the cyst and repaired the dural defect using a partial hemi-laminectomy. The patient’s symptoms dramatically subsided, and follow-up radiological images show a complete disappearance of the cyst in both patients. Our results suggest that fenestration of the cyst can be a safe and effective approach in treating SEACs compared to a classical complete resection of the cyst wall with multilevel laminectomy. PMID:27857934

  6. Spinal Extradural Arachnoid Cyst

    PubMed Central

    Choi, Seung Won; Seong, Han Yu

    2013-01-01

    Spinal extradural arachnoid cyst (SEAC) is a rare disease and uncommon cause of compressive myelopathy. The etiology remains still unclear. We experienced 2 cases of SEACs and reviewed the cases and previous literatures. A 59-year-old man complained of both leg radiating pain and paresthesia for 4 years. His MRI showed an extradural cyst from T12 to L3 and we performed cyst fenestration and repaired the dural defect with tailored laminectomy. Another 51-year-old female patient visited our clinical with left buttock pain and paresthesia for 3 years. A large extradural cyst was found at T1-L2 level on MRI and a communication between the cyst and subarachnoid space was illustrated by CT-myelography. We performed cyst fenestration with primary repair of dural defect. Both patients' symptoms gradually subsided and follow up images taken 1-2 months postoperatively showed nearly disappeared cysts. There has been no documented recurrence in these two cases so far. Tailored laminotomy with cyst fenestration can be a safe and effective alternative choice in treating SEACs compared to traditional complete resection of cyst wall with multi-level laminectomy. PMID:24294463

  7. Shoulder Pain in Cases of Spinal Injury: Influence of the Position of the Wheelchair Seat

    ERIC Educational Resources Information Center

    Giner-Pascual, Manuel; Alcanyis-Alberola, Modesto; Millan Gonzalez, Luis; Aguilar-Rodriguez, Marta; Querol, Felipe

    2011-01-01

    The objective of this study was to determine the relationship between shoulder pain and the position of the seat of a wheelchair relative to the ground and to determine the relationship between shoulder pain and structural damage. A transversal study of a patient cohort of 140 patients with grade A and B spinal cord injuries below the T1 vertebra,…

  8. The regenerative effects of electromagnetic field on spinal cord injury.

    PubMed

    Ross, Christina L; Syed, Ishaq; Smith, Thomas L; Harrison, Benjamin S

    2017-01-01

    Traumatic spinal cord injury (SCI) is typically the result of direct mechanical impact to the spine, leading to fracture and/or dislocation of the vertebrae along with damage to the surrounding soft tissues. Injury to the spinal cord results in disruption of axonal transmission of signals. This primary trauma causes secondary injuries that produce immunological responses such as neuroinflammation, which perpetuates neurodegeneration and cytotoxicity within the injured spinal cord. To date there is no FDA-approved pharmacological agent to prevent the development of secondary SCI and induce regenerative processes aimed at healing the spinal cord and restoring neurological function. An alternative method to electrically activate spinal circuits is the application of a noninvasive electromagnetic field (EMF) over intact vertebrae. The EMF method of modulating molecular signaling of inflammatory cells emitted in the extra-low frequency range of <100 Hz, and field strengths of <5 mT, has been reported to decrease inflammatory markers in macrophages, and increase endogenous mesenchymal stem cell (MSC) proliferation and differentiation rates. EMF has been reported to promote osteogenesis by improving the effects of osteogenic media, and increasing the proliferation of osteoblasts, while inhibiting osteoclast formation and increasing bone matrix in vitro. EMF has also been shown to increase chondrogenic markers and collagen and induce neural differentiation, while increasing cell viability by over 50%. As advances are made in stem cell technologies, stabilizing the cell line after differentiation is crucial to SCI repair. Once cell-seeded scaffolds are implanted, EMF may be applied outside the wound for potential continued adjunct treatment during recovery.

  9. Recent knowledge concerning mammalian sperm chromatin organization and its potential weaknesses when facing oxidative challenge.

    PubMed

    Noblanc, Anais; Kocer, Ayhan; Drevet, Joël R

    2014-01-01

    Spermatozoa are the smallest and most cyto-differentiated mammalian cells. From a somatic cell-like appearance at the beginning of spermatogenesis, the male germ cell goes through a highly sophisticated process to reach its final organization entirely devoted to its mission which is to deliver the paternal genome to the oocyte. In order to fit the paternal DNA into the tiny spermatozoa head, complete chromatin remodeling is necessary. This review essentially focuses on present knowledge of this mammalian sperm nucleus compaction program. Particular attention is given to most recent advances that concern the specific organization of mammalian sperm chromatin and its potential weaknesses. Emphasis is placed on sperm DNA oxidative damage that may have dramatic consequences including infertility, abnormal embryonic development and the risk of transmission to descendants of an altered paternal genome.

  10. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-12-1-0587 TITLE: Directing Spinal Cord Plasticity: The Impact of Stretch ...Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury. 5b. GRANT NUMBER W81XWH-12-1...ABSTRACT Essentially all spinal cord injured patients receive stretching therapies beginning within the first few weeks post-injury. Despite

  11. Subdural Thoracolumbar Spine Hematoma after Spinal Anesthesia: A Rare Occurrence and Literature Review of Spinal Hematomas after Spinal Anesthesia

    PubMed Central

    Maddali, Prasanthi; Walker, Blake; Fisahn, Christian; Page, Jeni; Diaz, Vicki; Zwillman, Michael E; Oskouian, Rod J; Tubbs, R. Shane

    2017-01-01

    Spinal hematomas are a rare but serious complication of spinal epidural anesthesia and are typically seen in the epidural space; however, they have been documented in the subdural space. Spinal subdural hematomas likely exist within a traumatically induced space within the dural border cell layer, rather than an anatomical subdural space. Spinal subdural hematomas present a dangerous clinical situation as they have the potential to cause significant compression of neural elements and can be easily mistaken for spinal epidural hematomas. Ultrasound can be an effective modality to diagnose subdural hematoma when no epidural blood is visualized. We have reviewed the literature and present a full literature review and a case presentation of an 82-year-old male who developed a thoracolumbar spinal subdural hematoma after spinal epidural anesthesia. Anticoagulant therapy is an important predisposing risk factor for spinal epidural hematomas and likely also predispose to spinal subdural hematomas. It is important to consider spinal subdural hematomas in addition to spinal epidural hematomas in patients who develop weakness after spinal epidural anesthesia, especially in patients who have received anticoagulation. PMID:28357164

  12. Subdural Thoracolumbar Spine Hematoma after Spinal Anesthesia: A Rare Occurrence and Literature Review of Spinal Hematomas after Spinal Anesthesia.

    PubMed

    Maddali, Prasanthi; Walker, Blake; Fisahn, Christian; Page, Jeni; Diaz, Vicki; Zwillman, Michael E; Oskouian, Rod J; Tubbs, R Shane; Moisi, Marc

    2017-02-16

    Spinal hematomas are a rare but serious complication of spinal epidural anesthesia and are typically seen in the epidural space; however, they have been documented in the subdural space. Spinal subdural hematomas likely exist within a traumatically induced space within the dural border cell layer, rather than an anatomical subdural space. Spinal subdural hematomas present a dangerous clinical situation as they have the potential to cause significant compression of neural elements and can be easily mistaken for spinal epidural hematomas. Ultrasound can be an effective modality to diagnose subdural hematoma when no epidural blood is visualized. We have reviewed the literature and present a full literature review and a case presentation of an 82-year-old male who developed a thoracolumbar spinal subdural hematoma after spinal epidural anesthesia. Anticoagulant therapy is an important predisposing risk factor for spinal epidural hematomas and likely also predispose to spinal subdural hematomas. It is important to consider spinal subdural hematomas in addition to spinal epidural hematomas in patients who develop weakness after spinal epidural anesthesia, especially in patients who have received anticoagulation.

  13. Adult spinal cord ependymal layer: a promising pool of quiescent stem cells to treat spinal cord injury.

    PubMed

    Panayiotou, Elena; Malas, Stavros

    2013-11-28

    Spinal cord injury (SCI) is a major health burden and currently there is no effective medical intervention. Research performed over the last decade revealed that cells surrounding the central canal of the adult spinal cord and forming the ependymal layer acquire stem cell properties either in vitro or in response to injury. Following SCI activated ependymal cells generate progeny cells which migrate to the injury site but fail to produce the appropriate type of cells in sufficient number to limit the damage, rendering this physiological response mainly ineffective. Research is now focusing on the manipulation of ependymal cells to produce cells of the oligodendrocyte lineage which are primarily lost in such a situation leading to secondary neuronal degeneration. Thus, there is a need for a more focused approach to understand the molecular properties of adult ependymal cells in greater detail and develop effective strategies for guiding their response during SCI.

  14. FAQs about Spinal Cord Injury (SCI)

    MedlinePlus

    ... spinal cord injury? Where is the nearest SCI Model System of Care? Emergency Medical Services Hospital (Acute) Care Rehabilitation More ... spinal cord injury? Where is the nearest SCI Model System of Care? Follow Us! Get Email Updates Questions & Comments Suggest ...

  15. Genetics Home Reference: spinal muscular atrophy

    MedlinePlus

    ... by a loss of specialized nerve cells, called motor neurons , in the spinal cord and the part ... the spinal cord ( the brainstem ). The loss of motor neurons leads to weakness and wasting ( atrophy ) of ...

  16. Rehabilitation in spinal infection diseases

    PubMed Central

    Nas, Kemal; Karakoç, Mehmet; Aydın, Abdulkadir; Öneş, Kadriye

    2015-01-01

    Spinal cord infections were the diseases defined by Hypocrite yet the absence of modern medicine and there was not a real protocol in rehabilitation although there were many aspects in surgical treatment options. The patients whether surgically or conservatively treated had a lot of neurological, motor, and sensory disturbances. Our clinic has quite experience from our previous researchs. Unfortunately, serious spinal cord infections are still present in our region. In these patients the basic rehabilitation approaches during early, pre-operation, post-operation period and in the home environment will provide significant contributions to improve the patients’ sensory and motor skills, develop the balance and proriocaption, increase the independence of patients in daily living activities and minimize the assistance of other people. There is limited information in the literature related with the nature of the rehabilitation programmes to be applied for patients with spinal infections. The aim of this review is to share our clinic experience and summarise the publications about spinal infection rehabilitation. There are very few studies about the rehabilitation of spinal infections. There are still not enough studies about planning and performing rehabilitation programs in these patients. Therefore, a comprehensive rehabilitation programme during the hospitalisation and home periods is emphasised in order to provide optimal management and prevent further disability. PMID:25621205

  17. Rehabilitation in spinal infection diseases.

    PubMed

    Nas, Kemal; Karakoç, Mehmet; Aydın, Abdulkadir; Öneş, Kadriye

    2015-01-18

    Spinal cord infections were the diseases defined by Hypocrite yet the absence of modern medicine and there was not a real protocol in rehabilitation although there were many aspects in surgical treatment options. The patients whether surgically or conservatively treated had a lot of neurological, motor, and sensory disturbances. Our clinic has quite experience from our previous researchs. Unfortunately, serious spinal cord infections are still present in our region. In these patients the basic rehabilitation approaches during early, pre-operation, post-operation period and in the home environment will provide significant contributions to improve the patients' sensory and motor skills, develop the balance and proriocaption, increase the independence of patients in daily living activities and minimize the assistance of other people. There is limited information in the literature related with the nature of the rehabilitation programmes to be applied for patients with spinal infections. The aim of this review is to share our clinic experience and summarise the publications about spinal infection rehabilitation. There are very few studies about the rehabilitation of spinal infections. There are still not enough studies about planning and performing rehabilitation programs in these patients. Therefore, a comprehensive rehabilitation programme during the hospitalisation and home periods is emphasised in order to provide optimal management and prevent further disability.

  18. Enzymology of Mammalian DNA Methyltransferases.

    PubMed

    Jurkowska, Renata Z; Jeltsch, Albert

    2016-01-01

    DNA methylation is currently one of the hottest topics in basic and biomedical research. Despite tremendous progress in understanding the structures and biochemical properties of the mammalian DNA nucleotide methyltransferases (DNMTs), principles of their regulation in cells have only begun to be uncovered. In mammals, DNA methylation is introduced by the DNMT1, DNMT3A, and DNMT3B enzymes, which are all large multi-domain proteins. These enzymes contain a catalytic C-terminal domain with a characteristic cytosine-C5 methyltransferase fold and an N-terminal part with different domains that interacts with other proteins and chromatin and is involved in targeting and regulation of the DNMTs. The subnuclear localization of the DNMT enzymes plays an important role in their biological function: DNMT1 is localized to replicating DNA via interaction with PCNA and UHRF1. DNMT3 enzymes bind to heterochromatin via protein multimerization and are targeted to chromatin by their ADD and PWWP domains. Recently, a novel regulatory mechanism has been discovered in DNMTs, as latest structural and functional data demonstrated that the catalytic activities of all three enzymes are under tight allosteric control of their N-terminal domains having autoinhibitory functions. This mechanism provides numerous possibilities for the precise regulation of the methyltransferases via controlling the binding and release of autoinhibitory domains by protein factors, noncoding RNAs, or by posttranslational modifications of the DNMTs. In this chapter, we summarize key enzymatic properties of DNMTs, including their specificity and processivity, and afterward we focus on the regulation of their activity and targeting via allosteric processes, protein interactors, and posttranslational modifications.

  19. Chemosignals, Hormones and Mammalian Reproduction

    PubMed Central

    Petrulis, Aras

    2013-01-01

    Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as “pheromones” but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking. PMID:23545474

  20. Novel Kv3 glycoforms differentially expressed in adult mammalian brain contain sialylated N-glycans.

    PubMed

    Schwalbe, Ruth A; Corey, Melissa J; Cartwright, Tara A

    2008-02-01

    The N-glycan pool of mammalian brain contains remarkably high levels of sialylated N-glycans. This study provides the first evidence that voltage-gated K+ channels Kv3.1, Kv3.3, and Kv3.4, possess distinct sialylated N-glycan structures throughout the central nervous system of the adult rat. Electrophoretic migration patterns of Kv3.1, Kv3.3, and Kv3.4 glycoproteins from spinal cord, hypothalamus, thalamus, cerebral cortex, hippocampus, and cerebellum membranes digested with glycosidases were used to identify the various glycoforms. Differences in the migration of Kv3 proteins were attributed to the desialylated N-glycans. Expression levels of the Kv3 proteins were highest in cerebellum, whereas those of Kv3.1 and Kv3.3 were much lower in the other 5 regions. The lowest level of Kv3.1 was expressed in the hypothalamus, whereas the lowest levels of Kv3.3 were expressed in both thalamus and hypothalamus. The other regions expressed intermediate levels of Kv3.3, with spinal cord expressing the highest. The expression level of Kv3.4 in the hippocampus was slightly lower than that in cerebellum, and was closely followed by the other 4 regions, with spinal cord expressing the lowest level. We suggest that novel Kv3 glycoforms may endow differences in channel function and expression among regions throughout the central nervous system.

  1. Mammalian synthetic biology: emerging medical applications.

    PubMed

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-06

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes.

  2. Bats and Rodents Shape Mammalian Retroviral Phylogeny.

    PubMed

    Cui, Jie; Tachedjian, Gilda; Wang, Lin-Fa

    2015-11-09

    Endogenous retroviruses (ERVs) represent past retroviral infections and accordingly can provide an ideal framework to infer virus-host interaction over their evolutionary history. In this study, we target high quality Pol sequences from 7,994 Class I and 8,119 Class II ERVs from 69 mammalian genomes and surprisingly find that retroviruses harbored by bats and rodents combined occupy the major phylogenetic diversity of both classes. By analyzing transmission patterns of 30 well-defined ERV clades, we corroborate the previously published observation that rodents are more competent as originators of mammalian retroviruses and reveal that bats are more capable of receiving retroviruses from non-bat mammalian origins. The powerful retroviral hosting ability of bats is further supported by a detailed analysis revealing that the novel bat gammaretrovirus, Rhinolophus ferrumequinum retrovirus, likely originated from tree shrews. Taken together, this study advances our understanding of host-shaped mammalian retroviral evolution in general.

  3. Mammalian synthetic biology: emerging medical applications

    PubMed Central

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob

    2015-01-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  4. Bats and Rodents Shape Mammalian Retroviral Phylogeny

    PubMed Central

    Cui, Jie; Tachedjian, Gilda; Wang, Lin-Fa

    2015-01-01

    Endogenous retroviruses (ERVs) represent past retroviral infections and accordingly can provide an ideal framework to infer virus-host interaction over their evolutionary history. In this study, we target high quality Pol sequences from 7,994 Class I and 8,119 Class II ERVs from 69 mammalian genomes and surprisingly find that retroviruses harbored by bats and rodents combined occupy the major phylogenetic diversity of both classes. By analyzing transmission patterns of 30 well-defined ERV clades, we corroborate the previously published observation that rodents are more competent as originators of mammalian retroviruses and reveal that bats are more capable of receiving retroviruses from non-bat mammalian origins. The powerful retroviral hosting ability of bats is further supported by a detailed analysis revealing that the novel bat gammaretrovirus, Rhinolophus ferrumequinum retrovirus, likely originated from tree shrews. Taken together, this study advances our understanding of host-shaped mammalian retroviral evolution in general. PMID:26548564

  5. Magnetic resonance imaging tractography as a diagnostic tool in patients with spinal cord injury treated with human embryonic stem cells.

    PubMed

    Shroff, Geeta

    2017-02-01

    Introduction Spinal cord injury is a cause of severe disability and mortality. The pharmacological and non-pharmacological methods used, are unable to improve the quality of life in spinal cord injury. Spinal disorders have been treated with human embryonic stem cells. Magnetic resonance imaging and tractography were used as imaging modality to document the changes in the damaged cord, but the magnetic resonance imaging tractography was seen to be more sensitive in detecting the changes in the spinal cord. The present study was conducted to evaluate the diagnostic modality of magnetic resonance imaging tractography to determine the efficacy of human embryonic stem cells in chronic spinal cord injury. Materials and methods The study included the patients with spinal cord injury for whom magnetic resonance imaging tractography was performed before and after the therapy. Omniscan (gadodiamide) magnetic resonance imaging tractography was analyzed to assess the spinal defects and the improvement by human embryonic stem cell treatment. The patients were also scored by American Spinal Injury Association scale. Results Overall, 15 patients aged 15-44 years with clinical manifestations of spinal cord injury had magnetic resonance imaging tractography performed. The average treatment period was nine months. The majority of subjects ( n = 13) had American Spinal Injury Association score A, and two patients were at score C at the beginning of therapy. At the end of therapy, 10 patients were at score A, two patients were at score B and three patients were at score C. Improvements in patients were clearly understood through magnetic resonance imaging tractography as well as in clinical signs and symptoms. Conclusion Magnetic resonance imaging tractography can be a crucial diagnostic modality to assess the improvement in spinal cord injury patients.

  6. Pathways of mammalian replication fork restart.

    PubMed

    Petermann, Eva; Helleday, Thomas

    2010-10-01

    Single-molecule analyses of DNA replication have greatly advanced our understanding of mammalian replication restart. Several proteins that are not part of the core replication machinery promote the efficient restart of replication forks that have been stalled by replication inhibitors, suggesting that bona fide fork restart pathways exist in mammalian cells. Different models of replication fork restart can be envisaged, based on the involvement of DNA helicases, nucleases, homologous recombination factors and the importance of DNA double-strand break formation.

  7. Circadian Plasticity of Mammalian Inhibitory Interneurons

    PubMed Central

    2017-01-01

    Inhibitory interneurons participate in all neuronal circuits in the mammalian brain, including the circadian clock system, and are indispensable for their effective function. Although the clock neurons have different molecular and electrical properties, their main function is the generation of circadian oscillations. Here we review the circadian plasticity of GABAergic interneurons in several areas of the mammalian brain, suprachiasmatic nucleus, neocortex, hippocampus, olfactory bulb, cerebellum, striatum, and in the retina. PMID:28367335

  8. Hacking the genetic code of mammalian cells.

    PubMed

    Schwarzer, Dirk

    2009-07-06

    A genetic shuttle: The highlighted article, which was recently published by Schultz, Geierstanger and co-workers, describes a straightforward scheme for enlarging the genetic code of mammalian cells. An orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for a new amino acid can be evolved in E. coli and subsequently transferred into mammalian cells. The feasibility of this approach was demonstrated by adding a photocaged lysine derivative to the genetic repertoire of a human cell line.

  9. Timing of Surgery After Spinal Cord Injury.

    PubMed

    Piazza, Matthew; Schuster, James

    2017-01-01

    Although timing for surgical intervention after spinal cord injury remains controversial, there is accumulating evidence suggesting that early surgery may improve neurologic outcomes, particularly with incomplete spinal cord injury, and may reduce non-neurologic complications and health care resource utilization. Moreover, even in patients with complete spinal cord injury, minor improvement in neurologic function can lead to significant changes in quality of life. This article reviews the experimental and clinical data examining surgical timing after spinal cord injury.

  10. Recurrence of spinal schwannoma: Is it preventable?

    PubMed Central

    Senapati, Satya B.; Mishra, Sudhansu S.; Dhir, Manmath K.; Patnaik, Ashis; Panigrahi, Souvagya

    2016-01-01

    Spinal schwannomas account for about 25% of primary intradural spinal cord tumors in adult. The prognosis for spinal schwannomas is excellent in most cases. Complete resection is curative. However following subtotal removal, recurrence develops after several years. We describe a case of recurrent spinal schwannoma who had been operated twice before for same disease. The possible cause of recurrence and difficulties in reoperation are discussed. PMID:27695564

  11. Delta-opioid receptor (DOR) activation prolongs respiratory motor output during oxygen-glucose deprivation (OGD) in neonatal rat spinal cord in vitro

    PubMed Central

    Turner, Sara M. F.; Johnson, Stephen M.

    2011-01-01

    Delta opioid receptor (DOR) activation protects the adult mammalian brain during oxygen-glucose deprivation (OGD), but it is not known whether neonatal spinal motor circuits are also protected. Also, it is unclear whether the timing of spinal DOR activation relative to spinal OGD is important for neuroprotection. Thus, a split-bath in vitro neonatal rat brainstem/spinal cord preparation was used to record spontaneous respiratory motor output from cervical (C4-C5) and thoracic (T5-T6) ventral spinal roots while exposing only the spinal cord to OGD solution (0 mM glucose, bubbled with 95% N2 / 5% CO2) or DOR agonist drugs (DADLE, DPDPE). Spinal OGD solution application caused respiratory motor output frequency and amplitude to decrease until all activity was abolished (i.e., end-point times) after 25.9 ± 1.4 min (cervical) and 25.2 ± 1.4 min (thoracic). Spinal DOR activation via DPDPE (1.0 μM) prior-to and during spinal OGD increased cervical and thoracic end-point times to 35-48 min. Spinal DADLE or DPDPE (1.0 μM) application 15 min following spinal OGD onset increased cervical and thoracic end-point times to 36-45 min. Brief spinal DPDPE (1.0 μM) application for 10 min at 25 min before spinal OGD onset increased cervical and thoracic end-point times to 41-46 min. Overall, the selective DOR agonist, DPDPE, was more effective at increasing end-point times than DADLE. Naltrindole (DOR antagonist; 10 μM) pretreatment blocked DPDPE-dependent increase in end-point times, suggesting that DOR activation was required. Spinal naloxone (1.0 μM) application before and during spinal OGD also increased end-point times to 31-33 min, but end-point times were not altered by MOR activation or DOR activation/MOR blockade, indicating that there are complex interactions between OGD and opioid signaling pathways. These data suggest DOR activation before, during, and after spinal OGD protects central motor networks and may provide neuroprotection during unpredictable perinatal

  12. Damage signals in the insect immune response

    PubMed Central

    Krautz, Robert; Arefin, Badrul; Theopold, Ulrich

    2014-01-01

    Insects and mammals share an ancient innate immune system comprising both humoral and cellular responses. The insect immune system consists of the fat body, which secretes effector molecules into the hemolymph and several classes of hemocytes, which reside in the hemolymph and of protective border epithelia. Key features of wound- and immune responses are shared between insect and mammalian immune systems including the mode of activation by commonly shared microbial (non-self) patterns and the recognition of these patterns by dedicated receptors. It is unclear how metazoan parasites in insects, which lack these shared motifs, are recognized. Research in recent years has demonstrated that during entry into the insect host, many eukaryotic pathogens leave traces that alert potential hosts of the damage they have afflicted. In accordance with terminology used in the mammalian immune systems, these signals have been dubbed danger- or damage-associated signals. Damage signals are necessary byproducts generated during entering hosts either by mechanical or proteolytic damage. Here, we briefly review the current stage of knowledge on how wound closure and wound healing during mechanical damage is regulated and how damage-related signals contribute to these processes. We also discuss how sensors of proteolytic activity induce insect innate immune responses. Strikingly damage-associated signals are also released from cells that have aberrant growth, including tumor cells. These signals may induce apoptosis in the damaged cells, the recruitment of immune cells to the aberrant tissue and even activate humoral responses. Thus, this ensures the removal of aberrant cells and compensatory proliferation to replace lost tissue. Several of these pathways may have been co-opted from wound healing and developmental processes. PMID:25071815

  13. Intramedullary spinal metastasis of a carcinoid tumor.

    PubMed

    Kumar, Jay I; Yanamadala, Vijay; Shin, John H

    2015-12-01

    We report an intramedullary spinal cord metastasis from a bronchial carcinoid, and discuss its mechanisms and management. Intramedullary spinal cord metastases from any cancer are rare, and bronchial carcinoids account for only a small fraction of lung cancers. To our knowledge, an intramedullary spinal cord metastasis from a bronchial carcinoid has been described only once previously.

  14. Cervical epidural hematoma after chiropractic spinal manipulation.

    PubMed

    Heiner, Jason D

    2009-10-01

    Spinal epidural hematoma is a rare but potentially devastating complication of spinal manipulation therapy. This is a case report of a healthy pregnant female who presented to the emergency department with a cervical epidural hematoma resulting from chiropractic spinal manipulation therapy that responded to conservative treatment rather than the more common route of surgical management.

  15. Brain and Spinal Cord Tumors in Adults

    MedlinePlus

    ... Search Search En Español Category Cancer A-Z Brain and Spinal Cord Tumors in Adults If you have a brain or spinal cord tumor or are close to ... cope. Here you can find out all about brain and spinal cord tumors in adults, including risk ...

  16. Evaluation of spinal cord injury animal models

    PubMed Central

    Zhang, Ning; Fang, Marong; Chen, Haohao; Gou, Fangming; Ding, Mingxing

    2014-01-01

    Because there is no curative treatment for spinal cord injury, establishing an ideal animal model is important to identify injury mechanisms and develop therapies for individuals suffering from spinal cord injuries. In this article, we systematically review and analyze various kinds of animal models of spinal cord injury and assess their advantages and disadvantages for further studies. PMID:25598784

  17. Motorcycle-related spinal injury: crash characteristics.

    PubMed

    Zulkipli, Zarir Hafiz; Abdul Rahmat, Abdul Manap; Mohd Faudzi, Siti Atiqah; Paiman, Noor Faradila; Wong, Shaw Voon; Hassan, Ahamedali

    2012-11-01

    This study presents an analysis of crash characteristics of motorcyclists who sustained spinal injuries in motorcycle crashes. The aim of the study is to identify the salient crash characteristics that would help explain spinal injury risks for motorcyclists. Data were retrospectively collected from police case reports that were archived at MIROS from year 2005 to 2007. The data were categorized into two subcategories; the first group was motorcycle crashes with spinal injury (case) and the second group was motorcycle crashes without spinal injury (control). A total of 363 motorcyclists with spinal injury and 873 motorcyclists without spinal injury were identified and analyzed. Descriptive analysis and multivariate analysis were performed in order to determine the odds of each characteristic in contributing to spinal injury. Single vehicle crash, collision with fixed objects and crash configuration were found to have significant influence on motorcyclists in sustaining spinal injury (p<0.05). Although relatively few than other impact configurations, the rear-end impacted motorcyclist shows the highest risk of spinal injury. Helmets have helped to reduce head injury but they did not seem to offer corresponding protection for the spine in the study. With a growing number of young motorcyclists, further efforts are needed to find effective measures to help reduce the crash incidents and severity of spinal injury. In sum, the study provides some insights on some vital crash characteristics associated with spinal injury that can be further investigated to determine the appropriate counter-measures and prevention strategies to reduce spinal injury.

  18. Spinal reflexes in brain death.

    PubMed

    Beckmann, Yesim; Çiftçi, Yeliz; Incesu, Tülay Kurt; Seçil, Yaprak; Akhan, Galip

    2014-12-01

    Spontaneous and reflex movements have been described in brain death and these unusual movements might cause uncertainties in diagnosis. In this study we evaluated the presence of spinal reflexes in patients who fulfilled the criteria for brain death. Thirty-two (22 %) of 144 patients presented unexpected motor movements spontaneously or during examinations. These patients exhibited the following signs: undulating toe, increased deep tendon reflexes, plantar responses, Lazarus sign, flexion-withdrawal reflex, facial myokymia, neck-arm flexion, finger jerks and fasciculations. In comparison, there were no significant differences in age, sex, etiology of brain death and hemodynamic laboratory findings in patients with and without reflex motor movement. Spinal reflexes should be well recognized by physicians and it should be born in mind that brain death can be determined in the presence of spinal reflexes.

  19. Inflammogenesis of Secondary Spinal Cord Injury

    PubMed Central

    Anwar, M. Akhtar; Al Shehabi, Tuqa S.; Eid, Ali H.

    2016-01-01

    Spinal cord injury (SCI) and spinal infarction lead to neurological complications and eventually to paraplegia or quadriplegia. These extremely debilitating conditions are major contributors to morbidity. Our understanding of SCI has certainly increased during the last decade, but remains far from clear. SCI consists of two defined phases: the initial impact causes primary injury, which is followed by a prolonged secondary injury consisting of evolving sub-phases that may last for years. The underlying pathophysiological mechanisms driving this condition are complex. Derangement of the vasculature is a notable feature of the pathology of SCI. In particular, an important component of SCI is the ischemia-reperfusion injury (IRI) that leads to endothelial dysfunction and changes in vascular permeability. Indeed, together with endothelial cell damage and failure in homeostasis, ischemia reperfusion injury triggers full-blown inflammatory cascades arising from activation of residential innate immune cells (microglia and astrocytes) and infiltrating leukocytes (neutrophils and macrophages). These inflammatory cells release neurotoxins (proinflammatory cytokines and chemokines, free radicals, excitotoxic amino acids, nitric oxide (NO)), all of which partake in axonal and neuronal deficit. Therefore, our review considers the recent advances in SCI mechanisms, whereby it becomes clear that SCI is a heterogeneous condition. Hence, this leads towards evidence of a restorative approach based on monotherapy with multiple targets or combinatorial treatment. Moreover, from evaluation of the existing literature, it appears that there is an urgent requirement for multi-centered, randomized trials for a large patient population. These clinical studies would offer an opportunity in stratifying SCI patients at high risk and selecting appropriate, optimal therapeutic regimens for personalized medicine. PMID:27147970

  20. [Spinal column: implants and revisions].

    PubMed

    Krieg, S M; Meyer, H S; Meyer, B

    2016-03-01

    Non-fusion spinal implants are designed to reduce the commonly occurring risks and complications of spinal fusion surgery, e.g. long duration of surgery, high blood loss, screw loosening and adjacent segment disease, by dynamic or movement preserving approaches. This principle could be shown for interspinous spacers, cervical and lumbar total disc replacement and dynamic stabilization; however, due to the continuing high rate of revision surgery, the indications for surgery require as much attention and evidence as comparative data on the surgical technique itself.

  1. Toxic effects of Karenia mikimotoi extracts on mammalian cells

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Yan, Tian; Yu, Rencheng; Zhou, Mingjiang

    2011-07-01

    Karenia is one of the most harmful and representative red tide genus in a temperate zone. Blooms caused by this genus have resulted in massive fish death in the South China Sea and the East China Sea. However, the potential effects of this dinoflagellate on human health through the transfer of toxins via marine food webs, and the mechanisms of toxicity, are still unknown. Therefore, we examined the toxic effects of a strain of K. mikimotoi (isolated from the South China Sea) on the proliferation and morphology of four mammalian cell lines (two normal cell lines and two cancer cell lines). In addition, we carried out a preliminary investigation on the mechanism of toxicity of the alga. The results show that the polar lipid-soluble component of K. mikimotoi significantly inhibited proliferation of the four cell lines, and resulted in the cells becoming spherical, swollen and damaged. The result of Annexin V and PI double-staining confirmed that cell membranes were disrupted. The malonaldehyde (MDA) contents in the medium of the four cell lines treated with the polar-lipid extracts all increased significantly, which indicates that the polar-lipid toxins produced by K. mikimotoi could adversely affect mammalian cells by inducing lipid peroxidation. We conclude that K. mikimotoi is a potential threat to human health, and the comprehensive effect of this dinoflagellate and its mechanisms should be investigated further.

  2. Mammalian heme peroxidases: from molecular mechanisms to health implications.

    PubMed

    Davies, Michael J; Hawkins, Clare L; Pattison, David I; Rees, Martin D

    2008-07-01

    A marked increase in interest has occurred over the last few years in the role that mammalian heme peroxidase enzymes, primarily myeloperoxidase, eosinophil peroxidase, and lactoperoxidase, may play in both disease prevention and human pathologies. This increased interest has been sparked by developments in our understanding of polymorphisms that control the levels of these enzymes, a greater understanding of the basic chemistry and biochemistry of the oxidants formed by these species, the development of specific biomarkers that can be used in vivo to detect damage induced by these oxidants, the detection of active forms of these peroxidases at most, if not all, sites of inflammation, and a correlation between the levels of these enzymes and a number of major human pathologies. This article reviews recent developments in our understanding of the enzymology, chemistry, biochemistry and biologic roles of mammalian peroxidases and the oxidants that they generate, the potential role of these oxidants in human disease, and the use of the levels of these enzymes in disease prognosis.

  3. Evolutionary history and metabolic insights of ancient mammalian uricases

    PubMed Central

    Kratzer, James T.; Lanaspa, Miguel A.; Murphy, Michael N.; Cicerchi, Christina; Graves, Christina L.; Tipton, Peter A.; Ortlund, Eric A.; Johnson, Richard J.; Gaucher, Eric A.

    2014-01-01

    Uricase is an enzyme involved in purine catabolism and is found in all three domains of life. Curiously, uricase is not functional in some organisms despite its role in converting highly insoluble uric acid into 5-hydroxyisourate. Of particular interest is the observation that apes, including humans, cannot oxidize uric acid, and it appears that multiple, independent evolutionary events led to the silencing or pseudogenization of the uricase gene in ancestral apes. Various arguments have been made to suggest why natural selection would allow the accumulation of uric acid despite the physiological consequences of crystallized monosodium urate acutely causing liver/kidney damage or chronically causing gout. We have applied evolutionary models to understand the history of primate uricases by resurrecting ancestral mammalian intermediates before the pseudogenization events of this gene family. Resurrected proteins reveal that ancestral uricases have steadily decreased in activity since the last common ancestor of mammals gave rise to descendent primate lineages. We were also able to determine the 3D distribution of amino acid replacements as they accumulated during evolutionary history by crystallizing a mammalian uricase protein. Further, ancient and modern uricases were stably transfected into HepG2 liver cells to test one hypothesis that uricase pseudogenization allowed ancient frugivorous apes to rapidly convert fructose into fat. Finally, pharmacokinetics of an ancient uricase injected in rodents suggest that our integrated approach provides the foundation for an evolutionarily-engineered enzyme capable of treating gout and preventing tumor lysis syndrome in human patients. PMID:24550457

  4. Selectivity of the central control of sensory information in the mammalian spinal cord.

    PubMed

    Rudomin, Pablo

    2002-01-01

    Afferent feedback from muscle proprioceptors, as well as movement-induced activation of skin receptors plays an important role in the patterning of motor activity for stepping and postural control. An important component in this control is the presynaptic GABAergic modulation of the synaptic effectiveness of muscle and cutaneous afferents, known to change in phase with the locomotor cycle, during the execution of voluntary movements, or after a peripheral nerve injury. Recent electrophysiological studies, together with ultrastructural observations, indicate that the distribution of GABAa synapses in the intraspinal arborizations of muscle spindle and tendon organ afferents is not homogeneous. Namely, that some collaterals are the targets of one, or more, GABAergic interneurones, while other collaterals of the same fibre receive no GABAergic connections. In addition, both PAD and inhibition of PAD have a local character. This allows, at least in principle, decoupling the information arising from common sensory inputs. A spatially restricted modulation of PAD could play a significant role in the adjustment of the synaptic effectiveness of Ia afferents at the onset of voluntary contractions in humans, during movement-induced stimulation of the skin, or during the compensation of motor activity following partial denervation of muscles. Changes in the synchronization of the PAD-mediating interneurones can also have a profound effect on the information transmitted by a given set of afferent fibres. Data are presented that in the anesthetized cat, variation in the spontaneous activity of a population of dorsal horn neurones in laminae III-VI, that respond to stimulation of low-threshold cutaneous afferents, produce correlated fluctuations of monosynaptic reflexes by means of pre- and postsynaptic mechanisms. It is suggested that correlated changes in the level of PAD can also play a significant role in the presynaptic adjustment of the synaptic effectiveness of the afferent fibres during specific motor tasks.

  5. Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells.

    PubMed

    Muir, Elizabeth M; Fyfe, Ian; Gardiner, Sonya; Li, Li; Warren, Philippa; Fawcett, James W; Keynes, Roger J; Rogers, John H

    2010-01-15

    Although many eukaryotic proteins have been secreted by transfected bacterial cells, little is known about how a bacterial protein is treated as it passes through the secretory pathway when expressed in a eukaryotic cell. The eukaryotic N-glycosylation system could interfere with folding and secretion of prokaryotic proteins whose sequence has not been adapted for glycosylation in structurally appropriate locations. Here we show that such interference does indeed occur for chondroitinase ABC from the bacterium Proteus vulgaris, and can be overcome by eliminating potential N-glycosylation sites. Chondroitinase ABC was heavily glycosylated when expressed in mammalian cells or in a mammalian translation system, and this process prevented secretion of functional enzyme. Directed mutagenesis of selected N-glycosylation sites allowed efficient secretion of active chondroitinase. As these proteoglycans are known to inhibit regeneration of axons in the mammalian central nervous system, the modified chondroitinase gene is a potential tool for gene therapy to promote neural regeneration, ultimately in human spinal cord injury.

  6. Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells.

    PubMed

    Bonner, Joseph F; Steward, Oswald

    2015-09-04

    Spinal cord injury (SCI) disrupts the long axonal tracts of the spinal cord leading to devastating loss of function. Cell transplantation in the injured spinal cord has the potential to lead to recovery after SCI via a variety of mechanisms. One such strategy is the formation of neuronal relays between injured long tract axons and denervated neurons. The idea of creating a neuronal relay was first proposed over 25 years ago when fetal tissue was first successfully transplanted into the injured rodent spinal cord. Advances in labeling of grafted cells and the development of neural stem cell culturing techniques have improved the ability to create and refine such relays. Several recent studies have examined the ability to create a novel neuronal circuit between injured axons and denervated targets. This approach is an alternative to long-distance regeneration of damaged axons that may provide a meaningful degree of recovery without direct recreation of lost pathways. This brief review will examine the contribution of fetal grafting to current advances in neuronal grafting. Of particular interest will be the ability of transplanted neurons derived from fetal grafts, neural precursor cells and neural stem cells to reconnect long distance motor and sensory pathways of the injured spinal cord. This article is part of a Special Issue entitled SI: Spinal cord injury.

  7. Thoracic Endoscopic-Assisted Mini-Open Surgery for Thoracic and Thoracolumbar Spinal Cord Compression.

    PubMed

    Xu, Bao-Shan; Xu, Hai-Wei; Yuan, Qiu-Ming; Liu, Yue; Yang, Qiang; Jiang, Hong-Feng; Wang, Dong-Bin; Ji, Ning; Ma, Xin-Long; Zhang, Yang

    2016-11-01

    Intervertebral disc herniation is a common cause of spinal cord compression, especially for the thoracic and thoracolumbar spinal cord, which has limited buffer space in the spinal canal. Spinal cord compression usually causes decreased sensation and paralysis of limbs below the level of compression, urinary and fecal incontinence, and/or urinary retention, which brings great suffering to the patients and usually requires surgical intervention. Thoracotomy or abdominothoracic surgery is usually performed for the thoracolumbar cord compression caused by hard intervertebral disc herniation. However, there is high risk of trauma and complications with this surgery. To reduce the surgical trauma and obtain good visibility, we designed athoracic endoscopic-assisted mini-open surgery for thoracic and thoracolumbar disc herniation, and performed this procedure on 10 patients who suffered from hard thoracic or thoracolumbar spinal cord compression. During the procedure, the thoracic endoscopy provided clear vision of the surgical field with a good light source. The compression could be fully exposed and completely removed, and no nerve root injury or spinal cord damage occurred. All patients achieved obvious recovery of neurological function after this procedure. This technique possesses the merits of minimal trauma, increased safety, and good clinical results. The aim of this study is to introduce this thoracic endoscopic-assisted mini-open surgery technique, and we believe that this technique will be a good choice for the thoracic and thoracolumbar cord compression caused by hard intervertebral disc herniation.

  8. Treatment of Spinal Tuberculosis by Debridement, Interbody Fusion and Internal Fixation via Posterior Approach Only.

    PubMed

    Tang, Ming-xing; Zhang, Hong-qi; Wang, Yu-xiang; Guo, Chao-feng; Liu, Jin-yang

    2016-02-01

    Surgical treatment for spinal tuberculosis includes focal tuberculosis debridement, segmental stability reconstruction, neural decompression and kyphotic deformity correction. For the lesions mainly involved anterior and middle column of the spine, anterior operation of debridement and fusion with internal fixation has been becoming the most frequently used surgical technique for the spinal tuberculosis. However, high risk of structural damage might relate with anterior surgery, such as damage in lungs, heart, kidney, ureter and bowel, and the deformity correction is also limited. Due to the organs are in the front of spine, there are less complications in posterior approach. Spinal pedicle screw passes through the spinal three-column structure, which provides more powerful orthopedic forces compared with the vertebral body screw, and the kyphotic deformity correction effect is better in posterior approach. In this paper, we report a 68-year-old male patient with thoracic tuberculosis who underwent surgical treatment by debridement, interbody fusion and internal fixation via posterior approach only. The patient was placed in prone position under general anesthesia. Posterior midline incision was performed, and the posterior spinal construction was exposed. Then place pedicle screw, and fix one side rod temporarily. Make the side of more bone destruction and larger abscess as lesion debridement side. Resect the unilateral facet joint, and retain contralateral structure integrity. Protect the spinal cord, nerve root. Clear sequestrum, necrotic tissue, abscess of paravertebral and intervertebral space. Specially designed titanium mesh cages or bone blocks were implanted into interbody. Fix both side rods and compress both sides to make the mesh cages and bone blocks tight. Reconstruct posterior column structure with allogeneic bone and autologous bone. Using this technique, the procedures of debridement, spinal cord decompression, deformity correction, bone grafting

  9. DNA ligase I is not essential for mammalian cell viability.

    PubMed

    Han, Li; Masani, Shahnaz; Hsieh, Chih-lin; Yu, Kefei

    2014-04-24

    Of the three DNA ligases present in all vertebrates, DNA ligase I (Lig1) has been considered essential for ligating Okazaki fragments during DNA replication and thereby essential for cell viability. Here, we report the striking finding that a Lig1-null murine B cell line is viable. Surprisingly, the Lig1-null cells exhibit normal proliferation and normal immunoglobulin heavy chain class switch recombination and are not hypersensitive to a wide variety of DNA damaging agents. These findings demonstrate that Lig1 is not absolutely required for cellular DNA replication and repair and that either Lig3 or Lig4 can substitute for the role of Lig1 in joining Okazaki fragments. The establishment of a Lig1-null cell line will greatly facilitate the characterization of DNA ligase function in mammalian cells, but the finding alone profoundly reprioritizes the role of ligase I in DNA replication, repair, and recombination.

  10. Mammalian cell-based biosensors for pathogens and toxins.

    PubMed

    Banerjee, Pratik; Bhunia, Arun K

    2009-03-01

    Cell-based biosensors (CBBs) have emerged as powerful functional tools for the rapid detection of hazards and threats associated with food, agriculture, environment and biosecurity. CBBs detect the functional aspects of a host-hazard interaction and render an accurate estimation of the risks. Assessing hazard-induced physiological responses, such as receptor-ligand interactions, signal transduction, gene expression, membrane damage, apoptosis and oncosis of living sensing organisms can provide insight into the basis of toxicity for a particular hazard. This review highlights the progress made in developing mammalian CBBs for pathogens and toxins, with special emphasis on multidisciplinary approaches that combine molecular biology and microbiology with methods used in physics and engineering, which led to the development of a three-dimensional cell-culture system and high-throughput screening employing optical and electrical systems.

  11. PINK1/Parkin-mediated mitophagy in mammalian cells.

    PubMed

    Eiyama, Akinori; Okamoto, Koji

    2015-04-01

    Mitochondria-specific autophagy (mitophagy) is a fundamental process critical for maintaining mitochondrial fitness in a myriad of cell types. Particularly, mitophagy contributes to mitochondrial quality control by selectively eliminating dysfunctional mitochondria. In mammalian cells, the Ser/Thr kinase PINK1 and the E3 ubiquitin ligase Parkin act cooperatively in sensing mitochondrial functional state and marking damaged mitochondria for disposal via the autophagy pathway. Notably, ubiquitin and deubiquitinases play vital roles in modulating Parkin activity and mitophagy efficiency. In this review, we highlight recent breakthroughs addressing the key issues of how PINK1 activates Parkin in response to mitochondrial malfunction, how Parkin localizes specifically to impaired mitochondria, and how ubiquitination and deubiquitination regulate PINK1/Parkin-mediated mitophagy.

  12. Protective effect of rosemary on acrylamide motor neurotoxicity in spinal cord of rat offspring: postnatal follow-up study

    PubMed Central

    Al-Gholam, Marwa A.; El-Mehi, Abeer E.; El-Barbary, Abd El-Moneum; Fokar, Ahmed Zo El

    2016-01-01

    The direct interactive effects of rosemary and acrylamide on the development of motor neurons in the spinal cord remains unknown. Our goal is to confirm the protective effects of rosemary against motor neuronal degeneration induced by acrylamide in the developing postnatal rat spinal cord using a postnatal rat model. We assigned the offspring of treated female rats into control, rosemary; acrylamide group; and recovery groups. This work depended on clinical, histopathological, morphometrically, immunohistochemical and genetic methods. In the acrylamide group, we observed oxidation, motor neuron degeneration, apoptosis, myelin degeneration, neurofilament reduction, reactive gliosis. Whoever, concomitant rosemary intake and withdrawal of acrylamide modulate these effects. These findings proof that dietary rosemary can directly protect motor neuron against acrylamide toxicity in the mammalian developing spinal cord. PMID:27051566

  13. Protective effect of rosemary on acrylamide motor neurotoxicity in spinal cord of rat offspring: postnatal follow-up study.

    PubMed

    Al-Gholam, Marwa A; Nooh, Hanaa Zakaria; El-Mehi, Abeer E; El-Barbary, Abd El-Moneum; Fokar, Ahmed Zo El

    2016-03-01

    The direct interactive effects of rosemary and acrylamide on the development of motor neurons in the spinal cord remains unknown. Our goal is to confirm the protective effects of rosemary against motor neuronal degeneration induced by acrylamide in the developing postnatal rat spinal cord using a postnatal rat model. We assigned the offspring of treated female rats into control, rosemary; acrylamide group; and recovery groups. This work depended on clinical, histopathological, morphometrically, immunohistochemical and genetic methods. In the acrylamide group, we observed oxidation, motor neuron degeneration, apoptosis, myelin degeneration, neurofilament reduction, reactive gliosis. Whoever, concomitant rosemary intake and withdrawal of acrylamide modulate these effects. These findings proof that dietary rosemary can directly protect motor neuron against acrylamide toxicity in the mammalian developing spinal cord.

  14. Afterhyperpolarization-firing rate relation of turtle spinal neurons.

    PubMed

    Stauffer, E K; Stuart, D G; McDonagh, J C; Hornby, T G; Reinking, R M

    2005-02-01

    This study addressed the afterhyperploarization-firing rate relationship of unanesthetized turtle spinal motoneurons and interneurons. The afterhyperploarization of their solitary action potential at rheobase was compared to that during the cells' minimum and maximum firing rates. Like previous mammalian findings, afterhyperpolarization duration and area at rheobase were 32 and 19% less for high- versus low-threshold motoneurons. Contrariwise, maximum firing rate was two times less for the high-threshold group. Other new findings were that for high- versus low-threshold interneurons, afterhyperpolarization duration and area were 25 and 95% less, and maximum firing rate 21% higher for the high-threshold group. For combined motoneurons versus interneurons, there were no differences in afterhyperpolarization duration and area at rheobase, whereas maximum firing rate was 265% higher for the interneurons. For high-threshold motoneurons alone, there were significant associations between minimum firing rate and afterhyperpolarization duration and area measured at rheobase. In summary, this study showed that (1) the afterhyperploarization values of both turtle spinal motoneurons and interneurons at rheobase provided little indication of their corresponding values at the cells' minimum and maximum firing states, and (2) the evolution of afterhyperploarization from rheobase to maximum firing state differed both qualitatively and quantitatively for motoneurons versus interneurons.

  15. Management of Chronic Spinal Cord Dysfunction

    PubMed Central

    Abrams, Gary M.; Ganguly, Karunesh

    2015-01-01

    Purpose of Review: Both acute and chronic spinal cord disorders present multisystem management problems to the clinician. This article highlights key issues associated with chronic spinal cord dysfunction. Recent Findings: Advances in symptomatic management for chronic spinal cord dysfunction include use of botulinum toxin to manage detrusor hyperreflexia, pregabalin for management of neuropathic pain, and intensive locomotor training for improved walking ability in incomplete spinal cord injuries. Summary: The care of spinal cord dysfunction has advanced significantly over the past 2 decades. Management and treatment of neurologic and non-neurologic complications of chronic myelopathies ensure that each patient will be able to maximize their functional independence and quality of life. PMID:25651225

  16. Pediatric Spinal Ultrasound: Neonatal and Intraoperative Applications.

    PubMed

    Alvarado, Enrique; Leach, James; Caré, Marguerite; Mangano, Francesco; O Hara, Sara

    2017-04-01

    The purpose of this article is to review the use of ultrasound as a screening tool for spinal diseases in neonates and infants and its intraoperative value in selected pediatric neurosurgical disorders. A review of spinal embryology followed by a description of common spinal diseases in neonates assessed with ultrasound is presented. Indications for spinal ultrasound in neonates, commonly identified conditions, and the importance of magnetic resonance imaging in selected cases are emphasized. Additionally, the use of ultrasound in selected neurosurgical spinal diseases in pediatric patients is presented with magnetic resonance imaging and intraoperative correlation. Technique, limitations, and pitfalls are discussed.

  17. Purely extradural spinal nerve root hemangioblastomas

    PubMed Central

    Aytar, Murat Hamit; Yener, Ulaş; Ekşi, Murat Şakir; Kaya, Behram; Özgen, Serdar; Sav, Aydin; Alanay, Ahmet

    2016-01-01

    Spinal nerve root hemangioblastomas present mostly as intradural-extradurally. Purely extradural spinal nerve root hemangioblastoma is a very rare entity. In this study, we aimed to analyze epidemiological perspectives of purely extradural spinal nerve root hemangioblastomas presented in English medical literature in addition to our own exemplary case. PubMed/MEDLINE was searched using the terms “hemangioblastoma,” “extradural,” “spinal,” and “nerve root.” Demographical variables of age, gender, concomitant presence of von Hippel–Lindau (VHL) disease; spinal imaging and/or intraoperative findings for tumor location were surveyed from retrieved articles. There are 38 patients with purely extradural spinal nerve root hemangioblastoma. The median age is 45 years (range = 24–72 years). Female:male ratio is 0.6. Spinal levels for purely extradural spinal nerve root hemangioblastomas, in order of decreasing frequency, are thoracic (48.6%), cervical (13.5%), lumbar (13.5%), lumbosacral (10.8%), sacral (8.1%), and thoracolumbar (5.4%). Concomitant presence of VHL disease is 45%. Purely extradural spinal nerve root hemangioblastomas are very rare and can be confused with other more common extradural spinal cord tumors. Concomitant presence of VHL disease is observed in less than half of the patients with purely extradural spinal nerve root hemangioblastomas. Surgery is the first-line treatment in these tumors. PMID:27891027

  18. Episodic swimming in the larval zebrafish is generated by a spatially distributed spinal network with modular functional organization.

    PubMed

    Wiggin, Timothy D; Anderson, Tatiana M; Eian, John; Peck, Jack H; Masino, Mark A

    2012-08-01

    Despite the diverse methods vertebrates use for locomotion, there is evidence that components of the locomotor central pattern generator (CPG) are conserved across species. When zebrafish begin swimming early in development, they perform short episodes of activity separated by periods of inactivity. Within these episodes, the trunk flexes with side-to-side alternation and the traveling body wave progresses rostrocaudally. To characterize the distribution of the swimming CPG along the rostrocaudal axis, we performed transections of the larval zebrafish spinal cord and induced fictive swimming using N-methyl-d-aspartate (NMDA). In both intact and spinalized larvae, bursting is found throughout the rostrocaudal extent of the spinal cord, and the properties of fictive swimming observed were dependent on the concentration of NMDA. We isolated series of contiguous spinal segments by performing multiple spinal transections on the same larvae. Although series from all regions of the spinal cord have the capacity to produce bursts, the capacity to produce organized episodes of fictive swimming has a rostral bias: in the rostral spinal cord, only 12 contiguous body segments are necessary, whereas 23 contiguous body segments are necessary in the caudal spinal cord. Shorter series of segments were often active but produced either continuous rhythmic bursting or sporadic, nonrhythmic bursting. Both episodic and continuous bursting alternated between the left and right sides of the body and showed rostrocaudal progression, demonstrating the functional dissociation of the circuits responsible for episodic structure and fine burst timing. These findings parallel results in mammalian locomotion, and we propose a hierarchical model of the larval zebrafish swimming CPG.

  19. Changes of blood flow, oxygen tension, action potential and vascular permeability induced by arterial ischemia or venous congestion on the spinal cord in canine model.

    PubMed

    Kobayashi, Shigeru; Yoshizawa, Hidezo; Shimada, Seiichiro; Guerrero, Alexander Rodríguez; Miyachi, Masaya

    2013-01-01

    It is generally considered that the genesis of myelopathy associated with the degenerative conditions of the spine may result from both mechanical compression and circulatory disturbance. Many references about spinal cord tissue ischemic damage can be found in the literature, but not detailed studies about spinal cord microvasculature damage related to congestion or blood permeability. This study investigates the effect of ischemia and congestion on the spinal cord using an in vivo model. The aorta was clamped as an ischemia model of the spinal cord and the inferior vena cava was clamped as a congestion model at the 6th costal level for 30 min using forceps transpleurally. Measurements of blood flow, partial oxygen pressure, and conduction velocity in the spinal cord were repeated over a period of 1 h after release of clamping. Finally, we examined the status of blood-spinal cord barrier under fluorescence and transmission electron microscope. Immediately after clamping of the inferior vena cava, the central venous pressure increased by about four times. Blood flow, oxygen tension and action potential were more severely affected by the aorta clamping; but this ischemic model did not show any changes of blood permeability in the spinal cord. The intramedullar edema was more easily produced by venous congestion than by arterial ischemia. In conclusions, venous congestion may be a preceding and essential factor of circulatory disturbance in the compressed spinal cord inducing myelopathy.

  20. Periaqueductal Grey EP3 Receptors Facilitate Spinal Nociception in Arthritic Secondary Hypersensitivity

    PubMed Central

    Drake, R.A.R.; Leith, J.L.; Almahasneh, F.; Martindale, J.; Wilson, A.W.; Lumb, B.

    2016-01-01

    Descending controls on spinal nociceptive processing play a pivotal role in shaping the pain experience after tissue injury. Secondary hypersensitivity develops within undamaged tissue adjacent and distant to damaged sites. Spinal neuronal pools innervating regions of secondary hypersensitivity are dominated by descending facilitation that amplifies spinal inputs from unsensitized peripheral nociceptors. Cyclooxygenase–prostaglandin (PG) E2 signaling within the ventrolateral periaqueductal gray (vlPAG) is pronociceptive in naive and acutely inflamed animals, but its contributions in more prolonged inflammation and, importantly, secondary hypersensitivity remain unknown. In naive rats, PG EP3 receptor (EP3R) antagonism in vlPAG modulated noxious withdrawal reflex (EMG) thresholds to preferential C-nociceptor, but not A-nociceptor, activation and raised thermal withdrawal thresholds in awake animals. In rats with inflammatory arthritis, secondary mechanical and thermal hypersensitivity of the hindpaw developed and was associated with spinal sensitization to A-nociceptor inputs alone. In arthritic rats, blockade of vlPAG EP3R raised EMG thresholds to C-nociceptor activation in the area of secondary hypersensitivity to a degree equivalent to that evoked by the same manipulation in naive rats. Importantly, vlPAG EP3R blockade also affected responses to A-nociceptor activation, but only in arthritic animals. We conclude that vlPAG EP3R activity exerts an equivalent facilitation on the spinal processing of C-nociceptor inputs in naive and arthritic animals, but gains in effects on spinal A-nociceptor processing from a region of secondary hypersensitivity. Therefore, the spinal sensitization to A-nociceptor inputs associated with secondary hypersensitivity is likely to be at least partly dependent on descending prostanergic facilitation from the vlPAG. SIGNIFICANCE STATEMENT After tissue damage, sensitivity to painful stimulation develops in undamaged areas (secondary

  1. Spinal Schwannoma with Intradural Intramedullary Hemorrhage

    PubMed Central

    Nadeem, Muhammad; Mansoor, Salman; Assad, Salman; Qavi, Ahmed H; Saadat, Shoab

    2017-01-01

    Patients with spinal abnormalities infrequently present with intradural intramedullary bleeding. The more common causes include spinal trauma, arteriovenous malformations and saccular aneurysms of spinal arteries. On occasion, spinal cord tumors either primary or metastatic may cause intramedullary bleed with ependymoma of the conus medullaris. Spinal nerve sheath tumors such as schwannomas only rarely cause intradural intramedullary bleed, especially in the absence of spinal cord or nerve root symptoms. We report a case of spinal intradural schwannoma presenting with acute onset of quadriparesis. Cerebral angiography studies were negative but magnetic resonance imaging (MRI) of the spine revealed a large hemorrhagic tumor in the thoracolumbar junction. However, we suggest that the patients with intradural intramedullary bleed should be evaluated for underlying spine disease.

  2. Oxidative stress in toxicology: established mammalian and emerging piscine model systems.

    PubMed Central

    Kelly, K A; Havrilla, C M; Brady, T C; Abramo, K H; Levin, E D

    1998-01-01

    Interest in the toxicological aspects of oxidative stress has grown in recent years, and research has become increasingly focused on the mechanistic aspects of oxidative damage and cellular responses in biological systems. Toxic consequences of oxidative stress at the subcellular level include lipid peroxidation and oxidative damage to DNA and proteins. These effects are often used as end points in the study of oxidative stress. Typically, mammalian species have been used as models to study oxidative stress and to elucidate the mechanisms underlying cellular damage and response, largely because of the interest in human health issues surrounding oxidative stress. However, it is becoming apparent that oxidative stress also affects aquatic organisms exposed to environmental pollutants. Research in fish has demonstrated that mammalian and piscine systems exhibit similar toxicological and adaptive responses to oxidative stress. This suggests that piscine models, in addition to traditional mammalian models, may be useful for further understanding the mechanisms underlying the oxidative stress response. Images Figure 1 Figure 2 Figure 3 PMID:9637794

  3. Pain following spinal cord injury.

    PubMed

    Ullrich, Philip M

    2007-05-01

    Pain is one of the most common, severe, and treatment-resistant complications that follows SCI. Recent years have seen a surge of research on methods for assessing and treating spinal cord injury pain. In this article, pain after SCI is reviewed in terms of nature, scope, assessment techniques, and treatment strategies.

  4. Learning about Spinal Muscular Atrophy

    MedlinePlus

    ... causes the disorder. Top of page NHGRI Clinical Research on Spinal Muscular Atrophy Currently, NHGRI is not conducting studies on SMA. The National Institutes of Health is conducting clinical trials identified as enrolling individuals with SMA: Quantitative Analysis of SMN1 and SMN2 Gene Based on ...

  5. Vestibulo-spinal reflex mechanisms

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.

    1981-01-01

    The specific objectives of experiments designed to investigate postural reflex behavior during sustained weightlessness are discussed. The first is to investigate, during prolonged weightlessness with Hoffmann response (H-reflex) measurement procedures, vestibulo-spinal reflexes associated with vestibular (otolith) responses evoked during an applied linear acceleration. This objective includes not only an evaluation of otolith-induced changes in a major postural muscle but also an investigation with this technique of the adaptive process of the vestibular system and spinal reflex mechanisms to this unique environment. The second objective is to relate space motion sickness to the results of this investigation. Finally, a return to the vestibulo-spinal and postural reflexes to normal values following the flight will be examined. The flight experiment involves activation of nerve tissue (tibial N) with electrical shock and the recording of resulting muscle activity (soleus) with surface electrodes. Soleus/spinal H-reflex testing procedures will be used in conjuction with linear acceleration through the subject's X-axis.

  6. Archetype, adaptation and the mammalian heart.

    PubMed

    Meijler, F L; Meijler, T D

    2011-03-01

    Forty years ago, we started our quest for 'The Holy Grail' of understanding ventricular rate control and rhythm in atrial fibrillation (AF). We therefore studied the morphology and function of a wide range of mammalian hearts. From mouse to whale, we found that all hearts show similar structural and functional characteristics. This suggests that the mammalian heart remained well conserved during evolution and in this aspect it differs from other organs and parts of the mammalian body. The archetype of the mammalian heart was apparently so successful that adaptation by natural selection (evolution) caused by varying habitat demands, as occurred in other organs and many other aspects of mammalian anatomy, bypassed the heart. The structure and function of the heart of placental mammals have thus been strikingly conserved throughout evolution. The changes in the mammalian heart that did take place were mostly adjustments (scaling), to compensate for variations in body size and shape. A remarkable scaling effect is, for instance, the difference in atrioventricular (AV) conduction time, which is vital for optimal cardiac function in all mammals, small and large. Scaling of AV conduction takes place in the AV node (AVN), but its substrate is unknown. This sheds new light on the vital role of the AVN in health and disease. The AVN is master and servant of the heart at the same time and is of salient importance for our understanding of supraventricular arrhythmias in humans, especially AF. In Information Technology a software infra-structure called 'enterprise service bus' (ESB) may provide understanding of the mammalian heart's conservation during evolution. The ESB is quite unspecific (and thus general) when compared with the specialised components it has to support. For instance, one of the functions of an ESB is the routing of messages between system nodes. This routing is independent and unaware of the content of the messages. The function of the heart is likewise

  7. Transient cortical blindness as a complication of posterior spinal surgery in a pediatric patient.

    PubMed

    Nathan, Senthil T; Jain, Viral; Lykissas, Marios G; Crawford, Alvin H; West, Constance E

    2013-09-01

    Postoperative vision loss after spinal surgery is a well-known but devastating complication that may result from direct ocular ischemia, embolism to the central retinal artery, ischemic optic neuropathy, or occipital cortical ischemia. The occipital cortex is situated in the posterior border zone of the middle and posterior cerebral arteries and is susceptible to ischemic damage. Transient cortical blindness as a cause of postoperative vision loss has never been reported after spine surgery in a child. We report an 11-year-old female patient with muscular dystrophy who underwent posterior spinal fusion and instrumentation under hypotensive anesthesia for scoliosis who developed transient cortical blindness.

  8. Spinal cord blood flow measured by /sup 14/C-iodoantipyrine autoradiography during and after graded spinal cord compression in rats

    SciTech Connect

    Holtz, A.; Nystroem, B.G.; Gerdin, B.

    1989-05-01

    The relations between degree of thoracic spinal cord compression causing myelographic block, reversible paraparesis, and extinction of the sensory evoked potential on one hand, and spinal cord blood flow on the other, were investigated. This was done in rats using the blocking weight-technique and /sup 14/C-iodoantipyrine autoradiography. A load of 9 g caused myelographic block. Five minutes of compression with that load caused a reduction of spinal cord blood flow to about 25%, but 5 and 60 minutes after the compression spinal cord blood flow was restored to 60% of the pretrauma value. A load of 35 g for 5 minutes caused transient paraparesis. Recovery to about 30% was observed 5 and 60 minutes thereafter. During compression at a load of 55 g, which caused almost total extinction of sensory evoked potential and irreversible paraplegia, spinal cord blood flow under the load ceased. The results indicate that myelographic block occurs at a load which does not cause irreversible paraparesis and that a load which permits sensory evoked potential to be elicited results in potentially salvageable damage.

  9. Mammalian Cell-Based Sensor System

    NASA Astrophysics Data System (ADS)

    Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.

    Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.

  10. Cellular transplantation strategies for spinal cord injury and translational neurobiology.

    PubMed

    Reier, Paul J

    2004-10-01

    Basic science advances in spinal cord injury and regeneration research have led to a variety of novel experimental therapeutics designed to promote functionally effective axonal regrowth and sprouting. Among these interventions are cell-based approaches involving transplantation of neural and non-neural tissue elements that have potential for restoring damaged neural pathways or reconstructing intraspinal synaptic circuitries by either regeneration or neuronal/glial replacement. Notably, some of these strategies (e.g., grafts of peripheral nerve tissue, olfactory ensheathing glia, activated macrophages, marrow stromal cells, myelin-forming oligodendrocyte precursors or stem cells, and fetal spinal cord tissue) have already been translated to the clinical arena, whereas others have imminent likelihood of bench-to-bedside application. Although this progress has generated considerable enthusiasm about treating what once was thought to be a totally incurable condition, there are many issues to be considered relative to treatment safety and efficacy. The following review reflects on different experimental applications of intraspinal transplantation with consideration of the underlying pathological, pathophysiological, functional, and neuroplastic responses to spinal trauma that such treatments may target along with related issues of procedural and biological safety. The discussion then moves to an overview of ongoing and completed clinical trials to date. The pros and cons of these endeavors are considered, as well as what has been learned from them. Attention is primarily directed at preclinical animal modeling and the importance of patterning clinical trials, as much as possible, according to laboratory experiences.

  11. Putaminal alteration in multiple sclerosis patients with spinal cord lesions.

    PubMed

    Zimmermann, Hilga; Rolfsnes, Hans O; Montag, Swantje; Wilting, Janine; Droby, Amgad; Reuter, Eva; Gawehn, Joachim; Zipp, Frauke; Gröger, Adriane

    2015-10-01

    Typical multiple sclerosis (MS) lesions occur in the brain as well as in the spinal cord. However, two extreme magnetic resonance imaging phenotypes appear occasionally: those with predominantly spinal cord lesions (MS + SL) and those with cerebral lesions and no detectable spinal lesions (MS + CL). We assessed whether morphological differences can be found between these two extreme phenotypes. We examined 19 patients with MS + SL, 18 with MS + CL and 20 controls. All subjects were examined using magnetic resonance imaging, including anatomical and diffusion tensor imaging sequences. Voxel-based morphologic and regions of interest-based analyses and tract-based spatial statistics were performed. Patients also underwent neuropsychological testing. Demographic, clinical and neuropsychological characteristics did not differ between MS + SL and MS + CL patients. Patients with MS + SL showed significantly larger putamen volumes than those with MS + CL which correlated negatively with disability. Compared to controls, only MS + CL revealed clear cortical and deep gray matter atrophy, which correlated with cerebral lesion volume. Additionally, extensive white matter microstructural damage was found only in MS + CL compared to MS + SL and controls in the tract-based spatial statistics. Higher putamen volumes in MS + SL could suggest compensatory mechanisms in this area responsible for motor control. Widely reduced fractional anisotropy values in MS + CL were caused by higher cerebral lesion volume and thus presumably stronger demyelination, which subsequently leads to higher global gray matter atrophy.

  12. Biomechanics of Degenerative Spinal Disorders

    PubMed Central

    Iorio, Justin A.; Jakoi, Andre M.

    2016-01-01

    The spine has several important functions including load transmission, permission of limited motion, and protection of the spinal cord. The vertebrae form functional spinal units, which represent the smallest segment that has characteristics of the entire spinal column. Discs and paired facet joints within each functional unit form a three-joint complex between which loads are transmitted. Surrounding the spinal motion segment are ligaments, composed of elastin and collagen, and joint capsules which restrict motion to within normal limits. Ligaments have variable strengths and act via different lever arm lengths to contribute to spinal stability. As a consequence of the longer moment arm from the spinous process to the instantaneous axis of rotation, inherently weaker ligaments (interspinous and supraspinous) are able to provide resistance to excessive flexion. Degenerative processes of the spine are a normal result of aging and occur on a spectrum. During the second decade of life, the intervertebral disc demonstrates histologic evidence of nucleus pulposus degradation caused by reduced end plate blood supply. As disc height decreases, the functional unit is capable of an increased range of axial rotation which subjects the posterior facet capsules to greater mechanical loads. A concurrent change in load transmission across the end plates and translation of the instantaneous axis of rotation further increase the degenerative processes at adjacent structures. The behavior of the functional unit is impacted by these processes and is reflected by changes in the stress-strain relationship. Back pain and other clinical symptoms may occur as a result of the biomechanical alterations of degeneration. PMID:27114783

  13. Gonadotropin-releasing hormone receptor in spinal cord neurons of embryos and adult rats.

    PubMed

    Quintanar, J Luis; Salinas, Eva; González, Rodolfo

    2009-09-11

    Mammalian gonadotropin-releasing hormone (GnRH) and its receptor have been found in the neuroendocrine reproductive axis. However, they can be localized in other extra-pituitary tissues as well including the central nervous system. The present study reports the expression of GnRH receptor and its mRNA in spinal cord neurons of rat embryos and adult rats, using immunohistochemistry and reverse transcriptase polymerase chain reaction (RT-PCR). Immunohistochemistry showed that the spinal cord neurons of rat embryos and adult rats expressed the GnRH receptor. The study of GnRH receptor mRNAs revealed that both cultured spinal cord neurons of rat embryos and adult rats expressed the GnRH receptor mRNA. Additional in vitro experiments showed that the expression of GnRH receptor mRNA was less in the spinal cord neurons exposed to GnRH compared to unexposed ones. These results raise the possibility that GnRH may play other roles independently from its participation in reproductive function.

  14. Damaged Skylab

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Saturn V vehicle, carrying the unmarned orbital workshop for the Skylab-1 mission, lifted off successfully and all systems performed normally. Sixty-three seconds into the flight, engineers in the operation support and control center saw an unexpected telemetry indication that signalled that damages occurred on one solar array and the micrometeoroid shield during the launch. The micrometeoroid shield, a thin protective cylinder surrounding the workshop protecting it from tiny space particles and the sun's scorching heat, ripped loose from its position around the workshop. This caused the loss of one solar wing and jammed the other. Still unoccupied, the Skylab was stricken with the loss of the heat shield and sunlight beat mercilessly on the lab's sensitive skin. Internal temperatures soared, rendering the station uninhabitable, threatening foods, medicines, films, and experiments. This image, taken during a fly-around inspection by the Skylab-2 crew, shows a crippled Skylab in orbit. The crew found their home in space to be in serious shape; the heat shield gone, one solar wing gone, and the other jammed. The Marshall Space Flight Center (MSFC) developed, tested, rehearsed, and approved three repair options. These options included a parasol sunshade and a twin-pole sunshade to restore the temperature inside the workshop, and a set of metal cutting tools to free the jammed solar panel.

  15. Involvement of opsins in mammalian sperm thermotaxis

    PubMed Central

    Pérez-Cerezales, Serafín; Boryshpolets, Sergii; Afanzar, Oshri; Brandis, Alexander; Nevo, Reinat; Kiss, Vladimir; Eisenbach, Michael

    2015-01-01

    A unique characteristic of mammalian sperm thermotaxis is extreme temperature sensitivity, manifested by the capacity of spermatozoa to respond to temperature changes of <0.0006 °C as they swim their body-length distance. The identity of the sensing system that confers this exceptional sensitivity on spermatozoa is not known. Here we show that the temperature-sensing system of mammalian spermatozoa involves opsins, known to be G-protein-coupled receptors that act as photosensors in vision. We demonstrate by molecular, immunological, and functional approaches that opsins are present in human and mouse spermatozoa at specific sites, which depend on the species and the opsin type, and that they are involved in sperm thermotaxis via two signalling pathways—the phospholipase C and the cyclic-nucleotide pathways. Our results suggest that, depending on the context and the tissue, mammalian opsins act not only as photosensors but also as thermosensors. PMID:26537127

  16. Mammalian diversity: gametes, embryos and reproduction.

    PubMed

    Behringer, Richard R; Eakin, Guy S; Renfree, Marilyn B

    2006-01-01

    The class Mammalia is composed of approximately 4800 extant species. These mammalian species are divided into three subclasses that include the monotremes, marsupials and eutherians. Monotremes are remarkable because these mammals are born from eggs laid outside of the mother's body. Marsupial mammals have relatively short gestation periods and give birth to highly altricial young that continue a significant amount of 'fetal' development after birth, supported by a highly sophisticated lactation. Less than 10% of mammalian species are monotremes or marsupials, so the great majority of mammals are grouped into the subclass Eutheria, including mouse and human. Mammals exhibit great variety in morphology, physiology and reproduction. In the present article, we highlight some of this remarkable diversity relative to the mouse, one of the most widely used mammalian model organisms, and human. This diversity creates challenges and opportunities for gamete and embryo collection, culture and transfer technologies.

  17. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization. The Astronauts will be exposed to microgravity environment for a long duration of time during these flights. Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system and nervous system. We did our preliminary investigations by exposing mammalian lymphocytes and astrocyte cells to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon, Inc. (USA).Our initial results showed no significant change in cytokine expression in these cells up to a time period of 120 hours exposure. Our future experiments will involve exposure for a longer period of time.

  18. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Knight, C.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization.The Astronauts will be exposed to microgravity environment for a long duration of time during these flights.Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system.We did our preliminary investigations by exposing mammalian lymphocytes to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon Inc (USA).Our initial results showed no significant change in cytokine expression in these cells for a time period of forty eight hours exposure.Our future experiments will involve exposure for a longer period of time.

  19. The mammalian blastema: regeneration at our fingertips

    PubMed Central

    Simkin, Jennifer; Sammarco, Mimi C.; Dawson, Lindsay A.; Schanes, Paula P.; Yu, Ling

    2015-01-01

    Abstract In the mouse, digit tip regeneration progresses through a series of discrete stages that include inflammation, histolysis, epidermal closure, blastema formation, and redifferentiation. Recent studies reveal how each regenerative stage influences subsequent stages to establish a blastema that directs the successful regeneration of a complex mammalian structure. The focus of this review is on early events of healing and how an amputation wound transitions into a functional blastema. The stepwise formation of a mammalian blastema is proposed to provide a model for how specific targeted treatments can enhance regenerative performance in humans. PMID:27499871

  20. Navigation and Robotics in Spinal Surgery: Where Are We Now?

    PubMed

    Overley, Samuel C; Cho, Samuel K; Mehta, Ankit I; Arnold, Paul M

    2017-03-01

    Spine surgery has experienced much technological innovation over the past several decades. The field has seen advancements in operative techniques, implants and biologics, and equipment such as computer-assisted navigation and surgical robotics. With the arrival of real-time image guidance and navigation capabilities along with the computing ability to process and reconstruct these data into an interactive three-dimensional spinal "map", so too have the applications of surgical robotic technology. While spinal robotics and navigation represent promising potential for improving modern spinal surgery, it remains paramount to demonstrate its superiority as compared to traditional techniques prior to assimilation of its use amongst surgeons.The applications for intraoperative navigation and image-guided robotics have expanded to surgical resection of spinal column and intradural tumors, revision procedures on arthrodesed spines, and deformity cases with distorted anatomy. Additionally, these platforms may mitigate much of the harmful radiation exposure in minimally invasive surgery to which the patient, surgeon, and ancillary operating room staff are subjected.Spine surgery relies upon meticulous fine motor skills to manipulate neural elements and a steady hand while doing so, often exploiting small working corridors utilizing exposures that minimize collateral damage. Additionally, the procedures may be long and arduous, predisposing the surgeon to both mental and physical fatigue. In light of these characteristics, spine surgery may actually be an ideal candidate for the integration of navigation and robotic-assisted procedures.With this paper, we aim to critically evaluate the current literature and explore the options available for intraoperative navigation and robotic-assisted spine surgery.

  1. Subcortical control of precision grip after human spinal cord injury.

    PubMed

    Bunday, Karen L; Tazoe, Toshiki; Rothwell, John C; Perez, Monica A

    2014-05-21

    The motor cortex and the corticospinal system contribute to the control of a precision grip between the thumb and index finger. The involvement of subcortical pathways during human precision grip remains unclear. Using noninvasive cortical and cervicomedullary stimulation, we examined motor evoked potentials (MEPs) and the activity in intracortical and subcortical pathways targeting an intrinsic hand muscle when grasping a small (6 mm) cylinder between the thumb and index finger and during index finger abduction in uninjured humans and in patients with subcortical damage due to incomplete cervical spinal cord injury (SCI). We demonstrate that cortical and cervicomedullary MEP size was reduced during precision grip compared with index finger abduction in uninjured humans, but was unchanged in SCI patients. Regardless of whether cortical and cervicomedullary stimulation was used, suppression of the MEP was only evident 1-3 ms after its onset. Long-term (∼5 years) use of the GABAb receptor agonist baclofen by SCI patients reduced MEP size during precision grip to similar levels as uninjured humans. Index finger sensory function correlated with MEP size during precision grip in SCI patients. Intracortical inhibition decreased during precision grip and spinal motoneuron excitability remained unchanged in all groups. Our results demonstrate that the control of precision grip in humans involves premotoneuronal subcortical mechanisms, likely disynaptic or polysynaptic spinal pathways that are lacking after SCI and restored by long-term use of baclofen. We propose that spinal GABAb-ergic interneuronal circuits, which are sensitive to baclofen, are part of the subcortical premotoneuronal network shaping corticospinal output during human precision grip.

  2. Increase in Trx2/Prx3 redox system immunoreactivity in the spinal cord and hippocampus of aged dogs.

    PubMed

    Ahn, Ji Hyeon; Choi, Jung Hoon; Song, Ju Min; Lee, Choong Hyun; Yoo, Ki-Yeon; Hwang, In Koo; Kim, Jin Sang; Shin, Hyung-Cheul; Won, Moo-Ho

    2011-11-01

    We previously reported that no distinct neuronal loss occurred in the aged dog spinal cord, although oxidative stress was increased in the aged dog spinal cord. Thioredoxin 2 (Trx2)/peroxiredoxin 3 (Prx3) redox system is a major route for removing H(2)O(2) in the central nervous system. In the present study, we compared the distribution and immunoreactivity of thioredoxin reductase 2 (TrxR2), Trx2 and Prx3 and their protein levels in the spinal cord and hippocampus between the adult (2-3 years) and aged (10-12 years) dogs. The number of TrxR2-immunoreactive neurons was slightly increased; however, its immunoreactivity was significantly increased in the aged spinal cord compared to that in the adult spinal cord. On the other hand, the number and immunoreactivity of both Trx2- and Prx3-immunoreactive neurons were significantly increased in the spinal cord of the aged dog. Similarly, in the hippocampus of the aged dog, TrxR2, Trx2 and Prx3 immunoreactivity and protein levels were markedly increased compared to those in the adult dog. These results indicate that the increases of TrxR2, Trx2 and Prx3 immunoreactivity and their protein levels in the aged spinal cord and hippocampus may contribute to reducing neuronal damage against oxidative stresses during normal aging.

  3. A role for myosin II in mammalian mitochondrial fission.

    PubMed

    Korobova, Farida; Gauvin, Timothy J; Higgs, Henry N

    2014-02-17

    Mitochondria are dynamic organelles, undergoing both fission and fusion regularly in interphase cells. Mitochondrial fission is thought to be part of a quality-control mechanism whereby damaged mitochondrial components are segregated from healthy components in an individual mitochondrion, followed by mitochondrial fission and degradation of the damaged daughter mitochondrion. Fission also plays a role in apoptosis. Defects in mitochondrial dynamics can lead to neurodegenerative diseases such as Alzheimer's disease. Mitochondrial fission requires the dynamin GTPase Drp1, which assembles in a ring around the mitochondrion and appears to constrict both outer and inner mitochondrial membranes. However, mechanisms controlling Drp1 assembly on mammalian mitochondria are unclear. Recent results show that actin polymerization, driven by the endoplasmic reticulum-bound formin protein INF2, stimulates Drp1 assembly at fission sites. Here, we show that myosin II also plays a role in fission. Chemical inhibition by blebbistatin or small interfering RNA (siRNA)-mediated suppression of myosin IIA or myosin IIB causes an increase in mitochondrial length in both control cells and cells expressing constitutively active INF2. Active myosin II accumulates in puncta on mitochondria in an actin- and INF2-dependent manner. In addition, myosin II inhibition decreases Drp1 association with mitochondria. Based on these results, we propose a mechanistic model in which INF2-mediated actin polymerization leads to myosin II recruitment and constriction at the fission site, enhancing subsequent Drp1 accumulation and fission.

  4. Sudden myelopathy secondary to therapeutic total-body hyperthermia after spinal-cord irradiation

    SciTech Connect

    Douglas, M.A.; Parks, L.C.; Bebin, J.

    1981-03-05

    Hyperthermia is a new method of treatment receiving increasing clinical attention in cancer therapy. Its efficacy has been well demonstrated in animals, but its indications, contraindications, and appropriate place in cancer therapy have yet to be defined. We report three cases of acute myelopathy in patients undergoing hyperthermia after spinal-cord irradiation within the preceding two months. Post-mortem examination in one case revealed findings similar to those seen in myelopathy resulting from long-term irradiation. Several neurologic side effects have been reported previously with total-body hyperthermia - most commonly peripheral neuropathy, but not myelopathy. The mechanism of action of hyperthermia in cancer therapy (with or without prior irradiation) is unknown. The experience reported suggests that in some patients hyperthermia may potentiate radiation-induced damage to the spinal cord or otherwise interact to cause acute spinal-cord necrosis.

  5. Stem cell therapy for spinal cord injury.

    PubMed

    Kan, E M; Ling, E A; Lu, J

    2010-01-01

    Spinal cord injury (SCI) damages axons and disrupts myelination interrupting sensory and motor neuronal transmission to and from the brain. Patients suffering from SCI although continue to survive, are often left chronically disabled and with no promise of a cure. Advances in stem cell biology has opened up doors for the use of human embryonic, adult neural and induced pluripotent stem cell strategies for SCI. Despite great promise from animal research, clinical trials have been limited and the jury is still out on its safety and efficacy. This review discusses the advantages and disadvantages of the various stem cell types, barriers hindering translation from animal to humans, and the need for established guidelines for standardization of clinical trials ensuring subsequent implementation. Ultimately, unrealistic expectations of stem cell therapy (SCT) as the elixir for SCI should be managed. The success of SCT for SCI lies in the network of research scientists, medical professionals and patients working cooperatively to build up a knowledge-intensive platform for a comprehensive risk-benefit assessment of SCT for SCI.

  6. Spontaneous Spinal Epidural Hematoma on the Ventral Portion of Whole Spinal Canal: A Case Report

    PubMed Central

    Lee, Hyun-Ho; Kim, Young; Ha, Young-Soo

    2015-01-01

    Spontaneous spinal epidural hematoma is an uncommon but disabling disease. This paper reports a case of spontaneous spinal epidural hematoma and treatment by surgical management. A 32-year-old male presented with a 30-minute history of sudden headache, back pain, chest pain, and progressive quadriplegia. Whole-spinal sagittal magnetic resonance imaging (MRI) revealed spinal epidural hematoma on the ventral portion of the spinal canal. Total laminectomy from T5 to T7 was performed, and hematoma located at the ventral portion of the spinal cord was evacuated. Epidural drainages were inserted in the upper and lower epidural spaces. The patient improved sufficiently to ambulate, and paresthesia was fully recovered. Spontaneous spinal epidural hematoma should be considered when patients present symptoms of spinal cord compression after sudden back pain or chest pain. To prevent permanent neurologic deficits, early and correct diagnosis with timely surgical management is necessary. PMID:26512277

  7. Cytotoxic responses to 405nm light exposure in mammalian and bacterial cells: Involvement of reactive oxygen species.

    PubMed

    Ramakrishnan, Praveen; Maclean, Michelle; MacGregor, Scott J; Anderson, John G; Grant, M Helen

    2016-06-01

    Light at wavelength 405 nm is an effective bactericide. Previous studies showed that exposing mammalian cells to 405 nm light at 36 J/cm(2) (a bactericidal dose) had no significant effect on normal cell function, although at higher doses (54 J/cm(2)), mammalian cell death became evident. This research demonstrates that mammalian and bacterial cell toxicity induced by 405 nm light exposure is accompanied by reactive oxygen species production, as detected by generation of fluorescence from 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate. As indicators of the resulting oxidative stress in mammalian cells, a decrease in intracellular reduced glutathione content and a corresponding increase in the efflux of oxidised glutathione were observed from 405 nm light treated cells. The mammalian cells were significantly protected from dying at 54 J/cm(2) in the presence of catalase, which detoxifies H2O2. Bacterial cells were significantly protected by sodium pyruvate (H2O2 scavenger) and by a combination of free radical scavengers (sodium pyruvate, dimethyl thiourea (OH scavenger) and catalase) at 162 and 324 J/cm(2). Results therefore suggested that the cytotoxic mechanism of 405 nm light in mammalian cells and bacteria could be oxidative stress involving predominantly H2O2 generation, with other ROS contributing to the damage.

  8. Intrathecal Transplantation of Autologous Adherent Bone Marrow Cells Induces Functional Neurological Recovery in a Canine Model of Spinal Cord Injury.

    PubMed

    Gabr, Hala; El-Kheir, Wael Abo; Farghali, Haithem A M A; Ismail, Zeinab M K; Zickri, Maha B; El Maadawi, Zeinab M; Kishk, Nirmeen A; Sabaawy, Hatem E

    2015-01-01

    Spinal cord injury (SCI) results in demyelination of surviving axons, loss of oligodendrocytes, and impairment of motor and sensory functions. We have developed a clinical strategy of cell therapy for SCI through the use of autologous bone marrow cells for transplantation to augment remyelination and enhance neurological repair. In a preclinical large mammalian model of SCI, experimental dogs were subjected to a clipping contusion of the spinal cord. Two weeks after the injury, GFP-labeled autologous minimally manipulated adherent bone marrow cells (ABMCs) were transplanted intrathecally to investigate the safety and efficacy of autologous ABMC therapy. The effects of ABMC transplantation in dogs with SCI were determined using functional neurological scoring, and the integration of ABMCs into the injured cords was determined using histopathological and immunohistochemical investigations and electron microscopic analyses of sections from control and transplanted spinal cords. Our data demonstrate the presence of GFP-labeled cells in the injured spinal cord for up to 16 weeks after transplantation in the subacute SCI stage. GFP-labeled cells homed to the site of injury and were detected around white matter tracts and surviving axons. ABMC therapy in the canine SCI model enhanced remyelination and augmented neural regeneration, resulting in improved neurological functions. Therefore, autologous ABMC therapy appears to be a safe and promising therapy for spinal cord injuries.

  9. Histochemical Characterization, Distribution and Morphometric Analysis of NADPH Diaphorase Neurons in the Spinal Cord of the Agouti

    PubMed Central

    Freire, Marco Aurélio M.; Tourinho, Suzane C.; Guimarães, Joanilson S.; Oliveira, Jorge Luiz F.; Picanço-Diniz, Cristovam W.; Gomes-Leal, Walace; Pereira, Antonio

    2008-01-01

    We evaluated the neuropil distribution of the enzymes NADPH diaphorase (NADPH-d) and cytochrome oxidase (CO) in the spinal cord of the agouti, a medium-sized diurnal rodent, together with the distribution pattern and morphometrical characteristics of NADPH-d reactive neurons across different spinal segments. Neuropil labeling pattern was remarkably similar for both enzymes in coronal sections: reactivity was higher in regions involved with pain processing. We found two distinct types of NADPH-d reactive neurons in the agouti's spinal cord: type I neurons had large, heavily stained cell bodies while type II neurons displayed relatively small and poorly stained somata. We concentrated our analysis on type I neurons. These were found mainly in the dorsal horn and around the central canal of every spinal segment, with a few scattered neurons located in the ventral horn of both cervical and lumbar regions. Overall, type I neurons were more numerous in the cervical region. Type I neurons were also found in the white matter, particularly in the ventral funiculum. Morphometrical analysis revealed that type I neurons located in the cervical region have dendritic trees that are more complex than those located in both lumbar and thoracic regions. In addition, NADPH-d cells located in the ventral horn had a larger cell body, especially in lumbar segments. The resulting pattern of cell body and neuropil distribution is in accordance with proposed schemes of segregation of function in the mammalian spinal cord. PMID:18958200

  10. Effects of NO Synthase Blocker L-NAME on Functional State of the Neuromotor System during Traumatic Disease of the Spinal Cord.

    PubMed

    Yafarova, G G; Andrianov, V V; Yagudin, R Kh; Shaikhytdinov, I I; Gainutdinov, Kh L

    2017-01-01

    Functional state of the neuromotor system after administration of a nonspecific NO synthase blocker L-NAME was studied on the model of experimental contusion of the spinal cord. Electron paramagnetic resonance measurements of NO production in the damaged segment of the spinal cord were performed for estimation of the dynamics of intensity of NO production during traumatic disease of the spinal cord and selection of optimal period for L-NAME administration. The status of the neuromotor system was evaluated by stimulation electromyography. Treatment with L-NAME during the acute period of traumatic injury to the spinal cord sharply reduced the intensity of evoked motor responses and more pronounced increase in excitability of peripheral motor structures. The results suggest that NO system is a factor of regulation of the stress-induced and adaptive responses of the body at the early stage of spinal cord injury.

  11. The biomechanics of spinal manipulation.

    PubMed

    Herzog, Walter

    2010-07-01

    Biomechanics is the science that deals with the external and internal forces acting on biological systems and the effects produced by these forces. Here, we describe the forces exerted by chiropractors on patients during high-speed, low-amplitude manipulations of the spine and the physiological responses produced by the treatments. The external forces were found to vary greatly among clinicians and locations of treatment on the spine. Spinal manipulative treatments produced reflex responses far from the treatment site, caused movements of vertebral bodies in the "para-physiological" zone, and were associated with cavitation of facet joints. Stresses and strains on the vertebral artery during chiropractic spinal manipulation of the neck were always much smaller than those produced during passive range of motion testing and diagnostic procedures.

  12. Medical and experimental mammalian genetics: A perspective

    SciTech Connect

    McKusick, V.A.; Roderick, T.H.; Mori, J.; Paul, N.W.

    1987-01-01

    This book contains 14 papers. Some of the titles are: Structure and Organization of Mammalian Chromosomes: Normal and Abnormal; Globin Gene Structure and the Nature of Mutation; Retroviral DNA Content of the Mouse Genome; Maternal Genes: Mitochondrial Diseases; Human Evolution; and Prospects for Gene Replacement Therapy.

  13. A promoter-level mammalian expression atlas

    PubMed Central

    2015-01-01

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research. PMID:24670764

  14. Architecture of mammalian respiratory complex I.

    PubMed

    Vinothkumar, Kutti R; Zhu, Jiapeng; Hirst, Judy

    2014-11-06

    Complex I (NADH:ubiquinone oxidoreductase) is essential for oxidative phosphorylation in mammalian mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the energy-transducing inner membrane, providing electrons for respiration and driving ATP synthesis. Mammalian complex I contains 44 different nuclear- and mitochondrial-encoded subunits, with a combined mass of 1 MDa. The 14 conserved 'core' subunits have been structurally defined in the minimal, bacterial complex, but the structures and arrangement of the 30 'supernumerary' subunits are unknown. Here we describe a 5 Å resolution structure of complex I from Bos taurus heart mitochondria, a close relative of the human enzyme, determined by single-particle electron cryo-microscopy. We present the structures of the mammalian core subunits that contain eight iron-sulphur clusters and 60 transmembrane helices, identify 18 supernumerary transmembrane helices, and assign and model 14 supernumerary subunits. Thus, we considerably advance knowledge of the structure of mammalian complex I and the architecture of its supernumerary ensemble around the core domains. Our structure provides insights into the roles of the supernumerary subunits in regulation, assembly and homeostasis, and a basis for understanding the effects of mutations that cause a diverse range of human diseases.

  15. Architecture of mammalian respiratory complex I

    PubMed Central

    Hirst, Judy

    2014-01-01

    Complex I (NADH:ubiquinone oxidoreductase) is essential for oxidative phosphorylation in mammalian mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the energy-transducing inner membrane, providing electrons for respiration and driving ATP synthesis. Mammalian complex I contains 44 different nuclear- and mitochondrial-encoded subunits, with a combined mass of 1 MDa. The fourteen conserved ‘core’ subunits have been structurally defined in the minimal, bacterial complex, but the structures and arrangement of the 30 ‘supernumerary’ subunits are unknown. Here, we describe a 5 Å resolution structure of complex I from Bos taurus heart mitochondria, a close relative of the human enzyme, determined by single-particle electron cryo-microscopy. We present the structures of the mammalian core subunits that contain eight iron-sulphur clusters and 60 transmembrane helices, identify 18 supernumerary transmembrane helices, and assign and model 14 supernumerary subunits. Thus, we significantly advance knowledge of the structure of mammalian complex I and the architecture of its supernumerary ensemble around the core domains. Our structure provides insights into the roles of the supernumerary subunits in regulation, assembly and homeostasis, and a basis for understanding the effects of mutations that cause a diverse range of human diseases. PMID:25209663

  16. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  17. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  18. Cultured normal mammalian tissue and process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor)

    1993-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cell aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  19. Structure of mammalian respiratory complex I

    PubMed Central

    Hirst, Judy

    2016-01-01

    Complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in the cell, powers ATP synthesis in mammalian mitochondria by using the reducing potential of NADH to drive protons across the inner membrane. Mammalian complex I1 contains 45 subunits, comprising 14 core subunits that house the catalytic machinery and are conserved from bacteria to humans, and a mammalian-specific cohort of 31 supernumerary subunits1,2. Knowledge about the structures and functions of the supernumerary subunits is fragmentary. Here, we describe a 4.2 Å resolution single-particle cryoEM structure of complex I from Bos taurus. We locate and model all 45 subunits to provide the entire structure of the mammalian complex. Furthermore, computational sorting of the particles identified different structural classes, related by subtle domain movements, which reveal conformationally-dynamic regions and match biochemical descriptions of the ‘active-to-deactive’ enzyme transition that occurs during hypoxia3,4. Thus, our structures provide a foundation for understanding complex I assembly5 and the effects of mutations that cause clinically-relevant complex I dysfunctions6, insights into the structural and functional roles of the supernumerary subunits, and new information on the mechanism and regulation of catalysis. PMID:27509854

  20. Crossroads between Bacterial and Mammalian Glycosyltransferases

    PubMed Central

    Brockhausen, Inka

    2014-01-01

    Bacterial glycosyltransferases (GT) often synthesize the same glycan linkages as mammalian GT; yet, they usually have very little sequence identity. Nevertheless, enzymatic properties, folding, substrate specificities, and catalytic mechanisms of these enzyme proteins may have significant similarity. Thus, bacterial GT can be utilized for the enzymatic synthesis of both bacterial and mammalian types of complex glycan structures. A comparison is made here between mammalian and bacterial enzymes that synthesize epitopes found in mammalian glycoproteins, and those found in the O antigens of Gram-negative bacteria. These epitopes include Thomsen–Friedenreich (TF or T) antigen, blood group O, A, and B, type 1 and 2 chains, Lewis antigens, sialylated and fucosylated structures, and polysialic acids. Many different approaches can be taken to investigate the substrate binding and catalytic mechanisms of GT, including crystal structure analyses, mutations, comparison of amino acid sequences, NMR, and mass spectrometry. Knowledge of the protein structures and functions helps to design GT for specific glycan synthesis and to develop inhibitors. The goals are to develop new strategies to reduce bacterial virulence and to synthesize vaccines and other biologically active glycan structures. PMID:25368613

  1. Ticks Take Cues from Mammalian Interferon.

    PubMed

    de Silva, Aravinda M

    2016-07-13

    Interferons are considered a first line of immune defense restricted to vertebrates. In this issue of Cell Host & Microbe, Smith et al. (2016) demonstrate that mammalian interferon γ activates an antimicrobial response within ticks feeding on blood. The study suggests that arthropods have a parallel interferon-like defense system.

  2. A promoter-level mammalian expression atlas.

    PubMed

    Forrest, Alistair R R; Kawaji, Hideya; Rehli, Michael; Baillie, J Kenneth; de Hoon, Michiel J L; Haberle, Vanja; Lassmann, Timo; Kulakovskiy, Ivan V; Lizio, Marina; Itoh, Masayoshi; Andersson, Robin; Mungall, Christopher J; Meehan, Terrence F; Schmeier, Sebastian; Bertin, Nicolas; Jørgensen, Mette; Dimont, Emmanuel; Arner, Erik; Schmidl, Christian; Schaefer, Ulf; Medvedeva, Yulia A; Plessy, Charles; Vitezic, Morana; Severin, Jessica; Semple, Colin A; Ishizu, Yuri; Young, Robert S; Francescatto, Margherita; Alam, Intikhab; Albanese, Davide; Altschuler, Gabriel M; Arakawa, Takahiro; Archer, John A C; Arner, Peter; Babina, Magda; Rennie, Sarah; Balwierz, Piotr J; Beckhouse, Anthony G; Pradhan-Bhatt, Swati; Blake, Judith A; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Burroughs, A Maxwell; Califano, Andrea; Cannistraci, Carlo V; Carbajo, Daniel; Chen, Yun; Chierici, Marco; Ciani, Yari; Clevers, Hans C; Dalla, Emiliano; Davis, Carrie A; Detmar, Michael; Diehl, Alexander D; Dohi, Taeko; Drabløs, Finn; Edge, Albert S B; Edinger, Matthias; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Fagiolini, Michela; Fairbairn, Lynsey; Fang, Hai; Farach-Carson, Mary C; Faulkner, Geoffrey J; Favorov, Alexander V; Fisher, Malcolm E; Frith, Martin C; Fujita, Rie; Fukuda, Shiro; Furlanello, Cesare; Furino, Masaaki; Furusawa, Jun-ichi; Geijtenbeek, Teunis B; Gibson, Andrew P; Gingeras, Thomas; Goldowitz, Daniel; Gough, Julian; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J; Hamaguchi, Masahide; Hara, Mitsuko; Harbers, Matthias; Harshbarger, Jayson; Hasegawa, Akira; Hasegawa, Yuki; Hashimoto, Takehiro; Herlyn, Meenhard; Hitchens, Kelly J; Ho Sui, Shannan J; Hofmann, Oliver M; Hoof, Ilka; Hori, Furni; Huminiecki, Lukasz; Iida, Kei; Ikawa, Tomokatsu; Jankovic, Boris R; Jia, Hui; Joshi, Anagha; Jurman, Giuseppe; Kaczkowski, Bogumil; Kai, Chieko; Kaida, Kaoru; Kaiho, Ai; Kajiyama, Kazuhiro; Kanamori-Katayama, Mutsumi; Kasianov, Artem S; Kasukawa, Takeya; Katayama, Shintaro; Kato, Sachi; Kawaguchi, Shuji; Kawamoto, Hiroshi; Kawamura, Yuki I; Kawashima, Tsugumi; Kempfle, Judith S; Kenna, Tony J; Kere, Juha; Khachigian, Levon M; Kitamura, Toshio; Klinken, S Peter; Knox, Alan J; Kojima, Miki; Kojima, Soichi; Kondo, Naoto; Koseki, Haruhiko; Koyasu, Shigeo; Krampitz, Sarah; Kubosaki, Atsutaka; Kwon, Andrew T; Laros, Jeroen F J; Lee, Weonju; Lennartsson, Andreas; Li, Kang; Lilje, Berit; Lipovich, Leonard; Mackay-Sim, Alan; Manabe, Ri-ichiroh; Mar, Jessica C; Marchand, Benoit; Mathelier, Anthony; Mejhert, Niklas; Meynert, Alison; Mizuno, Yosuke; de Lima Morais, David A; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Motakis, Efthymios; Motohashi, Hozumi; Mummery, Christine L; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakachi, Yutaka; Nakahara, Fumio; Nakamura, Toshiyuki; Nakamura, Yukio; Nakazato, Kenichi; van Nimwegen, Erik; Ninomiya, Noriko; Nishiyori, Hiromi; Noma, Shohei; Noma, Shohei; Noazaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Ohimiya, Hiroko; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A; Pain, Arnab; Passier, Robert; Patrikakis, Margaret; Persson, Helena; Piazza, Silvano; Prendergast, James G D; Rackham, Owen J L; Ramilowski, Jordan A; Rashid, Mamoon; Ravasi, Timothy; Rizzu, Patrizia; Roncador, Marco; Roy, Sugata; Rye, Morten B; Saijyo, Eri; Sajantila, Antti; Saka, Akiko; Sakaguchi, Shimon; Sakai, Mizuho; Sato, Hiroki; Savvi, Suzana; Saxena, Alka; Schneider, Claudio; Schultes, Erik A; Schulze-Tanzil, Gundula G; Schwegmann, Anita; Sengstag, Thierry; Sheng, Guojun; Shimoji, Hisashi; Shimoni, Yishai; Shin, Jay W; Simon, Christophe; Sugiyama, Daisuke; Sugiyama, Takaai; Suzuki, Masanori; Suzuki, Naoko; Swoboda, Rolf K; 't Hoen, Peter A C; Tagami, Michihira; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Tatsukawa, Hideki; Tatum, Zuotian; Thompson, Mark; Toyodo, Hiroo; Toyoda, Tetsuro; Valen, Elvind; van de Wetering, Marc; van den Berg, Linda M; Verado, Roberto; Vijayan, Dipti; Vorontsov, Ilya E; Wasserman, Wyeth W; Watanabe, Shoko; Wells, Christine A; Winteringham, Louise N; Wolvetang, Ernst; Wood, Emily J; Yamaguchi, Yoko; Yamamoto, Masayuki; Yoneda, Misako; Yonekura, Yohei; Yoshida, Shigehiro; Zabierowski, Susan E; Zhang, Peter G; Zhao, Xiaobei; Zucchelli, Silvia; Summers, Kim M; Suzuki, Harukazu; Daub, Carsten O; Kawai, Jun; Heutink, Peter; Hide, Winston; Freeman, Tom C; Lenhard, Boris; Bajic, Vladimir B; Taylor, Martin S; Makeev, Vsevolod J; Sandelin, Albin; Hume, David A; Carninci, Piero; Hayashizaki, Yoshihide

    2014-03-27

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly 'housekeeping', whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.

  3. Aberrant Synaptic Integration in Adult Lamina I Projection Neurons Following Neonatal Tissue Damage

    PubMed Central

    Li, Jie; Kritzer, Elizabeth; Craig, Paige E.

    2015-01-01

    Mounting evidence suggests that neonatal tissue damage evokes alterations in spinal pain reflexes which persist into adulthood. However, less is known about potential concomitant effects on the transmission of nociceptive information to the brain, as the degree to which early injury modulates synaptic integration and membrane excitability in mature spinal projection neurons remains unclear. Here we demonstrate that neonatal surgical injury leads to a significant shift in the balance between synaptic excitation and inhibition onto identified lamina I projection neurons of the adult mouse spinal cord. The strength of direct primary afferent input to mature spino-parabrachial neurons was enhanced following neonatal tissue damage, whereas the efficacy of both GABAergic and glycinergic inhibition onto the same population was compromised. This was accompanied by reorganization in the pattern of sensory input to adult projection neurons, which included a greater prevalence of monosynaptic input from low-threshold A-fibers when preceded by early tissue damage. In addition, neonatal incision resulted in greater primary afferent-evoked action potential discharge in mature projection neurons. Overall, these results demonstrate that tissue damage during early life causes a long-term increase in the gain of spinal nociceptive circuits, and suggest that the prolonged consequences of neonatal trauma may not be restricted to the spinal cord but rather include excessive ascending signaling to supraspinal pain centers. PMID:25673839

  4. Part 1: recognizing neonatal spinal cord injury.

    PubMed

    Brand, M Colleen

    2006-02-01

    Neonatal spinal cord injury can occur in utero, as well as after either a difficult delivery or a nontraumatic delivery. Spinal cord injury can also be related to invasive nursery procedures or underlying neonatal pathology. Early clinical signs of spinal cord injury that has occurred in utero or at delivery includes severe respiratory compromise and profound hypotonia. Knowledge of risk factors and awareness of symptoms is required for early recognition and appropriate treatment. This article reviews the embryological development of the spinal column highlighting mechanisms of injury and identifying underlying factors that increase the risk of spinal cord injury in newborns. Signs and symptoms of injury, cervical spine immobilization, and the differential diagnosis are discussed. Nursing implications, general prognosis, and research in spinal cord injury are provided.

  5. Selective inhibition of ASIC1a confers functional and morphological neuroprotection following traumatic spinal cord injury

    PubMed Central

    Koehn, Liam M.; Noor, Natassya M.; Dong, Qing; Er, Sing-Yan; Rash, Lachlan D.; King, Glenn F.; Dziegielewska, Katarzyna M.; Saunders, Norman R.; Habgood, Mark D.

    2016-01-01

    Tissue loss after spinal trauma is biphasic, with initial mechanical/haemorrhagic damage at the time of impact being followed by gradual secondary expansion into adjacent, previously unaffected tissue. Limiting the extent of this secondary expansion of tissue damage has the potential to preserve greater residual spinal cord function in patients. The acute tissue hypoxia resulting from spinal cord injury (SCI) activates acid-sensing ion channel 1a (ASIC1a). We surmised that antagonism of this channel should provide neuroprotection and functional preservation after SCI. We show that systemic administration of the spider-venom peptide PcTx1, a selective inhibitor of ASIC1a, improves locomotor function in adult Sprague Dawley rats after thoracic SCI. The degree of functional improvement correlated with the degree of tissue preservation in descending white matter tracts involved in hind limb locomotor function. Transcriptomic analysis suggests that PcTx1-induced preservation of spinal cord tissue does not result from a reduction in apoptosis, with no evidence of down-regulation of key genes involved in either the intrinsic or extrinsic apoptotic pathways. We also demonstrate that trauma-induced disruption of blood-spinal cord barrier function persists for at least 4 days post-injury for compounds up to 10 kDa in size, whereas barrier function is restored for larger molecules within a few hours. This temporary loss of barrier function provides a “ treatment window” through which systemically administered drugs have unrestricted access to spinal tissue in and around the sites of trauma. Taken together, our data provide evidence to support the use of ASIC1a inhibitors as a therapeutic treatment for SCI. This study also emphasizes the importance of objectively grading the functional severity of initial injuries (even when using standardized impacts) and we describe a simple scoring system based on hind limb function that could be adopted in future studies. PMID:28105306

  6. Survival Rates for Selected Childhood Brain and Spinal Cord Tumors

    MedlinePlus

    ... Diagnosis, and Staging Survival Rates for Selected Childhood Brain and Spinal Cord Tumors Survival rates are often ... Childhood Brain and Spinal Cord Tumors More In Brain and Spinal Cord Tumors in Children About Brain ...

  7. Testosterone Plus Finasteride Treatment After Spinal Cord Injury

    ClinicalTrials.gov

    2017-01-24

    Spinal Cord Injury; Spinal Cord Injuries; Trauma, Nervous System; Wounds and Injuries; Central Nervous System Diseases; Nervous System Diseases; Spinal Cord Diseases; Gonadal Disorders; Endocrine System Diseases; Hypogonadism; Genital Diseases, Male

  8. Acute non-traumatic spinal subdural haematoma: an unusual aetiology.

    PubMed

    Seizeur, Romuald; Ahmed, Seddik Sid; Simon, Alexandre; Besson, Gérard; Forlodou, Pierre

    2009-06-01

    We report an unusual case of a spinal subdural haematoma associated with a ruptured spinal aneurysm. The delayed diagnosis or misdiagnosis of this rare entity can have disastrous consequences. We discuss various possible aetiologies and its association with spinal aneurysms.

  9. The shortened spinal cord in tetraodontiform fishes.

    PubMed

    Uehara, Masato; Hosaka, Yoshinao Z; Doi, Hiroyuki; Sakai, Harumi

    2015-03-01

    In teleosts, the spinal cord generally extends along the entire vertebral canal. The Tetraodontiformes, in which the spinal cord is greatly reduced in length with a distinct long filum terminale and cauda equina, have been regarded as an aberration. The aims of this study are: 1) to elucidate whether the spinal cord in all tetraodontiform fishes shorten with the filum terminale, and 2) to describe the gross anatomical and histological differences in the spinal cord among all families of the Tetraodontiformes. Representative species from all families of the Tetraodontiformes, and for comparison the carp as a common teleost, were investigated. In the Triacanthodidae, Triacanthidae, and Triodontidae, which are the more ancestral taxa of the Tetraodontiformes, the spinal cord extends through the entire vertebral canal. In the Triacanthidae and Triodontidae, the caudal half or more spinal segments of the spinal cord, however, lack gray matter and consist largely of nerve fibers. In the other tetraodontiform families, the spinal cord is shortened forming a filum terminale with the cauda equina, which is prolonged as far as the last vertebra. The shortened spinal cord is divided into three groups. In the Ostraciidae and Molidae, the spinal cord tapers abruptly at the cranium or first vertebra forming a cord-like filum terminale. In the Monacanthidae, Tetraodontidae, and Diodontidae, it abruptly flattens at the rostral vertebrae forming a flat filum terminale. The spinal cord is relatively longer in the Monacanthidae than that in the other two families. It is suggested by histological features of the flat filum terminale that shortening of the spinal cord in this group progresses in order of the Monacanthidae, Tetraodontidae, and Diodontidae. In the Balistidae and Aracanidae, the cord is relatively long and then gradually decreased in dorso-ventral thickness.

  10. Spinal Cord Repair with Engineered Nervous Tissue

    DTIC Science & Technology

    2011-10-01

    funded grant, we demonstrated proof-of-concept success of bridging a lateral hemisection of the rat spinal cord with engineered (“stretch-grown...AD_________________ Award Number: W81XWH-10-1-0941 TITLE: Spinal Cord Repair with Engineered...5a. CONTRACT NUMBER Spinal Cord Repair with Engineered Nervous Tissue 5b. GRANT NUMBER W81XWH-10-1-0941 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  11. Spinal Cord Repair with Engineered Nervous Tissue

    DTIC Science & Technology

    2012-10-01

    success of bridging a lateral hemisection in the rat spinal cord with engineered (“stretch-grown”) living nervous tissue constructs 2 . For the current...AD_________________ Award Number: W81XWH-10-1-0941 TITLE: Spinal Cord Repair with Engineered...SUBTITLE Spinal Cord Repair with Engineered Nervous Tissue 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-10-1-0941 5c. PROGRAM ELEMENT NUMBER 6

  12. Surgical Outcome of Spinal Neurilemmoma

    PubMed Central

    Yeh, Kuang-Ting; Lee, Ru-Ping; Yu, Tzai-Chiu; Chen, Ing-Ho; Peng, Cheng-Huan; Liu, Kuan-Lin; Wang, Jen-Hung; Wu, Wen-Tien

    2015-01-01

    Abstract Neurilemmoma commonly occurs from the fourth to sixth decades of life with an incidence of 3 to 10 per 100,000 people, and is rare in adolescence. This case report describes the clinical and radiographic features of 2 rare cases with intraspinal neurilemmoma of the cervical and thoracic spine. A 29-year-old man who experienced middle back pain with prominent right lower limb weakness, and an 11-year-old boy who suffered from sudden onset neck pain with left arm weakness and hand clawing for 2 weeks before admission to our department were included in this case report. Magnetic resonance imaging of both patients revealed an intraspinal mass causing spinal cord compression at the cervical and thoracic spine. The patients subsequently received urgent posterior spinal cord decompression and tumor resection surgery. The histopathology reports revealed neurilemmoma. The 2 patients recovered and resumed their normal lives within 1 year. Intraspinal neurilemmoma is rare but should be considered in the differential diagnosis of spinal cord compression. Advances in imaging techniques and surgical procedures have yielded substantially enhanced clinical outcomes in intraspinal neoplasm cases. Delicate preoperative study and surgical skill with rehabilitation and postoperative observation are critical. PMID:25654395

  13. Spinal myoclonus resembling belly dance.

    PubMed

    Kono, I; Ueda, Y; Araki, K; Nakajima, K; Shibasaki, H

    1994-05-01

    A 63-year-old man presented with an 11-month history of progressive myoclonus in the right abdominal wall. Administration of clonazepam reduced the frequency and amplitude. When the therapy was discontinued, the frequency and amplitude of the myoclonus increased, and synchronous and weak myoclonus also was observed in the left abdomen. The trunk was twisted just after the appearance of the abdominal myoclonus associated with myoclonic jerks spreading from the rostral to caudal paraspinal muscles. Later in the clinical course, the myoclonus became stimulus sensitive and was induced by tendon tap given anywhere on the body, with the latency ranging from 50 to 150 ms irrespective of the sites of tapping. Myoclonus seen in the abdominal wall was segmental and considered to be of spinal origin. The reflex myoclonus had a 150-ms refractory period. It can be postulated that increased excitability of anterior horn cells at a certain segment might make a spino-bulbo-spinal reflex manifest at the corresponding segment. This myoclonus is considered to be a new form of spinal reflex myoclonus, because the abdominal myoclonic jerk seems to trigger another myoclonic jerk involving the paraspinal muscles.

  14. Purinergic Receptors in Spinal Cord-Derived Ependymal Stem/Progenitor Cells and Their Potential Role in Cell-Based Therapy for Spinal Cord Injury.

    PubMed

    Gómez-Villafuertes, Rosa; Rodríguez-Jiménez, Francisco Javier; Alastrue-Agudo, Ana; Stojkovic, Miodrag; Miras-Portugal, María Teresa; Moreno-Manzano, Victoria

    2015-01-01

    Spinal cord injury (SCI) is a major cause of paralysis with no current therapies. Following SCI, large amounts of ATP and other nucleotides are released by the traumatized tissue leading to the activation of purinergic receptors that, in coordination with growth factors, induce lesion remodeling and repair. We found that adult mammalian ependymal spinal cord-derived stem/progenitor cells (epSPCs) are capable of responding to ATP and other nucleotidic compounds, mainly through the activation of the ionotropic P2X4, P2X7, and the metabotropic P2Y1 and P2Y4 purinergic receptors. A comparative study between epSPCs from healthy rats versus epSPCis, obtained after SCI, shows a downregulation of P2Y1 receptor together with an upregulation of P2Y4 receptor in epSPCis. Moreover, spinal cord after severe traumatic contusion shows early and persistent increases in the expression of P2X4 and P2X7 receptors around the injury, which are completely reversed when epSPCis were ectopically transplanted. Since epSPCi transplantation significantly rescues neurological function after SCI in parallel to inhibition of the induced P2 ionotropic receptors, a potential avenue is open for therapeutic alternatives in SCI treatments based on purinergic receptors and the endogenous reparative modulation.

  15. [A case of intrathoracic dumb-bell ganglioneuroma and a surgical approach using spinal evoked potentials (SEP)].

    PubMed

    Ojika, T; Imaizumi, M; Watanabe, H; Nishimura, M; Sakakibara, M; Mizuno, S; Watanabe, T; Hiroura, M; Abe, T; Kato, F

    1993-10-01

    A successfully treated case of a seven-year-old girl with a left intrathoracic Dumb-bell ganglioneuroma is reported. The tumor was 10 cm in diameter. Preoperative angiography revealed that the location of tumor was very close to the Adamkiewicz artery. In order to prevent the artery from damaging, spinal evoked potentials (SEP) was used during the surgery and was very useful for monitoring the spinal cord. Although SEP has often been employed in spine surgery, the literature on the use of it for posterior mediastinal tumor is scarce. It is considered that SEP is very useful for not damaging the feeding artery to the spinal cord, and for preventing the postoperative neurologic complications.

  16. Breakdown of Blood-Brain and Blood-Spinal Cord Barriers During Acute Methamphetamine Intoxication: Role of Brain Temperature.

    PubMed

    Kiyatkin, Eugene A; Sharma, Hari S

    2016-01-01

    Methamphetamine (METH) is a powerful and often-abused stimulant with potent addictive and neurotoxic properties. While it is generally believed that structural brain damage induced by METH results from oxidative stress, in this work we present data suggesting robust disruption of blood-brain and blood-spinal cord barriers during acute METH intoxication in rats. We demonstrate the relationships between METH-induced brain hyperthermia and widespread but structure-specific barrier leakage, acute glial cell activation, changes in brain water and ionic homeostasis, and structural damage of different types of cells in the brain and spinal cord. Therefore, METH-induced leakage of the blood-brain and blood-spinal cord barriers is a significant contributor to different types of functional and structural brain abnormalities that determine acute toxicity of this drug and possibly neurotoxicity during its chronic use.

  17. Biochemical characterization of the medaka (Oryzias latipes) orthologue for mammalian tissue-type transglutaminase (TG2).

    PubMed

    Takada, Yuki; Watanabe, Yuko; Okuya, Kazuho; Tatsukawa, Hideki; Hashimoto, Hisashi; Hitomi, Kiyotaka

    2017-03-01

    Transglutaminase is an enzyme family responsible for post-translational modification such as protein cross-linking and the attachment of primary amine and/or deamidation of glutamine-residue in proteins. Medaka (Oryzias latipes), a recently established model fish, has similar functional proteins to those characterized in mammals. Previously, we found the apparent orthologues that correspond to human transglutaminases in medaka. In this study, regarding the medaka orthologue of human tissue-type transglutaminase (OlTGT), recombinant protein was expressed in an active form in bacteria cultured at low temperature. Using the recombinant protein, we biochemically characterized the enzymatic activity and also obtained a monoclonal antibody that specifically recognized OlTGT. Immunochemical analysis revealed that OlTGT was not expressed ubiquitously, unlike its mammalian orthologue, but in primarily limited tissues such as the eye, brain, spinal cord, and gas gland.

  18. The excitation and depression of mammalian cortical neurones by amino acids

    PubMed Central

    Crawford, J. M.; Curtis, D. R.

    1964-01-01

    Amino acids related to L-glutamic and γ-amino-n-butyric acid have been administered electrophoretically, and by pressure ejection, into the extraneuronal environment of single neurones in the pericruciate cortex of cats anaesthetized with allobarbitone or allobarbitone-urethane. Acidic amino acids related to glutamic acid, particularly N-methyl-D-aspartic acid, excited cortical neurones. Neutral amino acids related to γ-amino-n-butyric acid, particularly 3-amino-1-propanesulphonic acid, depressed cortical neurones. Some of the depressants blocked the antidromic invasion of Betz cells by pyramidal volleys. There are no essential differences between the sensitivities of cortical and spinal neurones towards locally administered amino acids. A transmitter function of such amino acids within the mammalian central nervous system is considered unlikely. PMID:14228133

  19. Dopamine antagonists reduce spontaneous electrical activity in cultured mammalian neurons from ventral mesencephalon.

    PubMed

    Heyer, E J

    1986-09-24

    Mammalian neurons from ventral mesencephalon (VM) were grown in primary dissociated cell (PDC) culture. These neurons are predominantly non-dopaminergic. Many of these non-dopaminergic neurons have dopamine agonist and antagonist binding sites. Intracellular recordings were obtained from these neurons. When bathed in phosphate-buffered saline (PBS) solution they generated action potentials spontaneously. However, in the presence of haloperidol dissolved in PBS solution, the percentage of neurons which generated action potentials spontaneously was reduced in a dose-dependent manner (1-10 microM). This response was also obtained with (+) butaclamol (1 microM) but not with (-) butaclamol (1 microM). This neuroleptic inhibition of spontaneously generated action potentials was specific for neurons in PDC cultures of VM since neurons in PDC cultures of spinal cord did not demonstrate this phenomenon.

  20. Investigation of spinal pathology in notalgia paresthetica.

    PubMed

    Savk, Oner; Savk, Ekin

    2005-06-01

    A possible association of spinal pathology with notalgia paresthetica (NP) was investigated through clinical and radiographic evaluation. Forty-three NP patients underwent dermatologic and orthopedic examination accompanied by radiography of the spine. Sixty-one lesions in 43 patients were evaluated. In 34 patients, various vertebral pathologies were observed radiographically by a blinded investigator, and in 28 of these cases these changes were most prominent in the vertebrae which corresponded to a lesional dermatome. Thirty-seven lesions were accompanied by spinal changes decided to be relevant (60.7%). The striking correlation of NP localization with spinal pathology suggests that spinal nerve impingement may contribute to the pathogenesis of this entity.

  1. Spinal infections: clinical and imaging features.

    PubMed

    Arbelaez, Andres; Restrepo, Feliza; Castillo, Mauricio

    2014-10-01

    Spinal infections represent a group of rare conditions affecting vertebral bodies, intervertebral discs, paraspinal soft tissues, epidural space, meninges, and spinal cord. The causal factors, clinical presentations, and imaging features are a challenge because the difficulty to differentiate them from other conditions, such as degenerative and inflammatory disorders and spinal neoplasm. They require early recognition because delay diagnosis, imaging, and intervention may have devastating consequences especially in children and the elderly. This article reviews the most common spinal infections, their pathophysiologic, clinical manifestation, and their imaging findings.

  2. Spinal cord astrocytoma mimicking multifocal myelitis

    PubMed Central

    Neutel, Dulce; Teodoro, Tiago; Coelho, Miguel; Pimentel, José; Albuquerque, Luísa

    2014-01-01

    Introduction Differential diagnosis of acute/subacute intrinsic spinal cord lesions can be challenging. In addition, intramedullary neoplasms typically show gadolinium enhancement, mass effect, and cord expansion. Case report We report a patient with spinal cord and brain stem lesions resembling multifocal myelitis. Magnetic resonance imaging showed no spinal cord enlargement or gadolinium enhancing. Treatment of myelitis was undertaken without stopping the progression of the disease. Biopsy was made and led to a histological diagnosis of astrocytoma. Discussion Astrocytoma must remain as a possible diagnosis of spinal cord lesions, even without typical characteristics of neoplasms. Furthermore, biopsy should always be considered when diagnosis is uncertain. PMID:24621037

  3. Sponge-mediated Lentivirus Delivery to Acute and Chronic Spinal Cord Injuries

    PubMed Central

    Thomas, Aline M.; Palma, Jaime L.; Shea, Lonnie D.

    2015-01-01

    The environment within the spinal cord after injury, which changes in the progression from the acute to chronic stages, limits the extent of regeneration. The delivery of inductive factors to promote regeneration following spinal cord injury has been promising, yet, few strategies are have are versatile to allow delivery during acute or chronic injury that would facilitate screening of candidate therapies. This report investigates the intrathecal delivery of lentiviruses for long-term expression of regenerative factors. Lentivirus-filled sponges were inserted into the intrathecal space surrounding the spinal cord, with transgene expression observed within multiple cell types that persists for 12 weeks for both intact and injured spinal cord, without any apparent damage to the spinal cord tissue. Sponges loaded with lentivirus encoding for Sonic hedgehog (Shh) were investigated for acute (delivered at 0 weeks) and chronic (at 4 weeks) injuries, and for multiple locations relative to the injury. In an acute model, sponges placed directly above the injury increased oligodendrocyte and decreased astrocyte presence. Sponges placed caudal to the injury had reduced impact on oligodendrocytes and astrocytes in the injury. In a chronic model, sponges increased oligodendrocyte and decreased astrocyte presence. Furthermore, the effect of Shh was shown to be mediated in part by reduction of Bmp signaling, monitored with an Msx2-sensitive reporter vector. The implantation of lentivirus-loaded biomaterials intrathecally provides the opportunity to induce the expression of a factor at a specified time without entering the spinal cord, and has the potential to promote gene delivery within the spinal cord, which can influence the extent of regeneration. PMID:25724274

  4. The ameba Balamuthia mandrillaris feeds by entering into mammalian cells in culture.

    PubMed

    Dunnebacke, Thelma H

    2007-01-01

    Microscopic observations of live cultures of the pathogenic ameba Balamuthia mandrillaris and mammalian cells showed that amebic feeding involved the invasion of the pseudopodia, and/or the whole ameba into the cells. The ameba, recognized by their size and flow of organelles in the cytosol, was seen to extend the tip of a pseudopodium into the cytoplasm of a cell where it moved about leaving visible damage when retracted. In rounded cells, whole amebas were seen to enter into and move around before exiting a cell and then remain quiescent for hours. The invaded mammalian cells retained their turgidity and excluded vital dyes until only their denuded nuclei remained. The cytoplasm of the cells was consumed first, then the nuclei, but not their mitotic chromosomes. The feeding pattern of four isolates of B. mandrillaris, two from humans and two from soil samples, was by amebic invasion into the mammalian cells. The resulting ameba population included cysts, amebas on the surface, and free-floating amebas as individuals or in dense-packed clusters. There was no morphologic indication of a cytopathic change in the mammalian cells before their invasion by the amebas. Feeding by cell invasion is a distinctive feature of B. mandrillaris.

  5. Site-specific gene transfer into the rat spinal cord by photomechanical waves

    NASA Astrophysics Data System (ADS)

    Ando, Takahiro; Sato, Shunichi; Toyooka, Terushige; Uozumi, Yoichi; Nawashiro, Hiroshi; Ashida, Hiroshi; Obara, Minoru

    2011-10-01

    Nonviral, site-specific gene delivery to deep tissue is required for gene therapy of a spinal cord injury. However, an efficient method satisfying these requirements has not been established. This study demonstrates efficient and targeted gene transfer into the spinal cord by using photomechanical waves (PMWs), which were generated by irradiating a black laser absorbing rubber with 532-nm nanosecond Nd:YAG laser pulses. After a solution of plasmid DNA coding for enhanced green fluorescent protein (EGFP) or luciferase was intraparenchymally injected into the spinal cord, PMWs were applied to the target site. In the PMW application group, we observed significant EGFP gene expression in the white matter and remarkably high luciferase activity only in the spinal cord segment exposed to the PMWs. We also assessed hind limb movements 24 h after the application of PMWs based on the Basso-Beattie-Bresnahan (BBB) score to evaluate the noninvasiveness of this method. Locomotor evaluation showed no significant decrease in BBB score under optimum laser irradiation conditions. These findings demonstrated that exogenous genes can be efficiently and site-selectively delivered into the spinal cord by applying PMWs without significant locomotive damage.

  6. Syringomyelia due to thoracic spinal stenosis with ossified ligamentum flavum--case report.

    PubMed

    Arai, Atsushi; Aihara, Hideo; Miyake, Shigeru; Hanada, Yusei; Kohmura, Eiji

    2011-01-01

    A 50-year-old male presented with back pain and numbness of the lower extremities persisting for 10 years. He had played volleyball for a long period until recently. He had no history of meningitis or traumatic injury. Magnetic resonance imaging revealed a syringomyelia located in the region from T8 to T9 without contrast enhancement or Chiari malformations. Computed tomography showed T9-10 spinal stenosis caused by the right enlarged ossified yellow ligament. Decompressive laminectomy was performed and the ossified ligament removed. Due to the finding of arachnoid thickening and adhesions during the intradural operation, shunting was also performed. Postoperatively, the neuroimaging and clinical findings improved. Syringomyelia is often associated with Chiari malformations, trauma, spinal tumor, hemorrhaging, and meningitis. We suggest that repeated minor mechanical damage caused by physical exercise in addition to long-standing compression of the spinal cord due to spinal spondylosis could induce severe arachnoid fibrotic change similar to adhesive arachnoiditis, which may be one of the main triggers of syringomyelia. Extradural decompressive surgery is considered to be the initial treatment for syringomyelia associated with spinal spondylosis.

  7. Spinal cord injury in rats treated using bone marrow mesenchymal stem-cell transplantation.

    PubMed

    Chen, Yu-Bing; Jia, Quan-Zhang; Li, Dong-Jun; Sun, Jing-Hai; Xi, Shuang; Liu, Li-Ping; Gao, De-Xuan; Jiang, Da-Wei

    2015-01-01

    The aim of this study was to observe the effects of bone marrow mesenchymal stem-cell transplantation (BMSCs) in repairing acute spinal cord damage in rats and to examine the potential beneficial effects. 192 Wistar rats were randomized into 8 groups. Spinal cord injury was created. Behavior and limb functions were scored. Repairing effects of BMSCs transplantation was evaluated and compared. In vitro 4',6-diamidino-2-phenylindole (DAPI)-tagged BMSCs were observed, and whether they migrated to the area of spinal cord injury after intravenous tail injection was investigated. The expression of neuron-specific protein (NSE) on BMSCs was examined. Fifteen days after transplantation, the BMSCs-treated groups scored significantly higher in limb function tests than the untreated group. Pathological sections of the bone marrow after operation showed significant recovery in treated groups in comparison to the control group. After transplantation, small amounts of fluorescent-tagged BMSCs can be found in the blood vessels in the area of spinal cord injury, and fluorescent-tagged BMSCs were diffused in extravascular tissues, whereas the DAPI-tagged BMSCs could not be detected,and BrdU/NSE double-labeled cells were found in the injured marrow. BMSCs improve behavioral responses and can repair spinal cord injuries by migrating to the injured area, where they can differentiate into neurons.

  8. Label-free imaging of rat spinal cords based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Liao, Chenxi; Wang, Zhenyu; Zhou, Linquan; Zhu, Xiaoqin; Liu, Wenge; Chen, Jianxin

    2016-10-01

    As an integral part of the central nervous system, the spinal cord is a communication cable between the body and the brain. It mainly contains neurons, glial cells, nerve fibers and fiber tracts. The recent development of the optical imaging technique allows high-resolution imaging of biological tissues with the great potential for non-invasively looking inside the body. In this work, we evaluate the imaging capacity of multiphoton microscopy (MPM) based on second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) for the cells and extracellular matrix in the spinal cord at molecular level. Rat spinal cord tissues were sectioned and imaged by MPM to demonstrate that MPM is able to show the microstructure including white matter, gray matter, ventral horns, dorsal horns, and axons based on the distinct intrinsic sources in each region of spinal cord. In the high-resolution and high-contrast MPM images, the cell profile can be clearly identified as dark shadows caused by nuclei and encircled by cytoplasm. The nerve fibers in white matter region emitted both SHG and TPEF signals. The multiphoton microscopic imaging technique proves to be a fast and effective tool for label-free imaging spinal cord tissues, based on endogenous signals in biological tissue. It has the potential to extend this optical technique to clinical study, where the rapid and damage-free imaging is needed.

  9. Propofol protects against blood-spinal cord barrier disruption induced by ischemia/reperfusion injury

    PubMed Central

    Xie, Li-jie; Huang, Jin-xiu; Yang, Jian; Yuan, Fen; Zhang, Shuang-shuang; Yu, Qi-jing; Hu, Ji

    2017-01-01

    Propofol has been shown to exert neuroprotective effects on the injured spinal cord. However, the effect of propofol on the blood-spinal cord barrier (BSCB) after ischemia/reperfusion injury (IRI) is poorly understood. Therefore, we investigated whether propofol could maintain the integrity of the BSCB. Spinal cord IRI (SCIRI) was induced in rabbits by infrarenal aortic occlusion for 30 minutes. Propofol, 30 mg/kg, was intravenously infused 10 minutes before aortic clamping as well as at the onset of reperfusion. Then, 48 hours later, we performed histological and mRNA/protein analyses of the spinal cord. Propofol decreased histological damage to the spinal cord, attenuated the reduction in BSCB permeability, downregulated the mRNA and protein expression levels of matrix metalloprotease-9 (MMP-9) and nuclear factor-κB (NF-κB), and upregulated the protein expression levels of occludin and claudin-5. Our findings suggest that propofol helps maintain BSCB integrity after SCIRI by reducing MMP-9 expression, by inhibiting the NF-κB signaling pathway, and by maintaining expression of tight junction proteins. PMID:28250758

  10. Neuroprotective effect of curcumin on spinal cord in rabbit model with ischemia/reperfusion

    PubMed Central

    Liu, Zhi-Qiang; Xing, Shan-Shan; Zhang, Wei

    2013-01-01

    Background Ischemic/reperfusion (I/R) injury of the spinal cord is a serious complication that can result from thoracoabdominal aortic surgery. Objective To investigate the neuroprotective effect of curcumin against I/R injury in a rabbit model. Methods A total of 36 rabbits were randomly divided into three groups: sham, I/R, and curcumin-treated group. Rabbits were subject to 30-min aortic occlusion to induce transient spinal cord ischemia. Neurological function was observed after reperfusion and spinal cord segment (L3–L5) was collected for histopathological evaluation. Malondialdehyde (MDA) and total superoxide dismutase (SOD) activity were also assayed. Results Rabbits in I/R group were induced to paraplegia. While after 48-hour treatment, compared with I/R group, curcumin significantly improved neurological function, reduced cell apoptosis and MDA levels as well as increased SOD activity (P < 0.05). Conclusions The results suggest that curcumin, at least in an animal model, can attenuate transient spinal cord ischemic injury potentially via reducing oxidative damage, which may provide a novel approach in the treatment of spinal cord ischemic injury. PMID:23809530

  11. Human spinal locomotor control is based on flexibly organized burst generators.

    PubMed

    Danner, Simon M; Hofstoetter, Ursula S; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen

    2015-03-01

    samples of rhythmic patterns. The basic activation patterns can be interpreted as central drives implemented by spinal burst generators that impose specific spatiotemporally organized activation on the lumbosacral motor neuron pools. Our data thus imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input. It may be possible to use this flexibility to incorporate specific adaptations to gait and stance to improve locomotor control, even after severe central nervous system damage.

  12. Cytotoxicity and genotoxicity of urban particulate matter in mammalian cells

    PubMed Central

    Dumax-Vorzet, Audrey F.; Tate, M.; Walmsley, Richard; Elder, Rhod H.; Povey, Andrew C.

    2015-01-01

    Ambient air particulate matter (PM)-associated reactive oxygen species (ROS) have been linked to a variety of altered cellular outcomes. In this study, three different PM samples from diesel exhaust particles (DEPs), urban dust standard reference material SRM1649a and air collected in Manchester have been tested for their ability to oxidise DNA in a cell-free assay, to increase intracellular ROS levels and to induce CYP1A1 gene expression in mammalian cells. In addition, the cytotoxicity and genotoxicity of PM were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and alkaline comet assay, respectively. All PM samples catalysed the Fenton reaction in a cell-free assay, but only DEP resulted in the generation of ROS as measured by dichlorodihydrofluorescein diacetate oxidation in mammalian cells. However, there was no evidence that increased ROS was a consequence of polycyclic aromatic hydrocarbon metabolism via CYP1A1 induction as urban dust, the Manchester dust samples but not DEP-induced CYP1A1 expression. Urban dust was more cytotoxic in murine embryonic fibroblasts (MEFs) than the other PM samples and also induced expression of GADD45a in the GreenScreen Human Cell assay without S9 activation suggesting the presence of a direct-acting genotoxicant. Urban dust and DEP produced comparable levels of DNA damage, as assessed by the alkaline comet assay, in MEFs at higher levels than those induced by Manchester PM. In conclusion, results from the cytotoxic and genotoxic assays are not consistent with ROS production being the sole determinant of PM-induced toxicity. This suggests that the organic component can contribute significantly to this toxicity and that further work is required to better characterise the extent to which ROS and organic components contribute to PM-induced toxicity. PMID:26113525

  13. Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks

    PubMed Central

    Picton, Laurence D.; Nascimento, Filipe; Broadhead, Matthew J.; Sillar, Keith T.

    2017-01-01

    Ubiquitously expressed sodium pumps are best known for maintaining the ionic gradients and resting membrane potential required for generating action potentials. However, activity- and state-dependent changes in pump activity can also influence neuronal firing and regulate rhythmic network output. Here we demonstrate that changes in sodium pump activity regulate locomotor networks in the spinal cord of neonatal mice. The sodium pump inhibitor, ouabain, increased the frequency and decreased the amplitude of drug-induced locomotor bursting, effects that were dependent on the presence of the neuromodulator dopamine. Conversely, activating the pump with the sodium ionophore monensin decreased burst frequency. When more “natural” locomotor output was evoked using dorsal-root stimulation, ouabain increased burst frequency and extended locomotor episode duration, whereas monensin slowed and shortened episodes. Decreasing the time between dorsal-root stimulation, and therefore interepisode interval, also shortened and slowed activity, suggesting that pump activity encodes information about past network output and contributes to feedforward control of subsequent locomotor bouts. Using whole-cell patch-clamp recordings from spinal motoneurons and interneurons, we describe a long-duration (∼60 s), activity-dependent, TTX- and ouabain-sensitive, hyperpolarization (∼5 mV), which is mediated by spike-dependent increases in pump activity. The duration of this dynamic pump potential is enhanced by dopamine. Our results therefore reveal sodium pumps as dynamic regulators of mammalian spinal motor networks that can also be affected by neuromodulatory systems. Given the involvement of sodium pumps in movement disorders, such as amyotrophic lateral sclerosis and rapid-onset dystonia parkinsonism, knowledge of their contribution to motor network regulation also has considerable clinical importance. SIGNIFICANCE STATEMENT The sodium pump is ubiquitously expressed and responsible

  14. Behavioral and Histopathological Study of Changes in Spinal Cord Injured Rats Supplemented with Spirulina platensis

    PubMed Central

    Che Ramli, Muhammad Danial

    2014-01-01

    Spinal cord injury (SCI) is a devastating disease that leads to permanent disability and causes great suffering. The resulting neurological dysfunction and paralysis is proportional to the severity of the trauma itself. Spirulina is widely used as a nutritional supplement due to its high protein and antioxidant content. In the present study, the protective effect of the Spirulina treatment on locomotor function and morphological damage after SCI was investigated. Seventy Sprague-Dawley (SD) rats were divided into three groups: Sham (laminectomy alone), Control (laminectomy with SCI), and Experimental (laminectomy with SCI +180 mg/kg per day Spirulina platensis). A laminectomy was performed at T12 and an Inox No.2 modified forceps was used to perform a partial crush injury on the spinal cord. The rats were then perfused at 3, 7, 14, 21, and 28 days after injury for morphological investigations. The injured rat spinal cord indicated a presence of hemorrhage, cavity, and necrosis. Pretreatment with Spirulina significantly improved the locomotor function and showed a significant reduction on the histological changes. The experimental results observed in this study suggest that treatment with Spirulina platensis possesses potential benefits in improving hind limb locomotor function and reducing morphological damage to the spinal cord. PMID:25152764

  15. Resveratrol protects spinal cord dorsal column from hypoxic injury by activating Nrf-2.

    PubMed

    Kesherwani, V; Atif, F; Yousuf, S; Agrawal, S K

    2013-06-25

    Damage from oxidative stress plays a critical role in spinal cord injury. Nuclear factor erythroid 2-related factor (Nrf-2) signaling pathway can be activated by cellular oxidative stress. Resveratrol, a plant-derived polyphenolic compound found in red wine, has antioxidant properties. In the present study, we have examined the neuroprotective effect of resveratrol and the role of Nrf-2 in spinal cord hypoxic injury. The spinal cord was removed from adult male Wistar rats from T2-T10 and the dorsal column was used to induce hypoxic injury in vitro with and without treatment with resveratrol (50μM). Significant changes were found in the compound action potential (CAP) of spinal cord dorsal column, and hematoxyline and eosin (H&E) staining showed that resveratrol significantly improved neuronal injury. The biochemical assays showed significant changes in lipid peroxidase (LPO), reduced glutathione (GSH), superoxide dismutase (SOD), protein carbonyl (PC), mitochondrial ATP content, and mitochondrial Ca(++). Furthermore, using immunohistochemistry and Western blot, we found that after resveratrol treatment during hypoxic injury there was a significant activation of NrF-2 and down regulation of the glial fibrillary acidic protein (GFAP) content. The results show that resveratrol treatment has neuroprotective effects on CAP, Ca(++) loading, and biochemical parameters after hypoxic injury. The neuroprotective effect is likely to be exerted by increased activation of transcription factor Nrf-2 by resveratrol along with its direct antioxidant effect to ameliorate the oxidative damage and preserve mitochondrial function.

  16. Spinal 5-HT7 receptors induce phrenic motor facilitation via EPAC-mTORC1 signaling

    PubMed Central

    Fields, D. P.; Springborn, S. R.

    2015-01-01

    Spinal serotonin type 7 (5-HT7) receptors elicit complex effects on motor activity. Whereas 5-HT7 receptor activation gives rise to long-lasting phrenic motor facilitation (pMF), it also constrains 5-HT2 receptor-induced pMF via “cross-talk inhibition.” We hypothesized that divergent cAMP-dependent signaling pathways give rise to these distinct 5-HT7 receptor actions. Specifically, we hypothesized that protein kinase A (PKA) mediates cross-talk inhibition of 5-HT2 receptor-induced pMF whereas 5-HT7 receptor-induced pMF results from exchange protein activated by cAMP (EPAC) signaling. Anesthetized, paralyzed, and ventilated rats receiving intrathecal (C4) 5-HT7 receptor agonist (AS-19) injections expressed pMF for >90 min, an effect abolished by pretreatment with a selective EPAC inhibitor (ESI-05) but not a selective PKA inhibitor (KT-5720). Furthermore, intrathecal injections of a selective EPAC activator (8-pCPT-2′-Me-cAMP) were sufficient to elicit pMF. Finally, spinal mammalian target of rapamycin complex-1 (mTORC1) inhibition via intrathecal rapamycin abolished 5-HT7 receptor- and EPAC-induced pMF, demonstrating that spinal 5-HT7 receptors elicit pMF by an EPAC-mTORC1 signaling pathway. Thus 5-HT7 receptors elicit and constrain spinal phrenic motor plasticity via distinct signaling mechanisms that diverge at cAMP (EPAC vs. PKA). Selective manipulation of these molecules may enable refined regulation of serotonin-dependent spinal motor plasticity for therapeutic advantage. PMID:26269554

  17. Spinal 5-HT7 receptors induce phrenic motor facilitation via EPAC-mTORC1 signaling.

    PubMed

    Fields, D P; Springborn, S R; Mitchell, G S

    2015-09-01

    Spinal serotonin type 7 (5-HT7) receptors elicit complex effects on motor activity. Whereas 5-HT7 receptor activation gives rise to long-lasting phrenic motor facilitation (pMF), it also constrains 5-HT2 receptor-induced pMF via "cross-talk inhibition." We hypothesized that divergent cAMP-dependent signaling pathways give rise to these distinct 5-HT7 receptor actions. Specifically, we hypothesized that protein kinase A (PKA) mediates cross-talk inhibition of 5-HT2 receptor-induced pMF whereas 5-HT7 receptor-induced pMF results from exchange protein activated by cAMP (EPAC) signaling. Anesthetized, paralyzed, and ventilated rats receiving intrathecal (C4) 5-HT7 receptor agonist (AS-19) injections expressed pMF for >90 min, an effect abolished by pretreatment with a selective EPAC inhibitor (ESI-05) but not a selective PKA inhibitor (KT-5720). Furthermore, intrathecal injections of a selective EPAC activator (8-pCPT-2'-Me-cAMP) were sufficient to elicit pMF. Finally, spinal mammalian target of rapamycin complex-1 (mTORC1) inhibition via intrathecal rapamycin abolished 5-HT7 receptor- and EPAC-induced pMF, demonstrating that spinal 5-HT7 receptors elicit pMF by an EPAC-mTORC1 signaling pathway. Thus 5-HT7 receptors elicit and constrain spinal phrenic motor plasticity via distinct signaling mechanisms that diverge at cAMP (EPAC vs. PKA). Selective manipulation of these molecules may enable refined regulation of serotonin-dependent spinal motor plasticity for therapeutic advantage.

  18. [Vascular and autonomic disorders of the spinal cord in dystopia of the spinal motor segment].

    PubMed

    Gongal'skiĭ, V V; Kuftyreva, T P

    1992-01-01

    Microcirculation disorders may cause functional deviation in gray matter cells of the spinal cord. One of the setting moments of the disorders is the subluxation of a vertebra as a result of the disturbance in carrying ability of the spinal disc in case of spinal osteochondrosis. In this position the soft tissues of the spinal motional well innervated segment are stretched, which induces irritation in the segmental part of the spinal cord including vegetative nervous structures. Subluxation of a vertebra causes changes in the structures and in the microcirculation vessels which grow simultaneously and this permits supposing their interrelation.

  19. Rugby union injuries to the cervical spine and spinal cord.

    PubMed

    Quarrie, Kenneth L; Cantu, Robert C; Chalmers, David J

    2002-01-01

    Injuries to the cervical spine are among the most serious injuries occurring as a result of participation in rugby. Outcomes of such injuries range from complete recovery to death, depending on the degree of spinal cord damage sustained. Much information has been gained regarding the mechanisms and frequency of such injuries, from case reports and case series studies. The most commonly reported mechanism of injury has been hyperflexion of the cervical spine, resulting in fracture dislocation of C4-C5 or C5-C6. Tracking both the trends of incidence of spinal injuries, and the effectiveness of injury prevention initiatives has proved difficult because of a lack of properly conducted epidemiological studies. Within the constraints of the research published to date, it appears that hookers and props have been at disproportionate risk of cervical spine injury, predominantly because of injuries sustained during scrummaging. While the scrum was the phase of play most commonly associated with spinal injuries throughout the 1980s in most rugby playing countries, there has been a trend through the 1990s of an increasing proportion of spinal injuries occurring in the tackle situation. The majority of injuries have occurred early in the season, when grounds tend to be harder, and players are lacking both practice and physical conditioning for the physical contact phases of the sport. A number of injury prevention measures have been launched, including changes to the laws of the game regarding scrummaging, and education programmes aimed at enforcing safe techniques and eliminating illegal play. Calls for case-registers and effective epidemiological studies have been made by researchers and physicians in most countries where rugby is widespread, but it appears to be only recently that definite steps have been made towards this goal. Well-designed epidemiological studies will be able to provide more accurate information about potential risk factors for injury such as age, grade

  20. Neuroprotective and Neurorestorative Processes after Spinal Cord Injury: The Case of the Bulbospinal Respiratory Neurons

    PubMed Central

    2016-01-01

    High cervical spinal cord injuries interrupt the bulbospinal respiratory pathways projecting to the cervical phrenic motoneurons resulting in important respiratory defects. In the case of a lateralized injury that maintains the respiratory drive on the opposite side, a partial recovery of the ipsilateral respiratory function occurs spontaneously over time, as observed in animal models. The rodent respiratory system is therefore a relevant model to investigate the neuroplastic and neuroprotective mechanisms that will trigger such phrenic motoneurons reactivation by supraspinal pathways. Since part of this recovery is dependent on the damaged side of the spinal cord, the present review highlights our current understanding of the anatomical neuroplasticity processes that are developed by the surviving damaged bulbospinal neurons, notably axonal sprouting and rerouting. Such anatomical neuroplasticity relies also on coordinated molecular mechanisms at the level of the axotomized bulbospinal neurons that will promote both neuroprotection and axon growth. PMID:27563469

  1. Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks.

    PubMed

    Picton, Laurence D; Nascimento, Filipe; Broadhead, Matthew J; Sillar, Keith T; Miles, Gareth B

    2017-01-25

    Ubiquitously expressed sodium pumps are best known for maintaining the ionic gradients and resting membrane potential required for generating action potentials. However, activity- and state-dependent changes in pump activity can also influence neuronal firing and regulate rhythmic network output. Here we demonstrate that changes in sodium pump activity regulate locomotor networks in the spinal cord of neonatal mice. The sodium pump inhibitor, ouabain, increased the frequency and decreased the amplitude of drug-induced locomotor bursting, effects that were dependent on the presence of the neuromodulator dopamine. Conversely, activating the pump with the sodium ionophore monensin decreased burst frequency. When more "natural" locomotor output was evoked using dorsal-root stimulation, ouabain increased burst frequency and extended locomotor episode duration, whereas monensin slowed and shortened episodes. Decreasing the time between dorsal-root stimulation, and therefore interepisode interval, also shortened and slowed activity, suggesting that pump activity encodes information about past network output and contributes to feedforward control of subsequent locomotor bouts. Using whole-cell patch-clamp recordings from spinal motoneurons and interneurons, we describe a long-duration (∼60 s), activity-dependent, TTX- and ouabain-sensitive, hyperpolarization (∼5 mV), which is mediated by spike-dependent increases in pump activity. The duration of this dynamic pump potential is enhanced by dopamine. Our results therefore reveal sodium pumps as dynamic regulators of mammalian spinal motor networks that can also be affected by neuromodulatory systems. Given the involvement of sodium pumps in movement disorders, such as amyotrophic lateral sclerosis and rapid-onset dystonia parkinsonism, knowledge of their contribution to motor network regulation also has considerable clinical importance.

  2. Potassium transport in the mammalian collecting duct.

    PubMed

    Muto, S

    2001-01-01

    The mammalian collecting duct plays a dominant role in regulating K(+) excretion by the nephron. The collecting duct exhibits axial and intrasegmental cell heterogeneity and is composed of at least two cell types: collecting duct cells (principal cells) and intercalated cells. Under normal circumstances, the collecting duct cell in the cortical collecting duct secretes K(+), whereas under K(+) depletion, the intercalated cell reabsorbs K(+). Assessment of the electrochemical driving forces and of membrane conductances for transcellular and paracellular electrolyte movement, the characterization of several ATPases, patch-clamp investigation, and cloning of the K(+) channel have provided important insights into the role of pumps and channels in those tubule cells that regulate K(+) secretion and reabsorption. This review summarizes K(+) transport properties in the mammalian collecting duct. Special emphasis is given to the mechanisms of how K(+) transport is regulated in the collecting duct.

  3. Mammalian Sperm Motility: Observation and Theory

    NASA Astrophysics Data System (ADS)

    Gaffney, E. A.; Gadêlha, H.; Smith, D. J.; Blake, J. R.; Kirkman-Brown, J. C.

    2011-01-01

    Mammalian spermatozoa motility is a subject of growing importance because of rising human infertility and the possibility of improving animal breeding. We highlight opportunities for fluid and continuum dynamics to provide novel insights concerning the mechanics of these specialized cells, especially during their remarkable journey to the egg. The biological structure of the motile sperm appendage, the flagellum, is described and placed in the context of the mechanics underlying the migration of mammalian sperm through the numerous environments of the female reproductive tract. This process demands certain specific changes to flagellar movement and motility for which further mechanical insight would be valuable, although this requires improved modeling capabilities, particularly to increase our understanding of sperm progression in vivo. We summarize current theoretical studies, highlighting the synergistic combination of imaging and theory in exploring sperm motility, and discuss the challenges for future observational and theoretical studies in understanding the underlying mechanics.

  4. Synaptic Release at Mammalian Bipolar Cell Terminals

    PubMed Central

    Wan, Qun-Fang; Heidelberger, Ruth

    2011-01-01

    Bipolar cells play a vital role in the transfer of visual information across the vertebrate retina. The synaptic output of these neurons is regulated by factors that are extrinsic and intrinsic. Relatively little is known about the intrinsic factors that regulate neurotransmitter exocytosis. Much of what we know about intrinsic presynaptic mechanisms that regulate glutamate release has come from the study of the unusually large and accessible synaptic terminal of the goldfish rod-dominant bipolar cell, the Mb1 bipolar cell. However, over the past several years, examination of presynaptic mechanisms governing neurotransmitter release has been extended to the mammalian rod bipolar cell. In this review, we discuss the recent advances in our understanding of synaptic vesicle dynamics and neurotransmitter release in rodent rod bipolar cells and consider how these properties help shape the synaptic output of the mammalian retina. PMID:21272392

  5. Mammalian lipoxygenases and their biological relevance

    PubMed Central

    Kuhn, Hartmut; Banthiya, Swathi; van Leyen, Klaus

    2015-01-01

    Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOX oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. PMID:25316652

  6. Lactate Metabolism is Associated with Mammalian Mitochondria

    PubMed Central

    Chen, Ying-Jr; Mahieu, Nathaniel G.; Huang, Xiaojing; Singh, Manmilan; Crawford, Peter A; Johnson, Stephen L.; Gross, Richard W.; Schaefer, Jacob

    2016-01-01

    It is well established that lactate secreted by fermenting cells can be oxidized or used as a gluconeogenic substrate by other cells and tissues. Within the fermenting cell itself, however, it is generally assumed that lactate is produced to replenish NAD+ and then is secreted. Here we explored the possibility that cytosolic lactate is metabolized by the mitochondria of fermenting mammalian cells. We found that fermenting HeLa and H460 cells utilize exogenous lactate carbon to synthesize a large percentage of their lipids. With high-resolution mass spectrometry, we found that both 13C and 2-2H labels from enriched lactate enter the mitochondria. The lactate dehydrogenase (LDH) inhibitor oxamate decreased respiration of isolated mitochondria incubated in lactate, but not isolated mitochondria incubated in pyruvate. Additionally, transmission electron microscopy (TEM) showed that LDHB localizes to the mitochondria. Taken together, our results demonstrate a link between lactate metabolism and the mitochondria of fermenting mammalian cells. PMID:27618187

  7. Circadian aspects of mammalian parturition: a review.

    PubMed

    Olcese, James

    2012-02-05

    The identification of circadian clocks in endocrine tissues has added considerable depth and complexity to our understanding of their physiology. A growing body of research reveals circadian clock gene expression in the uterus of non-pregnant and pregnant rodents. This review will focus on the mammalian uterus and its rhythmicity, particularly as it pertains to the circadian timing of parturition. This key event in the reproductive axis shows dramatic species-specific differences in its circadian phase. It is proposed here that these differences in the phasing of mammalian parturition are likely a function of opposite uterine cell responses to humoral cues. The argument will be made that melatonin fulfills many of the criteria to serve as a circadian signal in the initiation of human parturition, including specific actions on uterine smooth muscle cells that are consistent with a role for this hormone in the circadian timing of parturition.

  8. Ricin trafficking in plant and mammalian cells.

    PubMed

    Lord, J Michael; Spooner, Robert A

    2011-07-01

    Ricin is a heterodimeric plant protein that is potently toxic to mammalian and many other eukaryotic cells. It is synthesized and stored in the endosperm cells of maturing Ricinus communis seeds (castor beans). The ricin family has two major members, both, lectins, collectively known as Ricinus communis agglutinin ll (ricin) and Ricinus communis agglutinin l (RCA). These proteins are stored in vacuoles within the endosperm cells of mature Ricinus seeds and they are rapidly broken down by hydrolysis during the early stages of post-germinative growth. Both ricin and RCA traffic within the plant cell from their site of synthesis to the storage vacuoles, and when they intoxicate mammalian cells they traffic from outside the cell to their site of action. In this review we will consider both of these trafficking routes.

  9. Structure and function of mammalian cilia.

    PubMed

    Satir, Peter; Christensen, Søren T

    2008-06-01

    In the past half century, beginning with electron microscopic studies of 9 + 2 motile and 9 + 0 primary cilia, novel insights have been obtained regarding the structure and function of mammalian cilia. All cilia can now be viewed as sensory cellular antennae that coordinate a large number of cellular signaling pathways, sometimes coupling the signaling to ciliary motility or alternatively to cell division and differentiation. This view has had unanticipated consequences for our understanding of developmental processes and human disease.

  10. Basic techniques in mammalian cell tissue culture.

    PubMed

    Phelan, Katy; May, Kristin M

    2015-03-02

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells.

  11. Mammalian Evolution May not Be Strictly Bifurcating

    PubMed Central

    Hallström, Björn M.; Janke, Axel

    2010-01-01

    The massive amount of genomic sequence data that is now available for analyzing evolutionary relationships among 31 placental mammals reduces the stochastic error in phylogenetic analyses to virtually zero. One would expect that this would make it possible to finally resolve controversial branches in the placental mammalian tree. We analyzed a 2,863,797 nucleotide-long alignment (3,364 genes) from 31 placental mammals for reconstructing their evolution. Most placental mammalian relationships were resolved, and a consensus of their evolution is emerging. However, certain branches remain difficult or virtually impossible to resolve. These branches are characterized by short divergence times in the order of 1–4 million years. Computer simulations based on parameters from the real data show that as little as about 12,500 amino acid sites could be sufficient to confidently resolve short branches as old as about 90 million years ago (Ma). Thus, the amount of sequence data should no longer be a limiting factor in resolving the relationships among placental mammals. The timing of the early radiation of placental mammals coincides with a period of climate warming some 100–80 Ma and with continental fragmentation. These global processes may have triggered the rapid diversification of placental mammals. However, the rapid radiations of certain mammalian groups complicate phylogenetic analyses, possibly due to incomplete lineage sorting and introgression. These speciation-related processes led to a mosaic genome and conflicting phylogenetic signals. Split network methods are ideal for visualizing these problematic branches and can therefore depict data conflict and possibly the true evolutionary history better than strictly bifurcating trees. Given the timing of tectonics, of placental mammalian divergences, and the fossil record, a Laurasian rather than Gondwanan origin of placental mammals seems the most parsimonious explanation. PMID:20591845

  12. Effect of locomotor training in completely spinalized cats previously submitted to a spinal hemisection.

    PubMed

    Martinez, Marina; Delivet-Mongrain, Hugo; Leblond, Hugues; Rossignol, Serge

    2012-08-08

    After a spinal hemisection in cats, locomotor plasticity occurring at the spinal level can be revealed by performing, several weeks later, a complete spinalization below the first hemisection. Using this paradigm, we recently demonstrated that the hemisection induces durable changes in the symmetry of locomotor kinematics that persist after spinalization. Can this asymmetry be changed again in the spinal state by interventions such as treadmill locomotor training started within a few days after the spinalization? We performed, in 9 adult cats, a spinal hemisection at thoracic level 10 and then a complete spinalization at T13, 3 weeks later. Cats were not treadmill trained during the hemispinal period. After spinalization, 5 of 9 cats were not trained and served as control while 4 of 9 cats were trained on the treadmill for 20 min, 5 d a week for 3 weeks. Using detailed kinematic analyses, we showed that, without training, the asymmetrical state of locomotion induced by the hemisection was retained durably after the subsequent spinalization. By contrast, training cats after spinalization induced a reversal of the left/right asymmetries, suggesting that new plastic changes occurred within the spinal cord through locomotor training. Moreover, training was shown to improve the kinematic parameters and the performance of the hindlimb on the previously hemisected side. These results indicate that spinal locomotor circuits, previously modified by past experience such as required for adaptation to the hemisection, can remarkably respond to subsequent locomotor training and improve bilateral locomotor kinematics, clearly showing the benefits of locomotor training in the spinal state.

  13. Recurrent spinal adhesive arachnoiditis. A case report.

    PubMed

    de Mattos, J P; André, C; Couto, B A

    1988-03-01

    Spinal adhesive arachnoiditis is not an uncommon disease, usually having a monophasic course. We studied an atypical patient with recurrent spinal adhesive arachnoiditis nine years after intrathecal anesthesia and the first attack of the disease. Also noteworthy was the favorable evolution after surgery.

  14. Alleviating Autonomic Dysreflexia after Spinal Cord Injury

    DTIC Science & Technology

    2015-10-01

    develop from 1) aberrant plasticity and 2) the loss of tonic input onto sympathetic preganglionic neurons (SPN) in the spinal cord that drive...life. Another cause of autonomic dysreflexia is aberrant plasticity of spinal circuits that increase activity of the sympathetic preganglionic neurons...modulatory circuitry and pharmacological mitigation of hyperexcitability resulting from aberrant plasticity will result in greater mitigation of

  15. Spinal gout: A review with case illustration

    PubMed Central

    Elgafy, Hossein; Liu, Xiaochen; Herron, Joseph

    2016-01-01

    AIM To summarize clinical presentations and treatment options of spinal gout in the literature from 2000 to 2014, and present theories for possible mechanism of spinal gout formation. METHODS The authors reviewed 68 published cases of spinal gout, which were collected by searching “spinal gout” on PubMed from 2000 to 2014. The data were analyzed for clinical features, anatomical location of spinal gout, laboratory studies, imaging studies, and treatment choices. RESULTS Of the 68 patients reviewed, the most common clinical presentation was back or neck pain in 69.1% of patients. The most common laboratory study was elevated uric acid levels in 66.2% of patients. The most common diagnostic image finding was hypointense lesion of the gout tophi on the T1-weighted magnetic resonance imaging scan. The most common surgical treatment performed was a laminectomy in 51.5% and non-surgical treatment was performed in 29.4% of patients. CONCLUSION Spinal gout most commonly present as back or neck pain with majority of reported patients with elevated uric acid. The diagnosis of spinal gout is confirmed with the presence of negatively birefringent monosodium urate crystals in tissue. Treatment for spinal gout involves medication for the reduction of uric acid level and surgery if patient symptoms failed to respond to medical treatment. PMID:27900275

  16. Nutrition of People with Spinal Cord Injuries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This conference proceeding summarizes current knowledge about the nutritional status and needs of the spinal cord injured patient. Topics covered include the aspects of spinal cord injury that influence nutrient intakes and status, and the nutrients most likely to be problematic in this diverse gro...

  17. Psychological Aspects of Spinal Cord Injury

    ERIC Educational Resources Information Center

    Cook, Daniel W.

    1976-01-01

    Reviewing literature on the psychological impact of spinal cord injury suggests: (a) depression may not be a precondition for injury adjustment; (b) many persons sustaining cord injury may have experienced psychological disruption prior to injury; and (c) indexes of rehabilitation success need to be developed for the spinal cord injured. (Author)

  18. Intraoperative neurophysiological monitoring in spinal surgery

    PubMed Central

    Park, Jong-Hwa; Hyun, Seung-Jae

    2015-01-01

    Recently, many surgeons have been using intraoperative neurophysiological monitoring (IOM) in spinal surgery to reduce the incidence of postoperative neurological complications, including level of the spinal cord, cauda equina and nerve root. Several established technologies are available and combined motor and somatosensory evoked potentials are considered mandatory for practical and successful IOM. Spinal cord evoked potentials are elicited compound potentials recorded over the spinal cord. Electrical stimulation is provoked on the dorsal spinal cord from an epidural electrode. Somatosensory evoked potentials assess the functional integrity of sensory pathways from the peripheral nerve through the dorsal column and to the sensory cortex. For identification of the physiological midline, the dorsal column mapping technique can be used. It is helpful for reducing the postoperative morbidity associated with dorsal column dysfunction when distortion of the normal spinal cord anatomy caused by an intramedullary cord lesion results in confusion in localizing the midline for the myelotomy. Motor evoked potentials (MEPs) consist of spinal, neurogenic and muscle MEPs. MEPs allow selective and specific assessment of the functional integrity of descending motor pathways, from the motor cortex to peripheral muscles. Spinal surgeons should understand the concept of the monitoring techniques and interpret monitoring records adequately to use IOM for the decision making during the surgery for safe surgery and a favorable surgical outcome. PMID:26380823

  19. Dynamic behaviors of the non-neural ectoderm during mammalian cranial neural tube closure.

    PubMed

    Ray, Heather J; Niswander, Lee A

    2016-08-15

    The embryonic brain and spinal cord initially form through the process of neural tube closure (NTC). NTC is thought to be highly similar between rodents and humans, and studies of mouse genetic mutants have greatly increased our understanding of the molecular basis of NTC with relevance for human neural tube defects. In addition, studies using amphibian and chick embryos have shed light into the cellular and tissue dynamics underlying NTC. However, the dynamics of mammalian NTC has been difficult to study due to in utero development until recently when advances in mouse embryo ex vivo culture techniques along with confocal microscopy have allowed for imaging of mouse NTC in real time. Here, we have performed live imaging of mouse embryos with a particular focus on the non-neural ectoderm (NNE). Previous studies in multiple model systems have found that the NNE is important for proper NTC, but little is known about the behavior of these cells during mammalian NTC. Here we utilized a NNE-specific genetic labeling system to assess NNE dynamics during murine NTC and identified different NNE cell behaviors as the cranial region undergoes NTC. These results bring valuable new insight into regional differences in cellular behavior during NTC that may be driven by different molecular regulators and which may underlie the various positional disruptions of NTC observed in humans with neural tube defects.

  20. Identification of an interneuronal population that mediates recurrent inhibition of motoneurons in the developing chick spinal cord.

    PubMed

    Wenner, P; O'Donovan, M J

    1999-09-01

    Studies on the development of synaptic specificity, embryonic activity, and neuronal specification in the spinal cord have all been limited by the absence of a functionally identified interneuron class (defined by its unique set of connections). Here, we identify an interneuron population in the embryonic chick spinal cord that appears to be the avian equivalent of the mammalian Renshaw cell (R-interneurons). These cells receive monosynaptic nicotinic, cholinergic input from motoneuron recurrent collaterals. They make predominately GABAergic connections back onto motoneurons and to other R-interneurons but project rarely to other spinal interneurons. The similarity between the connections of the developing R-interneuron, shortly after circuit formation, and the mature mammalian Renshaw cell raises the possibility that R-interneuronal connections are formed precisely from the onset. Using a newly developed optical approach, we identified the location of R-interneurons in a column, dorsomedial to the motor nucleus. Functional characterization of the R-interneuron population provides the basis for analyses that have so far only been possible for motoneurons.