Environmental Influence of Gravity and Pressure on Arc Tracking of Insulated Wires Investigated
NASA Technical Reports Server (NTRS)
2005-01-01
Momentary short-circuit arcs between a defective polyimide-insulated wire and another conductor may thermally char (pyrolize) the insulating material. The charred polyimide, being conductive, can sustain the short-circuit arc, which may propagate along the wire through continuous pyrolization of the polyimide insulation (arc tracking). If the arcing wire is part of a multiple-wire bundle, the polyimide insulation of other wires within the bundle may become thermally charred and start arc tracking also (flash over). Such arc tracking can lead to complete failure of an entire wire bundle, causing other critical spacecraft or aircraft failures. Unfortunately, all tested candidate wire insulations for aerospace vehicles were susceptible to arc tracking. Therefore, a test procedure was designed at the NASA Lewis Research Center to select the insulation type least susceptible to arc tracking. This test procedure addresses the following three areas of concern: (1) probability of initiation, (2) probability of reinitiation (restrike), and (3) extent of arc tracking damage (propagation rate). Item 2 (restrike probability) is an issue if power can be terminated from and reapplied to the arcing wire (by a switch, fuse, or resettable circuit breaker). The degree of damage from an arcing event (item 3) refers to how easily the arc chars nearby insulation and propagates along the wire pair. Ease of nearby insulation charring can be determined by measuring the rate of arc propagation. Insulation that chars easily will propagate the arc faster than insulation that does not char very easily. A popular polyimide insulated wire for aerospace vehicles, MIL-W-81381, was tested to determine a degree of damage from an arcing event (item 3) in the following three environments: (1) microgravity with air at 1-atm pressure, (2) 1g with air at 1 atm, and (3) 1g within a 10^-6 Torr vacuum. The microgravity 1-atm air was the harshest environment, with respect to the rate of damage of arc tracking, for the 20 AWG (American Wiring Gauge) MIL-W-81381 wire insulation type . The vacuum environment resulted in the least damage. Further testing is planned to determine if the environmental results are consistent between insulation types and to evaluate the other two parameters associated with arc tracking susceptibility.
The mechanical stability of polyimide films at high pH
NASA Technical Reports Server (NTRS)
Croall, Catharine I.; St.clair, Terry L.
1990-01-01
Polyimide insulated electrical wire has been widely used in the aerospace industry in commercial, military, and to a lesser degree, general aviation aircraft since the early 1970s. Wiring failures linked to insulation damage have drawn much attention in the media and concerns have developed regarding the long term stability and safety of polyimide insulated electrical wire. The mechanical durability and chemical stability of polyimide insulated wire are affected by hydrolysis, notch propagation, wet and dry arc tracking, topcoat flaking, and degradation due to high pH fluids. Several polyimides were selected for evaluation for resistance to degradation by various aqueous alkaline solutions. The polyimides under evaluation include commercially available films such as KAPTON (tradename), APICAL (tradename), LARC-TPI, and UPILEX (tradename) R and S, as well as a number of experimental films prepared at NASA-Langley. Material properties investigated include viscosity, solubility, moisture absorption, glass transition temperature, dielectric constant, and mechanical properties before and after exposure to various conditions.
Integrated Electrical Wire Insulation Repair System
NASA Technical Reports Server (NTRS)
Williams, Martha; Jolley, Scott; Gibson, Tracy; Parks, Steven
2013-01-01
An integrated system tool will allow a technician to easily and quickly repair damaged high-performance electrical wire insulation in the field. Low-melt polyimides have been developed that can be processed into thin films that work well in the repair of damaged polyimide or fluoropolymer insulated electrical wiring. Such thin films can be used in wire insulation repairs by affixing a film of this low-melt polyimide to the damaged wire, and heating the film to effect melting, flow, and cure of the film. The resulting repair is robust, lightweight, and small in volume. The heating of this repair film is accomplished with the use of a common electrical soldering tool that has been modified with a special head or tip that can accommodate the size of wire being repaired. This repair method can furthermore be simplified for the repair technician by providing replaceable or disposable soldering tool heads that have repair film already "loaded" and ready for use. The soldering tool heating device can also be equipped with a battery power supply that will allow its use in areas where plug-in current is not available
Atomic Oxygen Effects on POSS Polyimides
2011-07-25
resistance to UV damage, and excellent thermal properties.1 Despite the desirable properties of Kapton, this polyimide and all organic polymeric materials...stability, insulation properties, IR transparency, low solar absorptance, resistance to UV damage, and excellent thermal properties.1 Despite the...8 × 1021 atoms cm-2. Free standing films of MC-POSS polyimide were sewn to a Kapton blanket and exposed to a sweeping ram in LEO on MISSE-5
The mechanical properties of polyimide films after exposure to high pH
NASA Technical Reports Server (NTRS)
Croall, Catharine I.; St.clair, Terry L.
1992-01-01
Wiring failures linked to insulation damage have drawn much attention in the aerospace industry and concerns have developed regarding the stability and safety of polyimide insulated electrical wire. Several polyimides were selected for evaluation for resistance to degradation by various aqueous alkaline solutions. The polyimides under evaluation include commercially available films such as Kapton (tk), Apical (tk), LaRC(tk)-TPI, and Upilex(tk)R and S, as well as a number of experimental films prepared by NASA Langley. Thermally imidized films were studied for their retention of mechanical properties after exposure to high pH solutions under stressed conditions.
NASA Technical Reports Server (NTRS)
Linley, Larry
1994-01-01
The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.
Space Shuttle Columbia Aging Wiring Failure Analysis
NASA Technical Reports Server (NTRS)
McDaniels, Steven J.
2005-01-01
A Space Shuttle Columbia main engine controller 14 AWG wire short circuited during the launch of STS-93. Post-flight examination divulged that the wire had electrically arced against the head of a nearby bolt. More extensive inspection revealed additional damage to the subject wire, and to other wires as well from the mid-body of Columbia. The shorted wire was to have been constructed from nickel-plated copper conductors surrounded by the polyimide insulation Kapton, top-coated with an aromatic polyimide resin. The wires were analyzed via scanning electron microscope (SEM), energy dispersive X-Ray spectroscopy (EDX), and electron spectroscopy for chemical analysis (ESCA); differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were performed on the polyimide. Exemplar testing under laboratory conditions was performed to replicate the mechanical damage characteristics evident on the failed wires. The exemplar testing included a step test, where, as the name implies, a person stepped on a simulated wire bundle that rested upon a bolt head. Likewise, a shear test that forced a bolt head and a torque tip against a wire was performed to attempt to damage the insulation and conductor. Additionally, a vibration test was performed to determine if a wire bundle would abrade when vibrated against the head of a bolt. Also, an abrasion test was undertaken to determine if the polyimide of the wire could be damaged by rubbing against convolex helical tubing. Finally, an impact test was performed to ascertain if the use of the tubing would protect the wire from the strike of a foreign object.
New Materials for the Repair of Polyimide Electrical Wire Insulation
NASA Technical Reports Server (NTRS)
2008-01-01
Two viable polyimide backbone materials have been identified that will allow the repair of polyimide electrical wire insulation found on the Space Shuttle and other aging aircraft. This identification is the outcome of ongoing efforts to assess the viability of using such polyimides and polyimide precursors (polyamic acids [PAAs]) as repair materials for aging polyimide electrical wire insulation. These repair materials were selected because they match the chemical makeup of the underlying wire insulation as closely as possible. This similarity allows for maximum compatibility, coupled with the outstanding physical properties of polyimides. The two polyimide backbone materials allow the polymer to be extremely flexible and to melt at low temperatures. A polymer chain end capping group that allows the polymer to crosslink into a nonflowable repair upon curing at around 200 C was also identified.
NASA Technical Reports Server (NTRS)
Madaras, Eric I.; Anastasi, Robert F.
2002-01-01
Ultrasonic measurements were performed on MIL-W-81381/7, /12, and /21 wire, a polyimide (Kapton) insulated wire. The phase velocity for the 20-gauge MIL-W-81381/7 wire had a baseline value of 3023 plus or minus 78 m/s. After exposure to high temperatures, the wire's phase velocity rapidly increased, and reached an asymptotic value of 3598 plus or minus 20 m/s after 100 hours exposure. Similar responses were measured in other gauges. The baseline measurements of Young's moduli resulted in values of 5636 plus or minus 486, 7714 plus or minus 505, and 8767 plus or minus 292 KSI for the 20 ga, 16 ga, and 12 ga. wires respectively.
Polyimide foams provide thermal insulation and fire protection
NASA Technical Reports Server (NTRS)
Rosser, R. W.
1972-01-01
Chemical reactions to produce polyimide foams for application as thermal insulation and fire prevention materials are discussed. Thermal and physical properties of the polyimides are described. Methods for improving basic formulations to produce desired qualitites are included.
Performance of Partially Fluorinated Polyimide Insulation for Aerospace Applications
NASA Technical Reports Server (NTRS)
Hammoud, Ahmad N.; Stavnes, Mark W.; Ide, James R.; Muegge, ED
1995-01-01
Polyimide has been used extensively as the primary wiring insulation in commercial planes, military aircraft, and space vehicles due to its low weight, high service temperature, and good dielectric strength. New failure modes, however, have been associated with the use of polyimide because of the susceptibility of the insulation to pyrolization and arc tracking. A new wiring construction utilizing partially fluorinated polyimide insulation has been tested and compared with the standard military polyimide wire. Electrical properties which were investigated include AC corona inception and extinction voltages (sea level and 60,000 feet), time/current to smoke, and wire fusing time. The two constructions were also characterized in terms of their mechanical properties including abrasion resistance, dynamic cut through, and notch propagation. These test efforts and the results obtained are presented and discussed.
Performance of partially fluorinated polyimide insulation for aerospace applications
NASA Astrophysics Data System (ADS)
Hammoud, Ahmad N.; Stavnes, Mark W.; Ide, James R.; Muegge, Ed
1995-08-01
Polyimide has been used extensively as the primary wiring insulation in commercial planes, military aircraft, and space vehicles due to its low weight, high service temperature, and good dielectric strength. New failure modes, however, have been associated with the use of polyimide because of the susceptibility of the insulation to pyrolization and arc tracking. A new wiring construction utilizing partially fluorinated polyimide insulation has been tested and compared with the standard military polyimide wire. Electrical properties which were investigated include AC corona inception and extinction voltages (sea level and 60,000 feet), time/current to smoke, and wire fusing time. The two constructions were also characterized in terms of their mechanical properties including abrasion resistance, dynamic cut through, and notch propagation. These test efforts and the results obtained are presented and discussed.
Evaluating Thermally Damaged Polyimide Insulated Wiring (MIL-W-81381) with Ultrasound
NASA Technical Reports Server (NTRS)
Madaras, Eric I.; Anastasi, Robert F.
2002-01-01
A series of experiments to investigate the use of ultrasound for measuring wire insulation have been conducted. Initial laboratory tests were performed on MIL-W-81381/7,/12, and /21 aviation wire, a wire that has polyimide (Kapton Registered Trademark) layers for insulation. Samples of this wiring were exposed to 370C temperatures for different periods of time to induce a range of thermal damage. For each exposure, 12 samples of each gauge (12, 16, and 20 gauges) were processed. The velocity of the lowest order axisymmetric ultrasonic guided mode, a mode that is sensitive to the geometry and stiffness of the wire conductor and insulation, was measured. The phase velocity for the 20-gauge MIL-W-81381/7 wire had a baseline value of 3023 +/- 78 m/s. After exposure to the high temperatures, the wire's phase velocity rapidly increased, and reached an asymptotic value of 3598 +/- 20 m/s after 100 hours exposure. Similar behavior was measured for the 16 gauge MIL-W-81381/21 wire and 12 gauge MIL-W-81381/12 wire which had baseline values of 3225 +/- 22 m/s and 3403 +/- 33 m/s respectively, and reached asymptotic values of 3668 +/- 19 m/s, and 3679 +/- 42 m/s respectively. These measured velocity changes represent changes of 19, 14, and 8 percent respectively for the 20, 16, and 12 gauge wires. Finally, some results for a wire with an ethylene tetrafluoroethylene insulation are reported. Qualitatively similar behaviors are noted ultrasonically.
Jang, Kwang-Suk; Wee, Duyoung; Kim, Yun Ho; Kim, Jinsoo; Ahn, Taek; Ka, Jae-Won; Yi, Mi Hye
2013-06-11
We report a simple approach to modify the surface of a polyimide gate insulator with an yttrium oxide interlayer for aqueous-solution-processed ZnO thin-film transistors. It is expected that the yttrium oxide interlayer will provide a surface that is more chemically compatible with the ZnO semiconductor than is bare polyimde. The field-effect mobility and the on/off current ratio of the ZnO TFT with the YOx/polyimide gate insulator were 0.456 cm(2)/V·s and 2.12 × 10(6), respectively, whereas the ZnO TFT with the polyimide gate insulator was inactive.
Composite flexible blanket insulation
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A. (Inventor); Lowe, David M. (Inventor)
1994-01-01
An improved composite flexible blanket insulation is presented comprising top silicon carbide having an interlock design, wherein the reflective shield is composed of single or double aluminized polyimide and wherein the polyimide film has a honeycomb pattern.
Jang, Kwang-Suk; Kim, Won Soo; Won, Jong-Myung; Kim, Yun-Ho; Myung, Sung; Ka, Jae-Won; Kim, Jinsoo; Ahn, Taek; Yi, Mi Hye
2013-01-21
The surface property of a polyimide gate insulator was successfully modified with an n-octadecyl side-chain. Alkyl chain-grafted poly(amic acid), the polyimide precursor, was synthesized using the diamine comonomer with an alkyl side-chain. By adding a base catalyst to the poly(amic acid) coating solution, the imidization temperature of the spin-coated film could be reduced to 200 °C. The 350 nm-thick polyimide film had a dielectric constant of 3.3 at 10 kHz and a leakage current density of less than 8.7 × 10(-10) A cm(-2), while biased from 0 to 100 V. To investigate the potential of the alkyl chain-grafted polyimide film as a gate insulator for solution-processed organic thin-film transistors (TFTs), we fabricated C(10)-BTBT TFTs. C(10)-BTBT was deposited on the alkyl chain-grafted polyimide gate insulator by spin-coating, forming a well-ordered crystal structure. The field-effect mobility and the on/off current ratio of the TFT device were measured to be 0.20-0.56 cm(2) V(-1) s(-1) and >10(5), respectively.
Yoon, Jun-Young; Jeong, Sunho; Lee, Sun Sook; Kim, Yun Ho; Ka, Jae-Won; Yi, Mi Hye; Jang, Kwang-Suk
2013-06-12
We studied a low-temperature-annealed sol-gel-derived alumina interlayer between the organic semiconductor and the organic gate insulator for high-performance organic thin-film transistors. The alumina interlayer was deposited on the polyimide gate insulator by a simple spin-coating and 200 °C-annealing process. The leakage current density decreased by the interlayer deposition: at 1 MV/cm, the leakage current densities of the polyimide and the alumina/polyimide gate insulators were 7.64 × 10(-7) and 3.01 × 10(-9) A/cm(2), respectively. For the first time, enhancement of the organic thin-film transistor performance by introduction of an inorganic interlayer between the organic semiconductor and the organic gate insulator was demonstrated: by introducing the interlayer, the field-effect mobility of the solution-processed organic thin-film transistor increased from 0.35 ± 0.15 to 1.35 ± 0.28 cm(2)/V·s. Our results suggest that inorganic interlayer deposition could be a simple and efficient surface treatment of organic gate insulators for enhancing the performance of solution-processed organic thin-film transistors.
NASA Technical Reports Server (NTRS)
St. Clair, Anne K.; St. Clair, Terry L.; Winfree, William P.; Emerson, Bert R., Jr.
1989-01-01
New process developed to produce aromatic condensation polyimide films and coatings having dielectric constants in range of 2.4 to 3.2. Materials better electrical insulators than state-of-the-art commercial polyimides. Several low-dielectric-constant polyimides have excellent resistance to moisture. Useful as film and coating materials for both industrial and aerospace applications where high electrical insulation, resistance to moisture, mechanical strength, and thermal stability required. Applicable to production of high-temperature and moisture-resistance adhesives, films, photoresists, and coatings. Electronic applications include printed-circuit boards, both of composite and flexible-film types and potential use in automotive, aerospace, and electronic industries.
Low-Melt Poly(Amic Acids) and Polyimides and Their Uses
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor); Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parks, Steven L. (Inventor)
2014-01-01
Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation.
Low-Melt Poly(amic Acids) and Polyimides and Their Uses
NASA Technical Reports Server (NTRS)
Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parrish, Clyde F. (Inventor); Parks, Steven L. (Inventor)
2015-01-01
Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation.
High temperature polyimide foams for shuttle upper surface thermal insulation
NASA Technical Reports Server (NTRS)
Ball, G. L., III; Leffingwell, J. W.; Salyer, I. O.; Werkmeister, D. W.
1974-01-01
Polyimide foams developed by Monsanto Company were examined for use as upper surface space shuttle thermal insulation. It was found that postcured polyimide foams having a density of 64 kg/cu m (4 lb/cu ft) had acceptable physical properties up to and exceeding 700 K (800 F). Physical tests included cyclic heating and cooling in vacuum, weight and dimensional stability, mechanical strength and impact resistance, acoustic loading and thermal conductivity. Molding and newly developed postcuring procedures were defined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemmi, T.; Matsui, K.; Koizumi, N.
2014-01-27
The insulation system of the ITER TF coils consists of multi-layer glass/polyimide tapes impregnated a cyanate-ester/epoxy resin. The ITER TF coils are required to withstand an irradiation of 10 MGy from gamma-ray and neutrons since the ITER TF coils is exposed by fast neutron (>0.1 MeV) of 10{sup 22} n/m{sup 2} during the ITER operation. Cyanate-ester/epoxy blended resins and bonded glass/polyimide tapes are developed as insulation materials to realize the required radiation-hardness for the insulation of the ITER TF coils. To evaluate the radiation-hardness of the developed insulation materials, the inter-laminar shear strength (ILSS) of glass-fiber reinforced plastics (GFRP) fabricatedmore » using developed insulation materials is measured as one of most important mechanical properties before/after the irradiation in a fission reactor of JRR-3M. As a result, it is demonstrated that the GFRPs using the developed insulation materials have a sufficient performance to apply for the ITER TF coil insulation.« less
NASA Astrophysics Data System (ADS)
Araki, Kuninari; Kamoto, Daigorou; Matsuoka, Shin-Ichi
The utilization is expected from the high-insulated characteristic as a tool for energy saving also in the high temperature insulation fields as in vacuum insulation panels (VIP) in the future. For high temperature, the material composition and process of VIP were reviewed, the SUS foil was adopted as packaging material, and soluble polyimide was developed as the thermo compression bonding material for high temperature VIP at 150°C. To lower the glass-transition temperature (Tg) under 200°C, we elaborated the new soluble polyimide using aliphatic diamine copolymer, and controlled Tg to about 176°C. By making from trial VIP and evaluations, it was possible to be maintain high performance concerning the coefficient of thermal conductivity [λ<0.008 W/(m·K) at 150°C].
Development of LaRC (TM): IA thermoplastic polyimide coated aerospace wiring
NASA Technical Reports Server (NTRS)
Keating, Jack
1995-01-01
NASA Langley has invented LaRC(exp TM) IA and IAX which are thermoplastic polyimides with good melting, thermal and chemical resistance properties. It was the objective of this contract to prepare and extrude LaRC (exp TM) polyimide onto aircraft wire and evaluate the polymers performance in this critical application. Based on rheology and chemical resistance studies at Imitec, LaRC (exp TM) IAX melts readily in an extruder, facilitating the manufacture of thin wall coatings. The polyimide does not corode the extruder, develop gel particles nor advance in viscosity. The insulated wire was tested according to MiL-W-22759E test specifications. The resulting wire coated with LaRC (exp TM) IAX displayed exceptional properties: surface resistance, non blocking, non burning, hot fluid resistance, impulse dielectric, insulation resistance, low temperature flexibility, thermal aging, wire weight, dimensions, negligible high temperature shrinkage and stripability. The light weight and other properties merit its application in satellites, missiles and aircraft applications. The extruded IAX results in a polyimide aircraft insulation without seams, outstanding moisture resistance, continuous lengths and abrasion resistance.
Process for lowering the dielectric constant of polyimides using diamic acid additives
NASA Technical Reports Server (NTRS)
Stoakley, Diane M. (Inventor); St.clair, Anne K. (Inventor)
1990-01-01
Linear aromatic polyimides with low dielectric constants are produced by adding a diamic acid additive to the polyamic acid resin formed by the condensation of an aromatic dianhydride with an aromatic diamine. The resulting modified polyimide is a better electrical insulator than state-of-the-art commercially available polyimides.
Evaluation of pyrolysis and arc tracking on candidate wire insulation designs for space applications
NASA Astrophysics Data System (ADS)
Stueber, Thomas J.; Hammoud, Ahmad; Stavnes, Mark W.; Hrovat, Kenneth
1994-05-01
Polyimide wire insulation has been found to be vulnerable to pyrolization and arc tracking due to momentary short circuit arcing events. This report compares arc tracking susceptibility of candidate insulation configurations for space wiring applications. The insulation types studied in this report were gauge 20 (0.81 mm dia.) hybrid wiring constructions using polyimide, tetrafluoroethylene (TFE), cross-linked ethylene tetrafluoroethylene (XL-ETFE) and/or polytetrafluoroethylene (PTFE) insulations. These constructions were manufactured according to military wiring standards for aerospace applications. Arc track testing was conducted under DC bias and vacuum (10(exp -6) torr). The tests were conducted to compare the various insulation constructions in terms of their resistance to arc tracking restrike. The results of the tests are presented.
Fundamental Insight on Developing Low Dielectric Constant Polyimides
NASA Technical Reports Server (NTRS)
Simpson, J. O.; SaintClair, A. K.
1997-01-01
Thermally stable, durable, insulative polyimides are in great demand for the fabrication of microelectronic devices. In this investigation dielectric and optical properties have been studied for several series of aromatic polyimides. The effect of polarizability, fluorine content, and free volume on dielectric constant was examined. In general, minimizing polarizability, maximizing free volume and fluorination all lowered dielectric constants in the polyimides studied.
High-Performance Polyimide Powder Coatings
NASA Technical Reports Server (NTRS)
2008-01-01
Much of the infrastructure at Kennedy Space Center and other NASA sites has been subjected to outside weathering effects for more than 40 years. Because much of this infrastructure has metallic surfaces, considerable effort is continually devoted to developing methods to minimize the effects of corrosion on these surfaces. These efforts are especially intense at KSC, where offshore salt spray and exhaust from Solid Rocket Boosters accelerate corrosion. Coatings of various types have traditionally been the choice for minimizing corrosion, and improved corrosion control methods are constantly being researched. Recent work at KSC on developing an improved method for repairing Kapton (polyimide)-based electrical wire insulation has identified polyimides with much lower melting points than traditional polyimides used for insulation. These lower melting points and the many other outstanding physical properties of polyimides (thermal stability, chemical resistance, and electrical properties) led us to investigate whether they could be used in powder coatings.
Investigating the Use of Ultrasound for Evaluating Aging Wiring Insulation
NASA Technical Reports Server (NTRS)
Madaras, Eric I.; Anastasi, Robert F.
2001-01-01
This paper reviews our initial efforts to investigate the use of ultrasound to evaluate wire insulation. Our initial model was a solid conductor with heat shrink tubing applied. In this model, various wave modes were identified. Subsequently, several aviation classes of wires (MIL-W- 81381, MIL-W-22759/34, and MIL-W-22759/87) were measured. The wires represented polyimide and ethylene-tetraflouroethylene insulations, and combinations of polyimide and flouropolymer plastics. Wire gages of 12, 16, and 20 AWG sizes were measured. Finally, samples of these wires were subjected to high temperatures for short periods of time to cause the insulation to degrade. Subsequent measurements indicated easily detectable changes.
Improvements to the Synthesis of Polyimide Aerogels
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Nguyen, Baochau N.; Guo, Haiquan; Vivod, Stephanie; He, Zuhui; Malow, Ericka; Silva, Rebecca
2011-01-01
Cross-linked polyimide aerogels are viable approach to higher temperature, flexible insulation for inflatable decelerators. Results indicate that the all-polyimide aerogels are as strong or stronger than polymer reinforced silica aerogels at the same density. Currently, examining use of carbon nanofiber and clay nanoparticles to improve performance. Flexible, polyimide aerogels have potential utility in other applications such as space suits, habitats, shelter applications, etc. where low dusting is desired
Fabrication and evaluation of dispersed-Ag nanoparticles-in-polyimide thin films
NASA Astrophysics Data System (ADS)
Sonehara, Makoto; Watanabe, Yuki; Yamaguchi, Sota; Kato, Takanori; Yoshisaku, Yasuaki; Sato, Toshiro; Itoh, Eiji
2017-10-01
A thin-film common-mode filter (TF-CMF) for cell phones in the UHF band was fabricated and evaluated. The TF-CMF consisted of multiple metal-insulator-metal (MIM) capacitors and inductors. The sizes of the 0.70-1.0 GHz band-type and 1.8-2.0 GHz band-type TF-CMFs are 1,140 × 1,260 × 10.5 µm3, and 1,060 × 1,060 × 10.5 µm3, respectively. The footprint in both types of TF-CMFs is over 1 mm2. In order to miniaturize the TF-CMF, we proposed to change a polyimide-only to a polyimide with dispersed Ag nanoparticles with high permittivity in the insulator layer for the MIM capacitor of the TF-CMF. A polyimide (\\text{polyimide precursor}:\\text{toluene with dispersed Ag nanoparticles} = 100:1) thin film with dispersed high-density Ag nanoparticles has a relative permittivity of about 8, which is twice as high as that of the polyimide-only thin film. If the capacitance and distance between electrodes are the same, then the capacitor footprint may be halved.
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Mundson, Chris
1993-01-01
Kapton polyimide wiring insulation was found to be vulnerable to pyrolization, arc tracking, and flashover when momentary short-circuit arcs have occurred on aircraft power systems. Short-circuit arcs between wire pairs can pyrolize the polyimide resulting in a conductive char between conductors that may sustain the arc (arc tracking). Furthermore, the arc tracking may spread (flashover) to other wire pairs within a wire bundle. Polyimide Kapton will also be used as the insulating material for the flexible current carrier (FCC) of Space Station Freedom (SSF). The FCC, with conductors in a planar type geometric layout as opposed to bundles, is known to sustain arc tracking at proposed SSF power levels. Tests were conducted in a vacuum bell jar that was designed to conduct polyimide pyrolysis, arc tracking, and flashover studies on samples of SSF's FCC. Test results will be reported concerning the minimal power level needed to sustain arc tracking and the FCC susceptibility to flashover. Results of the FCC arc tracking tests indicate that only 22 volt amps were necessary to sustain arc tracking (proposed SSF power level is 400 watts). FCC flashover studies indicate that the flashover event is highly unlikely.
Insulating Foams Save Money, Increase Safety
NASA Technical Reports Server (NTRS)
2009-01-01
Scientists at Langley Research Center created polyimide foam insulation for reusable cryogenic propellant tanks on the space shuttle. Meanwhile, a small Hialeah, Florida-based business, PolyuMAC Inc., was looking for advanced foams to use in the customized manufacturing of acoustical and thermal insulation. The company contacted NASA, licensed the material, and then the original inventors worked with the company's engineers to make a new material that was better for both parties. The new version, a high performance, flame retardant, flexible polyimide foam, is used for insulating NASA cryogenic propellant tanks and shows promise for use on watercraft, aircraft, spacecraft, electronics and electrical products, automobiles and automotive products, recreation equipment, and building and construction materials.
Study on Thermal Conductivities of Aromatic Polyimide Aerogels.
Feng, Junzong; Wang, Xin; Jiang, Yonggang; Du, Dongxuan; Feng, Jian
2016-05-25
Polyimide aerogels for low density thermal insulation materials were produced by 4,4'-diaminodiphenyl ether and 3,3',4,4'-biphenyltetracarboxylic dianhydride, cross-linked with 1,3,5-triaminophenoxybenzene. The densities of obtained polyimide aerogels are between 0.081 and 0.141 g cm(-3), and the specific surface areas are between 288 and 322 m(2) g(-1). The thermal conductivities were measured by a Hot Disk thermal constant analyzer. The value of the measured thermal conductivity under carbon dioxide atmosphere is lower than that under nitrogen atmosphere. Under pressure of 5 Pa at -130 °C, the thermal conductivity is the lowest, which is 8.42 mW (m K)(-1). The polyimide aerogels have lower conductivity [30.80 mW (m K)(-1)], compared to the value for other organic foams (polyurethane foam, phenolic foam, and polystyrene foam) with similar apparent densities under ambient pressure at 25 °C. The results indicate that polyimide aerogel is an ideal insulation material for aerospace and other applications.
Polyimide/Glass Composite High-Temperature Insulation
NASA Technical Reports Server (NTRS)
Pater, Ruth H.; Vasquez, Peter; Chatlin, Richard L.; Smith, Donald L.; Skalski, Thomas J.; Johnson, Gary S.; Chu, Sang-Hyon
2009-01-01
Lightweight composites of RP46 polyimide and glass fibers have been found to be useful as extraordinarily fire-resistant electrical-insulation materials. RP46 is a polyimide of the polymerization of monomeric reactants (PMR) type, developed by NASA Langley Research Center. RP46 has properties that make it attractive for use in electrical insulation at high temperatures. These properties include high-temperature resistance, low relative permittivity, low dissipation factor, outstanding mechanical properties, and excellent resistance to moisture and chemicals. Moreover, RP46 contains no halogen or other toxic materials and when burned it does not produce toxic fume or gaseous materials. The U. S. Navy has been seeking lightweight, high-temperature-resistant electrical-insulation materials in a program directed toward reducing fire hazards and weights in ship electrical systems. To satisfy the requirements of this program, an electrical-insulation material must withstand a 3-hour gas-flame test at 1,600 F (about 871 C). Prior to the development reported here, RP46 was rated for use at temperatures from -150 to +700 F (about -101 to 371 C), and no polymeric product - not even RP46 - was expected to withstand the Navy 3-hour gas-flame test.
Determination of life for a polyimide-epoxy alternator insulation system
NASA Technical Reports Server (NTRS)
Penn, W. B.; Schaefer, R. F.; Balke, R. L.
1974-01-01
Tests were conducted to predict remaining electrical insulation life of a polyimide epoxy insulated 60 KW, 208 volt homopolar inductor alternator, following completion of 23,130 hours of turbo-alternator endurance tests. The sectioned armature winding of this alternator stator was used as means to evaluate and measure end-life at several aging temperatures for development of an Arrhenius plot. A one-half life rate of 11.3 C was established from these data with a predicted remaining life of 60,000 hours at an armature winding temperature of 248 C and a total life, including endurance test time, of 61,645 hours.
Adhesives for laminating polyimide insulated flat conductor cable
NASA Technical Reports Server (NTRS)
Montermoso, J. C.; Saxton, T. R.; Taylor, R. L.
1967-01-01
Polymer adhesive laminates polyimide-film flat conductor cable. It is obtained by reacting an appropriate diamine with a dianhydride. The adhesive has also been used in the lamination of copper to copper for the preparation of multilayer circuit boards.
Exploration of photosensitive polyimide as the modification layer in thin film microcircuit
NASA Astrophysics Data System (ADS)
Liu, Lily; Song, Changbin; Xue, Bin; Li, Jing; Wang, Junxi; Li, Jinmin
2018-02-01
Positive type photosensitive polyimide is used as the modification layer in the thin film transistors production process. The photosensitive polyimide is not only used as the second insulating layer, it can also be used instead of a mask because of the photosensitivity. A suitable curing condition can help photosensitive polyimide form the high performance polyimide with orderly texture inside, and the performance of imidization depends on the precise control of temperature, time, and heat control during the curing process. Therefore, experiments of different stepped up heating tests are made, and the ability of protecting silicon dioxide is analyzed.
NASA Technical Reports Server (NTRS)
Medelius, Petro; Jolley, Scott; Fitzpatrick, Lilliana; Vinje, Rubiela; Williams, Martha; Clayton, LaNetra; Roberson, Luke; Smith, Trent; Santiago-Maldonado, Edgardo
2007-01-01
Wiring is a major operational component on aerospace hardware that accounts for substantial weight and volumetric space. Over time wire insulation can age and fail, often leading to catastrophic events such as system failure or fire. The next generation of wiring must be reliable and sustainable over long periods of time. These features will be achieved by the development of a wire insulation capable of autonomous self-healing that mitigates failure before it reaches a catastrophic level. In order to develop a self-healing insulation material, three steps must occur. First, methods of bonding similar materials must be developed that are capable of being initiated autonomously. This process will lead to the development of a manual repair system for polyimide wire insulation. Second, ways to initiate these bonding methods that lead to materials that are similar to the primary insulation must be developed. Finally, steps one and two must be integrated to produce a material that has no residues from the process that degrades the insulating properties of the final repaired insulation. The self-healing technology, teamed with the ability to identify and locate damage, will greatly improve reliability and safety of electrical wiring of critical systems. This paper will address these topics, discuss the results of preliminary testing, and remaining development issues related to self-healing wire insulation.
Self-Healable Electrical Insulation for High Voltage Applications
NASA Technical Reports Server (NTRS)
Williams, Tiffany S.
2017-01-01
Polymeric aircraft electrical insulation normally degrades by partial discharge with increasing voltage, which causes excessive localized Joule heating in the material and ultimately leads to dielectric failure of the insulator through thermal breakdown. Developing self-healing insulation could be a viable option to mitigate permanent mechanical degradation, thus increasing the longevity of the insulation. Instead of relying on catalyst and monomer-filled microcapsules to crack, flow, and cure at the damaged sites described in well-published mechanisms, establishment of ionic crosslinks could allow for multiple healing events to occur with the added benefit of achieving full recovery strength under certain thermal environments. This could be possible if the operating temperature of the insulator is the same as or close to the temperature where ionic crosslinks are formed. Surlyn, a commercial material with ionic crosslinks, was investigated as a candidate self-healing insulator based off prior demonstrations of self-healing behavior. Thin films of varying thicknesses were investigated and the effects of thickness on the dielectric strength were evaluated and compared to representative polymer insulators. The effects of thermal conditioning on the recovery strength and healing were observed as a function of time following dielectric breakdown. Moisture absorption was also studied to determine if moisture absorption rates in Surlyn were lower than that of common polyimides.
NASA Technical Reports Server (NTRS)
Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.
2014-01-01
As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.
Polyimide Foams Offer Superior Insulation
NASA Technical Reports Server (NTRS)
2012-01-01
At Langley Research Center, Erik Weiser and his colleagues in the Advanced Materials and Processing Branch were working with a new substance for fabricating composites for use in supersonic aircraft. The team, however, was experiencing some frustration. Every time they tried to create a solid composite from the polyimide (an advanced polymer) material, it bubbled and foamed. It seemed like the team had reached a dead end in their research - until they had another idea. "We said, This isn t going to work for composites, but maybe we could make a foam out of it," Weiser says. "That was kind of our eureka moment, to see if we could go in a whole other direction. And it worked." Weiser and his colleagues invented a new kind of polyimide foam insulation they named TEEK. The innovation displayed a host of advantages over existing insulation options. Compared to other commercial foams, Weiser explains, polyimide foams perform well across a broad range of temperatures, noting that the NASA TEEK foams provide effective structural insulation up to 600 F and down to cryogenic temperatures. The foam does not burn or off-gas toxic fumes, and even at -423 F - the temperature of liquid hydrogen - the material stays flexible. The inventors could produce the TEEK foam at a range of densities, from 0.5 pounds per cubic foot up to 20 pounds per cubic foot, making the foam ideal for a range of applications, including as insulation for reusable launch vehicles and for cryogenic tanks and lines. They also developed a unique, friable balloon format for manufacturing the foam, producing it as hollow microspheres that allowed the foam to be molded and then cured into any desired shape - perfect for insulating pipes of different sizes and configurations. The team s originally unplanned invention won an "R&D 100" award, and a later form of the foam, called LaRC FPF-44 (Spinoff 2009), was named "NASA Invention of the Year" in 2007.
Development and analysis of insulation constructions for aerospace wiring applications
NASA Astrophysics Data System (ADS)
Slenski, George A.; Woodford, Lynn M.
1993-03-01
The Wright Laboratory Materials Directorate at WPAFB, Ohio recently completed a research and development program under contract with the McDonnell Douglas Aerospace Company, St. Louis, Missouri. Program objectives were to develop wire insulation performance requirements, evaluate candidate insulations, and prepare preliminary specification sheets on the most promising candidates. Aircraft wiring continues to be a high maintenance item and a major contributor to electrically-related aircraft mishaps. Mishap data on aircraft show that chafing of insulation is the most common mode of wire failure. Improved wiring constructions are expected to increase aircraft performance and decrease costs by reducing maintenance actions. In the laboratory program, new insulation constructions were identified that had overall improved performance in evaluation tests when compared to currently available MIL-W-81381 and MIL-W-22759 wiring. These insulations are principally aromatic polyimide and crosslinked ethylene tetrafluoroethylene (ETFE), respectively. Candidate insulations identified in preliminary specification sheets were principally fluoropolymers with a polyimide inner layer. Examples of insulation properties evaluated included flammability, high temperature mechanical and electrical performance, fluid immersion, and susceptibility to arc propagation under applied power chafing conditions. Potential next generation wire insulation materials are also reviewed.
NASA Astrophysics Data System (ADS)
Zhang, J. W.; Zhou, T. C.; Wang, J. X.; Yang, X. F.; Zhu, F.; Tian, L. M.; Liu, R. T.
2017-10-01
As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC). In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.
Lightweight Thermal Insulation for a Liquid-Oxygen Tank
NASA Technical Reports Server (NTRS)
Willen, G. Scott; Lock, Jennifer; Nieczkoski, Steve
2005-01-01
A proposed lightweight, reusable thermal-insulation blanket has been designed for application to a tank containing liquid oxygen, in place of a non-reusable spray-on insulating foam. The blanket would be of the multilayer-insulation (MLI) type and equipped with a pressure-regulated nitrogen purge system. The blanket would contain 16 layers in two 8-layer sub-blankets. Double-aluminized polyimide 0.3 mil (.0.008 mm) thick was selected as a reflective shield material because of its compatibility with oxygen and its ability to withstand ionizing radiation and high temperature. The inner and outer sub-blanket layers, 1 mil (approximately equals 0.025 mm) and 3 mils (approximately equals 0.076 mm) thick, respectively, would be made of the double-aluminized polyimide reinforced with aramid. The inner and outer layers would provide structural support for the more fragile layers between them and would bear the insulation-to-tank attachment loads. The layers would be spaced apart by lightweight, low-thermal-conductance netting made from polyethylene terephthalate.
Study of Damage and Recovery of Electron Irradiated Polyimide using EPR and NMR Spectroscopy
NASA Astrophysics Data System (ADS)
Humagain, Sunita; Jhonson, Jessica; Stallworth, Phillip; Engelhart, Daniel; Plis, Elena; Ferguson, Dale; Cooper, Russell; Hoffmann, Ryan; Greenbaum, Steve
The main objective of this research is to probe radical concentrations in electron irradiated polyimide (PI, Kapton®) and to examine the impact on the electrical properties using EPR and NMR spectroscopy. PI is an electrical insulator used in space missions as a thermal management blanketing material, it is therefore critical for spacecraft designers to understand the nature of electron transport (electrical conductivity) within the bulk of the material. The recovery mechanism (radical evolution) of PI in vacuum, argon and air after having been subjected to 90 KeV electron irradiation, was studied. The formation and subsequent exponential decay of the radical concentrations was recorded using EPR. This signal decay agrees well with the recovery mechanism being probed by electrical conductivity measurements and implies a strong relation between the two. To investigate the distribution of radicals in the polymer, 1H NMR relaxation time (T1) were measured at 300MHz. Additional NMR experiments, in particular 13C, were performed to search for direct evidence of structural defects.
MIS-based sensors with hydrogen selectivity
Li,; Dongmei, [Boulder, CO; Medlin, J William [Boulder, CO; McDaniel, Anthony H [Livermore, CA; Bastasz, Robert J [Livermore, CA
2008-03-11
The invention provides hydrogen selective metal-insulator-semiconductor sensors which include a layer of hydrogen selective material. The hydrogen selective material can be polyimide layer having a thickness between 200 and 800 nm. Suitable polyimide materials include reaction products of benzophenone tetracarboxylic dianhydride 4,4-oxydianiline m-phenylene diamine and other structurally similar materials.
Measurement of Microscale Bio-Thermal Responses by Means of a Micro-Thermocouple Probe
2001-10-25
3) A silane coupler (VM-652, HD MicroSystems) was applied as a primer for good adhesion of the polyimide coating (Pyralin® PI2556, HD...MicroSystems), which was used as an insulating layer. We also used SiO2 instead of polyimide . (4) A gold (Au) thin film was deposited by means of the ion...sputtering technique. (5) A coating of polyimide /SiO2 was applied. (6) Finally, a coating of MPC (2-methacryloyloxyethyl phosphorylcholine) copolymers
Polyimide foam for the thermal insulation and fire protection
NASA Technical Reports Server (NTRS)
Rosser, R. W. (Inventor)
1973-01-01
The preparation of chemically resistant and flame retardant foams from polyfunctional aromatic carboxylic acid derivatives and organic polyisocyanates is outlined. It was found that polyimide foams of reproducible density above 1 lb./ft. and below 6 lbs./cu ft. can be obtained by employing in the reaction of least 2% by weight of siloxane-glycol copolymer as a surfactant which acts as a specific density control agent. Polyimide foams into which reinforcing fibers such as silicon dioxide and carbon fibers may be incorporated were also produced.
Synthesis and Characterization of Poly(maleic Anhydride)s Cross-linked Polyimide Aerogels
NASA Technical Reports Server (NTRS)
Guo, Haiquan; Meador, Mary Ann B.
2015-01-01
With the development of technology for aerospace applications, new thermal insulation materials are required to be flexible and capable of surviving high heat flux. For instance, flexible insulation is needed for inflatable aerodynamic decelerators which are used to slow spacecraft for entry, descent and landing (EDL) operations. Polyimide aerogels have low density, high porosity, high surface area, and better mechanical properties than silica aerogels and can be made into flexible thin films, thus they are potential candidates for aerospace needs. The previously reported cross-linkers such as octa(aminophenyl)silsesquioxane (OAPS) and 1,3,5-triaminophenoxybenzene (TAB) are either expensive or not commercially available. Here, we report the synthesis of a series of polyimide aerogels cross-linked using various commercially available poly(maleic anhydride)s, as seen in Figure 1. The amine end capped polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA) and diamine combinations of dimethylbenzidine (DMBZ) and 4, 4-oxydianiline (ODA). The resulting aerogels have low density (0.12 gcm3 to 0.16 gcm3), high porosity (90) and high surface area (380-554 m2g). The effect of the different poly(maleic anhydride) cross-linkers and polyimide backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed.
International space station wire program
NASA Technical Reports Server (NTRS)
May, Todd
1995-01-01
Hardware provider wire systems and current wire insulation issues for the International Space Station (ISS) program are discussed in this viewgraph presentation. Wire insulation issues include silicone wire contamination, Tefzel cold temperature flexibility, and Russian polyimide wire insulation. ISS is a complex program with hardware developed and managed by many countries and hundreds of contractors. Most of the obvious wire insulation issues are known by contractors and have been precluded by proper selection.
NASA Astrophysics Data System (ADS)
Clayton, N.; Crouchen, M.; Devred, A.; Evans, D.; Gung, C.-Y.; Lathwell, I.
2017-04-01
It is planned that the high voltage electrical insulation on the ITER feeder busbars will consist of interleaved layers of epoxy resin pre-impregnated glass tapes ('pre-preg') and polyimide. In addition to its electrical insulation function, the busbar insulation must have adequate mechanical properties to sustain the loads imposed on it during ITER magnet operation. This paper reports an investigation into suitable materials to manufacture the high voltage insulation for the ITER superconducting busbars and pipework. An R&D programme was undertaken in order to identify suitable pre-preg and polyimide materials from a range of suppliers. Pre-preg materials were obtained from 3 suppliers and used with Kapton HN, to make mouldings using the desired insulation architecture. Two main processing routes for pre-pregs have been investigated, namely vacuum bag processing (out of autoclave processing) and processing using a material with a high coefficient of thermal expansion (silicone rubber), to apply the compaction pressure on the insulation. Insulation should have adequate mechanical properties to cope with the stresses induced by the operating environment and a low void content necessary in a high voltage application. The quality of the mouldings was assessed by mechanical testing at 77 K and by the measurement of the void content.
Reliability of spring interconnects for high channel-count polyimide electrode arrays
NASA Astrophysics Data System (ADS)
Khan, Sharif; Ordonez, Juan Sebastian; Stieglitz, Thomas
2018-05-01
Active neural implants with a high channel-count need robust and reliable operational assembly for the targeted environment in order to be classified as viable fully implantable systems. The discrete functionality of the electrode array and the implant electronics is vital for intact assembly. A critical interface exists at the interconnection sites between the electrode array and the implant electronics, especially in hybrid assemblies (e.g. retinal implants) where electrodes and electronics are not on the same substrate. Since the interconnects in such assemblies cannot be hermetically sealed, reliable protection against the physiological environment is essential for delivering high insulation resistance and low defusibility of salt ions, which are limited in complexity by current assembly techniques. This work reports on a combination of spring-type interconnects on a polyimide array with silicone rubber gasket insulation for chronically active implantable systems. The spring design of the interconnects on the backend of the electrode array compensates for the uniform thickness of the sandwiched gasket during bonding in assembly and relieves the propagation of extrinsic stresses to the bulk polyimide substrate. The contact resistance of the microflex-bonded spring interconnects with the underlying metallized ceramic test vehicles and insulation through the gasket between adjacent contacts was investigated against the MIL883 standard. The contact and insulation resistances remained stable in the exhausting environmental conditions.
NASA Technical Reports Server (NTRS)
Melendez, Orlando; Hampton, Michael D.; Williams, Martha K.; Brown, Sylvia F.; Nelson, Gordon L.; Weiser, Erik S.
2002-01-01
Aromatic polyimides have been attractive in the aerospace and electronics industries for applications such as cryogenic insulation, flame retardant panels and structural subcomponents. Newer to the arena of polyimides is the synthesis of polyimide foams and their applications. In the present work, three different, closely related, polyimide foams developed by NASA Langley Research Center (LaRC) are studied by X-ray Photoelectron Spectroscopy (XPS) after exposure to radio frequency generated Oxygen Plasma. Although polyimide films exposure to atomic oxygen and plasma have been studied previously and reported, the data relate to films and not foams. Foams have much more surface area and thus present new information to be explored. Understanding degradation mechanisms and properties versus structure, foam versus solid is of interest and fundamental to the application and protection of foams exposed to atomic oxygen in Low Earth Orbit (LEO).
NASA Technical Reports Server (NTRS)
Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)
2000-01-01
A mechanically undensified aromatic polyimide foam is made from an aromatic polyimide precursor solid residuum and has the following combination of properties: a density according to ASTM D-3574A of about 0.5 pounds/cu.ft to about 20 pounds/cu.ft; a compression strength according to ASTM D-3574C of about 1.5 psi to about 1500 psi; and a limiting oxygen index according to ASTM D-2863 of about 35% oxygen to about 75% oxygen at atmospheric pressure. The aromatic polyimide foam has no appreciable solid inorganic contaminants which are residues of inorganic blowing agents. The aromatic polyimide which constitutes the aromatic polyimide foam has a glass transition temperature (Tg) by differential scanning calorimetry of about 235 C to about 400 C; and a thermal stability of 0 to about 1% weight loss at 204 C as determined by thermogravinietric analysis (TGA). The aromatic polyimide foam has utility as foam insulation and as structural foam, for example, for aeronautical, aerospace and maritime applications.
A flexible insulator of a hollow SiO2 sphere and polyimide hybrid for flexible OLEDs.
Kim, Min Kyu; Kim, Dong Won; Shin, Dong Wook; Seo, Sang Joon; Chung, Ho Kyoon; Yoo, Ji Beom
2015-01-28
The fabrication of interlayer dielectrics (ILDs) in flexible organic light-emitting diodes (OLEDs) not only requires flexible materials with a low dielectric constant, but also ones that possess the electrical, thermal, chemical, and mechanical properties required for optimal device performance. Porous polymer-silica hybrid materials were prepared to satisfy these requirements. Hollow SiO2 spheres were synthesized using atomic layer deposition (ALD) and a thermal calcination process. The hybrid film, which consists of hollow SiO2 spheres and polyimide, shows a low dielectric constant of 1.98 and excellent thermal stability up to 500 °C. After the bending test for 50 000 cycles, the porous hybrid film exhibits no degradation in its dielectric constant or leakage current. These results indicate that the hybrid film made up of hollow SiO2 spheres and polyimide (PI) is useful as a flexible insulator with a low dielectric constant and high thermal stability for flexible OLEDs.
Polyimide Cellulose Nanocrystal Composite Aerogels
NASA Technical Reports Server (NTRS)
Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna
2014-01-01
Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.
Thermal design of spacecraft solar arrays using a polyimide foam
NASA Astrophysics Data System (ADS)
Bianco, N.; Iasiello, M.; Naso, V.
2015-11-01
The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics®. Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared.
Non-flammable polyimide materials for aircraft and spacecraft applications
NASA Technical Reports Server (NTRS)
Gagliani, J.; Supkis, D. E.
1979-01-01
Recent developments in polyimide chemistry show promise for producing materials with very low flammability and a wide range of mechanical properties. Polyimide foams can be synthesized to provide fire safety without detectable formation of smoke or toxic byproducts below 204 C (400 F), thus avoiding an environment which is lethal to human habitation. This work has been and is currently being performed under development programs, the objective of which is to provide cost effective processes for producing thermally stable, polyimide flexible resilient foams, thermal-acoustical insulating materials, rigid low density foam panels, and high strength foam structures. The chemical and physical properties demonstrated by these materials represent a technological advancement in the art of thermally stable polyimide polymers which are expected to insure fire protection of structures and components used in air transportation and space exploration. Data compiled to date on thermal, physical and functional properties of these materials are presented.
NASA Wiring for Space Applications Program: Fiscal year 1994 - 1995 testing activities
NASA Technical Reports Server (NTRS)
Johnson, Harry T.; Hirsch, David
1995-01-01
The results of the testing of wire insulation materials for space applications is presented in this report. The wire insulations tested were partially fluorinated polyimide, extruded ETFE, extruded PTFE, PTFE tape, and PTFE/Kapton. The tests performed were flammability tests, odor tests, compatibility tests with aerospace fluids, offgassing tests, and thermal vacuum stability tests.
NASA Wiring for Space Applications Program: Fiscal year 1994 - 1995 testing activities
NASA Astrophysics Data System (ADS)
Johnson, Harry T.; Hirsch, David
1995-11-01
The results of the testing of wire insulation materials for space applications is presented in this report. The wire insulations tested were partially fluorinated polyimide, extruded ETFE, extruded PTFE, PTFE tape, and PTFE/Kapton. The tests performed were flammability tests, odor tests, compatibility tests with aerospace fluids, offgassing tests, and thermal vacuum stability tests.
Yang, Yang; He, Jinliang; Wu, Guangning; Hu, Jun
2015-01-01
Insulation performance of the dielectrics under extreme conditions always attracts widespread attention in electrical and electronic field. How to improve the high-temperature dielectric properties of insulation materials is one of the key issues in insulation system design of electrical devices. This paper studies the temperature-dependent corona resistance of polyimide (PI)/Al2O3 nanocomposite films under high-frequency square-wave pulse conditions. Extended corona resistant lifetime under high-temperature conditions is experimentally observed in the 2 wt% nanocomposite samples. The “thermal stabilization effect” is proposed to explain this phenomenon which attributes to a new kind of trap band caused by nanoparticles. This effect brings about superior space charge characteristics and corona resistance under high temperature with certain nano-doping concentration. The proposed theory is experimentally demonstrated by space charge analysis and thermally stimulated current (TSC) tests. This discovered effect is of profound significance on improving high-temperature dielectric properties of nanocomposites towards various applications. PMID:26597981
NASA Astrophysics Data System (ADS)
Yoshimoto, Akifumi; Kobayashi, Hidetoshi; Horikawa, Keitaro; Tanigaki, Kenichi
2015-09-01
These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10-3 to 103 s-1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from - 190 °C to 270°∘C. The flow stress decreased with increasing temperature.
Composite multilayer insulations for thermal protection of aerospace vehicles
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.; Pitts, William C.
1989-01-01
Composite flexible multilayer insulation systems (MLI), consisting of alternating layers of metal foil and scrim cloth or insulation quilted together using ceramic thread, were evaluated for thermal performance and compared with a silica fibrous (baseline) insulation system. The systems studied included: (1) alternating layers of aluminoborosilicate (ABS) scrim cloth and stainless steel foil, with silica, ABS, or alumina insulation; (2) alternating layers of scrim cloth and aluminum foil, with silica or ABS insulation; (3) alternating layers of aluminum foil and silica or ABS insulation; and (4) alternating layers of aluminum-coated polyimide placed on the bottom of the silica insulation. The MLIs containing aluminum were the most efficient, measuring as little as half the backface temperature increase of the baseline system.
NASA Astrophysics Data System (ADS)
Yoon, Sean J.; Kim, Jung Woong; Kim, Hyun Chan; Kang, Jinmo; Kim, Jaehwan
2017-12-01
Thermal stress in flexible interdigital transducers a reliability concern in the development of flexible devices, which may lead to interface delamination, stress voiding and plastic deformation. In this paper, a mathematical model is presented to investigate the effect of material selections on the thermal stress in interdigital transducers. We modified the linear relationships in the composite materials theory with the effect of high curvature, anisotropic substrate and small substrate thickness. We evaluated the thermal stresses of interdigital transducers, fabricated with various electrodes, insulators and substrate materials for the comparison. The results show that, among various insulators, organic polymer developed the highest stress level while oxide showed the lowest stress level. Aluminium shows a higher stress level and curvature as an electrode than gold. As substrate materials, polyimide and electroactive cellulose show similar stress levels except the opposite sign convention to each other. Polyimide shows positive curvatures while electroactive cellulose shows negative curvatures, which is attributed to the stress and thermal expansion state of the metal/insulator composite. The results show that the insulator is found to be responsible for the confinement across the metal lines while the substrate is responsible for the confinement along the metal lines.
Kim, Sohee; Ha, Taewook; Yoo, Sungmi; Ka, Jae-Won; Kim, Jinsoo; Won, Jong Chan; Choi, Dong Hoon; Jang, Kwang-Suk; Kim, Yun Ho
2017-06-14
We developed a facile method for treating polyimide-based organic gate insulator (OGI) surfaces with self-assembled monolayers (SAMs) by introducing metal-oxide interlayers, called the metal-oxide assisted SAM treatment (MAST). To create sites for surface modification with SAM materials on polyimide-based OGI (KPI) surfaces, the metal-oxide interlayer, here amorphous alumina (α-Al 2 O 3 ), was deposited on the KPI gate insulator using spin-coating via a rapid sol-gel reaction, providing an excellent template for the formation of a high-quality SAM with phosphonic acid anchor groups. The SAM of octadecylphosphonic acid (ODPA) was successfully treated by spin-coating onto the α-Al 2 O 3 -deposited KPI film. After the surface treatment by ODPA/α-Al 2 O 3 , the surface energy of the KPI thin film was remarkably decreased and the molecular compatibility of the film with an organic semiconductor (OSC), 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-C 10 ), was increased. Ph-BTBT-C 10 molecules were uniformly deposited on the treated gate insulator surface and grown with high crystallinity, as confirmed by atomic force microscopy (AFM) and X-ray diffraction (XRD) analysis. The mobility of Ph-BTBT-C 10 thin-film transistors (TFTs) was approximately doubled, from 0.56 ± 0.05 cm 2 V -1 s -1 to 1.26 ± 0.06 cm 2 V -1 s -1 , after the surface treatment. The surface treatment of α-Al 2 O 3 and ODPA significantly decreased the threshold voltage from -21.2 V to -8.3 V by reducing the trap sites in the OGI and improving the interfacial properties with the OSC. We suggest that the MAST method for OGIs can be applied to various OGI materials lacking reactive sites using SAMs. It may provide a new platform for the surface treatment of OGIs, similar to that of conventional SiO 2 gate insulators.
Space Environmentally Durable Polyimides and Copolyimides
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Hergenrother, Paul M. (Inventor); Watson, Kent A. (Inventor); Thompson, Craig M. (Inventor)
2006-01-01
Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic &anhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents. Controlled molecular weight oligomeric (amide acid)s and imides can be prepared by offsetting the stoichiometry according to the Carothers equation using excess diamine and endcapping with aromatic anhydrides. The polyimide materials can be processed into various material forms such as thin films, fibers, foams, threads, adhesive film, coatings, dry powders, and fiber coated prepreg, and uses include thin film membranes on antennas, second-surface mirrors, thermal optical coatings, and multilayer thermal insulation (MLI) blanket materials.
Space Environmentally Durable Polyimides and Copolyimides
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor); Watson, Kent A. (Inventor); Thompson, Craig M. (Inventor)
2005-01-01
Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic dianhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents. Controlled molecular weight oligomeric (amide acid)s and imides can be prepared by offsetting the stoichiometry according to the Carothers equation using excess diamine and endcapping with aromatic anhydrides The polyimide materials can be processed into various material forms such as thin films, fibers, foams, threads, adhesive film, coatings, dry powders, and fiber coated prepreg, and uses include thin film membranes on antennas, second-surface mirrors, thermal optical coatings, and multilayer thermal insulation (MLI) blanket materials.
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2017-01-01
AZ-2000-IECW white paint and StaMet black Kapton have been evaluated for the Kevlar/polyimide shells that enclose the Solar Probe Plus Magnetometer (MAG) sensors and multilayer insulation. Flight qualification testing on AZ-2000-IECW painted Kevlar/polyimide laminate was completed at Goddard Space Flight Center. This paint potentially meets all the requirements. However, it has no flight heritage. StaMet is hotter in the sun, and is specular. The results of the MAG thermal balance test show StaMet meets the thermal requirement and heater power budget. The mission prefers to fly StaMet after evaluating the risks of AZ-2000-IECW flaking and glint from StaMet to the Star Trackers.
Intumescent coating development
NASA Technical Reports Server (NTRS)
Sayler, I. O.; Griffen, C. W.
1983-01-01
A program was completed at the University of Dayton Research Institute in which polyimide and phenolic intumescent coatings were evaluated as supplemental thermal insulation for the sprayed-on foam insulation on the aft bulkhead of the space shuttle external tank. The purpose of the intumescent coating was to provide additional thermal protection during lift-off in order to replace the ablative heat resistant layer with a lighter weight material for increased payload in the shuttle.
Materials for foam type insulation
NASA Technical Reports Server (NTRS)
Hill, W. E.
1971-01-01
An internal foam fabrication is one of the concepts being considered for cryogenic insulation on the hydrogen tanks of the shuttle vehicle. The three-dimensional polyurethane used on the S-4 B tanks failed to meet the higher temperature requirements of the shuttle vehicle, however, and other foams under consideration include polyisocyanurates, polyphenylene oxides, polyimides, and polybenzimidazoles. Improved adhesive systems for attaching the foams to the interior tank wall are under study.
Experimental simulation of space plasma interactions with high voltage solar arrays
NASA Technical Reports Server (NTRS)
Stillwell, R. P.; Kaufman, H. R.; Robinson, R. S.
1981-01-01
Operating high voltage solar arrays in the space environment can result in anomalously large currents being collected through small insulation defects. Tests of simulated defects have been conducted in a 45-cm vacuum chamber with plasma densities of 100,000 to 1,000,000/cu cm. Plasmas were generated using an argon hollow cathode. The solar array elements were simulated by placing a thin sheet of polyimide (Kapton) insulation with a small hole in it over a conductor. Parameters tested were: hole size, adhesive, surface roughening, sample temperature, insulator thickness, insulator area. These results are discussed along with some preliminary empirical correlations.
Synthesis of temperature and solvent-resistant polymers
NASA Technical Reports Server (NTRS)
Webster, J. A.; Patterson, W. J.; Moffett, R. L.; Morris, D. E.
1972-01-01
Development of silicone polymers, polyimides, and polyisocyanurates for use as insulation, coatings, or adhesives under adverse environmental conditions is discussed. Chemical structure of the organic compounds is presented. Physical and mechanical properties of the compounds are analyzed.
NASA Technical Reports Server (NTRS)
2001-01-01
Through a partnership with Unitika Ltd., NASA's Langley Research Center created a foam based on high temperature resistant polyimide chemistry. Licensed non-exclusively to SORDAL, Inc., the low-density foam, named TEEK, can be processed into forms or used to fill structures such as honeycomb. TEEK offers superior insulation and support qualities, with heat and flame resistance abilities.TEEK is a practical selection for hull insulation in the shipbuilding industry, with numerous potential applications in aerospace applications, fire-resistant construction materials, and a wide range of consumer products that will improve safety and energy efficiency. Other opportunities are available in the areas of automotive coatings and sealants, electrical components, and recreational equipment. SORDAL has introduced its new product in several different forms, under the name "SOLREX". The company is developing a new product called SORDAL Paper(TM) that will be used in conjunction with the polyimide foam to offer thermal protection in various products, such as fire resistant garments and prosthetics.
Use of laser drilling in the manufacture of organic inverter circuits.
Iba, Shingo; Kato, Yusaku; Sekitani, Tsuyoshi; Kawaguchi, Hiroshi; Sakurai, Takayasu; Someya, Takao
2006-01-01
Inverter circuits have been made by connecting two high-quality pentacene field-effect transistors. A uniform and pinhole-free 900 nm thick polyimide gate-insulating layer was formed on a flexible polyimide film with gold gate electrodes and partially removed by using a CO2 laser drilling machine to make via holes and contact holes. Subsequent evaporation of the gold layer results in good electrical connection with a gold gate layer underneath the gate-insulating layer. By optimization of the settings of the CO2 laser drilling machine, contact resistance can be reduced to as low as 3 ohms for 180 microm square electrodes. No degradation of the transport properties of the organic transistors was observed after the laser-drilling process. This study demonstrates the feasibility of using the laser drilling process for implementation of organic transistors in integrated circuits on flexible polymer films.
Composite flexible insulation for thermal protection of space vehicles
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. Amanda
1991-01-01
A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the aeroassist space transfer vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.
High-temperature flat-conductor cable
NASA Technical Reports Server (NTRS)
Rigling, W. S.
1976-01-01
Temperature limit of 25-conductor signal cable and 3-conductor power cable, fabricated using woven and roll laminated technique, increased from 200 C to 350 C when polyimide/fluorinated ethylene propylene or polytetrafluoroethylene insulation films and fluorinated ethylene propylene as adhesive medium is applied.
Polyimide Aerogels with Three-Dimensional Cross-Linked Structure
NASA Technical Reports Server (NTRS)
Panek, John
2010-01-01
Polyimide aerogels with three-dimensional cross-linked structure are made using linear oligomeric segments of polyimide, and linked with one of the following into a 3D structure: trifunctional aliphatic or aromatic amines, latent reactive end caps such as nadic anhydride or phenylethynylphenyl amine, and silica or silsesquioxane cage structures decorated with amine. Drying the gels supercritically maintains the solid structure of the gel, creating a polyimide aerogel with improved mechanical properties over linear polyimide aerogels. Lightweight, low-density structures are desired for acoustic and thermal insulation for aerospace structures, habitats, astronaut equipment, and aeronautic applications. Aerogels are a unique material for providing such properties because of their extremely low density and small pore sizes. However, plain silica aerogels are brittle. Reinforcing the aerogel structure with a polymer (X-Aerogel) provides vast improvements in strength while maintaining low density and pore structure. However, degradation of polymers used in cross-linking tends to limit use temperatures to below 150 C. Organic aerogels made from linear polyimide have been demonstrated, but gels shrink substantially during supercritical fluid extraction and may have lower use temperature due to lower glass transition temperatures. The purpose of this innovation is to raise the glass transition temperature of all organic polyimide aerogel by use of tri-, tetra-, or poly-functional units in the structure to create a 3D covalently bonded network. Such cross-linked polyimides typically have higher glass transition temperatures in excess of 300 400 C. In addition, the reinforcement provided by a 3D network should improve mechanical stability, and prevent shrinkage on supercritical fluid extraction. The use of tri-functional aromatic or aliphatic amine groups in the polyimide backbone will provide such a 3D structure.
Thermoelectric needle probe for temperature measurements in biological materials.
Korn, U; Rav-Noy, Z; Shtrikman, S; Zafrir, M
1980-04-01
In certain biological and medical applications it is important to measure and follow temperature changes inside a body or tissue. Any probe inserted into a tissue causes damage to tissue and distortion to the initial temperature distribution. To minimize this interference, a fine probe is needed. Thus, thin film technology is advantageous and was utilized by us to produce sensitive probes for these applications. The resulting probe is a small thermocouple at the tip of a thin needle (acupuncture stainless steel needle, approximately 0.26 mm in diameter and length in the range 5-10 cm was used). The junction was produced at the needle's tip by coating the needle with thin layers of insulating and thermoelectric materials. The first layer is an insulating one and is composed of polyacrylonitrile (PAN) and polymide produced by plasma polymerization and dip-coating respectively. This layer covers all the needle except the tip. The second layer is a vacuum deposited thermoelectric thin layer of Bi-5% Sb alloy coating also the tip. The third layer is for insulation and protection and is composed of PAN and polyimide. In this arrangement the junction is at the needle's tip, the needle is one conductor, the thermoelectric layer is the other and they are isolated by the plastic layer. The probe is handy and mechanically sturdy. The sensitivity is typically 77 microV/degrees C at room temperature and is constant to within 2% up to 90 degrees C. The response is fast (less than 1 sec) the noise is small, (less than 0.05 degrees C) and because of the small dimension, damage to tissue and disturbance to the measured temperature field are minimal.
Polyimide-Foam/Aerogel Composites for Thermal Insulation
NASA Technical Reports Server (NTRS)
Williams, Martha; Fesmire, James; Sass, Jared; Smith, Trent; Weoser. Erol
2009-01-01
Composites of specific types of polymer foams and aerogel particles or blankets have been proposed to obtain thermal insulation performance superior to those of the neat polyimide foams. These composites have potential to also provide enhanced properties for vibration dampening or acoustic attenuation. The specific type of polymer foam is denoted "TEEK-H", signifying a series, denoted H, within a family of polyimide foams that were developed at NASA s Langley Research Center and are collectively denoted TEEK (an acronym of the inventors names). The specific types of aerogels include Nanogel aerogel particles from Cabot Corporation in Billerica, MA. and of Spaceloft aerogel blanket from Aspen Aerogels in Northborough, MA. The composites are inherently flame-retardant and exceptionally thermally stable. There are numerous potential uses for these composites, at temperatures from cryogenic to high temperatures, in diverse applications that include aerospace vehicles, aircraft, ocean vessels, buildings, and industrial process equipment. Some low-temperature applications, for example, include cryogenic storage and transfer or the transport of foods, medicines, and chemicals. Because of thermal cycling, aging, and weathering most polymer foams do not perform well at cryogenic temperatures and will undergo further cracking over time. The TEEK polyimides are among the few exceptions to this pattern, and the proposed composites are intended to have all the desirable properties of TEEK-H foams, plus improved thermal performance along with enhanced vibration or acoustic-attenuation performance. A composite panel as proposed would be fabricated by adding an appropriate amount of TEEK friable balloons into a mold to form a bottom layer. A piece of flexible aerogel blanket material, cut to the desired size and shape, would then be placed on the bottom TEEK layer and sandwiched between another top layer of polyimide friable balloons so that the aerogel blanket would become completely encased in an outer layer of TEEK friable balloons. Optionally, the process could be further repeated to produce multiple aerogel-blanket layers interspersed with and encased by TEEK friable balloons.
Stable Polyimides for Terrestrial and Space Uses
NASA Technical Reports Server (NTRS)
Connell, John W.; Smith, Joseph G., Jr.; Hergenrother, Paul M.
2005-01-01
Polyimides of a recently developed type have an attractive combination of properties, including low solar absorptivity (manifested as low color) when cast into thin films, resistance to atomic oxygen and ultraviolet radiation, solubility in organic solvents, high glass-transition temperatures, and high thermal stability. The focus of the development work was on polymers that can endure the space environment and that have specific combinations of properties for use on Gossamer spacecraft. Because of their unique combination of properties, these polymers are also expected to find use in a variety of other applications on Earth as well as in space. Examples of other space applications include membranes on antennas, second-surface mirrors, thermal optical coatings, and multilayer thermal insulation. For both terrestrial and space applications, these polyimides can be processed into various forms, including films, fibers, foams, threads, adhesives, and coatings.
NASA Astrophysics Data System (ADS)
Li, Dongmei; Medlin, J. W.; Bastasz, R.
2006-06-01
The detection of dissolved hydrogen in liquids is crucial to many industrial applications, such as fault detection for oil-filled electrical equipment. To enhance the performance of metal-insulator-semiconductor (MIS) sensors for dissolved hydrogen detection, a palladium MIS sensor has been modified by depositing a polyimide (PI) layer above the palladium surface. Response measurements of the PI-coated sensors in mineral oil indicate that hydrogen is sensitively detected, while the effect of interfering gases on sensor response is minimized.
Comparison of Arc Tracking Tests in Various Aerospace Environments
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Hammoud, Ahmad; McCall, David
1996-01-01
Momentary short-circuit arcs between a polyimide insulated wire with defective insulation and another conductor may cause pyrolization of the insulation resulting in a conductive path capable of sustaining the arc. These sustained arcs may propagate along the wires or to neighboring wires leading to complete failure of the wire bundle. Wire insulation susceptibility to arc tracking may be dependent on its environment. Because all wire insulation types tested to date arc track, a test procedure has been developed to compare different insulation types with respect to their arc tracking susceptibility. This test procedure is presented along with a comparison of arc tracking in the following three environments: (1) Air at atmospheric pressure and 1 gravitational(g) force; (2) Vacuum (2.67 x 10(exp -3) Pa) and 1g, and (3) Air at atmospheric pressure and microgravity (less than 0.04g).
Composite flexible insulation for thermal protection of space vehicles
NASA Astrophysics Data System (ADS)
Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. Amanda
1992-09-01
A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the Aeroassist Space Transfer Vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this system are also described. Analytical modeling describing the thermal performance of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.
Polyimide Aerogels Using Triisocyanate as Cross-linker.
Nguyen, Baochau N; Meador, Mary Ann B; Scheiman, Daniel; McCorkle, Linda
2017-08-16
A family of polyimide (PI)-based aerogels is produced using Desmodur N3300A, an inexpensive triisocyanate, as the cross-linker. The aerogels are prepared by cross-linking amine end-capped polyimide oligomers with the triisocyanate. The polyimide oligomers are formulated using 2,2'-dimethylbenzidine, 4,4'-oxydianiline, or mixtures of both diamines, combined with 3,3',4,4'-biphenyltetracarboxylic dianhydride, and are chemically imidized at room temperature. Depending on the backbone chemistry, chain length, and polymer concentration, density of the aerogels ranged from 0.06 to 0.14 g/cm 3 and Brunauer-Emmett-Teller surface areas ranged from 350 to 600 m 2 /g. Compressive moduli of these aerogels were as high as 225 MPa, which are comparable to, or higher than, those previously reported prepared with similar backbone structures but with other cross-linkers. Because of their lower cost and commercial availability as cross-linker, the aerogels may have further potential as insulation for building and construction, clothing, sporting goods, and automotive applications, although lower-temperature stability may limit their use in some aerospace applications.
Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane.
Guo, Haiquan; Meador, Mary Ann B; McCorkle, Linda; Quade, Derek J; Guo, Jiao; Hamilton, Bart; Cakmak, Miko; Sprowl, Guilherme
2011-02-01
We report the first synthesis of polyimide aerogels cross-linked through a polyhedral oligomeric silsesquioxane, octa(aminophenyl)silsesquioxane (OAPS). Gels formed from polyamic acid solutions of 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), bisaniline-p-xylidene (BAX) and OAPS were chemically imidized and dried using supercritical CO(2) extraction to give aerogels having density around 0.1 g/cm(3). The aerogels are greater than 90 % porous, have high surface areas (230 to 280 m(2)/g) and low thermal conductivity (14 mW/m-K at room temperature). Notably, the polyimide aerogels cross-linked with OAPS have higher modulus than polymer reinforced silica aerogels of similar density and can be fabricated as both monoliths and thin films. Thin films of the aerogel are flexible and foldable making them an ideal insulation for space suits, and inflatable structures for habitats or decelerators for planetary re-entry, as well as more down to earth applications.
NASA Astrophysics Data System (ADS)
Ganin, D. V.; Lapshin, K. E.; Obidin, A. Z.; Vartapetov, S. K.
2018-01-01
The experimental results of cutting a polyimide film on the optical glass substrate by means of femtosecond lasers are given. Two modes of laser cutting of this film without damages to a glass base are determined. The first is the photo graphitization using a high repetition rate femtosecond laser. The second is ablative, under the effect of femtosecond laser pulses with high energy and low repetition rate. Cutting of semiconductor chips formed on the polyimide film surface is successfully demonstrated.
New Techniques to Evaluate the Incendiary Behavior of Insulators
NASA Technical Reports Server (NTRS)
Buhler, Charles; Calle, Carlos; Clements, Sid; Trigwell, Steve; Ritz, Mindy
2008-01-01
New techniques for evaluating the incendiary behavior of insulators is presented. The onset of incendive brush discharges in air is evaluated using standard spark probe techniques for the case simulating approaches of an electrically grounded sphere to a charged insulator in the presence of a flammable atmosphere. However, this standard technique is unsuitable for the case of brush discharges that may occur during the charging-separation process for two insulator materials. We present experimental techniques to evaluate this hazard in the presence of a flammable atmosphere which is ideally suited to measure the incendiary nature of micro-discharges upon separation, a measurement never before performed. Other measurement techniques unique to this study include; surface potential measurements of insulators before, during and after contact and separation, as well as methods to verify fieldmeter calibrations using a charge insulator surface opposed to standard high voltage plates. Key words: Kapton polyimide film, incendiary discharges, brush discharges, contact and frictional electrification, ignition hazards, insulators, contact angle, surface potential measurements.
A tough performance simultaneous semi-interpenetrating polymer network
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1989-01-01
A semi-interpenetrating polyimide (semi-IPN) network and methods for making and using the same are disclosed. The semi-IPN system comprises a high performance thermosetting polyimide having an acetylene-terminated group acting as a crosslinking site and a high performance linear thermoplastic polyimide. The polymer is made by combining low viscosity precursors and low molecular weight polymers of the thermosetting and thermoplastic polyimides and allowing them to react in the immediate presence of each other to form a simultaneous semi-interpenetrating polyimide network. Provided is a high temperature system having significantly improved processability and damage tolerance while maintaining excellent thermo-oxidative stability, mechanical properties and resistance to humidity, when compared with the commercial high temperature resin, Thermid 600. This material is particularly adapted for use as a molding, adhesive and advanced composite matrix for aerospace structural and electronic applications.
Stripping and splicing polyimide-coated fibers
NASA Astrophysics Data System (ADS)
Duke, Douglas; Kanda, Yoshiharu; Tobita, Kenyo; Yamauchi, Ryozo
2011-05-01
Polyimide is often used as a coating material for optical fibers used in high temperature environments such as aerospace or oil and gas sensor applications. Unfortunately, polyimide coating is very difficult to strip by conventional mechanical stripping methods. The glass fiber is easily damaged if the stripping process is not extremely well controlled. Stripping the polyimide coating by heating with a flame or arc typically results in a significant reduction in fiber strength. Strength may be maintained by using hot acid stripping, however the use of the strong hot acid presents safety hazards and also requires controlled and safe waste disposal. Another issue with polyimide coating is variability of the coating diameter from various manufacturers or due to different polyimide coating processes. This not only complicates the polyimide stripping issue, but also presents problems with precise clamping and alignment during splicing, especially when it is necessary to splice with a short cleave length. In this paper, we present new polyimide coating stripping technology. The significant feature of this stripping technology is achievement of good strength while avoiding the use of hot acid or heating. We also developed a new specialty fiber fusion splicer that enables precise alignment and splicing regardless of the variability of polyimide coating diameter, even when clamping on the coating.
Preliminary design procedure for insulated structures subjected to transient heating
NASA Technical Reports Server (NTRS)
Adelman, H. M.
1979-01-01
Minimum-mass designs were obtained for insulated structural panels loaded by a general set of inplane forces and a time dependent temperature. Temperature and stress histories in the structure are given by closed-form solutions, and optimization of the insulation and structural thicknesses is performed by nonlinear mathematical programming techniques. Design calculations are described to evaluate the structural efficiency of eight materials under combined heating and mechanical loads: graphite/polyimide, graphite/epoxy, boron/aluminum, titanium, aluminum, Rene 41, carbon/carbon, and Lockalloy. The effect on design mass of intensity and duration of heating were assessed. Results indicate that an optimum structure may have a temperature response well below the recommended allowable temperature for the material.
Electrically insulated MLI and thermal anchor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamiya, Koji; Furukawa, Masato; Murakami, Haruyuki
2014-01-29
The thermal shield of JT-60SA is kept at 80 K and will use the multilayer insulation (MLI) to reduce radiation heat load to the superconducting coils at 4.4 K from the cryostat at 300 K. Due to plasma pulse operation, the MLI is affected by eddy current in toroidal direction. The MLI is designed to suppress the current by electrically insulating every 20 degree in the toroidal direction by covering the MLI with polyimide films. In this paper, two kinds of designs for the MLI system are proposed, focusing on a way to overlap the layers. A boil-off calorimeter methodmore » and temperature measurement has been performed to determine the thermal performance of the MLI system. The design of the electrical insulated thermal anchor between the toroidal field (TF) coil and the thermal shield is also explained.« less
Analysis of Surveyor 3 television cable after residence on the moon
NASA Technical Reports Server (NTRS)
Gross, F. C.; Park, J. J.
1972-01-01
The Apollo 12 astronauts brought the Surveyor III television camera back from the moon in November 1969. Chemical analyses of a portion of television cable revealed changes in the glass fabric sleeve and in the wire insulation as a result of exposure to the lunar environment. Loss of volatile constituents from the glass fabric and a discoloration of the glass occurred. The Teflon layer on the wire showed a slight discoloration and possibly a slight change in its infrared spectrum. Both the polyimide layer and the Teflon layer of the wire insulation showed changes in tensile strength and elongation.
Degradation of thermal control materials under a simulated radiative space environment
NASA Astrophysics Data System (ADS)
Sharma, A. K.; Sridhara, N.
2012-11-01
A spacecraft with a passive thermal control system utilizes various thermal control materials to maintain temperatures within safe operating limits. Materials used for spacecraft applications are exposed to harsh space environments such as ultraviolet (UV) and particle (electron, proton) irradiation and atomic oxygen (AO), undergo physical damage and thermal degradation, which must be considered for spacecraft thermal design optimization and cost effectiveness. This paper describes the effect of synergistic radiation on some of the important thermal control materials to verify the assumptions of beginning-of-life (BOL) and end-of-life (EOL) properties. Studies on the degradation in the optical properties (solar absorptance and infrared emittance) of some important thermal control materials exposed to simulated radiative geostationary space environment are discussed. The current studies are purely related to the influence of radiation on the degradation of the materials; other environmental aspects (e.g., thermal cycling) are not discussed. The thermal control materials investigated herein include different kind of second-surface mirrors, white anodizing, white paints, black paints, multilayer insulation materials, varnish coated aluminized polyimide, germanium coated polyimide, polyether ether ketone (PEEK) and poly tetra fluoro ethylene (PTFE). For this purpose, a test in the constant vacuum was performed reproducing a three year radiative space environment exposure, including ultraviolet and charged particle effects on North/South panels of a geostationary three-axis stabilized spacecraft. Reflectance spectra were measured in situ in the solar range (250-2500 nm) and the corresponding solar absorptance values were calculated. The test methodology and the degradations of the materials are discussed. The most important degradations among the low solar absorptance materials were found in the white paints whereas the rigid optical solar reflectors remained quite stable. Among the high solar absorptance elements, as such the change in the solar absorptance was very low, in particular the germanium coated polyimide was found highly stable.
NASA Astrophysics Data System (ADS)
Yang, Y.; Yoshida, M.; Idesaki, A.; Ogitsu, T.
2018-01-01
Recent accelerator-based experiments for particle physics require the superconducting magnets that can be operated under high radiation environment. An electrical insulation tape, which is composed of polyimide film and a boron free glass fabric pre-impregnated with epoxy resin blended with bismaleimide-triazine resin, is developed to enhance the radiation tolerance for superconducting magnets. Since the thermal conductivity of insulation tape is one of key parameters that affects the coil temperature during the operation, the influence of gamma-ray irradiation on the thermal conductivity of the insulation tape is investigated with a maximum dose of 5 MGy. The thermal conductivity is measured at cryogenic temperature from 5 K to 20 K cooled by a Gifford-McMahon cryocooler. By comparing the thermal conductivity before and after the gamma ray irradiation, no significant degradation on the thermal conductivity has been observed.
Release of MEMS devices with hard-baked polyimide sacrificial layer
NASA Astrophysics Data System (ADS)
Boroumand Azad, Javaneh; Rezadad, Imen; Nath, Janardan; Smith, Evan; Peale, Robert E.
2013-03-01
Removal of polyimides used as sacrificial layer in fabricating MEMS devices can be challenging after hardbaking, which may easily result by the end of multiple-step processing. We consider the specific commercial co-developable polyimide ProLift 100 (Brewer Science). Excessive heat hardens this material, so that during wet release in TMAH based solvents, intact sheets break free from the substrate, move around in the solution, and break delicate structures. On the other hand, dry reactive-ion etching of hard-baked ProLift is so slow, that MEMS structures are damaged from undesirably-prolonged physical bombardment by plasma ions. We found that blanket exposure to ultraviolet light allows rapid dry etch of the ProLift surrounding the desired structures without damaging them. Subsequent removal of ProLift from under the devices can then be safely performed using wet or dry etch. We demonstrate the approach on PECVD-grown silicon-oxide cantilevers of 100 micron × 100 micron area supported 2 microns above the substrate by ~100-micron-long 8-micron-wide oxide arms.
The effects of γ-ray on charging behaviour using polyimide
NASA Astrophysics Data System (ADS)
Qin, Sichen; Tu, Youping; Tan, Tian; Wang, Shaohe; Yuan, Zhikang; Wang, Cong; Li, Laifeng; Wu, Zhixiong
2018-06-01
Insulation material is a key component of electrical equipment in satellites; its electrical properties determine the reliability and lifetime of the whole satellite. High-energy radioactive rays in space affect the molecular structure of the polymeric insulating materials. Under the action of plasma, high energy particles, along with the magnetic fields experienced in orbits, electric charges get injected into and trapped by the insulating material creating distortions in the electric field and even electrostatic discharges. Polyimides have been widely used for insulation in spacecraft. Choosing Co-60 gamma ray with irradiation doses of 1 MGy and 5 MGy to simulate the radiation environment of space, we investigated the effect of radiation on charging behaviour. The thermal stimulated current (TSC) from a high electric field over a wide range of temperatures was measured from which the activation energy was calculated. These results for the two sources show that the percentage increase in total charge was 133.3% and 119.4%. The γ, β 3, and α charge peaks of specimens after an irradiation dose of 1 MGy rose. In comparison, the β 2 peak of the 5 MGy-dosed specimens was enhanced. Also, there is almost no change in the γ, β 3, and α peaks. To understand the mechanism behind the TSC changes, the resulting physicochemical characteristics of an irradiated specimen were observed employing various analyses of chemical characteristics (x-ray photoelectron spectroscopy, differential scanning calorimetry and x-ray diffraction). Compared with the non-dosed specimen, the relative content of C–N and the glass transition temperature of the 1 MGy sample decreased, and the crystallinity increased, thus increasing the γ and α peak intensities. Compared with the 1 MGy sample, only the glass transition temperature had risen, thereby enhancing the β peak intensity. With the foregoing, a theoretical base for the selection and modification of insulation materials for spacecraft is provided.
John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report
NASA Technical Reports Server (NTRS)
2008-01-01
Topics covered include: Reversible Chemochromic Hydrogen Detectors; Determining Trajectory of Triboelectrically Charged Particles, Using Discrete Element Modeling; Using Indium Tin Oxide To Mitigate Dust on Viewing Ports; High-Performance Polyimide Powder Coatings; Controlled-Release Microcapsules for Smart Coatings for Corrosion Applications; Aerocoat 7 Replacement Coatings; Photocatalytic Coatings for Exploration and Spaceport Design; New Materials for the Repair of Polyimide Electrical Wire Insulation; Commodity-Free Calibration; Novel Ice Mitigation Methods; Crack Offset Measurement With the Projected Laser Target Device; New Materials for Structural Composites and Protective Coatings; Fire Chemistry Testing of Spray-On Foam Insulation (SOFI); Using Aerogel-Based Insulation Material To Prevent Foam Loss on the Liquid-Hydrogen Intertank; Particle Ejection and Levitation Technology (PELT); Electrostatic Characterization of Lunar Dust; Numerical Analysis of Rocket Exhaust Cratering; RESOLVE Projects: Lunar Water Resource Demonstration and Regolith Volatile Characterization; Tribocharging Lunar Soil for Electrostatic Beneficiation; Numerically Modeling the Erosion of Lunar Soil by Rocket Exhaust Plumes; Trajectory Model of Lunar Dust Particles; Using Lunar Module Shadows To Scale the Effects of Rocket Exhaust Plumes; Predicting the Acoustic Environment Induced by the Launch of the Ares I Vehicle; Measuring Ultrasonic Acoustic Velocity in a Thin Sheet of Graphite Epoxy Composite; Hail Size Distribution Mapping; Launch Pad 39 Hail Monitor Array System; Autonomous Flight Safety System - Phase III; The Photogrammetry Cube; Bird Vision System; Automating Range Surveillance Through Radio Interferometry and Field Strength Mapping Techniques; Next-Generation Telemetry Workstation; GPS Metric Tracking Unit; and Space-Based Range.
Polymer materials and component evaluation in acidic-radiation environments
NASA Astrophysics Data System (ADS)
Celina, M.; Gillen, K. T.; Malone, G. M.; Clough, R. L.; Nelson, W. H.
2001-07-01
Polymeric materials used for cable/wire insulation, electrical connectors, O-rings, seals, and in critical components such as motors, level switches and resistive thermo-devices were evaluated under accelerated degradation conditions in combined radiation-oxidative elevated-temperature acidic-vapor (nitric/oxalic) environments relevant to conditions in isotope processing facilities. Experiments included the assessment of individual materials such as PEEK, polyimides, polyolefin based cable insulation, EPDM rubbers, various epoxy systems, commercial caulking materials as well as some functional testing of components. We discuss how to conduct laboratory experiments to simulate such complex hostile environments, describe some degradation effects encountered, and evaluate the impact on appropriate material and component selection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayakumar, R.; Martovetsky, N.N.; Perfect, S.A.
A glass-polyimide insulation system has been proposed by the US team for use in the Central Solenoid (CS) coil of the international Thermonuclear Experimental Reactor (ITER) machine and it is planned to use this system in the CS model coil inner module. The turn insulation will consist of 2 layers of combined prepreg and Kapton. Each layer is 50% overlapped with a butt wrap of prepreg and an overwrap of S glass. The coil layers will be separated by a glass-resin composite and impregnated in a VPI process. Small scale tests on the various components of the insulation are complete.more » It is planned to fabricate and test the insulation in a 4 x 4 insulated CS conductor array which will include the layer insulation and be vacuum impregnated. The conductor array will be subjected to 20 thermal cycles and 100000 mechanical load cycles in a Liquid Nitrogen environment. These loads are similar to those seen in the CS coil design. The insulation will be electrically tested at several stages during mechanical testing. This paper will describe the array configuration, fabrication: process, instrumentation, testing configuration, and supporting analyses used in selecting the array and test configurations.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
..., thermal system insulation ACM, or miscellaneous ACM that is found in or on interior structural members or... question may also indicate damage. Damaged or significantly damaged thermal system insulation ACM means thermal system insulation ACM on pipes, boilers, tanks, ducts, and other thermal system insulation...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., thermal system insulation ACM, or miscellaneous ACM that is found in or on interior structural members or... question may also indicate damage. Damaged or significantly damaged thermal system insulation ACM means thermal system insulation ACM on pipes, boilers, tanks, ducts, and other thermal system insulation...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., thermal system insulation ACM, or miscellaneous ACM that is found in or on interior structural members or... question may also indicate damage. Damaged or significantly damaged thermal system insulation ACM means thermal system insulation ACM on pipes, boilers, tanks, ducts, and other thermal system insulation...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., thermal system insulation ACM, or miscellaneous ACM that is found in or on interior structural members or... question may also indicate damage. Damaged or significantly damaged thermal system insulation ACM means thermal system insulation ACM on pipes, boilers, tanks, ducts, and other thermal system insulation...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., thermal system insulation ACM, or miscellaneous ACM that is found in or on interior structural members or... question may also indicate damage. Damaged or significantly damaged thermal system insulation ACM means thermal system insulation ACM on pipes, boilers, tanks, ducts, and other thermal system insulation...
Study of coatings for improved fire and decay resistance of mine timbers
NASA Technical Reports Server (NTRS)
Baum, B.
1977-01-01
The purpose of this program was to find a fire- and rot-retardant polymer/fungicide reaction product for coating mine timbers. Fire-retardant polymers were screened as films and coatings on fir wood. Curable polyimide appeared to be flame retardant and evolved a minimum of fumes when exposed to a flame. Several organic and metal, low toxicity, fungicides were reacted with the polyimide in-situ on the wood. These coated samples were screened for fungus resistance. All formulations rated well - even the polyimide film without additives was fungicidal. The fir wood control itself resisted internal damage during the ten weeks of fungus exposure. A more severe test for fungus resistance will be required.
Tough, processable simultaneous semi-interpenetrating polyimides
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1996-01-01
A high temperature semi-interpenetrating polymer network (semi-IPN) was developed which had significantly improved processability, damage tolerance and mechanical performance, when compared to the commercial Thermid.RTM. materials. This simultaneous semi-IPN was prepared by mixing a thermosetting polyimide with a thermoplastic monomer precursor solution (NR-15082) and allowing them to react upon heating. This reaction occurs at a rate which decreases the flow and broadens the processing window. Upon heating at a higher temperature, there is an increase in flow. Because of the improved flow properties, broadened processing window and enhanced toughness, high strength polymer matrix composites, adhesives and molded articles can now be prepared from the acetylene endcapped polyimides which were previously inherently brittle and difficult to process.
2014-05-19
their acceptable thermal stability, Polyimides have established as a conventional substrate material for flexible interconnects, which can be...of the silver flake ink for the screen-printed interconnects, the assembled unit fulfills biocompatibility requirements in a limited manner ([29...30]). Even though biocompatibility of substrate [31] is fulfilled, toxicity of the insulating mask [32] and encapsulation need to be considered
NASA Technical Reports Server (NTRS)
Gagliani, J.
1978-01-01
A new approach to the problem of flammability by the use of materials obtained from foamy polyimide resins is developed. The ability of these materials to provide fire protection is demonstrated. The development of processes for producing resilient cell foam for use in aircraft seating, thermal acoustical insulation, floor and wall panels, coated glass fabrics, and molded hardware.
NASA Astrophysics Data System (ADS)
Clayton, N.; Crouchen, M.; Evans, D.; Gung, C.-Y.; Su, M.; Devred, A.; Piccin, R.
2017-12-01
The high voltage (HV) insulation on the ITER magnet feeder superconducting busbars and current leads will be prepared from S-glass fabric, pre-impregnated with an epoxy resin, which is interleaved with polyimide film and wrapped onto the components and cured during feeder manufacture. The insulation architecture consists of nine half-lapped layers of glass/Kapton, which is then enveloped in a ground-screen, and two further half-lapped layers of glass pre-preg for mechanical protection. The integrity of the HV insulation is critical in order to inhibit electrical arcs within the feeders. The insulation over the entire length of the HV components (bus bar, current leads and joints) must provide a level of voltage isolation of 30 kV. In operation, the insulation on ITER busbars will be subjected to high mechanical loads, arising from Lorentz forces, and in addition will be subjected to fretting erosion against stainless steel clamps, as the pulsed nature of some magnets results in longitudinal movement of the busbar. This work was aimed at assessing the wear on, and the changes in, the electrical properties of the insulation when subjected to typical ITER operating conditions. High voltage tests demonstrated that the electrical isolation of the insulation was intact after the fretting test.
Effects of electrocautery on transvenous lead insulation materials.
Lim, Kiam-Khiang; Reddy, Shantanu; Desai, Shrojal; Smelley, Matthew; Kim, Susan S; Beshai, John F; Lin, Albert C; Burke, Martin C; Knight, Bradley P
2009-04-01
Insulation defects are a leading cause of transvenous lead failure. The purpose of this study was to determine the effects of electrocautery on transvenous lead insulation materials. A preparation was done to simulate dissection of a transvenous lead from tissues. Radiofrequency energy was delivered using a standard cautery blade at outputs of 10, 20, and 30 W, for 3 and 6 seconds, using parallel and perpendicular blade orientations on leads with outermost insulations of silicone rubber, polyurethane, and silicone-polyurethane copolymer. Damage to each lead segment was classified after visual and microscopic analysis. Significant insulation damage occurred to almost all polyurethane leads. Full insulation breaches were observed with 30 W regardless of application duration with a parallel direction and with all power outputs with a perpendicular direction. Thermal insulation damage to copolymer insulation was similar to that of the polyurethane leads. In contrast, there was no thermal damage to silicone leads, regardless of the power output and duration of power delivery. However, mechanical insulation damage was observed to all silicone leads when at least 20 W was applied in a direction perpendicular to the lead. Polyurethane (PU55D) and copolymer materials have low thermal stability and are highly susceptible to thermal damage during cautery. Implanting physicians should be aware of the lead insulation materials being used during implant procedures and their properties. The use of direct contact cautery on transvenous leads should be minimized to avoid damage to the lead, especially on leads with polyurethane or copolymer outer insulations.
Meena, Jagan Singh; Chu, Min-Ching; Kuo, Shiao-Wei; Chang, Feng-Chih; Ko, Fu-Hsiang
2010-03-20
We have used a sol-gel spin-coating process to fabricate a new metal-insulator-metal (MIM) capacitor comprising a 10 nm-thick high-k thin dielectric HfO(2) film on a flexible polyimide (PI) substrate. The surface morphology of this HfO(2) film was investigated using atomic force microscopy and scanning electron microscopy, which confirmed that continuous and crack-free film growth had occurred on the film surface. After oxygen (O(2)) plasma pretreatment and subsequent annealing at 250 degrees C, the film on the PI substrate exhibited a low leakage current density of 3.64 x 10(-9) A cm(-2) at 5 V and a maximum capacitance density of 10.35 fF microm(-2) at 1 MHz. The as-deposited sol-gel film was completely oxidized when employing O(2) plasma at a relatively low temperature (ca. 250 degrees C), thereby enhancing the electrical performance. We employed X-ray photoelectron spectroscopy (XPS) at both high and low resolution to examine the chemical composition of the film subjected to various treatment conditions. The shift of the XPS peaks towards higher binding energy, revealed that O(2) plasma treatment was the most effective process for the complete oxidation of hafnium atoms at low temperature. A study of the insulator properties indicated the excellent bendability of our MIM capacitor; the flexible PI substrate could be bent up to 10(5) times and folded to near 360 degrees without any deterioration in its electrical performance.
Tough, processable simultaneous semi-interpenetrating polyimides
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1994-01-01
A high temperature semi-interpenetrating polymer network (semi-IPN) was developed which had significantly improved processability, damage tolerance, and mechanical performance when compared to the commercial Thermid materials. This simultaneous semi-IPN was prepared by mixing a thermosetting polyimide with a thermoplastic monomer precursor solution (NR150B2) and allowing them to react upon heating. This reaction occurs at a rate which decreases the flow and broadens the processing window. Upon heating at a higher temperature, there is an increase in flow. Because of the improved flow properties, broadened processing window and enhanced toughness, high strength polymer matrix composites, adhesives and molded articles can now be prepared from the acetylene endcapped polyimides which were previously inherently brittle and difficult to process.
Design, development, fabrication and testing of high temperature Flat Conductor Cable (FCC)
NASA Technical Reports Server (NTRS)
Rigling, W. S.
1974-01-01
The results are presented of a development program for a flat, 25-conductor signal cable and a flat, 3-conductor power cable. Flat cables employ conductors made of strips or flattened round copper conductors insulated with polyimide films. It is shown that conductor thickness ranges from 0.003 to 0.010 inch, and begins to soften and loose mechanical strength at temperatures above 200 C.
2009-03-26
spacecraft materials including solar arrays, thermal insulation blankets , and space inflatable structures, and in components in modern aircraft. PIs are...well known for their thermal stability but are prone to long-term oxidative degadation and are notorious for having hygrothermal issues, especially...applications such as circuit-printing 61ms and semiconductor coatings in the micmle~tronics industry1, spacecraft materials2 including solar arrays, thennal
NASA Astrophysics Data System (ADS)
Shi, Huantong; Zou, Xiaobing; Wang, Xinxin
2017-07-01
This paper reports an interesting observation of great differences in the temperature of exploded wires with insulation coating of different thicknesses. Two kinds of polyimide-coated tungsten wires were used with the same conductive diameter 12.5 μm but a different thickness of coating, 0.75-2.25 μm and 2.25-4.25 μm, respectively. The specific energy reconstructed from the current and voltage signals was quite close for the tested wires. However, the exploding scenario, obtained from Mach-Zehnder interferograms, showed great differences: a neutral outer-layer was observed around the thick-coated wire, which was absent for the thin-coated wire; and the calculated electron density and local thermal equilibrium temperature were much higher for thick-coated wires. The heat-preserving neutral layer formed by the decomposition of the insulation was supposed to be the cause of this phenomenon.
Influence of insulating coating on aluminum wire explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Wu, Jian, E-mail: jxjawj@gmail.com; State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024
2014-10-15
Single wire explosions are widely used in understanding the early stages of z-pinch experiments. This paper presents a serial of experiments conducted on the pulse power generator with ∼1 kA peak current and ∼10 ns rising time in Xi'an Jiao Tong University. Polyimide coated aluminum wires and uncoated ones were tested under three different voltages to analyze the effect of insulating coating. Experimental results showed that insulating coating can increase the energy deposition 10%∼30% in aluminum wires by delaying the voltage collapse and raising the maximum load resistance. The substantial energy deposition resulted in about 20% faster expansion rates for coated wires.more » Experimental evidence that plasma channel shunts the current from the wire core was observed by streak camera and schlieren graphs. This paper also briefly discussed the influence of nonuniform coating on the morphology of wire expansion.« less
Thermo-elastic nondestructive evaluation of fatigue damage in PMR-15 resin
NASA Astrophysics Data System (ADS)
Welter, J. T.; Sathish, S.; Tandon, G. P.; Schehl, N.; Cherry, M.; Nalladega, V.; Lindgren, E. A.; Hall, R.
2012-05-01
Thermoset polyimide resins are used as the polymer matrix in high temperature composites for aerospace applications such as engine shrouds. At these locations the components have to withstand high temperatures and significant vibration. A number of studies have investigated the effects of thermal exposure on mechanical properties of polyimide resins, and the effects of fatigue on thermoplastics have been discussed at length. However, the effects of fatigue on thermosets, in particular polyimides, have largely been overlooked. In this paper we present studies of nondestructive evaluation of fatigue damage in a thermoset polyimide resin, PMR-15, performed by measuring the changes in the evolution of heat in the samples during cyclic loading. The temperature changes are measured using a high sensitivity IR camera as a function of number of fatigue cycles. Interrupted fatigue tests were performed on four samples. The temperature rise during an increment of fatigue cycling shows two linear regions each with a different slope (region 1 and region 2). Region 1 remains constant for every increment of fatigue, while region 2 increases. The onset of region 2 occurs at the same increase in temperature due to hysteretic heating for all samples. Experimental observations are explained using a phenomenological two phase model based on crosslinking density variations in observed in other thermoset resins at microscopic scales. The results of these experiments are discussed in reference to utilizing this technique for detection and evaluation of fatigue in PMR-15 resin and composites.
Reliability Analysis of Surface Mount Technology (SMT)
1993-03-01
INSULATING PROTECTIVE COAT RESISTIVE FILM CCYLINDRICALCCERAMIC CORE 15057-3 Figure 1.3.3.1-2. Metal Electrode Face Bonding (MELF) Resistor 1.3.3.2...control. The dielectric materials are typically G-10 or polyimide. Exotic applications such as porcelain on a core have been found. The core material must...invar cores that provide both a heatsink conduction path and mechanical restraint that forces the composite P&IS CTE to more closely match the SMD CTE
77 FR 34876 - Airworthiness Directives; The Boeing Company
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-12
... (a flammable fluid leakage zone) or heat damage to the APU power feeder cable, insulation blankets... heat damage to the APU power feeder cable, insulation blankets, or pressure bulkhead. Relevant Service... feeder cable and heat damage of the insulation blanket adjacent to the clamp, a detailed inspection for...
77 FR 4646 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-31
...), damage due to sharp bends and kinking or deterioration, insulation cracking, evidence of heat damage to the insulation, and chafing. The unsafe condition is the loss of ice protection systems for the angle... heat damage to the insulation, and chafing) and do all applicable repairs, in accordance with the...
Technology for Transportation Safety
NASA Technical Reports Server (NTRS)
1981-01-01
Boston Insulated Wire & Cable developed a new polyimide foam material, commercially known as Solimide, which resists ignition. It chars and decomposes when exposed to open flames. Used in the space shuttle, the material does not "outgas" until it begins to char making it safer than current materials with respect to toxic fumes. The polyimide can be made in two forms: a resilient foam and a rigid foam. Used in commercial transport interiors for such soft components as seat cushions to door, wall, floor, and ceiling panels. Material's flame resistance could lengthen from two minutes to five minutes, the time needed for passenger evacuation in a ground emergency. Could help reduce airline fuel consumption, since the foam is 50% lighter than current materials. Low-smoke cable assemblies used in rapid transit systems consists of an advanced wire and cable jacketing material with superior flame resistance and smoke retardation characteristics. Being supplied to mass transit systems in the U.S. and abroad.
Transmission loss characteristics of aircraft sidewall systems to control cabin interior noise
NASA Astrophysics Data System (ADS)
Yesil, Oktay; Serati, Paul M.; Hofbeck, Eric V.; Glover, Billy M.
We have explored the possibility of using new, light weight, and acoustically effective materials on aircraft interiors to control noise. The sidewall system elements were evaluated for increased TL in the laboratory. Measured TL for a given configuration, relative to a baseline, was used as an indication of the TL change to be expected for modifications. Test data were in good agreement with the predicted levels. The TL contributions due to all sidewall components were important for interior cabin noise control. Polyimide foam insulation was inferior to fiberglass in the mid-frequency range; however, foam was a better performer at high frequencies. Fiberglass/polyimide foam composite blankets, with less weight, provided noise reductions similar to fiberglass. 'Premium' fiberglass was slightly better performer than the standard fiberglass. Solid fiberglass interior trim panel provided adequate noise performance. Production-type trim attachment design could be improved to control flanking path for sound transmission.
NASA Astrophysics Data System (ADS)
Kim, Ju Hyun; Hwang, Byeong-Ung; Kim, Do-Il; Kim, Jin Soo; Seol, Young Gug; Kim, Tae Woong; Lee, Nae-Eung
2017-05-01
Organic gate dielectrics in thin film transistors (TFTs) for flexible display have advantages of high flexibility yet have the disadvantage of low dielectric constant (low- k). To supplement low- k characteristics of organic gate dielectrics, an organic/inorganic nanocomposite insulator loaded with high- k inorganic oxide nanoparticles (NPs) has been investigated but high loading of high- k NPs in polymer matrix is essential. Herein, compositing of over-coated polyimide (PI) on self-assembled (SA) layer of mixed HfO2 and ZrO2 NPs as inorganic fillers was used to make dielectric constant higher and leakage characteristics lower. A flexible TFT with lower the threshold voltage and high current on/off ratio could be fabricated by using the hybrid gate dielectric structure of the nanocomposite with SA layer of mixed NPs on ultrathin atomic-layer deposited Al2O3. [Figure not available: see fulltext.
Jung, Soon-Won; Koo, Jae Bon; Park, Chan Woo; Na, Bock Soon; Oh, Ji-Young; Lee, Sang Seok
2015-10-01
In this study, stretchable organic-inorganic hybrid thin-film transistors (TFTs) are fabricated on a polyimide (PI) stiff-island/elastomer substrate using blends of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] and poly(methyl methacrylate) (PMMA) and oxide semiconductor In-Ga-Zn-O as the gate dielectric and semiconducting layer, respectively. Carrier mobility, Ion/Ioff ratio, and subthreshold swing (SS) values of 6.1 cm2 V(-1) s(-1), 10(7), and 0.2 V/decade, respectively, were achieved. For the hybrid TFTs, the endurable maximum strain without degradation of electrical properties was approximately 49%. These results correspond to those obtained in the first study on fabrication of stretchable hybrid-type TFTs on elastomer substrate using an organic gate insulator and oxide semiconducting active channel structure, thus indicating the feasibility of a promising device for stretchable electronic systems.
46 CFR 38.05-20 - Insulation-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... tested to insure suitable cargo resistive properties. (3) The insulation shall have sufficient mechanical... mechanical damage. (c) The insulation shall be adequately protected in areas of probable mechanical damage...
46 CFR 38.05-20 - Insulation-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... tested to insure suitable cargo resistive properties. (3) The insulation shall have sufficient mechanical... mechanical damage. (c) The insulation shall be adequately protected in areas of probable mechanical damage...
NASA Technical Reports Server (NTRS)
Gille, J. P.
1972-01-01
A program is described that was conducted to develop an internal insulation system for potential application to the liquid hydrogen tanks of a reusable booster, where the tanks would be subjected to repeated high temperatures. The design of the internal insulation is based on a unique gas layer concept, in which capillary or surface tension effects are used to maintain a stable gas layer, within a cellular core structure, between the tank wall and the contained liquid hydrogen. Specific objectives were to select materials for insulation systems that would be compatible with wall temperatures of 350 F and 650 F during reentry into the earth's atmosphere, and to fabricate and test insulation systems under conditions simulating the operating environment. A materials test program was conducted to evaluate the properties of candidate materials at elevated temperatures and at the temperature of liquid hydrogen, and to determine the compatibility of the materials with a hydrogen atmosphere at the appropriate elevated temperature. The materials that were finally selected included Kapton polyimide films, silicone adhesives, fiber glass batting, and in the case of the 350 F system, Teflon film.
NASA Technical Reports Server (NTRS)
Stillwell, R. P.
1983-01-01
For spacecraft operation in the near Earth environment, solar cell arrays constitute the major source of reliable long term power. Optimization of mass and power efficiency results in a general requirement for high voltage solar arrays. The space plasma environment, though, can result in large currents being collected by exposed solar cells. The solution of a protective covering of transparent insulation is not a complete solution, inasmuch as defects in the insulation result in anomalously large currents being collected through the defects. Tests simulating the electron collection from small defects in an insulation have shown that there are two major collection modes. The first mode involves current enhancement by means of a surface phenomenon involving the surrounding insulator. In the second mode the current collection is enhanced by vaporization and ionization of the insulators materials, in addition to the surface enhancement of the first mode. A model for the electron collection is the surface enhanced collection mode was developed. The model relates the secondary electron emission yield to the electron collection. It correctly predicts the qualitative effects of hole size, sample temperature and roughening of sample surface. The theory was also shown to predict electron collection within a factor of two for the polymers teflon and polyimide.
Development of a Wireless Brain Implant: The Telemetric Electrode Array System (TEAS) Project
2001-10-25
8 array connected to an electronic system through a special polyimide flexible cable. The neuronal signals recorded by the electrode array at 1 mm...deposition prior to applying an insulation coating of glass using electron-beam deposition or a biocompatible epoxy through a dipping process. In the case...layer can be made relatively easily, by melting and cooling glass powder or curing biocompatible epoxy, it was desirable to simplify the process and
A 100 electrode intracortical array: structural variability.
Campbell, P K; Jones, K E; Normann, R A
1990-01-01
A technique has been developed for fabricating three dimensional "hair brush" electrode arrays from monocrystalline silicon blocks. Arrays consist of a square pattern of 100 penetrating electrodes, with 400 microns interelectrode spacing. Each electrode is 1.5mm in length and tapers from about 100 microns at its base to a sharp point at the tip. The tips of each electrode are coated with platinum and the entire structure, with the exception of the tips, is insulated with polyimide. Electrical connection to selected electrodes is made by wire bonding polyimide insulated 25 microns diameter gold lead wires to bonding pads on the rear surface of the array. As the geometrical characteristics of the electrodes in such an aray will influence their electrical properties (such as impedance, capacitance, spreading resistance in an electrolyte, etc.) it is desirable that such an array have minimal variability in geometry from electrode to electrode. A study was performed to determine the geometrical variability resulting from our micromachining techniques. Measurements of the diameter of each of the 100 electrodes were made at various planes above the silicon substrate of the array. For the array that was measured, the standard deviation of the diameters was approximately 9% of the mean diameter near the tip, 8% near the middle, and 6% near the base. We describe fabrication techniques which should further reduce these variabilities.
The surface properties of fluorinated polyimides exposed to VUV and atomic oxygen
NASA Technical Reports Server (NTRS)
Forsythe, John S.; George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.
1995-01-01
The effect of atomic oxygen flux and VUV radiation alone and in combination on the surface of fluorinated polyimide films was studied using XPS spectroscopy. Exposure of fluorinated polyimides to VUV radiation alone caused no observable damage to the polymer surface, while an atomic oxygen flux resulted in substantial oxidation of the surface. On the other hand, exposure to VUV radiation and atomic oxygen in combination caused extensive oxidation of the polymer surface after only 2 minutes of exposure. The amount of oxidized carbon on the polymer surface indicated that there is aromatic ring opening oxidation. The changes in the O1s/C1s, N1s/C1s, and F1s/C1s ratios suggested that an ablative degradation process is highly favorable. A synergistic effect of VUV radiation in the presence of atomic oxygen is clearly evidenced from the XPS study. The atomic oxygen could be considered as the main factor in the degradation process of fluorinated polyimide films exposed to a low earth orbit environment.
Peng, Qingyu; Qin, Yuyang; Zhao, Xu; Sun, Xianxian; Chen, Qiang; Xu, Fan; Lin, Zaishan; Yuan, Ye; Li, Ying; Li, Jianjun; Yin, Weilong; Gao, Chao; Zhang, Fan; He, Xiaodong; Li, Yibin
2017-12-20
Lightweight, high-performance, thermally insulating, and antifrosting porous materials are in increasing demand to improve energy efficiency in many fields, such as aerospace and wearable devices. However, traditional thermally insulating materials (porous ceramics, polymer-based sponges) could not simultaneously meet these demands. Here, we propose a hierarchical assembly strategy for producing nanocomposite foams with lightweight, mechanically flexible, superinsulating, and antifrosting properties. The nanocomposite foams consist of a highly anisotropic reduced graphene oxide/polyimide (abbreviated as rGO/PI) network and hollow graphene oxide microspheres. The hierarchical nanocomposite foams are ultralight (density of 9.2 mg·cm -3 ) and exhibit ultralow thermal conductivity of 9 mW·m -1 ·K -1 , which is about a third that of traditional polymer-based insulating materials. Meanwhile, the nanocomposite foams show excellent icephobic performance. Our results show that hierarchical nanocomposite foams have promising applications in aerospace, wearable devices, refrigerators, and liquid nitrogen/oxygen transportation.
Characteristics of the electrical explosion of fine metallic wires in vacuum
NASA Astrophysics Data System (ADS)
Wang, Kun; Shi, Zongqian; Shi, Yuanjie; Zhao, Zhigang
2017-09-01
The experimental investigations on the electrical explosion of aluminum, silver, tungsten and platinum wires are carried out. The dependence of the parameters related to the specific energy deposition on the primary material properties is investigated. The polyimide coatings are applied to enhance the energy deposition for the exploding wires with percent of vaporized energy less than unit. The characteristics of the exploding wires of different materials with and without insulating coatings are studied. The effect of wire length on the percent of vaporization energy for exploding coated wires is presented. A laser probe is employed to construct the shadowgraphy, schlieren and interferometry diagnostics. The optical diagnostics demonstrate the morphology of the exploding products and structure of the energy deposition. The influence of insulating coatings on different wire materials is analyzed. The expansion trajectories of the exploding wires without and with insulating coatings are estimated from the shadowgram. More specific energy is deposited into the coated wires of shorter wire length, leading to faster expanding velocity of the high-density products.
Kavetskiy, A; Yakubova, G; Lin, Q; Chan, D; Yousaf, S M; Bower, K; Robertson, J D; Garnov, A; Meier, D
2009-06-01
Beta particle surface fluxes for tritium, Ni-63, Pm-147, and Sr-90 sources were calculated in this work. High current density was experimentally achieved from Pm-147 oxide in silica-titana glass. A 96 GBq (2.6 Ci) Pm-147 4pi-source with flux efficiency greater than 50% was used for constructing a direct charge capacitor with a polyimide coated collector and vacuum as electrical insulation. The capacitor connected to high resistance (TOmega) loads produced up to 35 kV. Overall conversion efficiency was over 10% (on optimal load).
1988-03-01
Polyimides as Planarizing and Insulative Coatings 2-21 III. Experimental Procedure, Equipment, and Materials 3-1 Wet Orientation Dependent Etching Study 3...1 Die Bond Adhesives Study .3-7 Fabrication of Samples for Electrical Testing 3-21 Evaluation of the Final Samples 3-45 IV. Experimental Results and...Discussion .. 4-1 We :ientation Dependent Etching Study Results 4-1 Die Attach Adhesives Study Results 4-21 Fabrication of Samples for Electrical
NASA Technical Reports Server (NTRS)
Kumose, M.; Gentz, M.; Rupnowski, P.; Armentrout, D.; Kumosa, L.; Shin, E.; Sutter, J. K.
2003-01-01
A major limitation of woven fiber/polymer matrix composite systems is the inability of these materials to resist intralaminar and interlaminar damage initiation and propagation under shear-dominated biaxial loading conditions. There are numerous shear test methods for woven fabric composites, each with its own advantages and disadvantages. Two techniques, which show much potential, are the Iosipescu shear and +/- 45 deg tensile tests. In this paper, the application of these two tests for the room and high temperature failure analyses of woven graphite/polyimide composites is briefly evaluated. In particular, visco-elastic micro, meso, and macro-stress distributions in a woven eight harness satin (8HS) T650/PMR-15 composite subjected to these two tests are presented and their effect on the failure process of the composite is evaluated. Subsequently, the application of the Iosipescu tests to the failure analysis of woven composites with medium (T650) and high (M40J and M60J) modulus graphite fibers and PMR-15 and PMR-II-50 polyimide resins is discussed. The composites were tested as-supplied and after thermal conditioning. The effect of temperature and thermal conditioning on the initiation of intralaminar damage and the shear strength of the composites was established.
NASA Technical Reports Server (NTRS)
Kumosa, M.; Armentrout, D.; Rupnowski, P.; Kumosa, L.; Shin, E.; Sutter, J. K.
2003-01-01
The application of the Iosipescu shear test for the room and high temperature failure analyses of the woven graphite/polyimide composites with the medium (T-650) and igh (M40J and M60J) modulus graphite fibers is discussed. The M40J/PMR-II-50 and M60J/PMR-II-50 composites were tested as supplied and after thermal conditioning. The effect of temperature and conditioning on the initiation of intralaminar damage and the shear strength of the composites was established.
Repair techniques for celion/LARC-160 graphite/polyimide composite structures
NASA Technical Reports Server (NTRS)
Jones, J. S.; Graves, S. R.
1984-01-01
The large stiffness-to-weight and strength-to-weight ratios of graphite composite in combination with the 600 F structural capability of the polyimide matrix can reduce the total structure/TPS weight of reusable space vehicles by 20-30 percent. It is inevitable that with planned usage of GR/PI structural components, damage will occur either in the form of intrinsic flaw growth or mechanical damage. Research and development programs were initiated to develop repair processes and techniques specific to Celion/LARC-160 GR/PI structure with emphasis on highly loaded and lightly loaded compression critical structures for factory type repair. Repair processes include cocure and secondary bonding techniques applied under vacuum plus positive autoclave pressure. Viable repair designs and processes are discussed for flat laminates, honeycomb sandwich panels, and hat-stiffened skin-stringer panels. The repair methodology was verified through structural element compression tests at room temperature and 315 C (600 F).
Intracardiac ultrasound scanner using a micromachine (MEMS) actuator.
Zara, J M; Bobbio, S M; Goodwin-Johansson, S; Smith, S W
2000-01-01
Catheter-based intracardiac ultrasound offers the potential for improved guidance of interventional cardiac procedures. The objective of this research is the development of catheter-based mechanical sector scanners incorporating high frequency ultrasound transducers operating at frequencies up to 20 MHz. The authors' current transducer assembly consists of a single 1.75 mm by 1.75 mm, 20 MHz, PZT element mounted on a 2 mm by 2 mm square, 75 mum thick polyimide table that pivots on 3-mum thick gold plated polyimide hinges. The hinges also serve as the electrical connections to the transducer. This table-mounted transducer is tilted using a miniature linear actuator to produce a sector scan. This linear actuator is an integrated force array (IFA), which is an example of a micromachine, i.e., a microelectromechanical system (MEMS). The IFA is a thin (2.2 mum) polyimide membrane, which consists of a network of hundreds of thousands of micron scale deformable capacitors made from pairs of metallized polyimide plates. IFAs contract with an applied voltage of 30-120 V and have been shown to produce strains as large as 20% and forces of up to 8 dynes. The prototype transducer and actuator assembly was fabricated and interfaced with a GagePCI analog to digital conversion board digitizing 12 bit samples at a rate of 100 MSamples/second housed in a personal computer to create a single channel ultrasound scanner. The deflection of the table transducer in a low viscosity insulating fluid (HFE 7100, 3M) is up to +/-10 degrees at scan rates of 10-60 Hz. Software has been developed to produce real-time sector scans on the PC monitor.
Evaluation of Wiring Constructions for Space Applications
NASA Technical Reports Server (NTRS)
Hammoud, Ahmad N.; Stavnes, Mark W.; Dickman, John E.; Burkhardt, Linda A.; Woodford, Lynn M.; Ide, James R.; Muegge, ED
1994-01-01
A NASA Office of Safety and Mission Assurance (OS&MA) program to develop lightweight, reliable, and safe wiring insulations for aerospace applications is being performed by the NASA Lewis Research Center (LeRC). As part of this effort, a new wiring construction utilizing high strength PTFE (poly tetrafluoroethylene) as the insulation has been tested and compared with the existing military standard polyimide-based MIL-W-81381 wire construction. Electrical properties which were investigated included ac corona inception and extinction voltages (sea level and 60,000 feet), time/current to smoke, and wire fusing time. The two constructions were also characterized in terms of their mechanical properties of flexural strength, abrasion resistance (23 C and 150 C), and dynamic cut-through (23 C and 200 C). The results obtained in this testing effort are presented and discussed in this paper.
Testing and numerical modeling of hypervelocity impact damaged Space Station multilayer insulation
NASA Technical Reports Server (NTRS)
Rule, William K.
1992-01-01
Results are presented of experiments measuring the degradation of the insulating capabilities of the multilayer insulation (MLI) of the Space Station Freedom, when subjected to hypervelocity impact damage. A simple numerical model was developed for use in an engineering design environment for quick assessment of thermal effect of the impact. The model was validated using results from thermal vacuum tests on MLI with simulated damage. The numerical model results agreed with experimental data.
NASA Technical Reports Server (NTRS)
Thesken, J. C.; Melis, M.; Shin, E.; Sutter, J.; Burke, Chris
2004-01-01
Polyimide composites are being evaluated for use in lightweight support structures designed to preserve the ideal flow geometry within thin shell combustion chambers of future space launch propulsion systems. Principles of lightweight design and innovative manufacturing techniques have yielded a sandwich structure with an outer face sheet of carbon fiber polyimide matrix composite. While the continuous carbon fiber enables laminated skin of high specific stiffness; the polyimide matrix materials ensure that the rigidity and durability is maintained at operation temperatures of 316 C. Significant weight savings over all metal support structures are expected. The protypical structure is the result of ongoing collaboration, between Boeing and NASA-GRC seeking to introduce polyimide composites to the harsh environmental and loads familiar to space launch propulsion systems. Design trade analyses were carried out using relevant closed form solutions, approximations for sandwich beams/panels and finite element analysis. Analyses confirm the significant thermal stresses exist when combining materials whose coefficients of thermal expansion (CTEs) differ by a factor of about 10 for materials such as a polymer composite and metallic structures. The ramifications on design and manufacturing alternatives are reviewed and discussed. Due to stringent durability and safety requirements, serious consideration is being given to the synergistic effects of temperature and mechanical loads. The candidate structure operates at 316 C, about 80% of the glass transition temperature T(sub g). Earlier thermomechanical fatigue (TMF) investigations of chopped fiber polyimide composites made this near to T(sub g), showed that cyclic temperature and stress promoted excessive creep damage and strain accumulation. Here it is important to verify that such response is limited in continuous fiber laminates.
Applications of Polymer Nanocomposites
NASA Astrophysics Data System (ADS)
Meth, Jeffrey
Polymer nanocomposites have been developed for application in several areas. This talk will provide three vignettes of applications that have been explored. Nanoporous ceramics are free standing ceramic objects that can be used for filtration. The pore size distribution is in the proper target range for filtering viruses from medicines in solution. Filled polyimides are useful for improving the ultimate electrical properties of insulating films during corona exposure. The advantages and pitfalls of this approach will be detailed. Exfoliated laponite dispersed into ethylene copolymers reduces creep while maintaining transparency, which is applicable to packaging.
... cause inflammation in the brain, including the cerebellum multiple sclerosis, in which damage to the insulating membrane (myelin) ... cause inflammation in the brain, including the cerebellum multiple sclerosis, in which damage to the insulating membrane (myelin) ...
NASA Astrophysics Data System (ADS)
Hoffmann, Ryan; Dennison, J. R.; Abbott, Jonathan
2006-03-01
When incident energetic electrons interact with a material, they excite electrons within the material to escape energies. The electron emission is quantified as the ratio of emitted electrons to incident particle flux, termed electron yield. Measuring the electron yield of insulators is difficult due to dynamic surface charge accumulation which directly affects landing energies and the potential barrier that emitted electrons must overcome. Our recent measurements of highly insulating materials have demonstrated significant changes in total yield curves and yield decay curves for very small electron doses equivalent to a trapped charge density of <10^10 electrons /cm^3. The Chung-Everhart theory provides a basic model for the behavior of the electron emission spectra which we relate to yield decay curves as charge is allowed to accumulate. Yield measurements as a function of dose for polyimide (Kapton^TM) and microcrystalline SiO2 will be presented. We use our data and model to address the question of whether there is a minimal dose threshold at which the accumulated charge no longer affects the yield.
In-Situ Wire Damage Detection System
NASA Technical Reports Server (NTRS)
Williams, Martha; Roberson, Luke; Tate, Lanetra; Smith, Trent; Gibson, Tracy; Medelius, Pedro; Jolley, Scott
2012-01-01
An In-Situ Wire Damage Detection System (ISWDDS) has been developed that is capable of detecting damage to a wire insulation, or a wire conductor, or to both. The system will allow for realtime, continuous monitoring of wiring health/integrity and reduce the number of false negatives and false positives while being smaller, lighter in weight, and more robust than current systems. The technology allows for improved safety and significant reduction in maintenance hours for aircraft, space vehicles, satellites, and other critical high-performance wiring systems for industries such as energy production and mining. The integrated ISWDDS is comprised of two main components: (1) a wire with an innermost core conductor, an inner insulation film, a conductive layer or inherently conductive polymer (ICP) covering the inner insulation film, an outermost insulation jacket; and (2) smart connectors and electronics capable of producing and detecting electronic signals, and a central processing unit (CPU) for data collection and analysis. The wire is constructed by applying the inner insulation films to the conductor, followed by the outer insulation jacket. The conductive layer or ICP is on the outer surface of the inner insulation film. One or more wires are connected to the CPU using the smart connectors, and up to 64 wires can be monitored in real-time. The ISWDDS uses time domain reflectometry for damage detection. A fast-risetime pulse is injected into either the core conductor or conductive layer and referenced against the other conductor, producing transmission line behavior. If either conductor is damaged, then the signal is reflected. By knowing the speed of propagation of the pulse, and the time it takes to reflect, one can calculate the distance to and location of the damage.
Radiation Resistant Electrical Insulation Materials for Nuclear Reactors: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duckworth, Robert C.; Aytug, Tolga; Paranthaman, M. Parans
The instrument and control cables in future nuclear reactors will be exposed to temperatures, dose rates, and accumulated doses exceeding those originally anticipated for the 40-year operational life of the nuclear power plant fleet. The use of nanocomposite dielectrics as insulating material for such cables has been considered a route to performance improvement. In this project, nanoparticles were developed and successfully included in three separate material systems [cross-linked polyvinyl alcohol (PVA/XLPVA), cross-linked polyethylene (PE/XLPE), and polyimide (PI)], and the chemical, electrical, and mechanical performance of each was analyzed as a function of environmental exposure and composition. Improvements were found inmore » each material system; however, refinement of each processing pathway is needed, and the consequences of these refinements in the context of thermal, radiation, and moisture exposures should be evaluated before transferring knowledge to industry.« less
Repairing Damaged Power-Cable Insulation
NASA Technical Reports Server (NTRS)
Baker, G. E.
1984-01-01
Simple method saves time, money, and material. In new method cable remains in place while new insulation is applied to damaged portion. Method results in new terminations with safety factor equal to that of any portion of cable.
Quantification Of Fire Signatures For Practical Spacecraft Materials
NASA Technical Reports Server (NTRS)
VanderWal, Randy L.; Ruff, Gary A.; Tomasek, Aaron J.
2003-01-01
The overall objective of this project is to measure the fire signatures of typical spacecraft materials in 1-g and determine how these signatures may be altered in a microgravity environment. During this project, we will also develop a test technique to obtain representative low-gravity signatures. The specific tasks that will be accomplished to achieve these objectives are to: (1) measure the time history of various fire signatures of typical spacecraft materials in 1-g at varying heating rates, temperatures, convective velocities, and oxygen concentrations, (2) conduct tests in the Zero-Gravity Facility at NASA John H. Glenn Research Center to investigate the manner that a microgravity environment alters the fire signature,(3) compare 0-g and 1-g time histories and determine if 0-g data exhibits the same dependence on the test parameters as experienced in 1-g (4) develop a 1-g test technique by which 0-g fire signatures can be measured. The proposed study seeks to investigate the differences in the identities and relative concentrations of the volatiles produced by pyrolyzing and/or smoldering materials between normal gravity and microgravity environments. Test materials will be representative of typical spacecraft materials and, where possible, will be tested in appropriate geometries. Wire insulation materials of Teflon, polyimide, silicone, and PVC will be evaluated using either cylindrical samples or actual wire insulation. Other materials such as polyurethane, polyimide, melamine, and silicone-based foams will be tested using cylindrical samples, in addition to fabric materials, such as Nomex. Electrical components, such as resistors, capacitors, circuit board will also be tested.
NASA Astrophysics Data System (ADS)
Strychalski, M.; Chorowski, M.; Polinski, J.
2014-05-01
Future accelerator magnets will be exposed to heat loads that exceed even by an order of magnitude presently observed heat fluxes transferred to superconducting magnet coils. To avoid the resistive transition of the superconducting cables, the efficiency of heat transfer between the magnet structure and the helium must be significantly increased. This can be achieved through the use of novel concepts of the cable’s electrical insulation wrapping, characterized by an enhanced permeability to helium while retaining sufficient electrical resistivity. This paper presents measurement results of the heat transfer through Rutherford NbTi cable samples immersed in a He II bath and subjected to the pressure loads simulating the counteracting of the Lorentz forces observed in powered magnets. The Rutherford cable samples that were tested used different electrical insulation wrapping schemes, including the scheme that is presently used and the proposed scheme for future LHC magnets. A new porous polyimide cable insulation with enhanced helium permeability was proposed in order to improve the evacuation of heat form the NbTi coil to He II bath. These tests were performed in a dedicated Claudet-type cryostat in pressurized He II at 1.9 K and 1 bar.
Optical and Chemical Characterization of Polyimide in a GEO-like Environment
NASA Astrophysics Data System (ADS)
Engelhart, D.; Plis, E.; Ferguson, D.; Cooper, R.; Hoffmann, R.
2016-09-01
Ground- and space-based optical observations of space objects rely on knowledge about how spacecraft materials interact with light. However, this is not a static property. Each material's optical fingerprint changes continuously throughout a spacecraft's orbital lifetime. These changes in optical signature occur because energetic particles break bonds within a material and new bonds subsequently form. The newly formed bonds can be identical to the original bonds or different, resulting in a new material. The chemical bonds comprising the material dictate which wavelengths of light are absorbed. Understanding the processes of material damage and recovery individually will allow development of a predictive model for materials' optical properties as a function of exposure to the space environment. In order to characterize the properties, we have exposed samples of polyimide to high energy electrons comparable to those found in a geostationary earth orbit in order to simulate damage on orbit. The resultant changes in the material's optical fingerprint were then characterized in the wavelength range of 0.2 to 25 microns. The chemical modifications to the material that result in these optical changes have also been identified. After initial electron-induced damage, the rate and mechanism of material recovery have been monitored and found to be extremely sensitive to the exposure of the damaged material to air. The implications of that fact and experimental progress toward complete in vacuo characterization will be discussed.
Sankar, Viswanath; Sanchez, Justin C; McCumiskey, Edward; Brown, Nagid; Taylor, Curtis R; Ehlert, Gregory J; Sodano, Henry A; Nishida, Toshikazu
2013-01-01
While the signal quality of recording neural electrodes is observed to degrade over time, the degradation mechanisms are complex and less easily observable. Recording microelectrodes failures are attributed to different biological factors such as tissue encapsulation, immune response, and disruption of blood-brain barrier (BBB) and non-biological factors such as strain due to micromotion, insulation delamination, corrosion, and surface roughness on the recording site (1-4). Strain due to brain micromotion is considered to be one of the important abiotic factors contributing to the failure of the neural implants. To reduce the forces exerted by the electrode on the brain, a high compliance 2D serpentine shaped electrode cable was designed, simulated, and measured using polyimide as the substrate material. Serpentine electrode cables were fabricated using MEMS microfabrication techniques, and the prototypes were subjected to load tests to experimentally measure the compliance. The compliance of the serpentine cable was numerically modeled and quantitatively measured to be up to 10 times higher than the compliance of a straight cable of same dimensions and material.
Loeblein, Manuela; Bolker, Asaf; Tsang, Siu Hon; Atar, Nurit; Uzan-Saguy, Cecile; Verker, Ronen; Gouzman, Irina; Grossman, Eitan; Teo, Edwin Hang Tong
2015-12-22
Polyimides (PIs) have been praised for their high thermal stability, high modulus of elasticity and tensile strength, ease of fabrication, and moldability. They are currently the standard choice for both substrates for flexible electronics and space shielding, as they render high temperature and UV stability and toughness. However, their poor thermal conductivity and completely electrically insulating characteristics have caused other limitations, such as thermal management challenges for flexible high-power electronics and spacecraft electrostatic charging. In order to target these issues, a hybrid of PI with 3D-graphene (3D-C), 3D-C/PI, is developed here. This composite renders extraordinary enhancements of thermal conductivity (one order of magnitude) and electrical conductivity (10 orders of magnitude). It withstands and keeps a stable performance throughout various bending and thermal cycles, as well as the oxidative and aggressive environment of ground-based, simulated space environments. This makes this new hybrid film a suitable material for flexible space applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sankar, Viswanath; Sanchez, Justin C.; McCumiskey, Edward; Brown, Nagid; Taylor, Curtis R.; Ehlert, Gregory J.; Sodano, Henry A.; Nishida, Toshikazu
2013-01-01
While the signal quality of recording neural electrodes is observed to degrade over time, the degradation mechanisms are complex and less easily observable. Recording microelectrodes failures are attributed to different biological factors such as tissue encapsulation, immune response, and disruption of blood-brain barrier (BBB) and non-biological factors such as strain due to micromotion, insulation delamination, corrosion, and surface roughness on the recording site (1–4). Strain due to brain micromotion is considered to be one of the important abiotic factors contributing to the failure of the neural implants. To reduce the forces exerted by the electrode on the brain, a high compliance 2D serpentine shaped electrode cable was designed, simulated, and measured using polyimide as the substrate material. Serpentine electrode cables were fabricated using MEMS microfabrication techniques, and the prototypes were subjected to load tests to experimentally measure the compliance. The compliance of the serpentine cable was numerically modeled and quantitatively measured to be up to 10 times higher than the compliance of a straight cable of same dimensions and material. PMID:24062716
2013-06-30
Rev. E) 2002. 7. RM-3002 Bismaleimide (BMI) Prepreg , Product Information, Renegade Materials Corporation, Revision Date: 16-May-2012 KOA 16... prepregs /polyimide- prepregs . Renegade Materials Corporation Website, Accessed June 20, 2013. 9. Shen, C. and G.S. Springer, “Moisture Absorption and
NASA Technical Reports Server (NTRS)
Gagliani, J.; Sorathia, U. A. K.; Wilcoxson, A. L.
1977-01-01
Materials were developed to improve aircraft interior materials by modifying existing polymer structures, refining the process parameters, and by the use of mechanical configurations designed to overcome specific deficiencies. The optimization, selection, and fabrication of five fire resistant, low smoke emitting open cell foams are described for five different types of aircraft cabin structures. These include: resilient foams, laminate floor and wall paneling, thermal/acoustical insulation, molded shapes, and coated fabrics. All five have been produced from essentially the same polyimide precursor and have resulted in significant benefits from transfer of technology between the various tasks.
Dry and wet arc track propagation resistance testing
NASA Technical Reports Server (NTRS)
Beach, Rex
1995-01-01
The wet arc-propagation resistance test for wire insulation provides an assessment of the ability of an insulation to prevent damage in an electrical environment. Results of an arc-propagation test may vary slightly due to the method of arc initiation; therefore a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc by dripping salt water over pre-damaged wires which creates a conductive path between the wires. The power supply, test current, circuit resistances, and other variables are optimized for testing 20 guage wires. The use of other wire sizes may require modifications to the test variables. The dry arc-propagation resistance test for wire insulation also provides an assessment of the ability of an insulation to prevent damage in an electrical arc environment. In service, electrical arcs may originate form a variety of factors including insulation deterioration, faulty installation, and chafing. Here too, a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc with a vibrating blade. The test also evaluates the ability of the insulation to prevent further arc-propagation when the electrical arc is re-energized.
Buffer strips in composites at elevated temperature
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1983-01-01
The composite material 'buffer strip' concept is presently investigated at elevated temperatures for the case of graphite/polyimide buffer strip panels using a (45/0/45/90)2S layup, where the buffer strip material was 0-deg S-glass/polyimide. Each panel was loaded in tension until it failed, and radiographs and crack opening displacements were recorded during the tests to determine fracture onset, fracture arrest, and the extent of damage in the buffer strip after crack arrest. At 177 + or - 3 C, the buffer strips increased the panel strength by at least 40 percent in comparison with panels without buffer strips. Compared to similar panels tested at room temperature, those tested at elevated temperature had lower residual strengths, but higher failure strains.
NASA Astrophysics Data System (ADS)
Idesaki, A.; Koizumi, N.; Sugimoto, M.; Morishita, N.; Ohshima, T.; Okuno, K.
2008-03-01
A laminated material composed of glass cloth/polyimide film/epoxy resin will be used as an insulating material for superconducting coil of International Thermonuclear Experimental Reactor (ITER). In order to keep safe and stable operation of the superconducting coil system, it is indispensable to evaluate radiation resistance of the material, because the material is exposed to severe environments such as high radiation field and low temperature of 4 K. Especially, it is important to estimate the amount of gases evolved from the insulating material by irradiation, because the gases affect on the purifying system of liquid helium in the superconducting coil system. In this work, the gas evolution from the laminated material by gamma ray irradiation at liquid nitrogen temperature (77 K) was investigated, and the difference of gas evolution behavior due to difference of composition in the epoxy resin was discussed. It was found that the main gases evolved from the laminated material by the irradiation were hydrogen, carbon monoxide and carbon dioxide, and that the amount of gases evolved from the epoxy resin containing cyanate ester was about 60% less than that from the epoxy resin containing tetraglycidyl-diaminophenylmethane (TGDDM).
Interaction of high voltage surfaces with the space plasma
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.
1980-01-01
High voltage solar arrays provide spacecraft power while optimizing mass and power efficiency. Operating such arrays in the space plasma environment can result in anomalously large currents being collected through insulation defects. Two thicknesses of the insulating material were tested, with no effect found due to insulator thickness. In these tests the polyimide thickness was always much less than the pinhole diameter. The pinhole area was varied over an area range of more than 30:1. It was found that the current collected was independent of the pinhole area for hole diameters from 0.35 to 2.0 mm. Two types of adhesives were tried in two different configurations. The adhesives were chosen for their extreme difference in vacuum qualifications. Neither adhesive types nor configuration made a significant difference in current collection. The temperature of the insulating material was also varied. It was found that current collection decreased with increasing temperature. Tests were conducted to see if pinhole current collection decreased with time, as was indicated by the effects of several short tests. Current was collected for over four hours while the conductor potential was held constant at 1000 volts. A smooth decrease with time was not observed, but rather a roughly constant current collection with brief surges to high values. Tests were also conducted with the simulated solar cell biased negative. The current was found to be proportional to pinhole area.
77 FR 36206 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-18
... experienced smoke and heat damage from insulation blankets that smoldered after molten debris from a P200 ELMS power panel fell on the insulation blankets. When a contactor in the ELMS panel fails and overheats, the... ELMS contactor breakdown, consequent smoke and heat damage to airplane structure and equipment during...
NASA Technical Reports Server (NTRS)
Rule, W. K.; Hayashida, K. B.
1992-01-01
The development of a computer program to predict the degradation of the insulating capabilities of the multilayer insulation (MLI) blanket of Space Station Freedom due to a hypervelocity impact with a space debris particle is described. A finite difference scheme is used for the calculations. The computer program was written in Microsoft BASIC. Also described is a test program that was undertaken to validate the numerical model. Twelve MLI specimens were impacted at hypervelocities with simulated debris particles using a light gas gun at Marshall Space Flight Center. The impact-damaged MLI specimens were then tested for insulating capability in the space environment of the Sunspot thermal vacuum chamber at MSFC. Two undamaged MLI specimens were also tested for comparison with the test results of the damaged specimens. The numerical model was found to adequately predict behavior of the MLI specimens in the Sunspot chamber. A parameter, called diameter ratio, was developed to relate the nominal MLI impact damage to the apparent (for thermal analysis purposes) impact damage based on the hypervelocity impact conditions of a specimen.
Organic Field Effect Transistor Using Amorphous Fluoropolymer as Gate Insulating Film
NASA Astrophysics Data System (ADS)
Kitajima, Yosuke; Kojima, Kenzo; Mizutani, Teruyoshi; Ochiai, Shizuyasu
Organic field effect transistors are fabricated by the active layer of Regioregular poly (3-hexylthiophene-2,5-diy)(P3HT) thin film. CYTOP thin film made from Amorphous Fluoropolymer and fabricated by spin-coating is adopted to a gate dielectric layer on Polyethylenenaphthalate (PEN) thin film that is the substrate of an organic field effect transistor. The surface morphology and molecular orientation of P3HT thin films is observed by atomic force microscope (AFM) and X-Ray diffractometer (XRD). Grains are observed on the CYTOP thin film via an AFM image and the P3HT molecule is oriented perpendicularly on the CYTOP thin film. Based on the performance of the organic field effect transistor, the carrier mobility is 0.092 cm2/Vs, the ON/OFF ratio is 7, and the threshold voltage is -12 V. The ON/OFF ratio is relatively low and to improve On/Off ratio, the CYTOP/Polyimide double gate insulating layer is adopted to OFET.
NASA Astrophysics Data System (ADS)
Zhou, Jie; Bhaskar, Atul; Zhang, Xin
2015-11-01
This paper investigates sound transmission through double-walled cylindrical shell lined with poroelastic material in the core, excited by pressure fluctuations due to the exterior turbulent boundary layer (TBL). Biot's model is used to describe the sound wave propagating in the porous material. Three types of constructions, bonded-bonded, bonded-unbonded and unbonded-unbonded, are considered in this study. The power spectral density (PSD) of the inner shell kinetic energy is predicted for two turbulent boundary layer models, different air gap depths and three types of polyimide foams, respectively. The peaks of the inner shell kinetic energy due to shell resonance, hydrodynamic coincidence and acoustic coincidence are discussed. The results show that if the frequency band over the ring frequency is of interest, an air gap, even if very thin, should exist between the two elastic shells for better sound insulation. And if small density foam has a high flow resistance, a superior sound insulation can still be maintained.
Experimental Simulation of the Interaction of Biased Solar Arrays with the Space Plasma
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.
1981-01-01
The phenomenon of unexpectedly large leakage currents collected by small exposed areas of high voltage solar arrays operating in a plasma environment was investigated. Polyimide (Kapton) was the insulating material used in all tests. Both positive bias (electron collection) and negative bias (ion collection) tests were performed. A mode change in the electron collection mechanism was associated with a glow discharge process and was found to be related to the neutral background density. Results indicate that the glow discharge collection mode does not occur in a space environment where the background density is considerably lower than that of the vacuum facility used.
77 FR 70355 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
... leakage zone) or heat damage to the APU power feeder cable, insulation blankets, or pressure bulkhead...) of the NPRM requires repair of the APU power feeder, insulation blankets, and clamps, if no primer... bulletin, which states, ``If visual indications of heat damage are found, do steps 6.c through 6.f...
Root Cause Failure Analysis of Stator Winding Insulation failure on 6.2 MW hydropower generator
NASA Astrophysics Data System (ADS)
Adhi Nugroho, Agus; Widihastuti, Ida; Ary, As
2017-04-01
Insulation failure on generator winding insulation occurred in the Wonogiri Hydropower plant has caused stator damage since ase was short circuited to ground. The fault has made the generator stop to operate. Wonogiri Hydropower plant is one of the hydroelectric plants run by PT. Indonesia Power UBP Mrica with capacity 2 × 6.2 MW. To prevent damage to occur again on hydropower generators, an analysis is carried out using Root Cause Failure Analysis RCFA is a systematic approach to identify the root cause of the main orbasic root cause of a problem or a condition that is not wanted. There are several aspects to concerned such as: loading pattern and operations, protection systems, generator insulation resistance, vibration, the cleanliness of the air and the ambient air. Insulation damage caused by gradual inhomogeneous cooling at the surface of winding may lead in to partial discharge. In homogeneous cooling may present due to lattice hampered by dust and oil deposits. To avoid repetitive defects and unwanted condition above, it is necessary to perform major maintenance overhaul every 5000-6000 hours of operation.
Foam Insulation for Cryogenic Flowlines
NASA Technical Reports Server (NTRS)
Sonju, T. R.; Carbone, R. L.; Oves, R. E.
1985-01-01
Welded stainless-steel vacuum jackets on cryogenic ducts replaced by plastic foam-insulation jackets that weigh 12 percent less. Foam insulation has 85 percent of insulating ability of stainless-steel jacketing enclosing vacuum of 10 microns of mercury. Foam insulation easier to install than vacuum jacket. Moreover, foam less sensitive to damage and requires minimal maintenance. Resists vibration and expected to have service life of at least 10 years.
A Method to have Multi-Layer Thermal Insulation Provide Damage Detection
NASA Technical Reports Server (NTRS)
Woodward, Stanley E.; Taylor, Bryant D.; Jones, Thomas W.; Shams, Qamar A.; Lyons, Frankel; Henderson, Donald
2007-01-01
Design and testing of a multi-layer thermal insulation system that also provides debris and micrometeorite damage detection is presented. One layer of the insulation is designed as an array of passive open-circuit electrically conductive spiral trace sensors. The sensors are a new class of sensors that are electrically open-circuits that have no electrical connections thereby eliminating one cause of failure to circuits. The sensors are powered using external oscillating magnetic fields. Once electrically active, they produce their own harmonic magnetic fields. The responding field frequency changes if any sensor is damaged. When the sensors are used together in close proximity, the inductive coupling between sensors provides a means of telemetry. The spiral trace design using reflective electrically conductive material provides sufficient area coverage for the sensor array to serves as a layer of thermal insulation. The other insulation layers are designed to allow the sensor s magnetic field to permeate the insulation layers while having total reflective surface area to reduce thermal energy transfer. Results of characterizing individual sensors and the sensor array s response to punctures are presented. Results of hypervelocity impact testing using projectiles of 1-3.6 millimeter diameter having speeds ranging from 6.7-7.1 kilometers per second are also presented.
Investigating the Use of Ultrasonic Guided Waves for Aging Wire Insulation Assessment
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2002-01-01
Aging wiring has become a critical issue to DoD, NASA, FAA, and Industry. The problem is that insulation on environmentally aged wire becomes brittle and cracks. This exposes the underlying conductive wire to the potential for short circuits and fire. The difficulty is that techniques to monitor aging wire problems focus on applying electrical sensing techniques that are not very sensitive to the wire insulation. Thus, the development of methods to quantify and monitor aging wire insulation is highly warranted. Measurement of wire insulation stiffness by ultrasonic guided waves is being examined. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. Experimental measurements showed that the lowest order axisymmetric mode may be sensitive to stiffness changes in the wire insulation. To test this theory, mil-spec wire samples MIL-W-81381, MIL-W-22759/34, and MIL-W-22759/87 (typically found in aircraft) were heat-damaged in an oven, in a range of heating conditions. The samples were 12, 16, and 20 gauge and the heat-damage introduced material changes in the wire-insulation that made the originally flexible insulation brittle and darker in color. Axisymmetric mode phase velocity increased for the samples that were exposed to heat for longer duration. For example, the phase velocity in the 20-gauge MIL-W-22759/34 wire changed from a baseline value of 2790m/s to 3280m/s and 3530m/s for one-hour exposures to 3490C and 3990C, respectively. Although the heat-damage conditions are not the same as environmental aging, we believe that with further development and refinements, the ultrasonic guided waves can be used to inspect wire-insulation for detrimental environmental aging conditions.
Interaction of high voltage surfaces with the space plasma. [solar arrays
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.
1979-01-01
Tests were conducted using plasma densities of approximately 10 to the 5th power - 10 to the 6th power/cu cm. Insulating materials tested were polyimide (Dapton), mica and glass. Surface-area effects were found to be substantially reduced from those previously reported at lower plasma densities. The difference in typical plasma density was felt to be the major cause of this change, although a saturation effect may also be involved. At the 10 to the 5th power/cu cm plasma density range, surface effects on collection current appear limited to roughly 1 cm from the hole. A factor of several reduction of collected current was obtained with both surface scribing and a 2 x 2 cm conducting mesh. It appears possible that the effects of surface treatment might be more significant at lower plasma densities. Effects of repeated tests were also noted, with current collection decreasing with successive tests. Depending on the materials involved, the effect appeared due to either the smoothing of the inside of the insulator hole or the sputtering of insulator on the exposed conductor. A general conclusion was made from a variety of observations, that the generation of vapor is a major factor in the enhancement of collected current.
Organic thin film transistor with a simplified planar structure
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yu, Jungsheng; Zhong, Jian; Jiang, Yadong
2009-05-01
Organic thin film transistor (OTFT) with a simplified planar structure is described. The gate electrode and the source/drain electrodes of OTFT are processed in one planar structure. And these three electrodes are deposited on the glass substrate by DC sputtering technology using Cr/Ni target. Then the electrode layouts of different width length ratio are made by photolithography technology at the same time. Only one step of deposition and one step of photolithography is needed while conventional process takes at least two steps of deposition and two steps of photolithography. Metal is first prepared on the other side of glass substrate and electrode is formed by photolithography. Then source/drain electrode is prepared by deposition and photolithography on the side with the insulation layer. Compared to conventional process of OTFTs, the process in this work is simplified. After three electrodes prepared, the insulation layer is made by spin coating method. The organic material of polyimide is used as the insulation layer. A small molecular material of pentacene is evaporated on the insulation layer using vacuum deposition as the active layer. The process of OTFTs needs only three steps totally. A semi-auto probe stage is used to connect the three electrodes and the probe of the test instrument. A charge carrier mobility of 0.3 cm2 /V s, is obtained from OTFTs on glass substrates with and on/off current ratio of 105. The OTFTs with the planar structure using simplified process can simplify the device process and reduce the fabrication cost.
Application of Ultrasonic Guided Waves for Evaluating Aging Wire Insulation
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2005-01-01
Aging wiring has become a critical issue to the aerospace and aircraft industries due to Shuttle and aircraft incidents. The problem is that over time the insulation on wire becomes brittle and cracks. This exposes the underlying conductive wire to the potential for short circuits and fire. Popular methods of monitoring aging wire problems focuses on applying electrical sensing techniques that are sensitive to the conductor's condition, but not very sensitive to the wire insulation's condition. Measurement of wire insulation stiffness and ultrasonic properties by ultrasonic guided waves is being examined. Experimental measurements showed that the lowest order extensional mode could be sensitive to stiffness changes in the wire insulation. To test this theory conventional wire samples were heat damaged in an oven, in a range of heating conditions. The samples were 12, 16, and 20 gauge and the heat damage introduced material changes in the wire insulation that made the originally flexible insulation brittle and darker in color. Results showed that extensional mode phase velocity increased for the samples that were exposed to heat for longer duration.
NASA Astrophysics Data System (ADS)
Zhang, Guan-Jun; Zhao, Wen-Bin; Ma, Xin-Pei; Li, Guang-Xin; Ma, Kui; Zheng, Nan; Yan, Zhang
Ceramic material has been widely used as insulator in vacuum. Their high hardness and brittle property brings some difficulty in the application. A new kind of machinable ceramic was invented recently. The ceramic can be machined easily and accurately after being sintered, which provides the possibility of making the insulator with fine and complicated configuration. The paper studies its surface insulation performance and flashover phenomena under pulsed excitation in vacuum. The ceramic samples with different crystallization parameters are tested under the vacuum level of 10-4 Pa. The machinable ceramic behaves better surface insulation performance than comparative the Al2O3 and glass sample. The effect of crystallization level on the trap density and flashover current is also presented. After flashover shots many times, the surface microscopic patterns of different samples are observed to investigate the damage status, which can be explained by the thermal damage mechanism.
NASA Astrophysics Data System (ADS)
Zhuravleva, G. N.; Nagornova, I. V.; Kondratov, A. P.; Bablyuk, E. B.; Varepo, L. G.
2017-08-01
A research and modelling of weatherability and environmental durability of multilayer polymer insulation of both cable and pipelines with printed barcodes or color identification information were performed. It was proved that interlayer printing of identification codes in distribution pipelines insulation coatings provides high marking stability to light and atmospheric condensation. This allows to carry out their distant damage control. However, microbiological fouling of upper polymer layer hampers the distant damage pipelines identification. The color difference values and density changes of PE and PVC printed insolation due to weather and biological factors were defined.
NASA Tech Briefs, September 2005
NASA Technical Reports Server (NTRS)
2005-01-01
Topivs include: Diamond-Coated Carbon Nanotubes for Efficient Field Emission; Improved Anode Coatings for Direct Methanol Fuel Cells; Advanced Ablative Insulators and Methods of Making Them; PETIs as High-Temperature Resin-Transfer-Molding Materials; Stable Polyimides for Terrestrial and Space Uses; Low-Density, Aerogel-Filled Thermal-Insulation Tiles; High-Performance Polymers Having Low Melt Viscosities; Nonflammable, Hydrophobic Aerogel Composites for Insulation; Front-Side Microstrip Line Feeding a Raised Antenna Patch; Medium-Frequency Pseudonoise Georadar; Facilitating Navigation Through Large Archives; Program for Weibull Analysis of Fatigue Data; Comprehensive Micromechanics-Analysis Code - Version 4.0; Component-Based Visualization System; Software for Engineering Simulations of a Spacecraft; LabVIEW Interface for PCI-SpaceWire Interface Card; Path Following with Slip Compensation for a Mars Rover; International Space Station Electric Power System Performance Code-SPACE; Software for Automation of Real-Time Agents, Version 2; Software for Optimizing Plans Involving Interdependent Goals; Computing Gravitational Fields of Finite-Sized Bodies; Custom Sky-Image Mosaics from NASA's Information Power Grid; ANTLR Tree Grammar Generator and Extensions; Generic Kalman Filter Software; Alignment Stage for a Cryogenic Dilatometer; Rugged Iris Mechanism; Treatments To Produce Stabilized Aluminum Mirrors for Cryogenic Uses; Making AlNx Tunnel Barriers Using a Low-Energy Nitrogen-Ion Beam; Making Wide-IF SIS Mixers with Suspended Metal-Beam Leads; Sol-Gel Glass Holographic Light-Shaping Diffusers; Automated Counting of Particles To Quantify Cleanliness; Phase Correction for GPS Antenna with Nonunique Phase Center; Compact Infrasonic Windscreen; Broadband External-Cavity Diode Laser; High-Efficiency Solar Cells Using Photonic-Bandgap Materials; Generating Solid Models from Topographical Data; Computationally Lightweight Air-Traffic-Control Simulation; Spool Valve for Switching Air Flows Between Two Beds; Partial Model of Insulator/ Insulator Contact Charging; Asymmetric Electrostatic Radiation Shielding for Spacecraft; and Reusable Hybrid Propellant Modules for Outer-Space Transport.
NASA Technical Reports Server (NTRS)
Hergenrother, P. M.
1989-01-01
Polyimides belong to a class of polymers known as polyheterocyclics. Unlike most other high temperature polymers, polyimides can be prepared from a variety of inexpensive monomers by several synthetic routes. The glass transition and crystalline melt temperature, thermooxidative stability, toughness, dielectric constant, coefficient of thermal expansion, chemical stability, mechanical performance, etc. of polyimides can be controlled within certain boundaries. This versatility has permitted the development of various forms of polyimides. These include adhesives, composite matrices, coatings, films, moldings, fibers, foams and membranes. Polyimides are synthesized through both condensation (step-polymerization) and addition (chain growth polymerization) routes. The precursor materials used in addition polyimides or imide oligomers are prepared by condensation method. High molecular weight polyimide made via polycondensation or step-growth polymerization is studied. The various synthetic routes to condensation polyimides, structure/property relationships of condensation polyimides and composite properties of condensation polyimides are all studied. The focus is on the synthesis and chemical structure/property relationships of polyimides with particular emphasis on materials for composite application.
Small Layer-wound ReBCO Solenoids
NASA Astrophysics Data System (ADS)
Polyakov, A. V.; Shcherbakov, V. I.; Shevchenko, S. A.; Surin, M. I.
The development of the next generation of high field superconducting magnet systems demands studies of new technological approach for its internal sections. Several small HTS solenoids (21 mm inner diameter, 32 layers) were fabricated by layer-winding technique from SuperPower type SCS-4050 ReBCO wire insulated by polyimide wrapping. Different designs of external and internal joints also were also tested. The highest field generated by HTS coil was 2.4 T in a 10 T background field (total field was 12.4 T) at 4.2 K and achieved current density in the coil was 498 A/mm2. The results will be used in development of HTS inner sections for 25 T superconducting magnet.
High Temperature Composites: Properties, Processing and Performance
1998-05-21
of Titanium Matrix Composite: Models and Mechanisms Schroedter, Robert D. M.S. Mesoscale Damage Modeling of the Laminated Carbon Fiber- Polyimide...materials are between 800 and 1000 °C. Therefor, understanding the effects of high temperature aging on the mechanical properties is essential. Fig...will grow. Our approach was to isolate the effect of each sintering phenomena in order to understand how they related to mechanical properties
Positron Annihilation in Insulating Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asoka-Kumar, P; Sterne, PA
2002-10-18
We describe positron results from a wide range of insulating materials. We have completed positron experiments on a range of zeolite-y samples, KDP crystals, alkali halides and laser damaged SiO{sub 2}. Present theoretical understanding of positron behavior in insulators is incomplete and our combined theoretical and experimental approach is aimed at developing a predictive understanding of positrons and positronium annihilation characteristics in insulators. Results from alkali halides and alkaline-earth halides show that positrons annihilate with only the halide ions, with no apparent contribution from the alkali or alkaline-earth cations. This contradicts the results of our existing theory for metals, whichmore » predicts roughly equal annihilation contributions from cation and anion. We also present result obtained using Munich positron microprobe on laser damaged SiO{sub 2} samples.« less
Aging, Loss-of-Coolant Accident (LOCA), and high potential testing of damaged cables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, R.A.; Jacobus, M.J.
1994-04-01
Experiments were conducted to assess the effects of high potential testing of cables and to assess the survivability of aged and damaged cables under Loss-of-Coolant Accident (LOCA) conditions. High potential testing at 240 Vdc/mil on undamaged cables suggested that no damage was incurred on the selected virgin cables. During aging and LOCA testing, Okonite ethylene propylene rubber (EPR) cables with a bonded jacket experienced unexpected failures. The failures appear to be primarily related to the level of thermal aging and the presence of a bonded jacket that ages more rapidly than the insulation. For Brand Rex crosslinked polyolefin (XLPO) cables,more » the results suggest that 7 mils of insulation remaining should give the cables a high probability of surviving accident exposure following aging. The voltage necessary to detect when 7 mils of insulation remain on unaged Brand Rex cables is approximately 35 kVdc. This voltage level would almost certainly be unacceptable to a utility for use as a damage assessment tool. However, additional tests indicated that a 35 kvdc voltage application would not damage virgin Brand Rex cables when tested in water. Although two damaged Rockbestos silicone rubber cables also failed during the accident test, no correlation between failures and level of damage was apparent.« less
NASA Astrophysics Data System (ADS)
Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.; Knaster, J.; Savary, F.
2012-06-01
During the last years, two cyanate ester epoxy blends supplied by European and US industry have been successfully qualified for the ITER TF coil insulation. The results of the qualification of a third CE blend supplied by Industrial Summit Technology (IST, Japan) will be presented in this paper. Sets of test samples were fabricated exactly under the same conditions as used before. The reinforcement of the composite consists of wrapped R-glass / polyimide tapes, which are vacuum pressure impregnated with the resin. The mechanical properties of this material were characterized prior to and after reactor irradiation to a fast neutron fluence of 2×1022m-2 (E>0.1 MeV), i.e. twice the ITER design fluence. Static and dynamic tensile as well as static short beam shear tests were carried out at 77 K. In addition, stress strain relations were recorded to determine the Young's modulus at room temperature and at 77 K. The results are compared in detail with the previously qualified materials from other suppliers.
NASA Technical Reports Server (NTRS)
Stuckey, James M.
1996-01-01
The selection and quantification of four foams using a more environmentally friendly HCFC-141b blowing agent replacing foams that used the CFC-11 blowing agent for the external tank (ET) LWT has been addressed along with problems and solutions that were encountered during verification. The effort on two lower density spray foams for the ET SLWT are presented, but predicted weight savings were not encouraging. Suggestions for possible problem solving are included along with a new approach for selecting foams for qualification as back-up foams for the foams used on the ET LWT. We investigated three resins for use as thermally sprayed coatings for corrosion prevention on metal. The best coating was obtained with a thermoplastic polyimide resin. This coating has a good chance of meeting ET requirements. Possible third generation blowing agents have been shown usable in polyurethane spray and pour foams, and solubility in isocyannate foam components are acceptable. We considered aerogels as insulation materials on space vehicles, and suggested a liner for a liquid oxygen (LOX) composite tank.
NASA Astrophysics Data System (ADS)
Li, Mo; Wu, Jian; Lu, Yihan; Li, Xingwen; Li, Yang; Qiu, Mengtong
2018-01-01
Tungsten wire explosion is very asymmetric when fast current rate and insulated coatings are both applied on negative discharge facility using a 24-mm-diameter cathode geometry, which is commonly used on mega-ampere facilities. It is inferred, based on an analytical treatment of the guiding center drift and COMSOL simulations, that the large negative radial electric field causes early voltage breakdown and terminates energy deposition into the wire core on the anode side of the wire. After the anode side is short circuited, the radial electric field along the wire surface on the cathode side will change its polarity and thus leading to additional energy deposition into the wire core. This change causes ˜10 times larger energy deposition and ˜14 times faster explosion velocity in the cathode side than the anode side. In order to reduce this asymmetry, a hollow cylindrical cathode geometry was used to reverse the polarity of radial electric field and was optimized to use on multi-MA facilities. In this case, fully vaporized polyimide-coated tungsten wire with great symmetry improvement was achieved with energy deposition of ˜8.8 eV/atom. The atomic and electronic density distributions for the two different load geometries were obtained by the double-wavelength measurement.
Oshima, Keisuke; Sadakata, Shifumi; Shiraishi, Yukihide; Toshima, Naoki
2017-01-01
Three-component organic/inorganic hybrid films were fabricated by drop-casting the mixed dispersion of nanodispersed-poly(nickel 1,1,2,2-ethenetetrathiolate) (nano-PETT), polyimide (PI) and super growth carbon nanotubes (SG-CNTs) in N-methylpyrrolidone (NMP) at the designed ratio on a substrate. The dried nano-PETT/PI/SG-CNT hybrid films were prepared by the stepwise cleaning of NMP and methanol, and were dried once more. The thermoelectric properties of Seebeck coefficient S and electrical conductivity σ were measured by a thin-film thermoelectric measurement system ADVANCE RIKO ZEM-3M8 at 330–380 K. The electrical conductivity of nano-PETT/PI/SG-CNT hybrid films increased by 1.9 times for solvent treatment by clearing insulated of polymer. In addition, the density of nano-PETT/PI/SG-CNT hybrid films decreased 1.31 to 0.85 g·cm−3 with a decrease in thermal conductivity from 0.18 to 0.12 W·m−1·K−1. To evaluate the thermostability of nano-PETT/PI/SG-CNT hybrid films, the samples were kept at high temperature and the temporal change of thermoelectric properties was measured. The nano-PETT/PI/SG-CNT hybrid films were rather stable at 353 K and kept their power factor even after 4 weeks. PMID:28773182
NASA Technical Reports Server (NTRS)
Awerbuch, J.; Perkinson, H. E.; Kamel, I. L.
1980-01-01
The fracture behavior in graphite/polyimide (Gr/PI) Celion 6000/PMR-15 composites was characterized. Emphasis was placed on the correlation between the observed failure modes and the deformation characteristics of center-notched Gr/Pl laminates. Crack tip damage growth, fracture strength and notch sensitivity, and the associated characterization methods were also examined. Special attention was given to nondestructive evaluation of internal damage and damage growth, techniques such as acoustic emission, X-ray radiography, and ultrasonic C-scan. Microstructural studies using scanning electron microscopy, photomicrography, and the pulsed nuclear magnetic resonance technique were employed as well. All experimental procedures and techniques are described and a summary of representative results for Gr/Pl laminates is given.
A novel evaluation strategy for fatigue reliability of flexible nanoscale films
NASA Astrophysics Data System (ADS)
Zheng, Si-Xue; Luo, Xue-Mei; Wang, Dong; Zhang, Guang-Ping
2018-03-01
In order to evaluate fatigue reliability of nanoscale metal films on flexible substrates, here we proposed an effective evaluation way to obtain critical fatigue cracking strain based on the direct observation of fatigue damage sites through conventional dynamic bending testing technique. By this method, fatigue properties and damage behaviors of 930 nm-thick Au films and 600 nm-thick Mo-W multilayers with individual layer thickness 100 nm on flexible polyimide substrates were investigated. Coffin-Manson relationship between the fatigue life and the applied strain range was obtained for the Au films and Mo-W multilayers. The characterization of fatigue damage behaviors verifies the feasibility of this method, which seems easier and more effective comparing with the other testing methods.
Code of Federal Regulations, 2012 CFR
2012-07-01
... simultaneously and perform virtually the same duty; (f) Each ungrounded conductor must have insulation compatible with the impressed voltage. Insulation materials must be resistant to deterioration from engine heat... damaging wires, cables, or conduits by cutting or abrasion. The insulation of the cables within a battery...
Code of Federal Regulations, 2014 CFR
2014-07-01
... simultaneously and perform virtually the same duty; (f) Each ungrounded conductor must have insulation compatible with the impressed voltage. Insulation materials must be resistant to deterioration from engine heat... damaging wires, cables, or conduits by cutting or abrasion. The insulation of the cables within a battery...
Code of Federal Regulations, 2013 CFR
2013-07-01
... simultaneously and perform virtually the same duty; (f) Each ungrounded conductor must have insulation compatible with the impressed voltage. Insulation materials must be resistant to deterioration from engine heat... damaging wires, cables, or conduits by cutting or abrasion. The insulation of the cables within a battery...
Code of Federal Regulations, 2011 CFR
2011-07-01
... simultaneously and perform virtually the same duty; (f) Each ungrounded conductor must have insulation compatible with the impressed voltage. Insulation materials must be resistant to deterioration from engine heat... damaging wires, cables, or conduits by cutting or abrasion. The insulation of the cables within a battery...
Bhattacharyya, Pranab Jyoti; Agrawal, Shweta; Barkataky, Jogesh Chandra; Bhattacharyya, Anjan Kumar
2015-01-01
Insulation break in a permanent pacemaker lead is a rare long-term complication. We describe an elderly male with a VVIR pacemaker, who presented with an episode of presyncope more than 3 years after the initial implantation procedure, attributed to insulation break possibly caused by lead entrapment in components of the medial subclavicular musculotendinous complex (MSMC) and repeated compressive damage over time during ipsilateral arm movement requiring lead replacement. The differential diagnosis of a clinical presentation when pacing stimuli are present with failure to capture and the role of the MSMC in causing lead damage late after implantation are discussed. PMID:26995445
Polyhedral oligomeric silsesquioxane (POSS) polyimides as space-survivable materials
NASA Astrophysics Data System (ADS)
Tomczak, Sandra J.; Vij, Vandana; Marchant, Darrell; Minton, Timothy K.; Brunsvold, Amy L.; Wright, Michael E.; Petteys, Brian J.; Guenthner, Andrew J.; Yandek, Gregory R.; Mabry, Joe
2006-09-01
Polyimides (PIs) such as Kapton are used extensively in spacecraft thermal blankets, solar arrays, and space inflatable structures. Atomic oxygen (AO) in low Earth orbit (LEO) causes severe degradation of Kapton. SiO2 coatings impart remarkable oxidation resistance and have been widely used to protect Kapton, yet imperfections in the SiO2 application process and micrometeoroid/debris impact in orbit damage the SiO2 coating leading to Kapton erosion. A polyimide that is self-passivating by the formation of a silica layer upon exposure to AO has been achieved by the copolymerization of a polyhedral oligomeric silsesquioxane (POSS) diamine with the Kapton monomers, pyromellitic dianhydride and 4,4'-oxydianiline, resulting in POSS-Kapton-polyimide. The self-passivating properties have been shown by monitoring a 1 micron deep scratch in POSS-PIs after exposure to AO. Kapton H, SiO2-coated Kapton HN, and 8.75 weight % Si8O11 cage "main-chain" POSS-polyimide (8.75 wt % Si8O11 MC-POSS-PI) were exposed to equivalent AO fluences before and after being scratched. During the first AO exposure and outside of the scratch, these samples eroded 5.0 microns, 0 microns, and less than 200 nm respectively. During the second AO exposure, the samples eroded an additional 5.0 microns within the scratch and outside of the scratch, 7.0 microns within the scratch and 0 microns outside of the scratch, and 200 nm within the scratch and 0 microns outside of the scratch respectively. Surface analysis of MC-POSS-PI films exposed to a hyperthermal O-atom beam shows evidence for the formation of a SiO2 passivation layer upon AO exposure. This is exemplified by erosion yields of 3.5 and 7 wt % Si8O11 MC-POSS-PI samples which were 3.7 and 0.98 percent, respectively, of the erosion yield for Kapton H at a fluence of 8.5 x 1020 O atoms cm-2. Comparison of MC-POSS-PIs and "side-chain" POSS-PI (SC-POSS-PI) shows that these polymers have similar resistance to atomic oxygen and physical properties similar to Kapton H. Erosion yields and imaging of POSS-PIs flown on MISSE1, in a sample tray exposed to all elements (AO, UV light) of the space environment, demonstrated the greatly extended lifetime of POSS-PIs over polyimide.
PMR polyimide composites for aerospace applications. [Polymerization of Monomer Reactants
NASA Technical Reports Server (NTRS)
Serafini, T. T.
1984-01-01
A novel class of addition-type polyimides has been developed in response to the need for high temperature polymers with improved processability. The new plastic materials are known as PMR (for in situ polymerization of monomer reactants) polyimides. The highly processable PMR polyimides have made it possible to realize much of the potential of high temperature resistant polymers. Monomer reactant combinations for several PMR polyimides have been identified. The present investigation is concerned with a review of the current status of PMR polyimides. Attention is given to details of PMR polyimide chemistry, the processing of composites and their properties, and aerospace applications of PMR-15 polyimide composites.
A clamp fixture with interdigital capacitive sensor for in situ evaluation of wire insulation
NASA Astrophysics Data System (ADS)
Sheldon, Robert T.; Bowler, Nicola
2014-02-01
An interdigital capacitive sensor has been designed and optimized for testing aircraft wires by applying a quasinumerical model developed and reported previously. The sensor consists of two patches of interdigitated electrodes, connected by a long signal bus strip, that are intended to conform to two sides of an insulated wire. The electrodes are deposited using photolithography upon a 25.4-μm-thick Kapton® polyimide film. The two electrode patches are attached to the two jaws of a plastic spring-loaded clamp, with each jaw having a milled groove designed such that the electrodes conform to the curved surface of the insulated wire. An SMA connector and cable connect between the electrodes on the clamp and an LCR meter. Segments of pristine M5086/2 aircraft wire, each 10 cm long, were immersed in fluids commonly found in aircraft environments, to cause accelerated chemical degradation. The effects of Jet A fuel, deicing fluid, hydraulic fluid, aircraft cleaner, isopropyl alcohol and distilled water were studied. The frequency-dependent capacitance and dissipation factor of one pristine wire segment and of those degraded in the six fluid environments were measured within the frequency range 100 Hz to 1 MHz. Significant changes in capacitance and dissipation factor were observed for all degraded wires, compared with results for the pristine sample, suggesting the feasibility of detecting insulation degradation in the field. The results were also consistent with those of a similar experiment performed on sheets of Nylon 6, the material that comprises the outermost layer of M5086/2 wire.
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Bruckner, Eric J.; Rodriguez, Elvin
1992-01-01
The photovoltaic (PV) power system for Space Station Freedom (SSF) uses solar array blankets which provide structural support for the solar cells and house the electrical interconnections. In the low earth orbital (LEO) environment where SSF will be located, surfaces will be exposed to potentially damaging environmental conditions including solar ultraviolet (UV) radiation, thermal cycling, and atomic oxygen. It is necessary to use ground based tests to determine how these environmental conditions would affect the mass loss and optical properties of candidate SSF blanket materials. Silicone containing, silicone coated, and SiO(x) coated polyimide film materials were exposed to simulated LEO environmental conditions to determine their durability and whether the environmental conditions of UV, thermal cycling and oxygen atoms act synergistically on these materials. A candidate PV blanket material called AOR Kapton, a polysiloxane polyimide cast from a solution mixture, shows an improvement in durability to oxygen atoms erosion after exposure to UV radiation or thermal cycling combined with UV radiation. This may indicate that the environmental conditions react synergistically with this material, and the damage predicted by exposure to atomic oxygen alone is more severe than that which would occur in LEO where atomic oxygen, thermal cycling and UV radiation are present together.
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Bruckner, Eric J.; Rodriguez, Elvin
1992-01-01
The photovoltaic (PV) power system for Space Station Freedom (SSF) uses solar array blankets which provide structural support for the solar cells and house the electrical interconnections. In the low Earth orbital (LEO) environment where SSF will be located, surfaces will be exposed to potentially damaging environmental conditions including solar ultraviolet (UV) radiation, thermal cycling, and atomic oxygen. It is necessary to use ground based tests to determine how these environmental conditions would affect the mass loss and optical properties of candidate SSF blanket materials. Silicone containing, silicone coated, and SiO(x) coated polyimide film materials were exposed to simulated LEO environmental conditions to determine there durability and whether the environmental conditions of UV, thermal cycling and oxygen atoms act synergistically on these materials. A candidate PV blanket material called AOR Kapton, a polysiloxane polyimide cast from a solution mixture, shows an improvement in durability to oxygen atoms erosion after exposure to UV radiation or thermal cycling combined with UV radiation. This may indicate that the environmental conditions react synergistically with this material, and the damage predicted by exposure to atomic oxygen alone is more severe than that which would occur in LEO where atomic oxygen, thermal cycling and UV radiation are present together.
Area-selective atomic layer deposition of platinum using photosensitive polyimide.
Vervuurt, René H J; Sharma, Akhil; Jiao, Yuqing; Kessels, Wilhelmus Erwin M M; Bol, Ageeth A
2016-10-07
Area-selective atomic layer deposition (AS-ALD) of platinum (Pt) was studied using photosensitive polyimide as a masking layer. The polyimide films were prepared by spin-coating and patterned using photolithography. AS-ALD of Pt using poly(methyl-methacrylate) (PMMA) masking layers was used as a reference. The results show that polyimide has excellent selectivity towards the Pt deposition, after 1000 ALD cycles less than a monolayer of Pt is deposited on the polyimide surface. The polyimide film could easily be removed after ALD using a hydrogen plasma, due to a combination of weakening of the polyimide resist during Pt ALD and the catalytic activity of Pt traces on the polyimide surface. Compared to PMMA for AS-ALD of Pt, polyimide has better temperature stability. This resulted in an improved uniformity of the Pt deposits and superior definition of the Pt patterns. In addition, due to the absence of reflow contamination using polyimide the nucleation phase during Pt ALD is drastically shortened. Pt patterns down to 3.5 μm were created with polyimide, a factor of ten smaller than what is possible using PMMA, at the typical Pt ALD processing temperature of 300 °C. Initial experiments indicate that after further optimization of the polyimide process Pt features down to 100 nm should be possible, which makes AS-ALD of Pt using photosensitive polyimide a promising candidate for patterning at the nanoscale.
Negative birefringent polyimide films
NASA Technical Reports Server (NTRS)
Harris, Frank W. (Inventor); Cheng, Stephen Z. D. (Inventor)
1994-01-01
A negative birefringent film, useful in liquid crystal displays, and a method for controlling the negative birefringence of a polyimide film is disclosed which allows the matching of an application to a targeted amount of birefringence by controlling the degree of in-plane orientation of the polyimide by the selection of functional groups within both the diamine and dianhydride segments of the polyimide which affect the polyimide backbone chain rigidity, linearity, and symmetry. The higher the rigidity, linearity and symmetry of the polyimide backbone, the larger the value of the negative birefringence of the polyimide film.
NASA Technical Reports Server (NTRS)
Fusaro, R. L.
1982-01-01
The tribological properties of seven polyimide films applied to 440 C high temperature stainless steel substrates were studied at 25 C with a pin-on-disk type of friction and were apparatus. The polyimides fell into two groups according to friction and wear properties. Group I polyimides had slightly lower friction but much higher wear than group II polyimides. The wear mechanism was predominately adhesion, but the wear particles were larger for group I polyimides. For most of the polyimides the transfer films consisted of clumps of compacted wear particles. One polyimide composition produced a very thin transfer film that sheared plastically in the contact area.
Thin-film composite materials as a dielectric layer for flexible metal-insulator-metal capacitors.
Tiwari, Jitendra N; Meena, Jagan Singh; Wu, Chung-Shu; Tiwari, Rajanish N; Chu, Min-Ching; Chang, Feng-Chih; Ko, Fu-Hsiang
2010-09-24
A new organic-organic nanoscale composite thin-film (NCTF) dielectric has been synthesized by solution deposition of 1-bromoadamantane and triblock copolymer (Pluronic P123, BASF, EO20-PO70-EO20), in which the precursor solution has been achieved with organic additives. We have used a sol-gel process to make a metal-insulator-metal capacitor (MIM) comprising a nanoscale (10 nm-thick) thin-film on a flexible polyimide (PI) substrate at room temperature. Scanning electron microscope and atomic force microscope revealed that the deposited NCTFs were crack-free, uniform, highly resistant to moisture absorption, and well adhered on the Au-Cr/PI. The electrical properties of 1-bromoadamantane-P123 NCTF were characterized by dielectric constant, capacitance, and leakage current measurements. The 1-bromoadamantane-P123 NCTF on the PI substrate showed a low leakage current density of 5.5 x 10(-11) A cm(-2) and good capacitance of 2.4 fF at 1 MHz. In addition, the calculated dielectric constant of 1-bromoadamantane-P123 NCTF was 1.9, making them suitable candidates for use in future flexible electronic devices as a stable intermetal dielectric. The electrical insulating properties of 1-bromoadamantane-P123 NCTF have been improved due to the optimized dipole moments of the van der Waals interactions.
Thermomechanical Fatigue Durability of T650-35/PMR-15 Sheet Molding Compound
NASA Technical Reports Server (NTRS)
Castelli, Michael G.; Sutter, James K.; Benson, Dianne
1998-01-01
Although polyimide based composites have been used for many years in a wide variety of elevated temperature applications, very little work has been done to examine the durability and damage behavior under more prototypical thermomechanical fatigue (TMF) loadings. Synergistic effects resulting from simultaneous temperature and load cycling can potentially lead to enhanced, if not unique, damage modes and contribute to a number of nonlinear deformation responses. The goal of this research was to examine the effects of a TMF loading spectrum, representative of a gas turbine engine compressor application, on a polyimide sheet molding compound (SMC). High performance SMCs present alternatives to prepreg forms with great potential for low cost component production through less labor intensive, more easily automated manufacturing. To examine the issues involved with TMF, a detailed experimental investigation was conducted to characterize the durability of a T650-35/PMR-15 SMC subjected to TMF mission cycle loadings. Fatigue damage progression was tracked through macroscopic deformation and elastic stiffness. Additional properties, such as the glass transition temperature (T(sub g) and dynamic mechanical properties were examined. The fiber distribution orientation was also characterized through a detailed quantitative image analysis. Damage tolerance was quantified on the basis of residual static tensile properties after a prescribed number of TMF missions. Detailed microstructural examinations were conducted using optical and scanning electron microscopy to characterize the local damage. The imposed baseline TMF missions had only a modest impact on inducing fatigue damage with no statistically significant degradation occurring in the measured macroscopic properties. Microstructural damage was, however, observed subsequent to 100 h of TMF cycling which consisted primarily of fiber debonding and transverse cracking local to predominantly transverse fiber bundles. The TMF loadings did introduce creep related effects (strain accumulation) which led to rupture in some of the more aggressive stress scenarios examined. In some cases this creep behavior occurred at temperatures in excess of 150 C below commonly cited values for T(sub g). Thermomechanical exploratory creep tests revealed that the SMC was subject to time dependent deformation at stress/temperature thresholds of 150 MPa/230 C and 170 MPa/180 C.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
... inner wall and insulation blankets). This proposed AD results from reports of heat damage to the inner... insulation blankets and heat transfer through the upper compression pad area and the fireseal bracket support... upper and lower inner wall insulation blankets, measuring the electrical conductivity on the aluminum...
Scrotal insulation and sperm production in the boar.
Parrish, John J; Willenburg, Kilby L; Gibbs, Katelynn M; Yagoda, Kylie B; Krautkramer, Megan M; Loether, Teyanna M; Melo, Fabiana C S A
2017-09-01
Seasonal infertility is a limiting factor in boar fertility, and is increasingly important as climate changes. Spermatogenesis in the boar produces 256 spermatozoa per type A 1 spermatogonium, but the process is inefficient such that only 10-30% of these potential spermatozoa are actually produced. Heat further impacts spermatogenesis by reducing the number of specific germ cells produced while increasing the fraction of abnormal sperm. Early studies used whole-animal exposure to simulate seasonal exposure to heat under production settings, but this approach is associated with many confounding factors that make assessment of the mechanisms of heat-induced damage to spermatogenesis difficult. Scrotal insulation provides a better model to investigate the mechanisms and potential mitigation strategies of heat-induce damage. For example, scrotal insulation helped identify a link between short-term heat stress and damage to meiotic germ cells. This outcome is likely due to changes in the integrity of the blood-testis barrier, which induce apoptosis, autophagy and DNA damage in the germ cells. Further understanding how heat damages spermatogenesis, and whether or not this can be repaired, are crucial to mitigating heat effects on boars in production settings. © 2017 Wiley Periodicals, Inc.
Low dielectric polyimide fibers
NASA Technical Reports Server (NTRS)
Dorogy, William E., Jr. (Inventor); St.clair, Anne K. (Inventor)
1994-01-01
A high temperature resistant polyimide fiber that has a dielectric constant of less than 3 is presented. The fiber was prepared by first reacting 2,2-bis (4-(4aminophenoxy)phenyl) hexafluoropropane with 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride in an aprotic solvent to form a polyamic acid resin solution. The polyamic acid resin solution is then extruded into a coagulation medium to form polyamic acid fibers. The fibers are thermally cured to their polyimide form. Alternatively, 2,2-bis(4-(4-aminophenoxy)phenyl) hexafluoropropane is reacted with 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride to form a polyamic acid, and the polyamic acid is chemically converted to its polyimide form. The polyimide is then dissolved in a solvent to form a polyimide resin solution, and the polyimide resin is extruded into a coagulation medium to form a polyimide wet gel filament. In order to obtain polyimide fibers of increased tensile properties, the polyimide wet gel filaments are stretched at elevated temperatures. The tensile properties of the fibers were measured and found to be in the range of standard textile fibers. Polyimide fibers obtained by either method will have a dielectric constant similar to that of the corresponding polymer, viz., less than 3 at 10 GHz.
Flight Performance of a Functionally Gradient Material, TUFI, on Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Leister, Daniel B.; Stewart, David A.; DiFiore, Robert; Tipton, Bradford; Gordon, Michael P.; Arnold, Jim (Technical Monitor)
2001-01-01
TUFI (Toughened Uni-Piece Fibrous Insulation), a functionally gradient material has been successfully flying on the Shuttle Orbiters in several locations on two insulation substrates over the past few years. TUFI is composed of insulation and a gradated surface treatment. The locations it has flown include the base heat shield where damage had been observed after every flight before its application. It was also applied to the body flap, the bottom of the body flap and around selected windows and doors where damage had been observed in the past. A description of the types of processing used including substrates will be presented and its overall performance will be reviewed.
Ion beam modification of topological insulator bismuth selenide
Sharma, Peter Anand; Sharma, A. L. Lima; Hekmaty, Michelle A.; ...
2014-12-17
In this study, we demonstrate chemical doping of a topological insulator Bi 2Se 3 using ion implantation. Ion beam-induced structural damage was characterized using grazing incidence X-ray diffraction and transmission electron microscopy. Ion damage was reversed using a simple thermal annealing step. Carrier-type conversion was achieved using ion implantation followed by an activation anneal in Bi 2Se 3 thin films. These two sets of experiments establish the feasibility of ion implantation for chemical modification of Bi 2Se 3, a prototypical topological insulator. Ion implantation can, in principle, be used for any topological insulator. The direct implantation of dopants should allowmore » better control over carrier concentrations for the purposes of achieving low bulk conductivity. Ion implantation also enables the fabrication of inhomogeneously doped structures, which in turn should make possible new types of device designs.« less
Polyimide Precursor Solid Residuum
NASA Technical Reports Server (NTRS)
Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)
2001-01-01
A polyimide precursor solid residuum is an admixture of an aromatic dianhydride or derivative thereof and an aromatic diamine or derivative thereof plus a complexing agent, which is complexed with the admixture by hydrogen bonding. The polyimide precursor solid residuum is effectively employed in the preparation of polyimide foam and the fabrication of polyimide foam structures.
NASA Technical Reports Server (NTRS)
2009-01-01
Topics covered include: Improved Instrument for Detecting Water and Ice in Soil; Real-Time Detection of Dust Devils from Pressure Readings; Determining Surface Roughness in Urban Areas Using Lidar Data; DSN Data Visualization Suite; Hamming and Accumulator Codes Concatenated with MPSK or QAM; Wide-Angle-Scanning Reflectarray Antennas Actuated by MEMS; Biasable Subharmonic Membrane Mixer for 520 to 600 GHz; Hardware Implementation of Serially Concatenated PPM Decoder; Symbolic Processing Combined with Model-Based Reasoning; Presentation Extensions of the SOAP; Spreadsheets for Analyzing and Optimizing Space Missions; Processing Ocean Images to Detect Large Drift Nets; Alternative Packaging for Back-Illuminated Imagers; Diamond Machining of an Off-Axis Biconic Aspherical Mirror; Laser Ablation Increases PEM/Catalyst Interfacial Area; Damage Detection and Self-Repair in Inflatable/Deployable Structures; Polyimide/Glass Composite High-Temperature Insulation; Nanocomposite Strain Gauges Having Small TCRs; Quick-Connect Windowed Non-Stick Penetrator Tips for Rapid Sampling; Modeling Unsteady Cavitation and Dynamic Loads in Turbopumps; Continuous-Flow System Produces Medical-Grade Water; Discrimination of Spore-Forming Bacilli Using spoIVA; nBn Infrared Detector Containing Graded Absorption Layer; Atomic References for Measuring Small Accelerations; Ultra-Broad-Band Optical Parametric Amplifier or Oscillator; Particle-Image Velocimeter Having Large Depth of Field; Enhancing SERS by Means of Supramolecular Charge Transfer; Improving 3D Wavelet-Based Compression of Hyperspectral Images; Improved Signal Chains for Readout of CMOS Imagers; SOI CMOS Imager with Suppression of Cross-Talk; Error-Rate Bounds for Coded PPM on a Poisson Channel; Biomorphic Multi-Agent Architecture for Persistent Computing; and Using Covariance Analysis to Assess Pointing Performance.
Review of Polyimides Used in the Manufacturing of Micro Systems
NASA Technical Reports Server (NTRS)
Wilson, William C.; Atkinson, Gary M.
2007-01-01
Since their invention, polyimides have found numerous uses in MicroElectroMechanical Systems (MEMS) technology. Polyimides can act as photoresist, sacrificial layers, structural layers, and even as a replacement for silicon as the substrate during MEMS fabrication. They enable fabrication of both low and high aspect ratio devices. Polyimides have been used to fabricate expendable molds and reusable flexible molds. Development of a variety of devices that employ polyimides for sensor applications has occurred. Micro-robotic actuator applications include hinges, thermal actuators and residual stress actuators. Currently, polyimides are being used to create new sensors and devices for aerospace applications. This paper presents a review of some of the many uses of polyimides in the development of MEMS devices, including a new polyimide based MEMS fabrication process.
Fundamental aspects of polyimide dry film and composite lubrication: A review
NASA Technical Reports Server (NTRS)
Fusaro, R. L.
1982-01-01
The tribological properties of polyimide dry films and composites are reviewed. Friction coefficients, wear rates, transfer film characteristics, wear surface morphology, and possible wear mechanisms of several different polyimide films, polyimide-bonded solid lubricants, polyimide solid bodies, and polyimide composites are discussed. Such parameters as temperature, type of atmosphere, load, contact stress, and specimen configuration are investigated. Data from an accelerated test device (Pin-on-Disk) are compared to similar data obtained from an end use application test device (plain spherical bearing).
Semi-interpenetrating polymer network's of polyimides: Fracture toughness
NASA Technical Reports Server (NTRS)
Hansen, Marion Glenn
1988-01-01
The objective was to improve the fracture toughness of the PMR-15 thermosetting polyimide by co-disolving LaRC-TPI, a thermoplastic polyimide. The co-solvation of a thermoplastic into a thermoset produces an interpenetration of the thermoplastic polymer into the thermoset polyimide network. A second research program was planned around the concept that to improve the fracture toughness of a thermoset polyimide polymer, the molecular weight between crosslink points would be an important macromolecular topological parameter in producing a fracture toughened semi-IPN polyimide.
NASA Astrophysics Data System (ADS)
Tan, P. C.; Ooi, B. S.; Ahmad, A. L.; Low, S. C.
2017-06-01
Thousands of different copolyimide combinations render it technically impossible to have a single universal synthesis method to produce aromatic polyimide film. This study aimed to outline the selection of synthesis protocol, either through the casting of chemically imidized polyimide solution or thermal imidization of polyamic acid (PAA), to produce the polyimide film. The rheological behaviour, molecular weight, and solubility of five structurally different PAA were analysed and correlated to both imidization methods. In this work, a tough polyimide film was successfully synthesized by casting the chemically imidized polyimide derived from high viscosity (> 81 cP) and high molecular weight (≥ 1.35 x 106 g/mol) PAA. On the contrary, both low viscosity (< 13 cP) and high viscosity (> 81 cP) PAA demonstrated the possibility to produce polyimide film via thermal imidization route. The longer molecular chain of ODPA-6FpDA:DABA (3:2) polyimide produced from thermal imidization had restricted the passage of CO2 across the polyimide film when it was applied in the gas separation application. The outcome from this work serves as a guideline for the selection of suitable polyimide film synthesis protocol, which will minimize the time and chemical consumption in future exploration of new polyimide structure.
Polyimides Containing Fluorine and Phosphorus for Potential Space Applications
NASA Technical Reports Server (NTRS)
Connell, John W.; Watson, Kent A.
2000-01-01
As part of an effort to develop low color, ultraviolet (UV) radiation and atomic oxygen resistant polyimides for potential space applications, a novel diamine containing fluorine and phosphorus was synthesized and used to prepare polyimides. The approach was to combine attributes from colorless, UV resistant polyimides and atomic oxygen (AO) resistant polymers into a single material. Preparation of colorless polyimides has focused on minimization of charge transfer complex formation by incorporation of bulky substituents and disrupting conjugation by using meta-catenated monomers. AO resistant polymer technology development has focused on placing phenylphosphine oxide groups into the backbone of aromatic polymers. However, polyimides prepared utilizing this approach thus far have all exhibited significant color. Thus in an attempt to combine these features in a polyimide a new diamine, bis(3-aminophenyl)-3,5-di(trifluoromethyl)phenylphosphine oxide (TFMDA) was synthesized and used to prepare polyimides. The polyimides were cast into films and characterized for physical and mechanical properties, optical transmission and AO and UV resistance.
Considerations for the Use of Exterior Insulation & Finish Systems (EIFS) on U.S. Army Facilities
1991-11-01
Typical kinds of insulation used in EIFS include molded expanded polystyrene (MEPS), extruded expanded polystyrene (XEPS), semi-rigid fiberglass, and...Extruded expanded polystyrene insulation, see XEPS 85 Finish coat 12-17, 20, 22-24, 26 degradation 32, 61, 68, 71, 78 Impact damage 28, 56, 83 resistance 15...lath 12, 15, 16, 20, 25, 74 Mildew 14, 78 Molded expanded polystyrene insulation, see MEPS Notched trowel application 19, 74 Portland cement 13, 15-17
Ultrasonic Guided Waves for Aging Wire Insulation Assessment
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2001-01-01
Environmentally aged wire insulation can become brittle and crack and thus expose the underlying conductive wire to the potential for short circuits and fire. The feasibility of using ultrasonic guided waves to measure insulation condition was examined. First a simple model to study guided wave propagation in a bare and thin plastic coated wire was examined and then some aviation grade wire samples that had been heat-damaged. Initial measurements indicate that ultrasonic guided wave velocity can be used to monitor insulation stiffness.
A review of processable high temperature resistant addition-type laminating resins
NASA Technical Reports Server (NTRS)
Serafini, T. T.; Delvigs, P.
1973-01-01
An important finding that resulted from research that was conducted to develop improved ablative resins was the discovery of a novel approach to synthesize processable high temperature resistant polymers. Low molecular weight polyimide prepolymers end-capped with norbornene groups were polymerized into thermo-oxidatively stable modified polyimides without the evolution of void producing volatile materials. This paper reviews basic studies that were performed using model compounds to elucidate the polymerization mechanism of the so-called addition-type polyimides. The fabrication and properties of polyimide/graphite fiber composites using A-type polyimide prepolymer as the matrix are described. An alternate method for preparing processable A-type polyimides by means of in situ polymerization of monomeric reactants on the fiber reinforcement is also described. Polyimide/graphite fiber composite performance at elevated temperatures is presented for A-type polyimides.
Two-Band, Low-Loss Microwave Window
NASA Technical Reports Server (NTRS)
Britcliffe, Michael; Franco, Manuel
2007-01-01
A window for a high-sensitivity microwave receiving system allows microwave radiation to pass through to a cryogenically cooled microwave feed system in a vacuum chamber, while keeping ambient air out of the chamber and helping to keep the interior of the chamber cold. The microwave feed system comprises a feed horn and a low-noise amplifier, both of which are required to be cooled to a temperature of 15 K during operation. The window is designed to exhibit very little microwave attenuation in two frequency bands: 8 to 9 GHz and 30 to 40 GHz. The window is 15 cm in diameter. It includes three layers (see figure): 1) The outer layer is made of a poly(tetrafluoroethylene) film 0.025 mm thick. This layer serves primarily to reflect and absorb solar ultraviolet radiation to prolong the life of the underlying main window layer, which is made of a polyimide that becomes weakened when exposed to ultraviolet. The poly(tetrafluoroethylene) layer also protects the main window layer against abrasion. Moreover, the inherent hydrophobicity of poly(tetrafluoroethylene) helps to prevent the highly undesirable accumulation of water on the outer surface. 2) The polyimide main window layer is 0.08 mm thick. This layer provides the vacuum seal for the window. 3) A 20-mm-thick layer of ethylene/ propylene copolymer foam underlies the main polyimide window layer. This foam layer acts partly as a thermal insulator: it limits radiational heating of the microwave feed horn and, concomitantly, limits radiational cooling of the window. This layer has high compressive strength and provides some mechanical support for the main window layer, reducing the strength required of the main window layer. The ethylene/propylene copolymer foam layer is attached to an aluminum window ring by means of epoxy. The outer poly(tetrafluoroethylene) film and the main polyimide window layer are sandwiched together and pressed against the window ring by use of a bolted clamp ring. The window has been found to introduce a microwave loss of only about 0.4 percent. The contribution of the window to the noise temperature of the microwave feed system has been found to be less than 1 K at 32 GHz and 0.2 K at 8.4 GHz.
Electron-beam induced damage in thin insulating films on compound semiconductors. M.S. Thesis, 1988
NASA Technical Reports Server (NTRS)
Pantic, Dragan M.
1989-01-01
Phosphorus rich plasma enhanced chemical vapor deposition (PECVD) of silicon nitride and silicon dioxide films on n-type indium phosphide (InP) substrates were exposed to electron-beam irradiation in the 5 to 40 keV range for the purpose of characterizing the damage induced in the dielectric. The electron-beam exposure was on the range of 10(exp -7) to 10(exp -3) C/sq cm. The damage to the devices was characterized by capacitance-voltage (C-V) measurements of the metal insulator semiconductor (MIS) capacitors. These results were compared to results obtained for radiation damage of thermal silicon dioxide on silicon (Si) MOS capacitors with similar exposures. The radiation induced damage in the PECVD silicon nitride films on InP was successfully annealed out in an hydrogen/nitrogen (H2/N2) ambient at 400 C for 15 min. The PECVD silicon dioxide films on InP had the least radiation damage, while the thermal silicon dioxide films on Si had the most radiation damage.
Investigation of piezoelectric impedance-based health monitoring of structure interface debonding
NASA Astrophysics Data System (ADS)
Xiao, Li; Chen, Guofeng; Chen, Xiaoming; Qu, Wenzhong
2016-04-01
Various damages might occur during the solid rocket motor (SRM) manufacturing/operational phase, and the debonding of propellant/insulator/composite case interfaces is one of damage types which determine the life of a motor. The detection of such interface debonding damage will be beneficial for developing techniques for reliable nondestructive evaluation (NDE) and structural health monitoring (SHM). Piezoelectric sensors are widely used for structural health monitoring technique. In particular, electromechanical impedance (EMI) techniques give simple and low-cost solutions for detecting damage in various structures. In this work, piezoelectric EMI structural health monitoring technique is applied to identify the debonding condition of propellant/insulator interface structure using finite element method and experimental investigation. A three-dimensional coupled field finite element model is developed using the software ANSYS and the harmonic analysis is conducted for high-frequency impedance analysis procedure. In the experimental study, the impedance signals were measured from PZT and MFC sensors outside attached to composite case monitoring the different debonding conditions between the propellant and insulator. Root mean square deviation (RMSD) based damage index is conducted to quantify the changes i n impedance for different de bonding conditions and frequency range. Simulation and experimental results confirmed that the EMI technique can be used effectively for detecting the debonding damage in SRM and is expected to be useful for future application of real SRM's SHM.
Polyimides formulated from a partially fluorinated diamine for aerospace tribological applications
NASA Technical Reports Server (NTRS)
Fusaro, R. L.
1983-01-01
Preliminary tribological studies on polyimides formulated from the diamine 2,2-bis 4-(4-aminophenoxy)phenyl hexafluorapane (4-BDAF) indicate that polyimides formulated from this diamine have excellent potential for high temperature tribological applications. The dianhydrides used to make the polyimides were pyromellitic (PMDA) and benzophenonetetracarboxylic acid (BTDA). Friction and wear studies at 25 and 200 C indicate that polyimides formulated using 50 mole percent of the PMDA dianhydride and 50 mole percent of the BTDA dianhydride perform better than polyimides formulated solely with the BTDA dianhydride. Graphite fiber reinforced polyimide composites were formulated with the polyimide made from the BTDA dianhydride, both graphitic and non-graphitic fibers were evaluated. Graphitic fibers produced better tribological results, since thin, flowing, "layer-like' transfer films were produced which did not build-up with long sliding durations. Non-graphitic fibers did not produce this type of transfer.
PMR polyimide composites for aerospace applications
NASA Technical Reports Server (NTRS)
Serafini, T. T.
1982-01-01
Fiber reinforced PMR polyimides are finding increased acceptance as engineering materials for high performance structural applications. Prepreg materials based on this novel class of highly processable, high temperature resistant polyimides, are commercially available and the PMR concept was incorporated in several industrial applications. The status of PMR polyimides is reviewed. Emphasis is given to the chemistry, processing, and applications of the first generation PMR polyimides known as PMR-15.
Effect of Atomic Oxygen Exposure on Surface Resistivity Change of Spacecraft Insulator Material
NASA Astrophysics Data System (ADS)
Mundari, Noor Danish Ahrar; Khan, Arifur Rahman; Chiga, Masaru; Okumura, Teppei; Masui, Hirokazu; Iwata, Minoru; Toyoda, Kazuhiro; Cho, Mengu
Spacecraft surface charging can lead to arcing and a loss of electricity generation capability in solar panels or even loss of a satellite. The charging problem may be further aggravated by atomic oxygen (AO) exposure in Low Earth orbits, which modifies the surface of materials like polyimide, Teflon, anti-reflective coatings, cover glass etc, used on satellite surfaces, affecting materials properties, such as resistivity, secondary electron emissivity and photo emission, which govern the charging behavior. These properties are crucial input parameters for spacecraft charging analysis. To study the AO exposure effect on charging governing properties, an atomic oxygen exposure facility based on laser detonation of oxygen was built. The facility produces AO with a peak velocity value around 10-12km/s and a higher flux than that existing in orbit. After exposing the polyimide test material to the equivalent of 10 years of AO fluence at an altitude of 700-800 km, surface charging properties like surface resistivity and volume resistivity were measured. The measurement was performed in a vacuum using the charge storage decay method at room temperature, which is considered the most appropriate for measuring resistivity for space applications. The results show that the surface resistivity increases and the volume resistivity remains almost the same for the AO exposure fluence of 5.4×1018 atoms cm-2.
Structure/permeability relationships of silicon-containing polyimides
NASA Technical Reports Server (NTRS)
Stern, S. A.; Vaidyanathan, R.; Pratt, J. R.
1989-01-01
The permeability to H2, O2, N2, CO2 and CH4 of three silicone-polyimide random copolymers and two polyimides containing silicon atoms in their backbone chains, was determined at 35.0 C and at pressures up to about 120 psig (approximately 8.2 atm). The copolymers contained different amounts of BPADA-m-PDA and amine-terminated poly (dimethyl siloxane) and also had different numbers of siloxane linkages in their silicone component. The polyimides containing silicon atoms (silicon-modified polyimides) were SiDA-4,4'-ODA and SiDA-p-PDA. The gas permeability and selectivity of the copolymers are more similar to those of their silicone component than of the polyimide component. By contrast, the permeability and selectivity of the silicon-modified polyimides are more similar to those of their parent polyimides, PMDA-4,4'-ODA and SiDA-p-PDA. The substitution of SiDA for the PMDA moiety in a polyimide appears to result in a significant increase in gas permeability, without a correspondingly large decrease in selectivity. The potential usefulness of the above polymers and copolymers as gas separation membranes is discussed.
2012-01-01
Table 10-4: Selected Birk polyimide heater sizes, resistances and locations [37] ........................ 79 Table 10-5: Final starting tests with (3...damage, and fire are prevalent. Kerosene type fuels are also cheaper and more common than nitromethane-methanol blend fuels. One final note is...diesel fuel was changed to produce lower emissions, the abrasiveness of diesel fuel increased. This was especially problematic for the new high
2017-12-06
mechanical response of the azobenzene- functionalized polyimide is correlated to the rotational freedom of the polyimide chains (resulting in extensive... correlated to the rotational freedom of the polyimide chains (resulting in extensive segmental mobility) and fractional free volume (FFV > 0.1...response has been described,34 and a recent simulation study on the stress relaxation dynamics of azo-polyimides has provided insights into the correlation
Polyimides: Thermally stable aerospace polymers
NASA Technical Reports Server (NTRS)
St.clair, A. K.
1980-01-01
An up to date review of available commercial and experimental high temperature polyimide resins which show potential for aerospace applications is presented. Current government research trends involving the use of polyimides as matrix resins for structural composites are discussed. Both the development of polyimides as adhesives for bonding metals and composites, and as films and coatings for use in an aerospace environment are reviewed. In addition, future trends for polyimides are proposed.
Polyimides containing amide and perfluoroisopropylidene connecting groups
NASA Technical Reports Server (NTRS)
Dezern, James F. (Inventor)
1993-01-01
New, thermooxidatively stable polyimides were prepared from the reaction of aromatic dianhydrides containing isopropylidene bridging groups with aromatic diamines containing amide connecting groups between the rings. Several of these polyimides were shown to be semi-crystalline as evidenced by wide angle x ray scattering and differential scanning calorimetry. Most of the polyimides form tough, flexible films with high tensile properties. These polyimide films exhibit enhanced solubility in organic solvents.
Polyimides containing pendent siloxane groups
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); St.clair, Terry L. (Inventor); Hergenrother, Paul M. (Inventor)
1994-01-01
Novel polyimides containing pendent siloxane groups (PISOX) were prepared by the reaction of functionalized siloxane compounds with hydroxy containing polyimides (PIOH). The pendent siloxane groups on the polyimide backbone offer distinct advantages such as lowering the dielectric constant and moisture resistance and enhanced atomic oxygen resistance. The siloxane containing polyimides are potentially useful as protective silicon oxide coatings and are useful for a variety of applications where atomic oxygen resistance is needed.
Systems and methods for using a boehmite bond-coat with polyimide membranes for gas separation
Polishchuk, Kimberly Ann
2013-03-05
The subject matter disclosed herein relates to gas separation membranes and, more specifically, to polyimide gas separation membranes. In an embodiment, a gas separation membrane includes a porous substrate, a substantially continuous polyimide membrane layer, and one or more layers of boehmite nanoparticles disposed between the porous substrate and the polyimide membrane layer to form a bond-coat layer. The bond-coat layer is configured to improve the adhesion of the polyimide membrane layer to the porous substrate, and the polyimide membrane layer has a thickness approximately 100 nm or less.
Anchoring energy of photo-sensitive polyimide alignment film containing methoxy cinnamate
NASA Astrophysics Data System (ADS)
Kim, Suyoung; Shin, Sung Eui; Shin, DongMyung
2010-02-01
Photosensitive polyimide containing 2-methoxy cinnamate was synthesized for photo-alignment layer of liquid crystals (LCs). 2-Methoxy cinnamic acid was confirmed photo-sensitive material by linearly polarized UV light. We studied that effect of polarized UV light on rubbed polyimide film. Anchoring energy of liquid crystal with aligning surface was measured. Irradiation of depolarized UV light on rubbed Polyimide film suppressed effective anchoring energy. Linearly polarized UV light on rubbed polyimide film controlled anchoring energy effectively. Polyimide film containing 2-methoxy cinnamate can control the photo-alignment layer easily due to its photo-sensitivity.
Cho, Hyun Min; Kim, Min-Sun
2014-08-01
In this study, we developed AlN thick film on metal substrate for hybrid type LED package such as chip on board (COB) using metal printed circuit board (PCB). Conventional metal PCB uses ceramic-polymer composite as electrical insulating layer. Thermal conductivities of such type dielectric film are typically in the range of 1~4 W/m · K depending on the ceramic filler. Also, Al or Cu alloy are mainly used for metal base for high thermal conduction to dissipate heat from thermal source mounted on metal PCB. Here we used Cu-W alloy with low thermal expansion coefficient as metal substrate to reduce thermal stress between insulating layer and base metal. AlN with polyimide (PI) powder were used as starting materials for deposition. We could obtain very high thermal conductivity of 28.3 W/m · K from deposited AlN-PI thin film by AlN-3 wt% PI powder. We made hybrid type high power LED package using AlN-PI thin film. We tested thermal performance of this film by thermal transient measurement and compared with conventional metal PCB substrate.
NASA Astrophysics Data System (ADS)
Gillespie, Jodie
This study measures Radiation Induced Conductivity (RIC) in five insulating polymeric materials over temperatures ranging from ~110 K to ~350 K: polyimide (PI or Kapton HN(TM) and Kapton E(TM)), polytetraflouroethylene (PTFE or Teflon(TM)), ethylene-tetraflouroethylene (ETFE or Tefzel(TM)), and Low Density Polyethylene (LDPE). RIC occurs when incident ionizing radiation deposits energy and excites electrons into the conduction band of insulators. Conductivity was measured when a voltage was applied across vacuum-baked, thin film polymer samples in a parallel plate geometry. RIC was calculated as the difference in sample conductivity under no incident radiation and under an incident ~4 MeV electron beam at low incident dose rates of 0.01 rad/sec to 10 rad/sec. The steady-state RIC was found to agree well with the standard power law relation, sigmaRIC(D˙) = kRIC(T) D˙Delta(T) between conductivity, sigmaRIC and adsorbed dose rate, D˙. Both the proportionality constant, kRIC, and the power, Delta, were found to be temperature-dependent above ~250 K, with behavior consistent with photoconductivity models developed for localized trap states in disordered semiconductors. Below ~250 K, kRIC and Delta exhibited little change in any of the materials.
NASA Technical Reports Server (NTRS)
2009-01-01
Topics covered include: Device for Measuring Low Flow Speed in a Duct, Measuring Thermal Conductivity of a Small Insulation Sample, Alignment Jig for the Precise Measurement of THz Radiation, Autoignition Chamber for Remote Testing of Pyrotechnic Devices, Microwave Power Combiners for Signals of Arbitrary Amplitude, Synthetic Foveal Imaging Technology, Airborne Antenna System for Minimum-Cycle-Slip GPS Reception, Improved Starting Materials for Back-Illuminated Imagers, Multi-Modulator for Bandwidth-Efficient Communication, Some Improvements in Utilization of Flash Memory Devices, GPS/MEMS IMU/Microprocessor Board for Navigation, T/R Multi-Chip MMIC Modules for 150 GHz, Pneumatic Haptic Interfaces, Device Acquires and Retains Rock or Ice Samples, Cryogenic Feedthrough Test Rig, Improved Assembly for Gas Shielding During Welding or Brazing, Two-Step Plasma Process for Cleaning Indium Bonding Bumps, Tool for Crimping Flexible Circuit Leads, Yb14MnSb11 as a High-Efficiency Thermoelectric Material, Polyimide-Foam/Aerogel Composites for Thermal Insulation, Converting CSV Files to RKSML Files, Service Management Database for DSN Equipment, Chemochromic Hydrogen Leak Detectors, Compatibility of Segments of Thermoelectric Generators, Complementary Barrier Infrared Detector, JPL Greenland Moulin Exploration Probe, Ultra-Lightweight Self-Deployable Nanocomposite Structure for Habitat Applications, and Room-Temperature Ionic Liquids for Electrochemical Capacitors.
Organometallic Polymeric Conductors
NASA Technical Reports Server (NTRS)
1997-01-01
For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. The highest conductivities reported (approximately 4/Scm) were achieved with polythiophene in a polystyrene host polymer. The best films using a polyamide as base polymer were four orders of magnitude less conductive than the polystyrene films. The authors suggested that this was because polyimides were unable to swell sufficiently for infiltration of monomer as in the polystyrene. It was not clear, however, if the different conductivities obtained were merely the result of differing oxidation conditions. Oxidation time, temperature and oxidant concentration varied widely among the studies.
Space Survivability of Main-Chain and Side-Chain POSS-Kapton Polyimides
NASA Astrophysics Data System (ADS)
Tomczak, Sandra J.; Wright, Michael E.; Guenthner, Andrew J.; Pettys, Brian J.; Brunsvold, Amy L.; Knight, Casey; Minton, Timothy K.; Vij, Vandana; McGrath, Laura M.; Mabry, Joseph M.
2009-01-01
Kapton® polyimde (PI) is extensively used in solar arrays, spacecraft thermal blankets, and space inflatable structures. Upon exposure to atomic oxygen (AO) in low Earth orbit (LEO), Kapton® is severely degraded. An effective approach to prevent this erosion is chemically bonding polyhedral oligomeric silsesquioxane (POSS) into the polyimide matrix by copolymerization of POSS-diamine with the polyimide monomers. POSS is a silicon and oxygen cage-like structure surrounded by organic groups and can be polymerizable. The copolymerization of POSS provides Si and O in the polymer matrix on the nano level. During POSS polyimide exposure to atomic oxygen, organic material is degraded and a silica passivation layer is formed. This silica layer protects the underlying polymer from further degradation. Ground-based studies and MISSE-1 and MISSE-5 flight results have shown that POSS polyimides are resistant to atomic-oxygen attack in LEO. In fact, 3.5 wt% Si8O11 main-chain POSS polyimide eroded about 2 μm during the 3.9 year flight in LEO, whereas 32 μm of 0 wt% POSS polyimide would have eroded within 4 mos. The atomic-oxygen exposure of main-chain POSS polyimides and new side-chain POSS polyimides has shown that copolymerized POSS imparts similar AO resistance to polyimide materials regardless of POSS monomer structure.
Organometallic Polymeric Conductors
NASA Technical Reports Server (NTRS)
Youngs, Wiley J.
1997-01-01
For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for over 150 days in air at ambient temperature. The conductivity of the films dropped only half an order of magnitude in that time. Films aged under vacuum at ambient temperature diminished slightly in conductivity in the first day, but did not change thereafter. An experimental design approach will be applied to maximize the efficiency of the laboratory effort. The material properties (initial and long term) will also be monitored and assessed. The experimental results will add to the existing database for electrically conductive polymer materials. Attachments: 1) Synthesis Crystal Structure, and Polymerization of 1,2:5,6:9,10-Tribenzo-3,7,11,13-tetradehydro(14) annulene. 2) Reinvestigation of the Photocyclization of 1,4-Phenylene Bis(phenylmaleic anhydride): Preparation and Structure of (5)Helicene 5,6:9,10-Dianhydride. 3) Preparation and Structure Charecterization of a Platinum Catecholate Complex Containing Two 3-Ethynyltheophone Groups. and 4) Rigid-Rod Polymers Based on Noncoplanar 4,4'-Biphenyldiamines: A Review of Polymer Properties vs Configuration of Diamines.
NASA Astrophysics Data System (ADS)
Demiri, Albion
This study investigates the sliding friction and the forming behaviour of enamel insulated copper wire during the die-forming process. It also aims to determine potential damage mechanisms to the wire during bending process for electric motor coils. In this investigation a wire-bending machine was designed and built in order to simulate the wire forming process in a laboratory scale. Bending angle of the wire and the bending radii were used to control the strain on the wire surface. The effect of speed on COF was investigated for different speeds of of 1, 5, 10, 15, and 20mm/s. A positive correlation was observed between the COF and the testing speed. Additionally, the effect of strain on COF was studied for 2% and 23% to determine its influence on the COF. A general trend was observed of decreased COF with increased strain in wires. Finally, the ability of the enamel coating to resist external damage and wire strain was investigated by tensile testing of pre-scratched magnet wire. The results showed that wire enamel can withstand significant surface damage prior to breach and failure. The insulating polymer coating failed under the scratch tests at 20N load using a Rockwell indenter and at 5N load using a 90° conical steel indenter. Additional tests, such as tensile testing, scratch testing and reciprocating friction testing, were used to characterize the mechanical and tribological properties of the enamel insulated copper wire.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagentoft, C.E.
1986-01-01
Many old district-heating culverts are in bad condition due to the entry of water into the thermal insulation. The thermal conductivity, and thereby the heat loss from the culvert, is much larger for a wet than a dry thermal insulation. The high energy prices make it interesting and necessary to find the water-damaged parts of the district-heating culvert and improve the thermal insulation so that a reduction in the heat losses is obtained. The aim of the project is to develop a simple field method to determine the heat loss and the condition of the culvert. The method is basedmore » on the measurement of the temperature on the top of the culvert and a classification of the soil. The classification of the soil gives an estimation of its thermal conductivity. The heat loss and the reduction in heat loss due to an extra insulation is estimated from these data. Five different types of culverts were tested: two types of asbestos cement culverts, one concrete culvert, and two aerated concrete culverts. The comparison of the measured temperatures and the temperatures obtained from the simulations is reported in the study.« less
Evaluation Of Risk And Possible Mitigation Schemes For Previously Unidentified Hazards
NASA Technical Reports Server (NTRS)
Linzey, William; McCutchan, Micah; Traskos, Michael; Gilbrech, Richard; Cherney, Robert; Slenski, George; Thomas, Walter, III
2006-01-01
This report presents the results of arc track testing conducted to determine if such a transfer of power to un-energized wires is possible and/or likely during an arcing event, and to evaluate an array of protection schemes that may significantly reduce the possibility of such a transfer. The results of these experiments may be useful for determining the level of protection necessary to guard against spurious voltage and current being applied to safety critical circuits. It was not the purpose of these experiments to determine the probability of the initiation of an arc track event only if an initiation did occur could it cause the undesired event: an inadvertent thruster firing. The primary wire insulation used in the Orbiter is aromatic polyimide, or Kapton , a construction known to arc track under certain conditions [3]. Previous Boeing testing has shown that arc tracks can initiate in aromatic polyimide insulated 28 volts direct current (VDC) power circuits using more realistic techniques such as chafing with an aluminum blade (simulating the corner of an avionics box or lip of a wire tray), or vibration of an aluminum plate against a wire bundle [4]. Therefore, an arc initiation technique was chosen that provided a reliable and consistent technique of starting the arc and not a realistic simulation of a scenario on the vehicle. Once an arc is initiated, the current, power and propagation characteristics of the arc depend on the power source, wire gauge and insulation type, circuit protection and series resistance rather than type of initiation. The initiation method employed for these tests was applying an oil and graphite mixture to the ends of a powered twisted pair wire. The flight configuration of the heater circuits, the fuel/oxider (or ox) wire, and the RCS jet solenoid were modeled in the test configuration so that the behavior of these components during an arcing event could be studied. To determine if coil activation would occur with various protection wire schemes, 145 tests were conducted using various fuel/ox wire alternatives (shielded and unshielded) and/or different combinations of polytetrafuloroethylene (PTFE), Mystik tape and convoluted wraps to prevent unwanted coil activation. Test results were evaluated along with other pertinent data and information to develop a mitigation strategy for an inadvertent RCS firing. The SSP evaluated civilian aircraft wiring failures to search for aging trends in assessing the wire-short hazard. Appendix 2 applies Weibull statistical methods to the same data with a similar purpose.
NASA Astrophysics Data System (ADS)
Schonberg, William P.
1993-04-01
Results are presented from an experimental study in which Al dual-wall structures were tested, under various high-speed impact conditions, with a view to the effect of multilayer insulation thickness and location on perforation resistance. Attention is given to comparisons of the damage sustained by dual-wall systems with multilayer insulation blankets of various thicknesses and at various locations within the dual-wall system, under comparable impact loading conditions. The placement of the insulation has a significant effect on the ballistic limit of the dual-wall structures considered, while reducing insulation thickness by as much as a third did not.
NASA Astrophysics Data System (ADS)
Dobra, R.; Pasculescu, D.; Marc, G.; Risteiu, M.; Antonov, A.
2017-06-01
Insulation resistance measurement is one of the most important tests required by standards and regulations in terms of electrical safety. Why these tests are is to prevent possible accidents caused by electric shock, damage to equipment or outbreak of fire in normal operating conditions of electrical cables. The insulation resistance experiment refers to the testing of electrical cable insulation, which has a measured resistance that must be below the imposed regulations. Using a microcontroller system data regarding the insulation resistance of the power cables is acquired and with SCADA software the test results are displayed.
Polyimides from 2,3,3',4'-Biphenyltetracarboxylic Dianhydride and Aromatic Diamines
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Smith, Joseph G. (Inventor); Connell, John W. (Inventor); Watson, Kent A. (Inventor)
2005-01-01
The present invention relates generally to polyimides. It relates particularly to novel polyimides prepared from 2,3, 3',4' -biphenyltetracarboxylic dianhydride and aromatic diamines. These novel polyimides have low color, good solubility, high thermal emissivity, low solar absorptivity and high tensile strength.
77 FR 20511 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
... heat damage to the inner wall of the thrust reversers, which could result in separation of adjacent... the upper and lower inner wall insulation blankets, measuring the electrical conductivity on the..., doing various concurrent actions (including replacing the inner wall blanket insulation, installing...
Structure-Property Relationship in High Tg Thermosetting Polyimides
NASA Technical Reports Server (NTRS)
Chuang, Kathy C.; Meador, Mary Ann B.; HardyGreen, DeNise
2000-01-01
This viewgraph presentation gives an overview of the structure-property relationship in high glass transition temperatures (T(sub g)) thermosetting polyimides. The objectives of this work are to replace MDA in PMR-15 with 2,2-substituted benzidine and to evaluate the thermo-oxidative stability and mechanical properties of DMBZ-15 against PMR-15. Details are given on the T(sub g) of polyimide resins, the x-ray crystal structure of 2,2-Bis(trifluoro)benzidine (BFBZ), the isothermal aging of polyimide resins at 288 C under 1 atm of circulating air, the compressive strength of polyimide composites, and a gas evaluation profile of DMBZ-15 polyimide resins.
1989-05-31
BASED Ck ON A PERFLUORINATED DIANHYDRIDE a ( by i C. E. Hoyle and E. T. Anzures Prepared for Publicatlon in J. Appl. olym. Sci. SDTIC ELECTE...34Photodegradation of Polyimides 2. Thermal Property Changes of Polyimides Based on a Perfluorinated Dianhydride" 12. PERSONAL AUTHOR(S) C. E. Hoyle and E...Additionally, the glass transition of photolyzed of polyimides containing the perfluorinated moiety is lowered with increasing photolysis time. By
77 FR 67254 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-09
..., damage, and loose wiring within an ACCB and repair if necessary; and requires rework and re... necessary] and rectification [rework] of the wiring installation within each ACCB. You may obtain further... visual inspection for chafing, damage, and insulation damage, and rework the wiring within the ACCB, in...
Measure Guideline. Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musunuru, S.; Pettit, B.
2015-04-30
This Measure Guideline describes a deep energy enclosure retrofit solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits might adversely affect the durability of the wall. This guideline includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.
Crosslinked polyimides prepared from N-(3-ethynylphenyl)maleimide
NASA Technical Reports Server (NTRS)
Gerber, Margaret K. (Inventor); St.clair, Terry L. (Inventor)
1993-01-01
The compound N-(3-ethynylphenyl)maleimide (NEPMI) was used to prepare thermally stable, glassy polyimides which did not exhibit glass transition temperatures below 500 C. NEPMI was blended with the maleimide of methylene dianiline (BMI) and heated to form the polyimide. NEPMI was also mixed with Thermid 600 R, a commercially available bisethynyl oligomeric material, and heated to form a thermally stable, glassy polyimide. Lastly, NEPMI was blended with both BMI and Thermid 600 R to form thermally stable, glassy polyimides.
Development of an impact- and solvent-resistant thermoplastic composite matrix
NASA Technical Reports Server (NTRS)
Delano, C. B.; Kiskiras, C. J.
1984-01-01
Synthesis, moldability and chloroform, acetone and tricresyl phosphate resistance of 16 polymer compositions are described. These aliphatic heterocyclic polymers include polyimides, polybenzimidazoles, and N-arylenepolybenzimidazoles. A solution condensation (cresol) method to prepare imidized aliphaic polyimides is described. Two polyimides and one polybenzimidazole demonstrate no crazing or cracking during 500 hr exposure to the cited solvents under stress. Modification of one aliphatic polyimide with several aromatic amines suggests that m-phenylenediamine is singular in its behavior to improve the chloroform resistance of that class of polyimides.
Polyimide Film of Increased Tear Strength
NASA Technical Reports Server (NTRS)
St. Clair, A. K.; Hinkley, J. A.; Ezzell, S. A.
1986-01-01
High-temperature linear aromatic polyimide with improved resistance to tearing made by new process that incorporates elastomer into polyimide. Linear aromatic condensation polyimides are materials of prime choice for use as films and coatings on advanced spacecraft and aircraft where durability at temperatures in range of 200 to 300 degree C required. Elastomer-containing polyimide film with improved toughness proves useful for applications where resistance to tearing and long-term thermal stability necessary. Desired resistance to tearing achieved by careful control of amount and chemical composition of added elastomer.
Processable high temperature resistant addition type polyimide laminating resins
NASA Technical Reports Server (NTRS)
Serafini, T. T.; Delvigs, P.
1973-01-01
Basic studies that were performed using model compounds to elucidate the polymerization mechanism of the so-called addition-type (A-type) polyimides are reviewed. The fabrication and properties of polyimide/graphite fiber composites using A-type polyimide prepolymers as the matrix are also reviewed. An alternate method for preparing processable A-type polyimides by means of in situ polymerization of monomer reactants (PMR) on the fiber reinforcement is described. The elevated temperature properties of A-type PMR/graphite fiber composites are also presented.
Rheological characterization of addition polyimide matrix resins and prepregs
NASA Technical Reports Server (NTRS)
Maximovich, M. G.; Galeos, R. M.
1984-01-01
Although graphite-reinforced polyimide matrix composites offer outstanding specific strength and stiffness, together with high thermal oxidative stability, processing problems connected with their rheological behavior remain to be addressed. The present rheological studies on neat polyimide resin systems encountered outgassing during cure. A staging technique has been developed which can successfully handle polyimide samples, and novel methods were applied to generate rheological curves for graphite-reinforced prepregs. The commercial graphite/polyimide systems studied were PRM 15, LARC 160, and V378A.
1989-05-31
A SPECTRAL, VISC’)METRIC, CHROMATOGRAPHIC AND WEIGHT LOSS INVESTIGATION OF POLYIMIDES BASED ON A PERFLUORINATED DIANHYDRIDE by C. E. Hoyle and E. T...and Weight Loss Investigation of Polyimides Based on a Perfluorinated Dianhyd c A2. PERSONAL AUTHOR(S) C. E. Hoyle and E. T. Anzures 13a. TYPE OF REPORT...polyimide films with perfluorinated chromophores in the dianhydride moiety is characterized by significant weight loss and chain cleavage. A conventional
Electrically conductive resinous bond and method of manufacture
Snowden, T.M. Jr.; Wells, B.J.
1985-01-01
A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40 to 365/sup 0/C to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.
Tin-polyimide and indium-polyimide thin-film composites as soft X-ray bandpass filters
NASA Technical Reports Server (NTRS)
Powell, Stephen F.; Allen, Maxwell J.; Willis, Thomas D.
1993-01-01
A tin-polyimide and an indium-polyimide soft X-ray bandpass filter were fabricated with thicknesses of 1400 and 1750 A for the metal and polyimide components, respectively. The transmission of each filter was measured at the Stanford Synchrotron Radiation Laboratory. The transmission of the tin-polyimide filter was found to be about 40 percent for radiation with wavelengths between 60 and 80 A. The transmission of the indium-polyimide filter was greater than 40 percent between 70 and 90 A. The indium was about 5 percent more transmissive than the tin and attained a maximum transmission of about 48 percent at 76 A. Such filters have potential applications to soft X-ray telescopes that operate in this region. They might also be of interest to investigators who work with X-ray microscopes that image live biological specimens in the 23-44-A water window.
Electrically conductive resinous bond and method of manufacture
Snowden, Jr., Thomas M.; Wells, Barbara J.
1987-01-01
A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40.degree. to 365.degree. C. to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.
Low wear partially fluorinated polyimides
NASA Technical Reports Server (NTRS)
Fusaro, R. L.; Hady, W. F.
1984-01-01
Tribological studies were conducted on five different polyimide solid bodies formulated from the diamine 2,2-bis 4-(4-aminophenoxy)phenyl hexafluoropropane (4-BDAF) and the dianhydrides pyromellitic acid (PMDS) and benzophenonetetracarboxylic acid (BTDA). The following polyimides were evaluated 4-BDAF/PMDA, 4-BDAF/BTDA, 4-BDAF/80 mole percent PMDA, 20 mole percent BTDA, 4-BDAF/60 mole percent BTDA. Friction coefficients, polyimide wear rates, polyimide surface morphology and transfer films were evaluated at sliding speeds of 0.31 to 11.6 m/s and at temperatures of 25 C to 300 C. The results indicate that the tribological properties are highly dependent on the composition of the polyimide and on the experimental conditions. Two polyimides were found which produced very low wear rates but very high friction coefficients (greater than 0.85) under ambient conditions. They offer considerable potential for high traction types of application such as brakes.
Methyl substituted polyimides containing carbonyl and ether connecting groups
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)
1992-01-01
Polyimides were prepared from the reaction of aromatic dianhydrides with novel aromatic diamines having carbonyl and ether groups connecting aromatic rings containing pendant methyl groups. The methyl substituent polyimides exhibit good solubility and form tough, strong films. Upon exposure to ultraviolet irradiation and/or heat, the methyl substituted polyimides crosslink to become insoluble.
Structure-property study of keto-ether polyimides
NASA Technical Reports Server (NTRS)
Dezern, James F.; Croall, Catharine I.
1991-01-01
As part of an on-going effort to develop an understanding of how changes in the chemical structure affect polymer properties, an empirical study was performed on polyimides containing only ether and/or carbonyl connecting groups in the polymer backbone. During the past two decades the structure-property relationships in linear aromatic polyimides have been extensively investigated. More recently, work has been performed to study the effect of isomeric attachment of keto-ether polyimides on properties such as glass transition temperature and solubility. However, little work has been reported on the relation of polyimide structure to mechanical properties. The purpose of this study was to determine the effect of structural changes in the backbone of keto-ether polyimides on their mechanical properties, specifically, unoriented thin film tensile properties. This study was conducted in two stages. The purpose of the initial stage was to examine the physical and mechanical properties of a representative group (four) of polyimide systems to determine the optimum solvent and cure cycle requirements. These optimum conditions were then utilized in the second stage to prepare films of keto-ether polyimides which were evaluated for mechanical and physical properties. All of the polyimides were prepared using isomers of oxydianiline (ODA) and diaminobenzophenone (DABP) in combination with 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic anhydride (ODPA).
NASA Astrophysics Data System (ADS)
Goshi, Noah; Castagnola, Elisa; Vomero, Maria; Gueli, Calogero; Cea, Claudia; Zucchini, Elena; Bjanes, David; Maggiolini, Emma; Moritz, Chet; Kassegne, Sam; Ricci, Davide; Fadiga, Luciano
2018-06-01
We report on a novel technology for microfabricating 3D origami-styled micro electro-mechanical systems (MEMS) structures with glassy carbon (GC) features and a supporting polymer substrate. GC MEMS devices that open to form 3D microstructures are microfabricated from GC patterns that are made through pyrolysis of polymer precursors on high-temperature resisting substrates like silicon or quartz and then transferring the patterned devices to a flexible substrate like polyimide followed by deposition of an insulation layer. The devices on flexible substrate are then folded into 3D form in an origami-fashion. These 3D MEMS devices have tunable mechanical properties that are achieved by selectively varying the thickness of the polymeric substrate and insulation layers at any desired location. This technology opens new possibilities by enabling microfabrication of a variety of 3D GC MEMS structures suited to applications ranging from biochemical sensing to implantable microelectrode arrays. As a demonstration of the technology, a neural signal recording microelectrode array platform that integrates both surface (cortical) and depth (intracortical) GC microelectrodes onto a single flexible thin-film device is introduced. When the device is unfurled, a pre-shaped shank of polyimide automatically comes off the substrate and forms the penetrating part of the device in a 3D fashion. With the advantage of being highly reproducible and batch-fabricated, the device introduced here allows for simultaneous recording of electrophysiological signals from both the brain surface (electrocorticography—ECoG) and depth (single neuron). Our device, therefore, has the potential to elucidate the roles of underlying neurons on the different components of µECoG signals. For in vivo validation of the design capabilities, the recording sites are coated with a poly(3,4-ethylenedioxythiophene)—polystyrene sulfonate—carbon nanotube composite, to improve the electrical conductivity of the electrodes and consequently the quality of the recorded signals. Results show that both µECoG and intracortical arrays were able to acquire neural signals with high-sensitivity that increased with depth, thereby verifying the device functionality.
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1981-01-01
Buffer strips greatly improve the damage tolerance of graphite/epoxy laminates loaded in tension. Graphite/polyimide buffer strip panels were made and tested to determine their residual strength at ambient and elevated (177 C) temperature. Each panel was cut in the center to represent damage. Panels were radiographed and crack-opening displacements were recorded to indicate fracture, fracture arrest, and the extent of damage in the buffer strip after arrest. All panels had the same buffer strip spacing and width. The buffer strip material was 0 deg S-glass/PMR-15. The buffer strips were made by replacing narrow strips of the 0 deg graphite plies with strips of the 0 deg S-glass on either a one-for-one or a two-for-one basis. Half of the panels were heated to 177 + or - 3 C before and during the testing. Elevated temperature did not alter the fracture behavior of the buffer configuration.
NASA Astrophysics Data System (ADS)
Kislyakov, M. A.; Chernov, V. A.; Maksimkin, V. L.; Bozhin, Yu. M.
2017-12-01
The article deals with modern methods of monitoring the state and predicting the life of electric machines. In 50% of the cases of failure in the performance of electric machines is associated with insulation damage. As promising, nondestructive methods of control, methods based on the investigation of the processes of polarization occurring in insulating materials are proposed. To improve the accuracy of determining the state of insulation, a multiparametric approach is considered, which is a basis for the development of an expert system for estimating the state of health.
Surface degradation of polymer insulators under accelerated climatic aging in weather-ometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, G.; McGrath, P.B.; Burns, C.W.
1996-12-31
Climatic aging experiments were conducted on two types of outdoor polymer insulators by using a programmable weather-ometer. The housing materials for the insulators were silicone rubber (SR) and ethylene propylene diene monomer (EPDM). The accelerated aging stresses were comprised of ultraviolet radiation, elevated temperature, temperature cycling, thermal shock and high humidity. Their effects on the insulator surface conditions and electrical performance wee examined through visual inspection and SEM studies, contact angle measurements, thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS) analysis, and 50% impulse flashover voltage tests. The results showed a significant damage on the insulator surface caused by some ofmore » the imposed aging stresses. The EDS analysis suggested a photooxidation process that happened on the insulator surface during the aging period.« less
Aerospace applications of PMR polyimide composites
NASA Technical Reports Server (NTRS)
Serafini, T. T.
1985-01-01
The current status of the novel class of processable, addition-type polyimides known as PMR (for in situ polymerization of monomer reactants) polyimides, developed by NASA at the Lewis Research Center, is reviewed. Highlights of PMR technology studies conducted at NASA Lewis are presented. Several examples of industrial applications of PMR-15 polyimide composites to aerospace structural components are examined.
Substituted Cyclohexene Endcaps for Polymers with Thermal-Oxidative Stability
NASA Technical Reports Server (NTRS)
2005-01-01
This invention relates to polyimides having improved thermal-oxidative stability, to the process of preparing said polyimides, and the use of polyimide prepolymers in the preparation of prepregs and composites. The polyimides are particularly usefull in the preparation of fiber-reinforced, high-temperature composites for use in various engine parts including inlets, fan ducts, exit flaps and other parts of high speed aircraft. The polyimides are derived from the polymerization of effective amounts of at least one tetracarboxylic dianhydride, at least one polyamine and a novel dicarboxylic endcap having the formula presented.
Tesoro, Giuliana C.; Sastri, Vinod R.
1993-01-01
A method for the preparation of a polyimide containing reversible crosslinks comprising the step of curing a monomer having the formula ##STR1## wherein R and R' may be the same or different and each is H or lower alkyl having 1-5 carbon atoms under conditions conducive to the formation of a polyimide and thereby forming a polyimide having the formula ##STR2## R and R' are as defined above and n is an integer from 10 to 100. The polyimide may be converted to a soluble polymer by cleaving the disulfide bond in the presence of a solvent and a reducing agent. The reduced polymer may be reformed into the polymer in an oxidation step or into a modified polyimide in other reaction steps. Copolymerization processes are also disclosed.
High-Flow, High-Molecular-Weight, Addition-Curing Polyimides
NASA Technical Reports Server (NTRS)
Chuang, Kathy C.; Vannucci, Raymond D.
1993-01-01
In developed series of high-flow PMR-type polyimide resins, 2, 2'-bis(trifluoromethyl)-4, 4'-diaminobiphenyl (BTDB) substituted for 1, 4-pheylenediamine in PMR-II formulation. Polyimides designated either as PMR-12F when nadic ester (NE) end caps used, or as V-CAP-12F when p-aminostyrene end caps used. High-molecular-weight, addition-curing polyimides based on BTBD and HFDE highly processable high-temperature matrix resins used to make composite materials with excellent retention of properties during long-term exposure to air at 650 degrees F or higher temperature. Furthermore, 12F addition-curing polyimides useful for electronic applications; fluorinated rigid-rod polyimides known to exhibit low thermal expansion coefficients as well as low absorption of moisture.
Flexible Microstrip Circuits for Superconducting Electronics
NASA Technical Reports Server (NTRS)
Chervenak, James; Mateo, Jennette
2013-01-01
Flexible circuits with superconducting wiring atop polyimide thin films are being studied to connect large numbers of wires between stages in cryogenic apparatus with low heat load. The feasibility of a full microstrip process, consisting of two layers of superconducting material separated by a thin dielectric layer on 5 mil (approximately 0.13 mm) Kapton sheets, where manageable residual stress remains in the polyimide film after processing, has been demonstrated. The goal is a 2-mil (approximately 0.051-mm) process using spin-on polyimide to take advantage of the smoother polyimide surface for achieving highquality metal films. Integration of microstrip wiring with this polyimide film may require high-temperature bakes to relax the stress in the polyimide film between metallization steps.
Evaluation of pyrolysis and arc tracking on candidate wire insulation designs for space applications
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Hrovat, Kenneth
1994-01-01
The ability of wire insulation materials and constructions to resist arc tracking was determined and the damage caused by initial arcing and restrike events was assessed. Results of arc tracking tests on various insulation constructions are presented in view-graph format. Arc tracking tests conducted on Champlain, Filotex, and Teledyne Thermatics indicate the Filotex is least likely to arc track. Arc tracking occurs more readily in air than it does in vacuum.
Measure Guideline: Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musunuru, S.; Pettit, B.
2015-04-01
This Measure Guideline describes a deep energy enclosure retrofit (DEER) solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits has the potential to adversely affect the durability of the wall; this document includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.
Status review of PMR polyimides
NASA Technical Reports Server (NTRS)
Serafini, T. T.
1978-01-01
The current status of first and second generation PMR polyimides are reviewed. Synthesis, processing, and applications were considered, using prepreg materials based on processable, high temperature resistant polyimides.
1993-12-01
the Device ........................ 13 2.3.1 Silicon Nitride Passivation ................. 13 2.3.2 Polyimide Passivation ................... 14 2.4...Coating .......... ... 49 5.4 Applying the Polyimide ........................ 50 5.4.1 Application of the Polyimide ............ ... 52 5.4.2 Negative...Photo-resist Process ............... 52 5.4.3 Polyimide Etch ........................ 53 5.4.4 Final Cure ............................ 54 5.4.5
High-temperature adhesives for bonding polyimide film. [bonding Kapton film for solar sails
NASA Technical Reports Server (NTRS)
St.clair, A. K.; Slemp, W. S.; St.clair, T. L.
1980-01-01
Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575 K (575 F) in vacuum. Glass transition temperatures of the polyimide/"Kapton" bondlines were monitored by thermomechanical analysis.
Transfer molding of PMR-15 polyimide resin
NASA Technical Reports Server (NTRS)
Reardon, J. P.; Moyer, D. W.; Nowak, B. E.
1985-01-01
Transfer molding is an economically viable method of producing small shapes of PMR-15 polyimide. It is shown that with regard to flexural, compressive, and tribological properties transfer-molded PMR-15 polyimide is essentially equivalent to PMR-15 polyimide produced by the more common method of compression molding. Minor variations in anisotropy are predictable effects of molding design and secondary finishing operations.
Modified Single-Wall Carbon Nanotubes for Reinforce Thermoplastic Polyimide
NASA Technical Reports Server (NTRS)
Lebron-COlon, Marisabel; Meador, Michael A.
2006-01-01
A significant improvement in the mechanical properties of the thermoplastic polyimide film was obtained by the addition of noncovalently functionalized single-wall carbon nanotubes (SWNTs). Polyimide films were reinforced using pristine SWNTs and functionalized SWNTs (F-SWNTs). The tensile strengths of the polyimide films containing F-SWNTs were found to be approximately 1.4 times higher than those prepared from pristine SWNTs.
Helping Aircraft Engines Lighten Up
NASA Technical Reports Server (NTRS)
2004-01-01
High-temperature polyimide/carbon fiber matrix composites are developed by the Polymers Branch at NASA's Glenn Research Center. These materials can withstand high temperatures and have good processing properties, which make them particularly useful for jet and rocket engines and for components such as fan blades, bushings, and duct segments. Applying polyimide composites as components for aerospace structures can lead to substantial vehicle weight reductions. A typical polyimide composite is made up of layers of carbon or glass fibers glued together by a high-temperature polymer to make the material strong, stiff, and lightweight. Organic molecules containing carbon, nitrogen, oxygen, and hydrogen within the polyimide keep the material s density low, resulting in the light weight. The strength of a component or part made from a polyimide comes mainly from the reinforcing high-strength fibers. The strength of the carbon fibers coupled with the stiffness of polyimides allows engineers to make a very rigid structure without it being massive. Another benefit of a polyimide s suitability for aerospace applications is its reduced need for machining. When polyimide parts are removed from a mold, they are nearly in their final shape. Usually, very little machining is needed before a part is ready for use.
P-V-T Properties of Polyimides and Model Imide Compounds
NASA Technical Reports Server (NTRS)
Orwoll, Robert A.
1997-01-01
Aromatic polyimides are used as matrix resins in advanced composites, as high strength films, and as high-temperature adhesives, owing in part to their unusual thermal and chemical stability. The polyimides' desirable qualities of very high softening temperatures and negligibly small solubilities in and low permeabilities by most solvents have limited the kinds of fundamental studies that can be performed on these systems. Consequently, relationships between the molecular structure of polyimides and their bulk properties are not as well understood as might be expected given their widespread applications. In particular, the intermolecular forces in polyimides that play a critical role determining their densities, solubilities, viscosities, moduli, glass transitions, etc. are less well characterized for polyimides than for other widely used polymeric materials. The purpose of the present study is to obtain experimental data for establishing parameters that characterize the intermolecular forces in polyimides. We report here our studies on tractable low molecular-weight imides that contain the same structural features that are present in polyimide materials. We have measured equation-of-state properties and dipole moments for a variety of such systems in the liquid state. Both pure compounds and binary mixtures have been studied.
Development and fabrication of a graphite polyimide box beam
NASA Technical Reports Server (NTRS)
Nadler, M. A.; Darms, F. J.
1972-01-01
The state-of-the-art of graphite/polyimide structures was evaluated and key design and fabrication issues to be considered in future hardware programs are defined. The fabrication and testing at 500 F of a graphite/polyimide center wing box beam using OV-10A aircraft criteria was accomplished. The baseline design of this box was developed in a series of studies of other advanced composite materials: glass/epoxy, boron/epoxy, and boron/polyimide. The use of this basic design permits ready comparison of the performance of graphite/polyimide with these materials. Modifications to the baseline composite design were made only in those areas effected by the change of materials. Processing studies of graphite fiber polyimide resins systems resulted in the selection of a Modmor II/Gemon L material.
Polyimides based on 4,4'-bis (4-aminophenoxy)-2,2'or 2,2', 6,6'-substituted biphenyl
NASA Technical Reports Server (NTRS)
Chuang, Chun-Hua K. (Inventor)
1999-01-01
This invention relates the novel diamines, the polyimide oligomers and the polyimides derived therefrom and to the method of preparing the diamines, oligomers and the polyimides. The thermoplastic polyimides derived from the aromatic diamines of this invention are characterized as having a high glass transition temperature, good mechanical properties and improved processability in the manufacture of adhesives, electronic and composite materials for use in the automotive and aerospace industry. The distinction of the novel aromatic diamines of this invention is the 2,2',6,6'-substituted biphenyl radicals which exhibit noncoplanar conformation that enhances the solubility of the diamine as well as the processability of the polyimides, while retaining a realatively high glass transition temperature and improved mechanical properties at useful temperature ranges.
NASA Technical Reports Server (NTRS)
Chuang, Chun-Hua K. (Inventor)
2000-01-01
This invention relates the novel diamines. the polyimide oligomers and the polyimides derived therefrom and to the method of preparing the diamines, oligomers and the polyimides. The thermoplastic polyimides derived from the aromatic diamines of this invention are characterized as having a high glass transition temperature. good mechanical properties and improved processability in the manufacture of adhesives. electronic and composite materials for use in the automotive and aerospace industry. The distinction of the novel aromatic diamines of this invention is the 2.2',6.6substituted biphenyl radicals which exhibit noncoplanar conformation that enhances the solubility of the diamine as well as the processability of the polyimides. while retaining a relatively high glass transition temperature and improved mechanical properties at useful temperature ranges.
Space Environmentally Stable Polyimides and Copolyimides
NASA Technical Reports Server (NTRS)
Watson, Kent A.; Connell, John W.
2000-01-01
Polyimides with a unique combination of properties including low color in thin films, atomic oxygen (AO), ultra-violet (UV) radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures and high thermal stability have been prepared and characterized. The polymers were prepared by reacting a novel aromatic diamine with aromatic dianhydrides in a polar aprotic solvent. The solubility of the polymers in the imide form as well as the color density of thin films were dependent upon the chemical structure of the dianhydride. Several thin films (25-50 mm thick) prepared by solution casting of amide acid or imide solutions exhibited very low color and high optical transparency (approximately 90%) as determined by UV/visible spectroscopy. The polymers exhibited T(sub g)s >200 C depending upon the structure of the dianhydride and temperatures of 5% weight loss approximately 500C in air as determined by dynamic thermogravimetric analysis. Thin films coated with silver/inconel were exposed to a high fluence of AO and 1000 equivalent solar hours of UV radiation. The effects of these exposures on optical properties were minor. These space environmentally durable polymers are potentially useful in a variety of applications on spacecraft such as thin film membranes on antennas, second-surface mirrors, thermal/optical coatings and multi-layer thermal insulation (MLI) blanket materials. The chemistry, physical and mechanical properties of the polymers as well as their responses to AO and UV exposure will be discussed.
NASA Technical Reports Server (NTRS)
1983-01-01
NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.
Correlation between the structure modification and conductivity of 3 MeV Si ion-irradiated polyimide
NASA Astrophysics Data System (ADS)
Sun, Youmei; Zhu, Zhiyong; Li, Changlin
2002-05-01
The surface modification of the polyimide (PI/Kapton) films was carried out by 3 MeV Si + implantation to fluences ranging from 1×10 12 to 1.25×10 15 ions/cm 2. Fourier transform infrared (FTIR), Raman and ultraviolet/visible (UV/Vis) spectroscopes were employed to investigate the chemical degradation of function groups in the irradiated layer. FTIR results show that the absorbance of typical function group decreases exponentially as a function of fluence. The damage cross-section of typical bonds of PI was evaluated from the FTIR spectra. Raman analysis shows the absorbed dose for destruction of all function groups is above 218 MGy. The red shifting of the absorption edge from UV to visible reveals the band gap closing which results from increase of the cluster size. The production efficiency of the chromophores was discussed according to UV/Vis analysis. Irradiation dramatically enhances the electrical conductivity and the sheet resistivity in our experiment descends nearly 10 orders of magnitude compared with its intrinsic value.
Cold-stage microscopy system for fast-frozen liquids.
Talmon, Y; Davis, H T; Scriven, L E; Thomas, E L
1979-06-01
The least artifact-laden fixation technique for examining colloidal suspensions, microemulsions, and other microstructured liquids in the electron microscope appears to be thermal fixation, i.e., ultrafast freezing of the liquid specimen. For rapid-enough cooling and for observation in TEM/STEM a thin sample is needed. The need is met by trapping a thin layer ( approximately 100 nm) of liquid between two polyimide films ( approximately 40 nm thickness) mounted on copper grids and immersing the resulting sandwich in liquid nitrogen at its melting point. For liquids containing water, polyimides films are used since this polymer is far less susceptible to the electron beam damage observed for the commonly used polymer films such as Formvar and collodion in contact with ice. Transfer of the frozen sample into the microscope column without deleterious frost deposition and warming is accomplished with a new transfer module for the cooling stage of the JEOL JEM-100CX microscope, which makes a true cold stage out of a device originally intended for cooling specimens inside the column. Sample results obtained with the new fast-freeze, cold-stage microscopy system are given.
Thermal Insulation System for Non-Vacuum Applications Including a Multilayer Composite
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor)
2017-01-01
The thermal insulation system of the present invention is for non-vacuum applications and is specifically tailored to the ambient pressure environment with any level of humidity or moisture. The thermal insulation system includes a multilayered composite including i) at least one thermal insulation layer and at least one compressible barrier layer provided as alternating, successive layers, and ii) at least one reflective film provided on at least one surface of the thermal insulation layer and/or said compressible barrier layer. The different layers and materials and their combinations are designed to provide low effective thermal conductivity for the system by managing all modes of heat transfer. The thermal insulation system includes an optional outer casing surrounding the multilayered composite. The thermal insulation system is particularly suited for use in any sub-ambient temperature environment where moisture or its adverse effects are a concern. The thermal insulation system provides physical resilience against damaging mechanical effects including compression, flexure, impact, vibration, and thermal expansion/contraction.
Orbital Debris Impact Damage to Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Robinson, Jennifer H.
1998-01-01
In an effort by the National Aeronautics and Space Administration (NASA), hypervelocity impact tests were performed on thermal protection systems (TPS) applied on the external surfaces of reusable launch vehicles (RLV) to determine the potential damage from orbital debris impacts. Three TPS types were tested, bonded to composite structures representing RLV fuel tank walls. The three heat shield materials tested were Alumina-Enhanced Thermal Barrier-12 (AETB-12), Flexible Reusable Surface Insulation (FRSI), and Advanced Flexible Reusable Surface Insulation (AFRSI). Using this test data, predictor equations were developed for the entry hole diameters in the three TPS materials, with correlation coefficients ranging from 0.69 to 0.86. Possible methods are proposed for approximating damage occurring at expected orbital impact velocities higher than tested, with references to other published work.
NASA Astrophysics Data System (ADS)
Sharma, Rajiv; Tanna, V. L.; Rao, C. V. S.; Abhangi, Mitul; Vala, Sudhirsinh; Sundaravel; Varatharajan, S.; Sivakumar, S.; Sasi, K.; Pradhan, S.
2017-02-01
Epoxy based glass fiber reinforced composites are the main insulation system for the superconducting magnets of fusion machines. 14MeV neutrons are generated during the DT fusion process, however the energy spectra and flux gets modified to a great extent when they reach the superconducting magnets. Mechanical properties of the GFRP insulation material is reported to degrade up to 30%. As a part of R & D activity, a joint collaboration with IGCAR, Kalpakkam has been established. The indigenous insulation material is subjected to fast neutron fluence of 1014 - 1019 n/m2 (E>0.1 MeV) in FBTR and KAMINI Reactor, India. TRIM software has been used to simulate similar kind of damage produced by neutrons by ion irradiation with 5 MeV Al ions and 3 MeV protons. Fluence of the ions was adjusted to get the same dpa. We present the test experiment of neutron irradiation of the composite material (E-glass, S-glass fiber boron free and DGEBA epoxy). The test results of tensile, inter laminar shear and electrical breakdown strength as per ASTM standards, assessment of micro-structure surface degradation before and after irradiation will be presented. MCNP simulations are carried out for neutron flux, dose and damages produced in the insulation material.
Polyimide amic acid salts and polyimide membranes formed therefrom
Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz; Macheras, James Timothy
2004-04-06
The invention relates to preparation and uses of novel polymeric materials, polyimide amic acid salts (PIAAS). The use of these materials for the fabrication of fluid separation membranes is further disclosed.
Pieces of the Huygens probe internal insulating foam await inspection after removal from the probe i
NASA Technical Reports Server (NTRS)
1997-01-01
Pieces of the Huygens probe internal insulating foam await inspection after removal from the probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station.
NASA Technical Reports Server (NTRS)
Taylor, A. H.; Jackson, L. R.; Weinstein, I.
1977-01-01
Three thermal protection systems proposed for a hypersonic research airplane were subjected to high heating rates in the Langley 8 foot, high temperature structures tunnel. Metallic heat sink (Lockalloy), reusable surface insulation, and insulator-ablator materials were each tested under similar conditions. The specimens were tested for a 10 second exposure on the windward side of an elevon deflected 30 deg. The metallic heat sink panel exhibited no damage; whereas the reusable surface insulation tiles were debonded from the panel and the insulator-ablator panel eroded through its thickness, thus exposing the aluminum structure to the Mach 7 environment.
Very Low Frequency Breakdown Properties of Electrical Insulation Materials at Cryogenic Temperatures
NASA Astrophysics Data System (ADS)
Sauers, I.; Tuncer, E.; Polizos, G.; James, D. R.; Ellis, A. R.; Pace, M. O.
2010-04-01
For long cables or equipment with large capacitance it is not always possible to conduct high voltage withstand tests at 60 Hz due to limitations in charging currents of the power supply. Very low frequency (typically at a frequency of 0.1 Hz) has been used for conventional cables as a way of getting around the charging current limitation. For superconducting grid applications the same issues apply. However there is very little data at cryogenic temperatures on how materials perform at low frequency compared to 60 Hz and whether higher voltages should be applied when performing a high voltage acceptability test. Various materials including G10 (fiberglass reinforced plastic or FRP), Cryoflex™ (a tape insulation used in some high temperature superconducting cables), kapton (commonly used polyimide), polycarbonate, and polyetherimide, and in liquid nitrogen alone have been tested using a step method for frequencies of 60 Hz, 0.1 Hz, and dc. The dwell time at each step was chosen so that the aging factor would be the same in both the 60 Hz and 0.1 Hz tests. The data indicated that, while there is a small frequency dependence for liquid nitrogen, there are significant differences for the solid materials studied. Breakdown data for these materials and for model cables will be shown and discussed.
The role of microbial biofilms in deterioration of space station candidate materials.
Gu, J D; Roman, M; Esselman, T; Mitchell, R
1998-01-01
Formation of microbial biofilms on surfaces of a wide range of materials being considered as candidates for use on the International Space Station was investigated. The materials included a fibre-reinforced polymeric composite, an adhesive sealant, a polyimide insulation foam, teflon cable insulation, titanium, and an aliphatic polyurethane coating. They were exposed to a natural mixed population of bacteria under controlled conditions of temperature and relative humidity (RH). Biofilms formed on the surfaces of the materials at a wide range of temperatures and RHs. The biofilm population was dominated by Pseudomonas aeruginosa, Ochrobactrum anthropi, Alcaligenes denitrificans, Xanthomonas maltophila, and Vibrio harveyi. The biocide, diiodomethyl-p-tolyl sulfone, impregnated in the polyurethane coating, was ineffective against microbial colonization and growth. Degradation of the polyurethane coatings was monitored with electrochemical impedance spectroscopy (EIS). The impedance spectra indicated that microbial degradation of the coating occurred in several stages. The initial decreases in impedance were due to the transport of water and solutes into the polymeric matrices. Further decreases were a result of polymer degradation by microorganisms. Our data showed that these candidate materials for space application are susceptible to biofilm formation and subsequent degradation. Our study suggests that candidate materials for use in space missions need to be carefully evaluated for their susceptibility to microbial biofilm formation and biodegradation.
Development of graphite/polyimide honeycomb core materials
NASA Technical Reports Server (NTRS)
Stone, R. H.
1978-01-01
Honeycomb panel constructions consisting entirely of graphite/polyimide composites were developed and evaluated. Graphite/polyimide composites, were used in the honeycomb core webs and in pre-cured sandwich skins. Polyimide adhesives were also developed and evaluated for use in skin-core bonding. The purpose of this program was to develop light weight sandwich constructions for high temperature applications which could provide comparable shear strength and stiffness to metallic honeycomb constructions.
PMR polyimides-review and update
NASA Technical Reports Server (NTRS)
Serafini, T. T.; Delvigs, P.; Alston, W. B.
1982-01-01
Fiber reinforced PMR polyimides are finding increased acceptance as engineering materials for high performance structural applications. Prepreg materials based on this novel class of highly processable, high temperature resistant polyimides are commercially available and the PMR concept is used by other investigators. The current status of first and second generation PMR polyimides were reviewed. Emphasis is given to the chemistry, processing and applications of the first generation material known as PMR-15.
The effect of elastomer chain length on properties of silicone-modified polyimide adhesives
NASA Technical Reports Server (NTRS)
St.clair, A. K.; St.clair, T. L.; Ezzell, S.
1981-01-01
A series of polyimides containing silicone elastomers was synthesized in order to study the effects of the elastomer chain length on polymer properties. The elastomer with repeat units varying from n=10 to 105 was chemically reacted into the backbone of an addition polyimide oligomer via reactive aromatic amine groups. Glass transition temperatures of the elastomer and polyimide phases were observed by torsional braid analysis. The elastomer-modified polyimides were tested as adhesives for bonding titanium in order to determine their potential for aerospace applications. Adhesive lap shear tests were performed before and after aging bonded specimens at elevated temperatures.
Polyimides containing carbonyl and ether connecting groups - II
NASA Technical Reports Server (NTRS)
Hergenrother, P. M.; Havens, S. J.
1989-01-01
In a study of polyimides containing carbonyl and ether connecting groups between aromatic rings, several new polyimides were prepared and characterized. A few of these polymers were semicrystalline. Glass transition temperatures ranged from 164 to 258 C, and crystalline melt temperatures were observed between 350 and 424 C. The semicrystalline polyimide from the reaction of 3.3',4,4'-benzophenonetetracarboxylic dianhydride and 1,3-bis(4-aminophenoxy-4'-benzoyl)benzene provided transparent orange films with excellent tensile properties, exceptional resistance to solvents and strong base, and high thermooxidative stability. In addition, this polyimide provided excellent adhesive strength for joining titanium (6Al-4V) to titanium.
Effect of Temperature and Deformation Rate on the Tensile Mechanical Properties of Polyimide Films
NASA Technical Reports Server (NTRS)
Moghazy, Samir F.; McNair, Kevin C.
1996-01-01
In order to study the structure-property relationships of different processed oriented polyimide films, the mechanical properties will be identified by using tensile tester Instron 4505 and structural information such as the 3-dimensional birefringence molecular symmetry axis and 3-dimensional refractive indices will be determined by using wave guide coupling techniques. The monoaxial drawing techniques utilized in this research are very useful for improving the tensile mechanical properties of aromatic polyimide films. In order to obtain high modulus/high strength polyimide films the following two techniques have been employed, cold drawing in which polyimide films are drawn at room temperature at different cross head speeds and hot drawing in which polyimide films are drawn at different temperatures and cross head speeds. In the hot drawing process the polyimide films are drawn at different temperatures until the glass transition temperature (Tg) is reached by using the environmental chamber. All of the mechanical and optical property parameters will be identified for each sample processed by both cold and hot drawing techniques.
Incorporation of metal ions into polyimides
NASA Technical Reports Server (NTRS)
Taylor, L. T.; Carver, V. C.; Furtsch, T. A.; Saint Clair, A. K.
1980-01-01
The effects of the incorporation of metal ions into various polyimides on polyimide properties are investigated. Polyimide films derived from 3,3',4,4'-benzophenone tetracarboxylic acid dianhydride (BDTA) 3,3'-diaminobenzophenone (m,m'-DABP), 4,4'-diaminobenzophenone (p,p'-DABP) or 4,4'-oxydianiline were prepared with the concurrent addition of approximately 20 metals in a variety of forms. In general, it is found that the films derived from BDTA + p,p'-DABP were brittle and of poor quality, with brittle films also produced in most of the BDTA + m, m'-DABP polyimides regardless of whether the added metal was hydrate or anhydrous. Thermomechanical analysis, torsional braid analysis, thermal gravimetric analysis, infrared spectral analysis and isothermal studies on many of the polyimide films produced indicate that the softening temperature is generally increased upon the addition of metal ions, at the expense of thermal stability, while no changes in chemical functionality are observed. The best system studied in regard to polymer property enhancement appears to be tri(acetylacetonato)aluminum(III) added to the m, m'-DABP polyamide, which has been found to exhibit four times the lap shear strength of the polyimide alone.
High-Performance, Semi-Interpenetrating Polymer Network
NASA Technical Reports Server (NTRS)
Pater, Ruth H.; Lowther, Sharon E.; Smith, Janice Y.; Cannon, Michelle S.; Whitehead, Fred M.; Ely, Robert M.
1992-01-01
High-performance polymer made by new synthesis in which one or more easy-to-process, but brittle, thermosetting polyimides combined with one or more tough, but difficult-to-process, linear thermoplastics to yield semi-interpenetrating polymer network (semi-IPN) having combination of easy processability and high tolerance to damage. Two commercially available resins combined to form tough, semi-IPN called "LaRC-RP49." Displays improvements in toughness and resistance to microcracking. LaRC-RP49 has potential as high-temperature matrix resin, adhesive, and molding resin. Useful in aerospace, automotive, and electronic industries.
Application of small-diameter FBG sensors for detection of damages in composites
NASA Astrophysics Data System (ADS)
Okabe, Yoji; Mizutani, Tadahito; Yashiro, Shigeki; Takeda, Nobuo
2001-08-01
Small-diameter fiber Bragg grating (FBG) sensors have been developed by Hitachi Cable Ltd. and the authors. Since the outside diameter of polyimide coating is 52 micrometers , embedding of the sensors into carbon fiber reinforced plastic (CFRP) composites prepregs of 125 micrometers in thickness does not deteriorate the mechanical properties of the composite laminates. In this research, the small-diameter FBG sensor was applied for the detection of transverse cracks in CFRP composites. The FBG sensor was embedded in 0 degree(s) ply of a CFRP cross-ply laminate.
Design and Fabrication of an Implantable Cortical Semiconductor Integrated Circuit Electrode Array
1990-12-01
25 Array Pads....................25 Polyimide ....................26 III. METHODOLOGY.........................27 Brain Chip Electronics...38 Ionic Permeation. .................. 38 Polyimide . ................... 38 Implantation. .................... 39 Wire Bonding...53 Pad Sensitivity ................. 53 Ionic Permeat:.on. .................. 54 Polyimide . ................... 54 Implantation
Advanced Design Composite Aircraft
1976-02-01
been selected for ADCA applications. These are graphite (PAN)/ epoxy, graphite (PAN)/polyimide, Kevlar /epoxy, f ibergl ass/epoxy, and quartz...Aluminum Alloy Aluminum Alloy ACG (commercial grade) Nomex HRP Fiberglass/ Phenolic HRH Fiberglass/Polyimide Graphite/epoxy Graphi te/Polyimide
High-temperature polyimides prepared from 2,2-bis-[(2-halo-4-aminophenoxy)-phenyl]hexafluoropropane
NASA Technical Reports Server (NTRS)
Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)
1984-01-01
There are provided the aromatic diamines 2,2-bis-[(2-halo-4-aminophenoxy)-phenyl]hexafluoropropane, where the attached ortho halogen is preferably chlorine, and 4,4'-bis(4-aminophenoxy)biphenyl, as novel monomers for polyimide polymerizations. The former, when reacted with 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, provides a polyimide having exceptional high-temperature performance. The latter diamine is a low-cost monomer for polyimide production.
Surface interaction of polyimide with oxygen ECR plasma
NASA Astrophysics Data System (ADS)
Naddaf, M.; Balasubramanian, C.; Alegaonkar, P. S.; Bhoraskar, V. N.; Mandle, A. B.; Ganeshan, V.; Bhoraskar, S. V.
2004-07-01
Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis.
Polyimides prepared from 3,5-diamino benzo trifluoride
NASA Technical Reports Server (NTRS)
Gerber, Margaret K. (Inventor); Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); St.clair, Anne K. (Inventor)
1993-01-01
High performance, thermooxidatively stable polyimides are prepared by reacting aromatic diamines with pendant trifluoromethyl groups and dianhydrides in an amide solvent to form a poly(amic acid), followed by cyclizing the poly(amic acid) to form the corresponding polyimide.
Low coefficient of thermal expansion polyimides containing metal ion additives
NASA Technical Reports Server (NTRS)
Stoakley, D. M.; St. Clair, A. K.
1992-01-01
Polyimides have become widely used as high performance polymers as a result of their excellent thermal stability and toughness. However, lowering their coefficient of thermal expansion (CTE) would increase their usefulness for aerospace and electronic applications where dimensional stability is a requirement. The incorporation of metal ion-containing additives into polyimides, resulting in significantly lowered CTE's, has been studied. Various metal ion additives have been added to both polyamic acid resins and soluble polyimide solutions in the concentration range of 4-23 weight percent. The incorporation of these metal ions has resulted in reductions in the CTE's of the control polyimides of 12 percent to over 100 percent depending on the choice of additive and its concentration.
Low dielectric polyimide aerogels as substrates for lightweight patch antennas.
Meador, Mary Ann B; Wright, Sarah; Sandberg, Anna; Nguyen, Baochau N; Van Keuls, Frederick W; Mueller, Carl H; Rodríguez-Solís, Rafael; Miranda, Félix A
2012-11-01
The dielectric properties and loss tangents of low-density polyimide aerogels have been characterized at various frequencies. Relative dielectric constants as low as 1.16 were measured for polyimide aerogels made from 2,2'-dimethylbenzidine (DMBZ) and biphenyl 3,3',4,4'-tetracarbozylic dianhydride (BPDA) cross-linked with 1,3,5-triaminophenoxybenzene (TAB). This formulation was used as the substrate to fabricate and test prototype microstrip patch antennas and benchmark against state of practice commercial antenna substrates. The polyimide aerogel antennas exhibited broader bandwidth, higher gain, and lower mass than the antennas made using commercial substrates. These are very encouraging results, which support the potential advantages of the polyimide aerogel-based antennas for aerospace applications.
Low-Dielectric Constant Polyimide Nanoporous Films: Synthesis and Properties
NASA Astrophysics Data System (ADS)
Mehdipour-Ataei, S.; Rahimi, A.; Saidi, S.
2007-08-01
Synthesis of high temperature polyimide foams with pore sizes in the nanometer range was developed. Foams were prepared by casting graft copolymers comprising a thermally stable block as the matrix and a thermally labile material as the dispersed phase. Polyimides derived from pyromellitic dianhydride with new diamines (4BAP and BAN) were used as the matrix material and functionalized poly(propylene glycol) oligomers were used as a thermally labile constituent. Upon thermal treatment the labile blocks were subsequently removed leaving pores with the size and shape of the original copolymer morphology. The polyimides and foamed polyimides were characterized by some conventional methods including FTIR, H-NMR, DSC, TGA, SEM, TEM, and dielectric constant.
Polyimides with carbonyl and ether connecting groups between the aromatic rings
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)
1992-01-01
New polyimides have been prepared from the reaction of aromatic dianhydrides with novel aromatic diamines containing carbonyl and ether connecting groups between the aromatic rings. Several of these polyimides are shown to be semi-crystalline as evidenced by wide angle x ray diffraction and differential scanning calorimetry. Most of the polyimides form tough solvent resistant films with high tensile properties. Several of these materials can be thermally processed to form solvent and base resistant moldings.
Effect of MeV electron irradiation on the free volume of polyimide
NASA Astrophysics Data System (ADS)
Alegaonkar, P. S.; Bhoraskar, V. N.
2004-08-01
The free volume of the microvoids in the polyimide samples, irradiated with 6 MeV electrons, was measured by the positron annihilation technique. The free volume initially decreased the virgin value from similar to13.70 to similar to10.98 Angstrom(3) and then increased to similar to18.11 Angstrom(3) with increasing the electron fluence, over the range of 5 x 10(14) - 5 x 10(15) e/cm(2). The evolution of gaseous species from the polyimide during electron irradiation was confirmed by the residual gas analysis technique. The polyimide samples irradiated with 6 MeV electrons in AgNO3 solution were studied with the Rutherford back scattering technique. The diffusion of silver in these polyimide samples was observed for fluences >2 x 10(15) e/cm(2), at which microvoids of size greater than or equal to3 Angstrom are produced. Silver atoms did not diffuse in the polyimide samples, which were first irradiated with electrons and then immersed in AgNO3 solution. These results indicate that during electron irradiation, the microvoids with size greater than or equal to3 Angstrom were retained in the surface region through which silver atoms of size similar to2.88 Angstrom could diffuse into the polyimide. The average depth of diffusion of silver atoms in the polyimide was similar to2.5 mum.
1997-09-10
Pieces of the Huygens probe internal insulating foam await inspection after removal from the probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
30 CFR 57.12004 - Electrical conductors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical conductors. 57.12004 Section 57... Surface and Underground § 57.12004 Electrical conductors. Electrical conductors shall be of a sufficient... operations will not damage the insulating materials. Electrical conductors exposed to mechanical damage shall...
30 CFR 57.12004 - Electrical conductors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electrical conductors. 57.12004 Section 57... Surface and Underground § 57.12004 Electrical conductors. Electrical conductors shall be of a sufficient... operations will not damage the insulating materials. Electrical conductors exposed to mechanical damage shall...
30 CFR 57.12004 - Electrical conductors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electrical conductors. 57.12004 Section 57... Surface and Underground § 57.12004 Electrical conductors. Electrical conductors shall be of a sufficient... operations will not damage the insulating materials. Electrical conductors exposed to mechanical damage shall...
High-voltage testing of a 500-kV dc photocathode electron gun.
Nagai, Ryoji; Hajima, Ryoichi; Nishimori, Nobuyuki; Muto, Toshiya; Yamamoto, Masahiro; Honda, Yosuke; Miyajima, Tsukasa; Iijima, Hokuto; Kuriki, Masao; Kuwahara, Makoto; Okumi, Shoji; Nakanishi, Tsutomu
2010-03-01
A high-voltage dc photocathode electron gun was successfully conditioned up to a voltage of 550 kV and a long-time holding test for 8 h was demonstrated at an acceleration voltage of 500 kV. The dc photocathode electron gun is designed for future light sources based on energy-recovery linac and consists of a Cockcroft-Walton generator, a segmented cylindrical ceramic insulator, guard-ring electrodes, a support-rod electrode, a vacuum chamber, and a pressurized insulating gas tank. The segmented cylindrical ceramic insulator and the guard-ring electrodes were utilized to prevent any damage to the insulator from electrons emitted by the support-rod electrode.
NASA Astrophysics Data System (ADS)
Xie, Jianfei; Qiu, Yiping
2009-07-01
Nanoclay modified PMR type polyimide composites were prepared from 3D orthogonal woven basalt fiber performs and nanoclay modified polyimide matrix resin, which derived from methylene dianiline (MDA), dimethyl ester of 3,3',4,4'- oxydiphthalic acid (ODPE), monomethyl ester of cis-5-norbornene-endo-2,3-dicarboxylic acid (NE) and nanoclay. The Na+-montmorillonite was organically treated using a 1:1 molar ratio mixture of dodecylamine (C12) and MDA. The rheological properties of neat B-stage PMR polyimide and 2% clay modified B-stage PMR polyimide were investigated. Based on the results obtained from the rheological tests, a two step compression molding process can be established for the composites. In the first step, the 3D fabric preforms were impregnated with polyimide resin in a vacuum oven and heated up for degassing the volatiles and by-products. In the second step, composites were compressed. The internal structure of the composites was observed by a microscope. Incorporation of 2% clay showed an improvement in the Tg and stiffness of the PMR polyimide. The resulting composites exhibited high thermal stability and good mechanical properties.
1989-08-04
ceramic substrate and a multilayer thin film metal (copper) and polymer ( polyimide ) overlays. 73 The MCM technology was pioneered by IBM, which has made...packaging. The first is the use of polymeric dielectric layers such as polyimides . In fact, the current MCP’s 3 being developed for the DoD use... polyimide dielectrics. Nonetheless, much work remains to be done before these organic dielectrics can be regarded as Isatisfactory. Polyimides have a
Method of Forming a Hot Film Sensor System on a Model
NASA Technical Reports Server (NTRS)
Tran, Sang Q. (Inventor)
1998-01-01
A method of forming a hot film sensor directly on a model is provided. A polyimide solution is sprayed onto the model. The model so sprayed is then heated in air. The steps of spraying and heating are repeated until a polyimide film of desired thickness is achieved on the model. The model with the polyimide film thereon is then thoroughly dried in air. One or more hot film sensors and corresponding electrical conducting leads are then applied directly onto the polyimide film.
Reflective Self-Metallizing Polyimide Films
NASA Technical Reports Server (NTRS)
Thompson, David W. (Inventor); Caplan, Maggie L. (Inventor); St.Clair, Anne (Inventor)
1997-01-01
A silver organic complex, such as silver acetate, is solubilized in a polyamic acid resin or soluble polyimide solution using a suitable solvent such as hexafluoroacetyl acetone. The mixture is stable and can be applied to both flat and contoured surfaces. Application can be performed by casting, dip-coating, spraying, or other suitable techniques. In addition, the mixture can be cast or extruded as a polyimide film which is not applied to an underlying substrate. Upon curing, a flexible silver coated polyimide film is produced.
Polyimide processing additives
NASA Technical Reports Server (NTRS)
Fletcher, James C. (Inventor); Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)
1992-01-01
A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.
NASA Technical Reports Server (NTRS)
St. Clair, Terry L.; Progar, Donald J.; Smith, Janice Y.; Smith, Ricky E.
1991-01-01
Low-toxicity and low-mutogenicity monomer key to new high-performance polyimide. LaRC-IA is thermoplastic polyimide made from 3-4'-oxydianiline and 4,4'-oxydiphthalic anhydride. Good processing characteristics, low toxicity, and no mutagenicity. Adhesives, composite matrix resins, heat resin moldings, and coating films made of new polymer found to exhibit properties identical or superior to commercially available polyimides. Potential applications wide ranging. With and without end capping, employed to prepare unfilled moldings, coatings and free films, adhesive tape, adhesively bonded substrates, prepregs, and composites.
Polyimide processing additives
NASA Technical Reports Server (NTRS)
Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)
1993-01-01
A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of the additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.
The development of aerospace polyimide adhesives
NASA Technical Reports Server (NTRS)
St.clair, A. K.; St.clair, T. L.
1983-01-01
Few materials are available which can be used as aerospace adhesives at temperatures in the range of 300 C. The Materials Division at NASA-Langley Research Center developed several high temperature polyimide adhesives to fulfill the stringent needs of current aerospace programs. These adhesives are the result of a decade of basic research studies on the structure property relationships of both linear and addition aromatic polyimides. The development of both in house and commercially available polyimides is reviewed with regards to their potential for use as aerospace adhesives.
A Multimodal, SU-8 - Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology
Márton, Gergely; Orbán, Gábor; Kiss, Marcell; Fiáth, Richárd; Pongrácz, Anita; Ulbert, István
2015-01-01
Utilization of polymers as insulator and bulk materials of microelectrode arrays (MEAs) makes the realization of flexible, biocompatible sensors possible, which are suitable for various neurophysiological experiments such as in vivo detection of local field potential changes on the surface of the neocortex or unit activities within the brain tissue. In this paper the microfabrication of a novel, all-flexible, polymer-based MEA is presented. The device consists of a three dimensional sensor configuration with an implantable depth electrode array and brain surface electrodes, allowing the recording of electrocorticographic (ECoG) signals with laminar ones, simultaneously. In vivo recordings were performed in anesthetized rat brain to test the functionality of the device under both acute and chronic conditions. The ECoG electrodes recorded slow-wave thalamocortical oscillations, while the implanted component provided high quality depth recordings. The implants remained viable for detecting action potentials of individual neurons for at least 15 weeks. PMID:26683306
A Multimodal, SU-8 - Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology.
Márton, Gergely; Orbán, Gábor; Kiss, Marcell; Fiáth, Richárd; Pongrácz, Anita; Ulbert, István
2015-01-01
Utilization of polymers as insulator and bulk materials of microelectrode arrays (MEAs) makes the realization of flexible, biocompatible sensors possible, which are suitable for various neurophysiological experiments such as in vivo detection of local field potential changes on the surface of the neocortex or unit activities within the brain tissue. In this paper the microfabrication of a novel, all-flexible, polymer-based MEA is presented. The device consists of a three dimensional sensor configuration with an implantable depth electrode array and brain surface electrodes, allowing the recording of electrocorticographic (ECoG) signals with laminar ones, simultaneously. In vivo recordings were performed in anesthetized rat brain to test the functionality of the device under both acute and chronic conditions. The ECoG electrodes recorded slow-wave thalamocortical oscillations, while the implanted component provided high quality depth recordings. The implants remained viable for detecting action potentials of individual neurons for at least 15 weeks.
Performance of μ-RWELL detector vs resistivity of the resistive stage
NASA Astrophysics Data System (ADS)
Bencivenni, G.; De Oliveira, R.; Felici, G.; Gatta, M.; Morello, G.; Ochi, A.; Lener, M. Poli; Tskhadadze, E.
2018-04-01
The μ-RWELL is a compact spark-protected single amplification stage Micro-Pattern-Gaseous-Detector (MPGD). The detector amplification stage is realized with a polyimide structure, micro-patterned with a dense matrix of blind-holes, integrated into the readout structure. The anode is formed by a thin Diamond Like Carbon (DLC) resistive layer separated by an insulating glue layer from the readout strips. The introduction of the resistive layer strongly suppressing the transition from streamer to spark gives the possibility to achieve large gains (> 104), without significantly affecting the capability to be efficiently operated in high particle fluxes. In this work we present the results of a systematic study of the μ-RWELL performance as a function of the DLC resistivity. The tests have been performed either with collimated 5.9 keV X-rays or with pion and muon beams at the SPS Secondary Beamline H4 and H8 at CERN.
The elastic and inelastic behavior of woven graphite fabric reinforced polyimide composites
NASA Astrophysics Data System (ADS)
Searles, Kevin H.
In many aerospace and conventional engineering applications, load-bearing composite structures are designed with the intent of being subjected to uniaxial stresses that are predominantly tensile or compressive. However, it is likely that biaxial and possibly triaxial states of stress will exist throughout the in-service life of the structure or component. The existing paradigm suggests that unidirectional tape materials are superior under uniaxial conditions since the vast majority of fibers lie in-plane and can be aligned to the loading axis. This may be true, but not without detriment to impact performance, interlaminar strength, strain to failure and complexity of part geometry. In circumstances where a sufficient balance of these properties is required, composites based on woven fabric reinforcements become attractive choices. In this thesis, the micro- and mesoscale elastic behavior of composites based on 8HS woven graphite fabric architectures and polyimide matrices is studied analytically and numerically. An analytical model is proposed to predict the composite elastic constants and is verified using numerical strain energy methods of equivalence. The model shows good agreement with the experiments and numerical strain energy equivalence. Lamina stresses generated numerically from in-plane shear loading show substantial shear and transverse normal stress concentrations in the transverse undulated tow which potentially leads to intralaminar damage. The macroscale inelastic behavior of the same composites is also studied experimentally and numerically. On an experimental basis, the biaxial and modified biaxial Iosipescu test methods are employed to study the weaker-mode shear and biaxial failure properties at room and elevated temperatures. On a numerical basis, the macroscale inelastic shear behavior of the composites is studied. Structural nonlinearities and material nonlinearities are identified and resolved. In terms of specimen-to-fixture interactions, load eccentricities, geometric (large strains and rotations) nonlinearities and boundary contact (friction) nonlinearities are explored. In terms of material nonlinearities, anisotropic plasticity and progressive damage are explored. A progressive damage criterion is proposed which accounts for the elastic strain energy densities in three directions. Of the types of nonlinearities studied, the nonlinear shear stress-strain behavior of the composites is principally from progressive intralaminar damage. Structural nonlinearities and elastoplastic deformation appear to be inconsequential.
Study on process and characterization of high-temperature resistance polyimide composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Ling-Ying; Zhao, Wei-Dong; Liu, Han-Yang
2016-05-18
A novel polyimide composite with upper-use temperature of 420°C was prepared by autoclave process. The thermogravimetic analysis and rheological properties of uncured polyimide resin powders were analyzed. The influences of process parameters and post-treatment process on the properties of composites were also investigated. The morphologies of polyimide composites after shear fracture were observed by scanning electron microscope (SEM). The high-temperature resistance of composite was characterized by dynamic mechanical thermal analyzer (DMTA). Results showed that the imidization reaction mainly occurred in the temperature range of 100°C~220°C, and the largest weight loss rate appearing at 145°C indicated a drastic imidization reaction occurred.more » The melt viscosity of polyimide resin decreased with increasing the temperature between 220°C ∼305°C, and then increased with the increase of temperature due to the molecular crosslinking reactions. The fiber volume contents and void contents could be effectively controlled by applying the pressure step by step. The fiber volume content was sensitive to the initial pressure (P{sub i}) during the imidization. The second-stage pressure (P{sub 2}) and the temperature for applying the P{sub 2} (T{sub 2}) during the imidization had a great effect on the void content of composite. Good mechanical properties and interfacial adhesion of polyimide composite could obtain by optimized process. The post-treatment process can obviously increase the high-temperature resistance of polyimide composite. The polyimide composite treated at 420°C exhibited good retention of mechanical properties at 420°C and had a glass transition temperature (Tg) of 456°C. The retentions of flexible strength, flexible modulus and short beam shear strength of polyimide composite at 420°C were 65%, 84% and 62% respectively.« less
Rod-Coil Block Polyimide Copolymers
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Kinder, James D. (Inventor)
2005-01-01
This invention is a series of rod-coil block polyimide copolymers that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consist of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.
NASA Technical Reports Server (NTRS)
Rancourt, J. D.; Porta, G. M.; Moyer, E. S.; Madeleine, D. G.; Taylor, L. T.
1988-01-01
Polyimide-metal oxide (Co3O4 or CuO) composite films have been prepared via in situ thermal decomposition of cobalt (II) chloride or bis(trifluoroacetylacetonato)copper(II). A soluble polyimide (XU-218) and its corresponding prepolymer (polyamide acid) were individually employed as the reaction matrix. The resulting composites exhibited a greater metal oxide concentration at the air interface with polyamide acid as the reaction matrix. The water of imidization that is released during the concurrent polyamide acid cure and additive decomposition is believed to promote metal migration and oxide formation. In contrast, XU-218 doped with either HAuCl4.3H2O or AgNO3 yields surface gold or silver when thermolyzed (300 C).
Cyclopentadiene evolution during pyrolysis-gas chromatography of PMR polyimides
NASA Technical Reports Server (NTRS)
Alston, William B.; Gluyas, Richard E.; Snyder, William J.
1992-01-01
The effect of formulated molecular weight (FMW), extent of cure, and cumulative aging on the amount of cyclopentadiene (CPD) evolved from Polymerization of Monomeric Reactants (PMR) polyimides were investigated by pyrolysis-gas chromotography (PY-GC). The PMR polyimides are additional crosslinked resins formed from an aromatic diamine, a diester of an aromatic tetracarboxylic acid and a monoester of 5-norbornene-2, 3-dicarboxylic acid. The PY-GC results were related to the degree of crosslinking and to the thermo-oxidative stability (weight loss) of PMR polyimides. Thus, PY-GC has shown to be a valid technique for the characterization of PMR polyimide resins and composites via correlation of the CPD evolved versus the thermal history of the PMR sample.
STS-27R OV-104 Orbiter TPS damage review team, volume 1
NASA Technical Reports Server (NTRS)
Thomas, John W. (Compiler)
1989-01-01
Following the return to earth on December 2, 1988, of Orbiter OV-104, Atlantis, it was observed that there was substantial Thermal Protection System (TPS) tile damage present on the lower right fuselage and wing. Damage sites were more numerous than on previous flights and conversely, there was almost no damage present on Atlantis' left side. A review team investigated the cause beginning with a detailed inspection of the Atlantis TPS damage, and a review of related inspection reports to establish an indepth anomaly definition. An exhaustive data review followed. A fault tree and several failure scenarios were developed. Finally, the failure scenarios were categorized as either not possible, possible but not probable, or probable. This and other information gained during the review formed the basis for the team's findings and recommendations. The team concluded that the most probable cause of the severe STS-27R Orbiter tile damage is that the ablative insulating material covering the RH SRB Nose Cap dislodged and struck the Orbiter tile near 85 seconds into flight and possibly that debris from other sources, including repaired insulation and missing joint cork, caused minor tile damage. Findings are presented, and recommendations that are believed pertinent to minimizing the potential for inflight debris are described.
Substrate Material for Holographic Emulsions Utilizing Fluorinated Polyimide Film
NASA Technical Reports Server (NTRS)
Gierow, Paul A. (Inventor); Clayton, William R. (Inventor); St.Clair, Anne K. (Inventor)
1999-01-01
A new holographic substrate utilizing flexible. optically transparent fluorinated polyimides. Said substrates have 0 extremely low birefringence which results in a high signal to noise ratio in subsequent holograms. Specific examples of said fluorinated polyimides include 6FDA+APB and 6FDA+4BDAF.
Polyimides containing meta-biphenylenedioxy moieties and articles prepared therefrom
NASA Technical Reports Server (NTRS)
St.clair, Terry L. (Inventor); Pratt, Richard (Inventor)
1995-01-01
Two monomers containing meta-biphenylenedioxy moieties were prepared. One monomer, a diamine, is used to prepare polyimide, polyamide, and epoxy polymers. The other monomer, a dianhydride, was used to prepared polyimide polymers. These polymers are used to make films, coatings, and selective membranes.
Photogeneration of refractive-index patterns in doped polyimide films.
Chakravorty, K K
1993-05-01
A photosensitive benzophenone tetracarboxylic dianhyride-alkylated diamine polyimide formulation has been evaluated for application in an optical interconnection area. The refractive-index patterns in this material were optically recorded by UV-assisted photodoping of sensitizers. The polyimide films were selectively doped with benzoin-type photosensitizers such as benzildimethylketal and benzoin ethyl ether, which cause a decrease in the refractive index. High-dose UV irradiation that causes cross linking of the polyimide chains was also employed for augmenting the refractive-index difference to 0.017 between the doped and undoped regions. Refractive-index variations and lightguiding properties were investigated as a function of doping concentrations and other processing conditions. The author utilized this technique for the fabrication of embedded polyimide channel waveguides. The two photosensitizers have different effects on the waveguiding characteristics of the polyimide films. Losses for benzoin ethyl ether remained low whereas doping with benzildimethylketal caused significant increase in the waveguiding loss at high doping concentrations. Near-field imaging of the output from such waveguides shows good confinement of 815-nm light.
Photogeneration of refractive-index patterns in doped polyimide films
NASA Astrophysics Data System (ADS)
Chakravorty, K. K.
1993-05-01
A photosensitive benzophenone tetracarboxylic dianhyride-alkylated diamine polyimide formulation has been evaluated for application in an optical interconnection area. The refractive-index patterns in this material were optically recorded by UV-assisted photodoping of sensitizers. The polyimide films were selectively doped with benzoin-type photosensitizers such as benzildimethylketal and benzoin ethyl ether, which cause a decrease in the refractive index. High-dose UV irradiation that causes cross linking of the polyimide chains was also employed for augmenting the refractive-index difference to 0.017 between the doped and undoped regions. Refractive-index variations and lightguiding properties were investigated as a function of doping concentrations and other processing conditions. The author utilized this technique for the fabrication of embedded polyimide channel waveguides. The two photosensitizers have different effects on the waveguiding characteristics of the polyimide films. Losses for benzoin ethyl ether remained low whereas doping with benzildimethylketal caused significant increase in the waveguiding loss at high doping concentrations. Near-field imaging of the output from such waveguides shows good confinement of 815-nm light.
NASA Technical Reports Server (NTRS)
Alston, W. B.; Gratz, R. F.
1985-01-01
The presence of a hexafluoroisopropylidene (6F) connecting group in aryl dianhydrides used to prepare aromatic condensation polyimides provides high glass transition temperature (T sub g) polyimides with excellent thermo-oxidative stability. The purpose of this study was to determine if a trifluorophenyl-ethylidene (3F) connecting group would have a similar effect on the T sub g of aromatic condensation polyimides. A new dianhydride containing the 3F connecting group was synthesized. This dianhydride and an aromatic diamine also containing the 3F connecting group were used together and in various combinations with known diamines or known dianhydrides, respectively, to prepare new 3F containing condensation polyimides. Known polyimides, including some with the 6F connecting linkage, were also prepared for comparison purposes. The new 3F containing polymers and the comparison polymers were prepared by condensation polymerization via the traditional amic-acid polymerization method in N,N-dimethylacetamide solvent. The solutions were characterized by determining their inherent viscosities and then were thermally converted into polyimide films under nitrogen atmosphere at 300 to 500 C, usually 350 C. The T sub g's of the films and resin discs were then determined by thermomechanical analysis and were correlated as a function of the final processing temperatures of the films and resin discs. The results showed that similarities existed in the T sub g's depending on the nature of the connecting linkage in the monomers used to prepare the condensation polyimides.
NASA Astrophysics Data System (ADS)
Wu, Tingting; Dong, Jie; Gan, Feng; Fang, Yuting; Zhao, Xin; Zhang, Qinghua
2018-05-01
Conventional polyimide aerogels made from biphenyl-3,3‧,4,4‧-tetracarboxylic dianydride (BPDA) and 4,4‧-oxidianiline (ODA) exhibit poor resistance to moisture and mechanical properties. In this work, a versatile diamine, 2,2‧-bis-(trifluoromethyl)-4,4‧-diaminobiphenyl (TFMB), is introduced to BPDA/ODA backbone to modify the comprehensive performance of this aerogel. Among all formulations, the resulted polyimide aerogels exhibit the lowest shrinkage and density as well as highest porosity, at the ODA/TFMB molar ratio of 5/5. Dielectric constants and loss tangents of the aerogels fall in the range of 1.29-1.33 and 0.001-0.004, respectively, and more TFMB fractions results in a slightly decrease of dielectric constant and loss tangent. In addition, moisture-resistance of the aerogels are dramatically enhanced as the water absorption decreasing from 415% for BPDA/ODA to 13% for the polyimide aerogel at the ODA/TFMB molar ratio of 7/3, and even to 4% for the homo-BPDA/TFMB polyimide aerogel, showing a superhydrophobic characteristic, which is a great advantage for polyimide aerogels used as low dielectric materials. Meanwhile, all of formulations of aerogels exhibit high absorption capacities for oils and common organic solvents, indicating that these fluorinated polyimide aerogels are good candidates for the separation of oils/organic solvents and water. Mechanical properties and thermal stability of the polyimide aerogels are also raised to varying degrees due to the rigid-rod biphenyl structure introduced by TFMB.
Method of making silicon on insalator material using oxygen implantation
Hite, Larry R.; Houston, Ted; Matloubian, Mishel
1989-01-01
The described embodiments of the present invention provide a semiconductor on insulator structure providing a semiconductor layer less susceptible to single event upset errors (SEU) due to radiation. The semiconductor layer is formed by implanting ions which form an insulating layer beneath the surface of a crystalline semiconductor substrate. The remaining crystalline semiconductor layer above the insulating layer provides nucleation sites for forming a crystalline semiconductor layer above the insulating layer. The damage caused by implantation of the ions for forming an insulating layer is left unannealed before formation of the semiconductor layer by epitaxial growth. The epitaxial layer, thus formed, provides superior characteristics for prevention of SEU errors, in that the carrier lifetime within the epitaxial layer, thus formed, is less than the carrier lifetime in epitaxial layers formed on annealed material while providing adequate semiconductor characteristics.
New rapid-curing, stable polyimide polymers with high-temperature strength and thermal stability
NASA Technical Reports Server (NTRS)
Burns, E. A.; Jones, J. F.; Kendrick, W. R.; Lubowitz, H. R.; Thorpe, R. S.; Wilson, E. R.
1969-01-01
Additive-type polymerization reaction forms thermally stable polyimide polymers, thereby eliminating the volatile matter attendant with the condensation reaction. It is based on the utilization of reactive alicyclic rings positioned on the ends of polyimide prepolymers having relatively low molecular weights.
Synthesis and Characterization of Polyimides with Ether Linkages
NASA Technical Reports Server (NTRS)
Chuang, Kathy C.; Fu, Joyce; Scheiman, Daniel A.
1998-01-01
A series of polyimides derived from a newly synthesized diamine, namely, 4,4-bis(4-aminophenoxy)-2,2-dimethylbiphenyl (BAPD), were developed and characterized. Their physical and thermal properties were compared to polyimides based on'commercially available 2,2-bis(4-(4-aminophenoxy)phenyl)propane (BAPP).
NASA Technical Reports Server (NTRS)
Ricks, Glen A.
1988-01-01
The assembly test article (ATA) consisted of two live loaded redesigned solid rocket motor (RSRM) segments which were assembled and disassembled to simulate the actual flight segment stacking process. The test assembly joint was flight RSRM design, which included the J-joint insulation design and metal capture feature. The ATA test was performed mid-November through 24 December 1987, at Kennedy Space Center (KSC), Florida. The purpose of the test was: certification that vertical RSRM segment mating and separation could be accomplished without any damage; verification and modification of the procedures in the segment stacking/destacking documents; and certification of various GSE to be used for flight assembly and inspection. The RSRM vertical segment assembly/disassembly is possible without any damage to the insulation, metal parts, or seals. The insulation J-joint contact area was very close to the predicted values. Numerous deviations and changes to the planning documents were made to ensure the flight segments are effectively and correctly stacked. Various GSE were also certified for use on flight segments, and are discussed in detail.
77 FR 49394 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-16
... wiring within an ACCB and repair if necessary; and would require rework and re-identification of the... necessary] and rectification [rework] of the wiring installation within each ACCB. You may obtain further... first: Do a general visual inspection for chafing, damage, and insulation damage, and rework the wiring...
High density circuit technology, part 2
NASA Technical Reports Server (NTRS)
Wade, T. E.
1982-01-01
A multilevel metal interconnection system for very large scale integration (VLSI) systems utilizing polyimides as the interlayer dielectric material is described. A complete characterization of polyimide materials is given as well as experimental methods accomplished using a double level metal test pattern. A low temperature, double exposure polyimide patterning procedure is also presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-772] Certain Polyimide Films, Products... polyimide films, products containing same, and related methods by reason of infringement of one or more of... prong of the domestic industry requirement. Id. With respect to the `961 patent, the Commission...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-772] Certain Polyimide Films, Products Containing Same, and Related Methods; Notice of Commission Determination to Partially Review and Partially... polyimide films, products containing same, and related methods by reason of infringement of one or more of...
Diphenylmethane-containing dianhydride and polyimides prepared therefrom
NASA Technical Reports Server (NTRS)
St.clair, Anne K. (Inventor); Boston, Harold G. (Inventor); Pratt, J. Richard (Inventor)
1993-01-01
A high temperature stable, highly optically transparent-to-colorless, low dielectic linear aromatic polyimide is prepared by reacting an aromatic diamine with 3,3'bis (3,4-dicarboxyphenoxy) diphenylmethane dianhydride in an amide solvent to form a linear aromatic polyamic acid. This polyamic acid is then cyclized to form the corresponding polyimide.
Preparing composite materials from matrices of processable aromatic polyimide thermoplastic blends
NASA Technical Reports Server (NTRS)
Johnston, Norman J. (Inventor); St.clair, Terry L. (Inventor); Baucom, Robert M. (Inventor); Gleason, John R. (Inventor)
1991-01-01
Composite materials with matrices of tough, thermoplastic aromatic polyimides are obtained by blending semi-crystalline polyimide powders with polyamic acid solutions to form slurries, which are used in turn to prepare prepregs, the consolidation of which into finished composites is characterized by excellent melt flow during processing.
Micromechanical simulation of damage progression in carbon phenolic composites
NASA Technical Reports Server (NTRS)
Slattery, Kerry T.
1993-01-01
Carbon/phenolic composites are used extensively as ablative insulating materials in the nozzle region of solid rocket motors. The current solid rocket motor (RSRM) on the space shuttle is fabricated from woven rayon cloth which is carbonized and then impregnated with the phenolic resin. These plies are layed up in the desired configuration and cured to form the finished part. During firing, the surface of the carbon/phenolic insulation is exposed to 5000 F gases from the rocket exhaust. The resin pyrolizes and the material chars to a depth which progresses with time. The rate of charring and erosion are generally predictable, and the insulation depth is designed to allow adequate safety margins over the firing time of the motor. However, anomalies in the properties and response of the carbon/phenolic materials can lead to severe material damage which may decrease safety margins to unacceptable levels. Three macro damage modes which were observed in fired nozzles are: ply lift, 'wedge out', and pocketing erosion. Ply lift occurs in materials with plies oriented nearly parallel to the surface. The damage occurs in a region below the charred material where material temperatures are relatively low - about 500 F. Wedge out occurs at the intersection of nozzle components whose plies are oriented at about 45 deg. The corner of the block of material breaks off along a ply interface. Pocketing erosion occurs in material with plies oriented normal to the surface. Thermal expansion is restrained in two directions resulting in large tensile strains and material failure normal to the surface. When a large section of material is removed as a result of damage, the insulation thickness is reduced which may lead to failure of the nozzle due to excessive heating of critical components. If these damage events cannot be prevented with certainty, the designer must increase the thickness of the insulator thus adding to both weight and cost. One of the difficulties in developing a full understanding of these macro damage mechanisms is that the loading environment and the material response to that environment are extremely complex. These types of damage are usually only observed in actual motor firings. Therefore, it is difficult and expensive to evaluate the reliability of new materials. Standard material tests which measure mechanical and thermal properties of test specimens can only provide a partial picture of how the material will respond in the service environment. The development of the ANALOG test procedure which can combine high heating rates and mechanical loads on a specimen will improve the understanding of the interactive effects of the various loads on the system. But a mechanistic model of material response which can account for the heterogeneity of the material, the progression of various micromechanical damage mechanisms, and the interaction of mechanical and thermal stresses on the material is required to accurately correlate material tests with response to service environments. A model based on fundamental damage mechanisms which is calibrated and verified under a variety of loading conditions will provide a general tool for predicting the response of rocket nozzles. The development of a micromechanical simulation technique was initiated and demonstrated to be effective for studying across-ply tensile failure of carbon/phenolic composites.
Siloxane containing addition polyimides. II - Acetylene terminated polyimides
NASA Technical Reports Server (NTRS)
Maudgal, S.; St. Clair, T. L.
1984-01-01
Acetylene terminated polyimide oligomers having a range of molecular weights have been synthesized by reacting bis (gamma-aminopropyl) tetramethyldisiloxane, aminophenylacetylene and 3, 3', 4, 4' benzophenonetetracarboxylic dianhydride in different molar ratios. The prepolymers were isolated and characterized for melt flow and cure properties. They show promise as adhesives for bonding titanium to titanium and as matrix resins for graphite cloth reinforced composites. The most promising system has been blended in varying proportions with Thermid 600, a commercially available acetylene terminated polyimide oligomer, and the mixtures have been tested for application as composite matrix resins.
Fabrication of graphite/polyimide composite structures.
NASA Technical Reports Server (NTRS)
Varlas, M.
1972-01-01
Selection of graphite/polyimide composite as a prime candidate for high-temperature structural applications involving long-duration temperature environments of 400 to 600 F. A variety of complex graphite/polyimide components has been fabricated, using a match-metal die approach developed for making fiber-reinforced resin composites. Parts produced include sections of a missile adapter skin flange, skin frame section, and I-beam and hat-section stringers, as well as unidirectional (0 deg) and plus or minus 45 deg oriented graphite/polyimide tubes in one-, two-, and six-inch diameters.
Status review of PMR polyimides. [Polymerization of Monomer Reactants
NASA Technical Reports Server (NTRS)
Serafini, T. T.
1979-01-01
In the NASA developed PMR (polymerization of monomer reactants) the reinforcing fibers are impregnated with a solution containing a mixture of monomers dissolved in a low boiling point alkyl alcohol solvent, with the monomers reacting in situ at elevated temperatures to form a thermo-oxidatively stable polyimide matrix. The current status of first and second generation PMR polyimides is reviewed, considering synthesis and properties, processing, and applications. It is concluded that the PMR approach offers various significant advantages, especially superior high temperature properties and processing versatility, to fabricators and users of polyimide/fiber composites.
Thermal History Of PMRs Via Pyrolysis-Gas Chromatography
NASA Technical Reports Server (NTRS)
Gluyas, Richard E.; Alston, William B.; Snyder, William J.
1994-01-01
Pyrolysis-gas chromatography (PY-GC) useful as analytical technique to determine extents of cure or postcure of PMR-15 polyimides and to lesser extent, cumulative thermal histories of PMR-15 polyimides exposed to high temperatures. Also applicable for same purposes to other PMR polyimides and to composite materials containing PMR polyimides. Valuable in reducing costs and promoting safety in aircraft industry by helping to identify improperly cured or postcured PMR-15 composite engine and airframe components and helping to identify composite parts nearing ends of their useful lives.
Phenylated polyimides prepared from 3,6-diarylpyromellitic dianhydride and aromatic diamines
NASA Technical Reports Server (NTRS)
Harris, Frank W. (Inventor)
1992-01-01
A new class of soluble phenylated polyimides made from 3,6-diarypyromellitic dianhydride and process for the manufacture of the 3,6-diarypyromellitic dianhydride starting material. The polyimides obtained with said dianhydride are readily soluble in appropriate organic solvents and are distinguished by excellent thermal, electrical and/or mechanical properties making the polyimides ideally suited as coating materials for microelectronic apparatii, as membranes for selective molecular separation or permeation or selective gas separation or permeation, or as reinforcing fibers in molecular composites, or as high modulus, high tensile strength fibers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyojin; Yang, Seungbin; Lee, Ji-Hoon, E-mail: jihoonlee@jbnu.ac.kr
2014-05-12
We examined the electrooptical properties of a nematic liquid crystal (LC) sample whose substrates were coated with a mixture of carbon nanotube (CNT) and polyimide (PI). The relaxation time of the sample coated with 1.5 wt. % CNT mixture was about 35% reduced compared to the pure polyimide sample. The elastic constant and the order parameter of the CNT-mixture sample were increased and the fast relaxation of LC could be approximated to the mean-field theory. We found the CNT-mixed polyimide formed more smooth surface than the pure PI from atomic force microscopy images, indicating the increased order parameter is related to themore » smooth surface topology of the CNT-polyimide mixture.« less
Evaluation of colorless polyimide film for thermal control coating applications
NASA Technical Reports Server (NTRS)
St.clair, A. K.; Slemp, W. S.
1985-01-01
A series of essentially colorless aromatic polyimide films was synthesized and characterized with the objective of obtaining maximum optical transparency for applications in space. Optical transparency is a requirement for high performance polymeric films used in second surface mirror coatings on thermal control systems. The intensity in color of aromatic polyimide films was lowered by reducing the electronic interaction between chromophoric centers in the polymer molecular structure and by using highly purified monomers. The resulting lightly colored to colorless polyimide films were characterized by UV-visible and infrared spectroscopy before and after exposure to 300 equivalent solar hours UV irradiation and varying doses of 1 MeV electron irradiation. After irradiation, the films were found to be 2 to 2.5 times more transparent than commercial polyimide film of the same thickness.
Monitoring of Double Stud Wall Moisture Conditions in the Northeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.
2015-03-01
Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing.; Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.
Monitoring of Double-Stud Wall Moisture Conditions in the Northeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.
2015-03-01
Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double-stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double-stud walls were monitored in Zone 5A (Massachusetts); three double-stud assemblies were compared.
A methodology to select a wire insulation for use in habitable spacecraft.
Paulos, T; Apostolakis, G
1998-08-01
This paper investigates electrical overheating events aboard a habitable spacecraft. The wire insulation involved in these failures plays a major role in the entire event scenario from threat development to detection and damage assessment. Ideally, if models of wire overheating events in microgravity existed, the various wire insulations under consideration could be quantitatively compared. However, these models do not exist. In this paper, a methodology is developed that can be used to select a wire insulation that is best suited for use in a habitable spacecraft. The results of this study show that, based upon the Analytic Hierarchy Process and simplifying assumptions, the criteria selected, and data used in the analysis, Tefzel is better than Teflon for use in a habitable spacecraft.
Use of unbalanced laminates as a screening method for microcracking
NASA Technical Reports Server (NTRS)
Papadopoulos, Demetrios S.; Bowles, Kenneth J.
1990-01-01
State-of-the-art, high temperature polyimide matrix composites, reinforced with continuous graphite fibers are known to be susceptible to intraply cracking when thermally cycled over their useful service temperature range. It is believed that the transply cracking, in part, results from residual stresses caused by differences in coefficients of thermal expansion (CTE) between the polymer matrix and the reinforcement. Thermal cycling tests to investigate this phenomenon involve expensive time and energy consuming programs which are not economically feasible for use as a part of a materials screening process. As an alternative to thermal cycling studies, a study of unbalanced crossply graphite fiber reinforcement composites was conducted to assess the effect of the composite ply layup and surface condition on the residual stresses that remain after the processing of these materials. The residual stresses were assessed by measuring the radii of curvature of the types of laminates that were studied. The temperature at which stress-free conditions existed were determined and a dye penetrant method was used to observe surface damage resulting from excessive residual stress buildup. These results are compared with some published results of thermal cycling tests that were previously conducted on balanced polyimide composites.
NASA Astrophysics Data System (ADS)
Sweitzer, Robyn K.
Retinal prostheses may be used to support patients suffering from Age-related macular degeneration or retinitis pigmentosa. A hermetic encapsulation of the poly(imide )-based prosthesis is important in order to prevent the leakage of water and ions into the electric circuitry embedded in the poly(imide) matrix. The deposition of amorphous aluminum oxide (by sputtering) and diamond like carbon (by pulsed laser ablation and vacuum arc vapor deposition) were studied for the application in retinal prostheses. The resulting thin films were characterized for composition, thickness, adhesion and smoothness by scanning electron microscopy-energy dispersive spectroscopy, atomic force microscopy, profilometry and light microscopy. Electrical stability was evaluated and found to be good. The as-deposited films prevented incursion of salinated fluids into the implant over two (2) three month trials soaking in normal saline at body temperature, Biocompatibility was tested in vivo by implanting coated specimen subretinally in the eye of Yucatan pigs. While amorphous aluminum oxide is more readily deposited with sufficient adhesion quality, biocompatibility studies showed a superior behavior of diamond-like carbon. Amorphous aluminum oxide had more adverse effects and caused more severe damage to the retinal tissue.
The 3F condensation polyimides: Review and update
NASA Technical Reports Server (NTRS)
Alston, William B.; Gratz, Roy F.
1989-01-01
Nine new condensation polyimides containing the phenyltrifluoroethylidene (3F) linkage were synthesized by the amic-acid route. Several other polyimides, including some with hexafluoroisopropylidene (6F) linkage, were also prepared as controls. Amic-acid solutions were characterized by determining their inherent viscosities prior to thermal conversion into polyimide films. Glass transition temperatures (T sub g), thermogravimetric analysis (TGA), and isothermal weight loss data (at 316, 371, and 371 C under 0.5 MPa air pressure) were obtained for the films. The films were pulverized into molding powders which, in turn, were thermally processed under pressure into neat resin disks. The disks were also characterized by T sub g's and 316 and 371 C isothermal weight losses. The film study identified two new polyimides with T sub g's greater than 371 C and two new polyimides with low rates of weight loss. The resin disks exhibited the same overall trends in T sub g and weight loss as the respective films, however the weight loss per unit surface area was always greater, presumably due to molecular degradation induced during preparation of the molding powders. The overall results indicate that polyimides containing the 3F linkage have T sub g's and thermo-oxidative stability comparable to polyimides containing the 6F group. Alternate technology was also shown by the synthesis of two new polyalkyl substituted 3F diamines and five more new 3F polymers. Their potential as photoresists was demonstrated by T sub g advancement after ultraviolet exposure. Last, four U.S. patents on 3F monomers and polymers were issued and up to eight more are pending.
NASA Technical Reports Server (NTRS)
Lau, Kreisler S. Y.; Landis, Abraham L.; Chow, Andrea W.; Hamlin, Richard D.
1993-01-01
To achieve acceptable performance and long-term durability at elevated temperatures (350 to 600 F) for high-speed transport systems, further improvements of the high-performance matrix materials will be necessary to achieve very long-term (60,000-120,000 service hours) retention of mechanical properties and damage tolerance. This report emphasizes isoimide modification as a complementary technique to semi-interpenetrating polymer networks (SIPN's) to achieve greater processibility, better curing dynamics, and possibly enhanced thermo-mechanical properties in composites. A key result is the demonstration of enhanced processibility of isoimide-modified linear and thermo-setting polyimide systems.
Hot melt recharge system. [repairing damaged or missing tiles on space shuttle orbiter
NASA Technical Reports Server (NTRS)
Progar, D. J. (Inventor)
1983-01-01
A package assembly is described for pecisely positioning a charge of hot melt adhesive onto an attachment pad or point of use. The adhesive is heated to softening or melt temperature (280 F to 325 F) and thereafter cooled to resolidifying temperature. A single sided pressure sensitive polyimide film tape serves with another film strip to protect a sandwiched adhesive strip until use and to hold the adhesive in precise position until thermally bonded to its point of use. Tab ends serve as aids in stripping tapes and from the adhesive charge.
Energy Absorbing Protective Shroud
NASA Technical Reports Server (NTRS)
Schneider, William C. (Inventor)
2001-01-01
The present invention is a dissipating protection energy system designed to receive and safely dissipate the kinetic energy from high energy fragments. The energy dissipation system dissipates energy transferred to it by the incremental and progressive rupturing at an approximately constant force of strategically placed sacrificial stitching applied to a number of high strength straps, such as an aromatic polyimide fiber of extremely high tensile strength. Thus, the energy dissipation system provides a lightweight device for controlling and dissipating the dangerous and destructive energy stored in high strength fragments released by catastrophic failures of machinery minimizing damage to other critical components.
Textile composite fuselage structures development
NASA Technical Reports Server (NTRS)
Jackson, Anthony C.; Barrie, Ronald E.; Chu, Robert L.
1993-01-01
Phase 2 of the NASA ACT Contract (NAS1-18888), Advanced Composite Structural Concepts and Materials Technology for Transport Aircraft Structures, focuses on textile technology, with resin transfer molding or powder coated tows. The use of textiles has the potential for improving damage tolerance, reducing cost and saving weight. This program investigates resin transfer molding (RTM), as a maturing technology for high fiber volume primary structures and powder coated tows as an emerging technology with a high potential for significant cost savings and superior structural properties. Powder coated tow technology has promise for significantly improving the processibility of high temperature resins such as polyimides.
Silicone Coating on Polyimide Sheet
NASA Technical Reports Server (NTRS)
Park, J. J.
1985-01-01
Silicone coatings applied to polyimide sheeting for variety of space-related applications. Coatings intended to protect flexible substrates of solar-cell blankets from degradation by oxygen atoms, electrons, plasmas, and ultraviolet light in low Earth orbit and outer space. Since coatings are flexible, generally useful in forming flexible laminates or protective layers on polyimide-sheet products.
Dimensionally Stable Ether-Containing Polyimide Copolymers
NASA Technical Reports Server (NTRS)
Fay, Catharine C. (Inventor); St.Clair, Anne K. (Inventor)
1999-01-01
Novel polyimide copolymers containing ether linkages were prepared by the reaction of an equimolar amount of dianhydride and a combination of diamines. The polyimide copolymers described herein possess the unique features of low moisture uptake, dimensional stability, good mechanical properties, and moderate glass transition temperatures. These materials have potential application as encapsulants and interlayer dielectrics.
Polyimide Aerogels with Three-Dimensional Cross-Linked Structure
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor)
2016-01-01
A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.
Composite Properties of Polyimide Resins Made From "Salt-Like" Solution Precursors
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Weiser, Erik S.; SaintClair, Terry L.; Echigo, Yoshiaki; Kaneshiro, Hisayasu
1997-01-01
Recent work in high temperature materials at NASA Langley Research Center (LaRC (trademark)) have led to the development of new polyimide resin systems with very attractive properties. The majority of the work done with these resin systems has concentrated on determining engineering mechanical properties of composites prepared from a poly(amide acid) precursor. Three NASA Langley-developed polyimide matrix resins, LaRC (trademark) -IA, LaRC (trademark) -IAX, and LaRC (trademark) -8515, were produced via a salt-like process developed by Unitika Ltd. The 'salt-like' solutions (sixty-five percent solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC Multipurpose Tape Machine. Process parameters were determined and composite panels fabricated. Mechanical properties are presented for these three intermediate modulus carbon fiber/polyimide matrix composites and compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (thirty-five percent solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of polyimide composites.
Reinforced Thermoplastic Polyimide with Dispersed Functionalized Single Wall Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Lebron-Colon, Marisabel; Meador, Michael A.; Gaier, James R.; Sola, Francisco; Scheiman, Daniel A.; McCorkle, Linda S.
2010-01-01
Molecular pi-complexes were formed from pristine HiPCO single-wall carbon nanotubes (SWCNTs) and 1-pyrene- N-(4- N'-(5-norbornene-2,3-dicarboxyimido)phenyl butanamide, 1. Polyimide films were prepared with these complexes as well as uncomplexed SWCNTs and the effects of nanoadditive addition on mechanical, thermal, and electrical properties of these films were evaluated. Although these properties were enhanced by both nanoadditives, larger increases in tensile strength and thermal and electrical conductivities were obtained when the SWCNT/1 complexes were used. At a loading level of 5.5 wt %, the Tg of the polyimide increased from 169 to 197 C and the storage modulus increased 20-fold (from 142 to 3045 MPa). The addition of 3.5 wt % SWCNT/1 complexes increased the tensile strength of the polyimide from 61.4 to 129 MPa; higher loading levels led to embrittlement and lower tensile strengths. The electrical conductivities (DC surface) of the polyimides increased to 1 x 10(exp -4) Scm(exp -1) (SWCNT/1 complexes loading level of 9 wt %). Details of the preparation of these complexes and their effects on polyimide film properties are discussed.
Evaluation of colorless polyimide film for thermal control coating applications
NASA Technical Reports Server (NTRS)
St. Clair, A. K.; Slemp, W. S.
1985-01-01
A series of essentially colorless aromatic polyimide films has been synthesized and characterized with the objective of obtaining maximum optical transparency for applications in space. Optical transparency is a requirement for high performance polymeric films used in second surface mirror coatings on thermal control systems. The intensity in color of aromatic polyimide films was lowered by reducing the electronic interaction between chromophoric centers in the polymer molecular structure and by using highly purified monomers. The resulting lightly colored to colorless polyimide films have been characterized by UV-visible and infrared spectroscopy before and after exposure to 300 equivalent solar hours UV irradiation and varying doses of 1 MeV electron irradiation. After irradiation, the films were found to be 2 to 2.5 times more transparent than commercial polyimide film of the same thickness.
Polyimides and Process for Preparing Polyimides Having Thermal-Oxidative Stability
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor)
2001-01-01
Polyimides and the process for preparing polyimides having improved thermal-oxidative stability derived from the polymerization of effective amounts of one or more of the polyamines such as the aromatic diamines, one or more of the tetracarboxylic dianhydrides and a novel dicarboxylic endcap having formula with an R1 group of either hydrogen or an alkyl radical of one to four carbons, an R2 group of either OH, NH2, F, or Cl radical, an R3 group of either H, OH, NH2, F, Cl or an alkylene radical, an R4 group of either an alkyl, aryl, aryloxy, nitro, F, or Cl radical, and/or an R5 group of either H, alkyl, aryl, alkoxy, aryloxy, nitro, F, or Cl radical. The polyimides are useful particularly in the preparation of prepegs and PMR composites.
NASA Technical Reports Server (NTRS)
Serafini, T. T.
1982-01-01
The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.
NASA Technical Reports Server (NTRS)
Meador, Mary Ann; Guo, Haiquan
2012-01-01
Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.
Advanced Polymers Containing the Phenyltrifluoroethylidene Connecting Group
NASA Technical Reports Server (NTRS)
Alstron, William B.; Sivko, Gloria S.
2006-01-01
A new, lower cost fluorinated dianhydride based on the phenyltrifluoroethylidene (3F) connecting linkage was invented by the principal author in the early 1980's. New 3F condensation and addition cured polyimides were synthesized with the newly discovered 3F dianhydride and the previously known 3F diamine. As controls, polyimides based on the somewhat analogous higher cost hexafluoroisopropylidene (6F) linkage were also prepared. The short term thermal oxidative stability (TOS), determined by thermal gravimetric analysis (TGA), and the glass transition temperatures (Tg) of 3F dianhydride polyimides were found to be similar to 6F dianhydride polyimides, but the Tg was slightly higher for 3F diamine polyimides than 6F diamine polyimides. Unfortunately, in real time testing, long term TOS of 3F polymers was clearly inferior to 6F polymers. This was due to a 3 to 5 fold greater rate of loss of trifluoromethyl group from 3F versus 6F linkages. However, at shorter times or lower temperatures, 3F TOS was almost comparable to 6F TOS. The wide scope of the 3F technology was also demonstrated to have distinct unique advantages over 6F technology through the use of the 3F pendant phenyl ring as a synthetic site to introduce other functional groups. These groups have been used for the control or modification of polymer properties; an advantage lacking within 6F technology. The synthetic ease by which 3F can be introduced into various types of monomers has lead to the explosion of advanced 3F polyimides and other high performance advanced 3F polymers in the prior decade of 3F polymer literature as cited herein; covering polyimides, substituted polyimides, at least ten types of nonpolyimide 3F polymer modifications, and also the government's nine 3F U.S. patents and corporations' nine 3F U.S. patents.
Fire-resistant phosphorus containing polyimides and copolyimides
NASA Technical Reports Server (NTRS)
Mikroyannidis, J. A. (Inventor)
1985-01-01
Phosphorus-containing polyimides and copolyimides are synthesized in a two-step polycondensation reaction from 1- (diorganooxyphosphonl)methly 2,4- and 2,6-diaminobenzenes and tetracarboxylic anhydride. The diorgano position of the diorganooxyphosphonyl group includes alkyl, such as ethyl, substituted alkyl, such as 2-chloroethyl, and aryl such as phenyl. The tetracarboxylic anhydries include compounds such as pyrometallitic dianhydride and benzophenone tetracarboxylic dianhydride. The glass transition temperature (Tg) of the polyimides is reduced by incorporation of the (dialkoxyphosphonyl)methyl groups. The phosphorus-containing copolyimides show a considerably higher degree of fire-resistance as compared to that of the corresponding common polyimides.
NASA Technical Reports Server (NTRS)
Hoagland, P. D.; Fox, S. W.
1973-01-01
Thermal polymerization of aspartic acid produces a polysuccinimide (I), a chain of aspartoyl residues. An investigation was made of the alkaline hydrolysis of the imide rings of (I) which converts the polyimide to a polypeptide. The alkaline hydrolysis of polyimides can be expected to be kinetically complex due to increasing negative charge generated by carboxylate groups. For this reason, a diimide, phthaloyl-DL-aspartoyl-beta-alanine (IIA) was synthesized for a progressive study of the hydrolysis of polyimides. In addition, this diimide (IIA) can be related to thalidomide and might be expected to exhibit similar reactivity during hydrolysis of the phthalimide ring.
Polyimides containing pendent trifluoromethyl groups
NASA Technical Reports Server (NTRS)
Havens, S. J.; Hergenrother, P. M.
1993-01-01
Several new polyimides containing trifluoromethyl groups were prepared from the reaction of various aromatic dianhydrides and two new diamines containing trifluoromethyl groups, 4,4'-bis(3-amino-5-trifluoromethylphenoxy)biphenyl and l,4-bis(3-amino-5-trifluoromethylphenoxy)benzene. The diamines were prepared from the aromatic nucleophilic displacement of the disodium salts of 4,4'-biphenol or hydroquinone with 3,5-dinitrobenzotrifluoride followed by hydrogenation of the resultant dinitro compounds. The thermally cured polyimides exhibited glass transition temperatures between 186 and 262 C. By thermogravimetric analysis, the polyimides exhibited 5 percent weight losses at 484-527 C in nitrogen and 452-506 C in air.
Polyimides: Tribological properties and their use as lubricants
NASA Technical Reports Server (NTRS)
Fusaro, R. L.
1982-01-01
Friction, wear, and wear mechanisms of several different polyimide films, solid bodies, composites, and bonded solid lubricant films are compared and discussed. In addition, the effect of such parameters as temperatures, type of atmosphere, contact stress, and specimen configuration are investigated. A friction and wear transition occurs in some polyimides at elevated temperatures and this transition is related to molecular relaxations that occur in polyimides. Friction and wear data from an accelerated test (pin-on-disk) are compared to similar data from an end use test device (plain spherical bearing), and to other polymers investigated in a similar geometry.
Analysis of HEMCL Railgun Insulator Damage
2006-06-01
pyrolytic epoxy degradation and glass fiber softening and liquification in the insulator, it is determined that rail-to-rail plasmas are present behind...produces epoxy decomposition products in the form of gases, oils , waxes and chars solid (heavily cross-linked residues) [4]. The nature of the... pyrolytic decomposition product (wax) of the epoxy as in the fired specimens. Figures 6 and 7 are typical examples of glass fiber softening and
Prognostic monitoring of aircraft wiring using electrical capacitive tomography
NASA Astrophysics Data System (ADS)
McKenzie, G.; Record, P.
2011-12-01
Electrical capacitive tomography (ECT) has been used to monitor sections of aircraft wiring, as a tool for prognostic analysis. To apply the principles of ECT across a cross section of only 4 mm, modification of the basic circuit was required. Additionally, a more novel method of placing the necessary electrodes was needed, this being accomplished by etching them from flexible copper sheeting and wrapping them inside the perimeter of an enclosure. Results showed that at this small scale, it was possible to determine the position of a wire-under-test inside the 4 mm diameter enclosure to about 0.1 mm, and that by measuring capacitance between pairs, it was also possible to determine whether or not the insulation of wire passed between the electrodes was damaged. With more than one wire-under-test present, it was possible to determine whether or not damage was present, and if so, which wire was damaged. By detecting insulation damage in this way, ECT has proven to be a useful tool in prognostic monitoring, helping faults to be found before they become safety-critical onboard an aircraft.
Prognostic monitoring of aircraft wiring using electrical capacitive tomography.
McKenzie, G; Record, P
2011-12-01
Electrical capacitive tomography (ECT) has been used to monitor sections of aircraft wiring, as a tool for prognostic analysis. To apply the principles of ECT across a cross section of only 4 mm, modification of the basic circuit was required. Additionally, a more novel method of placing the necessary electrodes was needed, this being accomplished by etching them from flexible copper sheeting and wrapping them inside the perimeter of an enclosure. Results showed that at this small scale, it was possible to determine the position of a wire-under-test inside the 4 mm diameter enclosure to about 0.1 mm, and that by measuring capacitance between pairs, it was also possible to determine whether or not the insulation of wire passed between the electrodes was damaged. With more than one wire-under-test present, it was possible to determine whether or not damage was present, and if so, which wire was damaged. By detecting insulation damage in this way, ECT has proven to be a useful tool in prognostic monitoring, helping faults to be found before they become safety-critical onboard an aircraft.
Development and validation of cryogenic foam insulation for LH2 subsonic transports
NASA Technical Reports Server (NTRS)
Anthony, F. M.; Colt, J. Z.; Helenbrook, R. G.
1981-01-01
Fourteen foam insulation specimens were tested. Some were plain foam while others contained flame retardants, chopped fiberglass reinforcement and/or vapor barriers. The thermal performance of the insulation was determined by measuring the rate at which LH2 boiled from an aluminum tank insulated with the test material. The test specimens were approximately 50 mm (2 in.) thick. They were structurally scaled so that the test cycle would duplicate the maximum thermal stresses predicted for the thicker insulation of an aircraft liquid hydrogen fuel tank during a typical subsonic flight. The simulated flight cycle of approximately 10 minutes duration heated the other insulation surface to 316 K (110 F) and cooled it to 226 K (20 F) while the inner insulation surface remained at liquid hydrogen temperature of 20 K (-423 F). Two urethane foam insulations exceeded the initial life goal of 2400 simulated flight cycles and sustained 4400 cycles with only minor damage. The addition of fiberglass reinforcement of flame retardant materials to an insulation degraded thermal performance and/or the life of the foam material. Installation of vapor barriers enhanced the structural integrity of the material but did not improve thermal performance. All of the foams tested were available materials; none were developed specifically for LH2 service.
2010-06-10
properties, such as toughness, biocompatibility and biodegrability. Trends in spider silk-like block copolymer secondary structure and assembly behavior...to construct transistors on ultrathin sheets of polyimide . Briefly, the doped silicon nanomembranes were transfer printed onto a film of polyimide ...layer of polyimide was used to encapsulate the active devices. Dry etching the polymer layers completed the fabrication of an array of isolated
High Temperature Adhesives for Bonding Kapton
NASA Technical Reports Server (NTRS)
Stclair, A. K.; Slemp, W. S.; Stclair, T. L.
1978-01-01
Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/Kapton bondlines were monitored by thermomechanical analysis.
High temperature adhesives for bonding Kapton
NASA Technical Reports Server (NTRS)
Saint Clair, A. K.; Slemp, W. S.; Saint Clair, T. L.
1978-01-01
Experimental polyimide resins have been developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of 'Kapton'/'Kapton' bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/'Kapton' bondlines were monitored by thermomechanical analysis.
Composition and Process for Retarding the Premature Aging of PMR Monomer Solutions and PMR Prepegs
NASA Technical Reports Server (NTRS)
Alston, William B. (Inventor); Gahn, Gloria S. (Inventor)
2000-01-01
Polyimides are derived from solutions of at least one low-boiling organic solvent, e.g. isopropanol containing a mixture of polyimide-forming monomers. The monomeric solutions have an extended shelf life at ambient (room) temperatures as high as 80 C, and consist essentially of a mixture of monoalkyl ester-acids, alkyl diester-diacids and aromatic polyamines wherein the alkyl radicals of the esteracids are derived from lower molecular weight aliphatic secondary alcohols having 3 to 5 carbon atoms per molecule such as isopropanol, secondary butanol, 2-methyl-3-butanol, 2 pentanol or 3-pentanol. The solutions of the polyimide-forming monomers have a substantially improved shelf-life and are particularly useful in the aerospace and aeronautical industry for the preparation of polyimide reinforced fiber composites such as the polyimide cured carbon composites used in jet engines, missiles, and for other high temperature applications.
Tribological properties and thermal stability of various types of polyimide films
NASA Technical Reports Server (NTRS)
Fusaro, R. L.
1981-01-01
Thermal exposure experiments at 315 and 350 C were conducted on seven different types of polyimide films to determine which was the most thermally stable and adherent. The polyimides were ranked according to the rate at which they lost weight and how well they adhere to the metallic substrate. Friction and wear experiments were conducted at 25 C (room temperature) on films bonded to 440C HT stainless steel. Friction, film wear rates, wear mechanisms, and transfer films of the seven films were investigated and compared. The polyimides were found to fall into two groups as far as friction and wear properties were concerned. Group one had lower friction but an order of magnitude higher film wear rate than did group two. The wear mechanism was predominately adhesive, but the size of the wear particles were larger for group one polyimides.
Tribological properties and thermal stability of various types of polyimide films
NASA Technical Reports Server (NTRS)
Fusaro, R. L.
1981-01-01
Thermal exposure experiments at 315 and 350 C were conducted on seven different types of polyimide films to determine which was the most thermally stable and adherent. The polyimides were ranked according to the rate of which they lost weight and how well they adhered to the metallic substrate. Friction and wear experiments were conducted at 25 C (room temperature) on films bonded to 440C HT stainless steel. Friction, film wear rates, wear mechanisms, and transfer films of the seven films were investigated and compared. The polyimides were found to fall into two groups as far as friction and wear properties were concerned. Group I had lower friction but an order of magnitude higher film wear rate than did group II. The wear mechanism was predominately adhesive, but the size of the wear particles was larger for group I polyimides.
Development of design data for graphite reinforced epoxy and polyimide composites
NASA Technical Reports Server (NTRS)
Scheck, W. G.
1974-01-01
Processing techniques and design data were characterized for a graphite/epoxy composite system that is useful from 75 K to 450 K, and a graphite/polyimide composite system that is useful from 75 K to 589 K. The Monsanto 710 polyimide resin was selected as the resin to be characterized and used with the graphite fiber reinforcement. Material was purchased using the prepreg specification for the design data generation for both the HT-S/710 and HM-S/710 graphite/polyimide composite system. Lamina and laminate properties were determined at 75 K, 297 K, and 589 K. The test results obtained on the skin-stringer components proved that graphite/polyimide composites can be reliably designed and analyzed much like graphite/epoxy composites. The design data generated in the program includes the standard static mechanical properties, biaxial strain data, creep, fatigue, aging, and thick laminate data.
Surface Modification of Polyimide for Improving Adhesion Strength by Inductively Coupled Plasma
NASA Astrophysics Data System (ADS)
Byun, Tae Joon; Kim, Sung Il; Kim, Youn Joon; Choi, Yoon Suk; Choi, In Sik; Setsuhara, Yuichi; Geon Han, Jeon
2009-08-01
This study examined the effect of an inductively coupled plasma (ICP) treatment using an argon and helium gas mixture on the adhesion between polyimide and a copper film. Optical emission spectroscopy (OES) of the ICP revealed the emission intensity of helium and argon at various intensities with the helium mixing ratio. The treated polyimide surface was analyzed using a contact angle analyzer, Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The contact angle and RMS roughness ranged from 66 to 31° and 2.3 to 4.1 nm, respectively. XPS showed an increase in C-O bonding. The highest peel strength was 0.43 kgf/cm at a 40% of helium mixing ratio, which contained the highest level of activate species. Overall, an ICP treatment of a polyimide surface with a 40% helium gas mixture improves the adhesion strength between copper and polyimide significantly.
Study of the technics of coating stripping and FBG writing on polyimide fiber
NASA Astrophysics Data System (ADS)
Song, ZhiQiang; Qi, HaiFeng; Ni, JiaSheng; Wang, Chang
2017-10-01
Compared with ordinary optical fiber, polyimide fiber has the characteristics of high temperature resistance and high strength, which has important application in the field of optical fiber sensing. The common methods of polyimide coating stripping were introduced in this paper, including high temperature stripping, chemical stripping and arc ablation. In order to meet the requirements of FBG writing technology, a method using argon ion laser ablation coating was proposed. The method can precisely control the stripping length of the coating and completely does not affect the tensile strength of the optical fiber. According to the experiment, the fabrication process of polyimide FBG is stripping-hydrogen loadingwriting. Under the same conditions, 10 FBG samples were fabricated with good uniformity of wavelength bandwidth and reflectivity. UV laser ablation of polyimide coating has been proved to be a safe, reliable and efficient method.
Low toxicity high temperature PMR polyimide
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1992-01-01
In-situ polymerization of monomer reactants (PMR) type polyimides constitute an important class of ultra high performance composite matrix resins. PMR-15 is the best known and most widely used PMR polyimide. An object of the present invention is to provide a substantially improved high temperature PMR-15 system that exhibits better processability, toughness, and thermo-oxidative stability than PMR-15, as well as having a low toxicity. Another object is to provide new PMR polyimides that are useful as adhesives, moldings, and composite matrices. By the present invention, a new PMR polyimide comprises a mixture of the following compounds: 3,4'-oxydianiline (3,4'-ODA), NE, and BTDE which are then treated with heat. This PMR was designated LaRC-RP46 and has a broader processing window, better reproducibility of high quality composite parts, better elevated temperature mechanical properties, and higher retention of mechanical properties at an elevated temperature, particularly, at 371 C.
NASA Technical Reports Server (NTRS)
Wykes, D. H.
1975-01-01
The activity is reported which was conducted for utilizing spin-off Apollo base technology to fabricate a variety of commercial and aerospace related parts that are nonflammable and resistant to high-temperature degradation. Manufacturing techniques and the tooling used to fabricate each of the polyimide/glass structures is discussed. A brief history, tracing the development of high-temperature polyimide resins, is presented along with a discussion of the properties of DuPont's PI 2501/glass material (later redesignated PI 4701/glass). Mechanical and flammability properties of DuPont's PI 2501/glass laminates are compared with epoxy, phenolic, and silicone high-temperature resin/glass material systems. Offgassing characteristics are also presented. A discussion is included of the current developments in polyimide materials technology and the potential civilian and government applications of polyimide materials to reduce fire hazards and increase the survivability of men and equipment.
Investigation of Aromatic/Aliphatic Polyimides as Dispersants for Single Wall Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Delozier, Donavon M.; Watson, Kent A.; Smith, Joseph G., Jr.; Clancy, Thomas C.; Connell, John W.
2006-01-01
Novel aromatic/aliphatic polyimides were prepared from 2,7-diamino-9,9'- dioctylfluorene (AFDA) and aromatic dianhydrides. Upon investigating the effectiveness of these polyimides for dispersing single wall carbon nanotubes (SWNTs) in solution, three were discovered to disperse SWNTs in N,N-dimethylacetamide (DMAc). Two of these polyimides, one from 3,3',4,4'-oxydiphthalic anhydride (ODPA) and one from symmetric 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA), were used to prepare nanocomposites. Homogeneous polyimide/SWNT suspensions from both polymers were used in the preparation of films and fibers containing up to 1 wt% SWNTs. The samples were thermally treated to remove residual solvent and the films were characterized for SWNT dispersion by optical and high resolution scanning electron microscopy (HRSEM). Electrical and mechanical properties of the films were also determined. Electrospun fibers were examined by HRSEM to characterize SWNT alignment and orientation.
Microelectrodes with Three-Dimensional Structures for Improved Neural Interfacing
2001-10-25
highly xible bio-interfaces [2]. Polyimides combine excellent ectrical and mechanical characteristics with biocompatibility ], and are well known in...excellent biocompatibility , polyimide -based electrodes promise for fabrication of long-term implants for the use in prostheses. The flexible structures...R. R. Richardson, J. A. Miller, and W. M. Reichert, " Polyimides as Biomaterials - Preliminary Biocompatibility Testing," Biomaterials, vol. 14, pp
Processable Aromatic Polyimide Thermoplastic Blends
NASA Technical Reports Server (NTRS)
Baucom, Robert M; Johnston, Norman J.; St. Clair, Terry L.; Nelson, James B.; Gleason, John R.; Proctor, K. Mason
1988-01-01
Method developed for preparing readily-processable thermoplastic polyimides by blending linear, high-molecular-weight, polyimic acid solutions in ether solvents with ultrafine, semicrystalline, thermoplastic polyimide powders. Slurries formed used to make prepregs. Consolidation of prepregs into finsihed composites characterized by excellent melt flow during processing. Applied to film, fiber, fabric, metal, polymer, or composite surfaces. Used to make various stable slurries from which prepregs prepared.
Polyimide matrix resins for up to 700 deg F service
NASA Technical Reports Server (NTRS)
Jones, R. J.; Chang, G. E.; Powell, S. H.; Green, H. E.
1985-01-01
TRW is in the process of data accumulation that strongly indicates that incorporation of the perfluorsisopropylidene linkage in molecular structures other than those employed in DU Pont's NR-150B polyimides likewise yield polymers demonstrating extremely high thermo-oxidative stability. Polyimide synthetic and characterization studies conducted to date on new polymers incorporating the perfluoroisopropylidene linkage are presented and discussed.
LARC-TPI and new thermoplastic polyimides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaguchi, A.; Ohta, M.
1987-02-01
The LARC-TPI linear thermoplastic polyimide has been developed by NASA for high temperature adhesive applications in aerospace structures in the forms of varnish, films, powders, and prepregs. LARC-TPI improves adhesive processability and lowers glass transition temperature, while retaining mechanical, thermal and electrical properties inherent in the polyimides. It may be used as a structural adhesive for metals, composites, ceramics, and films. 8 references.
Characterization of a thermally imidized soluble polyimide film
NASA Technical Reports Server (NTRS)
Young, Philip R.; Davis, Judith R. J.; Chang, A. C.; Richardson, John N.
1989-01-01
A soluble aromatic poly(amic acid) film was converted to a soluble polyimide by staging at 25 deg intervals to 325 C and characterized at each interval by several analytical methods. The behavior observed was consistent with an interpretation that a reduction occurred in molecular weight of the poly(amic acid) during the initial stages of cure before the ultimate molecular weight was achieved as a polyimide. This interpretation was supported by the results of solution viscosity, gel permeation chromatography, low angle laser light scattering photometry and infrared spectroscopy analysis. The results serve to increase the fundamental understanding of how polyimides are thermally formed from poly(amic acids).
Advanced composites: Fabrication processes for selected resin matrix materials
NASA Technical Reports Server (NTRS)
Welhart, E. K.
1976-01-01
This design note is based on present state of the art for epoxy and polyimide matrix composite fabrication technology. Boron/epoxy and polyimide and graphite/epoxy and polyimide structural parts can be successfully fabricated. Fabrication cycles for polyimide matrix composites have been shortened to near epoxy cycle times. Nondestructive testing has proven useful in detecting defects and anomalies in composite structure elements. Fabrication methods and tooling materials are discussed along with the advantages and disadvantages of different tooling materials. Types of honeycomb core, material costs and fabrication methods are shown in table form for comparison. Fabrication limits based on tooling size, pressure capabilities and various machining operations are also discussed.
A new readily processable polyimide
NASA Technical Reports Server (NTRS)
Harris, F. W.; Beltz, M. W.; Hergenrother, P. M.
1986-01-01
As part of an effort to develop tough solvent resistance thermoplastics for potential use as structural resins on aerospace vehicles, a new processable polyimide was evaluated. The synthesis involved the reaction of a new diamine, 1,3-bis 2-(3-aminophenoxy)ethyl ether, with 3,3',4,4'-benzophenonetetracarboxylic dianhydride to form the polyamic acid and subsequent conversion of it to the polyimide. Various physical properties such as thermal stability, solvent resistance, glass transition temperature, crystalline melt temperature, melt viscosity and mechanical properties such as fracture toughness, adhesive, film and composite properties are reported. Of particular interest is the extremely high titanium to titanium tensile shear strength obtained for this polyimide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gámez-Mendoza, Liliana; Resto, Oscar; Martínez-Iñesta, María
2015-09-20
Kapton HN-type polyimide capillaries are commonly used as sample holders for transmission X-ray experiments at temperatures below 673 K because of their thermal stability, high X-ray transmittance and low cost. Using high-angle annular dark field scanning high-resolution transmission electron microscopy and thermogravimetric analysis, this work shows that using polyimide capillaries leads to the overgrowth of supported Pt nanoparticles during reduction at temperatures below the glass transition temperature (T g= 658 K) owing to an outgassing of water from the polyimide. Quartz capillaries were also studied and this overgrowth was not observed.
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Itotia, Isaac K.; Drayton, Rhonda Franklin
2003-01-01
Measured and modeled propagation characteristics of Finite Ground Coplanar (FGC) waveguide fabricated on a 15 ohm-cm Si substrate with a 23 micron thick, 68% porous Si layer and a 20 micron thick polyimide interface layer are presented for the first time. Attenuation and effective permittivity as function of the FGC geometry and the bias between the center conductor and the ground planes are presented. It is shown that the porous Si reduces the attenuation by 1 dB/cm compared to FGC lines with only polyimide interface layers, and the polyimide on porous silicon demonstrates negligible bias dependence.
Fiber study involving a polyimide matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cano, R.J.; Rommel, M.; Hinkley, J.A.
1996-12-31
Mechanical properties are presented for eight different intermediate modulus carbon fiber/ polyimide matrix composites. Two unsized carbon fibers (Thornel T650-42 and Hercules IM9) and two sized carbon fibers (high temperature sized Thornel T650-42 HTS and epoxy sized Toray T1000) were prepregged on the NASA LaRC Multipurpose Tape Machine using the NASA LaRC developed polyimide resin matrix, LaRC{trademark}-PETI-5, and the DuPont developed Avitnid{reg_sign} R1-16. Composite panels fabricated from these prepregs were evaluated to determine their mechanical properties. The data show the effects of using sized fibers on the processing and mechanical properties of polyimide composites.
Highly optical transparency and thermally stable polyimides containing pyridine and phenyl pendant.
Yao, Jianan; Wang, Chunbo; Tian, Chengshuo; Zhao, Xiaogang; Zhou, Hongwei; Wang, Daming; Chen, Chunhai
2017-01-01
In order to obtain highly optical transparency polyimides, two novel aromatic diamine monomers containing pyridine and kinky structures, 1,1-bis[4-(5-amino-2-pyridinoxy)phenyl]diphenylmethane (BAPDBP) and 1,1-bis[4-(5-amino-2-pyridinoxy)phenyl]-1-phenylethane (BAPDAP), were designed and synthesized. Polyimides based on BAPDBP, BAPDAP, 2,2-bis[4-(5-amino-2-pyridinoxy)phenyl]propane (BAPDP) with various commercial dianhydrides were prepared for comparison and structure-property relationships study. The structures of the polyimides were characterized by Fourier transform infrared (FT-IR) spectrometer, wide-angle X-ray diffractograms (XRD) and elemental analysis. Film properties including solubility, optical transparency, water uptake, thermal and mechanical properties were also evaluated. The introduction of pyridine and kinky structure into the backbones that polyimides presented good optical properties with 91-97% transparent at 500 nm and a low cut-off wavelength at 353-398 nm. Moreover, phenyl pendant groups of the polyimides showed high glass transition temperatures ( T g ) in the range of 257-281 °C. These results suggest that the incorporating pyridine, kinky and bulky substituents to polymer backbone can improve the optical transparency effectively without sacrificing the thermal properties.
Optically transparent/colorless polyimides
NASA Technical Reports Server (NTRS)
Stclair, A. K.; Stclair, T. L.; Slemp, W.; Ezzell, K. S.
1985-01-01
Several series of linear aromatic polyimide films have been synthesized and characterized with the objective of obtaining maximum optical transparency. Two approaches have been used as part of this structure-property relationship study. The first approach is to vary the molecular structure so as to separate chromophoric centers and reduce electronic interactions between polymer chains to lower the intensity of color in the resulting polymer films. A second and concurrent approach is to perform polymerizations with highly purified monomers. Glass transition temperatures of thermally cured polyimide films are obtained by thermomechanical analysis and thermal decomposition temperatures are determined by thermogravimetric analysis. Transmittance UV-visible spectra of the polyimide films are compared to that of a commercial polyimide film. Fully imidized films are tested for solubility in common organic solvents. The more transparent films prepared in this study are evaluated for use on second-surface mirror thermal control coating systems. Lightly colored to colorless films are characterized by UV-visible spectroscopy before and after exposure to 300 equivalent solar hours UV irradiation and varying doses of 1 MeV electron irradiation. The effects of monomer purity, casting solvent and cure atmosphere on polyimide film transparency are also investigated.
Nuclear radiation problems, unmanned thermionic reactor ion propulsion spacecraft
NASA Technical Reports Server (NTRS)
Mondt, J. F.; Sawyer, C. D.; Nakashima, A.
1972-01-01
A nuclear thermionic reactor as the electric power source for an electric propulsion spacecraft introduces a nuclear radiation environment that affects the spacecraft configuration, the use and location of electrical insulators and the science experiments. The spacecraft is conceptually configured to minimize the nuclear shield weight by: (1) a large length to diameter spacecraft; (2) eliminating piping penetrations through the shield; and (3) using the mercury propellant as gamma shield. Since the alumina material is damaged by the high nuclear radiation environment in the reactor it is desirable to locate the alumina insulator outside the reflector or develop a more radiation resistant insulator.
NASA Technical Reports Server (NTRS)
McManus, Hugh L.; Chamis, Christos C.
1996-01-01
This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2015-03-01
Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.
NASA Technical Reports Server (NTRS)
Ball, D. R.; Schrimpf, R. D.; Barnaby, H. J.
2006-01-01
The electrical characteristics of proton-irradiated bipolar transistors are affected by ionization damage to the insulating oxide and displacement damage to the semiconductor bulk. While both types of damage degrade the transistor, it is important to understand the mechanisms individually and to be able to analyze them separately. In this paper, a method for analyzing the effects of ionization and displacement damage using gate-controlled lateral PNP bipolar junction transistors is described. This technique allows the effects of oxide charge, surface recombination velocity, and bulk traps to be measured independently.
24 CFR 3280.207 - Requirements for foam plastic thermal insulating materials.
Code of Federal Regulations, 2012 CFR
2012-04-01
... include intensity of cavity fire (temperature-time) and post-test damage. (iii) Post-test damage... Technology Research Institute (IIT) Report, “Development of Mobile Home Fire Test Methods to Judge the Fire... Project J-6461, 1979” or other full-scale fire tests accepted by HUD, and it is installed in a manner...
24 CFR 3280.207 - Requirements for foam plastic thermal insulating materials.
Code of Federal Regulations, 2011 CFR
2011-04-01
... include intensity of cavity fire (temperature-time) and post-test damage. (iii) Post-test damage... Technology Research Institute (IIT) Report, “Development of Mobile Home Fire Test Methods to Judge the Fire... Project J-6461, 1979” or other full-scale fire tests accepted by HUD, and it is installed in a manner...
24 CFR 3280.207 - Requirements for foam plastic thermal insulating materials.
Code of Federal Regulations, 2010 CFR
2010-04-01
... include intensity of cavity fire (temperature-time) and post-test damage. (iii) Post-test damage... Technology Research Institute (IIT) Report, “Development of Mobile Home Fire Test Methods to Judge the Fire... Project J-6461, 1979” or other full-scale fire tests accepted by HUD, and it is installed in a manner...
24 CFR 3280.207 - Requirements for foam plastic thermal insulating materials.
Code of Federal Regulations, 2014 CFR
2014-04-01
... include intensity of cavity fire (temperature-time) and post-test damage. (iii) Post-test damage... Technology Research Institute (IIT) Report, “Development of Mobile Home Fire Test Methods to Judge the Fire... Project J-6461, 1979” or other full-scale fire tests accepted by HUD, and it is installed in a manner...
24 CFR 3280.207 - Requirements for foam plastic thermal insulating materials.
Code of Federal Regulations, 2013 CFR
2013-04-01
... include intensity of cavity fire (temperature-time) and post-test damage. (iii) Post-test damage... Technology Research Institute (IIT) Report, “Development of Mobile Home Fire Test Methods to Judge the Fire... Project J-6461, 1979” or other full-scale fire tests accepted by HUD, and it is installed in a manner...
Reducing Stiffness and Electrical Losses of High Channel Hybrid Nerve Cuff Electrodes
2001-10-25
Electrodes were developed. These electrodes consisted of a micromachined polyimide -based thin-film structure with integrated electrode contacts and...electrodes, mechanical properties were enhanced by changing the method of joining silicone and polyimide from using one part silicone adhesive to...gold, platinum, platinum black, polyimide , silicone, polymer bonding I. INTRODUCTION Cuff-type electrodes are probably the most commonly used neural
Viscoelasticity and Creep Recovery of Polyimide Thin Films
1990-06-01
3931; (617) 253-0292. Accesion For NTIS CRA&I DTIC TAB Unannounced 0 JuslfIcation .... ’ ry (I’. . ,* VISCOELASTICITY AND CREEP RECOVERY OF POLYIMIDE...polyimide is subjected to sustained loads. Viscoelastic properties of materials are traditionally measured by uniaxial tests [4]. Creep, stress...structure The membrane fabrication and analysis is implemented in the environment of a previously reported CAD architecture [7,81, which uses a
Polyimide-glass multilayer printed wiring boards
NASA Astrophysics Data System (ADS)
Lula, J. W.
1984-07-01
Multilayer printed wiring boards (PWBs) from a polyimide/glass reinforced copper clad laminate and prepreg were manufactured. A lamination cycle and innerlayer copper surface treatment that gave satisfactory delamination resistance at soldering temperatures were developed. When compared to similar epoxy/glass multilayer PWBs, the polyimide PWBs had higher thermal stability, greater resistance to raised lands, fewer plating voids, less outgassing, and adhesion that was equivalent to urethane foam encapsulants.
Thin Films Protect Electronics from Heat and Radiation
NASA Technical Reports Server (NTRS)
2013-01-01
While Anne St. Clair worked on high performance polyimides at Langley Research Center, she noticed that some of the films were nearly colorless. The polyimides became known as LaRC-CP1 and LaRC-CP2, and were licensed by NeXolve Corporation, based in Huntsville, Alabama. Today, NeXolve provides polyimide film products to commercial customers for spacecraft, telescopes, and circuit boards.
Effects of combined irradiation of 500 keV protons and atomic oxygen on polyimide films
NASA Astrophysics Data System (ADS)
Novikov, Lev; Chernik, Vladimir; Zhilyakov, Lev; Voronina, Ekaterina; Chirskaia, Natalia
2016-07-01
Polyimide films are widely used on the spacecraft surface as thermal control coating, films in different constuctions, etc. However, the space ionizing radiation of different types can alter the mechanical, optical and electrical properties of polyimide films. For example, it is well known that 20-100 keV proton irradiation causes breaking of chemical bonds and destruction of the surface layer in polyimide, deterioration of its optical properties, etc. In low-Earth orbits serious danger for polymeric materials is atomic oxygen of the upper atmosphere of the Earth, which is the main component in the range of heights of 200-800 km. Due to the orbital spacecraft velocity, the collision energy of oxygen atoms with the surface ( 5 eV) enhances their reactivity and opens additional pathways of their reaction with near-surface layers of materials. Hyperthermal oxygen atom flow causes erosion of the polyimide surface by breaking chemical bonds and forming of volatiles products (primarily, CO and CO _{2}), which leads to mass losses and degradation of material properties. Combined effect of protons and oxygen plasma is expected to give rise to synergistic effects enhancing the destruction of polyimide surface layers. This paper describes experimental investigation of polyimide films sequential irradiation with protons and oxygen plasma. The samples were irradiated by 500 keV protons at fluences of 10 ^{14}-10 ^{16} cm ^{-2} produced with SINP cascade generator KG-500 and 5-20 eV neutral oxygen atoms at fluence of 10 ^{20} cm ^{-2} generated by SINP magnetoplasmodynamics accelerator. The proton bombardment causes the decrease in optical transmission coefficient of samples, but their transmittance recovers partially after the exposure to oxygen plasma. The results of the comparative analysis of polyimide optical transmission spectra, Raman and XPS spectra obtained at different stages of the irradiation of samples, data on mass loss of samples due to erosion of the surface are given. The report also presents the results of computer simulation of protons and oxygen atoms interaction with polyimide, and a comparison of the experimental and calculated data.
3D Stacked Memory Final Report CRADA No. TC-0494-93
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernhardt, A.; Beene, G.
TI and LLNL demonstrated: (1) a process for the fabrication of 3-D memory using stacked DRAM chips, and (2) a fast prototyping process for 3-D stacks and MCMs. The metallization to route the chip pads to the sides of the die was carried out in a single high-speed masking step. The mask was not the usual physical one in glass and chrome, but was simply a computer file used to control the laser patterning process. Changes in either chip or customer circuit-board pad layout were easily and inexpensively accommodated, so that prototyping was a natural consequence of the laser patterningmore » process. As in the current TI process, a dielectric layer was added to the wafer, and vias to the chip I/0 pads were formed. All of the steps in Texas Instruments earlier process that were required to gold bump the pads were eliminated, significantly reducing fabrication cost and complexity. Pads were created on the sides of ·the die, which became pads on the side of the stack. In order to extend the process to accommodate non-memory devices with substantially greater I/0 than is required for DRAMs, pads were patterned on two sides of the memory stacks as a proof of principle. Stacking and bonding were done using modifications of the current TI process. After stacking and bonding, the pads on the sides of the dice were connected by application of a polyimide insulator film with laser ablation of the polyimide to form contacts to the pads. Then metallization was accomplished in the same manner as on the individual die.« less
NASA Astrophysics Data System (ADS)
Diaham, Sombel; Locatelli, Marie-Laure
2012-07-01
Charge carrier concentration (n0) and effective mobility (μeff) are reported in two polymer films (<10 μm) and in a very high temperature range (from 200 to 400 °C). This was possible thanks to an electrode polarization modeling of broadband dielectric spectroscopy data. It is shown that the glass transition temperature (Tg) occurrence has a strong influence on the temperature dependence of n0 and μeff. We carry out that n0 presents two distinct Arrhenius-like behaviors below and above Tg, while μeff exhibits a Vogel-Fulcher-Tamman behavior only above Tg whatever the polymer under study. For polyimide films, n0 varies from 1 × 1014 to 4 × 1016 cm-3 and μeff from 1 × 10-8 to 2 × 10-6 cm2 V-1 s-1 between 200 °C to 400 °C. Poly(amide-imide) films show n0 values between 6 × 1016 and 4 × 1018 cm-3 from 270 °C to 400 °C, while μeff varies between 1 × 10-10 and 2 × 10-7 cm2 V-1 s-1. Considering the activation energies of these physical parameters in the temperature range of investigation, n0 and μeff values appear as coherent with those reported in the literature at lower temperature (<80 °C). Surface charge carrier concentrations (nS) are reported and discussed for potential passivation (i.e., surface electrical insulation) applications. Polyimide films appear as good candidates due to nS values less than 1011 cm-2 up to 300 °C.
NASA Technical Reports Server (NTRS)
Tran, Sang Q. (Inventor)
1998-01-01
A method for creating a composite form of coating from a sprayable solution of soluble polyimides and particle materials that are uniformly dispersed within the solution is described. The coating is formed by adding a soluble polyimide to a solvent, then stirring particle materials into the solution. The composite solution is sprayed onto a substrate and heated in an oven for a period of time in order to partially remove the solvent. The process may be repeated until the desired thickness or characteristic of the coating is obtained. The polyimide is then heated to at least 495 F, so that it is no longer soluble.
Room Temperature Halogenation of Polyimide Film Surface using Chlorine Trifluoride Gas
NASA Astrophysics Data System (ADS)
Habuka, Hitoshi; Kosuga, Takahiro; Koike, Kunihiko; Aida, Toshihiro; Takeuchi, Takashi; Aihara, Masahiko
2004-02-01
In order to develop a new application of chlorine trifluoride gas, the halogenation of a polyimide film surface at room temperature and at atmospheric pressure is studied for the first time. The polyimide film surface after exposure to the chlorine trifluoride gas shows a decreased water contact angle with increasing chlorine trifluoride gas concentration and exposure period. Since both X-ray photoelectron spectroscopy and infrared absorption spectroscopy simultaneously showed the formation of a carbon-chlorine bond and carbon-fluorine bond, it is concluded that the chlorine trifluoride gas can easily and safely perform the halogenation of the polyimide film surface under the stated conditions using a low-cost process and equipment.
Analysis of the Barrier Properties of Polyimide-Silicate Nanocomposites
NASA Technical Reports Server (NTRS)
Campbell, Sandi; Johnston, J. Chris; Inghram, Linda; McCorkle, Linda; Silverman, Edward
2003-01-01
Montmorillonite clay was organically modified and dispersed into a thermoplastic (BPADA-BAPP) and a thermosetting (PMR-15) polyimide matrix. The barrier properties of the neat resins and the nanocomposites were evaluated. Reductions in gas permeability and water absorption were observed in thermoplastic polyimide nanocomposites. The thermosetting polyimide showed a reduction in weight loss during isothermal aging at 288 C. Carbon fabric (T650-35, 8 HS, 8 ply) composites were prepared using both the BPADE-BAPP and PMR-15 based nanocomposites. Dispersion of the layered silicate in the BPADA-BAPP matrix reduced helium permeability by up to 70 percent. The PMR-15/ silicate nanocomposite matrix had an increase in thermal oxidative stability of up to 25 percent.
NASA Astrophysics Data System (ADS)
Aziz, Nor Diyana Abdul; Kamarulzaman, Norlida; Subban, Ri Hanum Yahaya; Hamzah, Ahmad Sazali; Ahmed, Azni Zain; Osman, Zurina; Rusdi, Roshidah; Kamarudin, Norashikin; Mohalid, Norhanim; Romli, Ahmad Zafir; Shaameri, Zurina
2017-09-01
Polymer electrolytes have been an essential area of research for many decades. One of the reasons was the need to find new electrolyte materials suitable for device applications like solid-state batteries, supercapacitors, fuel cells, etc. with enhanced characteristics. For more than 40 years, polyimide has been known as a super-engineering plastic due to its excellent thermal stability (Tg > 250 °C) and mechanical properties. Therefore, in an effort to develop new polymer electrolytes, polyimide as a polymer matrix was chosen. Composite films of the polymer doped with lithium salt, LiCF3SO3 was prepared. These PI based polymer electrolyte films were investigated by the alternating current (a.c.) impedance spectroscopy method in the temperature range from 300 K to 373 K. It was observed that conductivity increased with the increase of temperature and amount of doping salt. Alternatively, the activation energy (Ea) of the composite films decreased with the increase of the doping salt, LiCF3SO3.
NASA Astrophysics Data System (ADS)
Yao, Dahua; Yang, Yu; Deng, Yonghong; Wang, Chaoyang
2018-03-01
A series of polyimides, which contain polyethylene glycol (PEG) segments with different molecular weight in the polymer chains, are synthesized through a facile one-pot method and characterized by Fourier transform infrared spectroscopy and hydrogen nuclear magnetic resonance spectroscopy. The main part of polyimides is originated from trimellitic anhydride chloride (TMAC) and 4,4‧-methylenedianiline, onto which PEG segments are introduced through an esterification reaction with TMAC. These obtained polyimides, which acquire excellent water solubility after being neutralized by triethylamine, are applied as water-soluble binders to silicon negative electrodes for lithium ion batteries, and significantly improve the electrochemical performance of silicon anodes. Specially, the PI-200 (polyimide copolymerized with PEG-200) based silicon electrode exhibits a high initial discharge capacity of 2989.7 mAh g-1 and remains about 2235.5 mAh g-1 after 200 cycles at the current density of 0.1 C (420 mA g-1).
Porous Cross-Linked Polyimide Networks
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Guo, Haiquan (Inventor)
2015-01-01
Porous cross-linked polyimide networks are provided. The networks comprise an anhydride end-capped polyamic acid oligomer. The oligomer (i) comprises a repeating unit of a dianhydride and a diamine and terminal anhydride groups, (ii) has an average degree of polymerization of 10 to 50, (iii) has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups, and (iv) has been chemically imidized to yield the porous cross-linked polyimide network. Also provided are porous cross-linked polyimide aerogels comprising a cross-linked and imidized anhydride end-capped polyamic acid oligomer, wherein the oligomer comprises a repeating unit of a dianhydride and a diamine, and the aerogel has a density of 0.10 to 0.333 g/cm.sup.3 and a Young's modulus of 1.7 to 102 MPa. Also provided are thin films comprising aerogels, and methods of making porous cross-linked polyimide networks.
Process for preparing essentially colorless polyimide film containing phenoxy-linked diamines
NASA Technical Reports Server (NTRS)
Stclair, A. K.; Stclair, T. L.
1986-01-01
A polyimide film that is approximately 90% transparent at 500 nm, useful for thermal protective coatings and solar cells, and the processes for preparing the same by thermal and chemical conversion are disclosed. An essential feature for achieving maximum optical transparency films requires utilizing recrystallized and/or sublimated specific aromatic diamines and dianhydride monomers and introducing phenoxy or thiophenyl separator groups and isomeric m,m' or o,p'-oriented diamines into the polymer molecular structure. The incorporation of these groups in the polymer structure serves to separate the chromaphoric centers and reduce the formation of inter-chain and intra-chain charge transfer complexes which normally cause absorptions in the UV-visible range. The films may be obtained by hand, brushing, casting, or spraying a layer of polyamic acid solutions onto a surface and thermally converting the applied layer to the polyimide, or the polyamic acid solution can be chemically converted to the polyimide, subsequentially dissolved in an organic solvent, and applied as a polyimide film layer with the solvent therein thermally removed.
Prediction of Mechanical Properties of Polymers With Various Force Fields
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Clancy, Thomas C.; Gates, Thomas S.
2005-01-01
The effect of force field type on the predicted elastic properties of a polyimide is examined using a multiscale modeling technique. Molecular Dynamics simulations are used to predict the atomic structure and elastic properties of the polymer by subjecting a representative volume element of the material to bulk and shear finite deformations. The elastic properties of the polyimide are determined using three force fields: AMBER, OPLS-AA, and MM3. The predicted values of Young s modulus and shear modulus of the polyimide are compared with experimental values. The results indicate that the mechanical properties of the polyimide predicted with the OPLS-AA force field most closely matched those from experiment. The results also indicate that while the complexity of the force field does not have a significant effect on the accuracy of predicted properties, small differences in the force constants and the functional form of individual terms in the force fields determine the accuracy of the force field in predicting the elastic properties of the polyimide.
Georgiev, Anton; Yordanov, Dancho; Dimov, Dean; Assa, Jacob; Spassova, Erinche; Danev, Gencho
2015-04-05
Nanocomposite layers 250 nm copper phthalocyanine/polyimide prepared by simultaneous vapour deposition of three different sources were studied. Different concentrations of copper phthalocyanine as a "guest" in polyimide matrix as a function of conditions of the preparation have been determined by FTIR (Fourier Transform Infrared) and UV-VIS (Ultraviolet-Visible) spectroscopies. The aim was to estimate the possibility of the spectroscopic methods for quantitative determination of the "guest" and compare with the quality of the polyimide thin films in relation to the "guest" concentration. The band at 1334 cm(-1) has been used for quantitative estimation of "guest" in polyimide matrix. The concentrations of the copper phthalocyanine less than 20% require curve fitting techniques with Fourier self deconvolution. The relationship between "guest" concentrations and degree of imidization, as well as the electronic UV-VIS spectra are discussed in relation to the composition, imidization degree and the two crystallographic modification of the embedded chromophore. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Pater, Ruth H.; Eftekhari, Abe
1996-01-01
Thermoset and thermoplastic polyimides have complementary physical and mechanical properties. Whereas thermoset polyimides are brittle and generally easier to process, thermoplastic polyimides are tough but harder to process. A combination of these two types of polyimides may help produce polymers more suitable for aerospace applications. Semi-Interpenetrating Polymer Networks (S-IPN) of thermoset LaRC(TM)-RP46 and thermoplastic LaRC(TM)-IA polyimides were prepared in weight percent ratios ranging from 100:0 to 0:100. Positron lifetime measurements were made in these samples to correlate their free volume features with physical and mechanical properties. As expected, positronium atoms are not formed in these samples. The second lifetime component has been used to infer the positron trap dimensions. The 'free volume' goes through a minimum at a ratio of about 50:50, and this suggests that S-IPN samples are not merely solid solutions of the two polymers. These data and related structural properties of the S-IPN samples are discussed.
High temperature resin matrix composites for aerospace structures
NASA Technical Reports Server (NTRS)
Davis, J. G., Jr.
1980-01-01
Accomplishments and the outlook for graphite-polyimide composite structures are briefly outlined. Laminates, skin-stiffened and honeycomb sandwich panels, chopped fiber moldings, and structural components were fabricated with Celion/LARC-160 and Celion/PMR-15 composite materials. Interlaminar shear and flexure strength data obtained on as-fabricated specimens and specimens that were exposed for 125 hours at 589 K indicate that epoxy sized and polyimide sized Celion graphite fibers exhibit essentially the same behavior in a PMR-15 matrix composite. Analyses and tests of graphite-polyimide compression and shear panels indicate that utilization in moderately loaded applications offers the potential for achieving a 30 to 50 percent reduction in structural mass compared to conventional aluminum panels. Data on effects of moisture, temperature, thermal cycling, and shuttle fluids on mechanical properties indicate that both LARC-160 and PMR-15 are suitable matrix materials for a graphite-polyimide aft body flap. No technical road blocks to building a graphite-polyimide composite aft body flap are identified.
Microfabricated Multianalyte Sensor Arrays for Metabolic Monitoring
2006-09-01
aqueous in vivo-like surrounding15-18 to entrap both the redox polymer and glucose oxidase on polyimide sheets. We have used biocompatible PEG-DA hydrogel...arrays were fabricated on gold electrodes on flexible polyimide sheets by cross-linking glucose oxidase and redox polymer using UV-initiated free...cyclic voltammetry. We have fabricated an array of glucose sensors on flexible polyimide sheets that exhibit the desired linear response in the
Polyimides Containing Silver Trifluoroacetylacetonate
NASA Technical Reports Server (NTRS)
Stoakley, Diane M.; St. Clair, Anne K.; Rancourt, James D.; Taylor, Larry T.; Caplan, Maggie L.
1994-01-01
Mechanically strong, flexible, thermally stable, electrically conductive films and coatings suitable for use in electronics industry made by incorporating silver trifluoroacetylacetonate into linear aromatic condensation polyimides. In experimental films, most successful combinations of flexibility and conductivity obtained by use of 1:1, 1:1.74, and 1:2 mole ratios of silver trifluoroacetylacetonate per polyimide repeat unit. Other concentrations of silver trifluoroacetylacetonate used with different heat-treatment schedules to obtain conductive silver-impregnated films.
Electrically conductive polyimides containing silver trifluoroacetylacetonate
NASA Technical Reports Server (NTRS)
Rancourt, James D. (Inventor); Stoakley, Diane M. (Inventor); Caplan, Maggie L. (Inventor); St. Clair, Anne K. (Inventor); Taylor, Larry T. (Inventor)
1996-01-01
Polyimides with enhanced electrical conductivity are produced by adding a silver ion-containing additive to the polyamic acid resin formed by the condensation of an aromatic dianhydride with an aromatic diamine. After thermal treatment the resulting polyimides had surface conductivities in the range of 1.7.times.10.sup.-3 4.5 .OMEGA..sup.-1 making them useful in low the electronics industry as flexible, electrically conductive polymeric films and coatings.
Electro-optical and physic-mechanical properties of colored alicyclic polyimide
NASA Astrophysics Data System (ADS)
Kravtsova, V.; Umerzakova, M.; Korobova, N.; Timoshenkov, S.; Timoshenkov, V.; Orlov, S.; Iskakov, R.; Prikhodko, O.
2016-09-01
Main optical, thermal and mechanical properties of new compositions based on alicyclic polyimide and active bright red 6C synthetic dye have been studied. It was shown that the transmission ratio of the new material in the region of 400-900 nm and 2.0 wt.% dye concentration was around 60-70%. Thermal, mechanical and electrical properties of new colored compositions were comparable with the properties of original polyimide.
2,2-Bis[(2-halo-4-aminophenoxy)phenyl]-hexafluoropropane
NASA Technical Reports Server (NTRS)
Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)
1985-01-01
There are provided the aromatic diamines 2,2-bis-[(2-halo-4-aminophenoxy)-phenyl]hexafluoropropane, where the attached ortho halogen is preferably chlorine, and 4,4'-bis(4-aminophenoxy)biphenyl, as novel monomers for polyimide polymerizations. The former, when reacted with 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, provides a polyimide having exceptional high-temperature performance. The latter diamine is a low-cost monomer for polyimide production.
Farah, John; Sudarshanam, Venkatapuram S.
2003-05-13
Polymer substrates, in particular polyimide substrates, and polymer laminates for optical applications are described. Polyimide substrates are polished on one or both sides depending on their thickness, and single-layer or multi-layer waveguide structures are deposited on the polished polyimide substrates. Optical waveguide devices are machined by laser ablation using a combination of IR and UV lasers. A waveguide-fiber coupler with a laser-machined groove for retaining the fiber is also disclosed.
Polarization and Piezoelectric Properties of a Nitrile Substituted Polyimide
NASA Technical Reports Server (NTRS)
Simpson, Joycelyn; Ounaies, Zoubeida; Fay, Catharine
1997-01-01
This research focuses on the synthesis and characterization of a piezoelectric (beta-CN)- APB/ODPA polyimide. The remanent polarization and piezoelectric d(sub 31) and g(sub 33) coefficients are reported to assess the effect of synthesis variations. Each of the materials exhibits a level of piezoelectricity which increases with temperature. The remanent polarization is retained at temperatures close to the glass transition temperature of the polyimide.
Guzmán-Lucero, Diego; Froylán Palomeque-Santiago, Jorge; Camacho-Zúñiga, Claudia; Ruiz-Treviño, Francisco Alberto; Guzmán, Javier; Galicia-Aguilar, Alberto; Aguilar-Lugo, Carla
2015-01-01
A series of new organic polyimides were synthesized from 4-fluoro-4'4"-diaminotriphenylmethane and four different aromatic dianhydrides through a one-step, high-temperature, direct polycondensation in m-cresol at 180–200 °C, resulting in the formation of high-molecular-weight polyimides (inherent viscosities ~ 1.0–1.3 dL/g). All the resulting polyimides exhibited good thermal stability with initial decomposition temperatures above 434 °C, glass-transition temperatures between 285 and 316 °C, and good solubility in polar aprotic solvents. Wide-angle X-ray scattering data indicated that the polyimides were amorphous. Dense membranes were prepared by solution casting and solvent evaporation to evaluate their gas transport properties (permeability, diffusivity, and solubility coefficients) toward pure hydrogen, helium, oxygen, nitrogen, methane, and carbon dioxide gases. In general, the gas permeability was increased as both the fractional free volume and d-spacing were also increased. A good combination of permeability and selectivity was promoted efficiently by the bulky hexafluoroisopropylidene and 4-fluoro-phenyl groups introduced into the polyimides. The results indicate that the gas transport properties of these films depend on both the structure of the anhydride moiety, which controls the intrinsic intramolecular rigidity, and the 4-fluoro-phenyl pendant group, which disrupts the intermolecular packing. PMID:28788041
Guzmán-Lucero, Diego; Palomeque-Santiago, Jorge Froylán; Camacho-Zúñiga, Claudia; Ruiz-Treviño, Francisco Alberto; Guzmán, Javier; Galicia-Aguilar, Alberto; Aguilar-Lugo, Carla
2015-04-21
A series of new organic polyimides were synthesized from 4-fluoro-4'4"-diaminotriphenylmethane and four different aromatic dianhydrides through a one-step, high-temperature, direct polycondensation in m-cresol at 180-200 °C, resulting in the formation of high-molecular-weight polyimides (inherent viscosities ~ 1.0-1.3 dL/g). All the resulting polyimides exhibited good thermal stability with initial decomposition temperatures above 434 °C, glass-transition temperatures between 285 and 316 °C, and good solubility in polar aprotic solvents. Wide-angle X-ray scattering data indicated that the polyimides were amorphous. Dense membranes were prepared by solution casting and solvent evaporation to evaluate their gas transport properties (permeability, diffusivity, and solubility coefficients) toward pure hydrogen, helium, oxygen, nitrogen, methane, and carbon dioxide gases. In general, the gas permeability was increased as both the fractional free volume and d-spacing were also increased. A good combination of permeability and selectivity was promoted efficiently by the bulky hexafluoroisopropylidene and 4-fluoro-phenyl groups introduced into the polyimides. The results indicate that the gas transport properties of these films depend on both the structure of the anhydride moiety, which controls the intrinsic intramolecular rigidity, and the 4-fluoro-phenyl pendant group, which disrupts the intermolecular packing.
NASA Astrophysics Data System (ADS)
Walewyns, Thomas; Reckinger, Nicolas; Ryelandt, Sophie; Pardoen, Thomas; Raskin, Jean-Pierre; Francis, Laurent A.
2013-09-01
The interest of using polyimide as a sacrificial and anchoring layer is demonstrated for post-processing surface micromachining and for the incorporation of metallic nanowires into microsystems. In addition to properties like a high planarization factor, a good resistance to most non-oxidizing acids and bases, and CMOS compatibility, polyimide can also be used as a mold for nanostructures after ion track-etching. Moreover, specific polyimide grades, such as PI-2611 from HD Microsystems™, involve a thermal expansion coefficient similar to silicon and low internal stress. The process developed in this study permits higher gaps compared to the state-of-the-art, limits stiction problems with the substrate and is adapted to various top-layer materials. Most metals, semiconductors or ceramics will not be affected by the oxygen plasma required for polyimide etching. Released structures with vertical gaps from one to several tens of μm have been obtained, possibly using multiple layers of polyimide. Furthermore, patterned freestanding nanowires have been synthesized with diameters from 20 to 60 nm and up to 3 μm in length. These results have been applied to the fabrication of two specific devices: a generic nanomechanical testing lab-on-chip platform and a miniaturized ionization sensor.
NASA Astrophysics Data System (ADS)
Goda, Kazuya; Takatoh, Kohki; Funasako, Yusuke; Inokuchi, Makoto
2018-06-01
We proposed a thermoresponsive light scattering device that utilizes the surface behavior between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation. The LCST behavior for an ionic liquid device utilizing the polyimide with and without alkyl side chains was investigated. In the here-reported ionic liquid device that utilized the polyimide with alkyl side chains, [nBu4P][CF3COO] droplets were generated by phase separation—they were predominantly formed at the alkyl surface by a surface pinning effect. A stable transmittance in the opaque state could be obtained with this device. In contrast, an ionic liquid device using polyimide without alkyl side chains deteriorated transmittance in the opaque state because there was no surface pinning effect. Additionally, the viewing angle, contrast ratio, and heat cycle testing of this ionic liquid device with polyimide with alkyl side chains were also investigated. The results indicated that no parallax was obtained and that the ionic liquid device has a stable transmittance (verified by heat cycle testing). This unique device is expected to find use in the smart window applications that are activated by temperature changes.
30 CFR 18.36 - Cables between machine components.
Code of Federal Regulations, 2010 CFR
2010-07-01
... protection, (3) insulation compatible with the impressed voltage, and (4) flame-resistant properties unless... mechanical damage by position, flame-resistant hose conduit, metal tubing, or troughs (flexible or threaded...
30 CFR 18.36 - Cables between machine components.
Code of Federal Regulations, 2011 CFR
2011-07-01
... protection, (3) insulation compatible with the impressed voltage, and (4) flame-resistant properties unless... mechanical damage by position, flame-resistant hose conduit, metal tubing, or troughs (flexible or threaded...
NASA Astrophysics Data System (ADS)
Gao, Hui; Lan, Xin; Liu, Liwu; Xiao, Xinli; Liu, Yanju; Leng, Jinsong
2017-09-01
Shape memory polymers with high glass transition temperature (HSMPs) and HSMP-based deployable structures and devices, which can bear harsh operation conditions for durable applications, have attracted more and more interest in recent years. In this article, colorless and transparent shape memory polyimide (SMCTPI) films were subjected to simulated vacuum thermal cycling, atomic oxygen (AO) and ultraviolet (UV) irradiation environments up to 600 h, 556 h and 600 h for accelerated irradiation. The glass transition temperature (Tg) determined by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) had no obvious changes after being irradiated by varying amounts of thermal cycling, AO and UV irradiation dose. After being irradiated by 50 thermal cycles, 10 × 1021 atoms cm-2 AO irradiation and 3000 ESH UV irradiation, shape recovery behaviors of SMCTPI films also had no obvious damage even if they experienced 30 shape memory cycles, while the surface morphologies and optical properties were seriously destroyed by AO irradiation, as compared with thermal cycling and UV irradiation. The tensile strength could separately maintain 122 MPa, 120 MPa and 70 MPa after 50 thermal cycles, 10 × 1021 atoms cm-2 AO irradiation and 3000 ESH UV irradiation, which shows great potential for use in aerospace structures and devices.
Synthesis and characterization of fluorinated polyaminoquinones and fluorinated polyimides
NASA Astrophysics Data System (ADS)
Vaccaro, Eleonora
Phenolic and quinonoid compounds are widely studied in biological sciences because of their ability to chelate heavy metals like iron and copper and recently have found new applications in synthetic macromolecules. Amino- p-benzoquinone polymers, poly[(2,5-hexamethylenediamino)-1,4-benzoquinone] and poly {[2,5-(2,2'-bistrifluoromethyl)-4,4' -biphenylenediamino]1,4-benzoquinone}, were synthesized and evaluated as adhesion promoters for steel/epoxy joints. An improvement in the torsional shear strength of these joints was observed when these polymers were used as adhesion promoters. The durability of the adhesive bond was also improved after boiling water treatment, relative to untreated and silane treated joints. The improvement in adhesion could be attributed to the formation of a chelate between the polyaminoquinone (PAQ) and the iron surface and a chemical reaction between the PAQ and the epoxy resin. A low molecular weight model compound, bis[2,5-(4-methylanilido)]-1,4-benzoquinone was also used to study coupling between the epoxy adhesive and the steel surface. Electron spin resonance (ESR), atomic absorption spectroscopy and infrared spectroscopy were used to document the epoxy-coupling agent reaction and the chelate formation. Polyimides have acquired importance in the last twenty years as the most promising macromolecules for high technology applications in new materials. Their good thermo-oxidative stability is well known, as well as their high glass transition temperature. Polyimides are versatile polymers, which can be utilized for a wide range of applications: i.e., as matrices for high performance advanced composite materials, as thin films in electronic applications, as structural adhesives and sealants and as membranes for gas separation. A novel anhydride, 1,1,1-trifluoromethyl-1-pentafluorophenylethylidene-2,2-diphthalic anhydride, 8FDA, was synthesized. Five diamines were used in the synthesis of polyimides, namely p-phenylene diamine, 3,4'-oxydianiline, 2,2-bis(3-aminophenyl)hexafluoropropane, 2,2'-bis(trifluoromethyl)benzidine and 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. A variety of structures was achieved, allowing for a thorough determination of the structure/properties relationship. The presence of the pentafluorophenyl substituent in the polyimide backbone imparted more flexibility to the 8F polyimides, as demonstrated by the low glass transition temperatures. The dielectric constant of these 8F polyimides was the lowest ever reported for polyimides. It is believed that the pentafluorophenyl group may increase the free volume and hydrophobicity of the 8F polyimides. The thermo- and thermo-oxidative stability of these 8F polyimides was also studied and appeared to be adequate for high temperature applications.
Rapid control of mold temperature during injection molding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liparoti, Sara; Titomanlio, Giuseppe; Hunag, Tsang Min
2015-05-22
The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during themore » entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.« less
... Healthy Air > Indoor > Indoor Air Pollutants and Health Asbestos What is asbestos? Asbestos refers to a group of naturally occurring, ... in others. 2 What are the sources of asbestos? Deteriorating, damaged or disturbed products—such as insulation, ...
Micro-Fabricated Perforated Polymer Devices for Long-Term Drug Delivery
2011-02-24
conventional manufacturing methods. We have used a biocompatible polymer ( polyimide ) to serve as a reservoir and photolithographically produced microholes for...RIE with ICP source was used to etch holes on polyimide surface. Biocompatible materials Ti, SiO2 and SiNx were studied as mask materials. Ti film...used to fabricate micro holes on the surface of polyimide tubes. Several materials have been used to form the etching mask, including titanium film
NASA Astrophysics Data System (ADS)
Jung, Kyoung Hoon; Hyun, Soon-Young; Song, Dong-Mee; Shin, Dong-Myung
2003-01-01
The photoalignment of liquid crystal (LC) molecules located onto polyimide films with chalcone derivatives using linearly polarized UV (LPUV) light is investigated. The LPUV light irradiation generated dimerization products of the chalcones followed by isomerization of the chalcone derivatives. The alignment directions of LC molecules were either homeotropic or planar with respect to plane of polyimide film, depending upon the alkyl chain length attached on the chalcones.
Development of new addition-type composite resins
NASA Technical Reports Server (NTRS)
Kray, R. J.
1981-01-01
The most promising of a number of new addition type polyimides and polyaromatic melamine (NCNS) resins for use in high performance composite materials. Three different cure temperature ranges were of interest: 530-560 K (500-550 F), 475-530 K (400-500 F), and 450 K (350 F). Examined were a wide variety of polyimide precursors terminated with 5 norbornene groups and addition polymerized at 560 K similar to PMR-15 and LARC-160 polyimides. In addition, a number of lower curing cinnamal end capped polyimides and a bismaleimide were investigated but were not found promising. A group of NCNS resins were investigated and some were found to be superior to current epoxy resins in moisture resistance, oxidative aging and flame and smoke properties.
A High T(sub g) PMR Polyimide Composites (DMBZ-15)
NASA Technical Reports Server (NTRS)
Chuang, Kathy C.; Bowles, Kenneth J.; Papadopoulos, Demitrios S.; Hardy-Green, DeNise; Mccorkle, Linda
2000-01-01
A high T(sub g) thermosetting PMR-type polyimide, designated as DMBZ-15, was developed by replacing methylene dianline (MDA) in PMR-15 with 2,2'-dimethylbenzidine. Polyimide/carbon fiber (T650-35) composites were fabricated from a formulation of 3,3', 4,4'-benzophenonetetracarboxylic acid dimethyl ester (BTDE) and 2,2'-dimethylbenzidine (DMBZ), along with nadic ester (NE) as the endcap. DMBZ-15 displays a higher glass transition temperature (T(sub g) = 414 C) than PMR-15 (T(sub g) = 345 C), and thus retains better mechanical properties for brief exposure above 400 C. The physical properties and longterm thermo-oxidative stability of the DMBZ-15 polyimide/carbon fiber composites are also compared to that of PMR-15.
Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)
2001-01-01
Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.
Novel polyimide compositions based on 4,4': Isophthaloyldiphthalic anaydride (IDPA)
NASA Technical Reports Server (NTRS)
Pratt, J. Richard (Inventor); Saintclair, Terry L. (Inventor)
1989-01-01
A series of twelve high temperature, high performance polyimide compositions based on 4,4'-isophthaloyl diphthalic anhydride (IDPA) was prepared and characterized. Tough, film-forming, organic solvent-insoluble polyimides were obtained. Three materials were semicrystalline. Several gave excellent long-term thermooxidative stability by isothermal thermogravimetric analysis (ITGA) at 300 C and 350 C in air when compared to Kapton H film (duPont). One extensively studied material displayed different levels of semicrystallinity over a wide range of final cure time/temperatures. The polyimide from IDPA and 1,3-bis (4-aminophenoxy 4'-benzoyl) benzene exhibited multiple crystallization and melting behavior, implying the existence of two kinetic and two thermodynamic crystallization and melting transitions by differential scanning calorimetry (DSC).
HST Multi Layer Insulation Failure Review Board Findings
NASA Technical Reports Server (NTRS)
Townsend, Jacqueline; Hansen, Patricia
1998-01-01
The mechanical and optical properties of the thermal control materials on the Hubble Space Telescope (HST) have degraded over the nearly seven years the telescope has been in orbit. Astronaut observations and photographs from the Second Servicing Mission (SM2) revealed large cracks in the metallized Teflon fluorinated ethylene propylene (FEP), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. Also, the absorptance of the bonded metallized Teflon FEP radiator surfaces of the telescope has increased over time. A Failure Review Board was established to determine the damage mechanism and to identify a replacement material. Samples of the top layer of the MLI and radiator material were retrieved during SM2, and a thorough investigation into the degradation followed in order to determine the primary cause of the damage. Mapping of the cracks on HST and the ground testing showed that thermal cycling with deep-layer damage from electron and proton radiation are necessary to cause the observed embrittlement. Further, strong evidence was found indicating that chain scission (reduced molecular weight) is the dominant form of damage to the metallized Teflon FEP. Given the damage to the outer layer of the multi-layer insulation (MLI) that was apparent during the second servicing mission (SM2), the decision was made to replace the outer layer during subsequent servicing missions. The replacement material had to meet the stringent thermal requirements of the spacecraft and maintain structural integrity for at least ten years. Ten candidate materials were exposed to simulated orbital environments and a replacement material was selected. This presentation will summarize the FRB results, in particular, the analysis of the retrieved specimens, the results of the simulated environmental exposures, and the selection of the replacement material. The NASA Space Environments and Effects community needs to hear these results because they reveal that Teflon (FEP) films should not be used in LEO as routinely as they are today.
49 CFR 192.461 - External corrosion control: Protective coating.
Code of Federal Regulations, 2012 CFR
2012-10-01
... protective coating, whether conductive or insulating, applied for the purpose of external corrosion control... or damage from supporting blocks. (e) If coated pipe is installed by boring, driving, or other...
49 CFR 192.461 - External corrosion control: Protective coating.
Code of Federal Regulations, 2014 CFR
2014-10-01
... protective coating, whether conductive or insulating, applied for the purpose of external corrosion control... or damage from supporting blocks. (e) If coated pipe is installed by boring, driving, or other...
DOE Office of Scientific and Technical Information (OSTI.GOV)
HAQ MA
2009-05-12
The purpose of this document is to evaluate the effect of frost heave on waste transfer lines with shallow depths in DST farms. Because of the insulation, well compacted sandy material around waste transfer lines, the type of sandy and gravel soil, and relatively low precipitation at Hanford site, it is concluded that waste transfer lines with one foot of soil covers (sandy cushion material and insulation) are not expected to undergo frost heave damaging effects.
Partial Insulation of Aerated Concrete Wall in its Thermal Bridge Regions
NASA Astrophysics Data System (ADS)
Li, Baochang; Guo, Lirong; Li, Yubao; Zhang, Tiantian; Tan, Yufei
2018-01-01
As a self-insulating building material which can meet the 65 percent energy-efficiency requirements in cold region of China, aerated concrete blocks often go moldy, frost heaving, or cause plaster layer hollowing at thermal bridge parts in the extremely cold regions due to the restrictions of environmental climate and construction technique. In this paper, partial insulation measures of the thermal-bridge position of these parts of aerated concrete walls are designed to weaken or even eliminate thermal bridge effect and improve the temperature of thermal-bridge position. A heat transfer calculation model for L-shaped wall and T-shaped wall is developed. Based on the simulation result, the influence of the thickness on the temperature field is analyzed. Consequently, the condensation inside self-thermal-insulating wall and frost heaving caused by condensation and low temperature will be reduced, avoiding damage to the wall body from condensation..
2017-01-01
In this work we report the effect of the hard block dianhydride structure on the overall properties of partially biobased semiaromatic polyimides. For the study, four polyimides were synthesized using aliphatic fatty dimer diamine (DD1) as the soft block and four different commercially available aromatic dianhydrides as the hard block: 4,4′-(4,4′-isopropylidenediphenoxy) bis(phthalic anhydride) (BPADA), 4,4′-oxidiphthalic anhydride (ODPA), 4,4′-(Hexafluoroisopropylidene) diphthalic anhydride (6FDA), and 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA). The polymers synthesized were fully organo-soluble thermoplastic branched polyimides with glass transition temperatures close to room temperature. The detailed analysis took into account several aspects of the dianhydrides structure (planarity, rigidity, bridging group between the phtalimides, and electronic properties) and related them to the results obtained by differential scanning calorimetry, rheology, fluorescence and broadband dielectric spectroscopy. Moreover, the effects of physical parameters (crystallization and electronic interactions) on the relaxation behavior are discussed. Despite the presence of the bulky branched soft block given by the dimer diamine, all polyimides showed intermolecular charge transfer complexes, whose extent depends on the electronic properties of the dianhydride hard block. Furthermore, the results showed that polyimides containing flexible and bulky hard blocks turned out fully amorphous while the more rigid dianhydride (BPDA) led to a nanophase separated morphology with low degree of crystallinity resulting in constrained segmental relaxation with high effect on its mechanical response with the annealing time. This work represents the first detailed report on the development and characterization of polyimides based on a biobased fatty dimer diamine. The results highlight the potential of polymer property design by controlled engineering of the aromatic dianhydride blocks. PMID:29333351
NASA Astrophysics Data System (ADS)
Ashraf, Ahmad Raza; Akhter, Zareen; Simon, Leonardo C.; McKee, Vickie; Castel, Charles Dal
2018-05-01
The meta-catenated ether-based diamine monomer α,αʹ-bis(3-aminophenoxy)-p-xylene (3APX) was synthesized from dinitro precursor α,αʹ-bis(3-nitrophenoxy)-p-xylene (3NPX). FTIR, 1H and 13C NMR spectroscopic studies accompanied by elemental analysis were performed for structural elucidations of 3NPX and 3APX. The spatial orientations of 3APX were explored by single crystal X-ray diffraction analysis. Its crystal system was found to be monoclinic, adopting the space group P21/c. The synthesized diamine monomer (3APX) was used for preparation of new series of polyimides by reacting with three different dianhydrides (BTDA, ODPA, 6FDA). The relevant copolyimides were developed via incorporation of 4,4ʹ-methylenedianiline (MDA) in the backbone of afore-synthesized polyimides. The structures of polyimides and copolyimides were verified by FTIR and 1H NMR spectroscopic techniques. Their properties were evaluated by dynamic and isothermal TGA (nitrogen and air atmospheres) and WAXRD studies. Polyimides displayed significantly high thermal stability as their degradation started around 400 °C and it was improved further by execution of copolymerization strategy with MDA. The 5% weight loss temperature (T5) of polyimides under nitrogen atmosphere was in the range of 425-460 °C while for copolyimides it increased to 454-498 °C. Thermal decomposition in air was slower than nitrogen between 400 and 550 °C however it was accelerated above 550 °C. Isothermal TGA disclosed that copolyimides have the ability to endure elevated temperatures for extended period. WAXRD analysis showed the amorphous nature of polyimides and copolyimides.
Analysis of the Influence of Construction Insulation Systems on Public Safety in China
Zhang, Guowei; Zhu, Guoqing; Zhao, Guoxiang
2016-01-01
With the Government of China’s proposed Energy Efficiency Regulations (GB40411-2007), the implementation of external insulation systems will be mandatory in China. The frequent external insulation system fires cause huge numbers of casualties and extensive property damage and have rapidly become a new hot issue in construction evacuation safety in China. This study attempts to reconstruct an actual fire scene and propose a quantitative risk assessment method for upward insulation system fires using thermal analysis tests and large eddy simulations (using the Fire Dynamics Simulator (FDS) software). Firstly, the pyrolysis and combustion characteristics of Extruded polystyrene board (XPS panel), such as ignition temperature, combustion heat, limiting oxygen index, thermogravimetric analysis and thermal radiation analysis were studied experimentally. Based on these experimental data, large eddy simulation was then applied to reconstruct insulation system fires. The results show that upward insulation system fires could be accurately reconstructed by using thermal analysis test and large eddy simulation. The spread of insulation material system fires in the vertical direction is faster than that in the horizontal direction. Moreover, we also find that there is a possibility of flashover in enclosures caused by insulation system fires as the smoke temperature exceeds 600 °C. The simulation methods and experimental results obtained in this paper could provide valuable references for fire evacuation, hazard assessment and fire resistant construction design studies. PMID:27589774
Analysis of the Influence of Construction Insulation Systems on Public Safety in China.
Zhang, Guowei; Zhu, Guoqing; Zhao, Guoxiang
2016-08-30
With the Government of China's proposed Energy Efficiency Regulations (GB40411-2007), the implementation of external insulation systems will be mandatory in China. The frequent external insulation system fires cause huge numbers of casualties and extensive property damage and have rapidly become a new hot issue in construction evacuation safety in China. This study attempts to reconstruct an actual fire scene and propose a quantitative risk assessment method for upward insulation system fires using thermal analysis tests and large eddy simulations (using the Fire Dynamics Simulator (FDS) software). Firstly, the pyrolysis and combustion characteristics of Extruded polystyrene board (XPS panel), such as ignition temperature, combustion heat, limiting oxygen index, thermogravimetric analysis and thermal radiation analysis were studied experimentally. Based on these experimental data, large eddy simulation was then applied to reconstruct insulation system fires. The results show that upward insulation system fires could be accurately reconstructed by using thermal analysis test and large eddy simulation. The spread of insulation material system fires in the vertical direction is faster than that in the horizontal direction. Moreover, we also find that there is a possibility of flashover in enclosures caused by insulation system fires as the smoke temperature exceeds 600 °C. The simulation methods and experimental results obtained in this paper could provide valuable references for fire evacuation, hazard assessment and fire resistant construction design studies.
Statistical Design in Isothermal Aging of Polyimide Resins
NASA Technical Reports Server (NTRS)
Sutter, James K.; Jobe, Marcus; Crane, Elizabeth A.
1995-01-01
Recent developments in research on polyimides for high temperature applications have led to the synthesis of many new polymers. Among the criteria that determines their thermal oxidative stability, isothermal aging is one of the most important. Isothermal aging studies require that many experimental factors are controlled to provide accurate results. In this article we describe a statistical plan that compares the isothermal stability of several polyimide resins, while minimizing the variations inherent in high-temperature aging studies.
Slotted Polyimide-Aerogel-Filled-Waveguide Arrays
NASA Technical Reports Server (NTRS)
Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.
2013-01-01
This presentation discussed the potential advantages of developing Slotted Waveguide Arrays using polyimide aerogels. Polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aerospace antenna systems. PI aerogels are highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties. For slotted waveguide array applications, there are significant advantages in mass that more than compensate for the slightly higher loss of the aerogel filled waveguide when compared to state of practice commercial waveguide.
NASA Technical Reports Server (NTRS)
Gagliani, J.; Lee, R.; Sorathia, U. A. K.
1981-01-01
Light weight, heat and fire resistant low smoke generating polyimide foams are developed for aircraft seating applications. The material is upgraded and classified into groups for fabrication of cushions possessing acceptable comfort properties. Refinement and selection of foaming processes using a variety of previously developd foaming techniques and definition of property relationships to arrive at the selection and classfication of polyimide foams into five groups in accordance with predetermined ILD values are emphasized.
Adhesion and failure analysis of metal-polymer interface in flexible printed circuits boards
NASA Astrophysics Data System (ADS)
Park, Sanghee; Kim, Ye Chan; Choi, Kisuk; Chae, Heeyop; Suhr, Jonghwan; Nam, Jae-Do
2017-12-01
As device miniaturization in microelectronics is currently requested in the development of high performance device, which usually include highly-integrated metal-polyimide multilayer structures. A redistribution layer (RDL) process is currently emerging as one of the most advance fabrication techniques for on-chip interconnect and packaging. One of the major issues in this process is the poor adhesion of the metal-polyimide interfaces particularly in flexible circuit boards due to the flexibility and bendability of devices. In this study, low pressure O2 plasma treatment was investigated to improve the adhesion of metal-polyimide interfaces, using inductively coupled plasma (ICP) treatment. We identified that the adhesion of metal-polyimide interfaces was greatly improved by the surface roughness control providing 46.1 MPa of shear force in the ball shear test after O2 plasma treatment, compared 14.2 MPa without O2 plasma treatment. It was seemingly due to the fact that the adhesion in metal-polyimide interfaces was improved by a chemical conversion of C=O to C-O bonds and by a ring opening reaction of imide groups, which was confirmed with FT-IR analysis. In the finite element numerical analysis of metal-polyimide interfaces, the O2 plasma treated interface showed that the in-plane stress distribution and the vertical directional deformation agreed well with real failure modes in flexible circuits manufacturing.
The effect of simulated low earth orbit radiation on polyimides (UV degradation study)
NASA Technical Reports Server (NTRS)
Forsythe, John S.; George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.
1995-01-01
UV degradation of polyimide films in air and vacuum were studied using UV-visible, ESR, FTIR, and XPS spectroscopies. The UV-visible spectra of polyimide films showed a blue shift in the absorption compared to Kapton. This behavior was attributed to the presence of bulky groups and kinks along the polymer chains which disrupt the formation of a charge transfer complex. The UV-visible spectra showed also that UV irradiation of polyimides result extensively in surface degradation, leaving the bulk of the polymer intact. ESR spectra of polyimides irradiated in vacuum revealed the formation of stable carbon-centered radicals which give a singlet ESR spectrum, while polyimides irradiated in air produced an asymmetric signal shifted to a lower magnetic field, with a higher g value and line width. This signal was attributed to oxygen-cenetered radicals of peroxy and/or alkoxy type. The rate of radical formation in air was two fold higher than for vacuum irradiation, and reached a plateau after a short time. This suggests a continuous depletion of radicals on the surface via an ablative degradation process. FTIR, XPS, and weight loss studies supported this postulate. An XPS study of the surface indicated a substantial increase in the surface oxidation after irradiation in air. The sharp increase in the C-O binding energy peak relative to the C-C peak was believed to be associated with an aromatic ring opening reaction.
Shelf Life of PMR Polyimide Monomer Solutions and Prepregs Extended
NASA Technical Reports Server (NTRS)
Alston, William B.; Scheiman, Daniel A.
2000-01-01
PMR (Polymerization of Monomeric Reactants) technology was developed in the mid-1970's at the NASA Glenn Research Center at Lewis Field for fabricating high-temperature stable polyimide composites. This technology allowed a solution of polyimide monomers or prepreg (a fiber, such as glass or graphite, impregnated with PMR polyimide monomers) to be thermally cured without the release of volatiles that cause the formation of voids unlike the non-PMR technology used for polyimide condensation type resins. The initial PMR resin introduced as PMR 15 is still commercially available and is used worldwide by aerospace industries as the state-of-the-art resin for high-temperature polyimide composite applications. PMR 15 offers easy composite processing, excellent composite mechanical property retention, a long lifetime at use temperatures of 500 to 550 F, and relatively low cost. Later, second-generation PMR resin versions, such as PMR II 50 and VCAP 75, offer improvements in the upper-use temperature (to 700 F) and in the useful life at temperature without major compromises in processing and property retention but with significant increases in resin cost. Newer versions of nontoxic (non-methylene dianiline) PMR resins, such as BAX PMR 15, offer similar advantages as originally found for PMR 15 but also with significant increases in resin cost. Thus, the current scope of the entire PMR technology available meets a wide range of aeronautical requirements for polymer composite applications.
Fault location method for unexposed gas trunk line insulation at stray current constant effect area
NASA Astrophysics Data System (ADS)
Tsenev, A. N.; Nosov, V. V.; Akimova, E. V.
2017-10-01
For the purpose of gas trunk lines safe operation, two types of pipe wall metal anticorrosion protection are generally used - the passive (insulation coating) protection and the active (electrochemical) protection. In the process of a pipeline long-term operation, its insulation is subject to wear and damage. Electrochemical protection means of a certain potential value prevent metal dissolution in the soil. When insulation wear and tear attains a level of insufficiency of the protection potential value, the insulating coating needs repair which is a labor-consuming procedure. To reduce the risk of such situation, it is necessary to make inspection rounds to monitor the condition of pipe insulation. A method for pipeline insulation coating unexposed fault location based on Pearson method is considered, wherein a working cathodic protection station signal of 100 Hz frequency is used, which makes installation of a generator unnecessary, and also a specific generator signal of 1 kHz frequency is used at high noise immunity and sensitivity of the instrument complex. This method enables detection and sizing of unexposed pipeline defects within the zones of earth current permanent action. High noise immunity of selective indicators allows for operation in proximity to 110 kV, 220 kV, and 500 kV power transmission lines in action.
NASA Technical Reports Server (NTRS)
Chuang, Kathy C.; Kinder, James D.; Hull, Diana L.; Youngs, Wiley J.
1996-01-01
Experimental polyimides relatively rigid synthesized in effort to exploit some of advantages of rodlike polymers, while alleviating disadvantages. Polymers used to make colorless fibers and transparent films for optical and electronic application.
Thermal cycling tests on surface-mount assemblies
NASA Astrophysics Data System (ADS)
Jennings, C. W.
1988-03-01
The capability of surface-mount (SM) solder joints to withstand various thermal cycle stresses was evaluated through electrical circuit resistance changes of a test pattern and by visual examination for cracks in the solder after exposure to thermal cycling. The joints connected different electrical components, primarily leadless-chip carriers (LCCs), and printed wiring-board (PWB) pads on different laminate substrates. Laminate compositions were epoxy-glass and polyimide-glass with and without copper/Invar/copper (CIC) inner layers, polyimide-quartz, epoxy-Kevlar, and polyimide-Kevlar. The most resistant joints were between small LCCs (24 and 48 pins) and polyimide-glass laminate with CIC inner layers. Processing in joint formation was found to be an important part of joint resistant. Thermal cycling was varied with respect to both time and temperature. A few resistors, capacitors, and inductors showed opens after 500 30-min cycles between -65 C and 125 C. Appreciable moisture contents were measured for laminate materials, especially those of polyimide-Kevlar after equilibration in 100 percent relative humidity at room temperature. If not removed or reduced, moisture can cause delamination in vapor-phase soldering.
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Pater, Ruth H.; Eftekhari, Abe
1998-01-01
Thermoset and thermoplastic polyimides have complementary physical/mechanical properties. Whereas thermoset polyimides are brittle and generally easier to process, thermoplastic polyimides are tough but harder to process. It is expected that a combination of these two types of polyimides may help produce polymers more suitable for aerospace applications. Semi-Interpenetrating Polymer Networks (S-IPNs) of thermoset LaRC(Trademark)-RP46 and thermoplastic LARC(Trademark)-IA polyimides were prepared in weight percent ratios ranging from 100:0 to 0: 100. Positron lifetime measurements were made in these samples to correlate their free volume features with physical/mechanical properties. As expected, positronium atoms are not formed in these samples. The second life time component has been used to infer the positron trap dimensions. The "free volume" goes through a minimum at about 50:50 ratio, suggesting that S-IPN samples are not merely solid solutions of the two polymers. These data and related structural properties of the S-IPN samples have been discussed in this paper.
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Loos, Alfred C.; Jensen, Brian J.; Britton, Sean M.; Tuncol, Goker; Long, Kai
2010-01-01
Recent work at NASA Langley Research Center (LaRC) has concentrated on developing new polyimide resin systems for advanced aerospace applications that can be processed without the use of an autoclave. Polyimide composites are very attractive for applications that require a high strength to weight ratio and thermal stability. Vacuum assisted resin transfer molding (VARTM) has shown the potential to reduce the manufacturing cost of composite structures. Fiber metal laminates (FML) made via this process with aluminum, glass fabric, and epoxy resins have been previously fabricated at LaRC. In this work, the VARTM process has been refined for epoxy/glass FMLs and extended to the fabrication of FM Ls with titanium/carbon fabric layers and a polyimide system developed at NASA, LARC(TradeMark) PETI-8. Resin flow pathways were introduced into the titanium foils to aid the infiltration of the polyimide resin. Injection temperatures in the range of 250-280 C were required to achieve the necessary VARTM viscosities (<10 Poise). Laminate quality and initial mechanical properties will be presented.
NASA Technical Reports Server (NTRS)
Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.
1997-01-01
Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron paramagnetic resonance imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of approximately 0.18 mm along a 2-mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2-mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 1-h cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.
NASA Technical Reports Server (NTRS)
Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.
1997-01-01
Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron Paramagnetic Resonance Imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of about 0.18 mm along a 2 mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2 mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 one-hour cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.
Coarse-Grained and Atomistic Modeling of Polyimides
NASA Technical Reports Server (NTRS)
Clancy, Thomas C.; Hinkley, Jeffrey A.
2004-01-01
A coarse-grained model for a set of three polyimide isomers is developed. Each polyimide is comprised of BPDA (3,3,4,4' - biphenyltetracarboxylic dianhydride) and one of three APB isomers: 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene or 1,3-bis(3-aminophenoxy)benzene. The coarse-grained model is constructed as a series of linked vectors following the contour of the polymer backbone. Beads located at the midpoint of each vector define centers for long range interaction energy between monomer subunits. A bulk simulation of each coarse-grained polyimide model is performed with a dynamic Monte Carlo procedure. These coarsegrained models are then reverse-mapped to fully atomistic models. The coarse-grained models show the expected trends in decreasing chain dimensions with increasing meta linkage in the APB section of the repeat unit, although these differences were minor due to the relatively short chains simulated here. Considerable differences are seen among the dynamic Monte Carlo properties of the three polyimide isomers. Decreasing relaxation times are seen with increasing meta linkage in the APB section of the repeat unit.
NASA Technical Reports Server (NTRS)
Chuang, Kathy
2001-01-01
The use of high temperature polymer matrix composites in aerospace applications has expanded steadily over the past 30 years, due to the increasing demand of replacing metal parts with light weight composite materials for fuel efficiency and bigger payloads in the aircraft and the space transportation vehicles. Polyimide/carbon fiber composites, especially, have been regarded as major high temperature matrix materials, based on their outstanding performance in terms of heat resistance, high strength-to-weight ratio and property retention compared with epoxies (177 C/350 F) and bismaleimides (232 C/450 F). Traditional, then-neoplastic polyimides were prepared from dianhydrides and diamines in N-methyl-2-pyrrolidinone (NMP) at room temperature to form the polyamic acids, which were then imidized at 150 C to yield polyimides. However, the high-boiling solvent (NMP, BP= 202 C) is very difficult to remove, leading to the formation of voids during composite fabrication. In the early 1970's, PMR addition curing polyimides with reactive endcaps were developed at the Lewis Research Center (renamed NASA Glenn) to ensure the easy processing of imide oligomers in methanol during composite fabrication.
A water blown urethane insulation for use in cryogenic environments
NASA Technical Reports Server (NTRS)
Blevins, Elana; Sharpe, Jon
1995-01-01
Thermal Protection Systems (TPS) of NASA's Space Shuttle External Tank include polyurethane and polyisocyanurate modified polyurethane foam insulations. These insulations, currently foamed with CFC 11 blowing agent, serve to maintain cryogenic propellant quality, maintain the external tank structural temperature limits, and minimize the formation of ice and frost that could potentially damage the ceramic insulation on the space shuttle orbiter. During flight the external tank insulations are exposed to mechanical, thermal and acoustical stresses. TPS must pass cryogenic flexure and substrate adhesion tests at -253 C, aerothermal and radiant heating tests at fluxes up to approximately 14 kilowatts per square meter, and thermal conductivity tests at cryogenic and elevated temperatures. Due to environmental concerns, the polyurethane insulation industry and the External Tank Project are tasked with replacing CFC 11. The flight qualification of foam insulations employing HCFC 141b as a foaming agent is currently in progress; HCFC 141b blown insulations are scheduled for production implementation in 1995. Realizing that the second generation HCFC blowing agents are an interim solution, the evaluation of third generation blowing agents with zero ozone depletion potential is underway. NASA's TPS Materials Research Laboratory is evaluating third generation blowing agents in cryogenic insulations for the External Tank; one option being investigated is the use of water as a foaming agent. A dimensionally stable insulation with low friability, good adhesion to cryogenic substrates, and acceptable thermal conductivity has been developed with low viscosity materials that are easily processed in molding applications. The development criteria, statistical experimental approach, and resulting foam properties will be presented.
Heat, Moisture and Chemical Resistant Polyimide Compositions and Methods for Making and Using Them
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
2004-01-01
Polyimides having a desired combination of high thermo-oxidative stability, low moisture absorption and excellent chemical and corrosion resistance are prepared by reacting a mixture of compounds including (a) 3,3',4,4'- benzophenonetetracarboxylic dianhydride (BTDA), (b) 3,4'- oxydianiline (3,4'-ODA), and (c) 5-norbornene-2,3- dicarboxylic anhydride (NA) in a high boiling, aprotic solvent to give 5 to 35% by weight of polyamic acid solution. The ratio of (a), (b), and (c) is selected to afford a family of polyimides having different molecular weights and properties. The mixture first forms a polyamic acid precursor. Upon heating at or above 300 C, the polyamic acids form polyimides, which are particularly suitable for use as a high temperature coating, adhesive, thin film, or composite matrix resin.
Surface Texturing of Polyimide Composite by Micro-Ultrasonic Machining
NASA Astrophysics Data System (ADS)
Qu, N. S.; Zhang, T.; Chen, X. L.
2018-03-01
In this study, micro-dimples were prepared on a polyimide composite surface to obtain the dual benefits of polymer materials and surface texture. Micro-ultrasonic machining is employed for the first time for micro-dimple fabrication on polyimide composite surfaces. Surface textures of simple patterns were fabricated successfully with dimple depths of 150 μm, side lengths of 225-425 μm, and area ratios of 10-30%. The friction coefficient of the micro-dimple surfaces with side lengths of 325 or 425 μm could be increased by up to 100% of that of non-textured surfaces, alongside a significant enhancement of wear resistance. The results show that surface texturing of polyimide composite can be applied successfully to increase the friction coefficient and reduce wear, thereby contributing to a large output torque.
NASA Technical Reports Server (NTRS)
Caplan, Maggie L. (Inventor); Stoakley, Diane M. (Inventor); St. Clair, Anne K. (Inventor)
1996-01-01
An electrically conductive, thermooxidatively stable poltimide, especially a film thereof, is prepared from an intimate admixture of a particular polyimide and gold (III) ions, in an amount sufficient to provide between 17 and 21 percent by weight of gold (III) ions, based on the weight of electrically conductive, thermooxidatively stable polyimide. The particular polyimide is prepared from a polyamic acid which has been synthesized from a dianhydride/diamine combination selected from the group consisting of 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis[4-(4 -aminophenoxy)phenyl]hexafluoropropane; 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 4,4'-oxydianiline; 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride and 4,4'-oxydianiline; and 3,3'4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis(3-aminophenyl)hexafluoropropane.
PMR polyimides from solutions containing mixed endcaps
NASA Technical Reports Server (NTRS)
Delvigs, P.
1985-01-01
Previous studies have shown that partial substitution of p-aminostyrene (PAS) for the monomethylester of endo-5-norbornene-2, 3-dicarboxylic acid (NE) lowered the cure temperature of PMR polyimides from 316 to 260 C, but the modified PMR polyimides required higher compression-molding pressures than state-of-the-art PMR-15. In this study PMR polyimides are prepared employing three encaps: NE, PAS, and endo-N-phenyl-5-norbornene-2,3-dicarboximide (PN). The effect of PN addition on the processing characteristics and glass transition temperatures of graphite fiber-reinforced PMR composites is studied. The room temperature and short-time 316 C mechanical properties of the composites are determined. The weight loss and mechanical property retention characteristics of the composites after exposure in air at 316 C are also determined.
Polyimides Derived from Novel Asymmetric Benzophenone Dianhydrides
NASA Technical Reports Server (NTRS)
Chuang, Chun-Hua (Inventor)
2015-01-01
This invention relates to the composition and processes for preparing thermoset polyimides derived from an asymmetric dianhydride, namely 2,3,3',4'-benzophenone dianhydride (a-BTDA) with at least one diamine, and a monofunctional terminal endcaps. The monofunctional terminating groups include 4-phenylethynylphthalic anhydride ester-acid derivatives, phenylethyl trimellitic anhydride (PETA) and its ester derivatives as well as 3-phenylethynylaniline. The process of polyimide composite comprises impregnating monomer reactants of dianhydride or its ester-acid derivatives, diamine and with monofunctional reactive endcaps into glass, carbon, quartz or synthetic fibers and fabrics, and then stack up into laminates and subsequently heated to between 150-375.degree. C. either at atmosphere or under pressure to promote the curing and crosslinking of the reactive endcaps to form a network of thermoset polyimides.
NASA Technical Reports Server (NTRS)
Fusaro, R. L.
1980-01-01
A pin-on-disk type of friction and wear apparatus was used to study the tribological properties of seven different polyimide films bonded to AISI 301 stainless steel disks at 25 C. It was found that the substrate material was extremely influential in determining the lubricating ability of the polyimide films. All seven films spalled in less than 1000 cycles of sliding. This was believed to be caused by poor adherence to the 301 stainless steel or the inability of the films to withstand the high localized tensile stresses imparted by the deformation of the soft substrate under sliding conditions. The friction coefficients obtained for six of the polyimides varied between 0.21 to 0.32 while one varied between 0.32 to 0.39.
Update on High-Temperature Coils for Electromagnets
NASA Technical Reports Server (NTRS)
Kascak, Albert F.; Montague, Gerald T.; Palazzolo, Alan; Preuss, Jason; Carter, Bart; Tucker, Randall; Hunt, Andrew
2005-01-01
A report revisits the subject matter of "High-Temperature Coils for Electromagnets" (LEW-17164), NASA Tech Briefs, Vol. 26, No. 8, (August 2002) page 38. To recapitulate: Wires have been developed for use in electromagnets that operate at high temperatures. The starting material for a wire of this type can be either a nickel-clad, ceramic-insulated copper wire or a bare silver wire. The wire is covered by electrical-insulation material that is intended to withstand operating temperatures in the range from 800 to 1,300 F (.430 to .700 C): The starting wire is either primarily wrapped with S-glass as an insulating material or else covered with another insulating material wrapped in S-glass prior to the winding process. A ceramic binding agent is applied as a slurry during the winding process to provide further insulating capability. The turns are pre-bent during winding to prevent damage to the insulation. The coil is then heated to convert the binder into ceramic. The instant report mostly reiterates the prior information and presents some additional information on the application of the ceramic binding agent and the incorporation of high-temperature wire into the windings.
Dielectric Properties of Piezoelectric Polyimides
NASA Technical Reports Server (NTRS)
Ounaies, Z.; Young, J. A.; Simpson, J. O.; Farmer, B. L.
1997-01-01
Molecular modeling and dielectric measurements are being used to identify mechanisms governing piezoelectric behavior in polyimides such as dipole orientation during poling, as well as degree of piezoelectricity achievable. Molecular modeling on polyimides containing pendant, polar nitrile (CN) groups has been completed to determine their remanent polarization. Experimental investigation of their dielectric properties evaluated as a function of temperature and frequency has substantiated numerical predictions. With this information in hand, we are then able to suggest changes in the molecular structures, which will then improve upon the piezoelectric response.
Structural and Electrical Characteristics of Carbon Nanowalls Synthesized on the Polyimide Film.
Kwon, Seok Hun; Kim, Hyung Jin; Choi, Won Seok; Kang, Hyunil
2018-09-01
In this study, the structural and electrical characteristics of carbon nanowalls (CNWs) synthesized on polyimide films were investigated. CNWs were synthesized on polyimide films as various growth times. The cross-section and surface of the CNWs synthesized were examined using FE-SEM. The growth and defects of CNWs were observed by raman spectrum. The hall measurement system was used to analyzed sheet resistance, resistivity and conductivity. The CNWs synthesized at 40 minutes showed outstanding structural and electrical characterizations than another growth times.
Thermoplastic polymides and composites therefrom
NASA Technical Reports Server (NTRS)
Harris, Frank W. (Inventor)
1994-01-01
A new class polyimide and polyimide precursors based on diaryl oxyalkylene diamines, such as 1,3-bis[4-aminophenoxy]-2,2-dimethyl propane, a process for their preparation and their use as the continuous phase for the manufacture of composites and composite laminates reinforced by reinforcing agents such as carbon fibers, Kevlar.TM., and other similar high strength reinforcing agents. The polyimides and molecular composites obtained from the diamines according to the invention show thermoplastic properties, excellent flex fatigue and fracture resistance, and excellent thermal and oxidative stability.
LARC-TPI: A multi-purpose thermoplastic polyimide
NASA Technical Reports Server (NTRS)
St.clair, A. K.; St.clair, T. L.
1982-01-01
A linear thermoplastic polyimide, LARC-TPI, was characterized and developed for a variety of high temperature applications. In its fully imidized form, this material can be used as an adhesive for bonding metals such as titanium, aluminum, copper, brass, and stainless steel. LARC-TPI was evaluated as a thermoplastic for bonding large pieces of polyimide film to produce flexible, 100 void-free laminates for flexible circuit applications. The development of LARC-TPI as a potential molding powder, composite matrix resin, high temperature film and fiber is also discussed.
Isomer effects on polyimide properties
NASA Technical Reports Server (NTRS)
Stump, B. L.
1978-01-01
Thermally stable polyimide polymers were prepared. Parameters explored include asymmetry of substitution, addition of alkyl substituents to an aromatic ring, and an increase in the number of aromatic rings present in the diamine monomer. It is shown that the use of an asymmetrical diamine in the preparation of a polyimide produces a polymer with a markedly lowered glass transition temperature. This is achieved with little or no sacrifice of thermal stability. An alternate approach taken was to prepare imide monomers which are capable of addition-type polymerization.
Isomer effects on polyimide properties
NASA Technical Reports Server (NTRS)
Stump, B. L.
1975-01-01
Polyimide polymers which are thermally stable and processable are developed. The addition of alkyl substituents to an aromatic ring in the polymer backbone is examined along with polyimide precursor amines containing functional groups that allow for post-cure crosslinking. The synthesis of key monomers is reported, including 2,4,6-tris (m-aminobenzyl) 1,3,5-trimethyl benzene and 2,4,6-tris (p-aminobenzyl) 1,3,5-trimethyl benzene. The preparation of a key monomer, 2,5,3-triamino benzophenone, is reported.
PMR polyimides: Processable high temperature composite matrix resins
NASA Technical Reports Server (NTRS)
Winters, W. E.; Serafini, T. T.
1975-01-01
Processing reproducibility and versatility were demonstrated for producing addition-cured polyimide/graphite fiber composites using an in situ polymerization of monomeric reactants directly on the fiber surface. The polymers so derived, designated PMR polyimides, can be fabricated into composite structures by laminating, random fiber molding or autoclave curing. Composites were determined to be thermally stable and retain useful properties after extended exposures at 550 F to 650 F. The material and fabrication capability were demonstrated by the fabrication and evaluation of prototype complex fan blades.
PMR polyimides - Processable high temperature composite matrix resins
NASA Technical Reports Server (NTRS)
Winters, W. E.; Serafini, T. T.
1975-01-01
Processing reproducibility and versatility were demonstrated for producing addition-cured polyimide/graphite fiber composites using a unique in situ polymerization of monomeric reactants directly on the fiber surface. The polymers so derived, designated PMR polyimides, can be fabricated into composite structures by laminating, random fiber molding or autoclave curing. Composites were determined to be thermally stable and retain useful properties after extended exposures at 550 to 650 F. The material and fabrication capability were demonstrated by the fabrication and evaluation of prototype complex fan blades.-