Sample records for damages fungal biofilms

  1. Demonstration of antibiofilm and antifungal efficacy of chitosan against candidal biofilms, using an in vivo central venous catheter model.

    PubMed

    Martinez, Luis R; Mihu, Mircea Radu; Tar, Moses; Cordero, Radames J B; Han, George; Friedman, Adam J; Friedman, Joel M; Nosanchuk, Joshua D

    2010-05-01

    Candida species are a major cause of catheter infections. Using a central venous catheter Candida albicans biofilm model, we demonstrated that chitosan, a polymer isolated from crustacean exoskeletons, inhibits candidal biofilm formation in vivo. Furthermore, chitosan statistically significantly decreased both the metabolic activity of the biofilms and the cell viability of C. albicans and Candida parapsilosis biofilms in vitro. In addition, confocal and scanning electron microscopic examination demonstrated that chitosan penetrates candidal biofilms and damages fungal cells. Importantly, the concentrations of chitosan that were used to evaluate fungal biofilm susceptibility were not toxic to human endothelial cells. Chitosan should be considered for the prevention or treatment of fungal biofilms on central venous catheters and perhaps other medical devices.

  2. Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model.

    PubMed

    Rajendran, Ranjith; Borghi, Elisa; Falleni, Monica; Perdoni, Federica; Tosi, Delfina; Lappin, David F; O'Donnell, Lindsay; Greetham, Darren; Ramage, Gordon; Nile, Christopher

    2015-08-01

    Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model

    PubMed Central

    Rajendran, Ranjith; Borghi, Elisa; Falleni, Monica; Perdoni, Federica; Tosi, Delfina; Lappin, David F.; O'Donnell, Lindsay; Greetham, Darren; Ramage, Gordon

    2015-01-01

    Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections. PMID:26092919

  4. Candida-streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth conditions and hyphal morphotypes.

    PubMed

    Bertolini, M M; Xu, H; Sobue, T; Nobile, C J; Del Bel Cury, A A; Dongari-Bagtzoglou, A

    2015-08-01

    Candida albicans and streptococci of the mitis group form communities in multiple oral sites, where moisture and nutrient availability can change spatially or temporally. This study evaluated structural and virulence characteristics of Candida-streptococcal biofilms formed on moist or semidry mucosal surfaces, and tested the effects of nutrient availability and hyphal morphotype on dual-species biofilms. Three-dimensional models of the oral mucosa formed by immortalized keratinocytes on a fibroblast-embedded collagenous matrix were used. Infections were carried out using Streptococcus oralis strain 34, in combination with a C. albicans wild-type strain, or pseudohyphal-forming mutant strains. Increased moisture promoted a homogeneous surface biofilm by C. albicans. Dual biofilms had a stratified structure, with streptococci growing in close contact with the mucosa and fungi growing on the bacterial surface. Under semidry conditions, Candida formed localized foci of dense growth, which promoted focal growth of streptococci in mixed biofilms. Candida biofilm biovolume was greater under moist conditions, albeit with minimal tissue invasion, compared with semidry conditions. Supplementing the infection medium with nutrients under semidry conditions intensified growth, biofilm biovolume and tissue invasion/damage, without changing biofilm structure. Under these conditions, the pseudohyphal mutants and S. oralis formed defective superficial biofilms, with most bacteria in contact with the epithelial surface, below a pseudohyphal mass, resembling biofilms growing in a moist environment. The presence of S. oralis promoted fungal invasion and tissue damage under all conditions. We conclude that moisture, nutrient availability, hyphal morphotype and the presence of commensal bacteria influence the architecture and virulence characteristics of mucosal fungal biofilms. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The Interface between Fungal Biofilms and Innate Immunity.

    PubMed

    Kernien, John F; Snarr, Brendan D; Sheppard, Donald C; Nett, Jeniel E

    2017-01-01

    Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus , and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.

  6. A confocal microscopy based method to monitor extracellular pH in fungal biofilms.

    PubMed

    Schlafer, Sebastian; Kamp, Anja; Garcia, Javier E

    2018-04-19

    pH in fungal biofilms is important for a variety of fungal infections and industrial applications involving fungal biofilms, but to date, it has never been measured directly inside the biofilm matrix. In the present study, a new methodology was developed allowing for confocal microscopy based monitoring of extracellular pH inside fungal biofilms. Monospecies biofilms of Aspergillus fumigatus, Candida albicans, Candida dubliniensis and Cryptococcus neoformans were stained with the pH dependent ratiometric probe C-SNARF-4, imaged with a confocal microscope, and a digital image analysis procedure was developed to determine pH in the extracellular matrix. As a proof of concept, pH developments at the biofilm-substratum interface were monitored for one h after exposure to glucose. Observed pH drops differed considerably between the different species and also between replicate biofilms of the same species. C. albicans biofilms showed the highest acidogenicity, with pH drops occurring much faster than in planktonic culture. pH ratiometry with C-SNARF-4 is a valuable tool to get insight into fungal biofilm metabolism and may shed new light on both disease-related and industrially relevant processes in fungal biofilms.

  7. Gaining Insights from Candida Biofilm Heterogeneity: One Size Does Not Fit All

    PubMed Central

    Kean, Ryan; Delaney, Christopher; Rajendran, Ranjith; Sherry, Leighann; Metcalfe, Rebecca; Thomas, Rachael; McLean, William; Williams, Craig; Ramage, Gordon

    2018-01-01

    Despite their clinical significance and substantial human health burden, fungal infections remain relatively under-appreciated. The widespread overuse of antibiotics and the increasing requirement for indwelling medical devices provides an opportunistic potential for the overgrowth and colonization of pathogenic Candida species on both biological and inert substrates. Indeed, it is now widely recognized that biofilms are a highly important part of their virulence repertoire. Candida albicans is regarded as the primary fungal biofilm forming species, yet there is also increasing interest and growing body of evidence for non-Candida albicans species (NCAS) biofilms, and interkingdom biofilm interactions. C. albicans biofilms are heterogeneous structures by definition, existing as three-dimensional populations of yeast, pseudo-hyphae, and hyphae, embedded within a self-produced extracellular matrix. Classical molecular approaches, driven by extensive studies of laboratory strains and mutants, have enhanced our knowledge and understanding of how these complex communities develop, thrive, and cause host-mediated damage. Yet our clinical observations tell a different story, with differential patient responses potentially due to inherent biological heterogeneity from specific clinical isolates associated with their infections. This review explores some of the recent advances made in an attempt to explore the importance of working with clinical isolates, and what this has taught us. PMID:29371505

  8. From Biology to Drug Development: New Approaches to Combat the Threat of Fungal Biofilms

    PubMed Central

    Pierce, Christopher G.; Srinivasan, Anand; Ramasubramanian, Anand K.; López-Ribot, José L.

    2015-01-01

    Fungal infections constitute a major threat to an escalating number of critically ill patients. Fungi are eukaryotic organisms and, as such, there is a limited armamentarium of antifungal drugs, leading to high mortality rates. Moreover, fungal infections are often associated with the formation of biofilms, which contribute to virulence and further complicate treatment due to the high level of antifungal drug resistance displayed by sessile cells within these microbial communities. Thus, the treatment of fungal infections associated with a biofilm aetiology represents a formidable and unmet clinical challenge. The increasing importance and awareness of fungal biofilms is reflected by the fact that this is now an area of very active research. Studies in the last decade have provided important insights into fungal biofilm biology, physiology and pathology, as well as into the molecular basis of biofilm resistance. Here we discuss how this accumulated knowledge may inform the development of new anti-biofilm strategies and therapeutics that are urgently needed. PMID:26185082

  9. A New Method for Qualitative Multi-scale Analysis of Bacterial Biofilms on Filamentous Fungal Colonies Using Confocal and Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miquel Guennoc, Cora; Rose, Christophe; Guinnet, Frédéric

    Bacterial biofilms frequently form on fungal surfaces and can be involved in numerous bacterial-fungal interaction processes, such as metabolic cooperation, competition, or predation. The study of biofilms is important in many biological fields, including environmental science, food production, and medicine. However, few studies have focused on such bacterial biofilms, partially due to the difficulty of investigating them. Most of the methods for qualitative and quantitative biofilm analyses described in the literature are only suitable for biofilms forming on abiotic surfaces or on homogeneous and thin biotic surfaces, such as a monolayer of epithelial cells. While laser scanning confocal microscopy (LSCM)more » is often used to analyze in situ and in vivo biofilms, this technology becomes very challenging when applied to bacterial biofilms on fungal hyphae, due to the thickness and the three dimensions of the hyphal networks. To overcome this shortcoming, we developed a protocol combining microscopy with a method to limit the accumulation of hyphal layers in fungal colonies. Using this method, we were able to investigate the development of bacterial biofilms on fungal hyphae at multiple scales using both LSCM and scanning electron microscopy (SEM). Furthermore, this report describes the protocol, including microorganism cultures, bacterial biofilm formation conditions, biofilm staining, and LSCM and SEM visualizations.« less

  10. A New Method for Qualitative Multi-scale Analysis of Bacterial Biofilms on Filamentous Fungal Colonies Using Confocal and Electron Microscopy

    DOE PAGES

    Miquel Guennoc, Cora; Rose, Christophe; Guinnet, Frédéric; ...

    2017-01-01

    Bacterial biofilms frequently form on fungal surfaces and can be involved in numerous bacterial-fungal interaction processes, such as metabolic cooperation, competition, or predation. The study of biofilms is important in many biological fields, including environmental science, food production, and medicine. However, few studies have focused on such bacterial biofilms, partially due to the difficulty of investigating them. Most of the methods for qualitative and quantitative biofilm analyses described in the literature are only suitable for biofilms forming on abiotic surfaces or on homogeneous and thin biotic surfaces, such as a monolayer of epithelial cells. While laser scanning confocal microscopy (LSCM)more » is often used to analyze in situ and in vivo biofilms, this technology becomes very challenging when applied to bacterial biofilms on fungal hyphae, due to the thickness and the three dimensions of the hyphal networks. To overcome this shortcoming, we developed a protocol combining microscopy with a method to limit the accumulation of hyphal layers in fungal colonies. Using this method, we were able to investigate the development of bacterial biofilms on fungal hyphae at multiple scales using both LSCM and scanning electron microscopy (SEM). Furthermore, this report describes the protocol, including microorganism cultures, bacterial biofilm formation conditions, biofilm staining, and LSCM and SEM visualizations.« less

  11. Yeast casein kinase 2 governs morphology, biofilm formation, cell wall integrity, and host cell damage of Candida albicans.

    PubMed

    Jung, Sook-In; Rodriguez, Natalie; Irrizary, Jihyun; Liboro, Karl; Bogarin, Thania; Macias, Marlene; Eivers, Edward; Porter, Edith; Filler, Scott G; Park, Hyunsook

    2017-01-01

    The regulatory networks governing morphogenesis of a pleomorphic fungus, Candida albicans are extremely complex and remain to be completely elucidated. This study investigated the function of C. albicans yeast casein kinase 2 (CaYck2p). The yck2Δ/yck2Δ strain displayed constitutive pseudohyphae in both yeast and hyphal growth conditions, and formed enhanced biofilm under non-biofilm inducing condition. This finding was further supported by gene expression analysis of the yck2Δ/yck2Δ strain which showed significant upregulation of UME6, a key transcriptional regulator of hyphal transition and biofilm formation, and cell wall protein genes ALS3, HWP1, and SUN41, all of which are associated with morphogenesis and biofilm architecture. The yck2Δ/yck2Δ strain was hypersensitive to cell wall damaging agents and had increased compensatory chitin deposition in the cell wall accompanied by an upregulation of the expression of the chitin synthase genes, CHS2, CHS3, and CHS8. Absence of CaYck2p also affected fungal-host interaction; the yck2Δ/yck2Δ strain had significantly reduced ability to damage host cells. However, the yck2Δ/yck2Δ strain had wild-type susceptibility to cyclosporine and FK506, suggesting that CaYck2p functions independently from the Ca+/calcineurin pathway. Thus, in C. albicans, Yck2p is a multifunctional kinase that governs morphogenesis, biofilm formation, cell wall integrity, and host cell interactions.

  12. Fungal Biofilms: In vivo models for discovery of anti-biofilm drugs

    PubMed Central

    Nett, Jeniel E.; Andes, David

    2015-01-01

    SUMMARY During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is Candida albicans. Animal models have been developed to simulate common Candida device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections, oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to development of new strategies for eradication of fungal biofilm infections. PMID:26397003

  13. Fungal Biofilms: In Vivo Models for Discovery of Anti-Biofilm Drugs.

    PubMed

    Nett, Jeniel E; Andes, David R

    2015-06-01

    During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate, and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is Candida albicans. Animal models have been developed to simulate common Candida device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections: oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to the development of new strategies for the eradication of fungal biofilm infections.

  14. Fungal Biofilms, Drug Resistance, and Recurrent Infection

    PubMed Central

    Desai, Jigar V.; Mitchell, Aaron P.; Andes, David R.

    2014-01-01

    A biofilm is a surface-associated microbial community. Diverse fungi are capable of biofilm growth. The significance of this growth form for infection biology is that biofilm formation on implanted devices is a major cause of recurrent infection. Biofilms also have limited drug susceptibility, making device-associated infection extremely difficult to treat. Biofilm-like growth can occur during many kinds of infection, even when an implanted device is not present. Here we summarize the current understanding of fungal biofilm formation, its genetic control, and the basis for biofilm drug resistance. PMID:25274758

  15. Yeast casein kinase 2 governs morphology, biofilm formation, cell wall integrity, and host cell damage of Candida albicans

    PubMed Central

    Irrizary, Jihyun; Liboro, Karl; Bogarin, Thania; Macias, Marlene; Eivers, Edward; Porter, Edith; Filler, Scott G.

    2017-01-01

    The regulatory networks governing morphogenesis of a pleomorphic fungus, Candida albicans are extremely complex and remain to be completely elucidated. This study investigated the function of C. albicans yeast casein kinase 2 (CaYck2p). The yck2Δ/yck2Δ strain displayed constitutive pseudohyphae in both yeast and hyphal growth conditions, and formed enhanced biofilm under non-biofilm inducing condition. This finding was further supported by gene expression analysis of the yck2Δ/yck2Δ strain which showed significant upregulation of UME6, a key transcriptional regulator of hyphal transition and biofilm formation, and cell wall protein genes ALS3, HWP1, and SUN41, all of which are associated with morphogenesis and biofilm architecture. The yck2Δ/yck2Δ strain was hypersensitive to cell wall damaging agents and had increased compensatory chitin deposition in the cell wall accompanied by an upregulation of the expression of the chitin synthase genes, CHS2, CHS3, and CHS8. Absence of CaYck2p also affected fungal-host interaction; the yck2Δ/yck2Δ strain had significantly reduced ability to damage host cells. However, the yck2Δ/yck2Δ strain had wild-type susceptibility to cyclosporine and FK506, suggesting that CaYck2p functions independently from the Ca+/calcineurin pathway. Thus, in C. albicans, Yck2p is a multifunctional kinase that governs morphogenesis, biofilm formation, cell wall integrity, and host cell interactions. PMID:29107946

  16. Fungal Strategies to Evade the Host Immune Recognition.

    PubMed

    Hernández-Chávez, Marco J; Pérez-García, Luis A; Niño-Vega, Gustavo A; Mora-Montes, Héctor M

    2017-09-23

    The recognition of fungal cells by the host immune system is key during the establishment of a protective anti-fungal response. Even though the immune system has evolved a vast number of processes to control these organisms, they have developed strategies to fight back, avoiding the proper recognition by immune components and thus interfering with the host protective mechanisms. Therefore, the strategies to evade the immune system are as important as the virulence factors and attributes that damage the host tissues and cells. Here, we performed a thorough revision of the main fungal tactics to escape from the host immunosurveillance processes. These include the composition and organization of the cell wall, the fungal capsule, the formation of titan cells, biofilms, and asteroid bodies; the ability to undergo dimorphism; and the escape from nutritional immunity, extracellular traps, phagocytosis, and the action of humoral immune effectors.

  17. A fungal biofilm reactor based on metal structured packing improves the quality of a Gla::GFP fusion protein produced by Aspergillus oryzae.

    PubMed

    Zune, Q; Delepierre, A; Gofflot, S; Bauwens, J; Twizere, J C; Punt, P J; Francis, F; Toye, D; Bawin, T; Delvigne, F

    2015-08-01

    Fungal biofilm is known to promote the excretion of secondary metabolites in accordance with solid-state-related physiological mechanisms. This work is based on the comparative analysis of classical submerged fermentation with a fungal biofilm reactor for the production of a Gla::green fluorescent protein (GFP) fusion protein by Aspergillus oryzae. The biofilm reactor comprises a metal structured packing allowing the attachment of the fungal biomass. Since the production of the target protein is under the control of the promoter glaB, specifically induced in solid-state fermentation, the biofilm mode of culture is expected to enhance the global productivity. Although production of the target protein was enhanced by using the biofilm mode of culture, we also found that fusion protein production is also significant when the submerged mode of culture is used. This result is related to high shear stress leading to biomass autolysis and leakage of intracellular fusion protein into the extracellular medium. Moreover, 2-D gel electrophoresis highlights the preservation of fusion protein integrity produced in biofilm conditions. Two fungal biofilm reactor designs were then investigated further, i.e. with full immersion of the packing or with medium recirculation on the packing, and the scale-up potentialities were evaluated. In this context, it has been shown that full immersion of the metal packing in the liquid medium during cultivation allows for a uniform colonization of the packing by the fungal biomass and leads to a better quality of the fusion protein.

  18. Polyethylene Based Materials for Biofilm Carriers Used in Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Moga, I. C.; Iordache, O. I.; Petrescu, G.; Pricop, F.; Dumitrescu, I.

    2018-06-01

    The moving bed biofilm technology is based on biofilm carriers on which consortia of microorganisms attach, develop and grow. Around the world are known many biofilm carrier variants made of varied materials. The most common materials are based on polyethylene since this material has a close to water density. The authors propose a novel biofilm carrier to be used in tertiary treatment for tannery and paper-mill wastewaters. The biological treatment is based on fungal activity. The selected fungal strains will be grown on innovative polyethylene carriers containing cellulose. The carrier will be designed to be exploited in a moving bed bioreactor and to favour fungal growth in the presence of competing bacteria.

  19. Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae.

    PubMed

    Vandenbosch, Davy; De Canck, Evelien; Dhondt, Inne; Rigole, Petra; Nelis, Hans J; Coenye, Tom

    2013-12-01

    Infections related to fungal biofilms are difficult to treat due to the reduced susceptibility of sessile cells to most antifungal agents. Previous research has shown that 1-10% of sessile Candida cells survive treatment with high doses of miconazole (a fungicidal imidazole). The aim of this study was to identify genes involved in fungal biofilm formation and to unravel the mechanisms of resistance of these biofilms to miconazole. To this end, a screening of a Saccharomyces cerevisiae deletion mutant bank was carried out. Our results revealed that genes involved in peroxisomal transport and the biogenesis of the respiratory chain complex IV play an essential role in biofilm formation. On the other hand, genes involved in transcription and peroxisomal and mitochondrial organization seem to highly influence the susceptibility to miconazole of yeast biofilms. Additionally, our data confirm previous findings on genes involved in biofilm formation and in general stress responses. Our data suggest the involvement of peroxisomes in biofilm formation and miconazole resistance in fungal biofilms. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Efficacy of surface-generated nitric oxide against Candida albicans adhesion and biofilm formation.

    PubMed

    Privett, Benjamin J; Nutz, Steven T; Schoenfisch, Mark H

    2010-11-01

    This report details the efficacy of nitric oxide (NO)-releasing xerogel surfaces composed of N-(6-aminohexyl)aminopropyl trimethoxysilane (AHAP3) and isobutyltrimethoxysilane (BTMOS) against Candida albicans adhesion, viability, and biofilm formation. A parallel plate flow cell assay was used to examine the effect of NO on planktonic fungal cells. Nitric oxide fluxes as low as 14 pmol cm(-2) s(-1) were sufficient to reduce fungal adhesion by ∼49% over the controls after 90 min. By utilizing a fluorescence live/dead assay and replicate plating, NO flux was determined to reduce fungal viability in a dose-dependent manner. The formation of C. albicans biofilms on NO-releasing xerogel-coated silicon rubber (SiR) coupons was impeded when compared to control (non-NO-releasing) and bare SiR surfaces. The synergistic efficacy of NO and silver sulfadiazine against adhered fungal cells and biofilms is reported with increased killing and biofilm inhibition over NO alone.

  1. Microtubules are reversibly depolymerized in response to changing gaseous microenvironments within Aspergillus nidulans biofilms

    PubMed Central

    Shukla, Nandini; Osmani, Aysha H.; Osmani, Stephen A.

    2017-01-01

    How microtubules (MTs) are regulated during fungal biofilm formation is unknown. By tracking MT +end–binding proteins (+TIPS) in Aspergillus nidulans, we find that MTs are regulated to depolymerize within forming fungal biofilms. During this process, EB1, dynein, and ClipA form transient fibrous and then bar-like structures, novel configurations for +TIPS. Cells also respond in an autonomous manner, with cells separated by a septum able to maintain different MT dynamics. Surprisingly, all cells with depolymerized MTs rapidly repolymerize their MTs after air exchange above the static culture medium of biofilms. Although the specific gasotransmitter for this biofilm response is not known, we find that addition of hydrogen sulfide gas to growing cells recapitulates all aspects of reversible MT depolymerization and transient formation of +TIPs bars. However, as biofilms mature, physical removal of part of the biofilm is required to promote MT repolymerization, which occurs at the new biofilm edge. We further show MT depolymerization within biofilms is regulated by the SrbA hypoxic transcription factor and that without SrbA, MTs are maintained as biofilms form. This reveals a new mode of MT regulation in response to changing gaseous biofilm microenvironments, which could contribute to the unique characteristics of fungal biofilms in medical and industrial settings. PMID:28057761

  2. Animal models to investigate fungal biofilm formation.

    PubMed

    Chandra, Jyotsna; Pearlman, Eric; Ghannoum, Mahmoud A

    2014-01-01

    Microbial biofilms play an essential role in several infectious diseases and are defined as extensive communities of sessile organisms irreversibly associated with a surface, encased within a polysaccharide-rich extracellular matrix (ECM), and exhibiting enhanced resistance to antimicrobial drugs. Forming a biofilm provides the microbes protection from environmental stresses due to contaminants, nutritional depletion, or imbalances, but is dangerous to human health due to their inherent robustness and elevated resistance.The use of indwelling medical devices (e.g., central venous catheters, CVCs) in current therapeutic practice is associated with 80-90 % of hospital-acquired bloodstream and deep tissue infections. Most cases of catheter-related bloodstream infections (CRBSIs) involve colonization of microorganisms on catheter surfaces where they form a biofilm. Additionally, Fusarium solani and F. oxysporum were the causative organisms of the 2005/2006 outbreak of contact lens-associated fungal keratitis in the United States, Europe, the UK, and Singapore, and these infections involved formation of biofilms on contact lens. Fungal biofilm formation is studied using a number of techniques, involving the use of a wide variety of substrates and growth conditions. In vitro techniques involving the use of confocal scanning laser/scanning electron microscopy, metabolic activity assay, dry weight measurements, and antifungal susceptibility assays are increasingly used by investigators to quantify and evaluate biofilm morphology. However, there are not many in vivo models used to validate biofilm-associated infections. In this protocol, we describe a clinically relevant rabbit model of C. albicans biofilm-associated catheter infection to evaluate the morphology, topography, and architecture of fungal biofilms. We also describe a murine model of contact lens-associated Fusarium keratitis.Evaluation of the formation of fungal biofilms on catheters in vivo, their analysis using scanning electron microscopy (SEM) and quantitative catheter culture (QCC), and treatment of biofilms using antimicrobial lock therapy can be completed in ~20-25 days using the described methods. The rabbit model has utility in evaluating the efficacy of lock solutions. In addition, the murine model of contact lens-associated Fusarium keratitis enables characterizing/comparing the formation of Fusarium biofilms on contact lenses in vitro and determining their role in vivo.

  3. A Multispecies Fungal Biofilm Approach to Enhance the Celluloyltic Efficiency of Membrane Reactors for Consolidated Bioprocessing of Plant Biomass

    PubMed Central

    Xiros, Charilaos; Studer, Michael H.

    2017-01-01

    The constraints and advantages in cellulolytic enzymes production by fungal biofilms for a consolidated bioconversion process were investigated during this study. The biofilm cultivations were carried out in reactors designed for consolidated bioprocessing Multispecies Biofilm Membrane reactors, (MBM) where an aerobic fungal biofilm produces the lignocellulolytic enzymes while a fermenting microorganism forms the fermentation product at anaerobic conditions. It was shown that although mycelial growth was limited in the MBM reactors compared to submerged cultivations, the secretion of cellulolytic enzymes per cell dry weight was higher. When Trichoderma reesei was used as the sole enzyme producer, cellobiose accumulated in the liquid medium as the result of the deficiency of β-glucosidase in the fungal secretome. To enhance β-glucosidase activity, T. reesei was co-cultivated with A. phoenicis which is a β-glucosidase overproducer. The two fungi formed a multispecies biofilm which produced a balanced cellulolytic cocktail for the saccharification of plant biomass. The mixed biofilm reached a 2.5 fold increase in β-glucosidase production, compared to the single T. reesei biofilm. The enzymatic systems of single and mixed biofilms were evaluated regarding their efficiency on cellulosic substrates degradation. Washed solids from steam pretreated beechwood, as well as microcrystalline cellulose were used as the substrates. The enzymatic system of the multispecies biofilm released four times more glucose than the enzymatic system of T. reesei alone from both substrates and hydrolyzed 78 and 60% of the cellulose content of washed solids from beechwood and microcrystalline cellulose, respectively. PMID:29067006

  4. Effects of lactoferricin B against keratitis-associated fungal biofilms.

    PubMed

    Sengupta, Jayangshu; Saha, Suman; Khetan, Archana; Sarkar, Sujoy K; Mandal, Santi M

    2012-10-01

    Biofilms are considered as the most important developmental characteristics in ocular infections. Biofilm eradication is a major challenge today to overcome the incidence of drug resistance. This report demonstrates the in vitro ability of biofilm formation on contact lens by three common keratitis-associated fungal pathogens, namely, Aspergillus fumigatus, Fusarium solani, and Candida albicans. Antifungal sensitivity testing performed for both planktonic cells and biofilm revealed the sessile phenotype to be resistant at MIC levels for the planktonic cells and also at higher concentrations. A prototype lens care solution was also found to be partially effective in eradication of the mature biofilm from contact lenses. Lactoferricin B (Lacf, 64 μg/ml), an antimicrobial peptide, exhibited almost no effect on the sessile phenotype. However, the combinatory effect of Lacf with antifungals against planktonic cells and biofilms of three fungal strains that were isolated from keratitis patients exhibited a reduction of antifungal dose more than eightfold. Furthermore, the effect of Lacf in lens care solution against biofilms in which those strains formed was eradicated successfully. These results suggest that lactoferricin B could be a promising candidate for clinical use in improving biofilm susceptibility to antifungals and also as an antibiofilm-antifungal additive in lens care solution.

  5. Biofilm detection in chronic rhinosinusitis by combined application of hematoxylin-eosin and gram staining.

    PubMed

    Tóth, László; Csomor, Péter; Sziklai, István; Karosi, Tamás

    2011-10-01

    The pathomechanism of chronic rhinosinusitis with nasal polyposis (CRS/NP) seems to be unclear. Bacterial-, fungal- and combined biofilms might play a potential role in the pathogenesis of various inflammatory diseases and recently in CRS/NP. A prospective, blinded observational study was performed to confirm that the combination of conventional hematoxylin-eosin (HE) and Gram staining protocols could be used to detect bacterial and fungal biofilms in patients with CRS/NP. A total of 50 patients with CRS/NP undergoing endoscopic sinus surgery (ESS) were analyzed. The negative control group consisted of 12 patients undergoing septoplasty for nasal obstruction without CRS/NP. The nasal polyps and inferior turbinate mucosa specimens applied as negative controls were processed to HE and Gram staining. Biofilm was detected in 44 of 50 patients with CRS/NP and in none of 12 negative controls. In our series, HE method showed an obvious correlation with the results of Gram staining and was allocated to be a good predictor of biofilm existence. It was found that the microscopic structure and thickness of biofilms were strongly associated with the integrity of nasal mucosa and with the characteristics of subepithelial cellular infiltration. This study confirmed the presence of bacterial and fungal biofilms on the surface of NPs obtained from patients with CRS. Since biofilms may affect the severity and recurrence rate of CRS treated by ESS they should be detected histologically. In conclusion, HE staining combined with Gram protocol is a robust and reliable method for the detection of bacterial and fungal biofilms in CRS/NP.

  6. Candida Biofilms: Development, Architecture, and Resistance

    PubMed Central

    CHANDRA, JYOTSNA; MUKHERJEE, PRANAB K.

    2015-01-01

    Intravascular device–related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis–associated infections and also are commonly isolated from contact lens–related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms. PMID:26350306

  7. Sustained release of a novel anti-quorum-sensing agent against oral fungal biofilms.

    PubMed

    Feldman, Mark; Shenderovich, Julia; Al-Quntar, Abed Al Aziz; Friedman, Michael; Steinberg, Doron

    2015-04-01

    Thiazolidinedione-8 (S-8) has recently been identified as a potential anti-quorum-sensing/antibiofilm agent against bacteria and fungi. Based on these results, we investigated the possibility of incorporating S-8 in a sustained-release membrane (SRM) to increase its pharmaceutical potential against Candida albicans biofilm. We demonstrated that SRM containing S-8 inhibits fungal biofilm formation in a time-dependent manner for 72 h, due to prolonged release of S-8. Moreover, the SRM effectively delivered the agent in its active form to locations outside the membrane reservoir. In addition, eradication of mature biofilm by the SRM containing S-8 was also significant. Of note, S-8-containing SRM affected the characteristics of mature C. albicans biofilm, such as thickness, exopolysaccharide (EPS) production, and morphogenesis of fungal cells. The concept of using an antibiofilm agent with no antifungal activity incorporated into a sustained-release delivery system is new in medicine and dentistry. This concept of an SRM containing a quorum-sensing quencher with an antibiofilm effect could pave the way for combating oral fungal infectious diseases. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Disarming Fungal Pathogens: Bacillus safensis Inhibits Virulence Factor Production and Biofilm Formation by Cryptococcus neoformans and Candida albicans

    PubMed Central

    2017-01-01

    ABSTRACT Bacteria interact with each other in nature and often compete for limited nutrient and space resources. However, it is largely unknown whether and how bacteria also interact with human fungal pathogens naturally found in the environment. Here, we identified a soil bacterium, Bacillus safensis, which potently blocked several key Cryptococcus neoformans virulence factors, including formation of the antioxidant pigment melanin and production of the antiphagocytic polysaccharide capsule. The bacterium also inhibited de novo cryptococcal biofilm formation but had only modest inhibitory effects on already formed biofilms or planktonic cell growth. The inhibition of fungal melanization was dependent on direct cell contact and live bacteria. B. safensis also had anti-virulence factor activity against another major human-associated fungal pathogen, Candida albicans. Specifically, dual-species interaction studies revealed that the bacterium strongly inhibited C. albicans filamentation and biofilm formation. In particular, B. safensis physically attached to and degraded candidal filaments. Through genetic and phenotypic analyses, we demonstrated that bacterial chitinase activity against fungal cell wall chitin is a factor contributing to the antipathogen effect of B. safensis. PMID:28974618

  9. Deletion of Aspergillus nidulans GDP-mannose transporters affects hyphal morphometry, cell wall architecture, spore surface character, cell adhesion, and biofilm formation.

    PubMed

    Kadry, Ashraf A; El-Ganiny, Amira M; Mosbah, Rasha A; Kaminskyj, Susan G W

    2018-07-01

    Systemic human fungal infections are increasingly common. Aspergillus species cause most of the airborne fungal infections. Life-threatening invasive aspergillosis was formerly found only in immune-suppressed patients, but recently some strains of A. fumigatus have become primary pathogens. Many fungal cell wall components are absent from mammalian systems, so they are potential drug targets. Cell-wall-targeting drugs such as echinocandins are used clinically, although echinocandin-resistant strains were discovered shortly after their introduction. Currently there are no fully effective anti-fungal drugs. Fungal cell wall glycoconjugates modulate human immune responses, as well as fungal cell adhesion, biofilm formation, and drug resistance. Guanosine diphosphate (GDP) mannose transporters (GMTs) transfer GDP-mannose from the cytosol to the Golgi lumen prior to mannosylation. Aspergillus nidulans GMTs are encoded by gmtA and gmtB. Here we elucidate the roles of A. nidulans GMTs. Strains engineered to lack either or both GMTs were assessed for hyphal and colonial morphology, cell wall ultrastructure, antifungal susceptibility, spore hydrophobicity, adherence and biofilm formation. The gmt-deleted strains had smaller colonies with reduced sporulation and with thicker hyphal walls. The gmtA deficient spores had reduced hydrophobicity and were less adherent and less able to form biofilms in vitro. Thus, gmtA not only participates in maintaining the cell wall integrity but also plays an important role in biofilm establishment and adherence of A. nidulans. These findings suggested that GMTs have roles in A. nidulans growth and cell-cell interaction and could be a potential target for new antifungals that target virulence determinants.

  10. Sustained Nitric Oxide-Releasing Nanoparticles Induce Cell Death in Candida albicans Yeast and Hyphal Cells, Preventing Biofilm Formation In Vitro and in a Rodent Central Venous Catheter Model

    PubMed Central

    Ahmadi, Mohammed S.; Lee, Hiu Ham; Sanchez, David A.; Friedman, Adam J.; Tar, Moses T.; Davies, Kelvin P.; Nosanchuk, Joshua D.

    2016-01-01

    Candida albicans is a leading nosocomial pathogen. Today, candidal biofilms are a significant cause of catheter infections, and such infections are becoming increasingly responsible for the failure of medical-implanted devices. C. albicans forms biofilms in which fungal cells are encased in an autoproduced extracellular polysaccharide matrix. Consequently, the enclosed fungi are protected from antimicrobial agents and host cells, providing a unique niche conducive to robust microbial growth and a harbor for recurring infections. Here we demonstrate that a recently developed platform comprised of nanoparticles that release therapeutic levels of nitric oxide (NO-np) inhibits candidal biofilm formation, destroys the extracellular polysaccharide matrices of mature fungal biofilms, and hinders biofilm development on surface biomaterials such as the lumen of catheters. We found NO-np to decrease both the metabolic activity of biofilms and the cell viability of C. albicans in vitro and in vivo. Furthermore, flow cytometric analysis found NO-np to induce apoptosis in biofilm yeast cells in vitro. Moreover, NO-np behave synergistically when used in combination with established antifungal drug therapies. Here we propose NO-np as a novel treatment modality, especially in combination with standard antifungals, for the prevention and/or remediation of fungal biofilms on central venous catheters and other medical devices. PMID:26810653

  11. Sustained Nitric Oxide-Releasing Nanoparticles Induce Cell Death in Candida albicans Yeast and Hyphal Cells, Preventing Biofilm Formation In Vitro and in a Rodent Central Venous Catheter Model.

    PubMed

    Ahmadi, Mohammed S; Lee, Hiu Ham; Sanchez, David A; Friedman, Adam J; Tar, Moses T; Davies, Kelvin P; Nosanchuk, Joshua D; Martinez, Luis R

    2016-04-01

    Candida albicansis a leading nosocomial pathogen. Today, candidal biofilms are a significant cause of catheter infections, and such infections are becoming increasingly responsible for the failure of medical-implanted devices.C. albicansforms biofilms in which fungal cells are encased in an autoproduced extracellular polysaccharide matrix. Consequently, the enclosed fungi are protected from antimicrobial agents and host cells, providing a unique niche conducive to robust microbial growth and a harbor for recurring infections. Here we demonstrate that a recently developed platform comprised of nanoparticles that release therapeutic levels of nitric oxide (NO-np) inhibits candidal biofilm formation, destroys the extracellular polysaccharide matrices of mature fungal biofilms, and hinders biofilm development on surface biomaterials such as the lumen of catheters. We found NO-np to decrease both the metabolic activity of biofilms and the cell viability ofC. albicansin vitroandin vivo Furthermore, flow cytometric analysis found NO-np to induce apoptosis in biofilm yeast cellsin vitro Moreover, NO-np behave synergistically when used in combination with established antifungal drug therapies. Here we propose NO-np as a novel treatment modality, especially in combination with standard antifungals, for the prevention and/or remediation of fungal biofilms on central venous catheters and other medical devices. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Large-scale biochemical profiling of the Candida albicans biofilm matrix: new compositional, structural, and functional insights.

    PubMed

    Lopez-Ribot, Jose L

    2014-09-09

    Among pathogenic fungi, Candida albicans is most frequently associated with biofilm formation, a lifestyle that is entirely different from the planktonic state. One of the distinguishing features of these biofilms is the presence of extracellular material, commonly referred to as the "biofilm matrix." The fungal biofilm matrix embeds sessile cells within these communities and plays important structural and physiological functions, including antifungal drug resistance with important clinical repercussions. This matrix is mostly self-produced by the fungal cells themselves and is composed of different types of biopolymers. In C. albicans, the main components of the biofilm matrix are carbohydrates, proteins, lipids, and DNA, but many of them remain unidentified and/or poorly characterized. In their recent article, Zarnowski et al. [mBio 5(4):e01333-14, 2014, doi:10.1128/mBio.01333-14] used a variety of biochemical and state-of-the-art "omic" approaches (glycomics, proteomics, and lipidomics) to identify and characterize unique biopolymers present in the C. albicans biofilm matrix. Besides generating a true "encyclopedic" catalog of individual moieties from each of the different macromolecular categories, results also provide important insights into structural and functional aspects of the fungal biofilm matrix, particularly the interaction between different components and the contribution of multiple matrix constituents to biofilm antifungal drug resistance. Copyright © 2014 Lopez-Ribot.

  13. Bacterial GtfB Augments Candida albicans Accumulation in Cross-Kingdom Biofilms.

    PubMed

    Ellepola, K; Liu, Y; Cao, T; Koo, H; Seneviratne, C J

    2017-09-01

    Streptococcus mutans is a biofilm-forming oral pathogen commonly associated with dental caries. Clinical studies have shown that S. mutans is often detected with Candida albicans in early childhood caries. Although the C. albicans presence has been shown to enhance bacterial accumulation in biofilms, the influence of S. mutans on fungal biology in this mixed-species relationship remains largely uncharacterized. Therefore, we aimed to investigate how the presence of S. mutans influences C. albicans biofilm development and coexistence. Using a newly established haploid biofilm model of C. albicans, we found that S. mutans augmented haploid C. albicans accumulation in mixed-species biofilms. Similarly, diploid C. albicans also showed enhanced biofilm formation in the presence of S. mutans. Surprisingly, the presence of S. mutans restored the biofilm-forming ability of C. albicans bcr1Δ mutant and bcr1Δ/Δ mutant, which is known to be severely defective in biofilm formation when grown as single species. Moreover, C. albicans hyphal growth factor HWP1 as well as ALS1 and ALS3, which are also involved in fungal biofilm formation, were upregulated in the presence of S. mutans. Subsequently, we found that S. mutans-derived glucosyltransferase B (GtfB) itself can promote C. albicans biofilm development. Interestingly, GtfB was able to increase the expression of HWP1, ALS1, and ALS3 genes in the C. albicans diploid wild-type SC5314 and bcr1Δ/Δ, leading to enhanced fungal biofilms. Hence, the present study demonstrates that a bacterial exoenzyme (GtfB) augments the C. albicans counterpart in mixed-species biofilms through a BCR1-independent mechanism. This novel finding may explain the mutualistic role of S. mutans and C. albicans in cariogenic biofilms.

  14. Microtubules are reversibly depolymerized in response to changing gaseous microenvironments within Aspergillus nidulans biofilms.

    PubMed

    Shukla, Nandini; Osmani, Aysha H; Osmani, Stephen A

    2017-03-01

    How microtubules (MTs) are regulated during fungal biofilm formation is unknown. By tracking MT +end-binding proteins (+TIPS) in Aspergillus nidulans , we find that MTs are regulated to depolymerize within forming fungal biofilms. During this process, EB1, dynein, and ClipA form transient fibrous and then bar-like structures, novel configurations for +TIPS. Cells also respond in an autonomous manner, with cells separated by a septum able to maintain different MT dynamics. Surprisingly, all cells with depolymerized MTs rapidly repolymerize their MTs after air exchange above the static culture medium of biofilms. Although the specific gasotransmitter for this biofilm response is not known, we find that addition of hydrogen sulfide gas to growing cells recapitulates all aspects of reversible MT depolymerization and transient formation of +TIPs bars. However, as biofilms mature, physical removal of part of the biofilm is required to promote MT repolymerization, which occurs at the new biofilm edge. We further show MT depolymerization within biofilms is regulated by the SrbA hypoxic transcription factor and that without SrbA, MTs are maintained as biofilms form. This reveals a new mode of MT regulation in response to changing gaseous biofilm microenvironments, which could contribute to the unique characteristics of fungal biofilms in medical and industrial settings. © 2017 Shukla et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Succession of bacterial and fungal communities within biofilms of a chlorinated drinking water distribution system.

    PubMed

    Douterelo, I; Fish, K E; Boxall, J B

    2018-09-15

    Understanding the temporal dynamics of multi-species biofilms in Drinking Water Distribution Systems (DWDS) is essential to ensure safe, high quality water reaches consumers after it passes through these high surface area reactors. This research studied the succession characteristics of fungal and bacterial communities under controlled environmental conditions fully representative of operational DWDS. Microbial communities were observed to increase in complexity after one month of biofilm development but they did not reach stability after three months. Changes in cell numbers were faster at the start of biofilm formation and tended to decrease over time, despite the continuing changes in bacterial community composition. Fungal diversity was markedly less than bacterial diversity and had a lag in responding to temporal dynamics. A core-mixed community of bacteria including Pseudomonas, Massillia and Sphingomonas and the fungi Acremonium and Neocosmopora were present constantly and consistently in the biofilms over time and conditions studied. Monitoring and managing biofilms and such ubiquitous core microbial communities are key control strategies to ensuring the delivery of safe drinking water via the current ageing DWDS infrastructure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Temporal Dynamics of Bacterial and Fungal Colonization on Plastic Debris in the North Sea.

    PubMed

    De Tender, Caroline; Devriese, Lisa I; Haegeman, Annelies; Maes, Sara; Vangeyte, Jürgen; Cattrijsse, André; Dawyndt, Peter; Ruttink, Tom

    2017-07-05

    Despite growing evidence that biofilm formation on plastic debris in the marine environment may be essential for its biodegradation, the underlying processes have yet to be fully understood. Thus, far, bacterial biofilm formation had only been studied after short-term exposure or on floating plastic, yet a prominent share of plastic litter accumulates on the seafloor. In this study, we explored the taxonomic composition of bacterial and fungal communities on polyethylene plastic sheets and dolly ropes during long-term exposure on the seafloor, both at a harbor and an offshore location in the Belgian part of the North Sea. We reconstructed the sequence of events during biofilm formation on plastic in the harbor environment and identified a core bacteriome and subsets of bacterial indicator species for early, intermediate, and late stages of biofilm formation. Additionally, by implementing ITS2 metabarcoding on plastic debris, we identified and characterized for the first time fungal genera on plastic debris. Surprisingly, none of the plastics exposed to offshore conditions displayed the typical signature of a late stage biofilm, suggesting that biofilm formation is severely hampered in the natural environment where most plastic debris accumulates.

  17. Garcinia xanthochymus Benzophenones Promote Hyphal Apoptosis and Potentiate Activity of Fluconazole against Candida albicans Biofilms

    PubMed Central

    Jackson, Desmond N.; Yang, Lin; Wu, ShiBiao; Kennelly, Edward J.

    2015-01-01

    Xanthochymol and garcinol, isoprenylated benzophenones purified from Garcinia xanthochymus fruits, showed multiple activities against Candida albicans biofilms. Both compounds effectively prevented emergence of fungal germ tubes and were also cytostatic, with MICs of 1 to 3 μM. The compounds therefore inhibited development of hyphae and subsequent biofilm maturation. Xanthochymol treatment of developing and mature biofilms induced cell death. In early biofilm development, killing had the characteristics of apoptosis, including externalization of phosphatidyl serine and DNA fragmentation, as evidenced by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) fluorescence. These activities resulted in failure of biofilm maturation and hyphal death in mature biofilms. In mature biofilms, xanthochymol and garcinol caused the death of biofilm hyphae, with 50% effective concentrations (EC50s) of 30 to 50 μM. Additionally, xanthochymol-mediated killing was complementary with fluconazole against mature biofilms, reducing the fluconazole EC50 from >1,024 μg/ml to 13 μg/ml. Therefore, xanthochymol has potential as an adjuvant for antifungal treatments as well as in studies of fungal apoptosis. PMID:26195512

  18. Novel entries in a fungal biofilm matrix encyclopedia

    USDA-ARS?s Scientific Manuscript database

    Virulence of Candida albicans is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we conduc...

  19. Microbial Diversity and Putative Opportunistic Pathogens in Dishwasher Biofilm Communities

    PubMed Central

    2018-01-01

    ABSTRACT Extreme habitats are not only limited to natural environments, but also exist in manmade systems, for instance, household appliances such as dishwashers. Limiting factors, such as high temperatures, high and low pHs, high NaCl concentrations, presence of detergents, and shear force from water during washing cycles, define microbial survival in this extreme system. Fungal and bacterial diversity in biofilms isolated from rubber seals of 24 different household dishwashers was investigated using next-generation sequencing. Bacterial genera such as Pseudomonas, Escherichia, and Acinetobacter, known to include opportunistic pathogens, were represented in most samples. The most frequently encountered fungal genera in these samples belonged to Candida, Cryptococcus, and Rhodotorula, also known to include opportunistic pathogenic representatives. This study showed how specific conditions of the dishwashers impact the abundance of microbial groups and investigated the interkingdom and intrakingdom interactions that shape these biofilms. The age, usage frequency, and hardness of incoming tap water of dishwashers had significant impact on bacterial and fungal community compositions. Representatives of Candida spp. were found at the highest prevalence (100%) in all dishwashers and are assumed to be one of the first colonizers in recently purchased dishwashers. Pairwise correlations in tested microbiomes showed that certain bacterial groups cooccur, as did the fungal groups. In mixed bacterial-fungal biofilms, early adhesion, contact, and interactions were vital in the process of biofilm formation, where mixed complexes of bacteria and fungi could provide a preliminary biogenic structure for the establishment of these biofilms. IMPORTANCE Worldwide demand for household appliances, such as dishwashers and washing machines, is increasing, as is the number of immunocompromised individuals. The harsh conditions in household dishwashers should prevent the growth of most microorganisms. However, our research shows that persisting polyextremotolerant groups of microorganisms in household appliances are well established under these unfavorable conditions and supported by the biofilm mode of growth. The significance of our research is in identifying the microbial composition of biofilms formed on dishwasher rubber seals, how diverse abiotic conditions affect microbiota, and which key microbial members were represented in early colonization and contamination of dishwashers, as these appliances can present a source of domestic cross-contamination that leads to broader medical impacts. PMID:29330184

  20. Ceragenins are active against drug-resistant Candida auris clinical isolates in planktonic and biofilm forms.

    PubMed

    Hashemi, Marjan M; Rovig, John; Holden, Brett S; Taylor, Maddison F; Weber, Scott; Wilson, John; Hilton, Brian; Zaugg, Aaron L; Ellis, Samuel W; Yost, Connor D; Finnegan, Patrick M; Kistler, Charles K; Berkow, Elizabeth L; Deng, Shenglou; Lockhart, Shawn R; Peterson, Marnie; Savage, Paul B

    2018-06-01

    Candida auris has emerged as a serious threat to human health. Of particular concern are the resistance profiles of many clinical isolates, with some being resistant to multiple classes of antifungals. Measure susceptibilities of C. auris isolates, in planktonic and biofilm forms, to ceragenins (CSAs). Determine the effectiveness of selected ceragenins in gel and cream formulations in eradicating fungal infections in tissue explants. A collection of 100 C. auris isolates available at CDC was screened for susceptibility to a lead ceragenin. A smaller collection was used to characterize antifungal activities of other ceragenins against organisms in planktonic and biofilm forms. Effects of ceragenins on fungal cells and biofilms were observed via microscopy. An ex vivo model of mucosal fungal infection was used to evaluate formulated forms of lead ceragenins. Lead ceragenins displayed activities comparable to those of known antifungal agents against C. auris isolates with MICs of 0.5-8 mg/L and minimum fungicidal concentrations (MFCs) of 2-64 mg/L. No cross-resistance with other antifungals was observed. Fungal cell morphology was altered in response to ceragenin treatment. Ceragenins exhibited activity against sessile organisms in biofilms. Gel and cream formulations including 2% CSA-44 or CSA-131 resulted in reductions of over 4 logs against established fungal infections in ex vivo mucosal tissues. Ceragenins demonstrated activity against C. auris, suggesting that these compounds warrant further study to determine whether they can be used for topical applications to skin and mucosal tissues for treatment of infections with C. auris and other fungi.

  1. Species-Specific and Drug-Specific Differences in Susceptibility of Candida Biofilms to Echinocandins: Characterization of Less Common Bloodstream Isolates

    PubMed Central

    Simitsopoulou, Maria; Peshkova, Pavla; Tasina, Efthymia; Katragkou, Aspasia; Kyrpitzi, Daniela; Velegraki, Aristea; Walsh, Thomas J.

    2013-01-01

    Candida species other than Candida albicans are increasingly recognized as causes of biofilm-associated infections. This is a comprehensive study that compared the in vitro activities of all three echinocandins against biofilms formed by different common and infrequently identified Candida isolates. We determined the activities of anidulafungin (ANID), caspofungin (CAS), and micafungin (MFG) against planktonic cells and biofilms of bloodstream isolates of C. albicans (15 strains), Candida parapsilosis (6 strains), Candida lusitaniae (16 strains), Candida guilliermondii (5 strains), and Candida krusei (12 strains) by XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assay. Planktonic and biofilm MICs were defined as ≥50% fungal damage. Planktonic cells of all Candida species were susceptible to the three echinocandins, with MICs of ≤1 mg/liter. By comparison, differences in the MIC profiles of biofilms in response to echinocandins existed among the Candida species. Thus, C. lusitaniae and C. guilliermondii biofilms were highly recalcitrant to all echinocandins, with MICs of ≥32 mg/liter. In contrast, the MICs of all three echinocandins for C. albicans and C. krusei biofilms were relatively low (MICs ≤ 1 mg/liter). While echinocandins exhibited generally high MICs against C. parapsilosis biofilms, MFG exhibited the lowest MICs against these isolates (4 mg/liter). A paradoxical growth effect was observed with CAS concentrations ranging from 8 to 64 mg/liter against C. albicans and C. parapsilosis biofilms but not against C. krusei, C. lusitaniae, or C. guilliermondii. While non-albicans Candida planktonic cells were susceptible to all echinocandins, there were drug- and species-specific differences in susceptibility among biofilms of the various Candida species, with C. lusitaniae and C. guilliermondii exhibiting profiles of high MICs of the three echinocandins. PMID:23529739

  2. The Extracellular Matrix of Fungal Biofilms.

    PubMed

    Mitchell, Kaitlin F; Zarnowski, Robert; Andes, David R

    A key feature of biofilms is their production of an extracellular matrix. This material covers the biofilm cells, providing a protective barrier to the surrounding environment. During an infection setting, this can include such offenses as host cells and products of the immune system as well as drugs used for treatment. Studies over the past two decades have revealed the matrix from different biofilm species to be as diverse as the microbes themselves. This chapter will review the composition and roles of matrix from fungal biofilms, with primary focus on Candida species, Saccharomyces cerevisiae, Aspergillus fumigatus, and Cryptococcus neoformans. Additional coverage will be provided on the antifungal resistance proffered by the Candida albicans matrix, which has been studied in the most depth. A brief section on the matrix produced by bacterial biofilms will be provided for comparison. Current tools for studying the matrix will also be discussed, as well as suggestions for areas of future study in this field.

  3. Control of Candida albicans Metabolism and Biofilm Formation by Pseudomonas aeruginosa Phenazines

    PubMed Central

    Morales, Diana K.; Grahl, Nora; Okegbe, Chinweike; Dietrich, Lars E. P.; Jacobs, Nicholas J.; Hogan, Deborah A.

    2013-01-01

    ABSTRACT Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-1-carboxylate) allowed growth but affected the development of C. albicans wrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impaired C. albicans growth on nonfermentable carbon sources and led to increased production of fermentation products (ethanol, glycerol, and acetate) in glucose-containing medium, leading us to propose that phenazines specifically inhibited respiration. Methylene blue, another inhibitor of respiration, also prevented the formation of structured colony biofilms. The inhibition of filamentation and colony wrinkling was not solely due to lowered extracellular pH induced by fermentation. Compared to smooth, unstructured colonies, wrinkled colony biofilms had higher oxygen concentrations within the colony, and wrinkled regions of these colonies had higher levels of respiration. Together, our data suggest that the structure of the fungal biofilm promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by bacterial molecules such as phenazines or compounds with similar activities disrupts these pathways. These findings may suggest new ways to limit fungal biofilms in the context of disease. PMID:23362320

  4. Chronic Illness Associated with Mold and Mycotoxins: Is Naso-Sinus Fungal Biofilm the Culprit?

    PubMed Central

    Brewer, Joseph H.; Thrasher, Jack D.; Hooper, Dennis

    2013-01-01

    It has recently been demonstrated that patients who develop chronic illness after prior exposure to water damaged buildings (WDB) and mold have the presence of mycotoxins, which can be detected in the urine. We hypothesized that the mold may be harbored internally and continue to release and/or produce mycotoxins which contribute to ongoing chronic illness. The sinuses are the most likely candidate as a site for the internal mold and mycotoxin production. In this paper, we review the literature supporting this concept. PMID:24368325

  5. Chronic illness associated with mold and mycotoxins: is naso-sinus fungal biofilm the culprit?

    PubMed

    Brewer, Joseph H; Thrasher, Jack D; Hooper, Dennis

    2013-12-24

    It has recently been demonstrated that patients who develop chronic illness after prior exposure to water damaged buildings (WDB) and mold have the presence of mycotoxins, which can be detected in the urine. We hypothesized that the mold may be harbored internally and continue to release and/or produce mycotoxins which contribute to ongoing chronic illness. The sinuses are the most likely candidate as a site for the internal mold and mycotoxin production. In this paper, we review the literature supporting this concept.

  6. Hsp90 Governs Dispersion and Drug Resistance of Fungal Biofilms

    PubMed Central

    Nett, Jeniel; Rajendran, Ranjith; Ramage, Gordon; Lopez-Ribot, Jose L.; Andes, David; Cowen, Leah E.

    2011-01-01

    Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving clinical outcome in the treatment of biofilm infections. PMID:21931556

  7. Agriculturally important microbial biofilms: Present status and future prospects.

    PubMed

    Velmourougane, Kulandaivelu; Prasanna, Radha; Saxena, Anil Kumar

    2017-07-01

    Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Characteristics of Aspergillus fumigatus in Association with Stenotrophomonas maltophilia in an In Vitro Model of Mixed Biofilm

    PubMed Central

    Melloul, Elise; Luiggi, Stéphanie; Anaïs, Leslie; Arné, Pascal; Costa, Jean-Marc; Fihman, Vincent; Briard, Benoit; Dannaoui, Eric; Guillot, Jacques; Decousser, Jean-Winoc; Beauvais, Anne; Botterel, Françoise

    2016-01-01

    Background Biofilms are communal structures of microorganisms that have long been associated with a variety of persistent infections poorly responding to conventional antibiotic or antifungal therapy. Aspergillus fumigatus fungus and Stenotrophomonas maltophilia bacteria are examples of the microorganisms that can coexist to form a biofilm especially in the respiratory tract of immunocompromised patients or cystic fibrosis patients. The aim of the present study was to develop and assess an in vitro model of a mixed biofilm associating S. maltophilia and A. fumigatus by using analytical and quantitative approaches. Materials and Methods An A. fumigatus strain (ATCC 13073) expressing a Green Fluorescent Protein (GFP) and an S. maltophilia strain (ATCC 13637) were used. Fungal and bacterial inocula (105 conidia/mL and 106 cells/mL, respectively) were simultaneously deposited to initiate the development of an in vitro mixed biofilm on polystyrene supports at 37°C for 24 h. The structure of the biofilm was analysed via qualitative microscopic techniques like scanning electron and transmission electron microscopy, and fluorescence microscopy, and by quantitative techniques including qPCR and crystal violet staining. Results Analytic methods revealed typical structures of biofilm with production of an extracellular matrix (ECM) enclosing fungal hyphae and bacteria. Quantitative methods showed a decrease of A. fumigatus growth and ECM production in the mixed biofilm with antibiosis effect of the bacteria on the fungi seen as abortive hyphae, limited hyphal growth, fewer conidia, and thicker fungal cell walls. Conclusion For the first time, a mixed A. fumigatus—S. maltophilia biofilm was validated by various analytical and quantitative approaches and the bacterial antibiosis effect on the fungus was demonstrated. The mixed biofilm model is an interesting experimentation field to evaluate efficiency of antimicrobial agents and to analyse the interactions between the biofilm and the airways epithelium. PMID:27870863

  9. Candida albicans Biofilms and Human Disease

    PubMed Central

    Nobile, Clarissa J.; Johnson, Alexander D.

    2016-01-01

    In humans, microbial cells (including bacteria, archaea, and fungi) greatly outnumber host cells. Candida albicans is the most prevalent fungal species of the human microbiota; this species asymptomatically colonizes many areas of the body, particularly the gastrointestinal and genitourinary tracts of healthy individuals. Alterations in host immunity, stress, resident microbiota, and other factors can lead to C. albicans overgrowth, causing a wide range of infections, from superficial mucosal to hematogenously disseminated candidiasis. To date, most studies of C. albicans have been carried out in suspension cultures; however, the medical impact of C. albicans (like that of many other microorganisms) depends on its ability to thrive as a biofilm, a closely packed community of cells. Biofilms are notorious for forming on implanted medical devices, including catheters, pacemakers, dentures, and prosthetic joints, which provide a surface and sanctuary for biofilm growth. C. albicans biofilms are intrinsically resistant to conventional antifungal therapeutics, the host immune system, and other environmental perturbations, making biofilm-based infections a significant clinical challenge. Here, we review our current knowledge of biofilms formed by C. albicans and closely related fungal species. PMID:26488273

  10. In vitro anti-Candida activity of selective serotonin reuptake inhibitors against fluconazole-resistant strains and their activity against biofilm-forming isolates.

    PubMed

    Costa Silva, Rose Anny; da Silva, Cecília Rocha; de Andrade Neto, João Batista; da Silva, Anderson Ramos; Campos, Rosana Sousa; Sampaio, Letícia Serpa; do Nascimento, Francisca Bruna Stefany Aires; da Silva Gaspar, Brenda; da Cruz Fonseca, Said Gonçalves; Josino, Maria Aparecida Alexandre; Grangeiro, Thalles Barbosa; Gaspar, Danielle Macedo; de Lucena, David Freitas; de Moraes, Manoel Odorico; Cavalcanti, Bruno Coêlho; Nobre Júnior, Hélio Vitoriano

    2017-06-01

    Recent research has shown broad antifungal activity of the classic antidepressants selective serotonin reuptake inhibitors (SSRIs). This fact, combined with the increased cross-resistance frequency of the genre Candida regarding the main treatment today, fluconazole, requires the development of novel therapeutic strategies. In that context, this study aimed to assess the antifungal potential of fluoxetine, sertraline, and paroxetine against fluconazole-resistant Candida spp. planktonic cells, as well as to assess the mechanism of action and the viability of biofilms treated with fluoxetine. After 24 h, the fluconazole-resistant Candida spp. strains showed minimum inhibitory concentration (MIC) in the ranges of 20-160 μg/mL for fluoxetine, 10-20 μg/mL for sertraline, and 10-100.8 μg/mL for paroxetine by the broth microdilution method (M27-A3). According to our data by flow cytometry, each of the SSRIs cause fungal death after damaging the plasma and mitochondrial membrane, which activates apoptotic signaling pathways and leads to dose-dependant cell viability loss. Regarding biofilm-forming isolates, the fluoxetine reduce mature biofilm of all the species tested. Therefore, it is concluded that SSRIs are capable of inhibit the growth in vitro of Candida spp., both in planktonic form, as biofilm, inducing cellular death by apoptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mycoalgae biofilm: development of a novel platform technology using algae and fungal cultures.

    PubMed

    Rajendran, Aravindan; Hu, Bo

    2016-01-01

    Microalgae is considered a promising source for biofuel and bioenergy production, bio-remediation and production of high-value bioactive compounds, but harvesting microalgae is a major bottleneck in the algae based processes. The objective of this research is to mimic the growth of natural lichen and develop a novel biofilm platform technology using filamentous fungi and microalgae to form a lichen type of biofilm "mycoalgae" in a supporting polymer matrix. The possibility of co-existence of Chlorella vulgaris with various fungal cultures was tested to identify the best strain combination for high algae harvest efficiency. The effect of different matrices for cell attachment and biofilm formation, cell surface characterization of mycoalgae biofilm, kinetics of the process with respect to the algae-fungi cell distribution and total biomass production was studied. Mycoalgae biofilm with algae attachment efficiency of 99.0 % and above was achieved in a polymer-cotton composite matrix with glucose concentration of 2 g/L in the growth medium and agitation intensity of 150 rpm at 27 °C. The total biomass in the co-culture with the selected strain combination (Mucor sp. and Chlorella sp.) was higher than the axenic cultures of fungi and algae at the conditions tested. The results show that algae can be grown with complete attachment to a bio-augmenting fungal surface and can be harvested readily as a biofilm for product extraction from biomass. Even though, interaction between heterotrophic fungi and phototrophic algae was investigated in solid media after prolonged contact in a report, this research is the first of its kind in developing an artificial lichen type biofilm called "mycoalgae" biofilm completely attached on a matrix in liquid cultures. The mycoalgae biofilm based processes, propounds the scope for exploring new avenues in the bio-production industry and bioremediation.

  12. Antifungal activity of a β-peptide in synthetic urine media: Toward materials-based approaches to reducing catheter-associated urinary tract fungal infections.

    PubMed

    Raman, Namrata; Lee, Myung-Ryul; Rodríguez López, Angélica de L; Palecek, Sean P; Lynn, David M

    2016-10-01

    Catheter-associated urinary tract infections (CAUTI) are the most common type of hospital-acquired infection, with more than 30 million catheters placed annually in the US and a 10-30% incidence of infection. Candida albicans forms fungal biofilms on the surfaces of urinary catheters and is the leading cause of fungal urinary tract infections. As a step toward new strategies that could prevent or reduce the occurrence of C. albicans-based CAUTI, we investigated the ability of antifungal β-peptide-based mimetics of antimicrobial peptides (AMPs) to kill C. albicans and prevent biofilm formation in synthetic urine. Many α-peptide-based AMPs exhibit antifungal activities, but are unstable in high ionic strength media and are easily degraded by proteases-features that limit their use in urinary catheter applications. Here, we demonstrate that β-peptides designed to mimic the amphiphilic helical structures of AMPs retain 100% of their structural stability and exhibit antifungal and anti-biofilm activity against C. albicans in a synthetic medium that mimics the composition of urine. We demonstrate further that these agents can be loaded into and released from polymer-based multilayer coatings applied to polyurethane, polyethylene, and silicone tubing commonly used as urinary catheters. Our results reveal catheters coated with β-peptide-loaded multilayers to kill planktonic fungal cells for up to 21days of intermittent challenges with C. albicans and prevent biofilm formation on catheter walls for at least 48h. These new materials and approaches could lead to advances that reduce the occurrence of fungal CAUTI. Catheter-associated urinary tract infections are the most common type of hospital-acquired infection. The human pathogen Candida albicans is the leading cause of fungal urinary tract infections, and forms difficult to remove 'biofilms' on the surfaces of urinary catheters. We investigated synthetic β-peptide mimics of natural antimicrobial peptides as an approach to kill C. albicans and prevent biofilm formation in media that mimics the composition of urine. Our results reveal these mimics to retain structural stability and activity against C. albicans in synthetic urine. We also report polymer-based approaches to the local release of these agents within urinary catheter tubes. With further development, these materials-based approaches could lead to advances that reduce the occurrence of fungal urinary tract infections. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Fungal biodiversity and mycotoxigenic fungi in cooling-tower water systems in Istanbul, Turkey.

    PubMed

    Kadaifciler, Duygu Göksay; Demirel, Rasime

    2017-04-01

    This is the first study to assess fungal diversity and mycotoxigenic fungi in open recirculating cooling-tower (CT) water systems (biofilm and water phase). The production capability of mycotoxin from fungal isolates was also examined. The mean fungal count in 21 different water and biofilm samples was determined as 234 CFU/100 mL and 4 CFU/cm 2 . A total of 32 species were identified by internal transcribed spacer (ITS) sequencing. The most common isolated fungi belonged to the genera Aspergillus and Penicillium, of which the most prevalent fungi were Aspergillus versicolor, Aspergillus niger, and Penicillium dipodomyicola. From 42% of the surveyed CTs, aflatoxigenic A. flavus isolates were identified. The detection of opportunistic pathogens and/or allergen species suggests that open recirculating CTs are a possible source of fungal infection for both the public and for occupational workers via the inhalation of aerosols and/or skin contact.

  14. Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix.

    PubMed

    Kong, Eric F; Tsui, Christina; Kucharíková, Sona; Andes, David; Van Dijck, Patrick; Jabra-Rizk, Mary Ann

    2016-10-11

    Biofilm-associated polymicrobial infections, particularly those involving fungi and bacteria, are responsible for significant morbidity and mortality and tend to be challenging to treat. Candida albicans and Staphylococcus aureus specifically are considered leading opportunistic fungal and bacterial pathogens, respectively, mainly due to their ability to form biofilms on catheters and indwelling medical devices. However, the impact of mixed-species biofilm growth on therapy remains largely understudied. In this study, we investigated the influence of C. albicans secreted cell wall polysaccharides on the response of S. aureus to antibacterial agents in biofilm. Results demonstrated significantly enhanced tolerance for S. aureus to drugs in the presence of C. albicans or its secreted cell wall polysaccharide material. Fluorescence confocal time-lapse microscopy revealed impairment of drug diffusion through the mixed biofilm matrix. Using C. albicans mutant strains with modulated cell wall polysaccharide expression, exogenous supplementation, and enzymatic degradation, the C. albicans-secreted β-1,3-glucan cell wall component was identified as the key matrix constituent providing the bacteria with enhanced drug tolerance. Further, antibody labeling demonstrated rapid coating of the bacteria by the C. albicans matrix material. Importantly, via its effect on the fungal biofilm matrix, the antifungal caspofungin sensitized the bacteria to the drugs. Understanding such symbiotic interactions with clinical relevance between microbial species in biofilms will greatly aid in overcoming the limitations of current therapies and in defining potential new targets for treating polymicrobial infections. The fungus Candida albicans and the bacterium Staphylococcus aureus are important microbial pathogens responsible for the majority of infections in hospitalized patients and are often coisolated from a host. In this study, we demonstrated that when grown together, the fungus provides the bacterium with enhanced tolerance to antimicrobial drugs. This process was mediated by polysaccharides secreted by the fungal cell into the environment. The biofilm matrix formed by these polysaccharides prevented penetration by the drugs and provided the bacteria with protection. Importantly, we show that by inhibiting the production of the fungal polysaccharides, a specific antifungal agent indirectly sensitized the bacteria to antimicrobials. Understanding the therapeutic implications of the interactions between these two diverse microbial species will aid in overcoming the limitations of current therapies and in defining new targets for treating complex polymicrobial infections. Copyright © 2016 Kong et al.

  15. [Fungal infectivities of implanted catheters due to Candida sp. Biofilms formation and resistance].

    PubMed

    Seddiki, S M L; Boucherit-Otmani, Z; Boucherit, K; Kunkel, D

    2015-06-01

    Candidemia are the most common fungal infections in hospitals. However, the catheters are subject to be altered by Candida biofilms which increase the risk of invasive nosocomial infections due to the high resistance to antifungal agents. Therefore, the minimum inhibitory concentrations of planktonic (MIC) and sessile cells (CIMS) were evaluated. To review the in vivo biofilms structures of Candida sp. formed on the inner and/or external surfaces of collected catheters, we used scanning electron microscopy (SEM). The level of biofilm resistance was assessed against two conventional antifungal agents: amphotericin B (AmB), which belongs to the class of polyenes, and fluconazole (FLZ) which is an azole. The SEM observation of biofilms of Candida sp. reveals complex structures. Compared to MICs, the calculation of CIMS showed an increase of 32 times with AmB and of 128 times with FLZ. Catheters offer an ideal surface to Candida sp. to form biofilms. This complex structure induces the increase of the resistance of sessile cells against two antifungal agents, AmB and FLZ. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo.

    PubMed

    Hwang, Geelsu; Liu, Yuan; Kim, Dongyeop; Li, Yong; Krysan, Damian J; Koo, Hyun

    2017-06-01

    Candida albicans is frequently detected with heavy infection by Streptococcus mutans in plaque-biofilms from children with early-childhood caries (ECC). This cross-kingdom biofilm contains an extensive matrix of extracellular α-glucans that is produced by an exoenzyme (GtfB) secreted by S. mutans. Here, we report that mannans located on the outer surface of C. albicans cell-wall mediates GtfB binding, enhancing glucan-matrix production and modulating bacterial-fungal association within biofilms formed in vivo. Using single-molecule atomic force microscopy, we determined that GtfB binds with remarkable affinity to mannans and to the C. albicans surface, forming a highly stable and strong bond (1-2 nN). However, GtfB binding properties to C. albicans was compromised in strains defective in O-mannan (pmt4ΔΔ) or N-mannan outer chain (och1ΔΔ). In particular, the binding strength of GtfB on och1ΔΔ strain was severely disrupted (>3-fold reduction vs. parental strain). In turn, the GtfB amount on the fungal surface was significantly reduced, and the ability of C. albicans mutant strains to develop mixed-species biofilms with S. mutans was impaired. This phenotype was independent of hyphae or established fungal-biofilm regulators (EFG1, BCR1). Notably, the mechanical stability of the defective biofilms was weakened, resulting in near complete biomass removal by shear forces. In addition, these in vitro findings were confirmed in vivo using a rodent biofilm model. Specifically, we observed that C. albicans och1ΔΔ was unable to form cross-kingdom biofilms on the tooth surface of rats co-infected with S. mutans. Likewise, co-infection with S. mutans defective in GtfB was also incapable of forming mixed-species biofilms. Taken together, the data support a mechanism whereby S. mutans-secreted GtfB binds to the mannan layer of C. albicans to promote extracellular matrix formation and their co-existence within biofilms. Enhanced understanding of GtfB-Candida interactions may provide new perspectives for devising effective therapies to disrupt this cross-kingdom relationship associated with an important childhood oral disease.

  17. Candida virulence and ethanol-derived acetaldehyde production in oral cancer and non-cancer subjects.

    PubMed

    Alnuaimi, A D; Ramdzan, A N; Wiesenfeld, D; O'Brien-Simpson, N M; Kolev, S D; Reynolds, E C; McCullough, M J

    2016-11-01

    To compare biofilm-forming ability, hydrolytic enzymes and ethanol-derived acetaldehyde production of oral Candida isolated from the patients with oral cancer and matched non-oral cancer. Fungal biofilms were grown in RPMI-1640 medium, and biofilm mass and biofilm activity were assessed using crystal violet staining and XTT salt reduction assays, respectively. Phospholipase, proteinase, and esterase production were measured using agar plate method, while fungal acetaldehyde production was assessed via gas chromatography. Candida isolated from patients with oral cancer demonstrated significantly higher biofilm mass (P = 0.031), biofilm metabolic activity (P < 0.001), phospholipase (P = 0.002), and proteinase (P = 0.0159) activity than isolates from patients with non-oral cancer. High ethanol-derived acetaldehyde-producing Candida were more prevalent in patients with oral cancer than non-oral cancer (P = 0.01). In univariate regression analysis, high biofilm mass (P = 0.03) and biofilm metabolic activity (P < 0.001), high phospholipase (P = 0.003), and acetaldehyde production ability (0.01) were significant risk factors for oral cancer; while in the multivariate regression analysis, high biofilm activity (0.01) and phospholipase (P = 0.01) were significantly positive influencing factors on oral cancer. These data suggest a significant positive association between the ability of Candida isolates to form biofilms, to produce hydrolytic enzymes, and to metabolize alcohol to acetaldehyde with their ability to promote oral cancer development. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Evaluation of the antifungal effect of EDTA, a metal chelator agent, on Candida albicans biofilm.

    PubMed

    Casalinuovo, I A; Sorge, R; Bonelli, G; Di Francesco, P

    2017-03-01

    Candida albicans biofilm is frequently found on artificial surfaces and the infections related to biofilm are difficult to eliminate, as they require the removal of artificial devices and treatment with antifungal drugs. Nowadays, fungal growth in biofilms is difficult to eradicate with conventional antifungal drugs such as fluconazole. Among chelating agents, disodium salt-Ethylene Diamine Tetraacetic Acid (EDTA) is known to have antifungal activity. In this study, we examined the in vitro activity of the EDTA and the antifungal drug fluconazole against C. albicans mature biofilm. C. albicans ATCC 20191, fluconazole-susceptible strain, was grown at an inoculum starter of 1 x 106 cells/ml for 72 h in 24-well microtiter plates and was further treated for 24 h with EDTA and/or fluconazole. Antifungal activities in biofilms were expressed as reduction in optical density (OD) determined by a 2,3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide (XTT) colorimetric assay and compared to untreated biofilms. Colorimetric readings revealed that EDTA alone (at 25 and 2.5 mM) significantly reduced fungal metabolic activity in preformed biofilms. Also, EDTA combined with fluconazole significantly reduced the growth of biofilm when compared to biofilm treated with fluconazole alone (at 25 and 2.5 µg/ml). Our data suggest that the employment of EDTA or other chemicals destabilizers of the biofilm matrix, in combination with antifungal drugs, could lead to the development of new strategies for the management of infections associated to Candida biofilm. Another relevant result of our study suggests that the initial cell concentration, probably through mechanisms of quorum sensing, affects the cellular viability during the process of biofilm formation.

  19. Miltefosine is effective against Candida albicans and Fusarium oxysporum nail biofilms in vitro.

    PubMed

    Machado Vila, Taissa Vieira; Sousa Quintanilha, Natália; Rozental, Sonia

    2015-11-01

    Onychomycosis is a fungal nail infection that represents ∼50 % of all nail disease cases worldwide. Clinical treatment with standard antifungals frequently requires long-term systemic therapy to avoid chronic disease. Onychomycosis caused by non-dermatophyte moulds, such as Fusarium spp., and yeasts, such as Candida spp., is particularly difficult to treat, possibly due to the formation of drug-resistant fungal biofilms on affected areas. Here, we show that the alkylphospholipid miltefosine, used clinically against leishmaniasis and cutaneous breast metastases, has potent activity against biofilms of Fusarium oxysporum and Candida albicans formed on human nail fragments in vitro. Miltefosine activity was compared with that of commercially available antifungals in the treatment of biofilms at two distinct developmental phases: formation and maturation (pre-formed biofilms). Drug activity towards biofilms formed on nail fragments and on microplate surfaces (microdilution assays) was evaluated using XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assays, and drug effects on fingernail biofilms were analysed by scanning electron microscopy (SEM). For F. oxysporum, miltefosine at 8 μg ml- 1 inhibited biofilm formation by 93%, whilst 256 μg ml- 1 reduced the metabolic activity of pre-formed nail biofilms by 93%. Treatment with miltefosine at 1000 μg ml- 1 inhibited biofilm formation by 89% and reduced the metabolic activity of pre-formed C. albicans biofilms by 99%. SEM analyses of biofilms formed on fingernail fragments showed a clear reduction in biofilm biomass after miltefosine treatment, in agreement with XTT results. Our results show that miltefosine has potential as a therapeutic agent against onychomycosis and should be considered for in vivo efficacy studies, especially in topical formulations for refractory disease treatment.

  20. The Candida albicans Biofilm Matrix: Composition, Structure and Function.

    PubMed

    Pierce, Christopher G; Vila, Taissa; Romo, Jesus A; Montelongo-Jauregui, Daniel; Wall, Gina; Ramasubramanian, Anand; Lopez-Ribot, Jose L

    2017-03-01

    A majority of infections caused by Candida albicans -the most frequent fungal pathogen-are associated with biofilm formation. A salient feature of C. albicans biofilms is the presence of the biofilm matrix. This matrix is composed of exopolymeric materials secreted by sessile cells within the biofilm, in which all classes of macromolecules are represented, and provides protection against environmental challenges. In this review, we summarize the knowledge accumulated during the last two decades on the composition, structure, and function of the C. albicans biofilm matrix. Knowledge of the matrix components, its structure, and function will help pave the way to novel strategies to combat C. albicans biofilm infections.

  1. The Candida albicans Biofilm Matrix: Composition, Structure and Function

    PubMed Central

    Pierce, Christopher G.; Vila, Taissa; Romo, Jesus A.; Montelongo-Jauregui, Daniel; Wall, Gina; Ramasubramanian, Anand; Lopez-Ribot, Jose L.

    2017-01-01

    A majority of infections caused by Candida albicans—the most frequent fungal pathogen—are associated with biofilm formation. A salient feature of C. albicans biofilms is the presence of the biofilm matrix. This matrix is composed of exopolymeric materials secreted by sessile cells within the biofilm, in which all classes of macromolecules are represented, and provides protection against environmental challenges. In this review, we summarize the knowledge accumulated during the last two decades on the composition, structure, and function of the C. albicans biofilm matrix. Knowledge of the matrix components, its structure, and function will help pave the way to novel strategies to combat C. albicans biofilm infections. PMID:28516088

  2. Biofilm disruption with rotating microrods enhances antimicrobial efficacy

    NASA Astrophysics Data System (ADS)

    Mair, Lamar O.; Nacev, Aleksandar; Hilaman, Ryan; Stepanov, Pavel Y.; Chowdhury, Sagar; Jafari, Sahar; Hausfeld, Jeffrey; Karlsson, Amy J.; Shirtliff, Mark E.; Shapiro, Benjamin; Weinberg, Irving N.

    2017-04-01

    Biofilms are a common and persistent cause of numerous illnesses. Compared to planktonic microbes, biofilm residing cells often demonstrate significant resistance to antimicrobial agents. Thus, methods for dislodging cells from the biofilm may increase the antimicrobial susceptibility of such cells, and serve as a mechanical means of increasing antimicrobial efficacy. Using Aspergillus fumigatus as a model microbe, we magnetically rotate microrods in and around biofilm. We show that such rods can improve the efficacy of antimicrobial Amphotericin B treatments in vitro. This work represents a first step in using kinetic magnetic particle therapy for disrupting fungal biofilms.

  3. Redefining the Chronic-Wound Microbiome: Fungal Communities Are Prevalent, Dynamic, and Associated with Delayed Healing

    PubMed Central

    Kalan, Lindsay; Loesche, Michael; Hodkinson, Brendan P.; Heilmann, Kristopher; Ruthel, Gordon

    2016-01-01

    ABSTRACT Chronic nonhealing wounds have been heralded as a silent epidemic, causing significant morbidity and mortality especially in elderly, diabetic, and obese populations. Polymicrobial biofilms in the wound bed are hypothesized to disrupt the highly coordinated and sequential events of cutaneous healing. Both culture-dependent and -independent studies of the chronic-wound microbiome have almost exclusively focused on bacteria, omitting what we hypothesize are important fungal contributions to impaired healing and the development of complications. Here we show for the first time that fungal communities (the mycobiome) in chronic wounds are predictive of healing time, associated with poor outcomes, and form mixed fungal-bacterial biofilms. We longitudinally profiled 100, nonhealing diabetic-foot ulcers with high-throughput sequencing of the pan-fungal internal transcribed spacer 1 (ITS1) locus, estimating that up to 80% of wounds contain fungi, whereas cultures performed in parallel captured only 5% of colonized wounds. The “mycobiome” was highly heterogeneous over time and between subjects. Fungal diversity increased with antibiotic administration and onset of a clinical complication. The proportions of the phylum Ascomycota were significantly greater (P = 0.015) at the beginning of the study in wounds that took >8 weeks to heal. Wound necrosis was distinctly associated with pathogenic fungal species, while taxa identified as allergenic filamentous fungi were associated with low levels of systemic inflammation. Directed culturing of wounds stably colonized by pathogens revealed that interkingdom biofilms formed between yeasts and coisolated bacteria. Combined, our analyses provide enhanced resolution of the mycobiome during impaired wound healing, its role in chronic disease, and impact on clinical outcomes. PMID:27601572

  4. Effect of a Lactobacillus Salivarius Probiotic on a Double-Species Streptococcus Mutans and Candida Albicans Caries Biofilm.

    PubMed

    Krzyściak, Wirginia; Kościelniak, Dorota; Papież, Monika; Vyhouskaya, Palina; Zagórska-Świeży, Katarzyna; Kołodziej, Iwona; Bystrowska, Beata; Jurczak, Anna

    2017-11-14

    The aim of the study was to evaluate the anti-cariogenic effects of Lactobacillus salivarius by reducing pathogenic species and biofilm mass in a double-species biofilm model. Coexistence of S. mutans with C. albicans can cause dental caries progression or recurrence of the disease in the future. Fifty-nine children with diagnosed early childhood caries (ECC) were recruited onto the study. The condition of the children's dentition was defined according to the World Health Organization guidelines. The participants were divided into children with initial enamel demineralization and children showing dentin damage. The study was performed on the S. mutans and C. albicans clinical strains, isolated from dental plaque of patients with ECC. The effect of a probiotic containing Lactobacillus salivarius on the ability of S. mutans and C. albicans to produce a double-species biofilm was investigated in an in vitro model. The biomass of the formed/non-degraded biofilm was analyzed on the basis of its crystal violet staining. The number of colonies of S. mutans and C. albicans (CFU/mL, colony forming units/mL) forming the biofilm was determined. Microorganism morphology in the biofilm was evaluated using a scanning electron microscope (SEM). In vitro analysis demonstrated that the presence of S. mutans increased the number of C. albicans colonies (CFU/mL); the double-species biofilm mass and hyphal forms produced in it by the yeast. L. salivarius inhibited the cariogenic biofilm formation of C. albicans and S. mutans . Under the influence of the probiotic; the biofilm mass and the number of S. mutans ; C. albicans and S. mutans with C. albicans colonies in the biofilm was decreased. Moreover; it can be noted that after the addition of the probiotic; fungi did not form hyphae or germ tubes of pathogenic potential. These results suggest that L. salivarius can secrete intermediates capable of inhibiting the formation of cariogenic S. mutans and C. albicans biofilm; and may inhibit fungal morphological transformation and thereby reduce the pathogenicity of C. albicans ; weakening its pathogenic potential. Further research is required to prove or disprove the long-term effects of the preparation and to achieve preventive methods.

  5. Succession of biofilm communities responsible for biofouling of membrane bio-reactors (MBRs)

    PubMed Central

    Luo, Jinxue; Lv, Pengyi; Zhang, Jinsong; Fane, Anthony G.; McDougald, Diane

    2017-01-01

    Biofilm formation is one of the main factors associated with membrane biofouling in membrane bioreactors (MBRs). As such, it is important to identify the responsible organisms to develop targeted strategies to control biofouling. This study investigated the composition and changes in the microbial communities fouling MBR membranes over time and correlated those changes with an increase in transmembrane pressure (TMP). Based on qPCR data, bacteria were the dominant taxa of the biofilm (92.9–98.4%) relative to fungi (1.5–6.9%) and archaea (0.03–0.07%). NMDS analysis indicated that during the initial stages of operation, the biofilm communities were indistinguishable from those found in the sludge. However, the biofilm community significantly diverged from the sludge over time and ultimately showed a unique biofilm profile. This suggested that there was strong selection for a group of organisms that were biofilm specialists. This pattern of succession and selection was correlated with the rapid increase in TMP, where bacteria including Rhodospirillales, Sphingomonadales and Rhizobiales dominated the biofilm at this time. While most of the identified fungal OTUs matched Candida sp., the majority of fungal communities were unclassified by 18S rRNA gene sequencing. Collectively, the data suggests that bacteria, primarily, along with fungi may play an important role in the rapid TMP increase and loss of system performance. PMID:28686622

  6. Biofilm composition in the Olt River (Romania) reservoirs impacted by a chlor-alkali production plant.

    PubMed

    Dranguet, P; Cosio, C; Le Faucheur, S; Hug Peter, D; Loizeau, J-L; Ungureanu, V-Gh; Slaveykova, V I

    2017-05-24

    Freshwater biofilms can be useful indicators of water quality and offer the possibility to assess contaminant effects at the community level. The present field study examines the effects of chlor-alkali plant effluents on the community composition of biofilms grown in the Olt River (Romania) reservoirs. The relationship between ambient water quality variables and community composition alterations was explored. Amplicon sequencing revealed a significant modification of the composition of microalgal, bacterial and fungal communities in the biofilms collected in the impacted reservoirs in comparison with those living in the uncontaminated control reservoir. The abundance corrected Simpson index showed lower richness and diversity in biofilms collected in the impacted reservoirs than in the control reservoir. The biofilm bacterial communities of the impacted reservoirs were characterized by the contaminant-tolerant Cyanobacteria and Bacteroidetes, whereas microalgal communities were predominantly composed of Bacillariophyta and fungal communities of Lecanoromycetes and Paraglomycetes. A principal component analysis revealed that major contaminants present in the waste water of the chlor-alkali production plant, i.e. Na + , Ca 2+ , Cl - and Hg, were correlated with the alteration of biofilm community composition in the impacted reservoirs. However, the biofilm composition was also influenced by water quality variables such as NO 3 - , SO 4 2- , DOC and Zn from unknown sources. The results of the present study imply that, even when below the environmental quality standards, typical contaminants of chlor-alkali plant releases may affect biofilm composition and that their impacts on the microbial biodiversity might be currently overlooked.

  7. Identification, antifungal resistance profile, in vitro biofilm formation and ultrastructural characteristics of Candida species isolated from diabetic foot patients in Northern India.

    PubMed

    Kumar, D; Banerjee, T; Chakravarty, J; Singh, S K; Dwivedi, A; Tilak, R

    2016-01-01

    Diabetic foot ulcers are a serious cause of diagnostic and therapeutic concern. The following study was undertaken to determine the fungal causes of diabetic foot ulcers, with their phenotypic and genotypic characterisation. A total of 155 diabetic foot ulcers were studied for 1 year. Deep tissue specimen was collected from the wounds, and crushed samples were plated on Sabouraud dextrose agar with chloramphenicol (0.05 g). Identification was done by growth on cornmeal agar, germ tube formation and urease test. For molecular identification, conserved portion of the 18S rDNA region, the adjacent internal transcribed spacer 1 (ITS1) and a portion of the 28S rDNA region were amplified, using the ITS1 and ITS2 primers. Antifungal susceptibility against voriconazole, fluconazole and amphotericin B was determined by standard broth microdilution method. Biofilm formation was studied in three steps. First, on the surface of wells of microtiter plates followed by quantification of growth by fungal metabolism measurement. Finally, biofilms were analysed by scanning electron microscopy (SEM). Fungal aetiology was found in 75 patients (48.38%). All were identified as Candida species (100%). The prevalence of different species was Candida tropicalis (34.6%), Candida albicans (29.3%), Candida krusei (16.0%), Candida parapsilosis (10.6%), Candida glabrata (9.33%). All were susceptible to amphotericin B (100%). On microtiter plate, all the isolates were viable within 48 h showing biofilms. The metabolic activity of cells in the biofilm increased with cellular mass, especially in the first 24 h. On SEM, majority showed budding yeast form. Non-albicans Candida spp. with potential biofilm forming ability are emerging as a predominant cause of diabetic foot ulcers.

  8. Biofouling of reverse-osmosis membranes during tertiary wastewater desalination: microbial community composition.

    PubMed

    Al Ashhab, Ashraf; Herzberg, Moshe; Gillor, Osnat

    2014-03-01

    Reverse-osmosis (RO) desalination is frequently used for the production of high-quality water from tertiary treated wastewater (TTWW). However, the RO desalination process is often hampered by biofouling, including membrane conditioning, microbial adhesion, and biofilm growth. The vast majority of biofilm exploration concentrated on the role of bacteria in biofouling neglecting additional microbial contributors, i.e., fungi and archaea. To better understand the RO biofouling process, bacterial, archaeal and fungal diversity was characterized in a laboratory-scale RO desalination plant exploring the TTWW (RO feed), the RO membrane and the RO feed tube biofilms. We sequenced 77,400 fragments of the ribosome small subunit-encoding gene (16S and 18S rRNA) to identify the microbial community members in these matrices. Our results suggest that the bacterial, archaeal but not fungal community significantly differ from the RO membrane biofouling layer to the feedwater and tube biofilm (P < 0.01). Moreover, the RO membrane supported a more diverse community compared to the communities monitored in the feedwater and the biofilm attached to the RO feedwater tube. The tube biofilm was dominated by Actinobacteria (91.2 ± 4.6%), while the Proteobacteria phylum dominated the feedwater and RO membrane (at relative abundance of 92.3 ± 4.4% and 71.5 ± 8.3%, respectively), albeit comprising different members. The archaea communities were dominated by Crenarchaeota (53.0 ± 6.9%, 32.5 ± 7.2% and 69%, respectively) and Euryarchaeota (43.3 ± 6.3%, 23.2 ± 4.8% and 24%, respectively) in all three matrices, though the communities' composition differed. But the fungal communities composition was similar in all matrices, dominated by Ascomycota (97.6 ± 2.7%). Our results suggest that the RO membrane is a selective surface, supporting unique bacterial, and to a lesser extent archaeal communities, yet it does not select for a fungal community. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Biofilms and Antifungal Susceptibility Testing.

    PubMed

    Simitsopoulou, Maria; Chatzimoschou, Athanasios; Roilides, Emmanuel

    2016-01-01

    Yeasts and filamentous fungi both exist as single cells and hyphal forms, two morphologies used by most fungal organisms to create a complex multilayered biofilm structure. In this chapter we describe the most widely used assays for the determination of biofilm production and assessment of susceptibility of biofilms to antifungal agents or host phagocytes as various methods, the most frequent of which are staining, confocal laser scanning microscopy, quantification of extracellular DNA and protein associated with extracellular matrix and XTT metabolic reduction assay. Pathway-focused biofilm gene expression profiling is assessed by real-time reverse transcriptase polymerase chain reaction.

  10. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    NASA Astrophysics Data System (ADS)

    Lamont-Friedrich, Stephanie J.; Michl, Thomas D.; Giles, Carla; Griesser, Hans J.; Coad, Bryan R.

    2016-07-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata. Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others.

  11. The use of models to predict potential contamination aboard orbital vehicles

    NASA Technical Reports Server (NTRS)

    Boraas, Martin E.; Seale, Dianne B.

    1989-01-01

    A model of fungal growth on air-exposed, nonnutritive solid surfaces, developed for utilization aboard orbital vehicles is presented. A unique feature of this testable model is that the development of a fungal mycelium can facilitate its own growth by condensation of water vapor from its environment directly onto fungal hyphae. The fungal growth rate is limited by the rate of supply of volatile nutrients and fungal biomass is limited by either the supply of nonvolatile nutrients or by metabolic loss processes. The model discussed is structurally simple, but its dynamics can be quite complex. Biofilm accumulation can vary from a simple linear increase to sustained exponential growth, depending on the values of the environmental variable and model parameters. The results of the model are consistent with data from aquatic biofilm studies, insofar as the two types of systems are comparable. It is shown that the model presented is experimentally testable and provides a platform for the interpretation of observational data that may be directly relevant to the question of growth of organisms aboard the proposed Space Station.

  12. A common mechanism involving the TORC1 pathway can lead to amphotericin B-persistence in biofilm and planktonic Saccharomyces cerevisiae populations.

    PubMed

    Bojsen, Rasmus; Regenberg, Birgitte; Gresham, David; Folkesson, Anders

    2016-02-23

    Fungal infections are an increasing clinical problem. Decreased treatment effectiveness is associated with biofilm formation and drug recalcitrance is thought to be biofilm specific. However, no systematic investigations have tested whether resistance mechanisms are shared between biofilm and planktonic populations. We performed multiplexed barcode sequencing (Bar-seq) screening of a pooled collection of gene-deletion mutants cultivated as biofilm and planktonic cells. Screening for resistance to the ergosterol-targeting fungicide amphotericin B (AmB) revealed that the two growth modes had significant overlap in AmB-persistent mutants. Mutants defective in sterol metabolism, ribosome biosynthesis, and the TORC1 and Ras pathways showed increased persistence when treated with AmB. The ras1, ras2 and tor1 mutants had a high-persister phenotype similar to wild-type biofilm and planktonic cells exposed to the TORC1 pathway inhibitor rapamycin. Inhibition of TORC1 with rapamycin also increased the proportion of persisters in Candida albicans and Candida glabrata. We propose that decreased TORC1-mediated induction of ribosome biosynthesis via Ras can lead to formation of AmB-persister cells regardless of whether the cells are in planktonic or biofilm growth mode. Identification of common pathways leading to growth mode-independent persister formation is important for developing novel strategies for treating fungal infections.

  13. Nematode-trapping fungi and fungus-associated bacteria interactions: the role of bacterial diketopiperazines and biofilms on Arthrobotrys oligospora surface in hyphal morphogenesis.

    PubMed

    Li, Lei; Yang, Min; Luo, Jun; Qu, Qing; Chen, Ying; Liang, Lianming; Zhang, Keqin

    2016-11-01

    In soil, nematode-trapping fungi and bacteria often share microhabitats and interact with each other, but effects of fungus-associated bacteria on its trap formation are underestimated. We have ascertained the presence of Stenotrophomonas and Rhizobium genera associated with A. oligospora GJ-1. After A. oligospora GJ-1 without associated bacteria (cured Arthrobotrys) was co-cultivated with Stenotrophomonas and its supernatant extract, microscopic study of hyphae from co-cultivation indicated that bacterial biofilm formation on hyphae was related to trap formation in fungi and Stenotrophomonas supernatant extract. Four diketopiperazines (DKPs) were purified from Stenotrophomonas supernatant extract that could not induce traps in the cured Arthrobotrys. When cured Arthrobotrys was cultured with Stenotrophomonas and one of DKPs, polar attachment, bacterial biofilms on hyphae and trap formation in fungi were observed. After cured Arthrobotrys with bacterial biofilms was consecutively transferred several times on nutrient poor medium, trap formation disappeared with the disappearance of bacterial biofilms on hyphae. DKPs could facilitate chemotaxis of Stenotrophomonas towards fungal extract which was suggested to contribute to bacterial biofilms on hyphae. Furthermore, when cured Arthrobotrys was cultured with Stenotrophomonas and DKPs in soil, trap formation in fungi and bacterial biofilms on hyphae were also observed, and the fungal activity against nematode was enhanced. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.

    PubMed

    Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

    2014-10-20

    The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix

    PubMed Central

    Kong, Eric F.; Tsui, Christina; Kucharíková, Sona; Andes, David

    2016-01-01

    ABSTRACT Biofilm-associated polymicrobial infections, particularly those involving fungi and bacteria, are responsible for significant morbidity and mortality and tend to be challenging to treat. Candida albicans and Staphylococcus aureus specifically are considered leading opportunistic fungal and bacterial pathogens, respectively, mainly due to their ability to form biofilms on catheters and indwelling medical devices. However, the impact of mixed-species biofilm growth on therapy remains largely understudied. In this study, we investigated the influence of C. albicans secreted cell wall polysaccharides on the response of S. aureus to antibacterial agents in biofilm. Results demonstrated significantly enhanced tolerance for S. aureus to drugs in the presence of C. albicans or its secreted cell wall polysaccharide material. Fluorescence confocal time-lapse microscopy revealed impairment of drug diffusion through the mixed biofilm matrix. Using C. albicans mutant strains with modulated cell wall polysaccharide expression, exogenous supplementation, and enzymatic degradation, the C. albicans-secreted β-1,3-glucan cell wall component was identified as the key matrix constituent providing the bacteria with enhanced drug tolerance. Further, antibody labeling demonstrated rapid coating of the bacteria by the C. albicans matrix material. Importantly, via its effect on the fungal biofilm matrix, the antifungal caspofungin sensitized the bacteria to the drugs. Understanding such symbiotic interactions with clinical relevance between microbial species in biofilms will greatly aid in overcoming the limitations of current therapies and in defining potential new targets for treating polymicrobial infections. PMID:27729510

  16. [The evaluation of relationship between the origin of Candida sp. and the ability of biofilm formation on surface of different biomaterials].

    PubMed

    Ciok-Pater, Emilia; Gospodarek, Eugenia; Prazyńska, Małgorzata; Bogiel, Tomasz

    2009-01-01

    The increase of fungal infections in recent years is connected with the progress in medicine. The vast usage of biomaterials is an inseparable element of contemporary medicine but it also leads to development of infections. The ability to produce biofilm by those yeasts plays an important role in the pathogenesis of candidiasis. Candida biofilm can form on the surface of plastic materials (silicon, polychloride vinyl, polymethacrylate methyl) used to catheters, drains and dentures production that is why it is a serious problem in case of fungal infections in patients who during the diagnosis and treatment have contact with biomaterials. The aim of the study was the assessment of ability to form biofilm on the surface of different biomaterials (latex silicon, polychloride vinyl, polystyrene, nylon and polymethacrylate methyl). 150 strains of Candida sp. were examined: 85 (56.7%) C. albicans and 65 (43.3%) C. non-albicans. The examined yeasts produced biofilm on the surface of polymethacrylate methyl in 39.3%, latex silicone in 38.7%, polychloride vinyl in 38.0%, polystyrene in 35.3% and nylon in 30.7%. Biofilm was most frequently produced by the strains of C. albicans, C. tropicalis, C. glabrata, C. parapsilosis, C. krusei and C. lusitaniae species.

  17. Molecular characterization, biofilm analysis and experimental biofouling study of Fusarium isolates from recent cases of fungal keratitis in New York State

    PubMed Central

    Dyavaiah, Madhu; Ramani, Rama; Chu, David S; Ritterband, David C; Shah, Mahendra K; Samsonoff, William A; Chaturvedi, Sudha; Chaturvedi, Vishnu

    2007-01-01

    Background To characterize Fusarium isolates from recent cases of fungal keratitis in contact lens wearers, and to investigate fungal association with MoistureLoc solution. Methods We studied six fungal isolates from recent cases of keratitis in New York State. The isolates were characterized by nucleotide sequencing and phylogenetic analyses of multiple genes, and then typed using minisatellite and microsatellite probes. Experimental fungal biofilm formation was tested by standard methods. MoistureLoc solutions were tested in biofouling studies for their efficacy in elimination of Fusarium contamination. Results Fusarium solani – corneal ulcers (2 isolates), lens case (1 isolate), and F. oxysporum – corneal ulcer (1 isolate), eye (1 isolate), were recovered from five patients. An opened bottle of MoistureLoc solution provided by a patient also yielded F. solani. Two distinct genotypes of F. solani as well as of F. oxysporum were present in the isolated strains. Remarkably, F. solani strains from the lens case and lens solution in one instance were similar, based on phylogenetic analyses and molecular typing. The solution isolate of F. solani formed biofilm on contact lenses in control conditions, but not when co-incubated with MoistureLoc solution. Both freshly opened and 3-month old MoistureLoc solutions effectively killed F. solani and F. oxysporum, when fungal contamination was simulated under recommended lens treatment regimen (4-hr). However, simulation of inappropriate use (15 – 60 min) led to the recovery of less than 1% of original inoculum of F. solani or F. oxysporum. Conclusion Temporary survival of F. solani and F. oxysporum in MoistureLoc suggested that improper lens cleaning regimen could be a possible contributing factor in recent infections. PMID:17263885

  18. Polymer Multilayers Loaded with Antifungal β-Peptides Kill Planktonic Candida albicans and Reduce Formation of Fungal Biofilms on the Surfaces of Flexible Catheter Tubes

    PubMed Central

    Raman, Namrata; Lee, Myung-Ryul

    2014-01-01

    Candida albicans is the most common fungal pathogen responsible for hospital-acquired infections. Most C albicans infections are associated with the implantation of medical devices that act as points of entry for the pathogen and as substrates for the growth of fungal biofilms that are notoriously difficult to eliminate by systemic administration of conventional antifungal agents. In this study, we report a fill-and-purge approach to the layer-by-layer fabrication of biocompatible, nanoscale ‘polyelectrolyte multilayers’ (PEMs) on the luminal surfaces of flexible catheters, and an investigation of this platform for the localized, intraluminal release of a cationic β-peptide-based antifungal agent. We demonstrate that polyethylene catheter tubes with luminal surfaces coated with multilayers ~700 nm thick fabricated from poly-L-glutamic acid (PGA) and poly-L-lysine (PLL) can be loaded, post-fabrication, by infusion with β-peptide, and that this approach promotes extended intraluminal release of this agent (over ~4 months) when incubated in physiological media. The β-peptide remained potent against intraluminal inoculation of the catheters with C albicans and substantially reduced the formation of C albicans biofilms on the inner surfaces of film-coated catheters. Finally, we report that these β-peptide-loaded coatings exhibit antifungal activity under conditions that simulate intermittent catheter use and microbial challenge for at least three weeks. We conclude that β-peptide-loaded PEMs offer a novel and promising approach to kill C albicans and prevent fungal biofilm formation on surfaces, with the potential to substantially reduce the incidence of device-associated infections in indwelling catheters. β-Peptides comprise a promising new class of antifungal agents that could help address problems associated with the use of conventional antifungal agents. The versatility of the layer-by-layer approach used here thus suggests additional opportunities to exploit these new agents in other biomedical and personal care applications in which fungal infections are endemic. PMID:24862322

  19. Interactions between abundant fungal species influence the fungal community assemblage on limestone

    PubMed Central

    Morón-Ríos, Alejandro; Ortega-Morales, Benjamin Otto; De la Rosa-García, Susana; Partida-Martínez, Laila Pamela; Quintana, Patricia; Alayón-Gamboa, José Armando; Cappello-García, Silvia; González-Gómez, Santiago

    2017-01-01

    The assembly of fungal communities on stone materials is mainly influenced by the differential bioreceptivity of such materials and environmental conditions. However, little is known about the role of fungal interactions in the colonization and establishment of fungal species. We analyzed the effects of intra- and interspecific interactions between 11 species of fungi in oligotrophic and copiotrophic media and on limestone coupons. In a previous study, these species were the most frequently isolated in the epilithic biofilms of limestone walls exposed to a subtropical climate. In the culture media, we found a greater frequency of intra- and interspecific inhibitory effects in the oligotrophic medium than in the copiotrophic medium. On the limestone coupons, all fungi were able to establish; however, the colonization success rate varied significantly. Cladosporium cladosporioides had a less extensive colonization in isolation (control) than in dual interactions (coexistence) with other species. Phoma eupyrena exhibited the highest colonization success rate and competitive dominance among all tested species. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses revealed that Pestalotiopsis maculans and Paraconiothyrium sp. produced calcium oxalate crystals during their growth on coupon surfaces, both in isolation and in dual interactions. Our results demonstrate that interactions between abundant fungal species influence the fungal colonization on substrates, the biomineralization and the fungal community assemblage growing in limestone biofilms. PMID:29211748

  20. Symbiotic Relationship between Streptococcus mutans and Candida albicans Synergizes Virulence of Plaque Biofilms In Vivo

    PubMed Central

    Falsetta, Megan L.; Klein, Marlise I.; Colonne, Punsiri M.; Scott-Anne, Kathleen; Gregoire, Stacy; Pai, Chia-Hua; Gonzalez-Begne, Mireya; Watson, Gene; Krysan, Damian J.; Bowen, William H.

    2014-01-01

    Streptococcus mutans is often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC). S. mutans may not act alone; Candida albicans cells are frequently detected along with heavy infection by S. mutans in plaque biofilms from ECC-affected children. It remains to be elucidated whether this association is involved in the enhancement of biofilm virulence. We showed that the ability of these organisms together to form biofilms is enhanced in vitro and in vivo. The presence of C. albicans augments the production of exopolysaccharides (EPS), such that cospecies biofilms accrue more biomass and harbor more viable S. mutans cells than single-species biofilms. The resulting 3-dimensional biofilm architecture displays sizeable S. mutans microcolonies surrounded by fungal cells, which are enmeshed in a dense EPS-rich matrix. Using a rodent model, we explored the implications of this cross-kingdom interaction for the pathogenesis of dental caries. Coinfected animals displayed higher levels of infection and microbial carriage within plaque biofilms than animals infected with either species alone. Furthermore, coinfection synergistically enhanced biofilm virulence, leading to aggressive onset of the disease with rampant carious lesions. Our in vitro data also revealed that glucosyltransferase-derived EPS is a key mediator of cospecies biofilm development and that coexistence with C. albicans induces the expression of virulence genes in S. mutans (e.g., gtfB, fabM). We also found that Candida-derived β1,3-glucans contribute to the EPS matrix structure, while fungal mannan and β-glucan provide sites for GtfB binding and activity. Altogether, we demonstrate a novel mutualistic bacterium-fungus relationship that occurs at a clinically relevant site to amplify the severity of a ubiquitous infectious disease. PMID:24566629

  1. Recurrent Aspergillus contamination in a biomedical research facility: a case study.

    PubMed

    Cornelison, Christopher T; Stubblefield, Bryan; Gilbert, Eric; Crow, Sidney A

    2012-02-01

    Fungal contamination of biomedical processes and facilities can result in major revenue loss and product delay. A biomedical research facility (BRF) culturing human cell lines experienced recurring fungal contamination of clean room incubators over a 3-year period. In 2010, as part of the plan to mitigate contamination, 20 fungal specimens were isolated by air and swab samples at various locations within the BRF. Aspergillus niger and Aspergillus fumigatus were isolated from several clean-room incubators. A. niger and A. fumigatus were identified using sequence comparison of the 18S rRNA gene. To determine whether the contaminant strains isolated in 2010 were the same as or different from strains isolated between 2007 and 2009, a novel forensic approach to random amplified polymorphic DNA (RAPD) PCR was used. The phylogenetic relationship among isolates showed two main genotypic clusters, and indicated the continual presence of the same A. fumigatus strain in the clean room since 2007. Biofilms can serve as chronic sources of contamination; visual inspection of plugs within the incubators revealed fungal biofilms. Moreover, confocal microscopy imaging of flow cell-grown biofilms demonstrated that the strains isolated from the incubators formed dense biofilms relative to other environmental isolates from the BRF. Lastly, the efficacies of various disinfectants employed at the BRF were examined for their ability to prevent spore germination. Overall, the investigation found that the use of rubber plugs around thermometers in the tissue culture incubators provided a microenvironment where A. fumigatus could survive regular surface disinfection. A general lesson from this case study is that the presence of microenvironments harboring contaminants can undermine decontamination procedures and serve as a source of recurrent contamination.

  2. Scopulariopsis sp. and Fusarium sp. in the Documentary Heritage: Evaluation of Their Biodeterioration Ability and Antifungal Effect of Two Essential Oils.

    PubMed

    Lavin, Paola; de Saravia, Sandra Gómez; Guiamet, Patricia

    2016-04-01

    Fungi produce pigments and acids, generating particular local conditions which modify the physicochemical properties of materials. The aims of this work are (i) to investigate bioadhesion, foxing production and biofilm formation by Scopulariopsis sp. and Fusarium sp. isolated from document collections under laboratory conditions; (ii) to verify attack on cellulose fibres and (iii) to study the possibility of reducing fungal growth using natural products. Biofilm formation and extracellular polymeric substance (EPS) production by fungi were demonstrated in laboratory assays and by scanning electron microscopy (SEM) observations. The biocidal activity of two essential oils of Origanum vulgare L. and Thymus vulgaris L. was evaluated using the microatmosphere method. SEM observations showed that these strains were able to attach to paper and form biofilms, causing damage on them, which demonstrates the biodeterioration ability of these microorganisms. Scopulariopsis sp. and Fusarium sp. isolated from paper books showed the formation of fox-like reddish-brown colour spots, attack to the paper structure and pigment production on aged paper samples. The strains tested produced a decrease in the pH of one unit. This would substantiate the effect of the strains in paper biodeterioration. The microatmosphere method showed that volatile compounds of the essential oils have antifungal activity.

  3. On the conservation of easel paintings: evaluation of microbial contamination and artists materials

    NASA Astrophysics Data System (ADS)

    Salvador, Cátia; Bordalo, Rui; Silva, Mara; Rosado, Tânia; Candeias, António; Caldeira, Ana Teresa

    2017-01-01

    Easel paintings have been considered one of the most important art expressions, constituting today outstanding works of art with important historic and cultural value. Unfortunately, due to the presence of several organic materials, these artworks have been affected by microbial contamination that among other factors can be responsible for different aesthetic and structural alterations. For this study, four easel paintings from the late nineteenth century by Giorgio Marini with evident chromatic and structural alterations due to biocontamination were analysed in order to better understand the materials used and the source of high microbial contamination within a focused conservation intervention process. For this end, both the biofilms and the painting materials were characterised by several analytical techniques. Fungal communities were found to prevail in areas with evident structural and aesthetic damages, which were confirmed by scanning electron microscopy analyses that allowed the observation of the fungal hyphae proliferation capacity. Energy-dispersive X-ray spectroscopy, μ-X-ray diffraction, μ-Raman, μ-FTIR and optical microscopy were used to further identify the painting materials. Immunological assays revealed the presence of a mixture of proteins of ovalbumin, collagen and casein, suggesting that the presence of these proteinaceous materials in these paintings is one of the main reasons of microbial biofilms appearance on the painting's surface. These approaches contribute for a better knowledge of these artworks providing at the same time relevant information for the ongoing conservation-restoration intervention.

  4. Potential Antifungal Targets against a Candida Biofilm Based on an Enzyme in the Arachidonic Acid Cascade—A Review

    PubMed Central

    Liu, Xinning; Wang, Decai; Yu, Cuixiang; Li, Tao; Liu, Jianqiao; Sun, Shujuan

    2016-01-01

    Candida is an important opportunistic fungal pathogen, especially in biofilm associated infections. The formation of a Candida biofilm can decrease Candida sensitivity to antifungal drugs and cause drug resistance. Although many effective antifungal drugs are available, their applications are limited due to their high toxicity and cost. Seeking new antifungal agents that are effective against biofilm-associated infection is an urgent need. Many research efforts are underway, and some progress has been made in this field. It has been shown that the arachidonic acid cascade plays an important role in fungal morphogenesis and pathogenicity. Notably, prostaglandin E2 (PGE2) can promote the formation of a Candida biofilm. Recently, the inhibition of PGE2 has received much attention. Studies have shown that cyclooxygenase (COX) inhibitors, such as aspirin, ibuprofen, and indomethacin, combined with fluconazole can significantly reduce Candida adhesion and biofilm development and increase fluconazole susceptibility; the MIC of fluconazole can be decrease from 64 to 2 μg/ml when used in combination with ibuprofen. In addition, in vivo studies have also confirmed the antifungal activities of these inhibitors. In this article, we mainly review the relationship between PGE2 and Candida biofilm, summarize the antifungal activities of COX inhibitors and analyze the possible antifungal activity of microsomal prostaglandin E synthase-1 (MPGES-1) inhibitors; additionally, other factors that influence PGE2 production are also discussed. Hopefully this review can disclose potential antifungal targets based on the arachidonic acid cascade and provide a prevailing strategy to alleviate Candida albicans biofilm formation. PMID:27999568

  5. Hybrid nanomaterial for stabilizing the antibiofilm activity of Eugenia carryophyllata essential oil.

    PubMed

    Grumezescu, Alexandru Mihai; Chifiriuc, Mariana Carmen; Saviuc, Crina; Grumezescu, Valentina; Hristu, Radu; Mihaiescu, Dan Eduard; Stanciu, George A; Andronescu, Ecaterina

    2012-12-01

    The aim of the present study was to demonstrate that Fe(3)O(4)/oleic acid core/shell nanostructures could be used as systems for stabilizing the Eugenia carryophyllata essential oil (EO) on catheter surface pellicles, in order to improve their resistance to fungal colonization. EO microwave assisted extraction was performed in a Neo-Clevenger (related) device and its chemical composition was settled by GC-MS analysis. Fe(3)O(4)/oleic acid-core/shell nanoparticles (NP) were obtained by a precipitation method under microwave condition. High resolution transmission electron microscopy (HR-TEM) was used as a primary characterization method. The NPs were processed to achieve a core/shell/EO coated-shell nanosystem further used for coating the inner surface of central venous catheter samples. The tested fungal strains have been recently isolated from different clinical specimens. The biofilm architecture was assessed by confocal laser scanning microscopy (CLSM). Our results claim the usage of hybrid nanomaterial (core/shell/coated-shell) for the stabilization of E. carryophyllata EO, which prevented or inhibited the fungal biofilm development on the functionalized catheter, highlighting the opportunity of using these nanosystems to obtain improved, anti-biofilm coatings for biomedical applications.

  6. Planktonic growth and biofilm formation profiles in Candida haemulonii species complex.

    PubMed

    Ramos, Lívia S; Oliveira, Simone S C; Souto, Xênia M; Branquinha, Marta H; Santos, André L S

    2017-10-01

    Candida haemulonii species complex have emerged as multidrug-resistant yeasts able to cause fungemia worldwide. However, very little is known regarding their physiology and virulence factors. In this context, planktonic growth and biofilm formation of Brazilian clinical isolates of Candida haemulonii (n = 5), Candida duobushaemulonii (n = 4), and Candida haemulonii var. vulnera (n = 3) were reported. Overall, the fungal planktonic growth curves in Sabouraud dextrose broth reached the exponential phase in 48 h at 37°C. All the clinical isolates formed biofilm on polystyrene in a time-dependent event, as judged by the parameters evaluated: biomass (crystal violet staining), metabolic activity (XTT reduction), and extracellular matrix (safranin incorporation). No statistically significant differences were observed when the average measurements among the three Candida species were compared regarding both planktonic and biofilm lifestyles; however, typical isolate-specific differences were clearly noticed in fungal growth kinetics. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Synergistic Interactions in Microbial Biofilms Facilitate the Establishment of Opportunistic Pathogenic Fungi in Household Dishwashers.

    PubMed

    Zupančič, Jerneja; Raghupathi, Prem K; Houf, Kurt; Burmølle, Mette; Sørensen, Søren J; Gunde-Cimerman, Nina

    2018-01-01

    Biofilms formed on rubber seals in dishwashers harbor diverse microbiota. In this study, we focussed on the microbial composition of bacteria and fungi, isolated from a defined area of one square centimeter of rubber from four domestic dishwashers and assessed their abilities to in vitro multispecies biofilm formation. A total of 80 isolates (64 bacterial and 16 fungal) were analyzed. Multiple combinations of bacterial isolates from each dishwasher were screened for synergistic interactions. 32 out of 140 tested (23%) four-species bacterial combinations displayed consistent synergism leading to an overall increase in biomass, in all experimental trails. Bacterial isolates from two of the four dishwashers generated a high number of synergistically interacting four-species consortia. Network based correlation analyses also showed higher co-occurrence patterns observed between bacterial members in the same two dishwasher samples, indicating cooperative effects. Furthermore, two synergistic four-species bacterial consortia were tested for their abilities to incorporate an opportunistic fungal pathogen, Exophiala dermatitidis and their establishment as biofilms on sterile ethylene propylene diene monomer M-class (EPDM) rubber and polypropylene (PP) surfaces. When the bacterial consortia included E. dermatitidis , the overall cell numbers of both bacteria and fungi increased and a substantial increase in biofilm biomass was observed. These results indicate a novel phenomenon of cross kingdom synergy in biofilm formation and these observations could have potential implications for human health.

  8. Synergistic Interactions in Microbial Biofilms Facilitate the Establishment of Opportunistic Pathogenic Fungi in Household Dishwashers

    PubMed Central

    Zupančič, Jerneja; Raghupathi, Prem K.; Houf, Kurt; Burmølle, Mette; Sørensen, Søren J.; Gunde-Cimerman, Nina

    2018-01-01

    Biofilms formed on rubber seals in dishwashers harbor diverse microbiota. In this study, we focussed on the microbial composition of bacteria and fungi, isolated from a defined area of one square centimeter of rubber from four domestic dishwashers and assessed their abilities to in vitro multispecies biofilm formation. A total of 80 isolates (64 bacterial and 16 fungal) were analyzed. Multiple combinations of bacterial isolates from each dishwasher were screened for synergistic interactions. 32 out of 140 tested (23%) four-species bacterial combinations displayed consistent synergism leading to an overall increase in biomass, in all experimental trails. Bacterial isolates from two of the four dishwashers generated a high number of synergistically interacting four-species consortia. Network based correlation analyses also showed higher co-occurrence patterns observed between bacterial members in the same two dishwasher samples, indicating cooperative effects. Furthermore, two synergistic four-species bacterial consortia were tested for their abilities to incorporate an opportunistic fungal pathogen, Exophiala dermatitidis and their establishment as biofilms on sterile ethylene propylene diene monomer M-class (EPDM) rubber and polypropylene (PP) surfaces. When the bacterial consortia included E. dermatitidis, the overall cell numbers of both bacteria and fungi increased and a substantial increase in biofilm biomass was observed. These results indicate a novel phenomenon of cross kingdom synergy in biofilm formation and these observations could have potential implications for human health. PMID:29441043

  9. Dietary sugars, serum and the biocide chlorhexidine digluconate modify the population and structural dynamics of mixed Candida albicans and Escherichia coli biofilms.

    PubMed

    Thein, Z M; Smaranayake, Y H; Smaranayake, L P

    2007-11-01

    Despite the increasing recognition of the role played by mixed species biofilms in health and disease, the behavior and factors modulating these biofilms remain elusive. We therefore compared the effect of serum, two dietary sugars (sucrose and galactose) and a biocide, chlorhexidine digluconate, on a dual species biofilm (DSB) of Candida albicans and Escherichia coli and, their single species biofilm (SSB) counterparts. Both modes of biofilm growth on polystyrene plastic surfaces were quantified using a viable cell count method and visualized using confocal scanning laser microscopy (CSLM). Present data indicate that co-culture of C. albicans with varying initial concentrations of E. coli leads to a significant inhibition of yeast growth (r=-0.964; p<0.001). Parallel ultrastructural studies using CSLM and a Live/Dead stain confirmed that E. coli growth rendered blastospores and hyphal yeasts non-viable in DSB. SSB of C. albicans showed pronounced growth when its growth surface was pretreated with serum and by sugar supplements in the incubating medium (p<0.05). Intriguingly, C. albicans in DSB was more resistant to the antiseptic effect of chlorhexidine digluconate. Taken together, the current data elucidate some features of the colonization resistance offered by bacteria in mixed bacterial/fungal habitats and how such phenomena may contribute to the development of fungal superinfection during antimicrobial therapy.

  10. Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis.

    PubMed

    Fazly, Ahmed; Jain, Charu; Dehner, Amie C; Issi, Luca; Lilly, Elizabeth A; Ali, Akbar; Cao, Hong; Fidel, Paul L; Rao, Reeta P; Kaufman, Paul D

    2013-08-13

    Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis.

  11. Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis

    PubMed Central

    Fazly, Ahmed; Jain, Charu; Dehner, Amie C.; Issi, Luca; Lilly, Elizabeth A.; Ali, Akbar; Cao, Hong; Fidel, Paul L.; P. Rao, Reeta; Kaufman, Paul D.

    2013-01-01

    Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis. PMID:23904484

  12. Microbial colonization affects the efficiency of photovoltaic panels in a tropical environment.

    PubMed

    Shirakawa, Marcia A; Zilles, Roberto; Mocelin, Andre; Gaylarde, Christine C; Gorbushina, Anna; Heidrich, Gabriele; Giudice, Mauro C; Del Negro, Gilda M B; John, Vanderley M

    2015-07-01

    Sub-aerial biofilm (SAB) development on solar panels was studied in São Paulo. After 6, 12 and 18 months' exposure, photovoltaic panels were covered by increasing proportions of organic matter (42%, 53% and 58%, respectively). Fungi were an important component of these biofilms; very few phototrophs were found. Major microorganisms detected were melanised meristematic ascomycetes and pigmented bacterial genera Arthrobacter and Tetracoccus. While diverse algae, cyanobacteria and bacteria were identified in biofilms at 6 and 12 months, diversity at a later stage was reduced to that typical for SAB: the only fungal group detected in 18 month biofilm was the meristematic Dothideomycetes and the only phototrophs Ulothrix and Chlorella. Photovoltaic modules showed significant power reductions after 6, 12 (both 7%) and 18 (11%) months. The lack of difference in power reduction between 6 and 12 months reflects the dual nature of soiling, which can result from the deposition of particulates as well as from SAB fouling. Although 12-month old SAB demonstrated an almost 10-fold increase in fungal colonization and a higher organic content, the larger non-microbial particles (above 10 μm), which were important for efficiency reduction of lightly-biofilmed panels, were removed by high rainfall just before the 12-month sampling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Fungi Contribute Critical but Spatially Varying Roles in Nitrogen and Carbon Cycling in Acid Mine Drainage

    PubMed Central

    Mosier, Annika C.; Miller, Christopher S.; Frischkorn, Kyle R.; Ohm, Robin A.; Li, Zhou; LaButti, Kurt; Lapidus, Alla; Lipzen, Anna; Chen, Cindy; Johnson, Jenifer; Lindquist, Erika A.; Pan, Chongle; Hettich, Robert L.; Grigoriev, Igor V.; Singer, Steven W.; Banfield, Jillian F.

    2016-01-01

    The ecosystem roles of fungi have been extensively studied by targeting one organism and/or biological process at a time, but the full metabolic potential of fungi has rarely been captured in an environmental context. We hypothesized that fungal genome sequences could be assembled directly from the environment using metagenomics and that transcriptomics and proteomics could simultaneously reveal metabolic differentiation across habitats. We reconstructed the near-complete 27 Mbp genome of a filamentous fungus, Acidomyces richmondensis, and evaluated transcript and protein expression in floating and streamer biofilms from an acid mine drainage (AMD) system. A. richmondensis transcripts involved in denitrification and in the degradation of complex carbon sources (including cellulose) were up-regulated in floating biofilms, whereas central carbon metabolism and stress-related transcripts were significantly up-regulated in streamer biofilms. These findings suggest that the biofilm niches are distinguished by distinct carbon and nitrogen resource utilization, oxygen availability, and environmental challenges. An isolated A. richmondensis strain from this environment was used to validate the metagenomics-derived genome and confirm nitrous oxide production at pH 1. Overall, our analyses defined mechanisms of fungal adaptation and identified a functional shift related to different roles in carbon and nitrogen turnover for the same species of fungi growing in closely located but distinct biofilm niches. PMID:26973616

  14. Laboratory study of fungal bioreceptivity of different fractions of composite flooring tiles showing efflorescence.

    PubMed

    Masaphy, Segula; Lavi, Ido; Sultz, Stephan; Zabari, Limor

    2014-06-01

    Fungi can grow in extreme habitats, such as natural stone and mineral building materials, sometimes causing deterioration. Efflorescence-concentrated salt deposits-results from water movement through building material; it can damage masonry materials and other bricks. Fungal isolate KUR1, capable of growth on, and dissolution of stone chips composing terrazzo-type floor tiles, was isolated from such tiles showing fiber-like crystalline efflorescence. The isolate's ribosomal DNA sequences were 100 % identical to those of Nigrospora sphaerica. The ability of KUR1 to colonize and degrade the different stone chips composing the tiles was studied in axenic culture experiments. When exposed to each of the different mineral chip types composed of dolomite, calcite, or calcite-apatite mineral in low-nutrition medium, the fungus showed selective nutrient consumption, and different growth and stone mineral dissolution rates. Micromorphological examination of the fungus-colonized chips by electron microscopy showed the production of a fungal biofilm with thin films around the hyphae on the surface of the examined chips and disintegration of the calcite-apatite fraction. More than 70 % dissolution of the introduced powdered (<1 mm particle size) mineral was obtained within 10 days of incubation for the soft calcite-apatite fraction.

  15. Modelling biofilm-induced formation damage and biocide treatment in subsurface geosystems

    PubMed Central

    Ezeuko, C C; Sen, A; Gates, I D

    2013-01-01

    Biofilm growth in subsurface porous media, and its treatment with biocides (antimicrobial agents), involves a complex interaction of biogeochemical processes which provide non-trivial mathematical modelling challenges. Although there are literature reports of mathematical models to evaluate biofilm tolerance to biocides, none of these models have investigated biocide treatment of biofilms growing in interconnected porous media with flow. In this paper, we present a numerical investigation using a pore network model of biofilm growth, formation damage and biocide treatment. The model includes three phases (aqueous, adsorbed biofilm, and solid matrix), a single growth-limiting nutrient and a single biocide dissolved in the water. Biofilm is assumed to contain a single species of microbe, in which each cell can be a viable persister, a viable non-persister, or non-viable (dead). Persisters describe small subpopulation of cells which are tolerant to biocide treatment. Biofilm tolerance to biocide treatment is regulated by persister cells and includes ‘innate’ and ‘biocide-induced’ factors. Simulations demonstrate that biofilm tolerance to biocides can increase with biofilm maturity, and that biocide treatment alone does not reverse biofilm-induced formation damage. Also, a successful application of biological permeability conformance treatment involving geologic layers with flow communication is more complicated than simply engineering the attachment of biofilm-forming cells at desired sites. PMID:23164434

  16. [Susceptibility to antifungal agents of Candida sp. and biofilm formation].

    PubMed

    Ciok-Pater, Emilia; Białucha, Agata; Gospodarek, Eugenia; Ostafin, Agnieszka

    2011-01-01

    In recent years the increase in frequency of fungal infections with Candida sp. was noticed. These infections are connected with ability of Candida sp. to form biofilm on surfaces of biomaterials used in medicine. Furthermore fungal infections make serious therapeutic problems because ofbiofilm resistance to antifungal agents actually. The aim of the study was to evaluate the susceptibility to antifungal agents of Candida sp. and their ability to form biofilm on different biomaterials. 50 strains of Candida sp. isolated from patients of University Hospital No. 1 of dr A. Jurasz in Bydgoszcz were examined. API Candida (bioMérieux) tests were used to identify Candida sp. strains. The susceptibility of the yeast strains to antifungal agents was evaluated by ATB FUNGUS 2 INT (bioMérieux) tests. The susceptibility of examined strains to voriconazole, posaconazole, caspofungin and anidulafungin was assessed by means ofEtests (AB BIODISK) method employing drug concentrations from 0,002 to 32 microg/ml. All analysed strains were susceptible to amphotericin B and caspofungin. Biofilm formation on different biomaterials (silicon, latex, polychloride vinyl, polypropylene, nylon) was measured after 72 hour incubation at 37 degrees C. All examined yeasts formed biofilm on all analysed biomaterials. The highest number of strains formed biofilm on surface of polychloride vinyl: 23 (92,0%) by C. albicans strains and 24 (96,0%) Candida non-albicans strains. The lowest number of the strains formed biofilm on the surface of nylon: 12 (48,0%) of C. albicans strains and 9 (36,0%) of Candida non-albicans strains. The studied strains resistant to azoles and anidulafungin display stronger ability to form biofilm on surfaces of all analysed biomaterials.

  17. Polymer multilayers loaded with antifungal β-peptides kill planktonic Candida albicans and reduce formation of fungal biofilms on the surfaces of flexible catheter tubes.

    PubMed

    Raman, Namrata; Lee, Myung-Ryul; Palecek, Sean P; Lynn, David M

    2014-10-10

    Candida albicans is the most common fungal pathogen responsible for hospital-acquired infections. Most C. albicans infections are associated with the implantation of medical devices that act as points of entry for the pathogen and as substrates for the growth of fungal biofilms that are notoriously difficult to eliminate by systemic administration of conventional antifungal agents. In this study, we report a fill-and-purge approach to the layer-by-layer fabrication of biocompatible, nanoscale 'polyelectrolyte multilayers' (PEMs) on the luminal surfaces of flexible catheters, and an investigation of this platform for the localized, intraluminal release of a cationic β-peptide-based antifungal agent. We demonstrate that polyethylene catheter tubes with luminal surfaces coated with multilayers ~700nm thick fabricated from poly-l-glutamic acid (PGA) and poly-l-lysine (PLL) can be loaded, post-fabrication, by infusion with β-peptide, and that this approach promotes extended intraluminal release of this agent (over ~4months) when incubated in physiological media. The β-peptide remained potent against intraluminal inoculation of the catheters with C. albicans and substantially reduced the formation of C. albicans biofilms on the inner surfaces of film-coated catheters. Finally, we report that these β-peptide-loaded coatings exhibit antifungal activity under conditions that simulate intermittent catheter use and microbial challenge for at least three weeks. We conclude that β-peptide-loaded PEMs offer a novel and promising approach to kill C. albicans and prevent fungal biofilm formation on surfaces, with the potential to substantially reduce the incidence of device-associated infections in indwelling catheters. β-Peptides comprise a promising new class of antifungal agents that could help address problems associated with the use of conventional antifungal agents. The versatility of the layer-by-layer approach used here thus suggests additional opportunities to exploit these new agents in other biomedical and personal care applications in which fungal infections are endemic. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Quercetin Assists Fluconazole to Inhibit Biofilm Formations of Fluconazole-Resistant Candida Albicans in In Vitro and In Vivo Antifungal Managements of Vulvovaginal Candidiasis.

    PubMed

    Gao, Mei; Wang, Hui; Zhu, LiJuan

    2016-01-01

    Vulvovaginal candidiasis (VVC) is a common gynecological disease. Candida albicans is believed to be mainly implicated in VVC occurrence, the biofilm of which is one of the virulence factors responsible for resistance to traditional antifungal agents especially to fluconazole (FCZ). Quercetin (QCT) is a dietary flavonoid and has been demonstrated to be antifungal against C. albicans biofilm. 17 C. albicans isolates including 15 clinical ones isolated from VVC patients were employed to investigate the effects of QCT and/or FCZ on the inhibition of C. albicans biofilm. We observed that 64 µg/mL QCT and/or 128 µg/mL FCZ could (i) be synergistic against 10 FCZ-resistant planktonic and 17 biofilm cells of C. albicans, (ii) inhibit fungal adherence, cell surface hydrophobicity (CSH), flocculation, yeast-to-hypha transition, metabolism, thickness and dispersion of biofilms; (iii) down-regulate the expressions of ALS1, ALS3, HWP1, SUN41, UME6 and ECE1 and up-regulate the expressions of PDE2, NRG1 and HSP90, and we also found that (iv) the fungal burden was reduced in vaginal mucosa and the symptoms were alleviated in a murine VVC model after the treatments of 5 mg/kg QCT and/or 20 mg/kg FCZ. Together with these results, it could be demonstrated that QCT could be a favorable antifungal agent and a promising synergist with FCZ in the clinical management of VVC caused by C. albicans biofilm. © 2016 The Author(s) Published by S. Karger AG, Basel.

  19. Development and regulation of single- and multi-species Candida albicans biofilms

    PubMed Central

    Lohse, Matthew B.; Gulati, Megha; Johnson, Alexander D.; Nobile, Clarissa J.

    2017-01-01

    Candida albicans is among the most prevalent fungal species of the human microbiota and asymptomatically colonizes healthy individuals. However, it is also an opportunistic pathogen that can cause severe, and often fatal, bloodstream infections. The medical impact of C. albicans typically depends on its ability to form biofilms, which are closely packed communities of cells that attach to surfaces, such as tissues and implanted medical devices. In this Review, we provide an overview of the processes involved in the formation of C. albicans biofilms and discuss the core transcriptional network that regulates biofilm development. We also consider some of the advantages that biofilms provide to C. albicans in comparison with planktonic growth and explore polymicrobial biofilms that are formed by C. albicans and certain bacterial species. PMID:29062072

  20. Staphylococcus aureus induces hypoxia and cellular damage in porcine dermal explants

    USDA-ARS?s Scientific Manuscript database

    Methicillin-resistant Staphylococcus aureus (MRSA) can infect wounds and produce difficult-to- treat biofilms. To determine the extent that MRSA biofilms can deplete oxygen, change pH and damage host tissue, we developed a porcine dermal explant model on which we cultured GFP-labeled MRSA biofilms. ...

  1. Fungal Endocarditis

    PubMed Central

    Yuan, Shi-Min

    2016-01-01

    Fungal endocarditis is a rare and fatal condition. The Candida and Aspergillus species are the two most common etiologic fungi found responsible for fungal endocarditis. Fever and changing heart murmur are the most common clinical manifestations. Some patients may have a fever of unknown origin as the onset symptom. The diagnosis of fungal endocarditis is challenging, and diagnosis of prosthetic valve fungal endocarditis is extremely difficult. The optimum antifungal therapy still remains debatable. Treating Candida endocarditis can be difficult because the Candida species can form biofilms on native and prosthetic heart valves. Combined treatment appears superior to monotherapy. Combination of antifungal therapy and surgical debridement might bring about better prognosis. PMID:27737409

  2. Fungal Endocarditis.

    PubMed

    Yuan, Shi-Min

    2016-01-01

    Fungal endocarditis is a rare and fatal condition. The Candida and Aspergillus species are the two most common etiologic fungi found responsible for fungal endocarditis. Fever and changing heart murmur are the most common clinical manifestations. Some patients may have a fever of unknown origin as the onset symptom. The diagnosis of fungal endocarditis is challenging, and diagnosis of prosthetic valve fungal endocarditis is extremely difficult. The optimum antifungal therapy still remains debatable. Treating Candida endocarditis can be difficult because the Candida species can form biofilms on native and prosthetic heart valves. Combined treatment appears superior to monotherapy. Combination of antifungal therapy and surgical debridement might bring about better prognosis.

  3. In vitro activity of chlorogenic acid against Aspergillus fumigatus biofilm and gliotoxin production.

    PubMed

    Kong, Jin-Liang; Luo, Jing; Li, Bing; Dong, Bi-Ying; Huang, Hong; Wang, Ke; Wu, Li-Hong; Chen, Yi-Qiang

    2017-06-01

    Aspergillus ( A .) fumigatus , one of the most common causes of life-threatening fungal infections in immunocompromised patients, shows resistance to antifungal agents as has a high propensity to forming a biofilm. The present study aimed to investigate the effects of chlorogenic acid (CRA) on A. fumigatus biofilm formation and integrity. Confocal laser scanning microscopy was performed to determine the inhibitory effects of CRA against A. fumigatus biofilm formation. Transmission electron microscopy was performed to investigate the ultrastructural changes of A. fumigatus biofilm after CRA exposure. High-performance liquid chromatography and reverse-transcription quantitative PCR were performed to determine the expression of gliotoxin production in biofilm culture. The results showed that CRA at sub-minimum inhibitory concentrations inhibited A. fumigatus biofilm formation. In addition, CRA could decreased the gliotoxin production in the biofilm culture supernatant through inhibiting the expression of master genes involved in gliotoxin biosynthesis. The present study provided useful information for the development of novel strategies to reduce the incidence of A. fumigatus biofilm-associated diseases.

  4. Assessment of silibinin as a potential antifungal agent and investigation of its mechanism of action.

    PubMed

    Yun, Dae Gyu; Lee, Dong Gun

    2017-08-01

    Silibinin, which is derived from Silybum marianum (milk thistle), has used as a traditional remedy for liver or biliary disorders and known to have superior antioxidant activity. In addition, silibinin was recently reported to have antifungal effect related to fungal apoptosis against Candida albicans and the interest in the therapeutic effect is increasing. In this study, we found another mode of antifungal action of silibinin and its antibiofilm activity on C. albicans. To investigate influence on fungal plasma membrane, propidium iodide and bis-(1, 3-dibutylbarbituric acid) trimethineoxonol [DiBAC 4 (3)] assay were primarily carried out. After 5-h incubation with silibinin (50, 100, 150, or 200 µg/mL), the propidium iodide fluorescent percentages increased by 11.90%, 28.50%, 34.10%, and 44.52%, respectively, and the DiBAC 4 (3) fluorescent percentages increased by 13.18%, 34.64%, 46.99%, and 57.15%, respectively. As a result, we thought that silibinin concentrations of more than 100 µg/mL have a membrane-damaging effect. Subsequently, to estimate the degree of membrane damage, we used Fluorescein isothiocyanate-labelled dextrans (FDs) of various sizes and the results indicated that silibinin allowed penetration of molecules smaller than approximately FD20 (3.3 nm). In addition, silibinin inhibited the dimorphic transition of C. albicans and resulted in the inhibition of biofilm development at an early stage. In conclusion, we found membrane-damaging effect of silibinin and its antibiofilm effect in C. albicans. © 2017 IUBMB Life, 69(8):631-637, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  5. Fungi contribute critical but spatially varying roles in nitrogen and carbon cycling in acid mine drainage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosier, Annika C.; Miller, Christopher S.; Frischkorn, Kyle R.

    The ecosystem roles of fungi have been extensively studied by targeting one organism and/or biological process at a time, but the full metabolic potential of fungi has rarely been captured in an environmental context. We hypothesized that fungal genome sequences could be assembled directly from the environment using metagenomics and that transcriptomics and proteomics could simultaneously reveal metabolic differentiation across habitats. We reconstructed the near-complete 27 Mbp genome of a filamentous fungus, Acidomyces richmondensis, and evaluated transcript and protein expression in floating and streamer biofilms from an acid mine drainage (AMD) system. A. richmondensis transcripts involved in denitrification and inmore » the degradation of complex carbon sources (including cellulose) were up-regulated in floating biofilms, whereas central carbon metabolism and stress-related transcripts were significantly up-regulated in streamer biofilms. Finally, these findings suggest that the biofilm niches are distinguished by distinct carbon and nitrogen resource utilization, oxygen availability, and environmental challenges. An isolated A. richmondensis strain from this environment was used to validate the metagenomics-derived genome and confirm nitrous oxide production at pH 1. Overall, our analyses defined mechanisms of fungal adaptation and identified a functional shift related to different roles in carbon and nitrogen turnover for the same species of fungi growing in closely located but distinct biofilm niches.« less

  6. Fungi contribute critical but spatially varying roles in nitrogen and carbon cycling in acid mine drainage

    DOE PAGES

    Mosier, Annika C.; Miller, Christopher S.; Frischkorn, Kyle R.; ...

    2016-03-03

    The ecosystem roles of fungi have been extensively studied by targeting one organism and/or biological process at a time, but the full metabolic potential of fungi has rarely been captured in an environmental context. We hypothesized that fungal genome sequences could be assembled directly from the environment using metagenomics and that transcriptomics and proteomics could simultaneously reveal metabolic differentiation across habitats. We reconstructed the near-complete 27 Mbp genome of a filamentous fungus, Acidomyces richmondensis, and evaluated transcript and protein expression in floating and streamer biofilms from an acid mine drainage (AMD) system. A. richmondensis transcripts involved in denitrification and inmore » the degradation of complex carbon sources (including cellulose) were up-regulated in floating biofilms, whereas central carbon metabolism and stress-related transcripts were significantly up-regulated in streamer biofilms. Finally, these findings suggest that the biofilm niches are distinguished by distinct carbon and nitrogen resource utilization, oxygen availability, and environmental challenges. An isolated A. richmondensis strain from this environment was used to validate the metagenomics-derived genome and confirm nitrous oxide production at pH 1. Overall, our analyses defined mechanisms of fungal adaptation and identified a functional shift related to different roles in carbon and nitrogen turnover for the same species of fungi growing in closely located but distinct biofilm niches.« less

  7. Oral Administration of the Broad-Spectrum Antibiofilm Compound Toremifene Inhibits Candida albicans and Staphylococcus aureus Biofilm Formation In Vivo

    PubMed Central

    De Cremer, Kaat; Delattin, Nicolas; De Brucker, Katrijn; Peeters, Annelies; Kucharíková, Soña; Gerits, Evelien; Verstraeten, Natalie; Michiels, Jan; Van Dijck, Patrick; Thevissen, Karin

    2014-01-01

    We here report on the in vitro activity of toremifene to inhibit biofilm formation of different fungal and bacterial pathogens, including Candida albicans, Candida glabrata, Candida dubliniensis, Candida krusei, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. We validated the in vivo efficacy of orally administered toremifene against C. albicans and S. aureus biofilm formation in a rat subcutaneous catheter model. Combined, our results demonstrate the potential of toremifene as a broad-spectrum oral antibiofilm compound. PMID:25288093

  8. Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases.

    PubMed

    Traba, Christian; Liang, Jun F

    2011-08-01

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this study, the susceptibility of Staphylococcus aureus biofilms to discharge gas generated from plasma was tested. It was found that despite distinct chemical/physical properties, discharge gases from oxygen, nitrogen, and argon demonstrated very potent and almost the same anti-biofilm activity. The bacterial cells in S. aureus biofilms were killed (>99.9%) by discharge gas within minutes of exposure. Under optimal experimental conditions, no bacteria and biofilm re-growth from discharge gas treated biofilms was found. Further studies revealed that the anti-biofilm activity of the discharge gas occurred by two distinct mechanisms: (1) killing bacteria in biofilms by causing severe cell membrane damage, and (2) damaging the extracellular polymeric matrix in the architecture of the biofilm to release biofilm from the surface of the solid substratum. Information gathered from this study provides an insight into the anti-biofilm mechanisms of plasma and confirms the applications of discharge gas in the treatment of biofilms and biofilm related bacterial infections.

  9. Enhanced simultaneous saccharification and fermentation of pretreated beech wood by in situ treatment with the white rot fungus Irpex lacteus in a membrane aerated biofilm reactor.

    PubMed

    Brethauer, Simone; Robert Lawrence, Shahab; Michael Hans-Peter, Studer

    2017-08-01

    The aim of the present study was to investigate the combination of steam pretreatment and biological treatment with lignin degrading fungal strains in order to enable efficient bioprocessing of beech wood to ethanol. In a sequential process of steam and fungal pretreatment followed by enzymatic hydrolysis, Irpex lacteus almost doubled the glucose yield for mildly pretreated beech wood, but could not improve yields for more severely pretreated substrates. However, when simultaneous saccharification and fermentation is combined with in situ I. lacteus treatment, which is enabled by the application of a membrane aerated biofilm reactor, ethanol yields of optimally steam pretreated beech could be improved from 65 to 80%. Generally, in situ fungal treatment during bioprocessing of lignocellulose is an interesting method to harness the versatile abilities of white rot fungi. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Biosynthesized silver nanoparticles to control fungal infections in indoor environments

    NASA Astrophysics Data System (ADS)

    Deyá, Cecilia; Bellotti, Natalia

    2017-06-01

    Fungi grow especially in dark and moist areas, deteriorating the indoor environment and causing infections that particularly affect immunosuppressed individuals. Antimicrobial coatings have as principal objective to prevent biofilm formation and infections by incorporation of bioactive additives. In this sense, metallic nanoparticles, such as silver, have proven to be active against different microorganisms specially bacteria. Biosynthesized method is a promising environmentally friendly option to obtain nanoparticles. The aim of this research was assess the employment of plants extracts of Aloysia triphylla (cedrón), Laurelia sempervirens (laurel) and Ruta chalepensis (ruda) to obtain silver nanoparticles to be used as an antimicrobial additive to a waterborne coating formulation. The products obtained were assessed against fungal isolates from biodeteriorated indoor coatings. The fungi were identified by conventional and molecular techniques as Chaetomium globosum and Alternaria alternate. The results revealed that the coating with silver nanoparticles obtained with L. sempervirens extract at 60 °C with a size of 9.8 nm was the most efficient against fungal biofilm development.

  11. Fungal Ferromanganese Mineralisation in Cretaceous Dinosaur Bones from the Gobi Desert, Mongolia.

    PubMed

    Owocki, Krzysztof; Kremer, Barbara; Wrzosek, Beata; Królikowska, Agata; Kaźmierczak, Józef

    2016-01-01

    Well-preserved mycelia of fungal- or saprolegnia-like biota mineralised by ferromanganese oxides were found for the first time in long bones of Late Cretaceous dinosaurs from the Gobi Desert (Nemegt Valley, Mongolia). The mycelia formed a biofilm on the wall of the bone marrow cavity and penetrated the osteon channels of the nearby bone tissue. Optical microscopy, Raman, SEM/EDS, SEM/BSE, electron microprobe and cathodoluminescence analyses revealed that the mineralisation of the mycelia proceeded in two stages. The first stage was early post-mortem mineralisation of the hyphae by Fe/Mn-oxide coatings and microconcretions. Probably this proceeded in a mildly acidic to circumneutral environment, predominantly due to heterotrophic bacteria degrading the mycelial necromass and liberating Fe and Mn sorbed by the mycelia during its lifetime. The second stage of mineralisation, which proceeded much later following the final burial of the bones in an alkaline environment, resulted from the massive precipitation of calcite and occasionally barite on the iron/manganese-oxide-coated mycelia. The mineral phases produced by fungal biofilms colonising the interiors of decaying dinosaur bones not only enhance the preservation (fossilisation) of fungal remains but can also be used as indicators of the geochemistry of the dinosaur burial sites.

  12. Combinatorial drug approaches to tackle Candida albicans biofilms.

    PubMed

    De Cremer, Kaat; Staes, Ines; Delattin, Nicolas; Cammue, Bruno P A; Thevissen, Karin; De Brucker, Katrijn

    2015-08-01

    The human fungal opportunistic pathogen Candida albicans resides in the human gut, genitourinary tract and on the skin. The majority of infections caused by C. albicans are biofilm-related. In the first part of this review, we discuss new insights into C. albicans biofilm characteristics, concentrating on the extracellular matrix, phenotypic switching, efflux pumps and persister cells. It is widely accepted that this multicellular lifestyle is more resistant to traditional antifungal treatment compared to free-living cells. Therefore, much effort is put in the search for combinations of drugs leading to synergistic interactions against microbial biofilms to achieve lower effective doses of the drugs. In the second part of this manuscript, we review all recently identified compounds that act synergistically with azoles, echinocandins and/or polyenes against C. albicans biofilms.

  13. Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms.

    PubMed

    Zacchino, Susana A; Butassi, Estefanía; Cordisco, Estefanía; Svetaz, Laura A

    2017-12-15

    Biofilms contribute to the pathogenesis of many chronic and difficult-to eradicate infections whose treatment is complicated due to the intrinsic resistance to conventional antibiotics. As a consequence, there is an urgent need for strategies that can be used for the prevention and treatment of biofilm-associated infections. The combination therapy comprising an antimicrobial drug with a low molecular weight (MW) natural product and an antimicrobial drug (antifungal or antibacterial) appeared as a good alternative to eradicate biofilms. The aims of this review were to perform a literature search on the different natural products that have showed the ability of potentiating the antibiofilm capacity of antimicrobial drugs, to analyze which are the antimicrobial drugs most used in combination, and to have a look on the microbial species most used to prepare biofilms. Seventeen papers, nine on combinations against antifungal biofilms and eight against antibacterial biofilms were collected. Within the text, the following topics have been developed: breaf history of the discovery of biofilms; stages in the development of a biofilm; the most used methodologies to assess antibiofilm-activity; the natural products with capacity of eradicating biofilms when acting alone; the combinations of low MW natural products with antibiotics or antifungal drugs as a strategy for eradicating microbial biofilms and a list of the low MW natural products that potentiate the inhibition capacity of antifungal and antibacterial drugs against biofilms. Regarding combinations against antifungal biofilms, eight over the nine collected works were carried out with in vitro studies while only one was performed with in vivo assays by using Caenorhabditis elegans nematode. All studies use biofilms of the Candida genus. A 67% of the potentiators were monoterpenes and sesquiterpenes and six over the nine works used FCZ as the antifungal drug. The activity of AmpB and Caspo was enhanced in one and two works respectively. Regarding combinations against bacterial biofilms, in vitro studies were performed in all works by using several different methods of higher variety than the used against fungal biofilms. Biofilms of both the gram (+) and gram (-) bacteria were prepared, although biofilm of Staphylococcus spp. were the most used in the collected works. Among the discovered potentiators of antibacterial drugs, 75% were terpenes, including mono, di- and triterpenes, and, among the atibacterial drugs, several structurally diverse types were used in the combinations: aminoglycosides, β-lactams, glucopeptides and fluoroquinolones. The potentiating capacity of natural products, mainly terpenes, on the antibiofilm effect of antimicrobial drugs opens a wide range of possibilities for the combination antimicrobial therapy. More in vivo studies on combinations of natural products with antimicrobial drugs acting against biofilms are highly required to cope the difficult to treat biofilm-associated infections. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Synthesis of novel proxyphylline derivatives with dual Anti-Candida albicans and anticancer activity.

    PubMed

    Borowiecki, Paweł; Wińska, Patrycja; Bretner, Maria; Gizińska, Małgorzata; Koronkiewicz, Mirosława; Staniszewska, Monika

    2018-04-25

    Three out of 16 newly synthesized 1,3-dimethylxanthine derivatives (proxyphylline analogues) exhibited consistencies between antifungal and anticancer properties. Proxyphylline possessing 1-(10H-phenothiazin-10-yl)propan-2-yl (6) and polybrominated benzimidazole (41) or benzotriazole moiety (42) remained selectively cidal against Candida albicans (lg R ≥ 3 at conc. of 31, 36 and 20 μM, respectively) however not against normal mammalian Vero cell line in vitro (IC 50  ≥ 280 μM) and Galleria mellonella in vivo. These compounds also displayed moderate antineoplastic activity against human breast adenocarcinoma (MCF-7) cell line (EC 50  = 80 μM) and high against peripheral blood T lymphoblast (CCRF-CEM) (EC 50  = 6.3-6.5 μM). In addition, 6 and 42 exerted: (1) dual activity against fungal adhesion and damage mature biofilm; (2) necrosis of planktonic cells due to loss of membrane function and of structural integrity; (3) biochemical (inhibition of sessile cell respiration) and morphological changes in cell wall polysaccharide contents. Therefore, leading proxyphylline derivatives can be employed to prevent cancer-associated biofilm Candida infections. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Sexual Biofilm Formation in Candida tropicalis Opaque Cells

    PubMed Central

    Jones, Stephen K.; Hirakawa, Matthew P.; Bennett, Richard J.

    2014-01-01

    Summary Candida albicans and Candida tropicalis are opportunistic fungal pathogens that can transition between white and opaque phenotypic states. White and opaque cells differ both morphologically and in their responses to environmental signals. In C. albicans, opaque cells respond to sexual pheromones by undergoing conjugation, while white cells are induced by pheromones to form sexual biofilms. Here, we show that sexual biofilm formation also occurs in C. tropicalis but, unlike C. albicans, biofilms are formed exclusively by opaque cells. C. tropicalis biofilm formation was dependent on the pheromone receptors Ste2 and Ste3, confirming the role of pheromone signaling in sexual biofilm development. Structural analysis of C. tropicalis sexual biofilms revealed stratified communities consisting of a basal layer of yeast cells and an upper layer of filamentous cells, together with an extracellular matrix. Transcriptional profiling showed that genes involved in pheromone signaling and conjugation were upregulated in sexual biofilms. Furthermore, FGR23, which encodes an agglutinin-like protein, was found to enhance both mating and sexual biofilm formation. Together, these studies reveal that C. tropicalis opaque cells form sexual biofilms with a complex architecture, and suggest a conserved role for sexual agglutinins in mediating mating, cell cohesion and biofilm formation. PMID:24612417

  16. Unexplored antifungal activity of linear battacin lipopeptides against planktonic and mature biofilms of C. albicans.

    PubMed

    De Zoysa, Gayan Heruka; Glossop, Hugh Douglas; Sarojini, Vijayalekshmi

    2018-02-25

    Novel antifungal agents are required against pathogenic fungi such as Candida albicans. We report the anticandidal activity of battacin lipopeptide antibiotics with previously unexplored antifungal activity. From amongst sixteen battacin lipopeptides tested against C. alibicans (SC5314) the 4-methyl hexanoyl conjugated trimeric lipopeptide 13 emerged as the lead candidate with a MIC of 6.25 μM and negligible haemolysis of mouse red blood cells. The potency of this lipopeptide was maintained under acidic conditions. Additionally, antifungal activity was further enhanced with amphotericin B at its non-haemolytic concentrations. Herein we have demonstrated for the first time that battacin lipopeptides prevent C. albicans biofilm colonisation as well as inhibit pre-formed biofilms of this fungal pathogen. XTT biofilm assays revealed that 13 prevented colonisation of C. albicans biofilms at its MIC (6.25 μM) and, at a higher concentration, eradicated 24 h (25 μM) and 48 h (62.5 μM) old preformed biofilms. In comparison, we found that amphotericin at much lower concentrations prevented biofilm colonisation (0.78 μM) and inhibited 24 h old preformed biofilms (6.25 μM), however was completely inactive against 48 h old preformed biofilms. Thus, lipopeptide 13 is more effective than amphotericin at eradicating more mature C. albicans biofilms. The membrane lytic mechanism of action of compound 13 was validated by a colorimetric assay using lipid vesicles mimicking fungal membranes in which compound 13 effected an immediate dark purple to red colour transition of suspended vesicles upon peptide interaction. In addition, TEM images of C. albicans cells exposed to 13 showed clearly disrupted cellular membranes. Interestingly, compound 13 increased the endogenous generation of reactive oxygen species (ROS) in a concentration dependent manner. In the presence of an antioxidant, ascorbic acid, ROS production was diminished yet antifungal activity persisted, possibly indicating that ROS production is a secondary effect from membrane lysis caused by lipopeptide 13. The lipopeptide was non-haemolytic against mouse red blood cells at the highest tested concentration (1 mM). Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Maltodextrin enhances biofilm elimination by electrochemical scaffold

    PubMed Central

    Sultana, Sujala T.; Call, Douglas R.; Beyenal, Haluk

    2016-01-01

    Electrochemical scaffolds (e-scaffolds) continuously generate low concentrations of H2O2 suitable for damaging wound biofilms without damaging host tissue. Nevertheless, retarded diffusion combined with H2O2 degradation can limit the efficacy of this potentially important clinical tool. H2O2 diffusion into biofilms and bacterial cells can be increased by damaging the biofilm structure or by activating membrane transportation channels by exposure to hyperosmotic agents. We hypothesized that e-scaffolds would be more effective against Acinetobacter baumannii and Staphylococcus aureus biofilms in the presence of a hyperosmotic agent. E-scaffolds polarized at −600 mVAg/AgCl were overlaid onto preformed biofilms in media containing various maltodextrin concentrations. E-scaffold alone decreased A. baumannii and S. aureus biofilm cell densities by (3.92 ± 0.15) log and (2.31 ± 0.12) log, respectively. Compared to untreated biofilms, the efficacy of the e-scaffold increased to a maximum (8.27 ± 0.05) log reduction in A. baumannii and (4.71 ± 0.12) log reduction in S. aureus biofilm cell densities upon 10 mM and 30 mM maltodextrin addition, respectively. Overall ~55% decrease in relative biofilm surface coverage was achieved for both species. We conclude that combined treatment with electrochemically generated H2O2 from an e-scaffold and maltodextrin is more effective in decreasing viable biofilm cell density. PMID:27782161

  18. Sorting of fungal-damaged white sorghum

    USDA-ARS?s Scientific Manuscript database

    A high-speed, color image-based sorting machine was modified to separate white sorghum with symptoms of fungal damage. Most of the sorghum tested was typically white, but over 27% of the bulk contained grains with fungal damage of various degrees, from severe to very slight. Grains with slight fun...

  19. Biofouling of reverse osmosis membranes: effects of cleaning on biofilm microbial communities, membrane performance, and adherence of extracellular polymeric substances.

    PubMed

    Al Ashhab, Ashraf; Sweity, Amer; Bayramoglu, Bihter; Herzberg, Moshe; Gillor, Osnat

    2017-05-01

    Laboratory-scale reverse osmosis (RO) flat-sheet systems were used with two parallel flow cells, one treated with cleaning agents and a control (ie undisturbed). The cleaning efforts increased the affinity of extracellular polymeric substances (EPS) to the RO membrane and altered the biofilm surface structure. Analysis of the membrane biofilm community composition revealed the dominance of Proteobacteria. However, within the phylum Proteobacteria, γ-Proteobacteria dominated the cleaned membrane biofilm, while β-Proteobacteria dominated the control biofilm. The composition of the fungal phyla was also altered by cleaning, with enhancement of Ascomycota and suppression of Basidiomycota. The results suggest that repeated cleaning cycles select for microbial groups that strongly attach to the RO membrane surface by producing rigid and adhesive EPS that hampers membrane performance.

  20. Unraveling the resistance of microbial biofilms: has proteomics been helpful?

    PubMed

    Seneviratne, C Jayampath; Wang, Yu; Jin, Lijian; Wong, Sarah S W; Herath, Thanuja D K; Samaranayake, Lakshman P

    2012-02-01

    Biofilms are surface-attached, matrix-encased, structured microbial communities which display phenotypic features that are dramatically different from those of their free-floating, or planktonic, counterparts. Biofilms seem to be the preferred mode of growth of microorganisms in nature, and at least 65% of all human infections are associated with biofilms. The most notable and clinically relevant property of biofilms is their greater resistance to antimicrobials compared with their planktonic counterparts. Although both bacterial and fungal biofilms display this phenotypic feature, the exact mechanisms underlying their increased drug resistance are yet to be determined. Advances in proteomics techniques during the past decade have facilitated in-depth analysis of the possible mechanisms underpinning increased drug resistance in biofilms. These studies have demonstrated the ability of proteomics techniques to unravel new targets for combating microbial biofilms. In this review, we discuss the putative drug resistance mechanisms of microbial biofilms that have been uncovered by proteomics and critically evaluate the possible contribution of the new knowledge to future development in the field. We also summarize strategic uses of novel proteomics technologies in studies related to drug resistance mechanisms of microbial biofilms. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of Voriconazole on Candida tropicalis Biofilms: Relation with ERG Genes Expression.

    PubMed

    Fernandes, Tânia; Silva, Sónia; Henriques, Mariana

    2016-10-01

    Candida tropicalis has emerged as the third most prevalent fungal pathogens and its ability to form biofilms has been considered one of the most important virulence factors, since biofilms represent high tolerance to antifungal agents. However, the mechanisms of C. tropicalis biofilm resistance to antifungals remain poorly understood. Thus, the main aim of this work was to infer about the effect of voriconazole on the formation and control of C. tropicalis biofilms and disclose its relationship with ERG genes' expression. Planktonic cells tolerance of several C. tropicalis clinical isolates to voriconazole was determined through of antifungal susceptibility test, and the effect of this azole against C. tropicalis biofilm formation and pre-formed biofilms was evaluated by cultivable cells determination and total biomass quantification. ERG genes expression was analyzed by quantitative real-time polymerase chain reaction. This work showed that C. tropicalis resistance to voriconazole is strain dependent and that voriconazole was able to partially control biofilm formation, but was unable to eradicate C. tropicalis pre-formed biofilms. Moreover, C. tropicalis biofilms resistance to voriconazole seems to be associated with alterations of sterol content in the cell membrane, resulting in ERG genes overexpression. Voriconazole is unable to control C. tropicalis biofilms, and the overexpression of ERG genes is a possible mechanism of biofilm resistance.

  2. Candida Species Biofilms’ Antifungal Resistance

    PubMed Central

    Silva, Sónia; Rodrigues, Célia F.; Araújo, Daniela; Rodrigues, Maria Elisa; Henriques, Mariana

    2017-01-01

    Candida infections (candidiasis) are the most prevalent opportunistic fungal infection on humans and, as such, a major public health problem. In recent decades, candidiasis has been associated to Candida species other than Candida albicans. Moreover, biofilms have been considered the most prevalent growth form of Candida cells and a strong causative agent of the intensification of antifungal resistance. As yet, no specific resistance factor has been identified as the sole responsible for the increased recalcitrance to antifungal agents exhibited by biofilms. Instead, biofilm antifungal resistance is a complex multifactorial phenomenon, which still remains to be fully elucidated and understood. The different mechanisms, which may be responsible for the intrinsic resistance of Candida species biofilms, include the high density of cells within the biofilm, the growth and nutrient limitation, the effects of the biofilm matrix, the presence of persister cells, the antifungal resistance gene expression and the increase of sterols on the membrane of biofilm cells. Thus, this review intends to provide information on the recent advances about Candida species biofilm antifungal resistance and its implication on intensification of the candidiasis. PMID:29371527

  3. Keratitis-associated fungi form biofilms with reduced antifungal drug susceptibility.

    PubMed

    Zhang, Xiaoyan; Sun, Xuguang; Wang, Zhiqun; Zhang, Yang; Hou, Wenbo

    2012-11-21

    To investigate the biofilm-forming capacity of Fusarium solani, Cladosporium sphaerospermum, and Acremonium implicatum, and the activities of antifungal agents against the three keratitis-associated fungi. The architecture of biofilms was analyzed using scanning electron microscopy and confocal scanning laser microscopy (CSLM). Susceptibility against six antifungal drugs was measured using the CLSI M38-A method and XTT reduction assay. Time course analyses of CSLM revealed that biofilm formation occurred in an organized fashion through four distinct developmental phases: adhesion, germling formation, microcolony formation, and biofilm maturation. Scanning electron microscopy revealed that mature biofilms displayed a complex three-dimensional structure, consisting of coordinated network of hyphal structures glued by the extracellular matrix (ECM). The antifungal susceptibility testing demonstrated a time-dependent decrease in efficacy for all six antifungal agents as the complexity of fungal hyphal structures developed. Natamycin (NAT), amphotericin B (AMB), and NAT were the most effective against F. solani, C. sphaerospermum, and A. implicatum biofilm, respectively. Corneal isolates of F. solani, C. sphaerospermum, and A. implicatum could produce biofilms that were resistant to antifungal agents in vitro.

  4. Comparative Phenotypic Analysis of the Major Fungal Pathogens Candida parapsilosis and Candida albicans

    PubMed Central

    Holland, Linda M.; Schröder, Markus S.; Turner, Siobhán A.; Taff, Heather; Andes, David; Grózer, Zsuzsanna; Gácser, Attila; Ames, Lauren; Haynes, Ken; Higgins, Desmond G.; Butler, Geraldine

    2014-01-01

    Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CTG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of C. parapsilosis strains carrying double allele deletions of 100 transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in >40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance, and of CAP1 in the oxidative stress response. Others are unique to one species. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis but not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified seven transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1 and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. Two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic, and that Cph2 and Bcr1 are major biofilm regulators in C. parapsilosis. PMID:25233198

  5. High-Throughput Nano-Biofilm Microarray for Antifungal Drug Discovery

    DTIC Science & Technology

    2013-06-25

    High-Throughput Nano-Biofilm Microarray for Antifungal Drug Discovery Anand Srinivasan,a, c Kai P. Leung,d Jose L. Lopez-Ribot,b, c Anand K...Ramasubramaniana, c Departments of Biomedical Engineeringa and Biologyb and South Texas Center for Emerging Infectious Diseases, c The University of Texas at San...of the opportunistic fungal pathogen Candida albicans on a microarray platform. The mi- croarray consists of 1,200 individual cultures of 30 nl of C

  6. Single-cell force spectroscopy of the medically important Staphylococcus epidermidis-Candida albicans interaction

    NASA Astrophysics Data System (ADS)

    Beaussart, Audrey; Herman, Philippe; El-Kirat-Chatel, Sofiane; Lipke, Peter N.; Kucharíková, Soňa; van Dijck, Patrick; Dufrêne, Yves F.

    2013-10-01

    Despite the clinical importance of bacterial-fungal interactions, their molecular details are poorly understood. A hallmark of such medically important interspecies associations is the interaction between the two nosocomial pathogens Staphylococcus aureus and Candida albicans, which can lead to mixed biofilm-associated infections with enhanced antibiotic resistance. Here, we use single-cell force spectroscopy (SCFS) to quantify the forces engaged in bacterial-fungal co-adhesion, focusing on the poorly investigated S. epidermidis-C. albicans interaction. Force curves recorded between single bacterial and fungal germ tubes showed large adhesion forces (~5 nN) with extended rupture lengths (up to 500 nm). By contrast, bacteria poorly adhered to yeast cells, emphasizing the important role of the yeast-to-hyphae transition in mediating adhesion to bacterial cells. Analysis of mutant strains altered in cell wall composition allowed us to distinguish the main fungal components involved in adhesion, i.e. Als proteins and O-mannosylations. We suggest that the measured co-adhesion forces are involved in the formation of mixed biofilms, thus possibly as well in promoting polymicrobial infections. In the future, we anticipate that this SCFS platform will be used in nanomedicine to decipher the molecular mechanisms of a wide variety of pathogen-pathogen interactions and may help in designing novel anti-adhesion agents.

  7. Fungal Ferromanganese Mineralisation in Cretaceous Dinosaur Bones from the Gobi Desert, Mongolia

    PubMed Central

    Wrzosek, Beata; Królikowska, Agata

    2016-01-01

    Well-preserved mycelia of fungal- or saprolegnia-like biota mineralised by ferromanganese oxides were found for the first time in long bones of Late Cretaceous dinosaurs from the Gobi Desert (Nemegt Valley, Mongolia). The mycelia formed a biofilm on the wall of the bone marrow cavity and penetrated the osteon channels of the nearby bone tissue. Optical microscopy, Raman, SEM/EDS, SEM/BSE, electron microprobe and cathodoluminescence analyses revealed that the mineralisation of the mycelia proceeded in two stages. The first stage was early post-mortem mineralisation of the hyphae by Fe/Mn-oxide coatings and microconcretions. Probably this proceeded in a mildly acidic to circumneutral environment, predominantly due to heterotrophic bacteria degrading the mycelial necromass and liberating Fe and Mn sorbed by the mycelia during its lifetime. The second stage of mineralisation, which proceeded much later following the final burial of the bones in an alkaline environment, resulted from the massive precipitation of calcite and occasionally barite on the iron/manganese-oxide-coated mycelia. The mineral phases produced by fungal biofilms colonising the interiors of decaying dinosaur bones not only enhance the preservation (fossilisation) of fungal remains but can also be used as indicators of the geochemistry of the dinosaur burial sites. PMID:26863014

  8. EDTA Inhibits Biofilm Formation, Extracellular Vesicular Secretion, and Shedding of the Capsular Polysaccharide Glucuronoxylomannan by Cryptococcus neoformans

    PubMed Central

    Robertson, Emma J.; Wolf, Julie M.

    2012-01-01

    The fungal pathogen Cryptococcus neoformans can grow as a biofilm on a range of synthetic and prosthetic materials. Cryptococcal biofilm formation can complicate the placement of shunts used to relieve increased intracranial pressure in cryptococcal meningitis and can serve as a nidus for chronic infection. Biofilms are generally advantageous to pathogens in vivo, as they can confer resistance to antimicrobial compounds, including fluconazole and voriconazole in the case of C. neoformans. EDTA can inhibit biofilm formation by several microbes and enhances the susceptibility of biofilms to antifungal drugs. In this study, we evaluated the effect of sublethal concentrations of EDTA on the growth of cryptococcal biofilms. EDTA inhibited biofilm growth by C. neoformans, and the inhibition could be reversed by the addition of magnesium or calcium, implying that the inhibitory effect was by divalent cation starvation. EDTA also reduced the amount of the capsular polysaccharide glucuronoxylomannan shed into the biofilm matrix and decreased vesicular secretion from the cell, thus providing a potential mechanism for the inhibitory effect of this cation-chelating compound. Our data imply that the growth of C. neoformans biofilms requires the presence of divalent metals in the growth medium and suggest that cations are required for the export of materials needed for biofilm formation, possibly including extracellular vesicles. PMID:22941091

  9. Proteomics of drug resistance in Candida glabrata biofilms.

    PubMed

    Seneviratne, C Jayampath; Wang, Yu; Jin, Lijian; Abiko, Y; Samaranayake, Lakshman P

    2010-04-01

    Candida glabrata is a fungal pathogen that causes a variety of mucosal and systemic infections among compromised patient populations with higher mortality rates. Previous studies have shown that biofilm mode of the growth of the fungus is highly resistant to antifungal agents compared with the free-floating or planktonic mode of growth. Therefore, in the present study, we used 2-D DIGE to evaluate the differential proteomic profiles of C. glabrata under planktonic and biofilm modes of growth. Candida glabrata biofilms were developed on polystyrene surfaces and age-matched planktonic cultures were obtained in parallel. Initially, biofilm architecture, viability, and antifungal susceptibility were evaluated. Differentially expressed proteins more than 1.5-fold in DIGE analysis were subjected to MS/MS. The transcriptomic regulation of these biomarkers was evaluated by quantitative real-time PCR. Candida glabrata biofilms were highly resistant to the antifungals and biocides compared with the planktonic mode of growth. Candida glabrata biofilm proteome when compared with its planktonic proteome showed upregulation of stress response proteins, while glycolysis enzymes were downregulated. Similar trend could be observed at transcriptomic level. In conclusion, C. glabrata biofilms possess higher amount of stress response proteins, which may potentially contribute to the higher antifungal resistance seen in C. glabrata biofilms.

  10. Susceptibility of Candida glabrata biofilms to echinocandins: alterations in the matrix composition.

    PubMed

    Rodrigues, Célia F; Rodrigues, Maria Elisa; Henriques, Mariana

    2018-05-25

    Candidiases are the most recurrent fungal infections, especially among immunosuppressed patients. Although Candida albicans is still the most widespread isolated species, non-Candida albicans Candida species have been increasing. The goal of this work was to determine the susceptibility of C. glabrata biofilms to echinocandins and to evaluate their effect on the biofilm matrix composition, comparing the results with other Candida species. Drug susceptibilities were assessed through the determination of minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC) and minimum biofilm eradication concentration (MBEC) of caspofungin (Csf) and micafugin (Mcf). The β-1,3 glucans content of the matrices was assessed after contact with the drugs. The data suggest that, generally, after contact with echinocandins, the concentration of β-1,3 glucans increased. These adjustments in the matrix composition of C. glabrata biofilms and the chemical differences between Csf and Mcf, seem responsible and may determine the effectivity of the drug responses.

  11. Altering the Ratio of Phenazines in Pseudomonas chlororaphis (aureofaciens) Strain 30-84: Effects on Biofilm Formation and Pathogen Inhibition▿

    PubMed Central

    Maddula, V. S. R. K.; Pierson, E. A.; Pierson, L. S.

    2008-01-01

    Pseudomonas chlororaphis strain 30-84 is a plant-beneficial bacterium that is able to control take-all disease of wheat caused by the fungal pathogen Gaeumannomyces graminis var. tritici. The production of phenazines (PZs) by strain 30-84 is the primary mechanism of pathogen inhibition and contributes to the persistence of strain 30-84 in the rhizosphere. PZ production is regulated in part by the PhzR/PhzI quorum-sensing (QS) system. Previous flow cell analyses demonstrated that QS and PZs are involved in biofilm formation in P. chlororaphis (V. S. R. K. Maddula, Z. Zhang, E. A. Pierson, and L. S. Pierson III, Microb. Ecol. 52:289-301, 2006). P. chlororaphis produces mainly two PZs, phenazine-1-carboxylic acid (PCA) and 2-hydroxy-PCA (2-OH-PCA). In the present study, we examined the effect of altering the ratio of PZs produced by P. chlororaphis on biofilm formation and pathogen inhibition. As part of this study, we generated derivatives of strain 30-84 that produced only PCA or overproduced 2-OH-PCA. Using flow cell assays, we found that these PZ-altered derivatives of strain 30-84 differed from the wild type in initial attachment, mature biofilm architecture, and dispersal from biofilms. For example, increased 2-OH-PCA production promoted initial attachment and altered the three-dimensional structure of the mature biofilm relative to the wild type. Additionally, both alterations promoted thicker biofilm development and lowered dispersal rates compared to the wild type. The PZ-altered derivatives of strain 30-84 also differed in their ability to inhibit the fungal pathogen G. graminis var. tritici. Loss of 2-OH-PCA resulted in a significant reduction in the inhibition of G. graminis var. tritici. Our findings suggest that alterations in the ratios of antibiotic secondary metabolites synthesized by an organism may have complex and wide-ranging effects on its biology. PMID:18263718

  12. Assessment of biofilm formation by Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans.

    PubMed

    Mello, Thaís P; Aor, Ana Carolina; Gonçalves, Diego S; Seabra, Sergio H; Branquinha, Marta H; Santos, André L S

    2016-08-01

    Reported herein is the ability of Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans conidia to adhere, differentiate into hyphae and form biofilms on both polystyrene and lung epithelial cells. To different degrees, all of the fungi adhered to polystyrene after 4 h, with a predominance of those with germinated conidia. Prolonged fungi-polystyrene contact resulted in the formation of a monolayer of intertwined mycelia, which was identified as a typical biofilm structure due to the presence of a viable mycelial biomass, extracellular matrix and enhanced antifungal resistance. Ultrastructural details were revealed by SEM and CLSM, showing the dense compaction of the mycelial biomass and the presence of channels within the organized biofilm. A similar biofilm structure was observed following the co-culture of each fungus with A549 cells, revealing a mycelial trap covering all of the lung epithelial monolayer. Collectively, these results highlight the potential for biofilm formation by these clinically relevant fungal pathogens.

  13. Biofilm-forming capacity of blood-borne Candida albicans strains and effects of antifungal agents.

    PubMed

    Turan, Hanni; Demirbilek, Müge

    Infections related to Candida albicans biofilms and subsequent antifungal resistance have become more common with the increased use of indwelling medical devices. Regimens for preventing fungal biofilm formation are needed, particularly in high-risk patients. In this study, we investigated the biofilm formation rate of multiple strains of Candida albicans (n=162 clinical isolates), their antifungal susceptibility patterns, and the efficacy of certain antifungals for preventing biofilm formation. Biofilm formation was graded using a modified Christensen's 96-well plate method. We further analyzed 30 randomly chosen intense biofilm-forming isolates using the XTT method. Minimum biofilm inhibition concentrations (MBIC) of caspofungin, micafungin, anidulafungin, fluconazole, voriconazole, posaconazole, itraconazole, and amphotericin B were determined using the modified Calgary biofilm method. In addition, the inhibitory effects of antifungal agents on biofilm formation were investigated. Our study showed weak, moderate, and extensive biofilm formation in 29% (n=47), 38% (n=61), and 23% (n=37) of the isolates, respectively. We found that echinocandins had the lowest MBIC values and that itraconazole inhibited biofilm formation in more isolates (26/32; 81.3%) than other tested agents. In conclusion, echinocandins were most effective against formed biofilms, while itraconazole was most effective for preventing biofilm formation. Standardized methods are needed for biofilm antifungal sensitivity tests when determining the treatment and prophylaxis of C. albicans infections. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Fungal Biofilms: Targets for the Development of Novel Strategies in Plant Disease Management.

    PubMed

    Villa, Federica; Cappitelli, Francesca; Cortesi, Paolo; Kunova, Andrea

    2017-01-01

    The global food supply has been facing increasing challenges during the first decades of the 21 st century. Disease in plants is an important constraint to worldwide crop production, accounting for 20-40% of its annual harvest loss. Although the use of resistant varieties, good water management and agronomic practices are valid management tools in counteracting plant diseases, there are still many pathosystems where fungicides are widely used for disease management. However, restrictive regulations and increasing concern regarding the risk to human health and the environment, along with the incidence of fungicide resistance, have discouraged their use and have prompted for a search for new efficient, ecologically friendly and sustainable disease management strategies. The recent evidence of biofilm formation by fungal phytopathogens provides the scientific framework for designing and adapting methods and concepts developed by biofilm research that could be integrated in IPM practices. In this perspective paper, we provide evidence to support the view that the biofilm lifestyle plays a critical role in the pathogenesis of plant diseases. We describe the main factors limiting the durability of single-site fungicides, and we assemble the current knowledge on pesticide resistance in the specific context of the biofilm lifestyle. Finally, we illustrate the potential of antibiofilm compounds at sub-lethal concentrations for the development of an innovative, eco-sustainable strategy to counteract phytopathogenic fungi. Such fungicide-free solutions will be instrumental in reducing disease severity, and will permit more prudent use of fungicides decreasing thus the selection of resistant forms and safeguarding the environment.

  15. Plasticity of Candida albicans Biofilms

    PubMed Central

    Daniels, Karla J.

    2016-01-01

    SUMMARY Candida albicans, the most pervasive fungal pathogen that colonizes humans, forms biofilms that are architecturally complex. They consist of a basal yeast cell polylayer and an upper region of hyphae encapsulated in extracellular matrix. However, biofilms formed in vitro vary as a result of the different conditions employed in models, the methods used to assess biofilm formation, strain differences, and, in a most dramatic fashion, the configuration of the mating type locus (MTL). Therefore, integrating data from different studies can lead to problems of interpretation if such variability is not taken into account. Here we review the conditions and factors that cause biofilm variation, with the goal of engendering awareness that more attention must be paid to the strains employed, the methods used to assess biofilm development, every aspect of the model employed, and the configuration of the MTL locus. We end by posing a set of questions that may be asked in comparing the results of different studies and developing protocols for new ones. This review should engender the notion that not all biofilms are created equal. PMID:27250770

  16. Capric Acid Secreted by S. boulardii Inhibits C. albicans Filamentous Growth, Adhesion and Biofilm Formation

    PubMed Central

    Murzyn, Anna; Krasowska, Anna; Stefanowicz, Piotr; Dziadkowiec, Dorota; Łukaszewicz, Marcin

    2010-01-01

    Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and biofilm formation. PMID:20706577

  17. Biofilm and planktonic lifestyles differently support the resistance of the desert cyanobacterium Chroococcidiopsis under space and Martian simulations.

    PubMed

    Baqué, Mickael; Scalzi, Giuliano; Rabbow, Elke; Rettberg, Petra; Billi, Daniela

    2013-10-01

    When Chroococcidiopsis sp. strain CCMEE 057 from the Sinai Desert and strain CCMEE 029 from the Negev Desert were exposed to space and Martian simulations in the dried status as biofilms or multilayered planktonic samples, the biofilms exhibited an enhanced rate of survival. Compared to strain CCMEE 029, biofilms of strain CCME 057 better tolerated UV polychromatic radiation (5 × 10(5) kJ/m(2) attenuated with a 0.1% neutral density filter) combined with space vacuum or Martian atmosphere of 780 Pa. CCMEE 029, on the other hand, failed to survive UV polychromatic doses higher than 1.5 × 10(3) kJ/m(2). The induced damage to genomic DNA, plasma membranes and photosynthetic apparatus was quantified and visualized by means of PCR-based assays and CLSM imaging. Planktonic samples of both strains accumulated a higher amount of damage than did the biofilms after exposure to each simulation; CLSM imaging showed that photosynthetic pigment bleaching, DNA fragmentation and damaged plasma membranes occurred in the top 3-4 cell layers of both biofilms and of multilayered planktonic samples. Differences in the EPS composition were revealed by molecular probe staining as contributing to the enhanced endurance of biofilms compared to that of planktonic samples. Our results suggest that compared to strain CCMEE 029, biofilms of strain CCMEE 057 might better tolerate 1 year's exposure in space during the next EXPOSE-R2 mission.

  18. Biofilm and Planktonic Lifestyles Differently Support the Resistance of the Desert Cyanobacterium Chroococcidiopsis Under Space and Martian Simulations

    NASA Astrophysics Data System (ADS)

    Baqué, Mickael; Scalzi, Giuliano; Rabbow, Elke; Rettberg, Petra; Billi, Daniela

    2013-10-01

    When Chroococcidiopsis sp. strain CCMEE 057 from the Sinai Desert and strain CCMEE 029 from the Negev Desert were exposed to space and Martian simulations in the dried status as biofilms or multilayered planktonic samples, the biofilms exhibited an enhanced rate of survival. Compared to strain CCMEE 029, biofilms of strain CCME 057 better tolerated UV polychromatic radiation (5 × 105 kJ/m2 attenuated with a 0.1 % neutral density filter) combined with space vacuum or Martian atmosphere of 780 Pa. CCMEE 029, on the other hand, failed to survive UV polychromatic doses higher than 1.5 × 103 kJ/m2. The induced damage to genomic DNA, plasma membranes and photosynthetic apparatus was quantified and visualized by means of PCR-based assays and CLSM imaging. Planktonic samples of both strains accumulated a higher amount of damage than did the biofilms after exposure to each simulation; CLSM imaging showed that photosynthetic pigment bleaching, DNA fragmentation and damaged plasma membranes occurred in the top 3-4 cell layers of both biofilms and of multilayered planktonic samples. Differences in the EPS composition were revealed by molecular probe staining as contributing to the enhanced endurance of biofilms compared to that of planktonic samples. Our results suggest that compared to strain CCMEE 029, biofilms of strain CCMEE 057 might better tolerate 1 year's exposure in space during the next EXPOSE-R2 mission.

  19. Hydroxychavicol: A phytochemical targeting cutaneous fungal infections

    PubMed Central

    Ali, Intzar; Satti, Naresh Kumar; Dutt, Prabhu; Prasad, Rajendra; Khan, Inshad Ali

    2016-01-01

    The present study was designed to investigate the potency of hydroxychavicol on selected cutaneous human pathogenic fungi by the use of in vitro and in vivo assays and mechanistic characterization along with toxicological effects. Hydroxychavicol consistently displayed a fungicidal effect against all fungal species tested. Inoculum concentrations over the range of 104 to 107 CFU/ml did not significantly alter its antifungal potential and time–kill curve results revealed concentration–dependent killing. It also inhibited the growth of biofilm generated by Trichophyton mentagrophytes and Candida parapsilosis and reduced the preformed biofilms. Hydroxychavicol was highly effective in the treatment, and mycological eradication of an experimentally induced topical infection model of dermatophytosis (tinea corporis) and cutaneous candidiasis in guinea pigs, respectively. The mode of action of hydroxychavicol appears to originate from the disruption of cell membrane integrity. Administration of hydroxychavicol in mice at 500 mg per kg of body weight by orally produced no overt toxicity. The retention capacity of hydroxychavicol in vitro, in the presence of keratin has attributed to its in vivo effectiveness in the guinea pig model of topical infections. Furthermore, it is suggestive of its potential use as phytochemical for topical use in cutaneous fungal infections. PMID:27897199

  20. Antifungal efficacy of hydrogen peroxide in dental unit waterline disinfection.

    PubMed

    Szymańska, Jolanta

    2006-01-01

    The concentration and composition of fungal flora in dental unit waterlines (DUWL) were evaluated. For this purpose, water samples from unit reservoirs and high-speed handpieces, and biofilm samples from the waterline walls from units were collected. Subsequently, analogous samples from DUWL were taken before and after disinfection using agent containing hydrogen peroxide. In the examined samples, the yeast-like fungi Candida albicans and Candida curvata were found. The following species of mould were also identified: Aspergillus amstelodami, Aspergillus fumigatus, Aspergillus glaucus group, Aspergillus (=Eurotium herbariorum) repens, Citromyces spp., Geotrichum candidum, Penicillium (glabrum) frequentans, Penicillium pusillum, Penicillium turolense and Sclerotium sclerotiorum (Sclerotinia sclerotiorum). Before disinfection, Candida curvata and Candida albicans constituted the greatest proportion of the total fungi in the reservoirs water; in the water of handpieces--Candida albicans and Aspergillus glaucus group; and in the biofilm samples--Aspergillus glaucus group and Candida albicans. After disinfection, in all 3 kinds of samples, Candida albicans prevailed, constituting from 31.2-85.7 % of the total fungi. The application of agent containing hydrogen peroxide caused a significant decrease both in the number of total fungi and individual fungal species, which confirms the product effectiveness in fungal decontamination of DUWL.

  1. Multi-effect of the water-soluble Moringa oleifera lectin against Serratia marcescens and Bacillus sp.: antibacterial, antibiofilm and anti-adhesive properties.

    PubMed

    Moura, M C; Trentin, D S; Napoleão, T H; Primon-Barros, M; Xavier, A S; Carneiro, N P; Paiva, P M G; Macedo, A J; Coelho, L C B B

    2017-10-01

    To evaluate the antibiofilm potential of water-soluble Moringa oleifera seed lectin (WSMoL) on Serratia marcescens and Bacillus sp. WSMoL inhibited biofilm formation by S. marcescens at concentrations lower than 2·6 μg ml -1 and impaired bacterial growth at higher concentrations, avoiding biofilm formation. For Bacillus sp., the lectin inhibited bacterial growth at all concentrations. The antibiofilm action of WSMoL is associated with damage to bacterial cells. WSMoL did not disrupt preformed S. marcescens biofilms but was able to damage cells inside them. On the other hand, the lectin reduced the number of cells in Bacillus sp. biofilm treated with it. WSMoL was able to control biofilm formation when immobilized on glass surface (116 μg cm -2 ), damaging S. marcescens cells and avoiding adherence of Bacillus sp. cells on glass. The Bacillus sp. isolate is member of Bacillus subtilis species complex and closely related to species of the conspecific 'amyloliquefaciens' group. WSMoL prevented biofilm development by S. marcescens and Bacillus sp. and the antibiofilm effect is also observed when the lectin is immobilized on glass. Taking together, our results provide support to the potential use of WSMoL for controlling biofilm formation by bacteria. © 2017 The Society for Applied Microbiology.

  2. Biotite weathering in a natural forest setting near Derome, Sweden

    NASA Astrophysics Data System (ADS)

    Balogh-Brunstad, Z.; Negrich, K.; Hassenkam, T.; Wallander, H.; Stipp, S. L.

    2011-12-01

    Chemical weathering is a key process in non-nitrogen nutrient acquisition by microbes, fungi and plants. Biotite is commonly the major source of potassium, magnesium and iron. A unique opportunity arose to study natural weathering of biotite by mixed conifer and hardwood forest vegetation and associated microbes and fungi at an abandoned mine site. After the mining stopped over 30 years ago biotite was left behind in piles and the forest vegetation progressively colonized the site. Samples were collected from the top 40 cm of the biotite piles in a vicinity of pine, spruce and birch trees and included some young seedlings. Macroscopic observations documented abundant hyphal growth between the sheets of biotite. We hypothesized that fungal hyphae grow between the sheets to explore the nutrient source and weather the biotite leaving hyphal-sized etched channels on the basal surfaces. Biotite surfaces were examined with atomic force microscopy (AFM) and environmental scanning electron microscopy (ESEM) in their natural state and after removing the biological material from the mineral surfaces. The ESEM images show extensive hyphal colonization and patchy biofilm cover of the entire biotite surface on and within the sheets and at the edges of the particles. Fungal hyphae did not attach strongly to the basal surfaces of the biotite flakes as a result of small particles on the surfaces and the uneven micro-topography. The AFM images illustrate a complex microbial community around the fungal hyphae and detailed fungal morphology. High resolution AFM images show unique globular features of diameter 10-100 nm on all biofilm surfaces. However, removal of the biological material resulted in smooth and un-etched surfaces indicating that either our removal techniques are too invasive and destroy the surface layers of interest, or the etching of the basal surface is not the main mechanism for chemical weathering and base-cation nutrient immobilization in this natural setting. Species-specific interactions at the biofilm-microbe-fungus-mineral interface and spatial distribution in the biotite pile are under further investigation.

  3. AFM Structural Characterization of Drinking Water Biofilm ...

    EPA Pesticide Factsheets

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo

  4. Inhibitory activity of isoniazid and ethionamide against Cryptococcus biofilms.

    PubMed

    Cordeiro, Rossana de Aguiar; Serpa, Rosana; Marques, Francisca Jakelyne de Farias; de Melo, Charlline Vládia Silva; Evangelista, Antonio José de Jesus; Mota, Valquíria Ferreira; Brilhante, Raimunda Sâmia Nogueira; Bandeira, Tereza de Jesus Pinheiro Gomes; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

    2015-11-01

    In recent years, the search for drugs to treat systemic and opportunistic mycoses has attracted great interest from the scientific community. This study evaluated the in vitro inhibitory effect of the antituberculosis drugs isoniazid and ethionamide alone and combined with itraconazole and fluconazole against biofilms of Cryptococcus neoformans and Cryptococcus gattii. Antimicrobials were tested at defined concentrations after susceptibility assays with Cryptococcus planktonic cells. In addition, we investigated the synergistic interaction of antituberculosis drugs and azole derivatives against Cryptococcus planktonic cells, as well as the influence of isoniazid and ethionamide on ergosterol content and cell membrane permeability. Isoniazid and ethionamide inhibited both biofilm formation and viability of mature biofilms. Combinations formed by antituberculosis drugs and azoles proved synergic against both planktonic and sessile cells, showing an ability to reduce Cryptococcus biofilms by approximately 50%. Furthermore, isoniazid and ethionamide reduced the content of ergosterol in Cryptococcus spp. planktonic cells and destabilized or permeabilized the fungal cell membrane, leading to leakage of macromolecules. Owing to the paucity of drugs able to inhibit Cryptococcus biofilms, we believe that the results presented here might be of interest in the designing of new antifungal compounds.

  5. Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections.

    PubMed

    Alshami, Issam; Alharbi, Ahmed E

    2014-02-01

    To explore the prevention of recurrent candiduria using natural based approaches and to study the antimicrobial effect of Hibiscus sabdariffa (H. sabdariffa) extract and the biofilm forming capacity of Candida albicans strains in the present of the H. sabdariffa extract. In this particular study, six strains of fluconazole resistant Candida albicans isolated from recurrent candiduria were used. The susceptibility of fungal isolates, time-kill curves and biofilm forming capacity in the present of the H. sabdariffa extract were determined. Various levels minimum inhibitory concentration of the extract were observed against all the isolates. Minimum inhibitory concentration values ranged from 0.5 to 2.0 mg/mL. Time-kill experiment demonstrated that the effect was fungistatic. The biofilm inhibition assay results showed that H. sabdariffa extract inhibited biofilm production of all the isolates. The results of the study support the potential effect of H. sabdariffa extract for preventing recurrent candiduria and emphasize the significance of the plant extract approach as a potential antifungal agent.

  6. Artemisinins, new miconazole potentiators resulting in increased activity against Candida albicans biofilms.

    PubMed

    De Cremer, Kaat; Lanckacker, Ellen; Cools, Tanne L; Bax, Marijke; De Brucker, Katrijn; Cos, Paul; Cammue, Bruno P A; Thevissen, Karin

    2015-01-01

    Mucosal biofilm-related fungal infections are very common, and the incidence of recurrent oral and vulvovaginal candidiasis is significant. As resistance to azoles (the preferred treatment) is occurring, we aimed at identifying compounds that increase the activity of miconazole against Candida albicans biofilms. We screened 1,600 compounds of a drug-repositioning library in combination with a subinhibitory concentration of miconazole. Synergy between the best identified potentiators and miconazole was characterized by checkerboard analyses and fractional inhibitory concentration indices. Hexachlorophene, pyrvinium pamoate, and artesunate act synergistically with miconazole in affecting C. albicans biofilms. Synergy was most pronounced for artesunate and structural homologues thereof. No synergistic effect could be observed between artesunate and fluconazole, caspofungin, or amphotericin B. Our data reveal enhancement of the antibiofilm activity of miconazole by artesunate, pointing to potential combination therapy consisting of miconazole and artesunate to treat C. albicans biofilm-related infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. High-Throughput Sequencing Reveals Drastic Changes in Fungal Communities in the Phyllosphere of Norway Spruce (Picea abies) Following Invasion of the Spruce Bud Scale (Physokermes piceae).

    PubMed

    Menkis, Audrius; Marčiulynas, Adas; Gedminas, Artūras; Lynikienė, Jūratė; Povilaitienė, Aistė

    2015-11-01

    The aim of this study was to assess the diversity and composition of fungal communities in damaged and undamaged shoots of Norway spruce (Picea abies) following recent invasion of the spruce bud scale (Physokermes piceae) in Lithuania. Sampling was done in July 2013 and included 50 random lateral shoots from ten random trees in each of five visually undamaged and five damaged 40-50-year-old pure stands of P. abies. DNA was isolated from 500 individual shoots, subjected to amplification of the internal transcribed spacer of fungal ribosomal DNA (ITS rDNA), barcoded and sequenced. Clustering of 149,426 high-quality sequences resulted in 1193 non-singleton contigs of which 1039 (87.1 %) were fungal. In total, there were 893 fungal taxa in damaged shoots and 608 taxa in undamaged shoots (p < 0.0001). Furthermore, 431 (41.5 %) fungal taxa were exclusively in damaged shoots, 146 (14.0 %) were exclusively in undamaged shoots, and 462 (44.5 %) were common to both types of samples. Correspondence analysis showed that study sites representing damaged and undamaged shoots were separated from each other, indicating that in these fungal communities, these were largely different and, therefore, heavily affected by P. piceae. In conclusion, the results demonstrated that invasive alien tree pests may have a profound effect on fungal mycobiota associated with the phyllosphere of P. abies, and therefore, in addition to their direct negative effect owing physical damage of the tissue, they may also indirectly determine health, sustainability and, ultimately, distribution of the forest tree species.

  8. Bacterial and fungal biofilm formation on anodized titanium alloys with fluorine.

    PubMed

    Perez-Jorge, Concepcion; Arenas, Maria-Angeles; Conde, Ana; Hernández-Lopez, Juan-Manuel; de Damborenea, Juan-Jose; Fisher, Steve; Hunt, Alessandra M Agostinho; Esteban, Jaime; James, Garth

    2017-01-01

    Orthopaedic device-related infections are closely linked to biofilm formation on the surfaces of these devices. Several modified titanium (Ti-6Al-4V) surfaces doped with fluorine were studied in order to evaluate the influence of these modifications on biofilm formation by Gram-positive and Gram-negative bacteria as well as a yeast. The biofilm studies were performed according to the standard test method approved by ASTM (Designation: E2196-12) using the Rotating Disk Reactor. Four types of Ti-6Al-4V samples were tested; chemically polished (CP), two types of nanostructures containing fluorine, nanoporous (NP) and nanotubular (NT), and non-nanostructured fluorine containing samples (fluoride barrier layers, FBL). Different species of Gram-positive cocci, (Staphylococcus aureus and epidermidis), Gram-negative rods (Escherichia coli, Pseudomonas aeruginosa), and a yeast (Candida albicans) were studied. For one of the Gram-positive (S. epidermidis) and one of the Gram-negative (E. coli) species a statistically-significant decrease in biofilm accumulation for NP and NT samples was found when compared with the biofilm accumulation on CP samples. The results suggest an effect of the modified materials on the biofilm formation.

  9. Bacterial biofilm formation on the hyphae of ectomycorrhizal fungi: a widespread ability under controls?

    PubMed

    Guennoc, Cora Miquel; Rose, Christophe; Labbé, Jessy; Deveau, Aurélie

    2018-05-17

    Ectomycorrhizal (ECM) fungi establish symbiosis with roots of most trees of boreal and temperate ecosystems and are major drivers of nutrient fluxes between trees and the soil. ECM fungi constantly interact with bacteria all along their life cycle and the extended networks of hyphae provide a habitat for complex bacterial communities. Despite the important effects these bacteria can have on the growth and activities of ECM fungi, little is known about the mechanisms by which these microorganisms interact. Here we investigated the ability of bacteria to form biofilm on the hyphae of the ECM fungus Laccaria bicolor. We showed that the ability to form biofilms on the hyphae of the ECM fungus is widely shared among soil bacteria. Conversely, some fungi, belonging to the Ascomycete class, did not allow for the formation of bacterial biofilms on their surfaces. The formation of biofilms was also modulated by the presence of tree roots and ectomycorrhizae, suggesting that biofilm formation does not occur randomly in soil but that it is regulated by several biotic factors. In addition, our study demonstrated that the formation of bacterial biofilm on fungal hyphae relies on the production of networks of filaments made of extracellular DNA.

  10. Bacteriome and Mycobiome Interactions Underscore Microbial Dysbiosis in Familial Crohn's Disease.

    PubMed

    Hoarau, G; Mukherjee, P K; Gower-Rousseau, C; Hager, C; Chandra, J; Retuerto, M A; Neut, C; Vermeire, S; Clemente, J; Colombel, J F; Fujioka, H; Poulain, D; Sendid, B; Ghannoum, M A

    2016-09-20

    Crohn's disease (CD) results from a complex interplay between host genetic factors and endogenous microbial communities. In the current study, we used Ion Torrent sequencing to characterize the gut bacterial microbiota (bacteriome) and fungal community (mycobiome) in patients with CD and their nondiseased first-degree relatives (NCDR) in 9 familial clusters living in northern France-Belgium and in healthy individuals from 4 families living in the same area (non-CD unrelated [NCDU]). Principal component, diversity, and abundance analyses were conducted, and CD-associated inter- and intrakingdom microbial correlations were determined. Significant microbial interactions were identified and validated using single- and mixed-species biofilms. CD and NCDR groups clustered together in the mycobiome but not in the bacteriome. Microbiotas of familial (CD and NCDR) samples were distinct from those of nonfamilial (NCDU) samples. The abundance of Serratia marcescens and Escherichia coli was elevated in CD patients, while that of beneficial bacteria was decreased. The abundance of the fungus Candida tropicalis was significantly higher in CD than in NCDR (P = 0.003) samples and positively correlated with levels of anti-Saccharomyces cerevisiae antibodies (ASCA). The abundance of C. tropicalis was positively correlated with S. marcescens and E. coli, suggesting that these organisms interact in the gut. The mass and thickness of triple-species (C. tropicalis plus S. marcescens plus E. coli) biofilm were significantly greater than those of single- and double-species biofilms. C. tropicalis biofilms comprised blastospores, while double- and triple-species biofilms were enriched in hyphae. S. marcescens used fimbriae to coaggregate or attach with C. tropicalis/E. coli, while E. coli was closely apposed with C. tropicalis Specific interkingdom microbial interactions may be key determinants in CD. Here, we characterized the gut bacterial microbiota (bacteriome) and fungal community (mycobiome) in multiplex families with CD and healthy relatives and defined the microbial interactions leading to dysbiosis in CD. We identified fungal (Candida tropicalis) and bacterial (Serratia marcescens and Escherichia coli) species that are associated with CD dysbiosis. Additionally, we found that the level of anti-Saccharomyces cerevisiae antibodies (ASCA; a known CD biomarker) was associated with the abundance of C. tropicalis We also identified positive interkingdom correlations between C. tropicalis, E. coli, and S. marcescens in CD patients and validated these correlations using in vitro biofilms. These results provide insight into the roles of bacteria and fungi in CD and may lead to the development of novel treatment approaches and diagnostic assays. Copyright © 2016 Hoarau et al.

  11. Development of a high-throughput Candida albicans biofilm chip.

    PubMed

    Srinivasan, Anand; Uppuluri, Priya; Lopez-Ribot, Jose; Ramasubramanian, Anand K

    2011-04-22

    We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B). Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip) is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  12. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

    PubMed

    Johnson, Chad J; Cabezas-Olcoz, Jonathan; Kernien, John F; Wang, Steven X; Beebe, David J; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E

    2016-09-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.

  13. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps

    PubMed Central

    Cabezas-Olcoz, Jonathan; Wang, Steven X.; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E.

    2016-01-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix. PMID:27622514

  14. Dynamics of Mixed- Candida Species Biofilms in Response to Antifungals.

    PubMed

    Vipulanandan, G; Herrera, M; Wiederhold, N P; Li, X; Mintz, J; Wickes, B L; Kadosh, D

    2018-01-01

    Oral infections caused by Candida species, the most commonly isolated human fungal pathogen, are frequently associated with biofilms. Although Candida albicans is the predominant organism found in patients with oral thrush, a biofilm infection, there is an increasing incidence of oral colonization and infections caused by non- albicans Candida species, including C. glabrata, C. dubliniensis, and C. tropicalis, which are frequently more resistant to antifungal treatment. While single-species Candida biofilms have been well studied, considerably less is known about the dynamics of mixed- Candida species biofilms and how these dynamics are altered by antifungal treatment. To address these questions, we developed a quantitative polymerase chain reaction-based approach to determine the precise species composition of mixed- Candida species biofilms formed by clinical isolates and laboratory strains in the presence and absence of clinically relevant concentrations of 3 commonly used antifungals: fluconazole, caspofungin, and amphotericin B. In monospecies biofilms, fluconazole exposure favored growth of C. glabrata and C. tropicalis, while caspofungin generally favored significant growth of all species to a varying degree. Fluconazole was not effective against preformed mixed- Candida species biofilms while amphotericin B was potent. As a general trend, in mixed- Candida species biofilms, C. albicans lost dominance in the presence of antifungals. Interestingly, presence in mixed versus monospecies biofilms reduced susceptibility to amphotericin B for C. tropicalis and C. glabrata. Overall, our data suggest that antifungal treatment favors the growth of specific non- albicans Candida species in mixed- Candida species biofilms.

  15. Synergistic Activity of the Tyrocidines, Antimicrobial Cyclodecapeptides from Bacillus aneurinolyticus, with Amphotericin B and Caspofungin against Candida albicans Biofilms

    PubMed Central

    Troskie, Anscha Mari; Rautenbach, Marina; Delattin, Nicolas; Vosloo, Johan Arnold; Dathe, Margitta; Thevissen, Karin

    2014-01-01

    Tyrocidines are cationic cyclodecapeptides from Bacillus aneurinolyticus that are characterized by potent antibacterial and antimalarial activities. In this study, we show that various tyrocidines have significant activity against planktonic Candida albicans in the low-micromolar range. These tyrocidines also prevented C. albicans biofilm formation in vitro. Studies with the membrane-impermeable dye propidium iodide showed that the tyrocidines disrupt the membrane integrity of mature C. albicans biofilm cells. This membrane activity correlated with the permeabilization and rapid lysis of model fungal membranes containing phosphatidylcholine and ergosterol (70:30 ratio) induced by the tyrocidines. The tyrocidines exhibited pronounced synergistic biofilm-eradicating activity in combination with two key antifungal drugs, amphotericin B and caspofungin. Using a Caenorhabditis elegans infection model, we found that tyrocidine A potentiated the activity of caspofungin. Therefore, tyrocidines are promising candidates for further research as antifungal drugs and as agents for combinatorial treatment. PMID:24752256

  16. Candida albicans-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers

    PubMed Central

    2018-01-01

    ABSTRACT Life-threatening systemic infections often occur due to the translocation of pathogens across the gut barrier and into the bloodstream. While the microbial and host mechanisms permitting bacterial gut translocation are well characterized, these mechanisms are still unclear for fungal pathogens such as Candida albicans, a leading cause of nosocomial fungal bloodstream infections. In this study, we dissected the cellular mechanisms of translocation of C. albicans across intestinal epithelia in vitro and identified fungal genes associated with this process. We show that fungal translocation is a dynamic process initiated by invasion and followed by cellular damage and loss of epithelial integrity. A screen of >2,000 C. albicans deletion mutants identified genes required for cellular damage of and translocation across enterocytes. Correlation analysis suggests that hypha formation, barrier damage above a minimum threshold level, and a decreased epithelial integrity are required for efficient fungal translocation. Translocation occurs predominantly via a transcellular route, which is associated with fungus-induced necrotic epithelial damage, but not apoptotic cell death. The cytolytic peptide toxin of C. albicans, candidalysin, was found to be essential for damage of enterocytes and was a key factor in subsequent fungal translocation, suggesting that transcellular translocation of C. albicans through intestinal layers is mediated by candidalysin. However, fungal invasion and low-level translocation can also occur via non-transcellular routes in a candidalysin-independent manner. This is the first study showing translocation of a human-pathogenic fungus across the intestinal barrier being mediated by a peptide toxin. PMID:29871918

  17. Deterioration of building materials in Roman catacombs: the influence of visitors.

    PubMed

    Sanchez-Moral, S; Luque, L; Cuezva, S; Soler, V; Benavente, D; Laiz, L; Gonzalez, J M; Saiz-Jimenez, C

    2005-10-15

    In the last decades, damages on building materials and mural paintings were observed in Roman catacombs. The damages were due to extensive formation of biofilms induced by artificial illumination and humidity. Microenvironmental data (temperature, CO(2) concentration, humidity, and atmospheric pressure) clearly showed the negative influence of visitors. Increasing heat, light and water vapour condensation into corridors and cubicles favoured biofilm development. The composition of biofilms was different and depended mainly on distance to illumination sources and humidity, thus denoting the influence of light on the growth of phototrophic microorganisms in the catacombs. In addition, biofilm distribution was governed by the type of material to be colonised. This study shows that countermeasures are needed to prevent deterioration of hypogean environments.

  18. Plasma membrane lipids and their role in fungal virulence.

    PubMed

    Rella, Antonella; Farnoud, Amir M; Del Poeta, Maurizio

    2016-01-01

    There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies. Published by Elsevier Ltd.

  19. Mammary Gland Pathology Subsequent to Acute Infection with Strong versus Weak Biofilm Forming Staphylococcus aureus Bovine Mastitis Isolates: A Pilot Study Using Non-Invasive Mouse Mastitis Model.

    PubMed

    Gogoi-Tiwari, Jully; Williams, Vincent; Waryah, Charlene Babra; Costantino, Paul; Al-Salami, Hani; Mathavan, Sangeetha; Wells, Kelsi; Tiwari, Harish Kumar; Hegde, Nagendra; Isloor, Shrikrishna; Al-Sallami, Hesham; Mukkur, Trilochan

    2017-01-01

    Biofilm formation by Staphylococcus aureus is an important virulence attribute because of its potential to induce persistent antibiotic resistance, retard phagocytosis and either attenuate or promote inflammation, depending upon the disease syndrome, in vivo. This study was undertaken to evaluate the potential significance of strength of biofilm formation by clinical bovine mastitis-associated S. aureus in mammary tissue damage by using a mouse mastitis model. Two S. aureus strains of the same capsular phenotype with different biofilm forming strengths were used to non-invasively infect mammary glands of lactating mice. Biofilm forming potential of these strains were determined by tissue culture plate method, ica typing and virulence gene profile per detection by PCR. Delivery of the infectious dose of S. aureus was directly through the teat lactiferous duct without invasive scraping of the teat surface. Both bacteriological and histological methods were used for analysis of mammary gland pathology of mice post-infection. Histopathological analysis of the infected mammary glands revealed that mice inoculated with the strong biofilm forming S. aureus strain produced marked acute mastitic lesions, showing profuse infiltration predominantly with neutrophils, with evidence of necrosis in the affected mammary glands. In contrast, the damage was significantly less severe in mammary glands of mice infected with the weak biofilm-forming S. aureus strain. Although both IL-1β and TNF-α inflammatory biomarkers were produced in infected mice, level of TNF-α produced was significantly higher (p<0.05) in mice inoculated with strong biofilm forming S. aureus than the weak biofilm forming strain. This finding suggests an important role of TNF-α in mammary gland pathology post-infection with strong biofilm-forming S. aureus in the acute mouse mastitis model, and offers an opportunity for the development of novel strategies for reduction of mammary tissue damage, with or without use of antimicrobials and/or anti-inflammatory compounds for the treatment of bovine mastitis.

  20. Alginate Oligosaccharides Inhibit Fungal Cell Growth and Potentiate the Activity of Antifungals against Candida and Aspergillus spp

    PubMed Central

    Tøndervik, Anne; Sletta, Håvard; Klinkenberg, Geir; Emanuel, Charlotte; Powell, Lydia C.; Pritchard, Manon F.; Khan, Saira; Craine, Kieron M.; Onsøyen, Edvar; Rye, Phil D.; Wright, Chris; Thomas, David W.; Hill, Katja E.

    2014-01-01

    The oligosaccharide OligoG, an alginate derived from seaweed, has been shown to have anti-bacterial and anti-biofilm properties and potentiates the activity of selected antibiotics against multi-drug resistant bacteria. The ability of OligoG to perturb fungal growth and potentiate conventional antifungal agents was evaluated using a range of pathogenic fungal strains. Candida (n = 11) and Aspergillus (n = 3) spp. were tested using germ tube assays, LIVE/DEAD staining, scanning electron microscopy (SEM), atomic force microscopy (AFM) and high-throughput minimum inhibition concentration assays (MICs). In general, the strains tested showed a significant dose-dependent reduction in cell growth at ≥6% OligoG as measured by optical density (OD600; P<0.05). OligoG (>0.5%) also showed a significant inhibitory effect on hyphal growth in germ tube assays, although strain-dependent variations in efficacy were observed (P<0.05). SEM and AFM both showed that OligoG (≥2%) markedly disrupted fungal biofilm formation, both alone, and in combination with fluconazole. Cell surface roughness was also significantly increased by the combination treatment (P<0.001). High-throughput robotic MIC screening demonstrated the potentiating effects of OligoG (2, 6, 10%) with nystatin, amphotericin B, fluconazole, miconazole, voriconazole or terbinafine with the test strains. Potentiating effects were observed for the Aspergillus strains with all six antifungal agents, with an up to 16-fold (nystatin) reduction in MIC. Similarly, all the Candida spp. showed potentiation with nystatin (up to 16-fold) and fluconazole (up to 8-fold). These findings demonstrate the antifungal properties of OligoG and suggest a potential role in the management of fungal infections and possible reduction of antifungal toxicity. PMID:25409186

  1. Candida Biofilms: Threats, Challenges, and Promising Strategies.

    PubMed

    Cavalheiro, Mafalda; Teixeira, Miguel Cacho

    2018-01-01

    Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis , and Candida parapsilosis , highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed.

  2. In Vitro Analysis of Finasteride Activity against Candida albicans Urinary Biofilm Formation and Filamentation

    PubMed Central

    Chavez-Dozal, Alba A.; Lown, Livia; Jahng, Maximillian; Walraven, Carla J.

    2014-01-01

    Candida albicans is the 3rd most common cause of catheter-associated urinary tract infections, with a strong propensity to form drug-resistant catheter-related biofilms. Due to the limited efficacy of available antifungals against biofilms, drug repurposing has been investigated in order to identify novel agents with activities against fungal biofilms. Finasteride is a 5-α-reductase inhibitor commonly used for the treatment of benign prostatic hyperplasia, with activity against human type II and III isoenzymes. We analyzed the Candida Genome Database and identified a C. albicans homolog of type III 5-α-reductase, Dfg10p, which shares 27% sequence identity and 41% similarity to the human type III 5-α-reductase. Thus, we investigated finasteride for activity against C. albicans urinary biofilms, alone and in combination with amphotericin B or fluconazole. Finasteride alone was highly effective in the prevention of C. albicans biofilm formation at doses of ≥16 mg/liter and the treatment of preformed biofilms at doses of ≥128 mg/liter. In biofilm checkerboard analyses, finasteride exhibited synergistic activity in the prevention of biofilm formation in a combination of 4 mg/liter finasteride with 2 mg/liter fluconazole. Finasteride inhibited filamentation, thus suggesting a potential mechanism of action. These results indicate that finasteride alone is highly active in the prevention of C. albicans urinary biofilms in vitro and has synergistic activity in combination with fluconazole. Further investigation of the clinical utility of finasteride in the prevention of urinary candidiasis is warranted. PMID:25049253

  3. Candida Biofilms: Threats, Challenges, and Promising Strategies

    PubMed Central

    Cavalheiro, Mafalda; Teixeira, Miguel Cacho

    2018-01-01

    Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis, and Candida parapsilosis, highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed. PMID:29487851

  4. Cross-kingdom interactions: Candida albicans and bacteria.

    PubMed

    Shirtliff, Mark E; Peters, Brian M; Jabra-Rizk, Mary Ann

    2009-10-01

    Bacteria and fungi are found together in a myriad of environments and particularly in a biofilm, where adherent species interact through diverse signaling mechanisms. Yet, despite billions of years of coexistence, the area of research exploring fungal-bacterial interactions, particularly within the context of polymicrobial infections, is still in its infancy. However, reports describing a multitude of wide-ranging interactions between the fungal pathogen Candida albicans and various bacterial pathogens are on the rise. An example of a mutually beneficial interaction is coaggregation, a phenomenon that takes place in oral biofilms where the adhesion of C. albicans to oral bacteria is considered crucial for its colonization of the oral cavity. In contrast, the interaction between C. albicans and Pseudomonas aeruginosa is described as being competitive and antagonistic in nature. Another intriguing interaction is that occurring between Staphylococcus aureus and C. albicans, which although not yet fully characterized, appears to be initially synergistic. These complex interactions between such diverse and important pathogens would have significant clinical implications if they occurred in an immunocompromised host. Therefore, understanding the mechanisms of adhesion and signaling involved in fungal-bacterial interactions may lead to the development of novel therapeutic strategies for impeding microbial colonization and development of polymicrobial disease. © 2009 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Biofilm Filtrates of Pseudomonas aeruginosa Strains Isolated from Cystic Fibrosis Patients Inhibit Preformed Aspergillus fumigatus Biofilms via Apoptosis

    PubMed Central

    Shirazi, Fazal; Ferreira, Jose A. G.; Stevens, David A.; Clemons, Karl V.; Kontoyiannis, Dimitrios P.

    2016-01-01

    Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) colonize cystic fibrosis (CF) patient airways. Pa culture filtrates inhibit Af biofilms, and Pa non-CF, mucoid (Muc-CF) and nonmucoid CF (NMuc-CF) isolates form an ascending inhibitory hierarchy. We hypothesized this activity is mediated through apoptosis induction. One Af and three Pa (non-CF, Muc-CF, NMuc-CF) reference isolates were studied. Af biofilm was formed in 96 well plates for 16 h ± Pa biofilm filtrates. After 24 h, apoptosis was characterized by viability dye DiBAc, reactive oxygen species (ROS) generation, mitochondrial membrane depolarization, DNA fragmentation and metacaspase activity. Muc-CF and NMuc-CF filtrates inhibited and damaged Af biofilm (p<0.0001). Intracellular ROS levels were elevated (p<0.001) in NMuc-CF-treated Af biofilms (3.7- fold) compared to treatment with filtrates from Muc-CF- (2.5- fold) or non-CF Pa (1.7- fold). Depolarization of mitochondrial potential was greater upon exposure to NMuc-CF (2.4-fold) compared to Muc-CF (1.8-fold) or non-CF (1.25-fold) (p<0.0001) filtrates. Exposure to filtrates resulted in more DNA fragmentation in Af biofilm, compared to control, mediated by metacaspase activation. In conclusion, filtrates from CF-Pa isolates were more inhibitory against Af biofilms than from non-CF. The apoptotic effect involves mitochondrial membrane damage associated with metacaspase activation. PMID:26930399

  6. Biofilm Filtrates of Pseudomonas aeruginosa Strains Isolated from Cystic Fibrosis Patients Inhibit Preformed Aspergillus fumigatus Biofilms via Apoptosis.

    PubMed

    Shirazi, Fazal; Ferreira, Jose A G; Stevens, David A; Clemons, Karl V; Kontoyiannis, Dimitrios P

    2016-01-01

    Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) colonize cystic fibrosis (CF) patient airways. Pa culture filtrates inhibit Af biofilms, and Pa non-CF, mucoid (Muc-CF) and nonmucoid CF (NMuc-CF) isolates form an ascending inhibitory hierarchy. We hypothesized this activity is mediated through apoptosis induction. One Af and three Pa (non-CF, Muc-CF, NMuc-CF) reference isolates were studied. Af biofilm was formed in 96 well plates for 16 h ± Pa biofilm filtrates. After 24 h, apoptosis was characterized by viability dye DiBAc, reactive oxygen species (ROS) generation, mitochondrial membrane depolarization, DNA fragmentation and metacaspase activity. Muc-CF and NMuc-CF filtrates inhibited and damaged Af biofilm (p<0.0001). Intracellular ROS levels were elevated (p<0.001) in NMuc-CF-treated Af biofilms (3.7- fold) compared to treatment with filtrates from Muc-CF- (2.5- fold) or non-CF Pa (1.7- fold). Depolarization of mitochondrial potential was greater upon exposure to NMuc-CF (2.4-fold) compared to Muc-CF (1.8-fold) or non-CF (1.25-fold) (p<0.0001) filtrates. Exposure to filtrates resulted in more DNA fragmentation in Af biofilm, compared to control, mediated by metacaspase activation. In conclusion, filtrates from CF-Pa isolates were more inhibitory against Af biofilms than from non-CF. The apoptotic effect involves mitochondrial membrane damage associated with metacaspase activation.

  7. Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans.

    PubMed

    Liu, Shiyu; Qiu, Wei; Zhang, Keke; Zhou, Xuedong; Ren, Biao; He, Jinzhi; Xu, Xin; Cheng, Lei; Li, Mingyun

    2017-01-01

    Streptococcus mutans and Candida albicans are common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies between S. mutans and C. albicans is explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS), and expression of glucosyltransferases (Gtfs). Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. More C. albicans cells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showed gtfs expression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth of S. mutans , and more S. mutans cells attracted more C. albicans cells due to the interaction between two species. Since S. mutans and C. albicans are putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers.

  8. In situ rheology of yeast biofilms.

    PubMed

    Brugnoni, Lorena I; Tarifa, María C; Lozano, Jorge E; Genovese, Diego

    2014-01-01

    The aim of the present work was to investigate the in situ rheological behavior of yeast biofilms growing on stainless steel under static and turbulent flow. The species used (Rhodototula mucilaginosa, Candida krusei, Candida kefyr and Candida tropicalis) were isolated from a clarified apple juice industry. The flow conditions impacted biofilm composition over time, with a predominance of C. krusei under static and turbulent flow. Likewise, structural variations occurred, with a tighter appearance under dynamic flow. Under turbulent flow there was an increase of 112 μm in biofilm thickness at 11 weeks (p < 0.001) and cell morphology was governed by hyphal structures and rounded cells. Using the in situ growth method introduced here, yeast biofilms were determined to be viscoelastic materials with a predominantly solid-like behavior, and neither this nor the G'0 values were significantly affected by the flow conditions or the growth time, and at large deformations their weak structure collapsed beyond a critical strain of about 1.5-5%. The present work could represent a starting point for developing in situ measurements of yeast rheology and contribute to a thin body of knowledge about fungal biofilm formation.

  9. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.

    PubMed

    Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P

    2016-05-01

    Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Small-molecule suppressors of Candida albicans biofilm formation synergistically enhance the antifungal activity of amphotericin B against clinical Candida isolates

    PubMed Central

    You, Jianlan; Du, Lin; King, Jarrod B.; Hall, Brian E.; Cichewicz, Robert H.

    2013-01-01

    A new class of fungal biofilm inhibitors represented by shearinines D (3) and E (4) were obtained from a Penicillium sp. isolate. The inhibitory activities of 3 and 4 were characterized using a new imaging flow-cytometer technique, which enabled the rapid phenotypic analysis of Candida albicans cell types (budding yeast cells, germ tube cells, pseudohyphae, and hyphae) in biofilms populations. The results were confirmed by experimental data obtained from three-dimensional confocal laser scanning microscopy and 2,3- bis-(2-methoxy-4- nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assays. These data indicate that 3 and 4 inhibited C. albicans biofilm formation by blocking the outgrowth of hyphae at a relatively late stage of biofilm development (IC50 = 8.5 μM and 7.6 μM, respectively). However, 3 and 4 demonstrated comparatively weak activity at disrupting existing biofilms. Compounds 3 and 4 also exhibited synergistic activities with amphotericin B against C. albicans and others clinical Candida isolates by enhancing the potency of amphotericin B up to eight-fold against cells in both developing and established biofilms. These data suggest that the Candida biofilm disruption and amphotericin B potentiating effects of 3 and 4 could be mediated through multiple biological targets. The shearinines are good tools for testing the potential advantages of using adjunctive therapies in combination with antifungals. PMID:23387427

  11. Large-scale production and isolation of Candida biofilm extracellular matrix.

    PubMed

    Zarnowski, Robert; Sanchez, Hiram; Andes, David R

    2016-12-01

    The extracellular matrix of biofilm is unique to the biofilm lifestyle, and it has key roles in community survival. A complete understanding of the biochemical nature of the matrix is integral to the understanding of the roles of matrix components. This knowledge is a first step toward the development of novel therapeutics and diagnostics to address persistent biofilm infections. Many of the assay methods needed for refined matrix composition analysis require milligram amounts of material that is separated from the cellular components of these complex communities. The protocol described here explains the large-scale production and isolation of the Candida biofilm extracellular matrix. To our knowledge, the proposed procedure is the only currently available approach in the field that yields milligram amounts of biofilm matrix. This procedure first requires biofilms to be seeded in large-surface-area roller bottles, followed by cell adhesion and biofilm maturation during continuous movement of the medium across the surface of the rotating bottle. The formed matrix is then separated from the entire biomass using sonication, which efficiently removes the matrix without perturbing the fungal cell wall. Subsequent filtration, dialysis and lyophilization steps result in a purified matrix product sufficient for biochemical, structural and functional assays. The overall protocol takes ∼11 d to complete. This protocol has been used for Candida species, but, using the troubleshooting guide provided, it could be adapted for other fungi or bacteria.

  12. Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections

    PubMed Central

    Alshami, Issam; Alharbi, Ahmed E

    2014-01-01

    Objective To explore the prevention of recurrent candiduria using natural based approaches and to study the antimicrobial effect of Hibiscus sabdariffa (H. sabdariffa) extract and the biofilm forming capacity of Candida albicans strains in the present of the H. sabdariffa extract. Methods In this particular study, six strains of fluconazole resistant Candida albicans isolated from recurrent candiduria were used. The susceptibility of fungal isolates, time-kill curves and biofilm forming capacity in the present of the H. sabdariffa extract were determined. Results Various levels minimum inhibitory concentration of the extract were observed against all the isolates. Minimum inhibitory concentration values ranged from 0.5 to 2.0 mg/mL. Time-kill experiment demonstrated that the effect was fungistatic. The biofilm inhibition assay results showed that H. sabdariffa extract inhibited biofilm production of all the isolates. Conclusions The results of the study support the potential effect of H. sabdariffa extract for preventing recurrent candiduria and emphasize the significance of the plant extract approach as a potential antifungal agent. PMID:25182280

  13. Exploring the applications of invertebrate host-pathogen models for in vivo biofilm infections.

    PubMed

    Edwards, Sarah; Kjellerup, Birthe V

    2012-07-01

    In the natural environment, microorganisms exist together in self-produced polymeric matrix biofilms. Often, several species, which can belong to both bacterial and fungal kingdoms, coexist and interact in ways which are not completely understood. Biofilm infections have become prevalent largely in medical settings because of the increasing use of indwelling medical devices such as catheters or prosthetics. These infections are resistant to common antimicrobial therapies because of the inherent nature of their structure. In terms of infectious biofilms, it is important to understand the microbe-microbe interactions and how the host immune system reacts in order to discover therapeutic targets. Currently, single infection immune response studies are thriving with the use of invertebrate models. This review highlights the advances in single microbial-host immune response as well as the promising aspects of polymicrobial biofilm study in five invertebrate models: Lemna minor (duckweed), Arabidopsis thaliana (thale cress), Dictyostelium discoideum (slime mold), Drosophila melanogaster (common fruit fly), and Caenorhabditis elegans (roundworm). © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Effect of fluoride and chlorhexidine digluconate mouthrinses on plaque biofilms.

    PubMed

    Rabe, Per; Twetman, Svante; Kinnby, Bertil; Svensäter, Gunnel; Davies, Julia R

    2015-01-01

    To develop a model in which to investigate the architecture of plaque biofilms formed on enamel surfaces in vivo and to compare the effects of anti-microbial agents of relevance for caries on biofilm vitality. Materials and Methodology : Enamel discs mounted on healing abutments in the pre-molar region were worn by three subjects for 7 days. Control discs were removed before subjects rinsed with 0.1% chlorhexidine digluconate (CHX) or 0.2% sodium fluoride (NaF) for 1 minute. Biofilms were stained with Baclight Live/Dead and z-stacks of images created using confocal scanning laser micoscopy. The levels of vital and dead/damaged bacteria in the biofilms, assessed as the proportion of green and red pixels respectively, were analysed using ImageTrak(®) software. Results : The subjects showed individual differences in biofilm architecture. The thickness of the biofilms varied from 28-96µm although cell density was always the greatest in the middle layers. In control biofilms, the overall levels of vitality were high (71-98%) especially in the area closest to the enamel interface. Rinsing with either CHX or NaF caused a similar reduction in overall vitality. CHX exerted an effect throughout the biofilm, particularly on the surface of cell clusters whereas NaF caused cell damage/death mainly in the middle to lower biofilm layers. Conclusion : We describe a model that allows the formation of mature, undisturbed oral biofilms on human enamel surfaces in vivo and show that CHX and NaF have a similar effect on overall vitality but differ in their sites of action.

  15. Molecular profiling of fungal communities in moisture damaged buildings before and after remediation--a comparison of culture-dependent and culture-independent methods.

    PubMed

    Pitkäranta, Miia; Meklin, Teija; Hyvärinen, Anne; Nevalainen, Aino; Paulin, Lars; Auvinen, Petri; Lignell, Ulla; Rintala, Helena

    2011-10-21

    Indoor microbial contamination due to excess moisture is an important contributor to human illness in both residential and occupational settings. However, the census of microorganisms in the indoor environment is limited by the use of selective, culture-based detection techniques. By using clone library sequencing of full-length internal transcribed spacer region combined with quantitative polymerase chain reaction (qPCR) for 69 fungal species or assay groups and cultivation, we have been able to generate a more comprehensive description of the total indoor mycoflora. Using this suite of methods, we assessed the impact of moisture damage on the fungal community composition of settled dust and building material samples (n = 8 and 16, correspondingly). Water-damaged buildings (n = 2) were examined pre- and post- remediation, and compared with undamaged reference buildings (n = 2). Culture-dependent and independent methods were consistent in the dominant fungal taxa in dust, but sequencing revealed a five to ten times higher diversity at the genus level than culture or qPCR. Previously unknown, verified fungal phylotypes were detected in dust, accounting for 12% of all diversity. Fungal diversity, especially within classes Dothideomycetes and Agaricomycetes tended to be higher in the water damaged buildings. Fungal phylotypes detected in building materials were present in dust samples, but their proportion of total fungi was similar for damaged and reference buildings. The quantitative correlation between clone library phylotype frequencies and qPCR counts was moderate (r = 0.59, p < 0.01). We examined a small number of target buildings and found indications of elevated fungal diversity associated with water damage. Some of the fungi in dust were attributable to building growth, but more information on the material-associated communities is needed in order to understand the dynamics of microbial communities between building structures and dust. The sequencing-based method proved indispensable for describing the true fungal diversity in indoor environments. However, making conclusions concerning the effect of building conditions on building mycobiota using this methodology was complicated by the wide natural diversity in the dust samples, the incomplete knowledge of material-associated fungi fungi and the semiquantitative nature of sequencing based methods.

  16. Filamentous fungal biofilm for production of human drug metabolites.

    PubMed

    Amadio, Jessica; Casey, Eoin; Murphy, Cormac D

    2013-07-01

    In drug development, access to drug metabolites is essential for assessment of toxicity and pharmacokinetic studies. Metabolites are usually acquired via chemical synthesis, although biological production is potentially more efficient with fewer waste management issues. A significant problem with the biological approach is the effective half-life of the biocatalyst, which can be resolved by immobilisation. The fungus Cunninghamella elegans is well established as a model of mammalian metabolism, although it has not yet been used to produce metabolites on a large scale. Here, we describe immobilisation of C. elegans as a biofilm, which can transform drugs to important human metabolites. The biofilm was cultivated on hydrophilic microtiter plates and in shake flasks containing a steel spring in contact with the glass. Fluorescence and confocal scanning laser microscopy revealed that the biofilm was composed of a dense network of hyphae, and biochemical analysis demonstrated that the matrix was predominantly polysaccharide. The medium composition was crucial for both biofilm formation and biotransformation of flurbiprofen. In shake flasks, the biofilm transformed 86% of the flurbiprofen added to hydroxylated metabolites within 24 h, which was slightly more than planktonic cultures (76%). The biofilm had a longer effective lifetime than the planktonic cells, which underwent lysis after 2×72 h cycles, and diluting the Sabouraud dextrose broth enabled the thickness of the biofilm to be controlled while retaining transformation efficiency. Thus, C. elegans biofilm has the potential to be applied as a robust biocatalyst for the production of human drug metabolites required for drug development.

  17. Simvastatin inhibits planktonic cells and biofilms of Candida and Cryptococcus species.

    PubMed

    Brilhante, Raimunda Sâmia Nogueira; Caetano, Erica Pacheco de; Oliveira, Jonathas Sales; Castelo-Branco, Débora de Souza Collares Maia; Souza, Elizabeth Ribeiro Yokobatake; Alencar, Lucas Pereira de; Cordeiro, Rossana de Aguiar; Bandeira, Tereza de Jesus Pinheiro Gomes; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha

    2015-01-01

    The antifungal activity of some statins against different fungal species has been reported. Thus, at the first moment, the in vitro antifungal activity of simvastatin, atorvastatin and pravastatin was tested against Candida spp. and Cryptococcus spp. Then, in a second approach, considering that the best results were obtained for simvastatin, this drug was evaluated in combination with antifungal drugs against planktonic growth and tested against biofilms of Candida spp. and Cryptococcus spp. Drug susceptibility testing was performed using the microdilution broth method, as described by the Clinical and Laboratory Standards Institute. The interaction between simvastatin and antifungals against planktonic cells was analyzed by calculating the fractional inhibitory concentration index. Regarding biofilm susceptibility, simvastatin was tested against growing biofilm and mature biofilm of one strain of each tested yeast species. Simvastatin showed inhibitory effect against Candida spp. and Cryptococcus spp. with minimum inhibitory concentration values ranging from 15.6 to 1000 mg L(-1) and from 62.5 to 1000 mg L(-1), respectively. The combination of simvastatin with itraconazole and fluconazole showed synergism against Candida spp. and Cryptococcus spp., while the combination of simvastatin with amphotericin B was synergistic only against Cryptococcus spp. Concerning the biofilm assays, simvastatin was able to inhibit both growing biofilm and mature biofilm of Candida spp. and Cryptococcus spp. The present study showed that simvastatin inhibits planktonic cells and biofilms of Candida and Cryptococcus species. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  18. Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans.

    PubMed

    Khan, Mohd Sajjad Ahmad; Ahmad, Iqbal

    2012-03-27

    Oils of Cymbopogon citratus and Syzygium aromaticum have been used in traditional medicine to treat fungal infections of skin, mouth, urinary and vaginal tract in Asian countries particularly India and other developing countries. To evaluate essential oils of Cymbopogon citratus and Syzygium aromaticum for their anti-biofilm activity against strong biofilm forming strains of Candida albicans. XTT reduction assay, Time kill assays, light microscopy and scanning electron microscopy (SEM) were employed to determine the effect of test oils on the Candida albicans biofilms. Most of the Candida albicans strains tested displayed formation of moderate to strong biofilms. Preformed Candida biofilms showed ≥1024 times increased resistance to antifungal drugs, 2 times to Syzygium aromaticum, but no increased tolerance for Cymbopogon citratus. Test oils were more active against preformed biofilms compared to amphotericin B and fluconazole. At 0.5× MIC, Cymbopogon citratus followed by Syzygium aromaticum were most inhibitory against biofilm formation. Light and electron microscopic studies revealed the deformity of three dimensional structures of biofilms formed in the presence of sub-MICs of Cymbopogon citratus. The cell membranes appeared to be the target site of compounds in sessile cells as displayed by SEM observations. Our data had demonstrated promising in vitro anti-biofilm activity by Cymbopogon citratus and Syzygium aromaticum and confirm the ethnopharmacological use of these oils in muco-cutaneous Candida infections. Furthermore, it suggests exploitation of these oils as new anti-biofilm products to deal with the problem of drug-resistance and recurrent infection associated with biofilm mode of growth of Candida spp. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Characterisation of the physical composition and microbial community structure of biofilms within a model full-scale drinking water distribution system.

    PubMed

    Fish, Katherine E; Collins, Richard; Green, Nicola H; Sharpe, Rebecca L; Douterelo, Isabel; Osborn, A Mark; Boxall, Joby B

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important driver in material accumulation within the DWDS.

  20. Characterisation of the Physical Composition and Microbial Community Structure of Biofilms within a Model Full-Scale Drinking Water Distribution System

    PubMed Central

    Fish, Katherine E.; Collins, Richard; Green, Nicola H.; Sharpe, Rebecca L.; Douterelo, Isabel; Osborn, A. Mark; Boxall, Joby B.

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important driver in material accumulation within the DWDS. PMID:25706303

  1. Effects of short-chain fatty acids on Actinomyces naeslundii biofilm formation.

    PubMed

    Yoneda, S; Kawarai, T; Narisawa, N; Tuna, E B; Sato, N; Tsugane, T; Saeki, Y; Ochiai, K; Senpuku, H

    2013-10-01

    Actinomyces naeslundii is an early colonizer and has important roles in the development of the oral biofilm. Short-chain fatty acids (SCFA) are secreted extracellularly as a product of metabolism by gram-negative anaerobes, e.g. Porphyromonas gingivalis and Fusobacterium nucleatum; and the SCFA may affect biofilm development with interaction between A. naeslundii and gram-negative bacteria. Our aim was to investigate the effects of SCFA on biofilm formation by A. naeslundii and to determine the mechanism. We used the biofilm formation assay in 96-well microtiter plates in tryptic soy broth without dextrose and with 0.25% sucrose using safranin stain of the biofilm monitoring 492 nm absorbance. To determine the mechanism by SCFA, the production of chaperones and stress-response proteins (GrpE and GroEL) in biofilm formation was examined using Western blot fluorescence activity with GrpE and GroEL antibodies. Adding butyric acid (6.25 mm) 0, 6 and 10 h after beginning culture significantly increased biofilm formation by A. naeslundii, and upregulation was observed at 16 h. Upregulation was also observed using appropriate concentrations of other SCFA. In the upregulated biofilm, production of GrpE and GroEL was higher where membrane-damaged or dead cells were also observed. The upregulated biofilm was significantly reduced by addition of anti-GroEL antibody. The data suggest biofilm formation by A. naeslundii was upregulated dependent on the production of stress proteins, and addition of SCFA increased membrane-damaged or dead cells. Production of GroEL may physically play an important role in biofilm development. 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

  2. The relationship between measured moisture conditions and fungal concentrations in water-damaged building materials.

    PubMed

    Pasanen, A L; Rautiala, S; Kasanen, J P; Raunio, P; Rantamäki, J; Kalliokoski, P

    2000-06-01

    We determined the moisture levels, relative humidity (RH) or moisture content (MC) of materials, and concentrations of culturable fungi, actinomycetes and total spores as well as a composition of fungal flora in 122 building material samples collected from 18 moisture problem buildings. The purpose of this work was to clarify if the is any correlation between the moisture parameters and microbial levels or generic composition depending on the type of materials and the time passed after a water damage. The results showed an agreement between the concentrations of total spores and culturable fungi for the wood, wood-based and gypsum board samples (r > 0.47). The concentrations of total spores and/or culturable fungi correlated with RH of materials particularly among the wood and insulation materials (r > 0.79), but not usually with MC (r < 0.45). For the samples collected from ongoing damage, there was a correlation between RH of materials and the concentrations of total spores and culturable fungi (r > 0.51), while such a relationship could not be observed for the samples taken from dry damage. A wide range of fungal species were found in the samples from ongoing damage, whereas Penicillia and in some cases yeasts dominated the fungal flora in the dry samples. This study indicates that fungal contamination can be evaluated on the basis of moisture measurements of constructions in ongoing damage, but the measurements are not solely adequate for estimation of possible microbial growth in dry damage.

  3. POSSIBLE ROLE OF FUNGAL HEMOLYSINS IN SICK BUILDING SYNDROME

    EPA Science Inventory

    Many fungi produce proteinaceous hemolytic agents. Like bacterial hemolysins, fungal hemolysins create pores or holes in membranes. Depending on which membranes are damaged, fungal hemolysins can produce a variety of effects. Fungal hemolysins can cause histamine release from ...

  4. In vivo Candida glabrata biofilm development on foreign bodies in a rat subcutaneous model.

    PubMed

    Kucharíková, Soňa; Neirinck, Bram; Sharma, Nidhi; Vleugels, Jef; Lagrou, Katrien; Van Dijck, Patrick

    2015-03-01

    Biofilm studies have been mostly dedicated to the major human fungal pathogen Candida albicans, whereas much less is known about this virulence factor in Candida glabrata, certainly under in vivo conditions. This study provides a deeper understanding of the biofilm development of C. glabrata, its architecture and susceptibility profile to fluconazole and echinocandins. In vitro and in vivo C. glabrata biofilms were developed inside serum-coated triple-lumen catheters placed in 24-well polystyrene plates or implanted subcutaneously in the back of a rat, respectively. Scanning electron microscopy and confocal scanning laser microscopy were used to visualize the biofilm architecture. Quantitative real-time PCR was used to demonstrate the expression profile of EPA1, EPA3, EPA6 and AWP1-AWP7 during in vivo biofilm formation. Mature biofilms were observed within the first 48 h and the amount of biofilm reached its maximum by 6 days. Architecturally, mature C. glabrata biofilms consisted of a thick network of yeast cells embedded in an extracellular matrix. Moreover, in vivo biofilms were susceptible to echinocandin drugs, whereas fluconazole remained ineffective. Gene expression profiling revealed that EPA3, EPA6, AWP2, AWP3 and AWP5 were up-regulated in in vivo biofilms compared with in vitro biofilms. C. glabrata is a unique microorganism, which, despite the lack of transition to the hyphal form, formed thick biofilms inside foreign bodies in vivo. To our knowledge, this is the first study that has described in vivo C. glabrata biofilm development and its architectural changes in detail and provides an insight into the susceptibility profile, as well as the gene expression machinery, of biofilm-associated infections. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. An implementation of next generation sequencing for prevention and diagnosis of urinary tract infection in urology.

    PubMed

    Mouraviev, Vladimir; McDonald, Michael

    2018-06-01

    The changing face of current infection phenotypes from planktonic to biofilm type has been developed implicating bacterial biofilms in recurrent infection. To date, no specific medical treatment exists to specifically target biofilms in the human host. Similarly, the identification of a biofilm has relied upon the analysis of tissue samples with electron microscopy or DNA identification with polymerase chain reaction (PCR) and sequencing. Standard culture and sensitivity test is not able to detect a presence of biofilms. Two types of molecular microbial diagnostic testing 'levels' are performed as noted below. In both types of analysis, the microbial DNA is extracted from the patient's sample. The patient report contains information about the pathogenic bacterial and fungal microorganisms detected, bacterial load and resistance genes to different antibiotics. Once the bacteria have been identified antibiotic recommendations are made based on research confirming the effectiveness of treatment. The technique was tested in 112 patients in different areas of urology for prevention and treatment purpose. The clinical application of next generation sequence in different clinical phase I-II trials (acute cystitis in 56 patients, rectal swabs before transrectal prostate biopsy in 32 men, neurogenic bladder in 13 patients, chronic bacterial prostatitis in 17 men) demonstrated that this novel approach extends our knowledge about the microbiome of the urogenital tract in both men and women. DNA sequence has a high sensitivity to detect a bacterial and fungal association with resistant genes to antibiotics revealed allowing to implement a targeted and individual prevention and treatment of urinary tract infection (UTI) with improved efficacy compared to standard culture and sensitivity technique. The next generation DNA sequence technology enables the discovery of new concepts regarding the role of microorganisms in diseases of the urinary tract with an individualized approach for a more accurate diagnosis, prevention, prophylaxis and treatment of UTI.

  6. Microplastics alter composition of fungal communities in aquatic ecosystems.

    PubMed

    Kettner, Marie Therese; Rojas-Jimenez, Keilor; Oberbeckmann, Sonja; Labrenz, Matthias; Grossart, Hans-Peter

    2017-11-01

    Despite increasing concerns about microplastic (MP) pollution in aquatic ecosystems, there is insufficient knowledge on how MP affect fungal communities. In this study, we explored the diversity and community composition of fungi attached to polyethylene (PE) and polystyrene (PS) particles incubated in different aquatic systems in north-east Germany: the Baltic Sea, the River Warnow and a wastewater treatment plant. Based on next generation 18S rRNA gene sequencing, 347 different operational taxonomic units assigned to 81 fungal taxa were identified on PE and PS. The MP-associated communities were distinct from fungal communities in the surrounding water and on the natural substrate wood. They also differed significantly among sampling locations, pointing towards a substrate and location specific fungal colonization. Members of Chytridiomycota, Cryptomycota and Ascomycota dominated the fungal assemblages, suggesting that both parasitic and saprophytic fungi thrive in MP biofilms. Thus, considering the worldwide increasing accumulation of plastic particles as well as the substantial vector potential of MP, especially these fungal taxa might benefit from MP pollution in the aquatic environment with yet unknown impacts on their worldwide distribution, as well as biodiversity and food web dynamics at large. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Fungal Diversity in Field Mold-Damaged Soybean Fruits and Pathogenicity Identification Based on High-Throughput rDNA Sequencing

    PubMed Central

    Liu, Jiang; Deng, Jun-cai; Yang, Cai-qiong; Huang, Ni; Chang, Xiao-li; Zhang, Jing; Yang, Feng; Liu, Wei-guo; Wang, Xiao-chun; Yong, Tai-wen; Du, Jun-bo; Shu, Kai; Yang, Wen-yu

    2017-01-01

    Continuous rain and an abnormally wet climate during harvest can easily lead to soybean plants being damaged by field mold (FM), which can reduce seed yield and quality. However, to date, the underlying pathogen and its resistance mechanism have remained unclear. The objective of the present study was to investigate the fungal diversity of various soybean varieties and to identify and confirm the FM pathogenic fungi. A total of 62,382 fungal ITS1 sequences clustered into 164 operational taxonomic units (OTUs) with 97% sequence similarity; 69 taxa were recovered from the samples by internal transcribed spacer (ITS) region sequencing. The fungal community compositions differed among the tested soybeans, with 42 OTUs being amplified from all varieties. The quadratic relationships between fungal diversity and organ-specific mildew indexes were analyzed, confirming that mildew on soybean pods can mitigate FM damage to the seeds. In addition, four potentially pathogenic fungi were isolated from FM-damaged soybean fruits; morphological and molecular identification confirmed these fungi as Aspergillus flavus, A. niger, Fusarium moniliforme, and Penicillium chrysogenum. Further re-inoculation experiments demonstrated that F. moniliforme is dominant among these FM pathogenic fungi. These results lay the foundation for future studies on mitigating or preventing FM damage to soybean. PMID:28515718

  8. Synergistic activity of the tyrocidines, antimicrobial cyclodecapeptides from Bacillus aneurinolyticus, with amphotericin B and caspofungin against Candida albicans biofilms.

    PubMed

    Troskie, Anscha Mari; Rautenbach, Marina; Delattin, Nicolas; Vosloo, Johan Arnold; Dathe, Margitta; Cammue, Bruno P A; Thevissen, Karin

    2014-07-01

    Tyrocidines are cationic cyclodecapeptides from Bacillus aneurinolyticus that are characterized by potent antibacterial and antimalarial activities. In this study, we show that various tyrocidines have significant activity against planktonic Candida albicans in the low-micromolar range. These tyrocidines also prevented C. albicans biofilm formation in vitro. Studies with the membrane-impermeable dye propidium iodide showed that the tyrocidines disrupt the membrane integrity of mature C. albicans biofilm cells. This membrane activity correlated with the permeabilization and rapid lysis of model fungal membranes containing phosphatidylcholine and ergosterol (70:30 ratio) induced by the tyrocidines. The tyrocidines exhibited pronounced synergistic biofilm-eradicating activity in combination with two key antifungal drugs, amphotericin B and caspofungin. Using a Caenorhabditis elegans infection model, we found that tyrocidine A potentiated the activity of caspofungin. Therefore, tyrocidines are promising candidates for further research as antifungal drugs and as agents for combinatorial treatment. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs

    PubMed Central

    Pierce, Christopher G.; Lopez-Ribot, Jose L.

    2014-01-01

    Introduction Targeting pathogenetic mechanisms rather than essential processes represents a very attractive alternative for the development of new antibiotics. This may be particularly important in the case of antimycotics, due to the urgent need for novel antifungal drugs and the paucity of selective fungal targets. The opportunistic pathogenic fungus Candida albicans is the main etiological agent of candidiasis, the most common human fungal infection. These infections carry unacceptably high mortality rates, a clear reflection of the many shortcomings of current antifungal therapy, including the limited armamentarium of antifungal agents, their toxicity, and the emergence of resistance. Moreover the antifungal pipeline is mostly dry. Areas covered This review covers some of the most recent progress towards understanding C. albicans pathogenetic processes and how to harness this information for the development of anti-virulence agents. The two principal areas covered are filamentation and biofilm formation, as C. albicans pathogenicity is intimately linked to its ability to undergo morphogenetic conversions between yeast and filamentous morphologies and to its ability to form biofilms. Expert opinion We argue that filamentation and biofilm formation represent high value targets, yet clinically unexploited, for the development of novel anti-virulence approaches against candidiasis. Although this has proved a difficult task despite increasing understanding at the molecular level of C. albicans virulence, we highlight new opportunities and prospects for antifungal drug development targeting these two important biological processes. PMID:23738751

  10. Synergistic activity of lysozyme and antifungal agents against Candida albicans biofilms on denture acrylic surfaces.

    PubMed

    Samaranayake, Y H; Cheung, B P K; Parahitiyawa, N; Seneviratne, C J; Yau, J Y Y; Yeung, K W S; Samaranayake, L P

    2009-02-01

    Denture related oral candidiasis is a recalcitrant fungal infection not easily resolved by topical antifungals. The antimycotic protein lysozyme, in saliva is an important host defense mechanism although its activity against Candida biofilms on denture acrylic has not been evaluated. (i) To establish a clinically relevant denture acrylic assay model to develop standardized Candida albicans biofilms, and (ii) assess the inhibitory effects of lysozyme alone and, the latter combined with antifungals (nystatin, amphotericin B, ketoconazole and 5-fluorocytosine) on sessile Candida cells and, finally (iii) to visualize the accompanying ultrastructural changes. The rotating-disc biofilm reactor was used to develop standardized 48 h Candida biofilms on acrylic discs in YNB/100 mM glucose medium and the biofilm metabolic activity was monitored using a tetrazolium reduction assay. The biofilm metabolic activity was similar in 18 identical denture acrylic discs (p<0.05) thus validating the rotating-disc biofilm model. Very low concentrations of lysozyme (6.25 microg/ml) significantly (p<0.01) inhibited Candida biofilm formation indicating that lysozyme may likely regulate intra-oral Candida biofilm development. Although 100 microg/ml lysozyme killed 45% of sessile Candida cells, further increasing its concentration (up to 240 microg/ml) had no such effect. Nystatin, amphotericin B, and ketoconazole in association with 100 microg/ml lysozyme exhibited effective synergistic killing of biofilm Candida in comparison to drug-free controls. Scanning electron and confocal scanning laser microscopy analysis confirmed the latter trends. Our results indicate that agents found in biological fluids such as lysozyme could be a safe adjunct to antifungals in future treatment strategies for recalcitrant candidal infections.

  11. Staphylococcus aureus biofilms: Nemesis of endoscopic sinus surgery.

    PubMed

    Singhal, Deepti; Foreman, Andrew; Jervis-Bardy, Joshua; Bardy, Josh-Jervis; Wormald, Peter-John

    2011-07-01

    Chronic rhinosinusitis (CRS) patients with biofilms have persistent postoperative symptoms, ongoing mucosal inflammation, and recurrent infections. Recent evidence suggests that biofilms of differing species confer varying disease profiles in CRS patients. We aimed to prospectively investigate the effects of Staphylococcus aureus, Pseudomonas aeruginosa, Haemophilus influenzae, and fungal biofilms on outcomes following endoscopic sinus surgery (ESS). Prospective blinded study. In this prospective blinded study, 39 patients undergoing ESS for CRS assessed their symptoms preoperatively using internationally accepted standardized symptom scoring systems and quality-of-life measures (10-point visual analog scale, Sino-Nasal Outcome Test-20, global severity of CRS). Their sinonasal mucosa was graded (Lund-Kennedy scale) and extent of radiologic disease on computed tomography scans scored (Lund-McKay scale). Random sinonasal tissue samples were assessed for different bacterial species forming biofilms by using fluorescent in-situ hybridization and confocal laser microscopy. For 12 months after surgery, CRS symptoms, quality of life, and objective evidence of persisting disease were assessed by using the preoperative tools. Different bacterial species combinations were found in 30 of 39 patients; 60% of these 30 biofilms were polymicrobial biofilms and 70% had S aureus biofilms. Preoperative nasendoscopy and radiologic disease severity were significantly worse in patients with multiple biofilms (P = .02 and P = .01, respectively), and they had worse postsurgery mucosal outcomes on endoscopy (P = .01) requiring significantly more postoperative visits (P = .04). Those with S aureus biofilms progressed poorly with their symptom scores and quality-of-life outcomes, with significant differences in nasendoscopy scores (P = .007). S. aureus biofilms play a dominant role in negatively affecting outcomes of ESS with persisting postoperative symptoms, ongoing mucosal inflammation, and infections. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  12. Comparative Ploidy Proteomics of Candida albicans Biofilms Unraveled the Role of the AHP1 Gene in the Biofilm Persistence Against Amphotericin B*

    PubMed Central

    Zeng, Guisheng; Qingsong, Lin; Kwang, Lim Teck; Tong, Cao; Chan, Fong Yee; Wang, Yue; Seneviratne, Chaminda Jayampath

    2016-01-01

    Candida albicans is a major fungal pathogen causing lethal infections in immunocompromised patients. C. albicans forms antifungal tolerant biofilms contributing significantly to therapeutic failure. The recently established haploid C. albicans biofilm model provides a new toolbox to uncover the mechanism governing the higher antifungal tolerance of biofilms. Here, we comprehensively examined the proteomics and antifungal susceptibility of standard diploid (SC5314 and BWP17) and stable haploid (GZY792 and GZY803) strains of C. albicans biofilms. Subsequent downstream analyses identified alkyl hydroperoxide reductase 1 (AHP1) as a critical determinant of C. albicans biofilm's tolerance of amphotericin B. At 32 μg/ml of amphotericin B, GZY803 haploid biofilms showed 0.1% of persister population as compared with 1% of the diploid biofilms. AHP1 expression was found to be lower in GZY803 biofilms, and AHP1 overexpression in GZY803 restored the percentage of persister population. Consistently, deleting AHP1 in the diploid strain BWP17 caused a similar increase in amphotericin B susceptibility. AHP1 expression was also positively correlated with the antioxidant potential. Furthermore, C. albicans ira2Δ/Δ biofilms were susceptible to amphotericin B and had a diminished antioxidant capacity. Interestingly, AHP1 overexpression in the ira2Δ/Δ strain restored the antioxidant potential and enhanced the persister population against amphotericin B, and shutting down the AHP1 expression in ira2Δ/Δ biofilms reversed the effect. In conclusion, we provide evidence that the AHP1 gene critically determines the amphotericin B tolerance of C. albicans biofilms possibly by maintaining the persisters' antioxidant capacity. This finding will open up new avenues for developing therapies targeting the persister population of C. albicans biofilms. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD004274. PMID:27644984

  13. Comparative Ploidy Proteomics of Candida albicans Biofilms Unraveled the Role of the AHP1 Gene in the Biofilm Persistence Against Amphotericin B.

    PubMed

    Truong, Thuyen; Zeng, Guisheng; Qingsong, Lin; Kwang, Lim Teck; Tong, Cao; Chan, Fong Yee; Wang, Yue; Seneviratne, Chaminda Jayampath

    2016-11-01

    Candida albicans is a major fungal pathogen causing lethal infections in immunocompromised patients. C. albicans forms antifungal tolerant biofilms contributing significantly to therapeutic failure. The recently established haploid C. albicans biofilm model provides a new toolbox to uncover the mechanism governing the higher antifungal tolerance of biofilms. Here, we comprehensively examined the proteomics and antifungal susceptibility of standard diploid (SC5314 and BWP17) and stable haploid (GZY792 and GZY803) strains of C. albicans biofilms. Subsequent downstream analyses identified alkyl hydroperoxide reductase 1 (AHP1) as a critical determinant of C. albicans biofilm's tolerance of amphotericin B. At 32 μg/ml of amphotericin B, GZY803 haploid biofilms showed 0.1% of persister population as compared with 1% of the diploid biofilms. AHP1 expression was found to be lower in GZY803 biofilms, and AHP1 overexpression in GZY803 restored the percentage of persister population. Consistently, deleting AHP1 in the diploid strain BWP17 caused a similar increase in amphotericin B susceptibility. AHP1 expression was also positively correlated with the antioxidant potential. Furthermore, C. albicans ira2Δ/Δ biofilms were susceptible to amphotericin B and had a diminished antioxidant capacity. Interestingly, AHP1 overexpression in the ira2Δ/Δ strain restored the antioxidant potential and enhanced the persister population against amphotericin B, and shutting down the AHP1 expression in ira2Δ/Δ biofilms reversed the effect. In conclusion, we provide evidence that the AHP1 gene critically determines the amphotericin B tolerance of C. albicans biofilms possibly by maintaining the persisters' antioxidant capacity. This finding will open up new avenues for developing therapies targeting the persister population of C. albicans biofilms. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD004274. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation.

    PubMed

    Mowat, Eilidh; Rajendran, Ranjith; Williams, Craig; McCulloch, Elaine; Jones, Brian; Lang, Sue; Ramage, Gordon

    2010-12-01

    Aspergillus fumigatus is often isolated from the lungs of cystic fibrosis (CF) patients, but unlike in severely immunocompromised individuals, the mortality rates are low. This suggests that competition from bacteria within the CF lung may be inhibitory. The purpose of this study was to investigate how Pseudomonas aeruginosa influences A. fumigatus conidial germination and biofilm formation. Aspergillus fumigatus biofilm formation was inhibited by direct contact with P. aeruginosa, but had no effect on preformed biofilm. A secreted heat-stable soluble factor was also shown to exhibit biofilm inhibition. Coculture of P. aeruginosa quorum-sensing mutants (PAO1:ΔLasI, PAO1:ΔLasR) did not significantly inhibit A. fumigatus biofilms (52.6-58.8%) to the same extent as that of the PA01 wild type (22.9-30.1%), both by direct and by indirect interaction (P<0.001). Planktonic and sessile inhibition assays with a series of short carbon chain molecules (decanol, decanoic acid and dodecanol) demonstrated that these molecules could both inhibit and disrupt biofilms in a concentration-dependent manner. Overall, this suggests that small diffusible and heat-stable molecules may be responsible for the competitive inhibition of filamentous fungal growth in polymicrobial environments such as the CF lung. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Lab-scale preparations of Candida albicans and dual Candida albicans-Candida glabrata biofilms on the surface of medical-grade polyvinyl chloride (PVC) perfusion tube using a modified gravity-supported free-flow biofilm incubator (GS-FFBI).

    PubMed

    Shao, Jing; Lu, KeQiao; Tian, Ge; Cui, YanYan; Yan, YuanYuan; Wang, TianMing; Zhang, XinLong; Wang, ChangZhong

    2015-02-01

    The assembly of a man-made gravity-supported free-flow biofilm incubator (GS-FFBI) was described, which was composed of a gas cushion injector and four incubators. The GS-FFBI had the characteristics of (i) a bottom-up flow direction, and (ii) lab-scale biofilm preparation without the use of a multichannel pump. Two opportunistic fungal strains, namely Candida albicans and Candida glabrata, were employed to incubate C. albicans and dual C. albicans-C. glabrata biofilms on the surface of medical-grade polyvinyl chloride perfusion tube. In terms of the results from {2, 3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide} (XTT) assay, dry weight measurement, colony-forming unit counting, susceptibility test, and scanning electron microscopy, it was demonstrated that GS-FFBI could form both stable single and dual Candida biofilms with no significant variations among the four incubators or the three daily incubations within 21h, and could operate for at least 96h smoothly with no contamination of stock medium. The results also indicated, for the first time, that C. albicans and C. glabrata might be co-existent competitively and symbiotically in the dual biofilms with flowing media. GS-FFBI would be a useful device to study in vitro morphological and physiological features of microbial biofilms in the medical settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Synergistic antifungal effect of chitosan-stabilized selenium nanoparticles synthesized by pulsed laser ablation in liquids against Candida albicans biofilms.

    PubMed

    Lara, Humberto H; Guisbiers, Gregory; Mendoza, Jonathan; Mimun, Lawrence C; Vincent, Brandy A; Lopez-Ribot, Jose L; Nash, Kelly L

    2018-01-01

    Candida albicans is a major opportunistic fungal pathogen. One of the most important virulence factors that contribute to the pathogenesis of candidiasis is its ability to form biofilms. A key characteristic of Candida biofilms is their resistance to antifungal agents. Due to significant morbidity and mortality rates related to biofilm-associated drug resistance, there is an urgency to develop novel nanotechnology-based approaches preventing biofilm-related infections. In this study, we report, for the first time, the synthesis of selenium nanoparticles by irradiating selenium pellets by nanosecond pulsed laser ablation in liquid chitosan as a capping agent. Synergy of the fungicidal effect of selenium nanoparticles and chitosan was quantified by the combination index theorem of Chou-Talalay. This drug combination resulted in a potent fungicidal effect against a preformed C. albicans biofilm in a dose-response manner. By advanced electron microscopy techniques, we documented the adhesive and permeabilizing properties of chitosan, therefore allowing selenium nanoparticles to enter as the cell wall of the yeast became disrupted and distorted. Most importantly, we demonstrated a potent quantitative synergistic effect when compounds such as selenium and chitosan are combined. These chitosan-stabilized selenium nanoparticles could be used for ex vivo applications such as sterilizers for surfaces and biomedical devices.

  17. Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material.

    PubMed

    Cavalcanti, Indira M G; Nobbs, Angela H; Ricomini-Filho, Antônio Pedro; Jenkinson, Howard F; Del Bel Cury, Altair A

    2016-04-01

    Candida-associated stomatitis affects up to 60% of denture wearers, and Candida albicans remains the most commonly isolated fungal species. The oral bacteria Actinomyces oris and Streptococcus oralis are abundant in early dental plaque. The aims of this study were to determine the effects of S. oralis and A. oris on the development of C. albicans biofilms on denture material. Resin discs were coated with saliva and at early (1.5 h) or later (24 h) stages of biofilm development, cell numbers of each species were determined. Spatial distribution of microorganisms was visualized by confocal scanning laser microscopy of biofilms labelled by differential fluorescence or by fluorescence in situ hybridization. Interkingdom interactions underpinning biofilm development were also evaluated planktonically utilizing fluorescence microscopy. Synergistic interactions between all three species occurred within biofilms and planktonically. Bacterial cells coaggregated with each other and adhered singly or in coaggregates to C. albicans hyphal filaments. Streptococcus oralis appeared to enhance hyphal filament production and C. albicans biovolume was increased 2-fold. Concomitantly, cell numbers of S. oralis and A. oris were enhanced by C. albicans. Thus, cooperative physical and metabolic processes occurring between these three microbial species intensify pathogenic plaque communities on denture surfaces. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Ploidy-Regulated Variation in Biofilm-Related Phenotypes in Natural Isolates of Saccharomyces cerevisiae

    PubMed Central

    Hope, Elyse A.; Dunham, Maitreya J.

    2014-01-01

    The ability of yeast to form biofilms contributes to better survival under stressful conditions. We see the impact of yeast biofilms and “flocs” (clumps) in human health and industry, where forming clumps enables yeast to act as a natural filter in brewing and forming biofilms enables yeast to remain virulent in cases of fungal infection. Despite the importance of biofilms in yeast natural isolates, the majority of our knowledge about yeast biofilm genetics comes from work with a few tractable laboratory strains. A new collection of sequenced natural isolates from the Saccharomyces Genome Resequencing Project enabled us to examine the breadth of biofilm-related phenotypes in geographically, ecologically, and genetically diverse strains of Saccharomyces cerevisiae. We present a panel of 31 haploid and 24 diploid strains for which we have characterized six biofilm-related phenotypes: complex colony morphology, complex mat formation, flocculation, agar invasion, polystyrene adhesion, and psuedohyphal growth. Our results show that there is extensive phenotypic variation between and within strains, and that these six phenotypes are primarily uncorrelated or weakly correlated, with the notable exception of complex colony and complex mat formation. We also show that the phenotypic strength of these strains varies significantly depending on ploidy, and the diploid strains demonstrate both decreased and increased phenotypic strength with respect to their haploid counterparts. This is a more complex view of the impact of ploidy on biofilm-related phenotypes than previous work with laboratory strains has suggested, demonstrating the importance and enormous potential of working with natural isolates of yeast. PMID:25060625

  19. Ploidy-regulated variation in biofilm-related phenotypes in natural isolates of Saccharomyces cerevisiae.

    PubMed

    Hope, Elyse A; Dunham, Maitreya J

    2014-07-24

    The ability of yeast to form biofilms contributes to better survival under stressful conditions. We see the impact of yeast biofilms and "flocs" (clumps) in human health and industry, where forming clumps enables yeast to act as a natural filter in brewing and forming biofilms enables yeast to remain virulent in cases of fungal infection. Despite the importance of biofilms in yeast natural isolates, the majority of our knowledge about yeast biofilm genetics comes from work with a few tractable laboratory strains. A new collection of sequenced natural isolates from the Saccharomyces Genome Resequencing Project enabled us to examine the breadth of biofilm-related phenotypes in geographically, ecologically, and genetically diverse strains of Saccharomyces cerevisiae. We present a panel of 31 haploid and 24 diploid strains for which we have characterized six biofilm-related phenotypes: complex colony morphology, complex mat formation, flocculation, agar invasion, polystyrene adhesion, and psuedohyphal growth. Our results show that there is extensive phenotypic variation between and within strains, and that these six phenotypes are primarily uncorrelated or weakly correlated, with the notable exception of complex colony and complex mat formation. We also show that the phenotypic strength of these strains varies significantly depending on ploidy, and the diploid strains demonstrate both decreased and increased phenotypic strength with respect to their haploid counterparts. This is a more complex view of the impact of ploidy on biofilm-related phenotypes than previous work with laboratory strains has suggested, demonstrating the importance and enormous potential of working with natural isolates of yeast. Copyright © 2014 Hope and Dunham.

  20. Molecular profiling of fungal communities in moisture damaged buildings before and after remediation - a comparison of culture-dependent and culture-independent methods

    PubMed Central

    2011-01-01

    Background Indoor microbial contamination due to excess moisture is an important contributor to human illness in both residential and occupational settings. However, the census of microorganisms in the indoor environment is limited by the use of selective, culture-based detection techniques. By using clone library sequencing of full-length internal transcribed spacer region combined with quantitative polymerase chain reaction (qPCR) for 69 fungal species or assay groups and cultivation, we have been able to generate a more comprehensive description of the total indoor mycoflora. Using this suite of methods, we assessed the impact of moisture damage on the fungal community composition of settled dust and building material samples (n = 8 and 16, correspondingly). Water-damaged buildings (n = 2) were examined pre- and post- remediation, and compared with undamaged reference buildings (n = 2). Results Culture-dependent and independent methods were consistent in the dominant fungal taxa in dust, but sequencing revealed a five to ten times higher diversity at the genus level than culture or qPCR. Previously unknown, verified fungal phylotypes were detected in dust, accounting for 12% of all diversity. Fungal diversity, especially within classes Dothideomycetes and Agaricomycetes tended to be higher in the water damaged buildings. Fungal phylotypes detected in building materials were present in dust samples, but their proportion of total fungi was similar for damaged and reference buildings. The quantitative correlation between clone library phylotype frequencies and qPCR counts was moderate (r = 0.59, p < 0.01). Conclusions We examined a small number of target buildings and found indications of elevated fungal diversity associated with water damage. Some of the fungi in dust were attributable to building growth, but more information on the material-associated communities is needed in order to understand the dynamics of microbial communities between building structures and dust. The sequencing-based method proved indispensable for describing the true fungal diversity in indoor environments. However, making conclusions concerning the effect of building conditions on building mycobiota using this methodology was complicated by the wide natural diversity in the dust samples, the incomplete knowledge of material-associated fungi fungi and the semiquantitative nature of sequencing based methods. PMID:22017920

  1. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans

    PubMed Central

    Harrison, Paul F.; Lo, Tricia L.; Quenault, Tara; Dagley, Michael J.; Bellousoff, Matthew; Powell, David R.; Beilharz, Traude H.; Traven, Ana

    2015-01-01

    The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability) we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease. PMID:26474309

  2. The Effectiveness of Voriconazole in Therapy of Candida glabrata's Biofilms Oral Infections and Its Influence on the Matrix Composition and Gene Expression.

    PubMed

    Rodrigues, Célia F; Gonçalves, Bruna; Rodrigues, Maria Elisa; Silva, Sónia; Azeredo, Joana; Henriques, Mariana

    2017-08-01

    Candida glabrata is one of most prevalent yeast in fungal infections, especially in immunocompromised patients. Its azole resistance results in a low therapeutic response, particularly when associated with biofilms. The main goal of this work was to study the effectiveness of voriconazole (Vcz) against C. glabrata biofilms oral pathologies, as esophageal or oropharyngeal candidiasis. Antifungal susceptibilities were determined in pre-formed 24-h-biofilms and ERG genes expression was determined by qRT-PCR. Protein quantification was performed using BCA ® Kit, carbohydrate was estimated according to the Dubois assay and β-1,3 glucans concentration were determined using Glucatell ® kit. Finally, ergosterol, Vcz, and fluconazole (Flu) concentrations within the biofilm matrices were determined by RP-HPLC. Results showed that C. glabrata biofilms were more susceptible to Vcz than to Flu and that ERG genes expression evidenced an overexpression of the three ERG genes in the presence of both azoles. The matrix content presented a remarked decrease in proteins and an increase in carbohydrates, namely β-1,3 glucans. Ergosterol was successfully detected and quantified in the biofilm matrices, with no differences in all the considered conditions. Vcz demonstrated better diffusion through the biofilms and better cell penetration capacities, than Flu, indicating that the structure of the drug molecule fully influences its dissemination through the biofilm matrices. This work showed that Vcz is notably more effective than Flu for the treatment of resistant C. glabrata oral biofilms, which demonstrates a clinical relevance in its future use for the treatment of oropharyngeal/esophageal candidiasis caused by this species.

  3. Candida albicans biofilms formed into catheters and probes and their resistance to amphotericin B.

    PubMed

    Boucherit-Atmani, Z; Seddiki, S M L; Boucherit, K; Sari-Belkharoubi, L; Kunkel, D

    2011-09-01

    In Algeria, many bacterial biofilms have been studied but those of fungal origin, particularly those due to the yeast Candida albicans remained unidentified. The present study was performed at the Chabane Hamdoune hospital in Maghnia (Algeria), where 51 strains of C. albicans representing 16.94% of all taken samples were isolated. They were collected from catheters and probes used in different hospital services with variable rates; the most concerned service was ICU (40.74%) followed by gynecology department (17.39%), while general surgery came third (15.79%). Testing the antifungal property of amphotericin B (AmB) we showed clearly that the sessile cells of C. albicans were much more resistant than their planktonic counterparts (suspended cells), especially when the resistance increased during the different phases of biofilm formation until it reached its threshold at the ripening stage (at 48h). Furthermore, scanning electron microscopy of the isolated strains in the laboratory revealed the formation of biofilms on catheters by C. albicans. Surprisingly, observations revealed the presence of a new structure in these biofilms: a chlamydospore? Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. Hybrid magnetite nanoparticles/ Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity

    NASA Astrophysics Data System (ADS)

    Chifiriuc, Carmen; Grumezescu, Valentina; Grumezescu, Alexandru Mihai; Saviuc, Crina; Lazăr, Veronica; Andronescu, Ecaterina

    2012-04-01

    Biofilms formed by fungal organisms are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence of the fungi despite antifungal therapy. The purpose of this study is to combine the unique properties of nanoparticles with the antimicrobial activity of the Rosmarinus officinalis essential oil in order to obtain a nanobiosystem that could be pelliculised on the surface of catheter pieces, in order to obtain an improved resistance to microbial colonization and biofilm development by Candida albicans and C. tropicalis clinical strains. The R. officinalis essential oils were extracted in a Neo-Clevenger type apparatus, and its chemical composition was settled by GC-MS analysis. Functionalized magnetite nanoparticles of up to 20 nm size had been synthesized by precipitation method adapted for microwave conditions, with oleic acid as surfactant. The catheter pieces were coated with suspended core/shell nanoparticles (Fe3O4/oleic acid:CHCl3), by applying a magnetic field on nanofluid, while the CHCl3 diluted essential oil was applied by adsorption in a secondary covering treatment. The fungal adherence ability was investigated in six multiwell plates, in which there have been placed catheters pieces with and without hybrid nanoparticles/essential oil nanobiosystem pellicle, by using culture-based methods and confocal laser scanning microscopy (CLSM). The R. officinalis essential oil coated nanoparticles strongly inhibited the adherence ability and biofilm development of the C. albicans and C. tropicalis tested strains to the catheter surface, as shown by viable cell counts and CLSM examination. Due to the important implications of C andida spp. in human pathogenesis, especially in prosthetic devices related infections and the emergence of antifungal tolerance/resistance, using the new core/shell/coated shell based on essential oil of R. officinalis to inhibit the fungal adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with antibiofilm properties.

  5. Associations between fungal species and water-damaged building materials.

    PubMed

    Andersen, Birgitte; Frisvad, Jens C; Søndergaard, Ib; Rasmussen, Ib S; Larsen, Lisbeth S

    2011-06-01

    Fungal growth in damp or water-damaged buildings worldwide is an increasing problem, which has adverse effects on both the occupants and the buildings. Air sampling alone in moldy buildings does not reveal the full diversity of fungal species growing on building materials. One aim of this study was to estimate the qualitative and quantitative diversity of fungi growing on damp or water-damaged building materials. Another was to determine if associations exist between the most commonly found fungal species and different types of materials. More than 5,300 surface samples were taken by means of V8 contact plates from materials with visible fungal growth. Fungal identifications and information on building material components were analyzed using multivariate statistic methods to determine associations between fungi and material components. The results confirmed that Penicillium chrysogenum and Aspergillus versicolor are the most common fungal species in water-damaged buildings. The results also showed Chaetomium spp., Acremonium spp., and Ulocladium spp. to be very common on damp building materials. Analyses show that associated mycobiotas exist on different building materials. Associations were found between (i) Acremonium spp., Penicillium chrysogenum, Stachybotrys spp., Ulocladium spp., and gypsum and wallpaper, (ii) Arthrinium phaeospermum, Aureobasidium pullulans, Cladosporium herbarum, Trichoderma spp., yeasts, and different types of wood and plywood, and (iii) Aspergillus fumigatus, Aspergillus melleus, Aspergillus niger, Aspergillus ochraceus, Chaetomium spp., Mucor racemosus, Mucor spinosus, and concrete and other floor-related materials. These results can be used to develop new and resistant building materials and relevant allergen extracts and to help focus research on relevant mycotoxins, microbial volatile organic compounds (MVOCs), and microparticles released into the indoor environment.

  6. Air sampling results in relation to extent of fungal colonization of building materials in some water-damaged buildings.

    PubMed

    Miller, J D; Haisley, P D; Reinhardt, J H

    2000-09-01

    We studied the extent and nature of fungal colonization of building materials in 58 naturally ventilated apartments that had suffered various kinds of water damage in relation to air sampling done before the physical inspections. The results of air samples from each apartment were compared by rank order of species with pooled data from outdoor air. Approximately 90% of the apartments that had significant amounts of fungi in wall cavities were identified by air sampling. There was no difference in the average fungal colony forming unit values per m3 between the 15 apartments with the most fungal contamination and the 15 with the least. In contrast, the prevalence of samples with fungal species significantly different than the pooled outdoor air between the more contaminated versus the less contaminated apartments was approximately 10-fold. We provide information on methods to document fungal contamination in buildings.

  7. Bacterial communities in pigmented biofilms formed on the sandstone bas-relief walls of the Bayon Temple, Angkor Thom, Cambodia.

    PubMed

    Kusumi, Asako; Li, Xianshu; Osuga, Yu; Kawashima, Arata; Gu, Ji-Dong; Nasu, Masao; Katayama, Yoko

    2013-01-01

    The Bayon temple in Angkor Thom, Cambodia has shown serious deterioration and is subject to the formation of various pigmented biofilms. Because biofilms are damaging the bas-reliefs, low reliefs engraved on the surface of sandstone, information about the microbial community within them is indispensable to control biofilm colonization. PCR-denaturing gradient gel electrophoresis (DGGE) analysis of biofilm samples from the pigmented sandstone surfaces showed that the bacterial community members in the biofilms differed clearly from those in the air and had low sequence similarity to database sequences. Non-destructive sampling of biofilm revealed novel bacterial groups of predominantly Rubrobacter in salmon pink biofilm, Cyanobacteria in chrome green biofilm, Cyanobacteria and Chloroflexi in signal violet biofilm, Chloroflexi in black gray biofilm, and Deinococcus-Thermus, Cyanobacteria, and Rubrobacter in blue green biofilm. Serial peeling-off of a thick biofilm by layers with adhesive sheets revealed a stratified structure: the blue-green biofilm, around which there was serious deterioration, was very rich in Cyanobacteria near the surface and Chloroflexi in deep layer below. Nitrate ion concentrations were high in the blue-green biofilm. The characteristic distribution of bacteria at different biofilm depths provides valuable information on not only the biofilm formation process but also the sandstone weathering process in the tropics.

  8. Development of a Contemporary Animal Model of Candida albicans-Associated Denture Stomatitis Using a Novel Intraoral Denture System

    PubMed Central

    Johnson, Clorinda C.; Yu, Alika; Lee, Heeje; Fidel, Paul L.

    2012-01-01

    Denture stomatitis (DS) is a fungal infection characterized by inflammation of the oral mucosa in direct contact with the denture and affects up to 50% of denture wearers. Despite the prevalence, very little is known about the role of fungal or host factors that contribute to pathogenesis. Recently, we developed a novel intraoral denture system for rodent research. This denture system consists of custom-fitted fixed and removable parts to allow repeated sampling and longitudinal studies. The purpose of this study was to use this denture system to develop a clinically relevant animal model of DS. To establish DS, rats were inoculated with pelleted Candida albicans, which resulted in sustained colonization of the denture and palate for 8 weeks postinoculation. Biofilm formation on the denture was observed by week 4 and on the palate by week 6 postinoculation. Rats were monitored for clinical signs of disease by assigning a clinical score after macroscopic examination of the palate tissue according to Newton's method. By week 4 postinoculation, the majority of inoculated rats with dentures exhibited a clinical score of 1 (pinpoint erythema). By week 6 and week 8 postinoculation, increasing percentages of rats exhibited a clinical score of 2 (diffuse erythema/edema). Histological analysis of palate tissue demonstrated progressively increasing inflammatory cell recruitment throughout the time course of the infection. Palatal biofilm formation was commensurate with development of palatal erythema, which suggests a role for biofilm in the inflammatory response. PMID:22392931

  9. Impacts of flood damage on airborne bacteria and fungi in homes after the 2013 Colorado Front Range flood.

    PubMed

    Emerson, Joanne B; Keady, Patricia B; Brewer, Tess E; Clements, Nicholas; Morgan, Emily E; Awerbuch, Jonathan; Miller, Shelly L; Fierer, Noah

    2015-03-03

    Flood-damaged homes typically have elevated microbial loads, and their occupants have an increased incidence of allergies, asthma, and other respiratory ailments, yet the microbial communities in these homes remain under-studied. Using culture-independent approaches, we characterized bacterial and fungal communities in homes in Boulder, CO, USA 2-3 months after the historic September, 2013 flooding event. We collected passive air samples from basements in 50 homes (36 flood-damaged, 14 non-flooded), and we sequenced the bacterial 16S rRNA gene (V4-V5 region) and the fungal ITS1 region from these samples for community analyses. Quantitative PCR was used to estimate the abundances of bacteria and fungi in the passive air samples. Results indicate significant differences in bacterial and fungal community composition between flooded and non-flooded homes. Fungal abundances were estimated to be three times higher in flooded, relative to non-flooded homes, but there were no significant differences in bacterial abundances. Penicillium (fungi) and Pseudomonadaceae and Enterobacteriaceae (bacteria) were among the most abundant taxa in flooded homes. Our results suggest that bacterial and fungal communities continue to be affected by flooding, even after relative humidity has returned to baseline levels and remediation has removed any visible evidence of flood damage.

  10. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans.

    PubMed

    Sun, Lingmei; Liao, Kai; Wang, Dayong

    2015-01-01

    The first step in infection by Candida albicans is adhesion to host cells or implanted medical devices and this followed by hyphal growth and biofilm formation. Yeast-to-hyphal transition has long been identified as a key factor in fungal virulence. Following biofilm formation, C. albicans is usually less sensitive or insensitive to antifungals. Therefore, development of new antifungals with inhibitory action on adhesion, yeast-hyphal transition and biofilm formation by C. albicans is very necessary. The effects of magnolol and honokiol on hypha growth were investigated using different induction media. Their inhibitory effects were determined using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5- carboxanilide assay, and biofilm thickness and viability were observed by a confocal scanning laser microscope. Mammalian cells were used in adhesion assays. Genes related to hyphae development and cell adhesions were analyzed by real-time reverse transcription-polymerase chain reaction. The exogenous cyclic adenosine monophosphate was used to determine the mechanisms of action of magnolol and honokiol. Caenorhabditis elegans was used as an in vivo model to estimate the antifungal activities of magnolol and honokiol. Magnolol and honokiol inhibited adhesion, the transition from yeast to hypha, and biofilm formation by C. albicans through the Ras1-cAMP-Efg1 pathway. Moreover, magnolol and honokiol prolonged the survival of nematodes infected by C. albicans. Magnolol and honokiol have potential inhibitory effects against biofilm formation by C. albicans. This study provides useful information towards the development of new strategies to reduce the incidence of C. albicans biofilm-associated infection.

  11. Bacterial and fungal biofilm formation on contact lenses and their susceptibility to lens care solutions.

    PubMed

    Kackar, Siddharth; Suman, Ethel; Kotian, M Shashidhar

    2017-01-01

    Microbial biofilm formation on contact lenses and lens storage cases may be a risk factor for contact lens-associated corneal infections. Various types of contact lens care solutions are used to reduce microbial growths on lenses. The present study aimed at comparing the growths of biofilms on the different contact lenses and lens cases. The study also aimed at determining the effect of lens care solutions and bacteriophage on these biofilms. One type of hard lens and two types of soft lenses were used for the study. The organisms used were Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 60193 and Escherichia coli ATCC 25922. Biofilm production was performed by modified O'Toole and Kolter method and effect of lens cleaning solutions and a crude coliphage on biofilms was also studied. Results were visualised using scanning electron microscopy and quantitated by colony counting method and spectrophotometric measurement of optical density (OD). Statistical analysis was done by SPSS 11.5, Kruskal-Wallis test and Chi-square test. Soft lens cleaning solutions had a significant inhibitory effect (P = 0.020) on biofilm formation on soft lenses and also lens cases (P < 0.001). Soft lens cleaning solution 2 was more efficient than solution 1. However, no such inhibitory effect was observed with regard to hard lens cleaning solution, but for a significant reduction in the OD values (P < 0.001). There was no significant inhibitory effect by bacteriophages. This study showed the importance of selecting the appropriate lens cleaning solution to prevent biofilm production on contact lenses.

  12. The protective role of immunoglobulins in fungal infections and inflammation.

    PubMed

    Elluru, Sri Ramulu; Kaveri, Srini V; Bayry, Jagadeesh

    2015-03-01

    Increased incidence of fungal infections in the immunocompromised individuals and fungi-mediated allergy and inflammatory conditions in immunocompetent individuals is a cause of concern. Consequently, there is a need for efficient therapeutic alternatives to treat fungal infections and inflammation. Several studies have demonstrated that antibodies or immunoglobulins have a role in restricting the fungal burden and their clearance. However, based on the data from monoclonal antibodies, it is now evident that the efficacy of antibodies in fungal infections is dependent on epitope specificity, abundance of protective antibodies, and their isotype. Antibodies confer protection against fungal infections by multiple mechanisms that include direct neutralization of fungi and their antigens, inhibition of growth of fungi, modification of gene expression, signaling and lipid metabolism, causing iron starvation, inhibition of polysaccharide release, and biofilm formation. Antibodies promote opsonization of fungi and their phagocytosis, complement activation, and antibody-dependent cell toxicity. Passive administration of specific protective monoclonal antibodies could also prove to be beneficial in drug resistance cases, to reduce the dosage and associated toxic symptoms of anti-fungal drugs. The longer half-life of the antibodies and flexibilities to modify their structure/forms are additional advantages. The clinical data obtained with two monoclonal antibodies should incite interests in translating pre-clinical success into the clinics. The anti-inflammatory and immunoregulatory role of antibodies in fungal inflammation could be exploited by intravenous immunoglobulin or IVIg.

  13. Analysis of the Aspergillus fumigatus Biofilm Extracellular Matrix by Solid-State Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Reichhardt, Courtney; Ferreira, Jose A G; Joubert, Lydia-Marie; Clemons, Karl V; Stevens, David A; Cegelski, Lynette

    2015-11-01

    Aspergillus fumigatus is commonly responsible for lethal fungal infections among immunosuppressed individuals. A. fumigatus forms biofilm communities that are of increasing biomedical interest due to the association of biofilms with chronic infections and their increased resistance to antifungal agents and host immune factors. Understanding the composition of microbial biofilms and the extracellular matrix is important to understanding function and, ultimately, to developing strategies to inhibit biofilm formation. We implemented a solid-state nuclear magnetic resonance (NMR) approach to define compositional parameters of the A. fumigatus extracellular matrix (ECM) when biofilms are formed in RPMI 1640 nutrient medium. Whole biofilm and isolated matrix networks were also characterized by electron microscopy, and matrix proteins were identified through protein gel analysis. The (13)C NMR results defined and quantified the carbon contributions in the insoluble ECM, including carbonyls, aromatic carbons, polysaccharide carbons (anomeric and nonanomerics), aliphatics, etc. Additional (15)N and (31)P NMR spectra permitted more specific annotation of the carbon pools according to C-N and C-P couplings. Together these data show that the A. fumigatus ECM produced under these growth conditions contains approximately 40% protein, 43% polysaccharide, 3% aromatic-containing components, and up to 14% lipid. These fundamental chemical parameters are needed to consider the relationships between composition and function in the A. fumigatus ECM and will enable future comparisons with other organisms and with A. fumigatus grown under alternate conditions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Biodegradation of HDPE by Aspergillus spp. from marine ecosystem of Gulf of Mannar, India.

    PubMed

    Sangeetha Devi, Rajendran; Rajesh Kannan, Velu; Nivas, Duraisamy; Kannan, Kanthaiah; Chandru, Sekar; Robert Antony, Arokiaswamy

    2015-07-15

    High density polyethylene (HDPE) is the most commonly found non-degradable solid waste among the polyethylene. In this present study, HDPE degrading various fungal strains were isolated from the polyethylene waste dumped marine coastal area and screened under in vitro condition. Based on weight loss and FT-IR Spectrophotometric analysis, two fungal strains designated as VRKPT1 and VRKPT2 were found to be efficient in HDPE degradation. Through the sequence analysis of ITS region homology, the isolated fungi were identified as Aspergillus tubingensis VRKPT1 and Aspergillus flavus VRKPT2. The biofilm formation observed under epifluorescent microscope had shown the viability of fungal strains even after one month of incubation. The biodegradation of HDPE film nature was further investigated through SEM analysis. HDPE poses severe environmental threats and hence the ability of fungal isolates was proved to utilize virgin polyethylene as the carbon source without any pre-treatment and pro-oxidant additives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Phenol removal performance and microbial community shift during pH shock in a moving bed biofilm reactor (MBBR).

    PubMed

    Zhou, Hao; Wang, Guochen; Wu, Minghuo; Xu, Weiping; Zhang, Xuwang; Liu, Lifen

    2018-06-05

    A moving bed biofilm reactor (MBBR) effectively removes pollutants and even runs under extreme conditions. However, the pH shock resistance of a biofilm in MBBRs has been rarely reported. In this study, simulated phenol wastewater with acidic shock (pH 7.5-3.0) was used. In the pH shock phase, the phenol and COD removal efficiencies initially decreased and gradually increased to more than 90%. Microscopic studies showed that the superficial biofilm was mainly composed of fungi (yeasts) in the acidic pH shock phase. The microbial community composition in the acidic pH shock phase was significantly different from those in other phases. Firmicutes and Ascomycota were the dominant bacterial and fungal phyla in this stage, respectively. 16S rRNA gene-based functional annotation indicated that functional profiles related to aromatic compound degradation existed in all of the stages. Therefore, MBBRs show potential for the treatment of phenolic wastewater exposed to pH shock. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. [Influence of slime production and adhesion of Candida sp. on biofilm formation].

    PubMed

    Ciok-Pater, Emilia; Smolak, Przemysław; Wróblewska, Joanna; Gospodarek, Eugenia

    2011-01-01

    The increase of fungal infections in recent years is connected with the progress in medicine. The vast usage of biomaterials is an inseparable element of contemporary medicine but it also leads to development of infections. Yeast-like fungi Candida albicans are still the main pathogen of candidiasis. The ability to slime production and adhesion to polystyrene of Candida sp. on different surfaces can cause to form biofilm on surfaces of biomaterials used in production of catheters, drains and prosthesis. The aim of the study was to evaluate the influence of slime production and adhesion to polystyrene, of Candida sp. on biofilm formation on different biomaterials. 50 strains of Candida sp. were examined. They isolated from ill to Clinics of Anesthesiology and Intensive Therapy University Hospital No 1 of dr. A. Jurasza in Bydgoszcz. The ability to slime production was evaluated by Christensen method in modification Davenport and Branchini methods. The adhesion to polystyrene was evaluated by Richards et el method. The ability to produce biofilm biomaterials by the studied fungi was measured after 72 hours of incubation at 37 degrees C on different biomaterials. Yeast-like fungi Candida sp. fabricating slime and adhesion forming frequently biofilm on surface researched of biomaterials. Influence of chosen biological specificity ascertain on the ability to produce biofilm on surfaces of siliconized latex and polyvinylchloride.

  17. Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans.

    PubMed

    Sun, Mengjun; Dong, Jiachen; Xia, Yiru; Shu, Rong

    2017-06-01

    The aim of this study was to evaluate the potential antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm modes of Streptococcus mutans (S. mutans). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The effects on planktonic growth and biofilm metabolic activity were evaluated by growth curve determination and MTT assay, respectively. Then, colony forming unit (CFU) counting, scanning electron microscopy (SEM) and real-time PCR were performed to further investigate the actions of DHA and EPA on exponential phase-S. mutans. Confocal laser scanning microscopy (CLSM) was used to detect the influences on mature biofilms. The MICs of DHA and EPA against S. mutans were 100 μM and 50 μM, respectively; the MBC of both compounds was 100 μM. In the presence of 12.5 μM-100 μM DHA or EPA, the planktonic growth and biofilm metabolic activity were reduced in varying degrees. For exponential-phase S. mutans, the viable counts, the bacterial membranes and the biofilm-associated gene expression were damaged by 100 μM DHA or EPA treatment. For 1-day-old biofilms, the thickness was decreased and the proportion of membrane-damaged bacteria was increased in the presence of 100 μM DHA or EPA. These results indicated that, DHA and EPA possessed antibacterial activities against planktonic and biofilm growing S. mutans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. New 1,5 and 2,5-disubstituted tetrazoles-dependent activity towards surface barrier of Candida albicans.

    PubMed

    Staniszewska, Monika; Gizińska, Małgorzata; Mikulak, Ewa; Adamus, Klaudia; Koronkiewicz, Mirosława; Łukowska-Chojnacka, Edyta

    2018-02-10

    A series of novel tetrazole derivatives was synthetized using N-alkylation or Michael-type addition reactions, and screened for their fungistatic potential against Candida albicans (the lack of endpoint = 100%). Among them, the selected compounds 2d, 4b, and 6a differing in substituents at the tetrazole ring were non-toxic to Galleria mellonella larvae in vivo and exerted slight toxicity against Caco-2 in vitro (CC 50 at 256 μg/mL). An antagonistic effect of tetrazole derivatives 2d, 4b, and 6a respectively in combination with Fluconazole was shown using the checker board and colorimetric methods (fractional inhibitory concentration indexes FICIs >1). The most active 2d and 6a displayed an inverse relation between MICs in the presence of exogenous ergosterol, the effect was opposite to Itraconazole and Amphotericin B. The differences between 6a's and 2d's action mode were noted. Combining both flow cytometry and fluorescence image analyses respectively showed the complexity of planktonic and biofilm cell demise mode under the tetrazole derivatives tested. The following evidences for 6a's interaction with fungal membrane were noted: necrosis-like programmed cell death (97.03 ± 0.88), DNA denaturation (no laddering), mitochondrial damage (XTT assay), reduced adhesion to human epithelium (>50% at 0.0313 μg/mL, p ≤ .05), irregular deposit of chitin, and attenuated morphogenesis in mature biofilm. The treatment with 6a reduced pathogenicity of C. albicans during infection in G. mellonella. Contrariwise, 2d enhancing fungal adhesion displayed mechanism targeted to the cell wall (due to the presence of 3-chloropropyl clubbed with aryltetrazole) in the presence of osmotic protector. Under 2d, the accidental cell death (88.60% ± 4.81) was observed. In conclusion, all tetrazole derivatives were obtained in satisfactory yields (60-95%) using efficient, simple and not expensive methods. Fungistatic and slightly anticancer tetrazole derivatives with the novel action mode can circumvent an appearance of antifungal-resistant strains. These results indicate that they are worthy of further studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. A Novel Antifungal Is Active against Candida albicans Biofilms and Inhibits Mutagenic Acetaldehyde Production In Vitro

    PubMed Central

    Nieminen, Mikko T.; Novak-Frazer, Lily; Rautemaa, Vilma; Rajendran, Ranjith; Sorsa, Timo; Ramage, Gordon; Bowyer, Paul; Rautemaa, Riina

    2014-01-01

    The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH). ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA) significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM). ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h) biofilms were significantly reduced after exposure to HICA (p<0.05) with the largest reductions seen at acidic pH. Caspofungin was mainly active against biofilms pre-grown for 4 h at neutral pH. Mutagenic levels (>40 µM) of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (p<0.05). Expression of genes responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm infections. PMID:24867320

  20. Associations between Fungal Species and Water-Damaged Building Materials ▿

    PubMed Central

    Andersen, Birgitte; Frisvad, Jens C.; Søndergaard, Ib; Rasmussen, Ib S.; Larsen, Lisbeth S.

    2011-01-01

    Fungal growth in damp or water-damaged buildings worldwide is an increasing problem, which has adverse effects on both the occupants and the buildings. Air sampling alone in moldy buildings does not reveal the full diversity of fungal species growing on building materials. One aim of this study was to estimate the qualitative and quantitative diversity of fungi growing on damp or water-damaged building materials. Another was to determine if associations exist between the most commonly found fungal species and different types of materials. More than 5,300 surface samples were taken by means of V8 contact plates from materials with visible fungal growth. Fungal identifications and information on building material components were analyzed using multivariate statistic methods to determine associations between fungi and material components. The results confirmed that Penicillium chrysogenum and Aspergillus versicolor are the most common fungal species in water-damaged buildings. The results also showed Chaetomium spp., Acremonium spp., and Ulocladium spp. to be very common on damp building materials. Analyses show that associated mycobiotas exist on different building materials. Associations were found between (i) Acremonium spp., Penicillium chrysogenum, Stachybotrys spp., Ulocladium spp., and gypsum and wallpaper, (ii) Arthrinium phaeospermum, Aureobasidium pullulans, Cladosporium herbarum, Trichoderma spp., yeasts, and different types of wood and plywood, and (iii) Aspergillus fumigatus, Aspergillus melleus, Aspergillus niger, Aspergillus ochraceus, Chaetomium spp., Mucor racemosus, Mucor spinosus, and concrete and other floor-related materials. These results can be used to develop new and resistant building materials and relevant allergen extracts and to help focus research on relevant mycotoxins, microbial volatile organic compounds (MVOCs), and microparticles released into the indoor environment. PMID:21531835

  1. Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae

    NASA Astrophysics Data System (ADS)

    Vijayakumar, S.; Vinoj, G.; Malaikozhundan, B.; Shanthi, S.; Vaseeharan, B.

    2015-02-01

    In this study, zinc oxide nanoparticles were biologically synthesized using the leaf extract of Plectranthus amboinicus (Pam-ZnO NPs). The synthesized Pam-ZnO NPs were characterized by UV-Vis spectrophotometer, FTIR, TEM and XRD analysis. TEM analysis of Pam-ZnO NPs showed the average size of about 20-50 nm. Pam-ZnO NPs control the growth of methicillin-resistant Staphylococcus aureus biofilms (MRSA ATCC 33591) at the concentration of 8-10 μg/ml. Confocal laser scanning microscope (CLSM) images revealed that Pam-ZnO NPs strongly inhibited the biofilm forming ability of S. aureus. In addition, Pam-ZnO NPs showed 100% mortality of fourth instar mosquito larvae of Anopheles stephensi, Culex quinquefasciatus and Culex tritaeniorhynchus at the concentration of 8 and 10 μg/ml. The histopathological studies of Pam-ZnO NPs treated A. stephensi and C. quinquefasciatus larvae revealed the presence of damaged cells and tissues in the mid-gut. The damaged tissues suffered major changes including rupture and disintegration of epithelial layer and cellular vacuolization. The present study conclude that Pam-ZnO NPs showed effective control of S. aureus biofilms and mosquito larvae by damaging the mid gut cells.

  2. In vitro antimicrobial effects and mechanism of atmospheric-pressure He/O2 plasma jet on Staphylococcus aureus biofilm

    NASA Astrophysics Data System (ADS)

    Xu, Zimu; Shen, Jie; Cheng, Cheng; Hu, Shuheng; Lan, Yan; Chu, Paul K.

    2017-03-01

    The antimicrobial effects and associated mechanism of inactivation of Staphylococcus aureus (S. aureus) NCTC-8325 biofilms induced by a He/O2 atmospheric-pressure plasma jet (APPJ) are investigated in vitro. According to CFU (colony forming units) counting and the resazurin-based assay, the 10 min He/O2 (0.5%) APPJ treatment produces the optimal inactivation efficacy (>5 log10 ml-1) against the S. aureus biofilm and 5% of the bacteria enter a viable but non-culturable (VBNC) state. Meanwhile, 94% of the bacteria suffer from membrane damage according to SYTO 9/PI counterstaining. Scanning electron microscopy (SEM) reveals that plasma exposure erodes the extracellular polymeric substances (EPS) and then the cellular structure. The H2DCFDA-stained biofilms show larger concentrations of intracellular reactive oxygen species (ROS) in membrane-intact bacteria with increasing plasma dose. The admixture of oxygen in the working gas highly contributes to the deactivation efficacy of the APPJ against S. aureus and the plasma-induced endogenous ROS may work together with the discharge-generated ROS to continuously damage the bacterial membrane structure leading to deactivation of the biofilm microbes.

  3. Indoor microbiota in severely moisture damaged homes and the impact of interventions.

    PubMed

    Jayaprakash, Balamuralikrishna; Adams, Rachel I; Kirjavainen, Pirkka; Karvonen, Anne; Vepsäläinen, Asko; Valkonen, Maria; Järvi, Kati; Sulyok, Michael; Pekkanen, Juha; Hyvärinen, Anne; Täubel, Martin

    2017-10-13

    The limited understanding of microbial characteristics in moisture-damaged buildings impedes efforts to clarify which adverse health effects in the occupants are associated with the damage and to develop effective building intervention strategies. The objectives of this current study were (i) to characterize fungal and bacterial microbiota in house dust of severely moisture-damaged residences, (ii) to identify microbial taxa associated with moisture damage renovations, and (iii) to test whether the associations between the identified taxa and moisture damage are replicable in another cohort of homes. We applied bacterial 16S rRNA gene and fungal ITS amplicon sequencing complemented with quantitative PCR and chemical-analytical approaches to samples of house dust, and also performed traditional cultivation of bacteria and fungi from building material samples. Active microbial growth on building materials had significant though small influence on the house dust bacterial and fungal communities. Moisture damage interventions-including actual renovation of damaged homes and cases where families moved to another home-had only a subtle effect on bacterial community structure, seen as shifts in abundance weighted bacterial profiles after intervention. While bacterial and fungal species richness were reduced in homes that were renovated, they were not reduced for families that moved houses. Using different discriminant analysis tools, we were able identify taxa that were significantly reduced in relative abundance during renovation of moisture damage. For bacteria, the majority of candidates belonged to different families within the Actinomycetales order. Results for fungi were overall less consistent. A replication study in approximately 400 homes highlighted some of the identified taxa, confirming associations with observations of moisture damage and mold. The present study is one of the first studies to analyze changes in microbiota due to moisture damage interventions using high-throughput sequencing. Our results suggest that effects of moisture damage and moisture damage interventions may appear as changes in the abundance of individual, less common, and especially bacterial taxa, rather than in overall community structure.

  4. Disruptive innovations: new anti-infectives in the age of resistance

    PubMed Central

    Tegos, George P.; Hamblin, Michael R.

    2013-01-01

    This special issue of Current Opinion in Pharmacology is concerned with new developments in antimicrobial drugs and covers innovative strategies for dealing with microbial infection in the age of multi-antibiotic resistance. Despite widespread fears that many infectious diseases may become untreatable, disruptive innovations are in the process of being discovered and developed that may go some way to leading the fight-back against the rising threat. Natural products, quorum sensing inhibitors, biofilm disruptors, gallium-based drugs, cyclodextrin inhibitors of pore-forming toxins, anti-fungals that deal with biofilms, and light based antimicrobial strategies are specifically addressed. New non-vertebrate animal models of infection may facilitate high-throughput screening (HTS) of novel anti-infectives. PMID:24012294

  5. Antibiofilm agents: A new perspective for antimicrobial strategy.

    PubMed

    Li, Xi-Hui; Lee, Joon-Hee

    2017-10-01

    Biofilms are complex microbial architectures that attach to surfaces and encase microorganisms in a matrix composed of self-produced hydrated extracellular polymeric substances (EPSs). In biofilms, microorganisms become much more resistant to antimicrobial treatments, harsh environmental conditions, and host immunity. Biofilm formation by microbial pathogens greatly enhances survival in hosts and causes chronic infections that result in persistent inflammation and tissue damages. Currently, it is believed over 80% of chronic infectious diseases are mediated by biofilms, and it is known that conventional antibiotic medications are inadequate at eradicating these biofilm-mediated infections. This situation demands new strategies for biofilm-associated infections, and currently, researchers focus on the development of antibiofilm agents that are specific to biofilms, but are nontoxic, because it is believed that this prevents the development of drug resistance. Here, we review the most promising antibiofilm agents undergoing intensive research and development.

  6. Bubbles versus biofilms: a novel method for the removal of marine biofilms attached on antifouling coatings using an ultrasonically activated water stream

    NASA Astrophysics Data System (ADS)

    Salta, M.; Goodes, L. R.; Maas, B. J.; Dennington, S. P.; Secker, T. J.; Leighton, T. G.

    2016-09-01

    The accumulation of marine organisms on a range of manmade surfaces, termed biofouling, has proven to be the Achilles’ heel of the shipping industry. Current antifouling coatings, such as foul release coatings (FRCs), only partially inhibit biofouling, since biofilms remain a major issue. Mechanical ship hull cleaning is commonly employed to remove biofilms, but these methods tend to damage the antifouling coating and often do not result in full removal. Here, we report the effectiveness of biofilm removal from FRCs through a novel cleaning device that uses an ultrasonically activated stream (UAS). In this device, ultrasound enhances the cleaning properties of microbubbles in a freely flowing stream of water. The UAS was applied on two types of commercial FRCs which were covered with biofilm growth following twelve days immersion in the marine environment. Biofilm removal was quantified in terms of reduction in biovolume and surface roughness, both measured using an optical profilometer, which were then compared with similar measurements after cleaning with a non-ultrasonically activated water stream. It was found that the UAS significantly improves the cleaning capabilities of a water flow, up to the point where no detectable biofilm remained on the coating surfaces. Overall biofilm surface coverage was significantly lower on the FRC coatings cleaned with the UAS system when compared to the coatings cleaned with water or not cleaned at all. When biofilm biomass removal was investigated, the UAS system resulted in significantly lower biovolume values even when compared to the water cleaning treatment with biovolume values close to zero. Remarkably, the surface roughness of the coatings after cleaning with the UAS was found to be comparable to that of the blank, non-immersed coatings, illustrating that the UAS did not damage the coatings in the process. The data supporting this study are openly available from the University of Southampton repository at http://dx.doi.org/10.5258/SOTON/399420.

  7. Development of a Novel, Highly Quantitative In Vivo Model for the Study of Biofilm-Impaired Cutaneous Wound Healing

    DTIC Science & Technology

    2011-01-01

    established on microbiologically naıve tissues (such as in endocarditis or cystic fibrosis). Whether on damaged heart valves or poorly functioning respiratory...time. Although wound infections represent a spectrum of bacterial phenotypes, involving bacteria in both the plank- tonic and biofilm phases, we use...our model to study differ- ences in planktonic- and biofilm-dominant infections , which are classically associated with acute and chronic wound

  8. Effects of Magnolol and Honokiol on Adhesion, Yeast-Hyphal Transition, and Formation of Biofilm by Candida albicans

    PubMed Central

    Sun, Lingmei; Liao, Kai; Wang, Dayong

    2015-01-01

    Background The first step in infection by Candida albicans is adhesion to host cells or implanted medical devices and this followed by hyphal growth and biofilm formation. Yeast-to-hyphal transition has long been identified as a key factor in fungal virulence. Following biofilm formation, C. albicans is usually less sensitive or insensitive to antifungals. Therefore, development of new antifungals with inhibitory action on adhesion, yeast-hyphal transition and biofilm formation by C. albicans is very necessary. Methods The effects of magnolol and honokiol on hypha growth were investigated using different induction media. Their inhibitory effects were determined using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5- carboxanilide assay, and biofilm thickness and viability were observed by a confocal scanning laser microscope. Mammalian cells were used in adhesion assays. Genes related to hyphae development and cell adhesions were analyzed by real-time reverse transcription-polymerase chain reaction. The exogenous cyclic adenosine monophosphate was used to determine the mechanisms of action of magnolol and honokiol. Caenorhabditis elegans was used as an in vivo model to estimate the antifungal activities of magnolol and honokiol. Results and conclusions Magnolol and honokiol inhibited adhesion, the transition from yeast to hypha, and biofilm formation by C. albicans through the Ras1-cAMP-Efg1 pathway. Moreover, magnolol and honokiol prolonged the survival of nematodes infected by C. albicans. Magnolol and honokiol have potential inhibitory effects against biofilm formation by C. albicans. General Significance This study provides useful information towards the development of new strategies to reduce the incidence of C. albicans biofilm-associated infection. PMID:25710475

  9. Understanding plasma biofilm interactions for controlling infection and virulence

    NASA Astrophysics Data System (ADS)

    Flynn, Padrig B.; Gilmore, Brendan F.

    2018-07-01

    Bacterial biofilms are surface adhered communities of bacteria encased within a protective extracellular polymeric matrix. These heterogeneous microbial communities are characterized by elevated tolerance to antimicrobial agents, host immune clearance mechanisms and physical disinfection approaches. Atmospheric pressure non-thermal plasmas have proven to be highly effective in the eradication of bacteria and fungi in both planktonic and biofilm modes of growth at low temperatures, making it a promising approach for surface decontamination of both biotic and abiotic surfaces alike. In addition, non-thermal plasmas as a putative non-antibiotic approach to controlling infectious microorganisms, holds significant promise as an antibiotic alternative infection control strategy, with demonstrated efficacy against antibiotic resistant microorganisms. This topical review introduces the reader to key concepts in biofilm tolerance mechanisms relevant to treatment and control of these surface adhered bacterial communities with cold plasmas. In addition, the ability of plasma-derived active species to interact with both biofilm extracellular matrix components and bacterial cellular targets will be discussed in order to elucidate the mechanisms of antimicrobial and antibiofilm action. By understanding these fundamental interactions, plasma sources may be precisely tailored for antimicrobial applications, specifically for biofilm control where bacterial and fungal physiology (and sensitivity to physical and chemical decontamination) is markedly different from that of their planktonic, or free swimming, counterparts. Recently, novel roles for reactive oxygen and nitrogen species in the activity of conventional antibiotics have been proposed. This extends the possibility that plasmas may enhance the activity of conventional antibiotics and biocides in controlling these highly tolerant microbial populations. Lessons from classical biofilm microbiology can be usefully translated and applied to the design of plasma-based approaches aimed at biofilm control, while potential for tolerance and persistence to plasma in bacterial communities will be reviewed.

  10. Disinfection of Streptococcus mutans Biofilm by a Non-Thermal Atmospheric Plasma Brush

    NASA Astrophysics Data System (ADS)

    Hong, Qing; Dong, Xiaoqing; Chen, Meng; Xu, Yuanxi; Sun, Hongmin; Hong, Liang; Yu, Qingsong

    2015-09-01

    This study investigated the argon plasma treatment effect on disinfecting dental biofilm by using an atmospheric pressure plasma brush. S. mutans biofilms were developed for 3 days on the surfaces of hydroxyapatite discs, which were used to simulate human tooth enamel. After plasma treatment, cell viability in the S. mutans biofilms was characterized by using MTT assay and confocal laser scanning microscopy (CLSM). Compared with the untreated control group, about 90% and 95% bacterial reduction in the biofilms was observed after 1 and 5 min plasma treatment, respectively. Scanning electron microscopy examination indicated severe cell damages occurred on the top surface of the plasma treated biofilms. CLSM showed that plasma treatment was effective as deep as 20 μm into the biofilms. When combined with 0.2% chlorhexidine digluconate solution, the plasma treatment became more effective and over 96% bacterial reduction was observed with 1 min plasma treatment. These results indicate that plasma treatment is effective and promising in dental biofilm disinfection.

  11. Searching for new strategies against polymicrobial biofilm infections: guanylated polymethacrylates kill mixed fungal/bacterial biofilms.

    PubMed

    Qu, Yue; Locock, Katherine; Verma-Gaur, Jiyoti; Hay, Iain D; Meagher, Laurence; Traven, Ana

    2016-02-01

    Biofilm-related human infections have high mortality rates due to drug resistance. Cohabitation of diverse microbes in polymicrobial biofilms is common and these infections present additional challenges for treatment compared with monomicrobial biofilms. Here, we address this therapeutic gap by assessing the potential of a new class of antimicrobial agents, guanylated polymethacrylates, in the treatment of polymicrobial biofilms built by two prominent human pathogens, the fungus Candida albicans and the bacterium Staphylococcus aureus. We used imaging and quantitative methods to test the antibiofilm efficacy of guanylated polymethacrylates, a new class of drugs that structurally mimic antimicrobial peptides. We further compared guanylated polymethacrylates with first-line antistaphylococcal and anti-Candida agents used as combinatorial therapy against polymicrobial biofilms. Guanylated polymethacrylates were highly effective as a sole agent, killing both C. albicans and S. aureus when applied to established polymicrobial biofilms. Furthermore, they outperformed multiple combinations of current antimicrobial drugs, with one of the tested compounds killing 99.98% of S. aureus and 82.2% of C. albicans at a concentration of 128 mg/L. The extracellular biofilm matrix provided protection, increasing the MIC of the polymethacrylates by 2-4-fold when added to planktonic assays. Using the C. albicans bgl2ΔΔ mutant, we implicate matrix polysaccharide β-1,3 glucan in the mechanism of protection. Data for two structurally distinct polymers suggest that this mechanism could be minimized through chemical optimization of the polymer structure. Finally, we demonstrate that a potential application for these polymers is in antimicrobial lock therapy. Guanylated polymethacrylates are a promising lead for the development of an effective monotherapy against C. albicans/S. aureus polymicrobial biofilms. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Repurposing antipsychotic drugs into antifungal agents: Synergistic combinations of azoles and bromperidol derivatives in the treatment of various fungal infections.

    PubMed

    Holbrook, Selina Y L; Garzan, Atefeh; Dennis, Emily K; Shrestha, Sanjib K; Garneau-Tsodikova, Sylvie

    2017-10-20

    As the number of hospitalized and immunocompromised patients continues to rise, invasive fungal infections, such as invasive candidiasis and aspergillosis, threaten the life of millions of patients every year. The azole antifungals are currently the most prescribed drugs clinically that display broad-spectrum antifungal activity and excellent oral bioavailability. Yet, the azole antifungals have their own limitations and are unable to meet the challenges associated with increasing fungal infections and the accompanied development of resistance against azoles. Exploring combination therapy that involves the current azoles and another drug has been shown to be a promising strategy. Haloperidol and its derivative, bromperidol, were originally discovered as antipsychotics. Herein, we synthesize and report a series of bromperidol derivatives and their synergistic antifungal interactions in combination with a variety of current azole antifungals against a wide panel of fungal pathogens. We further select two representative combinations and confirm the antifungal synergy by performing time-kill assays. Furthermore, we evaluate the ability of selected combinations to destroy fungal biofilm. Finally, we perform mammalian cytotoxicity assays with the representative combinations against three mammalian cell lines. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Analysis of black fungal biofilms occurring at domestic water taps. II: potential routes of entry.

    PubMed

    Heinrichs, Guido; Hübner, Iris; Schmidt, Carsten K; de Hoog, G Sybren; Haase, Gerhard

    2013-06-01

    Formation of tenacious and massive black biofilms was occasionally observed at the water-air interphase of water taps and in associated habitats at several locations in Germany. Exophiala lecanii-corni was proven to be the dominant component of these biofilms. Water utility companies were interested to understand by which route fungi building these black biofilms enter their habitat at affected sites in domestic sanitary. A wide variety of fungi is known to be common in wet indoor environments, as well as in the drinking water resources. Two possible routes of entry are therefore considered as follows: (a) distribution by the drinking water system or (b) a retrograde route of colonisation. Previous compositional analysis revealed that the black constituents of biofilms primarily belong to the herpotrichiellaceous black yeast and relatives. Therefore, a systematic search for black fungi in the drinking water system was performed using Sabouraud's glucose agar medium with chloramphenicol and erythritol-chloramphenicol agar as isolation media. Cadophora malorum was the dominant fungus in the investigated drinking water systems, and samples taken from the house connections (n = 50; 74 %, <200 cfu/L), followed by a so far undescribed Alternaria sp. (28 %; <10 cfu/L) and E. castellanii (26 %; <10 cfu/L). Of note, C. malorum was not present in any previously analysed biofilm. Since E. lecanii-corni was not found in any water sample from the distribution system tested, but represented the most abundant species in dark biofilms previously analysed, a retrograde route of contamination in case of E. lecanii-corni can be assumed.

  14. Evaluations of Shorter Exposures of Contact Lens Cleaning Solutions against Fusarium oxysporum Species Complex and Fusarium solani Species Complex To Simulate Inappropriate Usage▿

    PubMed Central

    Ramani, Rama; Chaturvedi, Vishnu

    2011-01-01

    An outbreak of Fusarium keratitis in contact lens users resulted in withdrawal of ReNu with MoistureLoc solution, although the exact cause of the outbreak remains enigmatic. We evaluated current and discontinued multipurpose cleaning solutions (MPSs; MoistureLoc, Equate, MultiPlus, and OptiFree Express) against plankton- and biofilm-derived cells of Fusarium oxysporum species complex (FOSC) and F. solani species complex (FSSC). The methods included a traditional assay based on CFU counts and a novel flow cytometry (FC) assay based on percent cell subpopulation (PCS) stained with two fluorochromes (Sytox Red and 5-chloromethylfluorescein diacetate). The tests were done with the respective manufacturers' recommended cleaning regimens (240 to 360 min) and under shorter exposures (15 to 60 min) to simulate inappropriate usage by the customers. FC assay measured PCS, which was available rapidly, in 5 to 7 h, whereas 24 to 48 h was needed for CFU counts, and there was good correlation between the two methods (r2 = 0.97). FC assays allowed identification of injured fungal cells, which are likely to be missed with growth assays. In general, a time- and inoculum-dependent survival pattern was seen for both FOSC and FSSC cells, and biofilm-derived cells were more resistant than plankton-derived cells. MultiPlus and Equate produced 100% sterilization of fungi even under shorter exposures. However, biofilm FOSC and FSSC cells survived for up to 4 h in MoistureLoc solution and up to 6 h in OptiFree Express solution under shorter exposure times. This finding was enigmatic, as OptiFree Express is not associated with any outbreak of Fusarium keratitis. This study provides additional support for possible roles that improper lens cleaning regimens and fungal biofilms could play as predisposing factors for Fusarium keratitis. PMID:21300826

  15. Novel role for the Streptococcus pneumoniae toxin pneumolysin in the assembly of biofilms.

    PubMed

    Shak, Joshua R; Ludewick, Herbert P; Howery, Kristen E; Sakai, Fuminori; Yi, Hong; Harvey, Richard M; Paton, James C; Klugman, Keith P; Vidal, Jorge E

    2013-09-10

    Streptococcus pneumoniae is an important commensal and pathogen responsible for almost a million deaths annually in children under five. The formation of biofilms by S. pneumoniae is important in nasopharyngeal colonization, pneumonia, and otitis media. Pneumolysin (Ply) is a toxin that contributes significantly to the virulence of S. pneumoniae and is an important candidate as a serotype-independent vaccine target. Having previously demonstrated that a luxS knockout mutant was unable to form early biofilms and expressed less ply mRNA than the wild type, we conducted a study to investigate the role of Ply in biofilm formation. We found that Ply was expressed in early phases of biofilm development and localized to cellular aggregates as early as 4 h postinoculation. S. pneumoniae ply knockout mutants in D39 and TIGR4 backgrounds produced significantly less biofilm biomass than wild-type strains at early time points, both on polystyrene and on human respiratory epithelial cells, cultured under static or continuous-flow conditions. Ply's role in biofilm formation appears to be independent of its hemolytic activity, as S. pneumoniae serotype 1 strains, which produce a nonhemolytic variant of Ply, were still able to form biofilms. Transmission electron microscopy of biofilms grown on A549 lung cells using immunogold demonstrated that Ply was located both on the surfaces of pneumococcal cells and in the extracellular biofilm matrix. Altogether, our studies demonstrate a novel role for pneumolysin in the assembly of S. pneumoniae biofilms that is likely important during both carriage and disease and therefore significant for pneumolysin-targeting vaccines under development. The bacterium Streptococcus pneumoniae (commonly known as the pneumococcus) is commonly carried in the human nasopharynx and can spread to other body sites to cause disease. In the nasopharynx, middle ear, and lungs, the pneumococcus forms multicellular surface-associated structures called biofilms. Pneumolysin is an important toxin produced by almost all S. pneumoniae strains, extensively studied for its ability to cause damage to human tissue. In this paper, we demonstrate that pneumolysin has a previously unrecognized role in biofilm formation by showing that strains without pneumolysin are unable to form the same amount of biofilm on plastic and human cell substrates. Furthermore, we show that the role of pneumolysin in biofilm formation is separate from the hemolytic activity responsible for tissue damage during pneumococcal diseases. This novel role for pneumolysin suggests that pneumococcal vaccines directed against this protein should be investigated for their potential impact on biofilms formed during carriage and disease.

  16. Dermal Wound Transcriptomic Responses to Infection with Pseudomonas aeruginosa versus Klebsiella pneumoniae in a Rabbit Ear Wound Model

    DTIC Science & Technology

    2014-05-02

    harvested on POD4 for microarray and transcriptome analysis. Other wounds received topical antibiotic after infection for 24 hours to promote biofilm ...cell toxicity in response to a more damaging P.a. inflammatory milieu. The POD6 wounds were colonized with biofilm but expressed magnitudes fewer...infection for 24 hours to promote biofilm development, and were harvested on POD6 or POD12. Results: Wounds infected for 24 hours, relative to uninfected

  17. Monohexosylceramides from Rhizopus Species Isolated from Brazilian Caatinga: Chemical Characterization and Evaluation of Their Anti-Biofilm and Antibacterial Activities.

    PubMed

    Vieira, Edson Rodrigues; Xisto, Mariana Ingrid Dutra da Silva; Pele, Milagre Américo; Alviano, Daniela Sales; Alviano, Celuta Sales; Barreto-Bergter, Eliana; de Campos-Takaki, Galba Maria

    2018-06-01

    Monohexosylceramides (CMHs) are highly conserved fungal glycosphingolipids playing a role in several cellular processes such as growth, differentiation and morphological transition. In this study, we report the isolation, purification and chemical characterization of CMHs from Rhizopus stolonifer and R. microspores . Using positive ion mode ESI-MS, two major ion species were observed at m / z 750 and m / z 766, respectively. Both ion species consisted of a glucose/galactose residue attached to a ceramide moiety containing 9-methyl-4,8-sphingadienine with an amidic linkage to a hydroxylated C16:0 fatty acid. The antimicrobial activity of CMH was evaluated against Gram positive and Gram negative bacteria using the agar diffusion assay. CMH from both Rhizopus species inhibited the growth of Bacillus terrae , Micrococcus luteus ( M. luteus ) and Pseudomonas stutzeri ( P. stutzeri ) with a MIC 50 of 6.25, 6.25 and 3.13 mg/mL, respectively. The bactericidal effect was detected only for M. luteus and P. stutzeri , with MBC values of 25 and 6.25 mg/mL, respectively. Furthermore, the action of CMH on the biofilm produced by methicillin-resistant Staphylococcus aureus (MRSA) was analyzed using 12.5 and 25 mg/mL of CMH from R. microsporus . Total biofilm biomass, biofilm matrix and viability of the cells that form the biofilm structure were evaluated. CMH from R. microsporus was able to inhibit the MRSA biofilm formation in all parameters tested.

  18. Atomic Force Microscope Investigations of Bacterial Biofilms Treated with Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Vandervoort, Kurt; Zelaya, Anna; Brelles-Marino, Graciela

    2012-02-01

    We present investigations of bacterial biofilms before and after treatment with gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve biofilm communities, where bacteria grow embedded in an exopolysaccharide matrix, and cooperative interactions between cells make organisms less susceptible to standard inactivation methods. In this study, biofilms formed by the opportunistic bacterium Pseudomonas aeruginosa were imaged before and after plasma treatment using an atomic force microscope (AFM). Through AFM images and micromechanical measurements we observed bacterial morphological damage and reduced AFM tip-sample surface adhesion following plasma treatment.

  19. Motility of Pseudomonas aeruginosa contributes to SOS-inducible biofilm formation.

    PubMed

    Chellappa, Shakinah T; Maredia, Reshma; Phipps, Kara; Haskins, William E; Weitao, Tao

    2013-12-01

    DNA-damaging antibiotics such as ciprofloxacin induce biofilm formation and the SOS response through autocleavage of SOS-repressor LexA in Pseudomonas aeruginosa. However, the biofilm-SOS connection remains poorly understood. It was investigated with 96-well and lipid biofilm assays. The effects of ciprofloxacin were examined on biofilm stimulation of the SOS mutant and wild-type strains. The stimulation observed in the wild-type in which SOS was induced was reduced in the mutant in which LexA was made non-cleavable (LexAN) and thus SOS non-inducible. Therefore, the stimulation appeared to involve SOS. The possible mechanisms of inducible biofilm formation were explored by subproteomic analysis of outer membrane fractions extracted from biofilms. The data predicted an inhibitory role of LexA in flagellum function. This premise was tested first by functional and morphological analyses of flagellum-based motility. The flagellum swimming motility decreased in the LexAN strain treated with ciprofloxacin. Second, the motility-biofilm assay was performed, which tested cell migration and biofilm formation. The results showed that wild-type biofilm increased significantly over the LexAN. These results suggest that LexA repression of motility, which is the initial event in biofilm development, contributes to repression of SOS-inducible biofilm formation. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae.

    PubMed

    Vijayakumar, S; Vinoj, G; Malaikozhundan, B; Shanthi, S; Vaseeharan, B

    2015-02-25

    In this study, zinc oxide nanoparticles were biologically synthesized using the leaf extract of Plectranthus amboinicus (Pam-ZnO NPs). The synthesized Pam-ZnO NPs were characterized by UV-Vis spectrophotometer, FTIR, TEM and XRD analysis. TEM analysis of Pam-ZnO NPs showed the average size of about 20-50 nm. Pam-ZnO NPs control the growth of methicillin-resistant Staphylococcus aureus biofilms (MRSA ATCC 33591) at the concentration of 8-10 μg/ml. Confocal laser scanning microscope (CLSM) images revealed that Pam-ZnO NPs strongly inhibited the biofilm forming ability of S. aureus. In addition, Pam-ZnO NPs showed 100% mortality of fourth instar mosquito larvae of Anopheles stephensi, Culex quinquefasciatus and Culex tritaeniorhynchus at the concentration of 8 and 10 μg/ml. The histopathological studies of Pam-ZnO NPs treated A. stephensi and C. quinquefasciatus larvae revealed the presence of damaged cells and tissues in the mid-gut. The damaged tissues suffered major changes including rupture and disintegration of epithelial layer and cellular vacuolization. The present study conclude that Pam-ZnO NPs showed effective control of S. aureus biofilms and mosquito larvae by damaging the mid gut cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Flor Yeast: New Perspectives Beyond Wine Aging

    PubMed Central

    Legras, Jean-Luc; Moreno-Garcia, Jaime; Zara, Severino; Zara, Giacomo; Garcia-Martinez, Teresa; Mauricio, Juan C.; Mannazzu, Ilaria; Coi, Anna L.; Bou Zeidan, Marc; Dequin, Sylvie; Moreno, Juan; Budroni, Marilena

    2016-01-01

    The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air–liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed. PMID:27148192

  2. Efficacy of ferulic acid encapsulated chitosan nanoparticles against Candida albicans biofilm.

    PubMed

    Panwar, Richa; Pemmaraju, Suma C; Sharma, Asvene K; Pruthi, Vikas

    2016-06-01

    Candida albicans, an opportunistic fungal pathogen is a major causative agent of superficial to systemic life-threating biofilm infections on indwelling medical devices. These biofilms acts as double edge swords owing to their resistance towards antibiotics and immunological barriers. To overcome this threat ferulic acid encapsulated chitosan nanoparticles (FA-CSNPs) were formulated to assess its efficacy as an antibiofilm agent against C. albicans. These FA-CSNPs were synthesized using ionotropic gelation method and observed through field emission scanning electron microscopy (FESEM) and fluorescent microscopy. Assessment of successful encapsulation and stability of ferulic acid into chitosan nanoparticles was made using Fourier transform infrared spectrum (FTIR), (1)H NMR and thermal analyses. Synthesized FA-CSNPs, were found to be cytocompatible, when tested using Human Embryonic Kidney (HEK-293) cell lines. XTT assay revealed that FA-CSNPs reduced the cell metabolic activity of C. albicans upto 22.5% as compared to native ferulic acid (63%) and unloaded CSNPs (88%) after 24 h incubation. Disruption of C. albicans biofilm architecture was visualized by FESEM. Results highlighted the potential of FA-CSNPs to be used as an effective alternative to the conventional antifungal therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effect of the molecular weight of chitosan on its antifungal activity against Candida spp. in planktonic cells and biofilm.

    PubMed

    Garcia, Lana Glerieide Silva; Guedes, Glaucia Morgana de Melo; da Silva, Maria Lucilene Queiroz; Castelo-Branco, Débora Souza Collares Maia; Sidrim, José Júlio Costa; Cordeiro, Rossana de Aguiar; Rocha, Marcos Fábio Gadelha; Vieira, Rodrigo Silveira; Brilhante, Raimunda Sâmia Nogueira

    2018-09-01

    Difficulties in the treatment of Candida spp. invasive infections are usually related to the formation of biofilms. The aim of this study was to determine the effects of molecular weight (MW) of chitosan (using high (HMW), medium (MMW) and low (LMW) molecular weight chitosan) on Candida albicans, Candida tropicalis and Candida parapsilosis sensu stricto. The deacetylation degree (DD) and molecular weight M were measured by potentiometric titration and viscosimetry, respectively. The planktonic shape activity was quantified by broth microdilution, and the activity against biofilm was quantified by metabolic activity through XTT 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]- 2H-tetrazolium hydroxide and biomass formation (crystal violet). The influence of chitosan MW on the planktonic form of Candida spp. was strain dependent. Fungal growth decreased with increasing chitosan MW for C. tropicalis and C. parapsilosis, while chitosan MW did not modulate the effect for C. albicans. With regard to the formation of biofilms, in both the adhesion and mature phases, the biomass and metabolic activities of Candida spp. were reduced by about 70% and 80%, respectively for each phase. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. N-halamine-based rechargeable antimicrobial and biofilm-controlling polyurethane

    PubMed Central

    Sun, Xinbo; Cao, Zhengbing; Porteous, Nuala; Sun, Yuyu

    2012-01-01

    An N-halamine precursor, 5, 5-dimethyl hydantoin (DMH), was covalently linked to the surface of polyurethane (PU) with 1,6-hexamethylene diisocyanate (HDI) as a coupling agent. The reaction pathways were investigated using propyl isocyanate (PI) as a model compound, and the results suggested that the imide and amide groups of DMH had very similar reactivity toward the isocyanate groups on PU surfaces activated with HDI. After bleach treatment, the covalently bound DMH moieties were transformed into N-halamines. The new N-halmaine-based PU provided potent antimicrobial effects against Staphylococcus aureus (S. aureus, Gram-positive), Escherichia coli (E. coli, Gram-negative), methicillin-resistant staphylococcus aureus (MRSA, drug resistant Gram-positive bacteria), vancomycin-resistant enterococcus (VRE, drug resistant Gram-positive bacteria), and Candida albicans (C. ablicans, fungi), and successfully prevented bacterial and fungal biofilm formation. The antimicrobial and biofilm-controlling effects were stable for longer than 6 months under normal storage in open air. Furthermore, if the functions were lost due to prolonged use, they could be recharged by another chlorination treatment. The recharging could be repeated as needed to achieve long-term protection against microbial contamination and biofilm-formation. PMID:22244984

  5. [Damage of modern building materials by microscopic fungi].

    PubMed

    Chuenko, A I; Karpenko, Iu V

    2011-01-01

    Resistance of three materials, produced on the basis of concrete compounds to the action of microscopic fungi, isolated from damaged living buildings, has been first investigated. It has been shown that samples of froth-block and thermoeffective block had low fungal resistance, in contrast to samples of cellular polystyrene concrete, which were resistant to fungal action, that can be associated with peculiarities of their component composition.

  6. Disruptive innovations: new anti-infectives in the age of resistance.

    PubMed

    Tegos, George P; Hamblin, Michael R

    2013-10-01

    This special issue of Current Opinion in Pharmacology is concerned with new developments in antimicrobial drugs and covers innovative strategies for dealing with microbial infection in the age of multi-antibiotic resistance. Despite widespread fears that many infectious diseases may become untreatable, disruptive innovations are in the process of being discovered and developed that may go some way to leading the fight-back against the rising threat. Natural products, quorum sensing inhibitors, biofilm disruptors, gallium-based drugs, cyclodextrin inhibitors of pore-forming toxins, anti-fungals that deal with biofilms, and light based antimicrobial strategies are specifically addressed. New non-vertebrate animal models of infection may facilitate high-throughput screening (HTS) of novel anti-infectives. Copyright © 2013. Published by Elsevier Ltd.

  7. Combination of fluconazole with non-antifungal agents: a promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery.

    PubMed

    Liu, Shuyuan; Hou, Yinglong; Chen, Xu; Gao, Yuan; Li, Hui; Sun, Shujuan

    2014-05-01

    The past decades have witnessed a dramatic increase in invasive fungal infections, especially candidiasis. Despite the development of more effective new antifungal agents, fluconazole (FLC) is still widely used in the clinic because of its efficacy and low toxicity. However, as the number of patients treated with FLC has increased, FLC-resistant Candida albicans isolates emerge more frequently. In addition, biofilm-associated infections are commonly encountered and their resistance poses a great challenge to antifungal treatment. Various approaches have been proposed to increase the susceptibility of C. albicans to FLC in order to cope with treatment failures, among which is the combination of FLC with different classes of non-antifungal agents such as antibacterials, calcineurin inhibitors, heat shock protein 90 inhibitors, calcium homeostasis regulators and traditional Chinese medicine drugs. Interestingly, many of these combinations showed synergistic effects against C. albicans, especially resistant strains. The main mechanisms of these synergistic effects appear to be increasing the permeability of the membrane, reducing the efflux of antifungal drugs, interfering with intracellular ion homeostasis, inhibiting the activity of proteins and enzymes required for fungal survival, and inhibiting biofilm formation. These modes of action and the antifungal mechanisms of various compounds referenced in this paper highlight the idea that the reversal of fungal resistance can be achieved through various mechanisms. Studies examining drug interactions will hopefully provide new approaches against antifungal drug resistance as well as insight into antifungal agent discovery. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  8. Epidemiology and Resistance Patterns of Bacterial and Fungal Colonization of Biliary Plastic Stents: A Prospective Cohort Study

    PubMed Central

    Lübbert, Christoph; Wendt, Karolin; Feisthammel, Jürgen; Moter, Annette; Lippmann, Norman; Busch, Thilo; Mössner, Joachim; Hoffmeister, Albrecht; Rodloff, Arne C.

    2016-01-01

    Background Plastic stents used for the treatment of biliary obstruction will become occluded over time due to microbial colonization and formation of biofilms. Treatment of stent-associated cholangitis is often not effective because of inappropriate use of antimicrobial agents or antimicrobial resistance. We aimed to assess the current bacterial and fungal etiology of stent-associated biofilms, with particular emphasis on antimicrobial resistance. Methods Patients with biliary strictures requiring endoscopic stent placement were prospectively enrolled. After the retrieval of stents, biofilms were disrupted by sonication, microorganisms were cultured, and isolates were identified by matrix-associated laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and/or biochemical typing. Finally, minimum inhibitory concentrations (MICs) were determined for various antimicrobial agents. Selected stents were further analyzed by fluorescence in situ hybridization (FISH). Results Among 120 patients (62.5% males, median age 64 years) with biliary strictures (35% malignant, 65% benign), 113 double pigtail polyurethane and 100 straight polyethylene stents were analyzed after a median indwelling time of 63 days (range, 1–1274 days). The stent occlusion rate was 11.5% and 13%, respectively, being associated with a significantly increased risk of cholangitis (38.5% vs. 9.1%, P<0.001). Ninety-five different bacterial and 13 fungal species were detected; polymicrobial colonization predominated (95.8% vs. 4.2%, P<0.001). Enterococci (79.3%), Enterobacteriaceae (73.7%), and Candida spp. (55.9%) were the leading pathogens. Candida species were more frequent in patients previously receiving prolonged antibiotic therapy (63% vs. 46.7%, P = 0.023). Vancomycin-resistant enterococci accounted for 13.7%, extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae with co-resistance to ciprofloxacin accounted for 13.9%, and azole-resistant Candida spp. accounted for 32.9% of the respective isolates. Conclusions Enterococci and Candida species play an important role in the microbial colonization of biliary stents. Therefore, empirical antimicrobial treatment of stent-associated cholangitis should be guided toward enterococci, Enterobacteriaceae, streptococci, anaerobes, and Candida. To determine causative pathogens, an accurate microbiological analysis of the extracted stent(s) may be helpful. PMID:27171497

  9. Epidemiology and Resistance Patterns of Bacterial and Fungal Colonization of Biliary Plastic Stents: A Prospective Cohort Study.

    PubMed

    Lübbert, Christoph; Wendt, Karolin; Feisthammel, Jürgen; Moter, Annette; Lippmann, Norman; Busch, Thilo; Mössner, Joachim; Hoffmeister, Albrecht; Rodloff, Arne C

    2016-01-01

    Plastic stents used for the treatment of biliary obstruction will become occluded over time due to microbial colonization and formation of biofilms. Treatment of stent-associated cholangitis is often not effective because of inappropriate use of antimicrobial agents or antimicrobial resistance. We aimed to assess the current bacterial and fungal etiology of stent-associated biofilms, with particular emphasis on antimicrobial resistance. Patients with biliary strictures requiring endoscopic stent placement were prospectively enrolled. After the retrieval of stents, biofilms were disrupted by sonication, microorganisms were cultured, and isolates were identified by matrix-associated laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and/or biochemical typing. Finally, minimum inhibitory concentrations (MICs) were determined for various antimicrobial agents. Selected stents were further analyzed by fluorescence in situ hybridization (FISH). Among 120 patients (62.5% males, median age 64 years) with biliary strictures (35% malignant, 65% benign), 113 double pigtail polyurethane and 100 straight polyethylene stents were analyzed after a median indwelling time of 63 days (range, 1-1274 days). The stent occlusion rate was 11.5% and 13%, respectively, being associated with a significantly increased risk of cholangitis (38.5% vs. 9.1%, P<0.001). Ninety-five different bacterial and 13 fungal species were detected; polymicrobial colonization predominated (95.8% vs. 4.2%, P<0.001). Enterococci (79.3%), Enterobacteriaceae (73.7%), and Candida spp. (55.9%) were the leading pathogens. Candida species were more frequent in patients previously receiving prolonged antibiotic therapy (63% vs. 46.7%, P = 0.023). Vancomycin-resistant enterococci accounted for 13.7%, extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae with co-resistance to ciprofloxacin accounted for 13.9%, and azole-resistant Candida spp. accounted for 32.9% of the respective isolates. Enterococci and Candida species play an important role in the microbial colonization of biliary stents. Therefore, empirical antimicrobial treatment of stent-associated cholangitis should be guided toward enterococci, Enterobacteriaceae, streptococci, anaerobes, and Candida. To determine causative pathogens, an accurate microbiological analysis of the extracted stent(s) may be helpful.

  10. Capillary-tube-based micro-plasma system for disinfecting dental biofilm.

    PubMed

    Huang, Wen-Ke; Weng, Chih-Chiang; Liao, Jiunn-Der; Wang, Yi-Cheng; Chuang, Shu-Fen

    2013-05-01

    A low-temperature low-energy capillary-tube-based argon micro-plasma system was applied to disinfect Streptococcus mutans-containing biofilm. The micro-plasma system uses a hollow inner electrode that is ignited by a radio-frequency power supply with a matching network. The energy content was analyzed using optical emission spectroscopy. The micro-plasma-induced effect on a biofilm cultured for 24 or 48 h with a working distance of ≈3 mm at low temperature was evaluated. The morphologies of the treated live/dead bacteria and the produced polysaccharides after micro-plasma treatment were examined. Scanning electron microscopy images and staining results show that most of the S. mutans on the treated biofilm were acutely damaged within a micro-plasma treatment time of 300 s. The number of living bacteria underneath the treated biofilm greatly decreased with treatment time. The proposed micro-plasma system can thus disinfect S. mutans on/in biofilms.

  11. Adherence to abiotic surface induces SOS response in Escherichia coli K-12 strains under aerobic and anaerobic conditions.

    PubMed

    Costa, Suelen B; Campos, Ana Carolina C; Pereira, Ana Claudia M; de Mattos-Guaraldi, Ana Luiza; Júnior, Raphael Hirata; Rosa, Ana Cláudia P; Asad, Lídia M B O

    2014-09-01

    During the colonization of surfaces, Escherichia coli bacteria often encounter DNA-damaging agents and these agents can induce several defence mechanisms. Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species (ROS) generated by chemical and physical agents or by metabolism. In this work, we have evaluated whether the interaction with an abiotic surface by mutants derived from E. coli K-12 deficient in some enzymes that are part of BER causes DNA damage and associated filamentation. Moreover, we studied the role of endonuclease V (nfi gene; 1506 mutant strain) in biofilm formation. Endonuclease V is an enzyme that is involved in DNA repair of nitrosative lesions. We verified that endonuclease V is involved in biofilm formation. Our results showed more filamentation in the xthA mutant (BW9091) and triple xthA nfo nth mutant (BW535) than in the wild-type strain (AB1157). By contrast, the mutant nfi did not present filamentation in biofilm, although its wild-type strain (1466) showed rare filaments in biofilm. The filamentation of bacterial cells attaching to a surface was a consequence of SOS induction measured by the SOS chromotest. However, biofilm formation depended on the ability of the bacteria to induce the SOS response since the mutant lexA Ind(-) did not induce the SOS response and did not form any biofilm. Oxygen tension was an important factor for the interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, our results showed that the presence or absence of oxygen did not affect the viability of BW9091 and BW535 strains. The nfi mutant and its wild-type did not exhibit decreased biofilm formation under anaerobic conditions. Scanning electron microscopy was also performed on the E. coli K-12 strains that had adhered to the glass, and we observed the presence of a structure similar to an extracellular matrix that depended on the oxygen tension. In conclusion, it was proven that bacterial interaction with abiotic surfaces can lead to SOS induction and associated filamentation. Moreover, we verified that endonuclease V is involved in biofilm formation. © 2014 The Authors.

  12. Disinfection of Streptococcus mutans biofilm by a non-thermal atmospheric plasma brush

    NASA Astrophysics Data System (ADS)

    Hong, Qing; Dong, Xiaoqing; Chen, Meng; Xu, Yuanxi; Sun, Hongmin; Hong, Liang; Wang, Yong; Yu, Qingsong

    2016-07-01

    This study investigated the argon plasma treatment effect on disinfecting dental biofilm by using an atmospheric pressure plasma brush. Streptococcus mutans biofilms were developed for 3 days on the surfaces of hydroxyapatite (HA) discs, which were used to simulate human tooth enamel. After plasma treatment, cell viability in the S. mutans biofilms was characterized by using 3-(4,5-dimethylazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and confocal laser scanning microscopy (CLSM). Compared with the untreated control group, about 90% bacterial reduction in the biofilms was observed after 1 min plasma treatment. Scanning electron microscopy (SEM) examination indicated severe cell damages occurred on the top surface of the plasma treated biofilms. Confocal laser scanning microscopy (CLSM) showed that plasma treatment was effective as deep as 20 µm into the biofilms. When combined with antibiotic treatment using 0.2% chlorhexidine digluconate solution, the plasma treatment became more effective and over 96% bacterial reduction was observed with 1 min plasma treatment.

  13. Alternative Mating Type Configurations (a/α versus a/a or α/α) of Candida albicans Result in Alternative Biofilms Regulated by Different Pathways

    PubMed Central

    Srikantha, Thyagarajan; Huang, Guanghua; Garnaas, Adam M.; Soll, David R.

    2011-01-01

    Similar multicellular structures can evolve within the same organism that may have different evolutionary histories, be controlled by different regulatory pathways, and play similar but nonidentical roles. In the human fungal pathogen Candida albicans, a quite extraordinary example of this has occurred. Depending upon the configuration of the mating type locus (a/α versus a/a or α/α), C. albicans forms alternative biofilms that appear similar morphologically, but exhibit dramatically different characteristics and are regulated by distinctly different signal transduction pathways. Biofilms formed by a/α cells are impermeable to molecules in the size range of 300 Da to 140 kDa, are poorly penetrated by human polymorphonuclear leukocytes (PMNs), and are resistant to antifungals. In contrast, a/a or α/α biofilms are permeable to molecules in this size range, are readily penetrated by PMNs, and are susceptible to antifungals. By mutational analyses, a/α biofilms are demonstrated to be regulated by the Ras1/cAMP pathway that includes Ras1→Cdc35→cAMP(Pde2—|)→Tpk2(Tpk1)→Efg1→Tec1→Bcr1, and a/a biofilms by the MAP kinase pathway that includes Mfα→Ste2→ (Ste4, Ste18, Cag1)→Ste11→Hst7→Cek2(Cek1)→Tec1. These observations suggest the hypothesis that while the upstream portion of the newly evolved pathway regulating a/a and α/α cell biofilms was derived intact from the upstream portion of the conserved pheromone-regulated pathway for mating, the downstream portion was derived through modification of the downstream portion of the conserved pathway for a/α biofilm formation. C. albicans therefore forms two alternative biofilms depending upon mating configuration. PMID:21829325

  14. Cell viability of Candida albicans against the antifungal activity of thymol.

    PubMed

    de Vasconcelos, Laís César; Sampaio, Fabio Correia; Albuquerque, Allan de Jesus dos Reis; Vasconcelos, Laurylene César de Souza

    2014-01-01

    Candida albicans is a commensal fungus, but circumstantially it may cause superficial infections of the mucous membranes, such as denture stomatitis, when a biofilm is formed on the surface of dental prostheses. This study evaluated the cell viability of C. albicans biofilms against the antifungal activity of thymol when compared with miconazole, by the fluorescence imaging using SYTO 9 and propidium iodide dyes, and counting of colony forming units. C. albicans standard strains (ATCC 11006) were used. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of drugs were determined by broth microdilution tests and the inoculum was standardized to match 0.5 on the McFarland scale (106 cfu/mL). Biofilms were grown on the surface of acrylic resin disks in parallel flow chambers from Sabouraud broth supplemented with 10% dextrose. For counting of colony forming units, the fungal solution was sequentially diluted and plated in Sabouraud dextrose agar. Data were analyzed using two-way ANOVA and Tukey's test (a=5%). Biofilms treated with thymol and miconazole presented low numbers of viable cells at the evaluated exposure times. There was statistically significant difference (p<0.05) when compared with control, and the mean value of the exposure times between miconazole and thymol did not differ significantly (p>0.05). In conclusion, both drugs have similar efficiency as antifungal agents against biofilms of C. albicans formed on acrylic surfaces.

  15. Aspergillus fumigatus biofilms in the clinical setting.

    PubMed

    Müller, Frank-Michael C; Seidler, Marc; Beauvais, Anne

    2011-04-01

    We discuss in this work the role of Aspergillus biofilms in the clinical setting by reviewing the most recent findings on this topic. Aspergillus fumigatus can produce in vitro an extracellular hydrophobic matrix with typical biofilm characteristics under all static conditions tested, i.e., agar media, polystyrene and bronchial epithelial cells. Under static conditions the mycelial growth is greater than in shaken, submerged conditions. The extracellular matrix (ECM) is composed of galactomannan, α-1,3-glucans, monosaccharides and polyols, melanin and proteins including major antigens and hydrophobins. Typical biofilm structures were observed in the aspergillomas from two patients and in a murine model of invasive pulmonary aspergillosis. The results indicate that α-1,3-glucans plays a predominant role in the agglutination of the hyphae together in aerial conditions, and that nutrient starvation was responsible for mycelial death in aspergilloma. Melanin was produced during the infection, suggesting that this pigment is necessary for lung tissue invasion. All antifungal drugs are significantly less effective when A. fumigatus is grown under biofilm vs. planktonic conditions. Chronic persistence of a unique genotype of A. fumigatus in the respiratory tract of CF-patients and the presence of an ECM in vivo may have some therapeutical application for aspergillosis. The most appropriate antifungal drug should not be selected only on the basis of its efficiency to kill in vitro grown fungal cells, but also on its ability to penetrate the ECM.

  16. Common fungal diseases of Russian forests

    Treesearch

    Evgeny P. Kuz' michevl; Ella s. Sokolova; Elena G. Kulikova

    2001-01-01

    Describes common fungal diseases of Russian forests, including diagnostic signs and symptoms, pathogen biology, damage caused by the disease, and methods of control. The fungal diseases are divided into two groups: those that are the most common in Russian forests and those that are found only in Russia. Within each group, diseases are subdivided by plant organ...

  17. Novel Method for Quantitative Estimation of Biofilms.

    PubMed

    Syal, Kirtimaan

    2017-10-01

    Biofilm protects bacteria from stress and hostile environment. Crystal violet (CV) assay is the most popular method for biofilm determination adopted by different laboratories so far. However, biofilm layer formed at the liquid-air interphase known as pellicle is extremely sensitive to its washing and staining steps. Early phase biofilms are also prone to damage by the latter steps. In bacteria like mycobacteria, biofilm formation occurs largely at the liquid-air interphase which is susceptible to loss. In the proposed protocol, loss of such biofilm layer was prevented. In place of inverting and discarding the media which can lead to the loss of the aerobic biofilm layer in CV assay, media was removed from the formed biofilm with the help of a syringe and biofilm layer was allowed to dry. The staining and washing steps were avoided, and an organic solvent-tetrahydrofuran (THF) was deployed to dissolve the biofilm, and the absorbance was recorded at 595 nm. The protocol was tested for biofilm estimation of E. coli, B. subtilis and M. smegmatis, and compared with the traditional CV assays. Isoniazid drug molecule, a known inhibitor of M. smegmatis biofilm, was tested and its inhibitory effects were quantified by the proposed protocol. For ease in referring, this method has been described as the Syal method for biofilm quantification. This new method was found to be useful for the estimation of early phase biofilm and aerobic biofilm layer formed at the liquid-air interphase. The biofilms formed by all three tested bacteria-B. subtilis, E. coli and M. smegmatis, were precisely quantified.

  18. A small molecule norspermidine in combination with silver ion enhances dispersal and disinfection of multi-species wastewater biofilms.

    PubMed

    Wu, Yachuan; Quan, Xiangchun; Si, Xiurong; Wang, Xinrui

    2016-06-01

    Detrimental biofilms have become a great concern in many areas due to their strong resistance and insensitivity to traditional antimicrobial agents. Norspermidine is a potent small molecule for biofilm dispersal. In this study, silver ion, a conventional inorganic biocide, was combined with norspermidine and used for control and removal of multi-species biofilms formed by a mixed culture from wastewater treatment systems. Results showed that silver ion (0.01-1 mg/L) treatment alone failed to remove the existing wastewater biofilms. Norspermidine at the concentrations of 500-1000 μM was capable to disrupt and disperse the existing biofilms with a biofilm reduction of 21-34 % after 24-h exposure. The combined treatment with norspermidine (500 μM) and silver ion (0.01 mg/L) increased biofilm reduction to 48 % (24-h exposure). The combined treatment also enhanced biofilm disinfection ratio (82 %, 2-h exposure) by 2.0- and 2.6-folds compared to norspermidine (27 %) or silver ion (23 %) treatment alone, respectively. Confocal laser scanning microscopic (CLSM) observations found that norspermidine could disrupt biofilm matrix and promote biofilm dispersal via breaking down exopolysaccharides. The combined treatment increased the reduction in biofilm cell density and viability, possibly due to the damage of biofilm matrix, enhanced silver ion diffusion in biofilms, and increased biofilm sensitivity. These findings indicate that the combination of a small molecule norspermidine with a traditional biocide silver ion presents a novel strategy to remove and kill biofilms, which have a potential application in addressing wastewater biofilm-related issues.

  19. FLO11 Gene Is Involved in the Interaction of Flor Strains of Saccharomyces cerevisiae with a Biofilm-Promoting Synthetic Hexapeptide

    PubMed Central

    Bou Zeidan, Marc; Carmona, Lourdes

    2013-01-01

    Saccharomyces cerevisiae “flor” yeasts have the ability to form a buoyant biofilm at the air-liquid interface of wine. The formation of biofilm, also called velum, depends on FLO11 gene length and expression. FLO11 encodes a cell wall mucin-like glycoprotein with a highly O-glycosylated central domain and an N-terminal domain that mediates homotypic adhesion between cells. In the present study, we tested previously known antimicrobial peptides with different mechanisms of antimicrobial action for their effect on the viability and ability to form biofilm of S. cerevisiae flor strains. We found that PAF26, a synthetic tryptophan-rich cationic hexapeptide that belongs to the class of antimicrobial peptides with cell-penetrating properties, but not other antimicrobial peptides, enhanced biofilm formation without affecting cell viability in ethanol-rich medium. The PAF26 biofilm enhancement required a functional FLO11 but was not accompanied by increased FLO11 expression. Moreover, fluorescence microscopy and flow cytometry analyses showed that the PAF26 peptide binds flor yeast cells and that a flo11 gene knockout mutant lost the ability to bind PAF26 but not P113, a different cell-penetrating antifungal peptide, demonstrating that the FLO11 gene is selectively involved in the interaction of PAF26 with cells. Taken together, our data suggest that the cationic and hydrophobic PAF26 hexapeptide interacts with the hydrophobic and negatively charged cell wall, favoring Flo11p-mediated cell-to-cell adhesion and thus increasing biofilm biomass formation. The results are consistent with previous data that point to glycosylated mucin-like proteins at the fungal cell wall as potential interacting partners for antifungal peptides. PMID:23892742

  20. Iron triggers λSo prophage induction and release of extracellular DNA in Shewanella oneidensis MR-1 biofilms.

    PubMed

    Binnenkade, Lucas; Teichmann, Laura; Thormann, Kai M

    2014-09-01

    Prophages are ubiquitous elements within bacterial chromosomes and affect host physiology and ecology in multiple ways. We have previously demonstrated that phage-induced lysis is required for extracellular DNA (eDNA) release and normal biofilm formation in Shewanella oneidensis MR-1. Here, we investigated the regulatory mechanisms of prophage λSo spatiotemporal induction in biofilms. To this end, we used a functional fluorescence fusion to monitor λSo activation in various mutant backgrounds and in response to different physiological conditions. λSo induction occurred mainly in a subpopulation of filamentous cells in a strictly RecA-dependent manner, implicating oxidative stress-induced DNA damage as the major trigger. Accordingly, mutants affected in the oxidative stress response (ΔoxyR) or iron homeostasis (Δfur) displayed drastically increased levels of phage induction and abnormal biofilm formation, while planktonic cells were not or only marginally affected. To further investigate the role of oxidative stress, we performed a mutant screen and identified two independent amino acid substitutions in OxyR (T104N and L197P) that suppress induction of λSo by hydrogen peroxide (H2O2). However, λSo induction was not suppressed in biofilms formed by both mutants, suggesting a minor role of intracellular H2O2 in this process. In contrast, addition of iron to biofilms strongly enhanced λSo induction and eDNA release, while both processes were significantly suppressed at low iron levels, strongly indicating that iron is the limiting factor. We conclude that uptake of iron during biofilm formation triggers λSo-mediated lysis of a subpopulation of cells, likely by an increase in iron-mediated DNA damage sensed by RecA. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Glutathione Enhances Antibiotic Efficiency and Effectiveness of DNase I in Disrupting Pseudomonas aeruginosa Biofilms While Also Inhibiting Pyocyanin Activity, Thus Facilitating Restoration of Cell Enzymatic Activity, Confluence and Viability

    PubMed Central

    Das, Theerthankar; Simone, Martin; Ibugo, Amaye I.; Witting, Paul K.; Manefield, Mike; Manos, Jim

    2017-01-01

    Pyocyanin secreted by Pseudomonas aeruginosa is a virulence factor that damages epithelial cells during infection through the action of reactive oxygen species, however, little is known about its direct effect on biofilms. We demonstrated that pyocyanin-producing P. aeruginosa strains (PA14WT, DKN370, AES-1R, and AES-2) formed robust biofilms in contrast to the poorly formed biofilms of the pyocyanin mutant PA14ΔphzA-G and the low pyocyanin producer AES-1M. Addition of DNase I and reduced glutathione (GSH) significantly reduced biofilm biomass of pyocyanin-producing strains (P < 0.05) compared to non-pyocyanin producers. Subsequently we showed that a combined treatment comprising: GSH + DNase I + antibiotic, disrupted and reduced biofilm biomass up to 90% in cystic fibrosis isolates AES-1R, AES-2, LESB58, and LES431 and promoted lung epithelial cell (A549) recovery and growth. We also showed that exogenously added GSH restored A549 epithelial cell glutathione reductase activity in the presence of pyocyanin through recycling of GSSG to GSH and consequently increased total intracellular GSH levels, inhibiting oxidative stress, and facilitating cell growth and confluence. These outcomes indicate that GSH has multiple roles in facilitating a return to normal epithelial cell growth after insult by pyocyanin. With increased antibiotic resistance in many bacterial species, there is an urgency to establish novel antimicrobial agents. GSH is able to rapidly and comprehensively destroy P. aeruginosa associated biofilms while at a same time assisting in the recovery of host cells and re-growth of damaged tissue. PMID:29312161

  2. Silver colloidal nanoparticles: effect on matrix composition and structure of Candida albicans and Candida glabrata biofilms.

    PubMed

    Monteiro, D R; Silva, S; Negri, M; Gorup, L F; de Camargo, E R; Oliveira, R; Barbosa, D B; Henriques, M

    2013-04-01

    The aim of this study was to assess the effect of different silver nanoparticles (SN) concentrations on the matrix composition and structure of Candida albicans and Candida glabrata biofilms. Candida biofilms were developed in 6-well microtiter plates during 48 h. After, these biofilms were exposed to 13.5 or 54 μg SN ml(-1) for 24 h. Then, extracellular matrices were extracted from biofilms and analysed chemically in terms of proteins, carbohydrates and DNA. To investigate the biofilm structure, scanning electron microscopy (SEM) and epifluorescence microscopy were used. SN interfered with the matrix composition of Candida biofilms tested in terms of protein, carbohydrate and DNA, except for the protein content of C. albicans biofilm. By SEM, Candida biofilms treated with SN revealed structural differences, when compared with the control groups. Further, SN showed a trend of agglomeration within the biofilms. Epifluorescence microscopy images suggest that SN induced damage on cell walls of the Candida isolates tested. In general, irrespective of concentration, SN affected the matrix composition and structure of Candida biofilms and these findings may be related to the mechanisms of biocide action of SN. This study reveals new insights about the behaviour of SN when in contact with Candida biofilms. SN may contribute to the development of therapies to prevent or control Candida infections. © 2012 The Society for Applied Microbiology.

  3. Hand hygiene using a new hand-cleansing formulation without sanitizers: Effect on Staphylococcus aureus removal and recovery of properties against skin damage.

    PubMed

    Asaoka, Kentaro; Endo, Shiro; Suzuki, Yuki; Komuro, Satoru; Nemoto, Tadanobu; Kaku, Mitsuo

    2016-08-01

    Staphylococcus aureus is known to form a biofilm and colonize on damaged skin of the hands. We investigated changes in the quantity of S aureus on the hands and changes in skin damage when using a hand-cleansing formulation with potassium oleate but without a sanitizer (formulation A), which is highly effective in removing S aureus biofilm and causes minimal skin damage. The participants (14 medical staff members) used 2 types of hand-cleansing formulations (formulations A and B), each for 4 weeks. S aureus of the hands was cultured from swab samples on agar plates. Surface of hands was measured using an ultraviolet light microscope. The quantity of S aureus after using formulation A for 4 weeks was 10(1.08 ± 0.05) CFU/mL, a statistically significant decrease from the quantity of S aureus (10(1.59 ± 0.19) CFU/mL) just before use (P = .029). Also, dryness of hand surfaces decreased. With formulation B, the quantity of S aureus did not significantly change from before to after use (P > .05). This presumably occurs because formulation A gently removes S aureus biofilm. Formulation A removed S aureus from the hands of participants, and skin damage on the hands improved. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  4. Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colonization.

    PubMed

    Franks, A; Egan, S; Holmström, C; James, S; Lappin-Scott, H; Kjelleberg, S

    2006-09-01

    The marine epiphytic bacterium Pseudoalteromonas tunicata produces a range of extracellular secondary metabolites that inhibit an array of common fouling organisms, including fungi. In this study, we test the hypothesis that the ability to inhibit fungi provides P. tunicata with an advantage during colonization of a surface. Studies on a transposon-generated antifungal-deficient mutant of P. tunicata, FM3, indicated that a long-chain fatty acid-coenzyme A ligase is involved in the production of a broad-range antifungal compound by P. tunicata. Flow cell experiments demonstrated that production of an antifungal compound provided P. tunicata with a competitive advantage against a marine yeast isolate during surface colonization. This compound enabled P. tunicata to disrupt an already established fungal biofilm by decreasing the number of yeast cells attached to the surface by 66% +/- 9%. For in vivo experiments, the wild-type and FM3 strains of P. tunicata were used to inoculate the surface of the green alga Ulva australis. Double-gradient denaturing gradient gel electrophoresis analysis revealed that after 48 h, the wild-type P. tunicata had outcompeted the surface-associated fungal community, whereas the antifungal-deficient mutant had no effect on the fungal community. Our data suggest that P. tunicata is an effective competitor against fungal surface communities in the marine environment.

  5. Biodegradation of thermally treated low density polyethylene by fungus Rhizopus oryzae NS 5.

    PubMed

    Awasthi, Shraddha; Srivastava, Neha; Singh, Tripti; Tiwary, D; Mishra, Pradeep Kumar

    2017-05-01

    Polythene is considered as one of the important object used in daily life. Being versatile in nature and resistant to microbial attack, they effectively cause environmental pollution. In the present study, biodegradation of low-density polyethylene (LDPE) have been performed using fungal lab isolate Rhizopus oryzae NS5. Lab isolate fungal strain capable of adhering to LDPE surface was used for the biodegradation of LDPE. This strain was identified as Rhizopus oryzae NS5 (Accession No. KT160362). Fungal growth was observed on the surface of the polyethylene when cultured in potato dextrose broth at 30 °C and 120 rpm, for 1 month. LDPE film was characterized before and after incubation by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and universal tensile machine. About 8.4 ± 3% decrease (gravimetrically) in weight and 60% reduction in tensile strength of polyethylene was observed. Scanning electron microscope analysis showed hyphal penetration and degradation on the surface of polyethylene. Atomic force microscope analysis showed increased surface roughness after treatment with fungal isolate. A thick network of fungal hyphae forming a biofilm was also observed on the surface of the polyethylene pieces. Present study shows the potential of Rhizopus oryzae NS5 in polyethylene degradation in eco friendly and sustainable manner.

  6. Characterization and control of the microbial community affiliated with copper or aluminum heat exchangers of HVAC systems.

    PubMed

    Schmidt, Michael G; Attaway, Hubert H; Terzieva, Silva; Marshall, Anna; Steed, Lisa L; Salzberg, Deborah; Hamoodi, Hameed A; Khan, Jamil A; Feigley, Charles E; Michels, Harold T

    2012-08-01

    Microbial growth in heating ventilation and air-conditioning (HVAC) systems with the subsequent contamination of indoor air is of increasing concern. Microbes and the subsequent biofilms grow easily within heat exchangers. A comparative study where heat exchangers fabricated from antimicrobial copper were evaluated for their ability to limit microbial growth was conducted using a full-scale HVAC system under conditions of normal flow rates using single-pass outside air. Resident bacterial and fungal populations were quantitatively assessed by removing triplicate sets of coupons from each exchanger commencing the fourth week after their installation for the next 30 weeks. The intrinsic biofilm associated with each coupon was extracted and characterized using selective and differential media. The predominant organisms isolated from aluminum exchangers were species of Methylobacterium of which at least three colony morphologies and 11 distinct PFGE patterns we found; of the few bacteria isolated from the copper exchangers, the majority were species of Bacillus. The concentrations and type of bacteria recovered from the control, aluminum, exchangers were found to be dependent on the type of plating media used and were 11,411-47,257 CFU cm(-2) per coupon surface. The concentration of fungi was found to average 378 CFU cm(-2). Significantly lower concentrations of bacteria, 3 CFU cm(-2), and fungi, 1 CFU cm(-2), were recovered from copper exchangers regardless of the plating media used. Commonly used aluminum heat exchangers developed stable, mixed, bacterial/fungal biofilms in excess of 47,000 organisms per cm(2) within 4 weeks of operation, whereas the antimicrobial properties of metallic copper were able to limit the microbial load affiliated with the copper heat exchangers to levels 99.97 % lower during the same time period.

  7. Real-time evaluation of two light delivery systems for photodynamic disinfection of Candida albicans biofilm in curved root canals.

    PubMed

    Sabino, C P; Garcez, A S; Núñez, S C; Ribeiro, M S; Hamblin, M R

    2015-08-01

    Antimicrobial photodynamic therapy (APDT) combined with endodontic treatment has been recognized as an alternative approach to complement conventional root canal disinfection methods on bacterial biofilms. We developed an in  vitro model of bioluminescent Candida albicans biofilm inside curved dental root canals and investigated the microbial reduction produced when different light delivery methods are employed. Each light delivery method was evaluated in respect to the light distribution provided inside curved root canals. After conventional endodontic preparation, teeth were sterilized before canals were contaminated by a bioluminescent strain of C. albicans (CEC789). Methylene blue (90 μM) was introduced into the canals and then irradiated (λ = 660 nm, P = 100 mW, beam diameter = 2 mm) with laser tip either in contact with pulp chamber or within the canal using an optical diffuser fiber. Light distribution was evaluated by CCD camera, and microbial reduction was monitored through bioluminescence imaging. Our findings demonstrated that the bioluminescent C. albicans biofilm model had good reproducibility and uniformity. Light distribution in dental tissue was markedly dependent on the light delivery system, and this strategy was directly related to microbial destruction. Both light delivery systems performed significant fungal inactivation. However, when irradiation was performed with optical diffuser fiber, microbial burden reduction was nearly 100 times more effective. Bioluminescence is an interesting real-time analysis to endodontic C. albicans biofilm inactivation. APDT showed to be an effective way to inactivate C. albicans biofilms. Diffuser fibers provided optimized light distribution inside curved root canals and significantly increased APDT efficiency.

  8. RNA-Seq Reveals Enhanced Sugar Metabolism in Streptococcus mutans Co-cultured with Candida albicans within Mixed-Species Biofilms

    PubMed Central

    He, Jinzhi; Kim, Dongyeop; Zhou, Xuedong; Ahn, Sang-Joon; Burne, Robert A.; Richards, Vincent P.; Koo, Hyun

    2017-01-01

    Early childhood caries (ECC), which can lead to rampant tooth-decay that is painful and costly to treat, is one of the most prevalent infectious diseases affecting children worldwide. Previous studies support that interactions between Streptococcus mutans and Candida albicans are associated with the pathogenesis of ECC. The presence of Candida enhances S. mutans growth, fitness and accumulation within biofilms in vitro, although the molecular basis for these behaviors is undefined. Using an established co-cultivation biofilm model and RNA-Seq, we investigated how C. albicans influences the transcriptome of S. mutans. The presence of C. albicans dramatically altered gene expression in S. mutans in the dual-species biofilm, resulting in 393 genes differentially expressed, compared to mono-species biofilms of S. mutans. By Gene Ontology analysis, the majority of up-regulated genes were related to carbohydrate transport and metabolic/catabolic processes. KEGG pathway impact analysis showed elevated pyruvate and galactose metabolism, suggesting that co-cultivation with C. albicans influences carbohydrate utilization by S. mutans. Analysis of metabolites confirmed the increases in carbohydrate metabolism, with elevated amounts of formate in the culture medium of co-cultured biofilms. Moreover, co-cultivation with C. albicans altered transcription of S. mutans signal transduction (comC and ciaRH) genes associated with fitness and virulence. Interestingly, the expression of genes for mutacins (bacteriocins) and CRISPR were down-regulated. Collectively, the data provide a comprehensive insight into S. mutans transcriptomic changes induced by C. albicans, and offer novel insights into how bacterial–fungal interactions may enhance the severity of dental caries. PMID:28642749

  9. Real-time evaluation of two light delivery systems for photodynamic disinfection of Candida albicans biofilm in curved root canals

    PubMed Central

    Sabino, C. P.; Garcez, A. S.; Núñez, S. C.; Ribeiro, M. S.; Hamblin, M. R.

    2014-01-01

    Antimicrobial photodynamic therapy (APDT) combined with endodontic treatment has been recognized as an alternative approach to complement conventional root canal disinfection methods on bacterial biofilms. We developed an in vitro model of bioluminescent Candida albicans biofilm inside curved dental root canals and investigated the microbial reduction produced when different light delivery methods are employed. Each light delivery method was evaluated in respect to the light distribution provided inside curved root canals. After conventional endodontic preparation, teeth were sterilized before canals were contaminated by a bioluminescent strain of C. albicans (CEC789). Methylene blue (90 µM) was introduced into the canals and then irradiated (λ=660 nm, P=100 mW, beam diameter=2 mm) with laser tip either in contact with pulp chamber or within the canal using an optical diffuser fiber. Light distribution was evaluated by CCD camera, and microbial reduction was monitored through bioluminescence imaging. Our findings demonstrated that the bioluminescent C. albicans biofilm model had good reproducibility and uniformity. Light distribution in dental tissue was markedly dependent on the light delivery system, and this strategy was directly related to microbial destruction. Both light delivery systems performed significant fungal inactivation. However, when irradiation was performed with optical diffuser fiber, microbial burden reduction was nearly 100 times more effective. Bioluminescence is an interesting real-time analysis to endodontic C. albicans biofilm inactivation. APDT showed to be an effective way to inactivate C. albicans biofilms. Diffuser fibers provided optimized light distribution inside curved root canals and significantly increased APDT efficiency. PMID:25060900

  10. Novel Entries in a Fungal Biofilm Matrix Encyclopedia

    PubMed Central

    Zarnowski, Robert; Westler, William M.; Lacmbouh, Ghislain Ade; Marita, Jane M.; Bothe, Jameson R.; Bernhardt, Jörg; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Sanchez, Hiram; Hatfield, Ronald D.; Ntambi, James M.; Nett, Jeniel E.; Mitchell, Aaron P.

    2014-01-01

    ABSTRACT Virulence of Candida is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we provide a comprehensive analysis of the matrix manufactured by Candida albicans both in vitro and in a clinical niche animal model. We further explore the function of matrix components, including the impact on drug resistance. We uncovered components from each of the macromolecular classes (55% protein, 25% carbohydrate, 15% lipid, and 5% nucleic acid) in the C. albicans biofilm matrix. Three individual polysaccharides were identified and were suggested to interact physically. Surprisingly, a previously identified polysaccharide of functional importance, β-1,3-glucan, comprised only a small portion of the total matrix carbohydrate. Newly described, more abundant polysaccharides included α-1,2 branched α-1,6-mannans (87%) associated with unbranched β-1,6-glucans (13%) in an apparent mannan-glucan complex (MGCx). Functional matrix proteomic analysis revealed 458 distinct activities. The matrix lipids consisted of neutral glycerolipids (89.1%), polar glycerolipids (10.4%), and sphingolipids (0.5%). Examination of matrix nucleic acid identified DNA, primarily noncoding sequences. Several of the in vitro matrix components, including proteins and each of the polysaccharides, were also present in the matrix of a clinically relevant in vivo biofilm. Nuclear magnetic resonance (NMR) analysis demonstrated interaction of aggregate matrix with the antifungal fluconazole, consistent with a role in drug impedance and contribution of multiple matrix components. PMID:25096878

  11. Candida albicans importance to denture wearers. A literature review.

    PubMed

    Gleiznys, Alvydas; Zdanavičienė, Eglė; Žilinskas, Juozas

    2015-01-01

    Opportunistic oral fungal infections have spred, especially in denture wearers. Denture stomatitis is a common inflammatory reaction, multifactorial etiology, which is usually associated with Candida species, particularly Candida albicans, due to its high virulence, ability to adhere and form biofilms on oral cavity tissues and denture surfaces. This article highlights the pathogenesis, clinical presentation, and management strategies of Candida-associated denture stomatitis commonly encountered in dental practice.

  12. Tannins Possessing Bacteriostatic Effect Impair Pseudomonas aeruginosa Adhesion and Biofilm Formation

    PubMed Central

    Trentin, Danielle S.; Silva, Denise B.; Amaral, Matheus W.; Zimmer, Karine R.; Silva, Márcia V.; Lopes, Norberto P.; Giordani, Raquel B.; Macedo, Alexandre J.

    2013-01-01

    Plants produce many compounds that are biologically active, either as part of their normal program of growth and development or in response to pathogen attack or stress. Traditionally, Anadenanthera colubrina, Commiphora leptophloeos and Myracrodruon urundeuva have been used by communities in the Brazilian Caatinga to treat several infectious diseases. The ability to impair bacterial adhesion represents an ideal strategy to combat bacterial pathogenesis, because of its importance in the early stages of the infectious process; thus, the search for anti-adherent compounds in plants is a very promising alternative. This study investigated the ability of stem-bark extracts from these three species to control the growth and prevent biofilm formation of Pseudomonas aeruginosa, an important opportunistic pathogen that adheres to surfaces and forms protective biofilms. A kinetic study (0–72 h) demonstrated that the growth of extract-treated bacteria was inhibited up to 9 h after incubation, suggesting a bacteriostatic activity. Transmission electron microscopy and fluorescence microscopy showed both viable and nonviable cells, indicating bacterial membrane damage; crystal violet assay and scanning electron microscopy demonstrated that treatment strongly inhibited biofilm formation during 6 and 24 h and that matrix production remained impaired even after growth was restored, at 24 and 48 h of incubation. Herein, we propose that the identified (condensed and hydrolyzable) tannins are able to inhibit biofilm formation via bacteriostatic properties, damaging the bacterial membrane and hindering matrix production. Our findings demonstrate the importance of this abundant class of Natural Products in higher plants against one of the most challenging issues in the hospital setting: biofilm resilience. PMID:23776646

  13. A new mathematical model of bacterial interactions in two-species oral biofilms

    PubMed Central

    Martin, Bénédicte; Tamanai-Shacoori, Zohreh; Bronsard, Julie; Ginguené, Franck; Meuric, Vincent

    2017-01-01

    Periodontitis are bacterial inflammatory diseases, where the bacterial biofilms present on the tooth-supporting tissues switch from a healthy state towards a pathogenic state. Among bacterial species involved in the disease, Porphyromonas gingivalis has been shown to induce dysbiosis, and to induce virulence of otherwise healthy bacteria like Streptococcus gordonii. During biofilm development, primary colonizers such as S. gordonii first attach to the surface and allow the subsequent adhesion of periodontal pathogens such as P. gingivalis. Interactions between those two bacteria have been extensively studied during the adhesion step of the biofilm. The aim of the study was to understand interactions of both species during the growing phase of the biofilm, for which little knowledge is available, using a mathematical model. This two-species biofilm model was based on a substrate-dependent growth, implemented with damage parameters, and validated thanks to data obtained on experimental biofilms. Three different hypothesis of interactions were proposed and assayed using this model: independence, competition between both bacteria species, or induction of toxicity by one species for the other species. Adequacy between experimental and simulated biofilms were found with the last hypothetic mathematical model. This new mathematical model of two species bacteria biofilms, dependent on different substrates for growing, can be applied to any bacteria species, environmental conditions, or steps of biofilm development. It will be of great interest for exploring bacterial interactions in biofilm conditions. PMID:28253369

  14. Novel entries in a fungal biofilm matrix encyclopedia.

    PubMed

    Zarnowski, Robert; Westler, William M; Lacmbouh, Ghislain Ade; Marita, Jane M; Bothe, Jameson R; Bernhardt, Jörg; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Sanchez, Hiram; Hatfield, Ronald D; Ntambi, James M; Nett, Jeniel E; Mitchell, Aaron P; Andes, David R

    2014-08-05

    Virulence of Candida is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we provide a comprehensive analysis of the matrix manufactured by Candida albicans both in vitro and in a clinical niche animal model. We further explore the function of matrix components, including the impact on drug resistance. We uncovered components from each of the macromolecular classes (55% protein, 25% carbohydrate, 15% lipid, and 5% nucleic acid) in the C. albicans biofilm matrix. Three individual polysaccharides were identified and were suggested to interact physically. Surprisingly, a previously identified polysaccharide of functional importance, β-1,3-glucan, comprised only a small portion of the total matrix carbohydrate. Newly described, more abundant polysaccharides included α-1,2 branched α-1,6-mannans (87%) associated with unbranched β-1,6-glucans (13%) in an apparent mannan-glucan complex (MGCx). Functional matrix proteomic analysis revealed 458 distinct activities. The matrix lipids consisted of neutral glycerolipids (89.1%), polar glycerolipids (10.4%), and sphingolipids (0.5%). Examination of matrix nucleic acid identified DNA, primarily noncoding sequences. Several of the in vitro matrix components, including proteins and each of the polysaccharides, were also present in the matrix of a clinically relevant in vivo biofilm. Nuclear magnetic resonance (NMR) analysis demonstrated interaction of aggregate matrix with the antifungal fluconazole, consistent with a role in drug impedance and contribution of multiple matrix components. Importance: This report is the first to decipher the complex and unique macromolecular composition of the Candida biofilm matrix, demonstrate the clinical relevance of matrix components, and show that multiple matrix components are needed for protection from antifungal drugs. The availability of these biochemical analyses provides a unique resource for further functional investigation of the biofilm matrix, a defining trait of this lifestyle. Copyright © 2014 Zarnowski et al.

  15. Effect of sodium hypochlorite on typical biofilms formed in drinking water distribution systems.

    PubMed

    Lin, Huirong; Zhu, Xuan; Wang, Yuxin; Yu, Xin

    2017-04-01

    Human health and biological safety problems resulting from urban drinking water pipe network biofilms pollution have attracted wide concern. Despite the inclusion of residual chlorine in drinking water distribution systems supplies, the bacterium is a recalcitrant human pathogen capable of forming biofilms on pipe walls and causing health risks. Typical drinking water bacterial biofilms and their response to different concentrations of chlorination was monitored. The results showed that the four bacteria all formed single biofilms susceptible to sodium hypochlorite. After 30 min disinfection, biomass and cultivability decreased with increasing concentration of disinfectant but then increased in high disinfectant doses. PMA-qPCR results indicated that it resulted in little cellular damage. Flow cytometry analysis showed that with increasing doses of disinfectant, the numbers of clusters increased and the sizes of clusters decreased. Under high disinfectant treatment, EPS was depleted by disinfectant and about 0.5-1 mg/L of residual chlorine seemed to be appropriate for drinking water treatment. This research provides an insight into the EPS protection to biofilms. Resistance of biofilms against high levels of chlorine has implications for the delivery of drinking water.

  16. Fate of Eight Different Polymers under Uncontrolled Composting Conditions: Relationships Between Deterioration, Biofilm Formation, and the Material Surface Properties.

    PubMed

    Mercier, Anne; Gravouil, Kevin; Aucher, Willy; Brosset-Vincent, Sandra; Kadri, Linette; Colas, Jenny; Bouchon, Didier; Ferreira, Thierry

    2017-02-21

    With the ever-increasing volume of polymer wastes and their associated detrimental impacts on the environment, the plastic life cycle has drawn increasing attention. Here, eight commercial polymers selected from biodegradable to environmentally persistent materials, all formulated under a credit card format, were incubated in an outdoor compost to evaluate their fate over time and to profile the microbial communities colonizing their surfaces. After 450 days in compost, the samples were all colonized by multispecies biofilms, these latest displaying different amounts of adhered microbial biomass and significantly distinct bacterial and fungal community compositions depending on the substrate. Interestingly, colonization experiments on the eight polymers revealed a large core of shared microbial taxa, predominantly composed of microorganisms previously reported from environments contaminated with petroleum hydrocarbons or plastics debris. These observations suggest that biofilms may contribute to the alteration process of all the polymers studied. Actually, four substrates, independently of their assignment to a polymer group, displayed a significant deterioration, which might be attributed to biologically mediated mechanisms. Relevantly, the deterioration appears strongly associated with the formation of a high-cell density biofilm onto the polymer surfaces. The analysis of various surface properties revealed that roughness and hydrophilicity are likely prominent parameters for driving the biological interactions with the polymers.

  17. Photodynamic therapy to destroy pneumonia associated microorganisms using external irradiation source

    NASA Astrophysics Data System (ADS)

    Bassi, Rosane; Myakawa, Walter; Navarro, Ricardo S.; Baptista, Alessandra; Ribeiro, Martha Simões; Nunez, Silvia Cristina

    2018-02-01

    An endotracheal tube (ETT) is required for the management of critically ill, mechanically ventilated patients. Ventilatorassociated pneumonia (VAP) affects patients hospitalized in intensive care units; its risk of occurrence is 1% to up 3% for each day of mechanical ventilation. The polymicrobial nature of VAP is established with mixed bacterial-fungal biofilms colonizing the ETT. The microbial interaction enhances the microbial pathogenesis contributing to high indexes of morbidity/mortality. Antimicrobial Photodynamic Therapy (aPDT) could be a suitable therapy for decontamination of oral cavity and ETT at the same time, but the use of a fiber optics inside the ETT seems to not be appropriated since a cannula for secretion aspiration has to be introduced into the ETT to keep it's lumen. The aim of this study is to proof the concept that an external light source from a LED is capable of reach all areas of the ETT. We use a commercial ETT, 60μM methylene blue (MB), and a 660nm diode laser and calculated the transmission coefficient of light in different situations as only tube, tube with biofilm and biofilm+MB. The results prove that is possible to transmit light through the tube even in the presence of MB and biofilm although a high attenuation of about 60% was measured depending on the tested condition.

  18. Relative Abundances of Candida albicans and Candida glabrata in In Vitro Coculture Biofilms Impact Biofilm Structure and Formation.

    PubMed

    Olson, Michelle L; Jayaraman, Arul; Kao, Katy C

    2018-04-15

    Candida is a member of the normal human microbiota and often resides on mucosal surfaces such as the oral cavity or the gastrointestinal tract. In addition to their commensality, Candida species can opportunistically become pathogenic if the host microbiota is disrupted or if the host immune system becomes compromised. An important factor for Candida pathogenesis is its ability to form biofilm communities. The two most medically important species- Candida albicans and Candida glabrata -are often coisolated from infection sites, suggesting the importance of Candida coculture biofilms. In this work, we report that biofilm formation of the coculture population depends on the relative ratio of starting cell concentrations of C. albicans and C. glabrata When using a starting ratio of C. albicans to C. glabrata of 1:3, ∼6.5- and ∼2.5-fold increases in biofilm biomass were observed relative to those of a C. albicans monoculture and a C. albicans / C. glabrata ratio of 1:1, respectively. Confocal microscopy analysis revealed the heterogeneity and complex structures composed of long C. albicans hyphae and C. glabrata cell clusters in the coculture biofilms, and reverse transcription-quantitative PCR (qRT-PCR) studies showed increases in the relative expression of the HWP1 and ALS3 adhesion genes in the C. albicans / C. glabrata 1:3 biofilm compared to that in the C. albicans monoculture biofilm. Additionally, only the 1:3 C. albicans / C. glabrata biofilm demonstrated an increased resistance to the antifungal drug caspofungin. Overall, the results suggest that interspecific interactions between these two fungal pathogens increase biofilm formation and virulence-related gene expression in a coculture composition-dependent manner. IMPORTANCE Candida albicans and Candida glabrata are often coisolated during infection, and the occurrence of coisolation increases with increasing inflammation, suggesting possible synergistic interactions between the two Candida species in pathogenesis. During the course of an infection, the prevalence of each Candida species may change over time due to differences in metabolism and in the resistance of each species to antifungal therapies. Therefore, it is necessary to understand the dynamics between C. albicans and C. glabrata in coculture to develop better therapeutic strategies against Candida infections. Existing in vitro work has focused on understanding how an equal-part culture of C. albicans and C. glabrata impacts biofilm formation and pathogenesis. What is not understood, and what is investigated in this work, is how the composition of Candida species in coculture impacts overall biofilm formation, virulence gene expression, and the therapeutic treatment of biofilms. Copyright © 2018 American Society for Microbiology.

  19. Antimicrobial photodynamic therapy (aPDT) induction of biofilm matrix architectural and bioadhesive modifications.

    PubMed

    Mang, Thomas; Rogers, Stephen; Keinan, David; Honma, Kiyonobu; Baier, Robert

    2016-03-01

    Dental implants are commonly used today for the treatment of partially and fully edentulous patients. Despite the high success rate they are not resistant to complications and failure due to a variety of problems including peri-implantitis or peri-mucositis due to bacterial biofilm formation on the implant surface. The use of non-surgical and surgical treatment procedure to promote healing in cases with peri-implantitis have limited efficacy. Here we studied the ability of photodynamic therapy to destroy a known bacterial pathogen and the extracellular matrix architecture of biofilm attached to titanium plates and germanium prisms. Titanium plates or germanium prisms were incubated for 24h with Fusobacterium nucleatum a fusiform, gram-negative bacterium was used to enable biofilm formation. Photodynamic therapy was carried out by incubating the biofilm samples on each substrata with porfimer sodium. Treatment was carried out using a diode laser at 630nm, 150mW/cm(2) for light doses ranging from 25-100J/cm(2). Evaluation of killing efficacy was done by counting colony forming units compared to controls. Multiple attenuated internal reflection-infrared spectroscopy (MAIR-IR) and SEM were used to analyze the samples pre and post PDT for validation. F. nucleatum was significantly reduced in a dose dependent manner by treatment with PDT. Changes in biofilm components and strength of bioadhesion were examined with MAIR-IR following jet impingement using calibrated water jets. SEM demonstrates significant morphological alterations in the bacteria, consistent with damage associated with exposure to reactive oxygen species. The results are indicative that aPDT is a method that can be used to eradicate micro-organisms associated with biofilm in peri-implantitis on relevant substrata. Data shows that the slime layer of the biofilm is removed and that further methods need to be employed to completely remove weakened or destroyed biofilm matrix components. Reactive oxygen species (ROS) mediated oxidative damage results in morphologic changes as a consequence of changes in cell membrane integrity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Removal of toluene in a vapor-phase bioreactor containing a strain of the dimorphic black yeast Exophiala lecanii-corni.

    PubMed

    Woertz, J R; Kinney, K A; McIntosh, N D; Szaniszlo, P J

    2001-12-05

    Stricter regulations on volatile organic compounds and hazardous air pollutants have increased the demand for abatement technologies. Biofiltration, a process in which contaminated air is passed through a biologically active bed, can be used to remove these pollutants from air streams. In this study, a fungal vapor-phase bioreactor containing a strain of the dimorphic black yeast, Exophiala lecanii-corni, was used to treat a gas stream contaminated with toluene. The maximum toluene elimination capacity in short-term tests was 270 g m(-3) h(-1), which is 2 to 7 times greater than the toluene elimination capacities typically reported for bacterial systems. The fungal bioreactor also maintained toluene removal efficiencies of greater than 95% throughout the 175-day study. Harsh operating conditions such as low moisture content, acidic biofilms, and nitrogen limitation did not adversely affect performance. The fungal bioreactor also rapidly reestablished high toluene removal efficiencies after an 8-day shutdown period. These results indicate that fungal bioreactors may be an effective alternative to conventional abatement technologies for treating high concentrations of pollutants in waste gas streams. Copyright 2001 John Wiley & Sons, Inc.

  1. Effects of patchouli and cinnamon essential oils on biofilm and hyphae formation by Candida species.

    PubMed

    Farisa Banu, S; Rubini, D; Shanmugavelan, P; Murugan, R; Gowrishankar, S; Karutha Pandian, S; Nithyanand, P

    2018-06-01

    The prevalence and fatality rates with biofilm-associated candidal infections have remained a challenge to the medical fraternity despite major advances in the field of antifungal therapy. Traditionally, essential oils (EOs) from the aromatic plants have been found to be excellent therapeutic agents to treat fungal ailments. The present study explores the antivirulent and antibiofilm effects of under explored leaf EOs of Indian patchouli EO extracted from Pogostemon heyneanus (PH), Indian cassia from Cinnamomum tamala (CT) and camphor EO from C. camphora (CC) against Candida species. The EOs were investigated for its efficacy to disrupt the young and preformed Candida spp. biofilms and to inhibit the yeast to hyphal transition, a hallmark virulent trait of C. albicans. The ability of these EOs to inhibit metabolically active cells was assessed through XTT assay. Of these three EOs, CT EO showed enhanced biofilm inhibition than others and hence it was further selected to study its biomass inhibition potential and exopolysaccharide layer disruption ability. The CT EO reduced the biomass of the preformed biofilms of all three Candida strains, which was supported by confocal microscopy. It also disrupted the exopolysaccharide layer of the Candida strains as shown by scanning electron microscopy. The present findings validate the effectiveness of EOs against the virulence of Candida spp. and emphasize the pharmaceutical potential of several native but yet unexplored wild aromatic plants in the prospect of therapeutic application. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions.

    PubMed

    Brandl, Maria T; Carter, Michelle Q; Parker, Craig T; Chapman, Matthew R; Huynh, Steven; Zhou, Yaguang

    2011-01-01

    Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose-chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens.

  3. Salmonella Biofilm Formation on Aspergillus niger Involves Cellulose – Chitin Interactions

    PubMed Central

    Brandl, Maria T.; Carter, Michelle Q.; Parker, Craig T.; Chapman, Matthew R.; Huynh, Steven; Zhou, Yaguang

    2011-01-01

    Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose–chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens. PMID:22003399

  4. Coriandrum sativum L. (Coriander) Essential Oil: Antifungal Activity and Mode of Action on Candida spp., and Molecular Targets Affected in Human Whole-Genome Expression

    PubMed Central

    Freires, Irlan de Almeida; Murata, Ramiro Mendonça; Furletti, Vivian Fernandes; Sartoratto, Adilson; de Alencar, Severino Matias; Figueira, Glyn Mara; de Oliveira Rodrigues, Janaina Aparecida; Duarte, Marta Cristina Teixeira; Rosalen, Pedro Luiz

    2014-01-01

    Oral candidiasis is an opportunistic fungal infection of the oral cavity with increasingly worldwide prevalence and incidence rates. Novel specifically-targeted strategies to manage this ailment have been proposed using essential oils (EO) known to have antifungal properties. In this study, we aim to investigate the antifungal activity and mode of action of the EO from Coriandrum sativum L. (coriander) leaves on Candida spp. In addition, we detected the molecular targets affected in whole-genome expression in human cells. The EO phytochemical profile indicates monoterpenes and sesquiterpenes as major components, which are likely to negatively impact the viability of yeast cells. There seems to be a synergistic activity of the EO chemical compounds as their isolation into fractions led to a decreased antimicrobial effect. C. sativum EO may bind to membrane ergosterol, increasing ionic permeability and causing membrane damage leading to cell death, but it does not act on cell wall biosynthesis-related pathways. This mode of action is illustrated by photomicrographs showing disruption in biofilm integrity caused by the EO at varied concentrations. The EO also inhibited Candida biofilm adherence to a polystyrene substrate at low concentrations, and decreased the proteolytic activity of Candida albicans at minimum inhibitory concentration. Finally, the EO and its selected active fraction had low cytotoxicity on human cells, with putative mechanisms affecting gene expression in pathways involving chemokines and MAP-kinase (proliferation/apoptosis), as well as adhesion proteins. These findings highlight the potential antifungal activity of the EO from C. sativum leaves and suggest avenues for future translational toxicological research. PMID:24901768

  5. Mechanisms of Bacterial (Serratia marcescens) Attachment to, Migration along, and Killing of Fungal Hyphae.

    PubMed

    Hover, Tal; Maya, Tal; Ron, Sapir; Sandovsky, Hani; Shadkchan, Yana; Kijner, Nitzan; Mitiagin, Yulia; Fichtman, Boris; Harel, Amnon; Shanks, Robert M Q; Bruna, Roberto E; García-Véscovi, Eleonora; Osherov, Nir

    2016-05-01

    We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well.S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Mechanisms of Bacterial (Serratia marcescens) Attachment to, Migration along, and Killing of Fungal Hyphae

    PubMed Central

    Hover, Tal; Maya, Tal; Ron, Sapir; Sandovsky, Hani; Shadkchan, Yana; Kijner, Nitzan; Mitiagin, Yulia; Fichtman, Boris; Harel, Amnon; Shanks, Robert M. Q.; Bruna, Roberto E.; García-Véscovi, Eleonora

    2016-01-01

    We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well. S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol. PMID:26896140

  7. Distribution, Pest Status and Fungal Associates of Euwallacea nr. fornicatus in Florida Avocado Groves

    PubMed Central

    Carrillo, Daniel; Cruz, Luisa F.; Kendra, Paul E.; Narvaez, Teresa I.; Montgomery, Wayne S.; Monterroso, Armando; De Grave, Charlotte; Cooperband, Miriam F.

    2016-01-01

    Members of a complex of cryptic species, that correspond morphologically to the ambrosia beetle Euwallacea fornicatus (Eichhoff) (Coleoptera: Curculionidae: Scolytinae), were recently found attacking avocado (Persea americana Mill.) in Israel and California. In early 2016, an outbreak of another member of this species complex was detected infesting approximately 1500 avocado trees in an avocado orchard at Homestead, Florida. An area-wide survey was conducted in commercial avocado groves of Miami-Dade County, Florida to determine the distribution and abundance of E. nr. fornicatus, to identify different populations of E. nr. fornicatus and their fungal associates, and to assess the extent of damage to avocado trees. Ewallacea nr. fornicatus were captured in 31 of the 33 sampled sites. A sample of 35 beetles from six different locations was identified as E. nr. fornicatus sp. #2, which is genetically distinct from the species causing damage in California and Israel. Eleven fungal associates were identified: an unknown Fusarium sp., AF-8, AF-6, Graphium euwallaceae, Acremonium sp. Acremonium morum, Acremonium masseei, Elaphocordyceps sp. and three yeast species. The unknown Fusarium isolates were the most abundant and frequently found fungus species associated with adult beetles and lesions surrounding the beetle galleries. In addition to fungal associates, three bacteria species were found associated with adult E. nr. fornicatus. Visual inspections detected significant damage in only two orchards. A large number of beetles were captured in locations with no apparent damage on the avocado trees suggesting that E. nr. fornicatus are associated with other host(s) outside the groves or with dead trees or branches inside the groves. More research is needed to determine the potential threat E. nr. fornicatus and its fungal associates pose to the avocado industry and agricultural and natural ecosystems in Florida. PMID:27754408

  8. Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination.

    PubMed

    Gonzalez, E; Pitre, F E; Pagé, A P; Marleau, J; Guidi Nissim, W; St-Arnaud, M; Labrecque, M; Joly, S; Yergeau, E; Brereton, N J B

    2018-03-21

    One method for rejuvenating land polluted with anthropogenic contaminants is through phytoremediation, the reclamation of land through the cultivation of specific crops. The capacity for phytoremediation crops, such as Salix spp., to tolerate and even flourish in contaminated soils relies on a highly complex and predominantly cryptic interacting community of microbial life. Here, Illumina HiSeq 2500 sequencing and de novo transcriptome assembly were used to observe gene expression in washed Salix purpurea cv. 'Fish Creek' roots from trees pot grown in petroleum hydrocarbon-contaminated or non-contaminated soil. All 189,849 assembled contigs were annotated without a priori assumption as to sequence origin and differential expression was assessed. The 839 contigs differentially expressed (DE) and annotated from S. purpurea revealed substantial increases in transcripts encoding abiotic stress response equipment, such as glutathione S-transferases, in roots of contaminated trees as well as the hallmarks of fungal interaction, such as SWEET2 (Sugars Will Eventually Be Exported Transporter). A total of 8252 DE transcripts were fungal in origin, with contamination conditions resulting in a community shift from Ascomycota to Basidiomycota genera. In response to contamination, 1745 Basidiomycota transcripts increased in abundance (the majority uniquely expressed in contaminated soil) including major monosaccharide transporter MST1, primary cell wall and lamella CAZy enzymes, and an ectomycorrhiza-upregulated exo-β-1,3-glucanase (GH5). Additionally, 639 DE polycistronic transcripts from an uncharacterised Enterobacteriaceae species were uniformly in higher abundance in contamination conditions and comprised a wide spectrum of genes cryptic under laboratory conditions but considered putatively involved in eukaryotic interaction, biofilm formation and dioxygenase hydrocarbon degradation. Fungal gene expression, representing the majority of contigs assembled, suggests out-competition of white rot Ascomycota genera (dominated by Pyronema), a sometimes ectomycorrhizal (ECM) Ascomycota (Tuber) and ECM Basidiomycota (Hebeloma) by a poorly characterised putative ECM Basidiomycota due to contamination. Root and fungal expression involved transcripts encoding carbohydrate/amino acid (C/N) dialogue whereas bacterial gene expression included the apparatus necessary for biofilm interaction and direct reduction of contamination stress, a potential bacterial currency for a role in tripartite mutualism. Unmistakable within the metatranscriptome is the degree to which the landscape of rhizospheric biology, particularly the important but predominantly uncharacterised fungal genetics, is yet to be discovered.

  9. Effect of diamond-like carbon thin film coated acrylic resin on candida albicans biofilm formation.

    PubMed

    Queiroz, José Renato Cavalcanti; Fissmer, Sara Fernanda; Koga-Ito, Cristiane Yumi; Salvia, Ana C R D; Massi, Marcos; Sobrinho, Argermiro Soares da Silva; Júnior, Lafayette Nogueira

    2013-08-01

    The purpose of this study was to evaluate the effect of diamond-like carbon thin films doped and undoped with silver nanoparticles coating poly(methyl methacrylate) (PMMA) on Candida albicans biofilm formation. The control of biofilm formation is important to prevent oral diseases in denture users. Forty-five PMMA disks were obtained, finished, cleaned in an ultrasonic bath, and divided into three groups: Gc, no surface coating (control group); Gdlc, coated with diamond-like carbon film; and Gag, coated with diamond-like carbon film doped with silver nanoparticles. The films were deposited using a reactive magnetron sputtering system (physical vapor deposition process). The specimens were characterized by optical profilometry, atomic force microscopy, and Rutherford backscattering spectroscopy analyses that determined differences in chemical composition and morphological structure. Following sterilization of the specimens by γ-ray irradiation, C. albicans (ATCC 18804) biofilms were formed by immersion in 2 ml of Sabouraud dextrose broth inoculated with a standardized fungal suspension. After 24 hours, the number of colony forming units (cfu) per specimen was counted. Data concerning biofilm formation were analyzed using ANOVA and the Tukey test (p < 0.05). C. albicans biofilm formation was significantly influenced by the films (p < 0.00001), reducing the number of cfu, while not affecting the roughness parameters (p > 0.05). The Tukey test showed no significant difference between Gdlc and Gag. Films deposited were extremely thin (∼50 nm). The silver particles presented a diameter between 60 and 120 nm and regular distribution throughout the film surface (to Gag). Diamond-like carbon films, doped or undoped with silver nanoparticles, coating the base of PMMA-based dentures could be an alternative procedure for preventing candidosis in denture users. © 2013 by the American College of Prosthodontists.

  10. In Vitro Interactions between Aspirin and Amphotericin B against Planktonic Cells and Biofilm Cells of Candida albicans and C. parapsilosis

    PubMed Central

    Zhou, Yabin; Wang, Ganggang; Li, Yutang; Liu, Yang; Song, Yu; Zheng, Wenshuai; Zhang, Ning; Hu, Xiaoyan; Yan, Shikun

    2012-01-01

    The increase in drug resistance and invasion caused by biofilm formation brings enormous challenges to the management of Candida infection. Aspirin's antibiofilm activity in vitro was discovered recently. The spectrophotometric method and the XTT {2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide} reduction assay used for data generation make it possible to evaluate fungal biofilm growth accurately. The combined use of the most commonly used methods, the fractional inhibitory concentration index (FICI) and a newly developed method, the ΔE model, which uses the concentration-effect relationship over the whole concentration range instead of using the MIC index alone, makes the interpretation of results more reliable. As an attractive tool for studying the pharmacodynamics of antimicrobial agents, time-kill curves can provide detailed information about antimicrobial efficacy as a function of both time and concentration. In the present study, in vitro interactions between aspirin (acetylsalicylic acid [ASA]) and amphotericin B (AMB) against planktonic cells and biofilm cells of Candida albicans and C. parapsilosis were evaluated by the checkerboard microdilution method and the time-kill test. Synergistic and indifferent effects were found for the combination of ASA and AMB against planktonic cells, while strong synergy was found against biofilm cells analyzed by FICI. The ΔE model gave more consistent results with FICI. The positive interactions in concentration were also confirmed by the time-kill test. Moreover, this approach also revealed the pharmacodynamics changes of ASA and synergistic action on time. Our findings suggest a potential clinical use for combination therapy with ASA and AMB to augment activity against biofilm-associated infections. PMID:22391539

  11. Survey of the Antibiofilm and Antimicrobial Effects of Zingiber officinale (in Vitro Study).

    PubMed

    Aghazadeh, Marzieh; Zahedi Bialvaei, Abed; Aghazadeh, Mohammad; Kabiri, Fahimeh; Saliani, Negar; Yousefi, Mehdi; Eslami, Hosein; Samadi Kafil, Hossein

    2016-02-01

    Candidiasis is one of the most prevalent and important opportunistic fungal infections of the oral cavity caused by Candida yeast species like Candida albicans, C. glabrata, and C. krusei. In addition, several bacteria can cause oral infections. The inhibition of microbial biofilm is the best way to prevent oral infections. The aim of the present study is to evaluate the antifungal, antimicrobial, and anti-biofilm properties of ginger (Zingiber officinale) extract against Candida species and some bacterial pathogens and the extract's effects on biofilm formation. Ginger ethanolic extract as a potential mouthwash was used to evaluate its effect against fungi and bacteria using the microdilution method, and biofilm was evaluated using the crystal violet staining method and dead/alive staining. MTT assay was used to evaluate the possible cytotoxicity effects of the extract. The minimum inhibitory concentrations (MICs) of ginger extract for evaluated strains were 40, 40, 20, 20, 20, 20, 10, and 5 mg/mL for Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Bacillus cereus, Acinetobacter baumannii, C. albicans, and C. krusei, respectively. Ginger extract successfully inhibited biofilm formation by A. baumannii, B. cereus, C. krusei, and C. albicans. MTT assay revealed no significant reduction in cell viability after 24 hours. The minimum inhibitory biofilm concentrations (MIBCs) of ginger extract for fungi strains (C. krusei and C. albicans) were greater than those of fluconazole and nystatin (P = 0.000). The findings of the present study indicate that ginger extract has good antifungal and antibiofilm formation by fungi against C. albicans and C. Krusei. Concentrations between 0.625 mg/mL and 5 mg/mL had the highest antibiofilm and antifungal effects. Perhaps, the use of herbal extracts such as ginger represents a new era for antimicrobial therapy after developing antibiotic resistance in microbes.

  12. Impact of Nutrient Restriction on the Structure of Listeria monocytogenes Biofilm Grown in a Microfluidic System.

    PubMed

    Cherifi, Tamazight; Jacques, Mario; Quessy, Sylvain; Fravalo, Philippe

    2017-01-01

    Biofilm formation by the pathogen Listeria monocytogenes is a major concern in food industries. The aim of this work was to elucidate the effect of nutrient limitation on both biofilm architecture and on the viability of the bacteria in microfluidic growth conditions. Biofilm formation by two L. monocytogenes strains was performed in a rich medium (BHI) and in a 10-fold diluted BHI (BHI/10) at 30°C for 24 h by using both static conditions and the microfluidic system Bioflux. In dynamic conditions, biofilms grown in rich and poor medium showed significant differences as well in structure and in the resulting biovolume. In BHI/10, biofilm was organized in a knitted network where cells formed long chains, whereas in the rich medium, the observed structure was homogeneous cellular multilayers. Biofilm biovolume production in BHI/10 was significantly higher than in BHI in these dynamic conditions. Interestingly, biovolume of dead cells in biofilms formed under limited nutrient conditions (BHI/10) was significantly higher than in biofilms formed in the BHI medium. In the other hand, in static conditions, biofilm is organized in a multilayer cells and dispersed cells in a rich medium BHI and poor medium BHI/10 respectively. There was significantly more biomass in the rich medium compared to BHI/10 but no difference was noted in the dead/damaged subpopulation showing how L. monocytogenes biofilm could be affected by the growth conditions. This work demonstrated that nutrient concentration affects biofilm structure and the proportion of dead cells in biofilms under microfluidic condition. Our study also showed that limited nutrients play an important role in the structural stability of L. monocytogenes biofilm by enhancing cell death and liberating extracellular DNA.

  13. Impact of Nutrient Restriction on the Structure of Listeria monocytogenes Biofilm Grown in a Microfluidic System

    PubMed Central

    Cherifi, Tamazight; Jacques, Mario; Quessy, Sylvain; Fravalo, Philippe

    2017-01-01

    Biofilm formation by the pathogen Listeria monocytogenes is a major concern in food industries. The aim of this work was to elucidate the effect of nutrient limitation on both biofilm architecture and on the viability of the bacteria in microfluidic growth conditions. Biofilm formation by two L. monocytogenes strains was performed in a rich medium (BHI) and in a 10-fold diluted BHI (BHI/10) at 30°C for 24 h by using both static conditions and the microfluidic system Bioflux. In dynamic conditions, biofilms grown in rich and poor medium showed significant differences as well in structure and in the resulting biovolume. In BHI/10, biofilm was organized in a knitted network where cells formed long chains, whereas in the rich medium, the observed structure was homogeneous cellular multilayers. Biofilm biovolume production in BHI/10 was significantly higher than in BHI in these dynamic conditions. Interestingly, biovolume of dead cells in biofilms formed under limited nutrient conditions (BHI/10) was significantly higher than in biofilms formed in the BHI medium. In the other hand, in static conditions, biofilm is organized in a multilayer cells and dispersed cells in a rich medium BHI and poor medium BHI/10 respectively. There was significantly more biomass in the rich medium compared to BHI/10 but no difference was noted in the dead/damaged subpopulation showing how L. monocytogenes biofilm could be affected by the growth conditions. This work demonstrated that nutrient concentration affects biofilm structure and the proportion of dead cells in biofilms under microfluidic condition. Our study also showed that limited nutrients play an important role in the structural stability of L. monocytogenes biofilm by enhancing cell death and liberating extracellular DNA. PMID:28567031

  14. Experimental Models of C. albicans-Streptococcal Co-infection.

    PubMed

    Sobue, Takanori; Diaz, Patricia; Xu, Hongbin; Bertolini, Martinna; Dongari-Bagtzoglou, Anna

    2016-01-01

    Interactions of C. albicans with co-colonizing bacteria at mucosal sites can be synergistic or antagonistic in disease development, depending on the bacterial species and mucosal site. Mitis group streptococci and C. albicans colonize the oral mucosa of the majority of healthy individuals. These streptococci have been termed "accessory pathogens," defined by their ability to initiate multispecies biofilm assembly and promote the virulence of the mixed bacterial biofilm community in which they participate. To demonstrate whether interactions with Mitis group streptococci limit or promote the potential of C. albicans to become an opportunistic pathogen, in vitro and in vivo co-infection models are needed. Here, we describe two C. albicans-streptococcal co-infection models: an organotypic oral mucosal tissue model that incorporates salivary flow and a mouse model of oral co-infection that requires reduced levels of immunosuppression compared to single fungal infection.

  15. Abundance and dynamics of filamentous fungi in the complex ambrosia gardens of the primitively eusocial beetle Xyleborinus saxesenii Ratzeburg (Coleoptera: Curculionidae, Scolytinae).

    PubMed

    Biedermann, Peter H W; Klepzig, Kier D; Taborsky, Michael; Six, Diana L

    2013-03-01

    Insect fungus gardens consist of a community of interacting microorganisms that can have either beneficial or detrimental effects to the farmers. In contrast to fungus-farming ants and termites, the fungal communities of ambrosia beetles and the effects of particular fungal species on the farmers are largely unknown. Here, we used a laboratory rearing technique for studying the filamentous fungal garden community of the ambrosia beetle, Xyleborinus saxesenii, which cultivates fungi in tunnels excavated within dead trees. Raffaelea sulfurea and Fusicolla acetilerea were transmitted in spore-carrying organs by gallery founding females and established first in new gardens. Raffaelea sulfurea had positive effects on egg-laying and larval numbers. Over time, four other fungal species emerged in the gardens. Prevalence of one of them, Paecilomyces variotii, correlated negatively with larval numbers and can be harmful to adults by forming biofilms on their bodies. It also comprised the main portion of garden material removed from galleries by adults. Our data suggest that two mutualistic, several commensalistic and one to two pathogenic filamentous fungi are associated with X. saxesenii. Fungal diversity in gardens of ambrosia beetles appears to be much lower than that in gardens of fungus-culturing ants, which seems to result from essential differences in substrates and behaviours. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Hyperbaric Oxygen Reduces Aspergillus fumigatus Proliferation In Vitro and Influences In Vivo Disease Outcomes.

    PubMed

    Dhingra, Sourabh; Buckey, Jay C; Cramer, Robert A

    2018-03-01

    Recent estimates suggest that more than 3 million people have chronic or invasive fungal infections, causing more than 600,000 deaths every year. Aspergillus fumigatus causes invasive pulmonary aspergillosis (IPA) in patients with compromised immune systems and is a primary contributor to increases in human fungal infections. Thus, the development of new clinical modalities as stand-alone or adjunctive therapy for improving IPA patient outcomes is critically needed. Here we tested the in vitro and in vivo impacts of hyperbaric oxygen (HBO) (100% oxygen, >1 atmosphere absolute [ATA]) on A. fumigatus proliferation and murine IPA outcomes. Our findings indicate that HBO reduces established fungal biofilm proliferation in vitro by over 50%. The effect of HBO under the treatment conditions was transient and fungistatic, with A. fumigatus metabolic activity rebounding within 6 h of HBO treatment being removed. In vivo , daily HBO provides a dose-dependent but modest improvement in murine IPA disease outcomes as measured by survival analysis. Intriguingly, no synergy was observed between subtherapeutic voriconazole or amphotericin B and HBO in vitro or in vivo with daily HBO dosing, though the loss of fungal superoxide dismutase genes enhanced HBO antifungal activity. Further studies are needed to optimize the HBO treatment regimen and better understand the effects of HBO on both the host and the pathogen during a pulmonary invasive fungal infection. Copyright © 2018 American Society for Microbiology.

  17. Inhibition of Fungal Colonization by Pseudoalteromonas tunicata Provides a Competitive Advantage during Surface Colonization†

    PubMed Central

    Franks, A.; Egan, S.; Holmström, C.; James, S.; Lappin-Scott, H.; Kjelleberg, S.

    2006-01-01

    The marine epiphytic bacterium Pseudoalteromonas tunicata produces a range of extracellular secondary metabolites that inhibit an array of common fouling organisms, including fungi. In this study, we test the hypothesis that the ability to inhibit fungi provides P. tunicata with an advantage during colonization of a surface. Studies on a transposon-generated antifungal-deficient mutant of P. tunicata, FM3, indicated that a long-chain fatty acid-coenzyme A ligase is involved in the production of a broad-range antifungal compound by P. tunicata. Flow cell experiments demonstrated that production of an antifungal compound provided P. tunicata with a competitive advantage against a marine yeast isolate during surface colonization. This compound enabled P. tunicata to disrupt an already established fungal biofilm by decreasing the number of yeast cells attached to the surface by 66% ± 9%. For in vivo experiments, the wild-type and FM3 strains of P. tunicata were used to inoculate the surface of the green alga Ulva australis. Double-gradient denaturing gradient gel electrophoresis analysis revealed that after 48 h, the wild-type P. tunicata had outcompeted the surface-associated fungal community, whereas the antifungal-deficient mutant had no effect on the fungal community. Our data suggest that P. tunicata is an effective competitor against fungal surface communities in the marine environment. PMID:16957232

  18. Antimicrobial peptide AMPNT-6 from Bacillus subtilis inhibits biofilm formation by Shewanella putrefaciens and disrupts its preformed biofilms on both abiotic and shrimp shell surfaces.

    PubMed

    Deng, Qi; Pu, Yuehua; Sun, Lijun; Wang, Yaling; Liu, Yang; Wang, Rundong; Liao, Jianmeng; Xu, Defeng; Liu, Ying; Ye, Riying; Fang, Zhijia; Gooneratne, Ravi

    2017-12-01

    Shewanella putrefaciens biofilm formation is of great concern for the shrimp industry because it adheres easily to food and food-contact surfaces and is a source of persistent and unseen contamination that causes shrimp spoilage and economic losses to the shrimp industry. Different concentrations of an antimicrobial lipopeptide, the fermentation product of Bacillus subtilis, AMPNT-6, were tested for the ability to reduce adhesion and disrupt S. putrefaciens preformed biofilms on two different contact surfaces (shrimp shell, stainless steel sheet). AMPNT-6 displayed a marked dose- and time-dependent anti-adhesive effect>biofilm removal. 3MIC AMPNT-6 was able both to remove biofilm and prevent bacteria from forming biofilm in a 96-well polystyrene microplate used as the model surface. 2MIC AMPNT-6 prevented bacteria from adhering to the microplate surface to form biofilm for 3h and removed already existing biofilm within 24h. Secretion of extracellular polymeric substances incubated in LB broth for 24h by S. putrefaciens was minimal at 3× MIC AMPNT-6. Scanning electron microscopy showed that damage to S. putrefaciens bacteria by AMPNT-6 possibly contributed to the non-adherence to the surfaces. Disruption of the mature biofilm structure by AMPNT-6 contributed to biofilm removal. It is concluded that AMPNT-6 can be used effectively to prevent attachment and also detach S. putrefaciens biofilms from shrimp shells, stainless steel sheets and polystyrene surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mixed species biofilms of Fusobacterium necrophorum and Porphyromonas levii impair the oxidative response of bovine neutrophils in vitro.

    PubMed

    Lockhart, Joey S; Buret, Andre G; Ceri, Howard; Storey, Douglas G; Anderson, Stefanie J; Morck, Douglas W

    2017-10-01

    Biofilms composed of anaerobic bacteria can result in persistent infections and chronic inflammation. Host immune cells have difficulties clearing biofilm-related infections and this can result in tissue damage. Neutrophils are a vital component of the innate immune system and help clear biofilms. The comparative neutrophilic response to biofilms versus planktonic bacteria remains incompletely understood, particularly in the context of mixed infections. The objective of this study was to generate mixed species anaerobic bacterial biofilms composed of two opportunistic pathogens, Fusobacterium necrophorum and Porphyromonas levii, and evaluate neutrophil responses to extracellular fractions from both biofilms and planktonic cell co-cultures of the same bacteria. Purified bovine neutrophils exposed to culture supernatants from mixed species planktonic bacteria showed elevated oxidative activity compared to neutrophils exposed to biofilms composed of the same bacteria. Bacterial lipopolysaccharide plays a significant role in the stimulation of neutrophils; biofilms produced substantially more lipopolysaccharide than planktonic bacteria under these experimental conditions. Removal of lipopolysaccharide significantly reduced neutrophil oxidative response to culture supernatants of planktonic bacteria. Oxidative responses to LPS-removed biofilm supernatants and LPS-removed planktonic cell supernatants were similar. The limited neutrophil response to biofilm bacteria observed in this study supports the reduced ability of the innate immune system to eradicate biofilm-associated infections. Lipopolysaccharide is likely important in neutrophil response; however, the presence of other extracellular, immune modifying molecules in the bacterial media also appears to be important in altering neutrophil function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Essential Oil of Cymbopogon nardus (L.) Rendle: A Strategy to Combat Fungal Infections Caused by Candida Species

    PubMed Central

    De Toledo, Luciani Gaspar; Ramos, Matheus Aparecido Dos Santos; Spósito, Larissa; Castilho, Elza Maria; Pavan, Fernando Rogério; Lopes, Érica De Oliveira; Zocolo, Guilherme Julião; Silva, Francisca Aliny Nunes; Soares, Tigressa Helena; dos Santos, André Gonzaga; Bauab, Taís Maria; De Almeida, Margarete Teresa Gottardo

    2016-01-01

    Background: The incidence of fungal infections, especially those caused by Candida yeasts, has increased over the last two decades. However, the indicated therapy for fungal control has limitations. Hence, medicinal plants have emerged as an alternative in the search for new antifungal agents as they present compounds, such as essential oils, with important biological effects. Published data demonstrate important pharmacological properties of the essential oil of Cymbopogon nardus (L.) Rendle; these include anti-tumor, anti-nociceptive, and antibacterial activities, and so an investigation of this compound against pathogenic fungi is interesting. Objective: The aim of this study was to evaluate the chemical composition and biological potential of essential oil (EO) obtained from the leaves of C. nardus focusing on its antifungal profile against Candida species. Methods: The EO was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). Testing of the antifungal potential against standard and clinical strains was performed by determining the minimal inhibitory concentration (MIC), time-kill, inhibition of Candida albicans hyphae growth, and inhibition of mature biofilms. Additionally, the cytotoxicity was investigated by the IC50 against HepG-2 (hepatic) and MRC-5 (fibroblast) cell lines. Results: According to the chemical analysis, the main compounds of the EO were the oxygen-containing monoterpenes: citronellal, geranial, geraniol, citronellol, and neral. The results showed important antifungal potential for all strains tested with MIC values ranging from 250 to 1000 μg/mL, except for two clinical isolates of C. tropicalis (MIC > 1000 μg/mL). The time-kill assay showed that the EO inhibited the growth of the yeast and inhibited hyphal formation of C. albicans strains at concentrations ranging from 15.8 to 1000 μg/mL. Inhibition of mature biofilms of strains of C. albicans, C. krusei and C. parapsilosis occurred at a concentration of 10× MIC. The values of the IC50 for the EO were 96.6 μg/mL (HepG-2) and 33.1 μg/mL (MRC-5). Conclusion: As a major virulence mechanism is attributed to these types of infections, the EO is a promising compound to inhibit Candida species, especially considering its action against biofilm. PMID:27517903

  1. Essential Oil of Cymbopogon nardus (L.) Rendle: A Strategy to Combat Fungal Infections Caused by Candida Species.

    PubMed

    De Toledo, Luciani Gaspar; Ramos, Matheus Aparecido Dos Santos; Spósito, Larissa; Castilho, Elza Maria; Pavan, Fernando Rogério; Lopes, Érica De Oliveira; Zocolo, Guilherme Julião; Silva, Francisca Aliny Nunes; Soares, Tigressa Helena; Dos Santos, André Gonzaga; Bauab, Taís Maria; De Almeida, Margarete Teresa Gottardo

    2016-08-09

    The incidence of fungal infections, especially those caused by Candida yeasts, has increased over the last two decades. However, the indicated therapy for fungal control has limitations. Hence, medicinal plants have emerged as an alternative in the search for new antifungal agents as they present compounds, such as essential oils, with important biological effects. Published data demonstrate important pharmacological properties of the essential oil of Cymbopogon nardus (L.) Rendle; these include anti-tumor, anti-nociceptive, and antibacterial activities, and so an investigation of this compound against pathogenic fungi is interesting. The aim of this study was to evaluate the chemical composition and biological potential of essential oil (EO) obtained from the leaves of C. nardus focusing on its antifungal profile against Candida species. The EO was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). Testing of the antifungal potential against standard and clinical strains was performed by determining the minimal inhibitory concentration (MIC), time-kill, inhibition of Candida albicans hyphae growth, and inhibition of mature biofilms. Additionally, the cytotoxicity was investigated by the IC50 against HepG-2 (hepatic) and MRC-5 (fibroblast) cell lines. According to the chemical analysis, the main compounds of the EO were the oxygen-containing monoterpenes: citronellal, geranial, geraniol, citronellol, and neral. The results showed important antifungal potential for all strains tested with MIC values ranging from 250 to 1000 μg/mL, except for two clinical isolates of C. tropicalis (MIC > 1000 μg/mL). The time-kill assay showed that the EO inhibited the growth of the yeast and inhibited hyphal formation of C. albicans strains at concentrations ranging from 15.8 to 1000 μg/mL. Inhibition of mature biofilms of strains of C. albicans, C. krusei and C. parapsilosis occurred at a concentration of 10× MIC. The values of the IC50 for the EO were 96.6 μg/mL (HepG-2) and 33.1 μg/mL (MRC-5). As a major virulence mechanism is attributed to these types of infections, the EO is a promising compound to inhibit Candida species, especially considering its action against biofilm.

  2. Biofilm Producing Salmonella Typhi: Chronic Colonization and Development of Gallbladder Cancer

    PubMed Central

    Cavallo, Ilaria; Pontone, Martina; Toma, Luigi; Ensoli, Fabrizio

    2017-01-01

    Salmonella enterica subspecies enterica serovar Typhi is the aetiological agent of typhoid or enteric fever. In a subset of individuals, S. Typhi colonizes the gallbladder causing an asymptomatic chronic infection. Nonetheless, these asymptomatic carriers provide a reservoir for further spreading of the disease. Epidemiological studies performed in regions where S. Typhi is endemic, revealed that the majority of chronically infected carriers also harbour gallstones, which in turn, have been indicated as a primary predisposing factor for the onset of gallbladder cancer (GC). It is now well recognised, that S. Typhi produces a typhoid toxin with a carcinogenic potential, that induces DNA damage and cell cycle alterations in intoxicated cells. In addition, biofilm production by S. Typhi may represent a key factor for the promotion of a persistent infection in the gallbladder, thus sustaining a chronic local inflammatory response and exposing the epithelium to repeated damage caused by carcinogenic toxins. This review aims to highlight the putative connection between the chronic colonization by highly pathogenic strains of S. Typhi capable of combining biofilm and toxin production and the onset of GC. Considering the high risk of GC associated with the asymptomatic carrier status, the rapid identification and profiling of biofilm production by S. Typhi strains would be key for effective therapeutic management and cancer prevention. PMID:28858232

  3. Study of the effect of antimicrobial peptide mimic, CSA-13, on an established biofilm formed by Pseudomonas aeruginosa.

    PubMed

    Nagant, Carole; Pitts, Betsey; Stewart, Philip S; Feng, Yanshu; Savage, Paul B; Dehaye, Jean-Paul

    2013-04-01

    The formation of a Pseudomonas aeruginosa biofilm, a complex structure enclosing bacterial cells in an extracellular polymeric matrix, is responsible for persistent infections in cystic fibrosis patients leading to a high rate of morbidity and mortality. The protective environment created by the tridimensional structure reduces the susceptibility of the bacteria to conventional antibiotherapy. Cationic steroid antibiotics (CSA)-13, a nonpeptide mimic of antimicrobial peptides with antibacterial activity on planktonic cultures, was evaluated for its ability to interact with sessile cells. Using confocal laser scanning microscopy, we demonstrated that the drug damaged bacteria within an established biofilm showing that penetration did not limit the activity of this antimicrobial agent against a biofilm. When biofilms were grown during exposure to shear forces and to a continuous medium flow allowing the development of robust structures with a complex architecture, CSA-13 reached the bacteria entrapped in the biofilm within 30 min. The permeabilizing effect of CSA-13 could be associated with the death of the bacteria. In static conditions, the compound did not perturb the architecture of the biofilm. This study confirms the potential of CSA-13 as a new strategy to combat persistent infections involving biofilms formed by P. aeruginosa. © 2013 The Authors. Published by Blackwell Publishing Ltd.

  4. Diagnosis of biofilm infections in cystic fibrosis patients.

    PubMed

    Høiby, Niels; Bjarnsholt, Thomas; Moser, Claus; Jensen, Peter Østrup; Kolpen, Mette; Qvist, Tavs; Aanaes, Kasper; Pressler, Tanja; Skov, Marianne; Ciofu, Oana

    2017-04-01

    Chronic Pseudomonas aeruginosa biofilm lung infection in cystic fibrosis patients is the best described biofilm infection in medicine. The initial focus can be the paranasal sinuses and then follows repeated colonization and infection of the lungs by aspiration. The matrix of the biofilms is dominated by alginate and the pathogenesis of tissue damage is immune complex-mediated chronic inflammation dominated by polymorphonuclear leukocytes and their products (DNA, oxygen radicals and proteases). The P. aeruginosa biofilm infection can be diagnosed by microscopy of lung tissue, sputum and mucus from the paranasal sinuses, where aggregates of the bacteria are found surrounded by the abundant alginate matrix. Specific PNA-FISH probes can be used to identify P. aeruginosa and other pathogens in situ in the biofilms. Growth of mucoid colonies from the locations mentioned above is also diagnostic for biofilm infection. Rise of specific anti-P. aeruginosa antibodies is likewise diagnostic, IgG in serum in case of lung infection, sIgA in saliva or nasal secretions in case of paranasal sinus infection. Similar approaches have been developed to diagnose chronic biofilm infections in cystic fibrosis caused by other pathogens e.g., Stenotrophomonas, Burkholderia multivorans, Achromobacter xylosoxidans and Mycobacterium abscessus complex. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  5. Medical Plasma in Dentistry: A Future Therapy for Peri-implantitis

    NASA Astrophysics Data System (ADS)

    Koban, Ina; Jablonowski, Lukasz; Kramer, Axel; Weltmann, Klaus-Dieter; Kocher, Thomas

    Biofilm formation plays a major role in the pathogenesis of many oral diseases especially in peri-implantits. To evaluate the anti-biofilm effect of different plasma devices and processes we used different dental biofilm models: Candida albicans, Streptococcus mutans, Streptococcus sanguinis, aerobe multispecies human saliva and anaerobe plaque biofilms. After 10 min treatment we reduced the biofilms by 5 log10 steps using dielectric barrier discharge (DBD) plasma. Chlorhexidine is the gold standard antiseptic which achieved in the same time only a 1.5 log10 reduction. All plasma devices (DBD or plasma jets) damaged the membrane of the microorganisms but only etching plasma sources can remove the biofilm as shown in CLSM micrographs. It is possible to improve the plasma process using antiseptics like octenidine. This combination significantly reduced CFU values after 1 min plasma treatment compared to the plasma control. Beside the anti-biofilm effect an additional effect of plasma is the contact angle reduction of different titanium implant surfaces from 90° to super-hydrophilic (<5°). This can improve the implant healing process. Thus in the future, plasma could be an interesting treatment option in dentistry, especially in treatment of peri-implantits.

  6. The CpAL Quorum Sensing System Regulates Production of Hemolysins CPA and PFO To Build Clostridium perfringens Biofilms

    PubMed Central

    Shak, Joshua R.; Canizalez-Roman, Adrian

    2015-01-01

    Clostridium perfringens strains produce severe diseases, including myonecrosis and enteritis necroticans, in humans and animals. Diseases are mediated by the production of potent toxins that often damage the site of infection, e.g., skin epithelium during myonecrosis. In planktonic cultures, the regulation of important toxins, such as CPA, CPB, and PFO, is controlled by the C. perfringens Agr-like (CpAL) quorum sensing (QS) system. Strains also encode a functional LuxS/AI-2 system. Although C. perfringens strains form biofilm-like structures, the regulation of biofilm formation is poorly understood. Therefore, our studies investigated the role of CpAL and LuxS/AI-2 QS systems and of QS-regulated factors in controlling the formation of biofilms. We first demonstrate that biofilm production by reference strains differs depending on the culture medium. Increased biomass correlated with the presence of extracellular DNA in the supernatant, which was released by lysis of a fraction of the biofilm population and planktonic cells. Whereas ΔagrB mutant strains were not able to produce biofilms, a ΔluxS mutant produced wild-type levels. The transcript levels of CpAL-regulated cpa and pfoA genes, but not cpb, were upregulated in biofilms compared to planktonic cultures. Accordingly, Δcpa and ΔpfoA mutants, in type A (S13) or type C (CN3685) backgrounds, were unable to produce biofilms, whereas CN3685Δcpb made wild-type levels. Biofilm formation was restored in complemented Δcpa/cpa and ΔpfoA/pfoA strains. Confocal microscopy studies further detected CPA partially colocalizing with eDNA on the biofilm structure. Thus, CpAL regulates biofilm formation in C. perfringens by increasing levels of certain toxins required to build biofilms. PMID:25824838

  7. Confocal laser scanning microscopy analysis of S. epidermidis biofilms exposed to farnesol, vancomycin and rifampicin.

    PubMed

    Cerca, Nuno; Gomes, Fernanda; Pereira, Sofia; Teixeira, Pilar; Oliveira, Rosário

    2012-05-16

    Staphylococcus epidermidis is the major bacterial species found in biofilm-related infections on indwelling medical devices. Microbial biofilms are communities of bacteria adhered to a surface and surrounded by an extracellular polymeric matrix. Biofilms have been associated with increased antibiotic tolerance to the immune system. This increased resistance to conventional antibiotic therapy has lead to the search for new antimicrobial therapeutical agents. Farnesol, a quorum-sensing molecule in Candida albicans, has been described as impairing growth of several different microorganisms and we have previously shown its potential as an adjuvant in antimicrobial therapy against S. epidermidis. However, its mechanism of action in S. epidermidis is not fully known. In this work we better elucidate the role of farnesol against S: epidermidis biofilms using confocal laser scanning microscopy (CLSM). 24 h biofilms were exposed to farnesol, vancomycin or rifampicin and were analysed by CLSM, after stained with a Live/Dead stain, a known indicator of cell viability, related with cell membrane integrity. Biofilms were also disrupted by sonication and viable and cultivable cells were quantified by colony forming units (CFU) plating. Farnesol showed a similar effect as vancomycin, both causing little reduction of cell viability but at the same time inducing significant changes in the biofilm structure. On the other hand, rifampicin showed a distinct action in S. epidermidis biofilms, by killing a significant proportion of biofilm bacteria. While farnesol is not very efficient at killing biofilm bacteria, it damages cell membrane, as determined by the live/dead staining, in a similar way as vancomycin. Furthermore, farnesol might induce biofilm detachment, as determined by the reduced biofilm biomass, which can partially explain the previous findings regarding its role as a possible chemotherapy adjuvant.

  8. Stimulated phase-shift acoustic nanodroplets enhance vancomycin efficacy against methicillin-resistant Staphylococcus aureus biofilms.

    PubMed

    Guo, Hao; Wang, Ziming; Du, Quanyin; Li, Pan; Wang, Zhigang; Wang, Aimin

    2017-01-01

    Bacterial biofilms on the surface of prostheses are becoming a rising concern in managing prosthetic joint infections. The inherent resistant features of biofilms render traditional antimicrobial therapy unproductive and revision surgery outcomes uncertain. This situation has prompted the exploration of novel antimicrobial strategies. The synergy of ultrasound microbubbles and vancomycin has been proposed as an efficient alternative for biofilm eradication. The purpose of this study was to evaluate the anti-biofilm effect of stimulated phase-shift acoustic nanodroplets (NDs) combined with vancomycin. We fabricated lipid phase-shift NDs with a core of liquid perfluoropentane. A new phase change mode for NDs incorporating an initial unfocused low-intensity pulsed ultrasound for 5 minutes and a subsequent incubation at 37°C into a 24-hour duration was developed. Methicillin-resistant Staphylococcus aureus (MRSA) biofilms were incubated with vancomycin and NDs under the hybrid stimulation. Biofilm morphology following treatment was determined using confocal laser scanning microscopy and scanning electron microscopy. Resazurin assay was used to quantify bactericidal efficacy against MRSA biofilm bacteria. NDs treated sequentially with ultrasound and heating at 37°C achieved gradual and substantial ND vaporization and cavitation in a successive process. NDs after stimulation were capable of generating stronger destruction on biofilm structure which was best characterized by residual circular arc margins and more dead bacteria. Furthermore, NDs combined with vancomycin contributed to significantly decreasing the metabolic activity of bacteria in MRSA biofilms ( P <0.05). Phase-shift acoustic NDs could exert a significant bactericidal effect against MRSA biofilms through a new stimulation mode. Acoustic NDs present advantages over microbubbles for biofilm damage. This anti-biofilm strategy could be used either alone or as an enhancer of traditional antibiotics in the control of prosthetic joint infections.

  9. Development of noncytotoxic silver–chitosan nanocomposites for efficient control of biofilm forming microbes† †Electronic supplementary information (ESI) available: ICP-MS, DLS, FTIR, contact angle measurements, TEM/EDS, cytotoxicity results. See DOI: 10.1039/c7ra08359a

    PubMed Central

    Kus-Liśkiewicz, Małgorzata; Sebastian, Victor; Irusta, Silvia; Kyzioł, Agnieszka

    2017-01-01

    Severe bacterial and fungal infections have become a major clinical and public health concern. Nowadays, additional efforts are needed to develop effective antimicrobial materials that are not harmful to human cells. This work describes the synthesis and characterization of chitosan–ascorbic acid–silver nanocomposites as films exhibiting high antimicrobial activity and non-cytotoxicity towards human cells. The reductive and stabilizing activity of both the biocompatible polymer chitosan and ascorbic acid were used in the synthesis of silver nanoparticles (AgNPs). Herein, we propose an improved composite synthesis based on medium average molecular weight chitosan with a high deacetylation degree, that together with ascorbic acid gave films with a uniform distribution of small AgNPs (<10 nm) exhibiting high antimicrobial activity against biofilm forming bacterial and fungal strains of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans. At the same time, the resulting solid nanocomposites showed, at the same doses, reduced or totally excluded cytotoxicity on mammalian somatic and tumoral cells. Data obtained in the present study suggest that adequately designed chitosan–silver nanocomposites are powerful and promising materials for reducing pathogenic microorganism-associated infections without harmful effects towards mammalian cells. PMID:29308194

  10. Antifungal coatings based on Ca(OH)2 mixed with ZnO/TiO2 nanomaterials for protection of limestone monuments.

    PubMed

    Gómez-Ortíz, Nikte; De la Rosa-García, Susana; González-Gómez, William; Soria-Castro, Montserrat; Quintana, Patricia; Oskam, Gerko; Ortega-Morales, Benjamin

    2013-03-13

    The presence and deteriorating action of microbial biofilms on historic stone buildings have received considerable attention in the past few years. Among microorganisms, fungi are one of the most damaging groups. In the present work, antimicrobial surfaces were prepared using suspensions of Ca(OH)2 particles, mixed with ZnO or TiO2 nanoparticles. The antimicrobial surfaces were evaluated for their antifungal activity both in the dark and under simulated natural photoperiod cycles, using Penicillium oxalicum and Aspergillus niger as model organisms, and two limestone lithotypes commonly used in construction and as materials for the restoration of historic buildings. Both Ca(OH)2-ZnO and Ca(OH)2-TiO2 materials displayed antifungal activity: ZnO-based systems had the best antifungal properties, being effective both in the dark and under illumination. In contrast, TiO2-based coatings showed antifungal activity only under photoperiod conditions. Controls with coatings consisting of only Ca(OH)2 were readily colonized by both fungi. The antifungal activity was monitored by direct observation with microscope, X-ray diffraction (XRD), and scanning electron microscopy (SEM), and was found to be different for the two lithotypes, suggesting that the mineral grain distribution and porosity played a role in the activity. XRD was used to investigate the formation of biominerals as indicator of the fungal attack of the limestone materials, while SEM illustrated the influence of porosity of both the limestone material and the coatings on the fungal penetration into the limestone. The coated nanosystems based on Ca(OH)2-50%ZnO and pure zincite nanoparticulate films have promising performance on low porosity limestone, showing good antifungal properties against P. oxalicum and A. niger under simulated photoperiod conditions.

  11. Natural Microbial Assemblages Reflect Distinct Organismal and Functional Partitioning

    NASA Astrophysics Data System (ADS)

    Wilmes, P.; Andersson, A.; Kalnejais, L. H.; Verberkmoes, N. C.; Lefsrud, M. G.; Wexler, M.; Singer, S. W.; Shah, M.; Bond, P. L.; Thelen, M. P.; Hettich, R. L.; Banfield, J. F.

    2007-12-01

    The ability to link microbial community structure to function has long been a primary focus of environmental microbiology. With the advent of community genomic and proteomic techniques, along with advances in microscopic imaging techniques, it is now possible to gain insights into the organismal and functional makeup of microbial communities. Biofilms growing within highly acidic solutions inside the Richmond Mine (Iron Mountain, Redding, California) exhibit distinct macro- and microscopic morphologies. They are composed of microorganisms belonging to the three domains of life, including archaea, bacteria and eukarya. The proportion of each organismal type depends on sampling location and developmental stage. For example, mature biofilms floating on top of acid mine drainage (AMD) pools exhibit layers consisting of a densely packed bottom layer of the chemoautolithotroph Leptospirillum group II, a less dense top layer composed mainly of archaea, and fungal filaments spanning across the entire biofilm. The expression of cytochrome 579 (the most highly abundant protein in the biofilm, believed to be central to iron oxidation and encoded by Leptospirillum group II) is localized at the interface of the biofilm with the AMD solution, highlighting that biofilm architecture is reflected at the functional gene expression level. Distinct functional partitioning is also apparent in a biological wastewater treatment system that selects for distinct polyphosphate accumulating organisms. Community genomic data from " Candidatus Accumulibacter phosphatis" dominated activated sludge has enabled high mass-accuracy shotgun proteomics for identification of key metabolic pathways. Comprehensive genome-wide alignment of orthologous proteins suggests distinct partitioning of protein variants involved in both core-metabolism and specific metabolic pathways among the dominant population and closely related species. In addition, strain- resolved proteogenomic analysis of the AMD biofilms also highlights the importance of strain heterogeneity for the maintenance of community structure and function. These findings explain the importance of genetic diversity in facilitating the stable performance of complex microbial processes. Furthermore, although very different in terms of habitat, both microbial communities exhibit distinct functional compartmentalization and demonstrate its role in sustaining microbial community structure.

  12. The role of biofilms: are we hitting the right target?

    PubMed

    Wolcott, Randall; Dowd, Scot

    2011-01-01

    Chronic infections affect 17 million people yearly, and approximately 550,000 people die each year from, or with, their chronic infections. Acute and chornic infection differences are well known to clinicians, but the role of bacteria in producing these clinical differences remains poorly understood. This review relies on basic science, clinical studies, and a general review of the medical biofilm literature. The basic science studies are level A and B quality of evidence. The clinical studies are mainly retrospective cohort (level B) and case studies (level C). The biofilm literature includes reviews with varying levels of evidence. All articles have been peer reviewed and meet the standard of evidence-based medicine. Acute infections are associated with planktonic bacteria and must be diagnosed rapidly and accurately to prevent tissue damage and/or death. In contrast, biofilm behavior pursues a more parasitic course by producing sustained host hyperinflammation, with the biofilm feeding on plasma exudate. Chronic infections vacillate over long periods of time, responding only partially to antibiotics and reemerging once the antibiotics are withdrawn. Chronic wounds exhibit similar clinical behavior seen in other chronic infections and are associated with biofilm phenotype bacteria on their surface. Biofilm infections, such as chronic wounds, cannot be adequately diagnosed with current clinical cultures; therefore, molecular methods are necessary. Biofilm phenotype bacteria require multiple concurrent strategies, including débridement and targeted antibiofilm agents. Biofilm phenotype bacteria predominate on the surface of wounds, and biofilm-based management improves wound healing outcomes, indicating that biofilm is the right target for managing the bioburden barrier of chronic wounds.

  13. Structural and biological evaluation of lignin addition to simple and silver-doped hydroxyapatite thin films synthesized by matrix-assisted pulsed laser evaporation.

    PubMed

    Janković, A; Eraković, S; Ristoscu, C; Mihailescu Serban, N; Duta, L; Visan, A; Stan, G E; Popa, A C; Husanu, M A; Luculescu, C R; Srdić, V V; Janaćković, Dj; Mišković-Stanković, V; Bleotu, C; Chifiriuc, M C; Mihailescu, I N

    2015-01-01

    We report on thin film deposition by matrix-assisted pulsed laser evaporation of simple hydroxyapatite (HA) or silver (Ag) doped HA combined with the natural biopolymer organosolv lignin (Lig) (Ag:HA-Lig). Solid cryogenic target of aqueous dispersions of Ag:HA-Lig composite and its counterpart without silver (HA-Lig) were prepared for evaporation using a KrF* excimer laser source. The expulsed material was assembled onto TiO2/Ti substrata or silicon wafers and subjected to physical-chemical investigations. Smooth, uniform films adherent to substratum were observed. The chemical analyses confirmed the presence of the HA components, but also evidenced traces of Ag and Lig. Deposited HA was Ca deficient, which is indicative of a film with increased solubility. Recorded X-ray Diffraction patterns were characteristic for amorphous films. Lig presence in thin films was undoubtedly proved by both X-ray Photoelectron and Fourier Transform Infra-Red Spectroscopy analyses. The microbiological evaluation showed that the newly assembled surfaces exhibited an inhibitory activity both on the initial steps of biofilm forming, and on mature bacterial and fungal biofilm development. The intensity of the anti-biofilm activity was positively influenced by the presence of the Lig and/or Ag, in the case of Staphylococcus aureus, Pseudomonas aeruginosa and Candida famata biofilms. The obtained surfaces exhibited a low cytotoxicity toward human mesenchymal stem cells, being therefore promising candidates for fabricating implantable biomaterials with increased biocompatibility and resistance to microbial colonization and further biofilm development.

  14. II. Pathogens

    Treesearch

    Ned B. Klopfenstein; Brian W. Geils

    2011-01-01

    Invasive fungal pathogens have caused immeasurably large ecological and economic damage to forests. It is well known that invasive fungal pathogens can cause devastating forest diseases (e.g., white pine blister rust, chestnut blight, Dutch elm disease, dogwood anthracnose, butternut canker, Scleroderris canker of pines, sudden oak death, pine pitch canker) (Maloy 1997...

  15. Examination of Deteriogenic Biofilms on Building Facades with Scanning Electron Microscopy / Badanie Deteriogennych Nalotów Biologicznych Na Elewacjach Budynków Metodą Elektronowej Mikroskopii Skaningowej

    NASA Astrophysics Data System (ADS)

    Piontek, Marlena; Lechów, Hanna; Paradowska, Ewa; Nycz, Marta

    2016-03-01

    Destruction of facades is a complex process in which technical material changes its properties, and which is caused by depositing biological agents. The examination of biofilms from building facades is difficult because sampling for tests may result in the damage to the structure of the facade's material. Also biological analysis of the material obtained from a biofilm is arduous. Some species of microorganisms are impossible to be isolated and their pure cultures cannot be cultivated in laboratory conditions. It is multispecies cultures that most frequently develop on the surfaces of the facade's technical material. Clustered in a group, they cooperate with each other and reveal different features than single cells. It is essential to identify organisms present in the biofilms, since they may initiate deterioration processes. The aim of the research was the observation of the biofilm, collected from two facades, in a micrometer scale with the use of a scanning electron microscope.

  16. Endophyte Microbiome Diversity in Micropropagated Atriplex canescens and Atriplex torreyi var griffithsii

    PubMed Central

    Lucero, Mary E.; Unc, Adrian; Cooke, Peter; Dowd, Scot; Sun, Shulei

    2011-01-01

    Microbial diversity associated with micropropagated Atriplex species was assessed using microscopy, isolate culturing, and sequencing. Light, electron, and confocal microscopy revealed microbial cells in aseptically regenerated leaves and roots. Clone libraries and tag-encoded FLX amplicon pyrosequencing (TEFAP) analysis amplified sequences from callus homologous to diverse fungal and bacterial taxa. Culturing isolated some seed borne endophyte taxa which could be readily propagated apart from the host. Microbial cells were observed within biofilm-like residues associated with plant cell surfaces and intercellular spaces. Various universal primers amplified both plant and microbial sequences, with different primers revealing different patterns of fungal diversity. Bacterial and fungal TEFAP followed by alignment with sequences from curated databases revealed 7 bacterial and 17 ascomycete taxa in A. canescens, and 5 bacterial taxa in A. torreyi. Additional diversity was observed among isolates and clone libraries. Micropropagated Atriplex retains a complex, intimately associated microbiome which includes diverse strains well poised to interact in manners that influence host physiology. Microbiome analysis was facilitated by high throughput sequencing methods, but primer biases continue to limit recovery of diverse sequences from even moderately complex communities. PMID:21437280

  17. Microbiology of folliculitis: a histological study of 39 cases.

    PubMed

    Jahns, Anika C; Lundskog, Bertil; Berg, Johanna; Jonsson, Rebecca; McDowell, Andrew; Patrick, Sheila; Golovleva, Irina; Palmer, Ruth H; Alexeyev, Oleg A

    2014-01-01

    Folliculitis is a common inflammatory skin syndrome. Several microbial organisms have been put forward as causative agents, but few studies visualized microbes directly in inflamed hair follicles. This retrospective study investigated bacterial and fungal colonization of inflamed hair follicles in patients with clinically diagnosed non-infectious folliculitis. Skin biopsies from 39 folliculitis patients and 27 controls were screened by fluorescence in situ hybridization (FISH) using broad-range bacterial and fungal probes and by immunofluorescence microscopy using a monoclonal antibody towards Gram-positive bacteria. Specific monoclonal and polyclonal antibodies towards Staphylococcus spp. and Propionibacterium acnes were applied for further species identification. Inflamed follicles were associated with bacterial colonization in 10 samples (26%) and fungal colonization in three samples (8%). Staphylococcus spp. were observed in inflamed follicles in seven samples (18%). Two samples were positive for P. acnes, which were identified as either type II or type IB/type III. Both Staphylococcus spp. and P. acnes were seen in macrocolonies/biofilm structures. In conclusion, one-third of patients with clinically diagnosed, non-infectious folliculitis exhibited microbial colonization with predominance of Staphylococcus spp. © 2013 APMIS Published by Blackwell Publishing Ltd.

  18. Information transmission in microbial and fungal communication: from classical to quantum.

    PubMed

    Majumdar, Sarangam; Pal, Sukla

    2018-06-01

    Microbes have their own communication systems. Secretion and reception of chemical signaling molecules and ion-channels mediated electrical signaling mechanism are yet observed two special ways of information transmission in microbial community. In this article, we address the aspects of various crucial machineries which set the backbone of microbial cell-to-cell communication process such as quorum sensing mechanism (bacterial and fungal), quorum sensing regulated biofilm formation, gene expression, virulence, swarming, quorum quenching, role of noise in quorum sensing, mathematical models (therapy model, evolutionary model, molecular mechanism model and many more), synthetic bacterial communication, bacterial ion-channels, bacterial nanowires and electrical communication. In particular, we highlight bacterial collective behavior with classical and quantum mechanical approaches (including quantum information). Moreover, we shed a new light to introduce the concept of quantum synthetic biology and possible cellular quantum Turing test.

  19. Conservation and Divergence in the Candida Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control.

    PubMed

    Dominguez, Eddie; Zarnowski, Robert; Sanchez, Hiram; Covelli, Antonio S; Westler, William M; Azadi, Parastoo; Nett, Jeniel; Mitchell, Aaron P; Andes, David R

    2018-04-03

    Candida biofilms resist the effects of available antifungal therapies. Prior studies with Candida albicans biofilms show that an extracellular matrix mannan-glucan complex (MGCx) contributes to antifungal sequestration, leading to drug resistance. Here we implement biochemical, pharmacological, and genetic approaches to explore a similar mechanism of resistance for the three most common clinically encountered non- albicans Candida species (NAC). Our findings reveal that each Candida species biofilm synthesizes a mannan-glucan complex and that the antifungal-protective function of this complex is conserved. Structural similarities extended primarily to the polysaccharide backbone (α-1,6-mannan and β-1,6-glucan). Surprisingly, biochemical analysis uncovered stark differences in the branching side chains of the MGCx among the species. Consistent with the structural analysis, similarities in the genetic control of MGCx production for each Candida species also appeared limited to the synthesis of the polysaccharide backbone. Each species appears to employ a unique subset of modification enzymes for MGCx synthesis, likely accounting for the observed side chain diversity. Our results argue for the conservation of matrix function among Candida spp. While biogenesis is preserved at the level of the mannan-glucan complex backbone, divergence emerges for construction of branching side chains. Thus, the MGCx backbone represents an ideal drug target for effective pan- Candida species biofilm therapy. IMPORTANCE Candida species, the most common fungal pathogens, frequently grow as a biofilm. These adherent communities tolerate extremely high concentrations of antifungal agents, due in large part, to a protective extracellular matrix. The present studies define the structural, functional, and genetic similarities and differences in the biofilm matrix from the four most common Candida species. Each species synthesizes an extracellular mannan-glucan complex (MGCx) which contributes to sequestration of antifungal drug, shielding the fungus from this external assault. Synthesis of a common polysaccharide backbone appears conserved. However, subtle structural differences in the branching side chains likely rely upon unique modification enzymes, which are species specific. Our findings identify MGCx backbone synthesis as a potential pan- Candida biofilm therapeutic target. Copyright © 2018 Dominguez et al.

  20. Advanced Optical Technologies for Defense Trauma and Critical Care

    DTIC Science & Technology

    2017-03-12

    biofilms, and the development of innovative technologies for the study of the response of nervous system cells to injury. 15. SUBJECT TERMS Hemorrhagic...approaches to accelerate nerve healing following traumatic brain injury (TBI) and traumatic injury to the peripheral nervous system . Fig. 3...Two key aspects of repair of traumatic nervous system damage are: (1) the ability of damaged neurons to heal (repair the damage), and (2) the

  1. Identification and Characterization of Trichoderma Species Damaging Shiitake Mushroom Bed-Logs Infested by Camptomyia Pest.

    PubMed

    Kim, Jun Young; Kwon, Hyuk Woo; Yun, Yeo Hong; Kim, Seong Hwan

    2016-05-28

    The shiitake mushroom industry has suffered from Camptomyia (gall midges) pest, which feeds on the mycelium of shiitake mushroom during its cultivation. It has been postulated that fungal damage of shiitake bed-logs is associated with infestation by the insect pest, but this is not well understood. To understand the fungal damage associated with Camptomyia pest, various Trichoderma species were isolated, identified, and characterized. In addition to two previously known Trichoderma species, T. citrinoviride and T. deliquescens, two other Trichoderma species, T. harzianum and T. atroviride, were newly identified from the pestinfested bed-log samples obtained at three mushroom farms in Cheonan, Korea. Among these four species, T. harzianum was the most evident. The results of a chromogenic media-based assay for extracellular enzymes showed that these four species have the ability to produce amylase, carboxyl-methyl cellulase, avicelase, pectinase, and β-glucosidase, thus indicating that they can degrade wood components. A dual culture assay on PDA indicated that T. harzianum, T. atroviride, and T. citrinoviride were antagonistic against the mycelial growth of a shiitake strain (Lentinula edodes). Inoculation tests on shiitake bed-logs revealed that all four species were able to damage the wood of bed-logs. Our results provide evidence that the four green mold species are the causal agents involved in fungal damage of shiitake bed-logs infested by Camptomyia pest.

  2. Colored and white sectors of petunia flowers display differential resistance to insect herbivores

    USDA-ARS?s Scientific Manuscript database

    Insect herbivory of crops increases the probability of fungal infection in damaged tissues. Mycotoxins produced by some fungi are harmful to livestock and humans. Increasing plant resistance lowers the levels of fungal infection and mycotoxin levels. The Bt toxin successfully kills only a fractio...

  3. Impacts of fungal stalk rot pathogens on physicochemical properties of sorghum grain

    USDA-ARS?s Scientific Manuscript database

    Stalk rot diseases are among the most ubiquitous and damaging fungal diseases of sorghum worldwide. Although reports of quantitative stalk rot yield losses are available, the impact of stalk rot on the physicochemical attributes of sorghum grain is currently unknown. This study was conducted to test...

  4. Adhesins in Human Fungal Pathogens: Glue with Plenty of Stick

    PubMed Central

    de Groot, Piet W. J.; Bader, Oliver; de Boer, Albert D.; Weig, Michael

    2013-01-01

    Understanding the pathogenesis of an infectious disease is critical for developing new methods to prevent infection and diagnose or cure disease. Adherence of microorganisms to host tissue is a prerequisite for tissue invasion and infection. Fungal cell wall adhesins involved in adherence to host tissue or abiotic medical devices are critical for colonization leading to invasion and damage of host tissue. Here, with a main focus on pathogenic Candida species, we summarize recent progress made in the field of adhesins in human fungal pathogens and underscore the importance of these proteins in establishment of fungal diseases. PMID:23397570

  5. Assessing the potential of four cathelicidins for the management of mouse candidiasis and Candida albicans biofilms.

    PubMed

    Yu, Haining; Liu, Xuelian; Wang, Chen; Qiao, Xue; Wu, Sijin; Wang, Hui; Feng, Lan; Wang, Yipeng

    2016-02-01

    As the most common fungal pathogen of humans, severe drug resistance has emerged in the clinically isolated Candida albicans, which lead to the urgency to develop novel antifungal agents. Here, four our previously characterized cathelicidins (cathelicidin-BF, Pc-CATH1, Cc-CATH2, Cc-CATH3) were selected and their antifungal activities against C. albicans were evaluated in vitro and in vivo using amphotericin B and LL-37 as control. Results showed that all four cathelicidins could eradicate standard and clinically isolated C. albicans strains with most MIC values ranging from 1 to 16 μg/ml, in less than 0.5 h revealed by time-kill kinetic assay. Four peptides only exhibited slight hemolytic activity with most HC50 > 200 μg/ml, and retained potent anti-C. albicans activity at salt concentrations below and beyond physiological level. In animal experiment, 50 mg/kg administration of the four cathelicidins could significantly reduce the fungal counts in a murine oral candidiasis model induced by clinically isolated C. albicans. The antibiofilm activity of cathelicidin-BF, the most potent among the five peptides was evaluated, and result showed that cathelicidin-BF strongly inhibited C. albicans biofilm formation at 20 μg/ml. Furthermore, cathelicidin-BF also exhibited potent anti-C. albicans activity in established biofilms as measured by metabolic and fluorescent viability assays. Structure-function analyses suggest that they mainly adopt an α-helical conformations, which enable them to act as a membrane-active molecule. Altogether, the four cathelicidins display great potential for antifungal agent development against candidiasis. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L.

    PubMed

    Ali, Intzar; Khan, Farrah G; Suri, Krishan A; Gupta, Bishan D; Satti, Naresh K; Dutt, Prabhu; Afrin, Farhat; Qazi, Ghulam N; Khan, Inshad A

    2010-02-03

    Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae) was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide. Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 microg/ml for yeasts, 125 to 500 microg/ml for Aspergillus species, and 7.81 to 62.5 microg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 x MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 x MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 x to 8 x MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol. The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical infections, as well as gargle mouthwash against oral Candida infections.

  7. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L

    PubMed Central

    2010-01-01

    Background Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae) was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies. Methods The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide. Results Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 μg/ml for yeasts, 125 to 500 μg/ml for Aspergillus species, and 7.81 to 62.5 μg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 × MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 × MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 × to 8 × MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol. Conclusions The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical infections, as well as gargle mouthwash against oral Candida infections. PMID:20128889

  8. Bioweathering Potential of Cultivable Fungi Associated with Semi-Arid Surface Microhabitats of Mayan Buildings.

    PubMed

    Ortega-Morales, Benjamín O; Narváez-Zapata, José; Reyes-Estebanez, Manuela; Quintana, Patricia; De la Rosa-García, Susana Del C; Bullen, Heather; Gómez-Cornelio, Sergio; Chan-Bacab, Manuel J

    2016-01-01

    Soil and rock surfaces support microbial communities involved in mineral weathering processes. Using selective isolation, fungi were obtained from limestone surfaces of Mayan monuments in the semi-arid climate at Yucatan, Mexico. A total of 101 isolates representing 53 different taxa were studied. Common fungi such as Fusarium, Pestalotiopsis, Trichoderma, and Penicillium were associated with surfaces and were, probably derived from airborne spores. In contrast, unusual fungi such as Rosellinia, Annulohypoxylon, and Xylaria were predominantly identified from mycelium particles of biofilm biomass. Simulating oligotrophic conditions, agar amended with CaCO3 was inoculated with fungi to test for carbonate activity. A substantial proportion of fungi, in particular those isolated from mycelium (59%), were capable of solubilizing calcium by means of organic acid release, notably oxalic acid as evidenced by ion chromatography. Contrary to our hypothesis, nutrient level was not a variable influencing the CaCO3 solubilization ability among isolates. Particularly active fungi (Annulohypoxylon stygium, Penicillium oxalicum, and Rosellinia sp.) were selected as models for bioweathering experiments with limestone-containing mesocosms to identify if other mineral phases, in addition to oxalates, were linked to bioweathering processes. Fungal biofilms were seen heavily covering the stone surface, while a biomineralized front was also observed at the stone-biofilm interface, where network of hyphae and mycogenic crystals was observed. X-ray diffraction analysis (XRD) identified calcite as the main phase, along with whewellite and wedellite. In addition, lower levels of citrate were detected by Attenuated Total Reflectance-Fourier-Transform Infrared Spectroscopy (ATR-FTIR). Overall, our results suggest that a diverse fungal community is associated with limestone surfaces insemi-arid climates. A subset of this community is geochemically active, excreting organic acids under quasi-oligotrophic conditions, suggesting that the high metabolic cost of exuding organic acids beneficial under nutrient limitation. Oxalic acid release may deteriorate or stabilize limestone surfaces, depending on microclimatic dynamics.

  9. Bioweathering Potential of Cultivable Fungi Associated with Semi-Arid Surface Microhabitats of Mayan Buildings

    PubMed Central

    Ortega-Morales, Benjamín O.; Narváez-Zapata, José; Reyes-Estebanez, Manuela; Quintana, Patricia; De la Rosa-García, Susana del C.; Bullen, Heather; Gómez-Cornelio, Sergio; Chan-Bacab, Manuel J.

    2016-01-01

    Soil and rock surfaces support microbial communities involved in mineral weathering processes. Using selective isolation, fungi were obtained from limestone surfaces of Mayan monuments in the semi-arid climate at Yucatan, Mexico. A total of 101 isolates representing 53 different taxa were studied. Common fungi such as Fusarium, Pestalotiopsis, Trichoderma, and Penicillium were associated with surfaces and were, probably derived from airborne spores. In contrast, unusual fungi such as Rosellinia, Annulohypoxylon, and Xylaria were predominantly identified from mycelium particles of biofilm biomass. Simulating oligotrophic conditions, agar amended with CaCO3 was inoculated with fungi to test for carbonate activity. A substantial proportion of fungi, in particular those isolated from mycelium (59%), were capable of solubilizing calcium by means of organic acid release, notably oxalic acid as evidenced by ion chromatography. Contrary to our hypothesis, nutrient level was not a variable influencing the CaCO3 solubilization ability among isolates. Particularly active fungi (Annulohypoxylon stygium, Penicillium oxalicum, and Rosellinia sp.) were selected as models for bioweathering experiments with limestone-containing mesocosms to identify if other mineral phases, in addition to oxalates, were linked to bioweathering processes. Fungal biofilms were seen heavily covering the stone surface, while a biomineralized front was also observed at the stone-biofilm interface, where network of hyphae and mycogenic crystals was observed. X-ray diffraction analysis (XRD) identified calcite as the main phase, along with whewellite and wedellite. In addition, lower levels of citrate were detected by Attenuated Total Reflectance-Fourier-Transform Infrared Spectroscopy (ATR-FTIR). Overall, our results suggest that a diverse fungal community is associated with limestone surfaces insemi-arid climates. A subset of this community is geochemically active, excreting organic acids under quasi-oligotrophic conditions, suggesting that the high metabolic cost of exuding organic acids beneficial under nutrient limitation. Oxalic acid release may deteriorate or stabilize limestone surfaces, depending on microclimatic dynamics. PMID:26941725

  10. Interfacial separation of a mature biofilm from a glass surface - A combined experimental and cohesive zone modelling approach.

    PubMed

    Safari, Ashkan; Tukovic, Zeljko; Cardiff, Philip; Walter, Maik; Casey, Eoin; Ivankovic, Alojz

    2016-02-01

    A good understanding of the mechanical stability of biofilms is essential for biofouling management, particularly when mechanical forces are used. Previous biofilm studies lack a damage-based theoretical model to describe the biofilm separation from a surface. The purpose of the current study was to investigate the interfacial separation of a mature biofilm from a rigid glass substrate using a combined experimental and numerical modelling approach. In the current work, the biofilm-glass interfacial separation process was investigated under tensile and shear stresses at the macroscale level, known as modes I and II failure mechanisms respectively. The numerical simulations were performed using a Finite Volume (FV)-based simulation package (OpenFOAM®) to predict the separation initiation using the cohesive zone model (CZM). Atomic force microscopy (AFM)-based retraction curve was used to obtain the separation properties between the biofilm and glass colloid at microscale level, where the CZM parameters were estimated using the Johnson-Kendall-Roberts (JKR) model. In this study CZM is introduced as a reliable method for the investigation of interfacial separation between a biofilm and rigid substrate, in which a high local stress at the interface edge acts as an ultimate stress at the crack tip.This study demonstrated that the total interfacial failure energy measured at the macroscale, was significantly higher than the pure interfacial separation energy obtained by AFM at the microscale, indicating a highly ductile deformation behaviour within the bulk biofilm matrix. The results of this study can significantly contribute to the understanding of biofilm detachments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing

    PubMed Central

    Goldufsky, Josef; Wood, Stephen J.; Jayaraman, Vijayakumar; Majdobeh, Omar; Chen, Lin; Qin, Shanshan; Zhang, Chunxiang; DiPietro, Luisa A.; Shafikhani, Sasha H.

    2015-01-01

    Diabetic foot ulcers are responsible for more hospitalizations than any other complication of diabetes. Bacterial infection is recognized as an important factor associated with impaired healing in diabetic ulcers. Pseudomonas aeruginosa is the most frequently detected Gram-negative pathogen in diabetic ulcers. P. aeruginosa infection has been shown to impair healing in diabetic wounds in a manner that correlates with its ability to form biofilm. While the majority of infections in diabetic ulcers are biofilm associated, 33% of infections are nonbiofilm in nature. P. aeruginosa is the most prevalent Gram-negative pathogen in all diabetic wound types, which suggests that the deleterious impact of P. aeruginosa on healing in diabetic wounds goes beyond its ability to form biofilm and likely involves other factors. The Type III Secretion System (T3SS) virulence structure is required for the pathogenesis of all P. aeruginosa clinical isolates, suggesting that it may also play a role in the inhibition of wound repair in diabetic skin ulcers. We evaluated the role of T3SS in mediating P. aeruginosa–induced tissue damage in the wounds of diabetic mice. Our data demonstrate that P. aeruginosa establishes a robust and persistent infection in diabetic wounds independent of its ability to form biofilm and causes severe wound damage in a manner that primarily depends on its T3SS. PMID:25912785

  12. Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing.

    PubMed

    Goldufsky, Josef; Wood, Stephen J; Jayaraman, Vijayakumar; Majdobeh, Omar; Chen, Lin; Qin, Shanshan; Zhang, Chunxiang; DiPietro, Luisa A; Shafikhani, Sasha H

    2015-01-01

    Diabetic foot ulcers are responsible for more hospitalizations than any other complication of diabetes. Bacterial infection is recognized as an important factor associated with impaired healing in diabetic ulcers. Pseudomonas aeruginosa is the most frequently detected Gram-negative pathogen in diabetic ulcers. P. aeruginosa infection has been shown to impair healing in diabetic wounds in a manner that correlates with its ability to form biofilm. While the majority of infections in diabetic ulcers are biofilm associated, 33% of infections are nonbiofilm in nature. P. aeruginosa is the most prevalent Gram-negative pathogen in all diabetic wound types, which suggests that the deleterious impact of P. aeruginosa on healing in diabetic wounds goes beyond its ability to form biofilm and likely involves other factors. The Type III Secretion System (T3SS) virulence structure is required for the pathogenesis of all P. aeruginosa clinical isolates, suggesting that it may also play a role in the inhibition of wound repair in diabetic skin ulcers. We evaluated the role of T3SS in mediating P. aeruginosa-induced tissue damage in the wounds of diabetic mice. Our data demonstrate that P. aeruginosa establishes a robust and persistent infection in diabetic wounds independent of its ability to form biofilm and causes severe wound damage in a manner that primarily depends on its T3SS. © 2015 by the Wound Healing Society.

  13. Extracellular polymeric substances affect the responses of multi-species biofilms in the presence of sulfamethizole.

    PubMed

    Wang, Longfei; Li, Yi; Wang, Li; Zhang, Huanjun; Zhu, Mengjie; Zhang, Peisheng; Zhu, Xiaoxiao

    2018-04-01

    The occurrence and transportation of antibiotics in biofilms from natural and engineered sources have attracted increasing interests. Nevertheless, the effects of extracellular polymeric substances (EPS) on the responses of biofilms to the exposure to antibiotics are not clear. In this study, the effects of EPS on the sorption and biological responses to one representative antibiotic, sulfamethizole (STZ), in model biofilms were investigated. Proteins dominated the interactions between the EPS and the STZ and the EPS from a moving bed biofilm reactor exhibited the strongest interaction with the STZ. The EPS served as important reservoirs for the STZ and the tested biofilms all showed reduced sorption capacities for the STZ after the EPS were extracted. The respiratory rates and typical enzymatic activities were reduced after the EPS were extracted. High-throughput 16S rRNA gene sequencing results confirmed that the bacterial community in the biofilm without the EPS was more vulnerable to antibiotic shock as indicated by the community diversity and richness indices. A greater increase in the abundance of susceptible species was observed in the natural biofilm. The results comprehensively suggested that the EPS played important role in biosorption of STZ and alleviated the direct damage of the antibiotic to the cells; in addition the extent of the bacterial community response was associated with the origins of the biofilms. Our study provided details on the responses of multi-species biofilms to the exposure to an antibiotic and highlighted the role of the EPS in interacting with the antibiotic, thereby providing a deeper understanding of the bioremediation of antibiotics in real-life natural and engineered biofilm systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Production and in vitro evaluation of soy protein-based biofilms as a support for human keratinocyte and fibroblast culture.

    PubMed

    Curt, Sèverine; Subirade, Muriel; Rouabhia, Mahmoud

    2009-06-01

    This study presents results on soy protein isolate (SPI) biofilm production and the corresponding effect on the stability and toxicity of the derived films. SPI biofilms were prepared from SPI chemically treated with formaldehyde at various concentrations (0%, 1%, 2%, and 3%) as cross-linking agents. In vitro SPI biofilm degradation was evaluated as a function of water absorption leading to weight and size modifications. SPI biofilm toxicity was determined as a function of human keratinocyte and fibroblast adhesion, viability, and proliferation. Cytokine gene expression supported this using reverse transcriptase polymerase chain reaction techniques. Our results confirm that SPI can be used to produce biofilms. The resulting SPI biofilms without formaldehyde swell significantly, which leads to their physical instability. Formaldehyde treatment enhanced the mechanical properties of these biofilms by covalently cross-linking polypeptide chains. The decreased water absorption was dependent on the amount of formaldehyde present. SPI biofilms with 2% and 3% formaldehyde were highly stable and easier to manipulate than those with 0% and 1% formaldehyde. Tissue culture analyses revealed that the SPI biofilms without formaldehyde were non-toxic to human cells (keratinocytes and fibroblasts). The presence of formaldehyde in biofilms did not have any effects on cell viability, adhesion, or proliferation. This was supported by the high level of messenger RNA expression of interleukin-1 beta (IL-1beta) and tumor necrosis factor alpha by the keratinocytes and of IL-6 and IL-8 by the fibroblasts. Overall, we produced a stable, non-toxic soy protein support, which may be of potential interest in medical applications such as cell culture matrices and damaged tissue replacement.

  15. AtlA Mediates Extracellular DNA Release, Which Contributes to Streptococcus mutans Biofilm Formation in an Experimental Rat Model of Infective Endocarditis

    PubMed Central

    Hsu, Ron-Bin; Shun, Chia-Tung; Hsu, Chih-Chieh

    2017-01-01

    ABSTRACT Host factors, such as platelets, have been shown to enhance biofilm formation by oral commensal streptococci, inducing infective endocarditis (IE), but how bacterial components contribute to biofilm formation in vivo is still not clear. We demonstrated previously that an isogenic mutant strain of Streptococcus mutans deficient in autolysin AtlA (ΔatlA) showed a reduced ability to cause vegetation in a rat model of bacterial endocarditis. However, the role of AtlA in bacterial biofilm formation is unclear. In this study, confocal laser scanning microscopy analysis showed that extracellular DNA (eDNA) was embedded in S. mutans GS5 floes during biofilm formation on damaged heart valves, but an ΔatlA strain could not form bacterial aggregates. Semiquantification of eDNA by PCR with bacterial 16S rRNA primers demonstrated that the ΔatlA mutant strain produced dramatically less eDNA than the wild type. Similar results were observed with in vitro biofilm models. The addition of polyanethol sulfonate, a chemical lysis inhibitor, revealed that eDNA release mediated by bacterial cell lysis is required for biofilm initiation and maturation in the wild-type strain. Supplementation of cultures with calcium ions reduced wild-type growth but increased eDNA release and biofilm mass. The effect of calcium ions on biofilm formation was abolished in ΔatlA cultures and by the addition of polyanethol sulfonate. The VicK sensor, but not CiaH, was found to be required for the induction of eDNA release or the stimulation of biofilm formation by calcium ions. These data suggest that calcium ion-regulated AtlA maturation mediates the release of eDNA by S. mutans, which contributes to biofilm formation in infective endocarditis. PMID:28674029

  16. β-lactam substituted polycyclic fused pyrrolidine/pyrrolizidine derivatives eradicate C. albicans in an ex vivo human dentinal tubule model by inhibiting sterol 14-α demethylase and cAMP pathway.

    PubMed

    Gowri, Meiyazhagan; Sofi Beaula, Winfred; Biswal, Jayashree; Dhamodharan, Prabhu; Saiharish, Raghavan; Rohan prasad, Surabi; Pitani, Ravishankar; Kandaswamy, Deivanayagam; Raghunathan, Ragavachary; Jeyakanthan, Jeyaraman; Rayala, Suresh K; Venkatraman, Ganesh

    2016-04-01

    Further quest for new anti-fungal compounds with proven mechanisms of action arises due to resistance and dose limiting toxicity of existing agents. Among the human fungal pathogens C. albicans predominate by infecting several sites in the body and in particular oral cavity and root canals of human tooth. In the present study, we screened a library of β-lactam substituted polycyclic fused pyrrolidine/pyrrolizidine compounds against Candida sp. Detailed molecular studies were carried out with the active compound 3 on C. albicans. Morphological damage and antibiofilm activity of compound 3 on C. albicans was studied using scanning electron microscopy (SEM). Biochemical evidence for membrane damage was studied using flow cytometry. In silico docking studies were carried out to elucidate the mechanism of action of compound 3. Further, the antifungal activity of compound 3 was evaluated in an ex vivo dentinal tubule infection model. Screening data showed that several new compounds were active against Candida sp. Among them, Compound 3 was most potent and exerted time kill effect at 4h, post antifungal effect up to 6h. When used in combination with fluconazole or nystatin, compound 3 revealed an minimum inhibitory concentration (MIC) decrease by 4 fold for both drugs used. In-depth molecular studies with compound 3 on C. albicans showed that this compound inhibited yeast to hyphae (Y-H) conversion and this involved the cAMP pathway. Further, SEM images of C. albicans showed that compound 3 caused membrane damage and inhibited biofilm formation. Biochemical evidence for membrane damage was confirmed by increased propidium iodide (PI) uptake in flow cytometry. Further, in silico studies revealed that compound 3 docks with the active site of the key enzyme 14-α-demethylase and this might inhibit ergosterol synthesis. In support of this, ergosterol levels were found to be decreased by 32 fold in compound 3 treated samples as analyzed by high performance liquid chromatography (HPLC). Further, the antifungal activity of compound 3 was evaluated in an ex vivo dentinal tubule infection model, which mimics human tooth root canal infection. Confocal laser scanning microscopy studies showed 83% eradication of C. albicans and a 6 log reduction in colony forming unit (CFU) after 24h treatment in the infected tooth samples in this model. Compound 3 was found to be very effective in eradicating C. albicans by inhibiting cAMP pathway and ergosterol biosynthesis. The results of this study can pave the way for developing new antifungal agents with well deciphered mechanisms of action and can be a promising antifungal agent or medicament against root canal infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The anthraquinones rubiadin and its 1-methyl ether isolated from Heterophyllaea pustulata reduces Candida tropicalis biofilms formation.

    PubMed

    Marioni, Juliana; da Silva, María Angel; Cabrera, José Luis; Montoya, Susana C Núñez; Paraje, María Gabriela

    2016-11-15

    Candida tropicalis is increasingly becoming among the most commonly isolated pathogens causing fungal infections with an important biofilm-forming capacity. This study addresses the antifungal effect of rubiadin (AQ1) and rubiadin 1-methyl ether (AQ2), two photosensitizing anthraquinones (AQs) isolated from Heterophyllaea pustulata, against C. tropicalis biofilms, by studying the cellular stress and antioxidant response in two experimental conditions: darkness and irradiation. The combination with Amphotericin B (AmB) was assayed to evaluate the synergic effect. Biofilms of clinical isolates and reference strain of Candida tropicalis were treated with AQs (AQ1 or AQ2) and/or AmB, and the biofilms depletion was studied by crystal violet and confocal scanning laser microscopy (CSLM). The oxidant metabolites production and the response of antioxidant defense system were also evaluated under dark and irradiation conditions, being the light a trigger for photo-activation of the AQs. The Reactive Oxygen Species (ROS) were detected by the reduction of Nitro Blue Tetrazolium test, and Reactive Nitrogen Intermediates (RNI) by the Griess assay. ROS accumulation was also detected inside biofilms by using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) probe, which was visualized by CSLM. Superoxide dismutase (SOD) activity and the total antioxidant capacity of biofilms were measured by spectrophotometric methods. The minimun inhibitory concentration for sessile cells (SMIC) was determined for each AQs and AmB. The fractional inhibitory concentration index (FICI) was calculated for the combinations of each AQ with AmB by the checkerboard microdilution method. Biofilm reduction of both strains was more effective with AQ1 than with AQ2. The antifungal effect was mediated by an oxidative and nitrosative stress under irradiation, with a significant accumulation of endogenous ROS detected by CSLM and an increase in the SOD activity. Thus, the prooxidant-antioxidant balance was altered especially by AQ1. The best synergic combination with AmB was also obtained with AQ1 (80.5%) (FICI=0.74). Under irradiation, the oxidative stress was the predominant effect, altering the prooxidant-antioxidant balance, which may be the cause of the irreversible cell injury in the biofilm. Our results showed synergism of these natural AQs with AmB. Therefore, the photosensitizing AQ1 could be an alternative for the Candida infections treatment, which deserves further investigation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. The LuxS/AI-2 Quorum-Sensing System of Streptococcus pneumoniae Is Required to Cause Disease, and to Regulate Virulence- and Metabolism-Related Genes in a Rat Model of Middle Ear Infection.

    PubMed

    Yadav, Mukesh K; Vidal, Jorge E; Go, Yoon Y; Kim, Shin H; Chae, Sung-Won; Song, Jae-Jun

    2018-01-01

    Objective: Streptococcus pneumoniae colonizes the nasopharynx of children, and from nasopharynx it could migrate to the middle ear and causes acute otitis media (AOM). During colonization and AOM, the pneumococcus forms biofilms. In vitro biofilm formation requires a functional LuxS/AI-2 quorum-sensing system. We investigated the role of LuxS/AI-2 signaling in pneumococcal middle ear infection, and identified the genes that are regulated by LuxS/AI-2 during pneumococcal biofilm formation. Methods: Streptococcus pneumoniae D39 wild-type and an isogenic D39Δ luxS strain were utilized to evaluate in vitro biofilm formation, and in vivo colonization and epithelial damage using a microtiter plate assay and a rat model of pneumococcal middle ear infection, respectively. Biofilm structures and colonization and epithelial damage were evaluated at the ultrastructural level by scanning electron microscopy and confocal microscopy. Microarrays were used to investigate the global genes that were regulated by LuxS/AI-2 during biofilm formation. Results: The biofilm biomass and density of D39Δ luxS were significantly ( p < 0.05) lower than those of D39 wild-type. SEM and confocal microscopy revealed that D39Δ luxS formed thin biofilms in vitro compared with D39 wild-type. The in vivo model of middle ear infection showed that D39Δ luxS resulted in ~60% less ( p < 0.05) bacterial colonization than the wild-type. SEM analysis of the rat middle ears revealed dense biofilm-like cell debris deposited on the cilia in wild-type D39-infected rats. However, little cell debris was deposited in the middle ears of the D39Δ luxS -inoculated rats, and the cilia were visible. cDNA-microarray analysis revealed 117 differentially expressed genes in D39Δ luxS compared with D39 wild-type. Among the 66 genes encoding putative proteins and previously characterized proteins, 60 were significantly downregulated, whereas 6 were upregulated. Functional annotation revealed that genes involved in DNA replication and repair, ATP synthesis, capsule biosynthesis, cell division, the cell cycle, signal transduction, transcription regulation, competence, virulence, and carbohydrate metabolism were downregulated in the absence of LuxS/AI-2. Conclusion: The S. pneumoniae LuxS/AI-2 quorum-sensing system is necessary for biofilm formation and the colonization of the ear epithelium, and caused middle ear infection in the rat model. LuxS/AI-2 regulates the expression of the genes involved in virulence and bacterial fitness during pneumococcal biofilm formation.

  19. Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids.

    PubMed

    Guisbiers, Grégory; Lara, Humberto H; Mendoza-Cruz, Ruben; Naranjo, Guillermo; Vincent, Brandy A; Peralta, Xomalin G; Nash, Kelly L

    2017-04-01

    Selenoproteins play an important role in the human body by accomplishing essential biological functions like oxido-reductions, antioxidant defense, thyroid hormone metabolism and immune response; therefore, the possibility to synthesize selenium nanoparticles free of any contaminants is exciting for future nano-medical applications. This paper reports the first synthesis of selenium nanoparticles by femtosecond pulsed laser ablation in de-ionized water. Those pure nanoparticles have been successfully used to inhibit the formation of Candida albicans biofilms. Advanced electron microscopy images showed that selenium nanoparticles easily adhere on the biofilm, then penetrate into the pathogen, and consequently damage the cell structure by substituting with sulfur. 50% inhibition of Candida albicans biofilm was obtained at only 25 ppm. Finally, the two physical parameters proved to affect strongly the viability of Candida albicans are the crystallinity and particle size. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Influence of local climate and climate change on aeroterrestrial phototrophic biofilms.

    PubMed

    Gladis-Schmacka, Franziska; Glatzel, Stephan; Karsten, Ulf; Böttcher, Heidrun; Schumann, Rhena

    2014-01-01

    Aeroterrestrial phototrophic biofilms colonize natural and man-made surfaces and may damage the material they settle on. The occurrence of biofilms varies between regions with different climatic conditions. The aim of this study was to evaluate the influence of meteorological factors on the growth of aeroterrestrial phototrophs. Phototrophic biomass was recorded on roof tiles at six sites within Germany five times over a period of five years and compared to climatic parameters from neighboring weather stations. All correlating meteorological factors influenced water availability on the surface of the roof tiles. The results indicate that the frequency of rainy days and not the mean precipitation per season is more important for biofilm proliferation. It is also inferred that the macroclimate is more important than the microclimate. In conclusion, changed (regional) climatic conditions may determine where in central Europe global change will promote or inhibit phototrophic growth in the future.

  1. Assessment of fungal diversity in a water-damaged office building.

    PubMed

    Green, Brett J; Lemons, Angela R; Park, Yeonmi; Cox-Ganser, Jean M; Park, Ju-Hyeong

    2017-04-01

    Recent studies have described fungal communities in indoor environments using gene sequencing-based approaches. In this study, dust-borne fungal communities were elucidated from a water-damaged office building located in the northeastern region of the United States using internal transcribed spacer (ITS) rRNA gene sequencing. Genomic DNA was extracted from 5 mg of floor dust derived from 22 samples collected from either the lower floors (n = 8) or a top floor (n = 14) of the office building. ITS gene sequencing resolved a total of 933 ITS sequences and was clustered into 216 fungal operational taxonomic units (OTUs). Analysis of fungal OTUs at the 97% similarity threshold showed a difference between the lower and top floors that was marginally significant (p = 0.049). Species richness and diversity indices were reduced in the lower floor samples compared to the top floor samples and there was a high degree of compositional dissimilarity within and between the two different areas within the building. Fungal OTUs were placed in the phyla Ascomycota (55%), Basidiomycota (41%), Zygomycota (3%), Glomeromycota (0.4%), Chytridiomycota (0.3%), and unassigned fungi (0.5%). The Ascomycota classes with the highest relative abundances included the Dothideomycetes (30%) and Eurotiomycetes (16%). The Basidiomycota consisted of the classes Ustilaginomycetes (14%), Tremellomycetes (11%), and Agaricomycetes (8%). Sequence reads derived from the plant pathogen Ustilago syntherismae were the most abundant in the analysis as were obligate Basidiomycota yeast species that accounted for 12% and 11% of fungal ITS sequences, respectively. ITS gene sequencing provides additional insight into the diversity of fungal OTUs. These data further highlight the contribution of fungi placed in the phylum Basidiomycota, obligate yeasts, as well as xerophilic species that are typically not resolved using traditional culture methods.

  2. Augmenting the antibiofilm efficacy of advanced noninvasive light activated disinfection with emulsified oxidizer and oxygen carrier.

    PubMed

    George, Saji; Kishen, Anil

    2008-09-01

    In this study, we tested the hypothesis that the inclusion of an oxidizer and oxygen carrier in the photosensitization formulation would facilitate comprehensive disinfection of matured endodontic biofilm by light-activated disinfection (LAD). Photosensitizing formulations containing methylene blue (MB) and an oxygen carrier alone (perfluorodecahydronaphthalene) (PF1) or in combination with oxidizer (H(2)O(2)) (PF2) or their emulsions formed with triton-X100 (Bio-Rad Laboratories, Hercules, CA) in different proportions (PF3 and PF4) were tested for photochemical properties and damage to the biofilm structure using confocal laser scanning microscopy. Conventional chemomechanical preparation, LAD using MB in water, and LAD using MB in emulsion (PF4) were also conducted on 10-week-old Enterococcus faecalis biofilm within root canals. MB in emulsion (PF4) was overall the most effective photosensitizer formulation for photooxidation, generation of singlet oxygen (p = 0.001), and in disinfecting biofilm bacteria. Advanced noninvasive LAD using a photosensitizer formulation containing oxidizer and oxygen carrier disrupted the biofilm matrix and facilitated comprehensive inactivation of biofilm bacteria. This modified photosensitizer formulation will have potential advantages in endodontic disinfection.

  3. The CpAL quorum sensing system regulates production of hemolysins CPA and PFO to build Clostridium perfringens biofilms.

    PubMed

    Vidal, Jorge E; Shak, Joshua R; Canizalez-Roman, Adrian

    2015-06-01

    Clostridium perfringens strains produce severe diseases, including myonecrosis and enteritis necroticans, in humans and animals. Diseases are mediated by the production of potent toxins that often damage the site of infection, e.g., skin epithelium during myonecrosis. In planktonic cultures, the regulation of important toxins, such as CPA, CPB, and PFO, is controlled by the C. perfringens Agr-like (CpAL) quorum sensing (QS) system. Strains also encode a functional LuxS/AI-2 system. Although C. perfringens strains form biofilm-like structures, the regulation of biofilm formation is poorly understood. Therefore, our studies investigated the role of CpAL and LuxS/AI-2 QS systems and of QS-regulated factors in controlling the formation of biofilms. We first demonstrate that biofilm production by reference strains differs depending on the culture medium. Increased biomass correlated with the presence of extracellular DNA in the supernatant, which was released by lysis of a fraction of the biofilm population and planktonic cells. Whereas ΔagrB mutant strains were not able to produce biofilms, a ΔluxS mutant produced wild-type levels. The transcript levels of CpAL-regulated cpa and pfoA genes, but not cpb, were upregulated in biofilms compared to planktonic cultures. Accordingly, Δcpa and ΔpfoA mutants, in type A (S13) or type C (CN3685) backgrounds, were unable to produce biofilms, whereas CN3685Δcpb made wild-type levels. Biofilm formation was restored in complemented Δcpa/cpa and ΔpfoA/pfoA strains. Confocal microscopy studies further detected CPA partially colocalizing with eDNA on the biofilm structure. Thus, CpAL regulates biofilm formation in C. perfringens by increasing levels of certain toxins required to build biofilms. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions.

    PubMed

    Turonova, Hana; Briandet, Romain; Rodrigues, Ramila; Hernould, Mathieu; Hayek, Nabil; Stintzi, Alain; Pazlarova, Jarmila; Tresse, Odile

    2015-01-01

    During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy (CLSM) was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176) prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions (MAC). The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells) coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen.

  5. Effects of pre- and post-harvest application of selenium on inducing disease resistance and selenium accumulation in fruits

    USDA-ARS?s Scientific Manuscript database

    Botrytis cinerea, a ubiquitous fungal pathogen, causes severe damage (gray mold rot) on a large number of economically important fruits, vegetables, and ornamental crops at both pre- and post-harvest, which renders fruits unmarketable. Penicillium expansum is a widely spread fungal pathogen that cau...

  6. Sorghum pathology and biotechnology - A fungal disease perspective: Part II. Anthracnose, stalk rot, and downy mildew

    USDA-ARS?s Scientific Manuscript database

    Foliar diseases and stalk rots are among the most damaging diseases of sorghum in terms of lost production potential, thus commanding considerable research time and expenditure. This review will focus on anthracnose, a fungal disease that causes both foliar symptoms and stalk rots along with the st...

  7. Candida albicans and Pseudomonas aeruginosa adhesion on soft contact lenses.

    PubMed

    Onurdağ, Fatma Kaynak; Ozkan, Semiha; Ozgen, Selda; Olmuş, Hülya; Abbasoğlu, Ufuk

    2011-04-01

    In this study it was aimed to determine the adherence of Pseudomonas and Candida to contact lens surfaces, and to determine the difference in adherence between five contact lens types. Biofilm-negative control strains were also used to emphasize the difference between biofilm-positive and biofilm-negative strains in adherence. Five different soft contact lenses were used to investigate the adherence of Pseudomonas aeruginosa and Candida albicans strains. P. aeruginosa ATCC 27853, P. aeruginosa ATCC 10145, C.albicans ATCC 10231 standard strains and C. albicans clinical isolate were included in the study. Slime formation was investigated by two methods; modified Christensen macrotube method, and a modified microtiter plate test. P. aeruginosa and C. albicans slime formation on soft contact lenses was studied in adherence and separation phases. Pseudomonas and Candida suspensions were serially diluted and inoculated to blood agar and sabouraud dextrose agar surfaces respectively. After overnight incubation, the colonies were counted. Sterile unworn contact lenses were used as negative controls, and bacterial and fungal culture suspensions were used as positive controls. The experiments were conducted in three parallel series. The number of adherent Pseudomonas was as follows from high to low in polymacon, etafilcon A, hilafilcon, ocufilcon and lotrafilcon contact lenses respectively. However, the number of adherent yeast were determined higher in lotrafilcon and ocufilcon contact lenses, followed by hilafilcon, etafilcon A and polymacon contact lenses. Biofilm-negative Pseudomonas ATCC standard strain and Candida clinical isolate were used to confirm that the number of adherent cells were lower than the biofilm-positive ones. This study demonstrates that in addition to the contact lens properties, the microorganisms themselves and their interactions with the lens material also play an important role in adherence.

  8. The Emerging Pathogen Candida auris: Growth Phenotype, Virulence Factors, Activity of Antifungals, and Effect of SCY-078, a Novel Glucan Synthesis Inhibitor, on Growth Morphology and Biofilm Formation.

    PubMed

    Larkin, Emily; Hager, Christopher; Chandra, Jyotsna; Mukherjee, Pranab K; Retuerto, Mauricio; Salem, Iman; Long, Lisa; Isham, Nancy; Kovanda, Laura; Borroto-Esoda, Katyna; Wring, Steve; Angulo, David; Ghannoum, Mahmoud

    2017-05-01

    Candida auris , a new multidrug-resistant Candida spp. which is associated with invasive infection and high rates of mortality, has recently emerged. Here, we determined the virulence factors (germination, adherence, biofilm formation, phospholipase and proteinase production) of 16 C. auris isolates and their susceptibilities to 11 drugs belonging to different antifungal classes, including a novel orally bioavailable 1,3-β-d-glucan synthesis inhibitor (SCY-078). We also examined the effect of SCY-078 on the growth, ultrastructure, and biofilm-forming abilities of C. auris Our data showed that while the tested strains did not germinate, they did produce phospholipase and proteinase in a strain-dependent manner and had a significantly reduced ability to adhere and form biofilms compared to that of Candida albicans ( P = 0.01). C. auris isolates demonstrated reduced susceptibility to fluconazole and amphotericin B, while, in general, they were susceptible to the remaining drugs tested. SCY-078 had an MIC 90 of 1 mg/liter against C. auris and caused complete inhibition of the growth of C. auris and C. albicans Scanning electron microscopy analysis showed that SCY-078 interrupted C. auris cell division, with the organism forming abnormal fused fungal cells. Additionally, SCY-078 possessed potent antibiofilm activity, wherein treated biofilms demonstrated significantly reduced metabolic activity and a significantly reduced thickness compared to the untreated control ( P < 0.05 for both comparisons). Our study shows that C. auris expresses several virulence determinants (albeit to a lesser extent than C. albicans ) and is resistant to fluconazole and amphotericin B. SCY-078, the new orally bioavailable antifungal, had potent antifungal/antibiofilm activity against C. auris , indicating that further evaluation of this antifungal is warranted. Copyright © 2017 Larkin et al.

  9. RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms.

    PubMed

    Green, Clayton B; Cheng, Georgina; Chandra, Jyotsna; Mukherjee, Pranab; Ghannoum, Mahmoud A; Hoyer, Lois L

    2004-02-01

    An RT-PCR assay was developed to analyse expression patterns of genes in the Candida albicans ALS (agglutinin-like sequence) family. Inoculation of a reconstituted human buccal epithelium (RHE) model of mucocutaneous candidiasis with strain SC5314 showed destruction of the epithelial layer by C. albicans and also formation of an upper fungal layer that had characteristics similar to a biofilm. RT-PCR analysis of total RNA samples extracted from C. albicans-inoculated buccal RHE showed that ALS1, ALS2, ALS3, ALS4, ALS5 and ALS9 were consistently detected over time as destruction of the RHE progressed. Detection of transcripts from ALS7, and particularly from ALS6, was more sporadic, but not associated with a strictly temporal pattern. The expression pattern of ALS genes in C. albicans cultures used to inoculate the RHE was similar to that observed in the RHE model, suggesting that contact of C. albicans with buccal RHE does little to alter ALS gene expression. RT-PCR analysis of RNA samples extracted from model denture and catheter biofilms showed similar gene expression patterns to the buccal RHE specimens. Results from the RT-PCR analysis of biofilm RNA specimens were consistent between various C. albicans strains during biofilm development and were comparable to gene expression patterns in planktonic cells. The RT-PCR assay described here will be useful for analysis of human clinical specimens and samples from other disease models. The method will provide further insight into the role of ALS genes and their encoded proteins in the diverse interactions between C. albicans and its host.

  10. Bacteriome and Mycobiome Interactions Underscore Microbial Dysbiosis in Familial Crohn’s Disease

    PubMed Central

    Hoarau, G.; Mukherjee, P. K.; Gower-Rousseau, C.; Hager, C.; Chandra, J.; Retuerto, M. A.; Neut, C.; Vermeire, S.; Clemente, J.; Colombel, J. F.; Fujioka, H.; Poulain, D.

    2016-01-01

    ABSTRACT Crohn’s disease (CD) results from a complex interplay between host genetic factors and endogenous microbial communities. In the current study, we used Ion Torrent sequencing to characterize the gut bacterial microbiota (bacteriome) and fungal community (mycobiome) in patients with CD and their nondiseased first-degree relatives (NCDR) in 9 familial clusters living in northern France-Belgium and in healthy individuals from 4 families living in the same area (non-CD unrelated [NCDU]). Principal component, diversity, and abundance analyses were conducted, and CD-associated inter- and intrakingdom microbial correlations were determined. Significant microbial interactions were identified and validated using single- and mixed-species biofilms. CD and NCDR groups clustered together in the mycobiome but not in the bacteriome. Microbiotas of familial (CD and NCDR) samples were distinct from those of nonfamilial (NCDU) samples. The abundance of Serratia marcescens and Escherichia coli was elevated in CD patients, while that of beneficial bacteria was decreased. The abundance of the fungus Candida tropicalis was significantly higher in CD than in NCDR (P = 0.003) samples and positively correlated with levels of anti-Saccharomyces cerevisiae antibodies (ASCA). The abundance of C. tropicalis was positively correlated with S. marcescens and E. coli, suggesting that these organisms interact in the gut. The mass and thickness of triple-species (C. tropicalis plus S. marcescens plus E. coli) biofilm were significantly greater than those of single- and double-species biofilms. C. tropicalis biofilms comprised blastospores, while double- and triple-species biofilms were enriched in hyphae. S. marcescens used fimbriae to coaggregate or attach with C. tropicalis/E. coli, while E. coli was closely apposed with C. tropicalis. Specific interkingdom microbial interactions may be key determinants in CD. PMID:27651359

  11. Denture-associated biofilm infection in three-dimensional oral mucosal tissue models.

    PubMed

    Morse, Daniel J; Wilson, Melanie J; Wei, Xiaoqing; Lewis, Michael A O; Bradshaw, David J; Murdoch, Craig; Williams, David W

    2018-03-01

    In vitro analyses of virulence, pathogenicity and associated host cell responses are important components in the study of biofilm infections. The Candida-related infection, denture-associated oral candidosis, affects up to 60 % of denture wearers and manifests as inflammation of palatal tissues contacting the denture-fitting surface. Commercially available three-dimensional tissue models can be used to study infection, but their use is limited for many academic research institutions, primarily because of the substantial purchase costs. The aim of this study was to develop and evaluate the use of in vitro tissue models to assess infections by biofilms on acrylic surfaces through tissue damage and Candida albicans virulence gene expression. In vitro models were compared against commercially available tissue equivalents (keratinocyte-only, SkinEthic; full-thickness, MatTek Corporation). An in vitro keratinocyte-only tissue was produced using a cancer-derived cell line, TR146, and a full-thickness model incorporating primary fibroblasts and immortalised normal oral keratinocytes was also generated. The in vitro full-thickness tissues incorporated keratinocytes and fibroblasts, and have potential for future further development and analysis. Following polymicrobial infection with biofilms on acrylic surfaces, both in-house developed models were shown to provide equivalent results to the SkinEthic and MatTek models in terms of tissue damage: a significant (P<0.05) increase in LDH activity for mixed species biofilms compared to uninfected control, and no significant difference (P>0.05) in the expression of most C. albicans virulence genes when comparing tissue models of the same type. Our results confirm the feasibility and suitability of using these alternative in vitro tissue models for such analyses.

  12. Microbial diversity of landslide soils assessed by RFLP and SSCP fingerprints.

    PubMed

    Guida, Marco; Cannavacciuolo, Paolo Losanno; Cesarano, Mara; Borra, Marco; Biffali, Elio; D'Alessandro, Raffaella; De Felice, Bruna

    2014-08-01

    Landslides are a significant component of natural disasters in most countries around the world. Understanding these destructive phenomena through the analysis of possible correlations between microbial communities and the alteration of the soil responsible for landslides is important in order to reduce their negative consequences. To address this issue, bacterial and fungal communities in soils triggering landslides in Termini-Nerano and Massa Lubrense-Nerano (Naples, Italy) were analysed by genetic profiling techniques. Fingerprints were generated by single-strand conformation polymorphisms (SSCP) and random amplified polymorphic DNA (RAPD). The microbial community in both soil types was enriched in species which could contribute to the degradation process occurring during landslides, forming biofilms and leading to the transformation or the formation of minerals. Indeed, some of the identified bacteria were found to favour the transformation of clay minerals. These findings suggest a possible relationship between bacterial and fungal community-colonising soils and the occurrence of landslides.

  13. Molecular Identification, Antifungal Susceptibility Profile, and Biofilm Formation of Clinical and Environmental Rhodotorula Species Isolates

    PubMed Central

    Nunes, Jorge Meneses; Bizerra, Fernando César; Ferreira, Renata Carmona e

    2013-01-01

    Rhodotorula species are emergent fungal pathogens capable of causing invasive infections, primarily fungemia. They are particularly problematic in immunosuppressed patients when using a central venous catheter. In this study, we evaluated the species distribution of 51 clinical and 8 environmental Rhodotorula species isolates using the ID32C system and internal transcribed spacer (ITS) sequencing. Antifungal susceptibility testing and biofilm formation capability using a crystal violet staining assay were performed. Using ITS sequencing as the gold standard, the clinical isolates were identified as follows: 44 R. mucilaginosa isolates, 2 R. glutinis isolates, 2 R. minuta isolates, 2 R. dairenensis isolates, and 1 Rhodosporidium fluviale isolate. The environmental isolates included 7 R. mucilaginosa isolates and 1 R. slooffiae isolate. Using the ID32C system, along with a nitrate assimilation test, only 90.3% of the isolates tested were correctly identified. In the biofilm formation assay, R. mucilaginosa and R. minuta exhibited greater biofilm formation ability compared to the other Rhodotorula species; the clinical isolates of R. mucilaginosa showed greater biofilm formation compared to the environmental isolates (P = 0.04). Amphotericin B showed good in vitro activity (MIC ≤ 1 μg/ml) against planktonic cells, whereas voriconazole and posaconazole showed poor activity (MIC50/MIC90, 2/4 μg/ml). Caspofungin and fluconazole MICs were consistently high for all isolates tested (≥64 μg/ml and ≥ 4 μg/ml, respectively). In this study, we emphasized the importance of molecular methods to correctly identify Rhodotorula species isolates and non-R. mucilaginosa species in particular. The antifungal susceptibility profile reinforces amphotericin B as the antifungal drug of choice for the treatment of Rhodotorula infections. To our knowledge, this is the first study evaluating putative differences in the ability of biofilm formation among different Rhodotorula species. PMID:23114761

  14. Molecular identification, antifungal susceptibility profile, and biofilm formation of clinical and environmental Rhodotorula species isolates.

    PubMed

    Nunes, Jorge Meneses; Bizerra, Fernando César; Ferreira, Renata Carmona E; Colombo, Arnaldo Lopes

    2013-01-01

    Rhodotorula species are emergent fungal pathogens capable of causing invasive infections, primarily fungemia. They are particularly problematic in immunosuppressed patients when using a central venous catheter. In this study, we evaluated the species distribution of 51 clinical and 8 environmental Rhodotorula species isolates using the ID32C system and internal transcribed spacer (ITS) sequencing. Antifungal susceptibility testing and biofilm formation capability using a crystal violet staining assay were performed. Using ITS sequencing as the gold standard, the clinical isolates were identified as follows: 44 R. mucilaginosa isolates, 2 R. glutinis isolates, 2 R. minuta isolates, 2 R. dairenensis isolates, and 1 Rhodosporidium fluviale isolate. The environmental isolates included 7 R. mucilaginosa isolates and 1 R. slooffiae isolate. Using the ID32C system, along with a nitrate assimilation test, only 90.3% of the isolates tested were correctly identified. In the biofilm formation assay, R. mucilaginosa and R. minuta exhibited greater biofilm formation ability compared to the other Rhodotorula species; the clinical isolates of R. mucilaginosa showed greater biofilm formation compared to the environmental isolates (P = 0.04). Amphotericin B showed good in vitro activity (MIC ≤ 1 μg/ml) against planktonic cells, whereas voriconazole and posaconazole showed poor activity (MIC(50)/MIC(90), 2/4 μg/ml). Caspofungin and fluconazole MICs were consistently high for all isolates tested (≥64 μg/ml and ≥ 4 μg/ml, respectively). In this study, we emphasized the importance of molecular methods to correctly identify Rhodotorula species isolates and non-R. mucilaginosa species in particular. The antifungal susceptibility profile reinforces amphotericin B as the antifungal drug of choice for the treatment of Rhodotorula infections. To our knowledge, this is the first study evaluating putative differences in the ability of biofilm formation among different Rhodotorula species.

  15. Survey of the Antibiofilm and Antimicrobial Effects of Zingiber officinale (in Vitro Study)

    PubMed Central

    Aghazadeh, Marzieh; Zahedi Bialvaei, Abed; Aghazadeh, Mohammad; Kabiri, Fahimeh; Saliani, Negar; Yousefi, Mehdi; Eslami, Hosein; Samadi Kafil, Hossein

    2016-01-01

    Background: Candidiasis is one of the most prevalent and important opportunistic fungal infections of the oral cavity caused by Candida yeast species like Candida albicans, C. glabrata, and C. krusei. In addition, several bacteria can cause oral infections. The inhibition of microbial biofilm is the best way to prevent oral infections. Objectives: The aim of the present study is to evaluate the antifungal, antimicrobial, and anti-biofilm properties of ginger (Zingiber officinale) extract against Candida species and some bacterial pathogens and the extract’s effects on biofilm formation. Materials and Methods: Ginger ethanolic extract as a potential mouthwash was used to evaluate its effect against fungi and bacteria using the microdilution method, and biofilm was evaluated using the crystal violet staining method and dead/alive staining. MTT assay was used to evaluate the possible cytotoxicity effects of the extract. Results: The minimum inhibitory concentrations (MICs) of ginger extract for evaluated strains were 40, 40, 20, 20, 20, 20, 10, and 5 mg/mL for Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Bacillus cereus, Acinetobacter baumannii, C. albicans, and C. krusei, respectively. Ginger extract successfully inhibited biofilm formation by A. baumannii, B. cereus, C. krusei, and C. albicans. MTT assay revealed no significant reduction in cell viability after 24 hours. The minimum inhibitory biofilm concentrations (MIBCs) of ginger extract for fungi strains (C. krusei and C. albicans) were greater than those of fluconazole and nystatin (P = 0.000). Conclusions: The findings of the present study indicate that ginger extract has good antifungal and antibiofilm formation by fungi against C. albicans and C. Krusei. Concentrations between 0.625 mg/mL and 5 mg/mL had the highest antibiofilm and antifungal effects. Perhaps, the use of herbal extracts such as ginger represents a new era for antimicrobial therapy after developing antibiotic resistance in microbes. PMID:27127591

  16. Redox metabolites signal polymicrobial biofilm development via the NapA oxidative stress cascade in Aspergillus

    PubMed Central

    Zheng, He; Kim, Jaekuk; Liew, Mathew; Yan, John K.; Herrera, Oscar; Bok, JinWoo; Kelleher, Neil L.; Keller, Nancy P.; Wang, Yun

    2014-01-01

    Summary Background Filamentous fungi and bacteria form mixed-species biofilms in nature and diverse clinical contexts. They secrete a wealth of redox-active small molecule secondary metabolites, which are traditionally viewed as toxins that inhibit growth of competing microbes. Results Here we report that these “toxins” can act as interspecies signals, affecting filamentous fungal development via oxidative stress regulation. Specifically, in co-culture biofilms, Pseudomonas aeruginosa phenazine-derived metabolites differentially modulated Aspergillus fumigatus development, shifting from weak vegetative growth to induced asexual sporulation (conidiation) along a decreasing phenazine gradient. The A. fumigatus morphological shift correlated with the production of phenazine radicals and concomitant reactive oxygen species (ROS) production generated by phenazine redox cycling. Phenazine conidiation signaling was conserved in the genetic model A. nidulans, and mediated by NapA, a homolog of AP-1-like bZIP transcription factor, which is essential for the response to oxidative stress in humans, yeast, and filamentous fungi. Expression profiling showed phenazine treatment induced a NapA-dependent response of the global oxidative stress metabolome including the thioredoxin, glutathione and NADPH-oxidase systems. Conidiation induction in A. nidulans by another microbial redox-active secondary metabolite, gliotoxin, also required NapA. Conclusions This work highlights that microbial redox metabolites are key signals for sporulation in filamentous fungi, which are communicated through an evolutionarily conserved eukaryotic stress response pathway. It provides a foundation for interspecies signaling in environmental and clinical biofilms involving bacteria and filamentous fungi. PMID:25532893

  17. Establishing a Role for Bacterial Cellulose in Environmental Interactions: Lessons Learned from Diverse Biofilm-Producing Proteobacteria

    PubMed Central

    Augimeri, Richard V.; Varley, Andrew J.; Strap, Janice L.

    2015-01-01

    Bacterial cellulose (BC) serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation, and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC-containing biofilms is to establish close contact with a preferred host to facilitate efficient host–bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology, and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3′→5′)-cyclic diguanylate (c-di-GMP) levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal, or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host–bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, its regulation and its ecophysiological roles. PMID:26635751

  18. IL-1α is Critical for Resistance Against Highly Virulent Aspergillus fumigatus Isolates.

    PubMed

    Caffrey-Carr, Alayna K; Kowalski, Caitlin H; Beattie, Sarah R; Blaseg, Nathan A; Upshaw, Chanell R; Thammahong, Arsa; Lust, Hannah E; Tang, Yi-Wei; Hohl, Tobias M; Cramer, Robert A; Obar, Joshua J

    2017-09-25

    Heterogeneity amongst Aspergillus fumigatus isolates results in unique virulence potential and inflammatory responses. How these isolates drive specific immune responses and how this affects fungal-induced lung damage and disease outcome is unresolved. We demonstrate that the highly virulent CEA10 strain is able to rapidly germinate within the immune competent lung environment inducing greater lung damage, vascular leakage, and IL-1α release compared to the low virulent Af293 strain that germinates with lower frequency in this environment. Importantly, clearance of CEA10 was consequently dependent on IL-1α in contrast to Af293. Release of IL-1α occurred in a caspase 1/11- and P2XR7-independent mechanism, but was dependent on calpain activity. Our finding that early fungal conidia germination drives greater lung damage and IL-1α dependent inflammation is supported by three independent experimental lines. First, pre-germination of Af293 prior to in vivo challenge drives lung damage and an IL-1α dependent neutrophil response. Second, the virulent EVOL20 strain, derived from Af293, is able to germinate in the airways, leading to enhanced lung damage and IL-1α dependent inflammation and fungal clearance. Third, primary environmental A. fumigatus isolates that rapidly germinate in the airway conditions follow the same trend toward IL-1α dependency. Our data support the hypothesis that A. fumigatus phenotypic variation significantly contributes to disease outcomes. Copyright © 2017 American Society for Microbiology.

  19. Morphological bactericidal fast-acting effects of peracetic acid, a high-level disinfectant, against Staphylococcus aureus and Pseudomonas aeruginosa biofilms in tubing.

    PubMed

    Chino, T; Nukui, Y; Morishita, Y; Moriya, K

    2017-01-01

    The bactericidal effect of disinfectants against biofilms is essential to reduce potential endoscopy-related infections caused by contamination. Here, we investigated the bactericidal effect of a high-level disinfectant, peracetic acid (PAA), against Staphylococcus aureus and Pseudomonas aeruginosa biofilm models in vitro. S. aureus and P. aeruginosa biofilms were cultured at 35 °C for 7 days with catheter tubes. The following high-level disinfectants (HLDs) were tested: 0.3% PAA, 0.55% ortho-phthalaldehyde (OPA), and 2.0% alkaline-buffered glutaraldehyde (GA). Biofilms were exposed to these agents for 1-60 min and observed after 5 min and 30 min by transmission and scanning electron microscopy. A Student's t test was performed to compare the exposure time required for bactericidal effectiveness of the disinfectants. PAA and GA were active within 1 min and 5 min, respectively, against S. aureus and P. aeruginosa biofilms. OPA took longer than 10 min and 30 min to act against S. aureus and P. aeruginosa biofilms, respectively ( p  < 0.01). Treatment with PAA elicited changes in cell shape after 5 min and structural damage after 30 min. Amongst the HLDs investigated, PAA elicited the most rapid bactericidal effects against both biofilms. Additionally, treatment with PAA induced morphological alterations in the in vitro biofilm models, suggesting that PAA exerts fast-acting bactericidal effects against biofilms associated with endoscopy-related infections. These findings indicate that the exposure time for bactericidal effectiveness of HLDs for endoscope reprocessing in healthcare settings should be reconsidered.

  20. Redox-active compounds with a history of human use: antistaphylococcal action and potential for repurposing as topical antibiofilm agents.

    PubMed

    Ooi, N; Eady, E A; Cove, J H; O'Neill, A J

    2015-02-01

    To investigate the antistaphylococcal/antibiofilm activity and mode of action (MOA) of a panel of redox-active (RA) compounds with a history of human use and to provide a preliminary preclinical assessment of their potential for topical treatment of staphylococcal infections, including those involving a biofilm component. Antistaphylococcal activity was evaluated by broth microdilution and by time-kill studies with growing and slow- or non-growing cells. The antibiofilm activity of RA compounds, alone and in combination with established antibacterial agents, was assessed using the Calgary Biofilm Device. Established assays were used to examine the membrane-perturbing effects of RA compounds, to measure penetration into biofilms and physical disruption of biofilms and to assess resistance potential. A living skin equivalent model was used to assess the effects of RA compounds on human skin. All 15 RA compounds tested displayed antistaphylococcal activity against planktonic cultures (MIC 0.25-128 mg/L) and 7 eradicated staphylococcal biofilms (minimum biofilm eradication concentration 4-256 mg/L). The MOA of all compounds involved perturbation of the bacterial membrane, whilst selected compounds with antibiofilm activity caused destructuring of the biofilm matrix. The two most promising agents [celastrol and nordihydroguaiaretic acid (NDGA)] in respect of antibacterial potency and selective toxicity against bacterial membranes acted synergistically with gentamicin against biofilms, did not damage artificial skin following topical application and exhibited low resistance potential. In contrast to established antibacterial drugs, some RA compounds are capable of eradicating staphylococcal biofilms. Of these, celastrol and NDGA represent particularly attractive candidates for development as topical antistaphylococcal biofilm treatments. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  1. A high-throughput microfluidic dental plaque biofilm system to visualize and quantify the effect of antimicrobials

    PubMed Central

    Nance, William C.; Dowd, Scot E.; Samarian, Derek; Chludzinski, Jeffrey; Delli, Joseph; Battista, John; Rickard, Alexander H.

    2013-01-01

    Objectives Few model systems are amenable to developing multi-species biofilms in parallel under environmentally germane conditions. This is a problem when evaluating the potential real-world effectiveness of antimicrobials in the laboratory. One such antimicrobial is cetylpyridinium chloride (CPC), which is used in numerous over-the-counter oral healthcare products. The aim of this work was to develop a high-throughput microfluidic system that is combined with a confocal laser scanning microscope (CLSM) to quantitatively evaluate the effectiveness of CPC against oral multi-species biofilms grown in human saliva. Methods Twenty-four-channel BioFlux microfluidic plates were inoculated with pooled human saliva and fed filter-sterilized saliva for 20 h at 37°C. The bacterial diversity of the biofilms was evaluated by bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). The antimicrobial/anti-biofilm effect of CPC (0.5%–0.001% w/v) was examined using Live/Dead stain, CLSM and 3D imaging software. Results The analysis of biofilms by bTEFAP demonstrated that they contained genera typically found in human dental plaque. These included Aggregatibacter, Fusobacterium, Neisseria, Porphyromonas, Streptococcus and Veillonella. Using Live/Dead stain, clear gradations in killing were observed when the biofilms were treated with CPC between 0.5% and 0.001% w/v. At 0.5% (w/v) CPC, 90% of the total signal was from dead/damaged cells. Below this concentration range, less killing was observed. In the 0.5%–0.05% (w/v) range CPC penetration/killing was greatest and biofilm thickness was significantly reduced. Conclusions This work demonstrates the utility of a high-throughput microfluidic–CLSM system to grow multi-species oral biofilms, which are compositionally similar to naturally occurring biofilms, to assess the effectiveness of antimicrobials. PMID:23800904

  2. Air- and Dustborne Mycoflora in Houses Free of Water Damage and Fungal Growth

    PubMed Central

    Horner, W. Elliott; Worthan, Anthony G.; Morey, Philip R.

    2004-01-01

    Typically, studies on indoor fungal growth in buildings focus on structures with known or suspected water damage, moisture, and/or indoor fungal growth problems. Reference information on types of culturable fungi and total fungal levels are generally not available for buildings without these problems. This study assessed 50 detached single-family homes in metropolitan Atlanta, Ga., to establish a baseline of “normal and typical” types and concentrations of airborne and dustborne fungi in urban homes which were predetermined not to have noteworthy moisture problems or indoor fungal growth. Each home was visually examined, and samples of indoor and outdoor air and of indoor settled dust were taken in winter and summer. The results showed that rankings by prevalence and abundance of the types of airborne and dustborne fungi did not differ from winter to summer, nor did these rankings differ when air samples taken indoors were compared with those taken outdoors. Water indicator fungi were essentially absent from both air and dust samples. The air and dust data sets were also examined specifically for the proportions of colonies from ecological groupings such as leaf surface fungi and soil fungi. In the analysis of dust for culturable fungal colonies, leaf surface fungi constituted a considerable portion (>20%) of the total colonies in at least 85% of the samples. Thus, replicate dust samples with less than 20% of colonies from leaf surface fungi are unlikely to be from buildings free of moisture or mold growth problems. PMID:15528497

  3. Usnic Acid, a Natural Antimicrobial Agent Able To Inhibit Bacterial Biofilm Formation on Polymer Surfaces

    PubMed Central

    Francolini, I.; Norris, P.; Piozzi, A.; Donelli, G.; Stoodley, P.

    2004-01-01

    In modern medicine, artificial devices are used for repair or replacement of damaged parts of the body, delivery of drugs, and monitoring the status of critically ill patients. However, artificial surfaces are often susceptible to colonization by bacteria and fungi. Once microorganisms have adhered to the surface, they can form biofilms, resulting in highly resistant local or systemic infections. At this time, the evidence suggests that (+)-usnic acid, a secondary lichen metabolite, possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium. Since lichens are surface-attached communities that produce antibiotics, including usnic acid, to protect themselves from colonization by other bacteria, we hypothesized that the mode of action of usnic acid may be utilized in the control of medical biofilms. We loaded (+)-usnic acid into modified polyurethane and quantitatively assessed the capacity of (+)-usnic acid to control biofilm formation by either S. aureus or Pseudomonas aeruginosa under laminar flow conditions by using image analysis. (+)-Usnic acid-loaded polymers did not inhibit the initial attachment of S. aureus cells, but killing the attached cells resulted in the inhibition of biofilm. Interestingly, although P. aeruginosa biofilms did form on the surface of (+)-usnic acid-loaded polymer, the morphology of the biofilm was altered, possibly indicating that (+)-usnic acid interfered with signaling pathways. PMID:15504865

  4. Fungal and Bacterial Infection Mitigation with Antibiotic and Antifungal Loaded Biopolymer Sponges

    NASA Astrophysics Data System (ADS)

    Parker, Ashley Cox

    Musculoskeletal injuries are some of the most prevalent injuries in both civilian and military populations and their infections can be difficult to treat, often resulting in multiple surgeries and increased costs. In both previous and recent military operations, extremity injuries have been the most common battlefield injuries and many involve complex, open fractures. These extremity injuries are especially susceptible to multiple pathogenic, and sometimes drug resistant, bacteria and fungi. Fungal infections have recently become increasingly problematic in both military and civilian populations and have significantly higher amputation rates than those from bacterial infections. Many of these bacterial and fungal strains adhere to tissue and implanted orthopaedic hardware within wounds, forming biofilms. These problematic, often polymicrobial, infections threaten the health of the patient, but the risk also exists of spreading within hospitals to become prominent resistant infections. Local antimicrobial delivery releases high levels of antimicrobials directly to injured wound tissue, overcoming sub-bactericidal or subfungicidal antimicrobial levels present in the avascular wound zones. This research will determine the ability of modified chitosan sponges, buffered with sodium acetate or blended with polyethylene glycol (PEG), to act as short term adjunctive therapies to initial surgical treatment for delivering both antibiotics and/or antifungals for early abatement of infection. The objective of this work was to evaluate both types of modified sponges for in vitro and in vivo material characteristics and device functionality. In vitro analysis demonstrated both the buffered and PEG modified chitosan sponges exhibited increased degradation and functional cytocompatibility. The chitosan/PEG sponges were able to be loaded with hydrophobic antifungals and the sponges released in vitro biologically active concentrations, alone or in combination with the antibiotic vancomycin. Both types of modified sponges exhibited good biocompatibility and slight, but not complete, degradation in an in vivo rat intramuscular degradation and biocompatibility model. In an in vivo bacteria biofilm infection prevention mouse model, vancomycin loaded chitosan/PEG sponges also cleared more bacteria than the unmodified chitosan sponges. These experimental results led to the conclusion that with additional research and in vivo studies, the buffered and PEG blended chitosan sponge local delivery systems exhibit potential for use as adjunctive bacterial or fungal infection prevention therapies to standard surgical treatment of musculoskeletal wounds.

  5. Preventive effects of an original combination of grape seed polyphenols with amine fluoride on dental biofilm formation and oxidative damage by oral bacteria.

    PubMed

    Furiga, A; Roques, C; Badet, C

    2014-04-01

    To investigate the preventive effects of an original combination of a grape seed extract (GSE) with an amine fluoride (Fluorinol(®) ) on dental plaque formation and oxidative damage caused by oral bacteria. The antibacterial activity of the compounds was assessed using the broth macrodilution method, and their antiplaque activity was evaluated on a multispecies biofilm grown on saliva-coated hydroxyapatite discs. The effect on glucosyltransferases activity was analysed through reductions in the overall reaction and the quantity of insoluble glucan synthesized. The combination of 2000 μg ml(-1) of GSE with 10·2 mg ml(-1) of Fluorinol(®) significantly decreased the biofilm formation (up to 4·76 log10 of reduction) and inhibited by 97·4% the insoluble glucan synthesis by glucosyltransferases. The antioxidant activity of this combination, alone or incorporated into a formulated mouthwash (Eludril daily(®) ), was determined using the Trolox equivalent antioxidant capacity assay (TEAC), and both showed significantly greater antioxidant capacity than vitamin C. The GSE/Fluorinol(®) combination showed both a significant antiplaque activity and an important antioxidant capacity in vitro, without any bactericidal effects. This is, to our knowledge, the first report on the properties of an original combination of a polyphenolic extract with amine fluoride that could be used for the prevention of oral diseases and oxidative damage associated. © 2013 The Society for Applied Microbiology.

  6. Fungal degradation of fiber-reinforced composite materials

    NASA Technical Reports Server (NTRS)

    Gu, J. D.; Lu, C.; Mitchell, R.; Thorp, K.; Crasto, A.

    1997-01-01

    As described in a previous report, a fungal consortium isolated from degraded polymeric materials was capable of growth on presterilized coupons of five composites, resulting in deep penetration into the interior of all materials within five weeks. Data describing the utilization of composite constituents as nutrients for the microflora are described in this article. Increased microbial growth was observed when composite extract was incubated with the fungal inoculum at ambient temperatures. Scanning electron microscopic observation of carbon fibers incubated with a naturally developed population of microorganisms showed the formation of bacterial biofilms on the fiber surfaces, suggesting possible utilization of the fiber chemical sizing as carbon and energy sources. Electrochemical impedance spectroscopy was used to monitor the phenomena occurring at the fiber-matrix interfaces. Significant differences were observed between inoculated and sterile panels of the composite materials. A progressive decline in impedance was detected in the inoculated panels. Several reaction steps may be involved in the degradation process. Initial ingress of water into the resin matrix appeared to be followed by degradation of fiber surfaces, and separation of fibers from the resin matrix. This investigation suggested that composite materials are susceptible to microbial attack by providing nutrients for growth.

  7. Identification of volatile markers for indoor fungal growth and chemotaxonomic classification of Aspergillus species.

    PubMed

    Polizzi, Viviana; Adams, An; Malysheva, Svetlana V; De Saeger, Sarah; Van Peteghem, Carlos; Moretti, Antonio; Picco, Anna Maria; De Kimpe, Norbert

    2012-09-01

    Microbial volatile organic compounds (MVOCs) were collected in water-damaged buildings to evaluate their use as possible indicators of indoor fungal growth. Fungal species isolated from contaminated buildings were screened for MVOC production on malt extract agar by means of headspace solid-phase microextraction followed by gas chromatography-mass spectrometry (GC-MS) analysis. Some sesquiterpenes, specifically derived from fungal growth, were detected in the sampled environments and the corresponding fungal producers were identified. Statistical analysis of the detected MVOC profiles allowed the identification of species-specific MVOCs or MVOC patterns for Aspergillus versicolor group, Aspergillus ustus, and Eurotium amstelodami. In addition, Chaetomium spp. and Epicoccum spp. were clearly differentiated by their volatile production from a group of 76 fungal strains belonging to different genera. These results are useful in the chemotaxonomic discrimination of fungal species, in aid to the classical morphological and molecular identification techniques. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  8. Biofilm on the tracheoesophageal voice prosthesis: considerations for oral decontamination.

    PubMed

    Somogyi-Ganss, Eszter; Chambers, Mark S; Lewin, Jan S; Tarrand, Jeffrey J; Hutcheson, Katherine A

    2017-01-01

    The tracheoesophageal puncture (TEP) restores verbal communication after total laryngectomy using a one-way valved voice prosthesis (VP). Microbial colonization can shorten VP device life. Our aims were to investigate patterns of prosthetic and oral colonization, and record changes in VP device life after targeted decontamination. We conducted a retrospective review of TEP clinic patients who underwent microbial analysis of the VP between 01/2003 and 07/2013. Two subgroups were analyzed: (1) patients with microbial analysis of the VP and the mouth were analyzed to identify patterns of common contamination, and (2) patients who were prescribed targeted oral decontamination on the basis of the microbial analysis of the VP were analyzed to evaluate effects on device life. Among 42 patients, 3 patients had only fungal, 5 only bacterial, and 33 had polyspecies fungal and bacterial colonization. In the TEP-oral microflora subgroup (n = 15), 7 had common microorganisms in the mouth and on the VP. Among the decontamination subgroup (n = 23), 6 patients received broad spectrum rinse, 16 antifungal agents and 13 antibiotics, or a combination thereof. After targeted decontamination, the median device life of prostheses improved from 7.89 to 10.82 weeks (p = 0.260). The majority of patients with a suboptimal VP device life in this pilot had polyspecies bacterial and fungal colonization. VPs rarely had fungal contamination alone (3 %), and non-albicans fungal species were more common than expected. For these reasons, we are exploring the use of targeted decontamination regimens that were associated with 1.4-fold improvement in VP duration.

  9. I. Enabling Single-Chain Surfactants to Form Vesicles by Nonamphiphilic Liquid Crystals in Water II. Controlling Attachment and Ligand-Mediated Adherence of Candida albicans on Monolayers

    NASA Astrophysics Data System (ADS)

    Varghese, Nisha

    This dissertation describes a fundamental study of weak noncovalent interactions and surface forces that exist at the interfaces of various interacting moieties (small molecules or microbes), and its relevance to colloidal and material chemistry. Chapter 1 presents an emulsion system that enables single-chain anionic or nonionic surfactants to sequester and encapsulate certain water-soluble organic salts, leading to the formation of vesicles in water. The water-soluble organic salt in the system comprises of disodium cromoglycate crystals that are emulsified by surfactants in water to form stable liquid crystal droplets. The work provides an exception to the rule of geometric packing factor that dictates formation of micelles by the surfactants in water. Chapter 2 shows that the odd or even number of carbon atoms present in the aliphatic chain of surfactants affect the ability of surfactants to emulsify aqueous-based liquid crystals of disodium cromoglycate. Such an odd-even effect is frequently observed for solid state properties like melting point, heat of fusion and refractive index but is rarely observed for molecules present in solution. When mixed in water, anionic single-chain surfactants with odd number of carbon atoms emulsifies disodium cromoglycate to form liquid crystal droplets, while surfactants with even number of carbon atoms fail to emulsify disodium cromoglycate. Chapter 3 Bolaamphiphiles usually form vesicles only in extreme conditions or in the presence of surfactants. Here, we explore the co-assembly system of synthesized bolaamphiphiles and disodium cromoglycate in water. The combination of the self-assembly forces of the bolaamphiphile and self-associating property of disodium cromoglycate liquid crystals act together at the interface form a unique microemulsion of liquid crystal droplets of disodium cromoglycate embedded in liquid crystal phase. Chapter 4 describes a key event (adhesion) that precedes infections caused by Candida albicans. Adhesion of C. albicans to a surface is a complex process and is governed by nonspecific attachment or multiple ligand-receptor interactions. The work demonstrates that the multiple ligand-receptor interactions used by C. albicans for adherence to a surface can be individually studied using self-assembled monolayers (SAMs) decorated with minimal motif of the ligands. The SAMs were also used to differentiate between the interactions of the two different morphological forms of C. albicans.. Chapter 5 presents a study on small molecules that were used to inhibit biofilm formed by C. albicans. The acyclic triazoles used in the study were not toxic to the C. albicans and were capable of inhibiting biofilm formed by C. albicans. The acyclic triazole can be used as promising candidates to design new antifungal agents. The chapter also reports the synthesis of squarylated homoserine lactones (SHLs) structural mimics of bacterial acyl homoserine lactones (AHLs) to study the inhibitory effects of SHLs on fungal biofilm. The bacterial AHLs are known to repress the growth of C. albicans and control fungal biofilm in native host environment. The synthesized SHLs were non-toxic to C. albicans and failed to inhibit biofilm formed by C. albicans. . Chapter 6 uses gradient nanotopography combined with controlled surface chemistry to confine bacterial biofilm formed by Escherichia coli. The E. coli biofilm were confined within micrometer sized regions of hydrophobic SAMs surrounded by polyol-terminated SAMs. The study reveals that surface with higher topography enhances the ability of the bioinert SAMs to resist bacterial adherence to surface.

  10. Effect of peracetic acid on biofilms formed by Staphylococcus aureus and Listeria monocytogenes isolated from dairy plants.

    PubMed

    Lee, S H I; Cappato, L P; Corassin, C H; Cruz, A G; Oliveira, C A F

    2016-03-01

    This research investigated the removal of adherent cells of 4 strains of Staphylococcus aureus and 1 Listeria monocytogenes strain (previously isolated from dairy plants) from polystyrene microtiter plates using peracetic acid (PAA, 0.5%) for 15, 30, 60, and 120 s, and the inactivation of biofilms formed by those strains on stainless steel coupons using the same treatment times. In the microtiter plates, PAA removed all S. aureus at 15 s compared with control (no PAA treatment). However, L. monocytogenes biofilm was not affected by any PAA treatment. On the stainless steel surface, epifluorescence microscopy using LIVE/DEAD staining (BacLight, Molecular Probes/Thermo Fisher Scientific, Eugene, OR) showed that all strains were damaged within 15 s, with almost 100% of cells inactivated after 30 s. Results of this trial indicate that, although PAA was able to inactivate both S. aureus and L. monocytogenes monospecies biofilms on stainless steel, it was only able to remove adherent cells of S. aureus from polystyrene microplates. The correct use of PAA is critical for eliminating biofilms formed by S. aureus strains found in dairy plants, although further studies are necessary to determine the optimal PAA treatment for removing biofilms of L. monocytogenes. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Organoselenium coating on cellulose inhibits the formation of biofilms by Pseudomonas aeruginosa and Staphylococcus aureus.

    PubMed

    Tran, Phat L; Hammond, Adrienne A; Mosley, Thomas; Cortez, Janette; Gray, Tracy; Colmer-Hamood, Jane A; Shashtri, Mayank; Spallholz, Julian E; Hamood, Abdul N; Reid, Ted W

    2009-06-01

    Among the most difficult bacterial infections encountered in treating patients are wound infections, which may occur in burn victims, patients with traumatic wounds, necrotic lesions in people with diabetes, and patients with surgical wounds. Within a wound, infecting bacteria frequently develop biofilms. Many current wound dressings are impregnated with antimicrobial agents, such as silver or antibiotics. Diffusion of the agent(s) from the dressing may damage or destroy nearby healthy tissue as well as compromise the effectiveness of the dressing. In contrast, the antimicrobial agent selenium can be covalently attached to the surfaces of a dressing, prolonging its effectiveness. We examined the effectiveness of an organoselenium coating on cellulose discs in inhibiting Pseudomonas aeruginosa and Staphylococcus aureus biofilm formation. Colony biofilm assays revealed that cellulose discs coated with organoselenium completely inhibited P. aeruginosa and S. aureus biofilm formation. Scanning electron microscopy of the cellulose discs confirmed these results. Additionally, the coating on the cellulose discs was stable and effective after a week of incubation in phosphate-buffered saline. These results demonstrate that 0.2% selenium in a coating on cellulose discs effectively inhibits bacterial attachment and biofilm formation and that, unlike other antimicrobial agents, longer periods of exposure to an aqueous environment do not compromise the effectiveness of the coating.

  12. Photodynamic inactivation of pathogenic species Pseudomonas aeruginosa and Candida albicans with lutetium (III) acetate phthalocyanines and specific light irradiation.

    PubMed

    Mantareva, Vanya; Kussovski, Vesselin; Durmuş, Mahmut; Borisova, Ekaterina; Angelov, Ivan

    2016-11-01

    Photodynamic inactivation (PDI) is a light-associated therapeutic approach suitable for treatment of local acute infections. The method is based on specific light-activated compound which by specific irradiation and in the presence of molecular oxygen produced molecular singlet oxygen and other reactive oxygen species, all toxic for pathogenic microbial cells. The study presents photodynamic impact of two recently synthesized water-soluble cationic lutetium (III) acetate phthalocyanines (LuPc-5 and LuPc-6) towards two pathogenic strains, namely, the Gram-negative bacterium Pseudomonas aeruginosa and a fungus Candida albicans. The photodynamic effect was evaluated for the cells in suspensions and organized in 48-h developed biofilms. The relatively high levels of uptakes of LuPc-5 and LuPc-6 were determined for fungal cells compared to bacterial cells. The penetration depths and distribution of both LuPcs into microbial biofilms were investigated by means of confocal fluorescence microscopy. The photoinactivation efficiency was studied for a wide concentration range (0.85-30 μM) of LuPc-5 and LuPc-6 at a light dose of 50 J cm -2 from red light-emitting diode (LED; 665 nm). The PDI study on microbial biofilms showed incomplete photoinactivation (<3 logs) for the used gentle drug-light protocol.

  13. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity.

    PubMed

    Zeriouh, Houda; de Vicente, Antonio; Pérez-García, Alejandro; Romero, Diego

    2014-07-01

    The biocontrol activity of many Bacillus species has been traditionally related to the direct antagonism of pathogens. In previous works, we reported that B. subtilis strain UMAF6614 was an efficient biocontrol agent that produced bacillomycin, fengycin and surfactin lipopeptides. Bacillomycins and fengycins were shown to have antagonistic activity towards fungal and bacterial pathogens of cucurbits; however, the functionality of surfactin remained unclear. In this study, the role of surfactin in the biocontrol activity of this strain was investigated. We observed that a deficiency in surfactin production led to a partial reduction of disease suppression by this biocontrol agent, which coincided with a defect in biofilm formation and the colonization of the melon phylloplane. These effects were due to a dramatic reduction in the production of exopolysaccharide and the TasA protein, which are the two major components of the extracellular matrix. We propose that the biocontrol activity of this strain is the result of the coordinated action of the three families of lipopeptides. B. subtilis UMAF6614 produces surfactin to trigger biofilm formation on melon phylloplane, which ensures the long-term persistence and the adequate secretion of suppressive lipopeptides, bacillomycins and fengycins, which efficiently target pathogens. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. AtlA Mediates Extracellular DNA Release, Which Contributes to Streptococcus mutans Biofilm Formation in an Experimental Rat Model of Infective Endocarditis.

    PubMed

    Jung, Chiau-Jing; Hsu, Ron-Bin; Shun, Chia-Tung; Hsu, Chih-Chieh; Chia, Jean-San

    2017-09-01

    Host factors, such as platelets, have been shown to enhance biofilm formation by oral commensal streptococci, inducing infective endocarditis (IE), but how bacterial components contribute to biofilm formation in vivo is still not clear. We demonstrated previously that an isogenic mutant strain of Streptococcus mutans deficient in autolysin AtlA (Δ atlA ) showed a reduced ability to cause vegetation in a rat model of bacterial endocarditis. However, the role of AtlA in bacterial biofilm formation is unclear. In this study, confocal laser scanning microscopy analysis showed that extracellular DNA (eDNA) was embedded in S. mutans GS5 floes during biofilm formation on damaged heart valves, but an Δ atlA strain could not form bacterial aggregates. Semiquantification of eDNA by PCR with bacterial 16S rRNA primers demonstrated that the Δ atlA mutant strain produced dramatically less eDNA than the wild type. Similar results were observed with in vitro biofilm models. The addition of polyanethol sulfonate, a chemical lysis inhibitor, revealed that eDNA release mediated by bacterial cell lysis is required for biofilm initiation and maturation in the wild-type strain. Supplementation of cultures with calcium ions reduced wild-type growth but increased eDNA release and biofilm mass. The effect of calcium ions on biofilm formation was abolished in Δ atlA cultures and by the addition of polyanethol sulfonate. The VicK sensor, but not CiaH, was found to be required for the induction of eDNA release or the stimulation of biofilm formation by calcium ions. These data suggest that calcium ion-regulated AtlA maturation mediates the release of eDNA by S. mutans , which contributes to biofilm formation in infective endocarditis. Copyright © 2017 American Society for Microbiology.

  15. Effect of Atmospheric-Pressure Cold Plasma on Pathogenic Oral Biofilms and In Vitro Reconstituted Oral Epithelium.

    PubMed

    Delben, Juliana Aparecida; Zago, Chaiene Evelin; Tyhovych, Natalia; Duarte, Simone; Vergani, Carlos Eduardo

    2016-01-01

    Considering the ability of atmospheric-pressure cold plasma (ACP) to disrupt the biofilm matrix and rupture cell structure, it can be an efficient tool against virulent oral biofilms. However, it is fundamental that ACP does not cause damage to oral tissue. So, this study evaluated (1) the antimicrobial effect of ACP on single- and dual-species biofilms of Candida albicans and Staphylococcus aureus as well as (2) the biological safety of ACP on in vitro reconstituted oral epithelium. Standardized cell suspensions of each microorganism were prepared for biofilm culture on acrylic resin discs at 37°C for 48 hours. The biofilms were submitted to ACP treatment at 10 mm of plasma tip-to-sample distance during 60 seconds. Positive controls were penicillin G and fluconazole for S. aureus and C. albicans, respectively. The biofilms were analyzed through counting of viable colonies, confocal laser scanning microscopy, scanning electron microscopy and fluorescence microscopy for detection of reactive oxygen species. The in vitro reconstituted oral epithelium was submitted to similar ACP treatment and analyzed through histology, cytotoxocity test (LDH release), viability test (MTT assay) and imunnohistochemistry (Ki67 expression). All plasma-treated biofilms presented significant log10 CFU/mL reduction, alteration in microorganism/biofilm morphology, and reduced viability in comparison to negative and positive controls. In addition, fluorescence microscopy revealed presence of reactive oxygen species in all plasma-treated biofilms. Low cytotoxicity and high viability were observed in oral epithelium of negative control and plasma group. Histology showed neither sign of necrosis nor significant alteration in plasma-treated epithelium. Ki67-positive cells revealed maintenance of cell proliferation in plasma-treated epithelium. Atmospheric-pressure cold plasma is a promissing approach to eliminate single- and dual-species biofilms of C. albicans and S. aureus without having toxic effects in oral epithelium.

  16. Sensitivity of Phakopsora pachyrhizi (soybean rust) isolates to fungicides and the reduction of fungal sporulation based on fungicide and timing of application

    USDA-ARS?s Scientific Manuscript database

    Soybean rust is a damaging foliar fungal disease of soybean in many soybean-growing areas throughout the world. Strategies to manage soybean rust include the use of foliar fungicides. Fungicides types, the rate of product application, and the number and timing of applications are critical components...

  17. Copper Complex in Poly(vinyl chloride) as a Nitric Oxide-Generating Catalyst for the Control of Nitrifying Bacterial Biofilms.

    PubMed

    Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose

    2015-10-14

    In this study, catalytic generation of nitric oxide by a copper(II) complex embedded within a poly(vinyl chloride) matrix in the presence of nitrite (source of nitric oxide) and ascorbic acid (reducing agent) was shown to effectively control the formation and dispersion of nitrifying bacteria biofilms. Amperometric measurements indicated increased and prolonged generation of nitric oxide with the addition of the copper complex when compared to that with nitrite and ascorbic acid alone. The effectiveness of the copper complex-nitrite-ascorbic acid system for biofilm control was quantified using protein analysis, which showed enhanced biofilm suppression when the copper complex was used in comparison to that with nitrite and ascorbic acid treatment alone. Confocal laser scanning microscopy (CLSM) and LIVE/DEAD staining revealed a reduction in cell surface coverage without a loss of viability with the copper complex and up to 5 mM of nitrite and ascorbic acid, suggesting that the nitric oxide generated from the system inhibits proliferation of the cells on surfaces. Induction of nitric oxide production by the copper complex system also triggered the dispersal of pre-established biofilms. However, the addition of a high concentration of nitrite and ascorbic acid to a pre-established biofilm induced bacterial membrane damage and strongly decreased the metabolic activity of planktonic and biofilm cells, as revealed by CLSM with LIVE/DEAD staining and intracellular adenosine triphosphate measurements, respectively. This study highlights the utility of the catalytic generation of nitric oxide for the long-term suppression and removal of nitrifying bacterial biofilms.

  18. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces

    NASA Astrophysics Data System (ADS)

    Epstein, Alexander K.; Hong, Donggyoon; Kim, Philseok; Aizenberg, Joanna

    2013-09-01

    Most bacteria live in multicellular communities known as biofilms that are adherent to surfaces in our environment, from sea beds to plumbing systems. Biofilms are often associated with clinical infections, nosocomial deaths and industrial damage such as bio-corrosion and clogging of pipes. As mature biofilms are extremely challenging to eradicate once formed, prevention is advantageous over treatment. However, conventional surface chemistry strategies are either generally transient, due to chemical masking, or toxic, as in the case of leaching marine antifouling paints. Inspired by the nonfouling skins of echinoderms and other marine organisms, which possess highly dynamic surface structures that mechanically frustrate bio-attachment, we have developed and tested a synthetic platform based on both uniaxial mechanical strain and buckling-induced elastomer microtopography. Bacterial biofilm attachment to the dynamic substrates was studied under an array of parameters, including strain amplitude and timescale (1-100 mm s-1), surface wrinkle length scale, bacterial species and cell geometry, and growth time. The optimal conditions for achieving up to ˜ 80% Pseudomonas aeruginosa biofilm reduction after 24 h growth and ˜ 60% reduction after 48 h were combinatorially elucidated to occur at 20% strain amplitude, a timescale of less than ˜ 5 min between strain cycles and a topography length scale corresponding to the cell dimension of ˜ 1 μm. Divergent effects on the attachment of P. aeruginosa, Staphylococcus aureus and Escherichia coli biofilms showed that the dynamic substrate also provides a new means of species-specific biofilm inhibition, or inversely, selection for a desired type of bacteria, without reliance on any toxic or transient surface chemical treatments.

  19. Preservation of kombucha tea-effect of temperature on tea components and free radical scavenging properties.

    PubMed

    Jayabalan, Rasu; Marimuthu, Subbaiya; Thangaraj, Periyasamy; Sathishkumar, Muthuswamy; Binupriya, Arthur Raj; Swaminathan, Krishnaswami; Yun, Sei Eok

    2008-10-08

    Kombucha tea is sugared black tea fermented with a consortium of acetic acid bacteria and yeasts (tea fungus) for 14 days. The tea tastes slightly sweet and acidic. The formation of tea fungal biofilms during storage is a big problem when kombucha tea is being stored and commercialized. Various thermal treatments have been tried for long-term storage of kombucha tea. The present study revealed the influence of heat on the biochemical constituents and the free radical scavenging properties of kombucha tea. Heat treatment at 60, 65, and 68 degrees C for 1 min controlled biofilm formation in kombucha tea without changing its clarity, taste, and flavor. However, tea polyphenols and black tea quality parameters showed varying stability during the storage period. A decrease in free radical scavenging properties was also found during the storage period. Because the biological activities of kombucha tea depended on the biochemical constituents, it was concluded that heat treatment was not a suitable method for kombucha tea preservation.

  20. Bacterial Interactions with CdSe Quantum Dots

    NASA Astrophysics Data System (ADS)

    Holden, P.; Nadeau, J. L.; Kumar, A.; Clarke, S.; Priester, J. H.; Stucky, G. D.

    2007-12-01

    Cadmium selenide quantum dots (QDs) are semiconductor nanoparticles that are manufactured for biomedical imaging, photovoltaics, and other applications. While metallic nanoparticles can be made biotically by bacteria and fungi, and thus occur in nature, the fate of either natural or engineered QDs and relationships to nanoparticle size, conjugate and biotic conditions are mostly unknown. Working with several different bacterial strains and QDs of different sizes and conjugate chemistries, including QDs synthesized by a Fusarium fungal strain, we show that QDs can enter cells through specfic receptor-mediated processes, that QDs are broken down by bacteria during cell association, and that toxicity to cells is much like that imposed by Cd(II) ions. The mechanisms of entry and toxicity are not fully understood, but preliminary evidence suggests that electron transfer between cells and QDs occurs. Also, cell membranes are compromised, indicating oxidative stress is occurring. Results with planktonic and biofilm bacteria are similar, but differently, biofilms tend to accumulate Cd(II) associated with QD treatments.

  1. High speed sorting of Fusarium-damaged wheat kernels

    USDA-ARS?s Scientific Manuscript database

    Recent studies have found that resistance to Fusarium fungal infection can be inherited in wheat from one generation to another. However, there is not yet available a cost effective method to separate Fusarium-damaged wheat kernels from undamaged kernels so that wheat breeders can take advantage of...

  2. Green biocides, a promising technology: current and future applications to industry and industrial processes.

    PubMed

    Ashraf, Muhammad Aqeel; Ullah, Saleem; Ahmad, Irshad; Qureshi, Ahmad Kaleem; Balkhair, Khaled S; Abdur Rehman, Muhammad

    2014-02-01

    The study of biofilms has skyrocketed in recent years due to increased awareness of the pervasiveness and impact of biofilms. It costs the USA literally billions of dollars every year in energy losses, equipment damage, product contamination and medical infections. But biofilms also offer huge potential for cleaning up hazardous waste sites, filtering municipal and industrial water and wastewater, and forming biobarriers to protect soil and groundwater from contamination. The complexity of biofilm activity and behavior requires research contributions from many disciplines such as biochemistry, engineering, mathematics and microbiology. The aim of this review is to provide a comprehensive analysis of emerging novel antimicrobial techniques, including those using myriad organic and inorganic products as well as genetic engineering techniques, the use of coordination complex molecules, composite materials and antimicrobial peptides and the use of lasers as such or their modified use in combination treatments. This review also addresses advanced and recent modifications, including methodological changes, and biocide efficacy enhancing strategies. This review will provide future planners of biofilm control technologies with a broad understanding and perspective on the use of biocides in the field of green developments for a sustainable future. © 2013 Society of Chemical Industry.

  3. Multispecies Biofilms and Host Responses: “Discriminating the Trees from the Forest”

    PubMed Central

    Peyyala, R.; Ebersole, J.L.

    2014-01-01

    Periodontal diseases reflect a tissue destructive process of the hard and soft tissues of the periodontium that are initiated by the accumulation of multispecies bacterial biofilms in the subgingival sulcus. This accumulation, in both quantity and quality of bacteria, results in a chronic immunoinflammatory response of the host to control this noxious challenge, leading to collateral damage of the tissues. As knowledge of the characteristics of the host-bacterial interactions in the oral cavity has expanded, new knowledge has become available on the complexity of the microbial challenge and the repertoire of host responses to this challenge. Recent results from the Human Microbiome Project continue to extend the array of taxa, genera, and species of bacteria that inhabit the multiple niches in the oral cavity; however, there is rather sparse information regarding variations in how host cells discriminate commensal from pathogenic species, as well as how the host response is affected by the 3-dimensional architecture and interbacterial interactions that occur in the oral biofilms. This review provides some insights into thes- processes by including existing literature on the biology of nonoral bacterial biofilms, and the more recent literature just beginning to document how the oral cavity responds to multispecies biofilms. PMID:23141757

  4. Reactive Oxygen Species Mediated Bacterial Biofilm Inhibition via Zinc Oxide Nanoparticles and Their Statistical Determination

    PubMed Central

    Dwivedi, Sourabh; Wahab, Rizwan; Khan, Farheen; Mishra, Yogendra K.; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2014-01-01

    The formation of bacterial biofilm is a major challenge in clinical applications. The main aim of this study is to describe the synthesis, characterization and biocidal potential of zinc oxide nanoparticles (NPs) against bacterial strain Pseudomonas aeruginosa. These nanoparticles were synthesized via soft chemical solution process in a very short time and their structural properties have been investigated in detail by using X-ray diffraction and transmission electron microscopy measurements. In this work, the potential of synthesized ZnO-NPs (∼10–15 nm) has been assessed in-vitro inhibition of bacteria and the formation of their biofilms was observed using the tissue culture plate assays. The crystal violet staining on biofilm formation and its optical density revealed the effect on biofilm inhibition. The NPs at a concentration of 100 µg/mL significantly inhibited the growth of bacteria and biofilm formation. The biofilm inhibition by ZnO-NPs was also confirmed via bio-transmission electron microscopy (Bio-TEM). The Bio-TEM analysis of ZnO-NPs treated bacteria confirmed the deformation and damage of cells. The bacterial growth in presence of NPs concluded the bactericidal ability of NPs in a concentration dependent manner. It has been speculated that the antibacterial activity of NPs as a surface coating material, could be a feasible approach for controlling the pathogens. Additionally, the obtained bacterial solution data is also in agreement with the results from statistical analytical methods. PMID:25402188

  5. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination.

    PubMed

    Dwivedi, Sourabh; Wahab, Rizwan; Khan, Farheen; Mishra, Yogendra K; Musarrat, Javed; Al-Khedhairy, Abdulaziz A

    2014-01-01

    The formation of bacterial biofilm is a major challenge in clinical applications. The main aim of this study is to describe the synthesis, characterization and biocidal potential of zinc oxide nanoparticles (NPs) against bacterial strain Pseudomonas aeruginosa. These nanoparticles were synthesized via soft chemical solution process in a very short time and their structural properties have been investigated in detail by using X-ray diffraction and transmission electron microscopy measurements. In this work, the potential of synthesized ZnO-NPs (∼ 10-15 nm) has been assessed in-vitro inhibition of bacteria and the formation of their biofilms was observed using the tissue culture plate assays. The crystal violet staining on biofilm formation and its optical density revealed the effect on biofilm inhibition. The NPs at a concentration of 100 µg/mL significantly inhibited the growth of bacteria and biofilm formation. The biofilm inhibition by ZnO-NPs was also confirmed via bio-transmission electron microscopy (Bio-TEM). The Bio-TEM analysis of ZnO-NPs treated bacteria confirmed the deformation and damage of cells. The bacterial growth in presence of NPs concluded the bactericidal ability of NPs in a concentration dependent manner. It has been speculated that the antibacterial activity of NPs as a surface coating material, could be a feasible approach for controlling the pathogens. Additionally, the obtained bacterial solution data is also in agreement with the results from statistical analytical methods.

  6. Low concentrations of Al(III) accelerate the formation of biofilm: Multiple effects of hormesis and flocculation.

    PubMed

    Cui, Xiaochun; Huo, Mingxin; Chen, Congli; Yu, Zhisen; Zhou, Chen; Li, Anran; Qiao, Bingqian; Zhou, Dandan; Crittenden, John C

    2018-09-01

    Residual Al(III) (at low concentration) is common in water treatment plants (WTPs) and is associated with bacteria. We hypothesize that Al(III) accelerate biofouling due to its hydrolysis and hormesis characteristics, as compared with other cations. To verify this, we elaborated the roles of Al(III) at low concentrations on the biofilm formation. Al(III) hormesis (<2.0mg/L) stimulated bacteria growth increased by ~3.7 times, and extracellular polymeric substances production also enhanced. Al(III) flocculation resulted in the suspended cells precipitation instantly, for Al(III) dosages of 0.6 and 2.0mg/L and the concentration of Al(III) decreased by 0.07 and 0.14mg/L, respectively. Al(III) poisoned the bridged bacterial cells and decreased their ATP by 22.36% and 55.91%, respectively. Al(III) formed polymer presented strong affinity with bacterial outer membrane, and this damaged the bacterial outer membrane. This caused proteins to leak at the combined point. Al-polymer bound to NH 2 and/or NH on the leaked protein, contributed to biofilm formation. Biofilm maturity was aided by polysaccharides, which shielded Al(III) toxicity for the formed biofilm. Thus, the biofilm exhibited a distinguished double-layer microstructure, principally with proteins and inactivated cells at the bottom, polysaccharides and activated cells at the top. Thus, hormesis and flocculation caused by low concentration Al(III) mutually promoted each other, and together accelerated biofilm formation. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Soluble factors from biofilm of Candida albicans and Staphylococcus aureus promote cell death and inflammatory response.

    PubMed

    de Carvalho Dias, Kassia; Barbugli, Paula Aboud; de Patto, Fernanda; Lordello, Virginia Barreto; de Aquino Penteado, Letícia; Medeiros, Alexandra Ivo; Vergani, Carlos Eduardo

    2017-06-30

    The objective of this study was to better understand the effects of soluble factors from biofilm of single- and mixed-species Candida albicans (C. albicans) and methicillin-sensitive Staphylococcus aureus (MSSA) cultures after 36 h in culture on keratinocytes (NOK-si and HaCaT) and macrophages (J774A.1). Soluble factors from biofilms of C. albicans and MSSA were collected and incubated with keratinocytes and macrophages, which were subsequently evaluated by cell viability assays (MTT). Lactate dehydrogenase (LDH) enzyme release was measured to assess cell membrane damage to keratinocytes. Cells were analysed by brightfield microscopy after 2 and 24 h of exposure to the soluble factors from biofilm. Cell death was detected by labelling apoptotic cells with annexin V and necrotic cells with propidium iodide (PI) and was visualized via fluorescence microscopy. Soluble factors from biofilm were incubated with J774A.1 cells for 24 h; the subsequent production of NO and the cytokines IL-6 and TNF-α was measured by ELISA. The cell viability assays showed that the soluble factors of single-species C. albicans cultures were as toxic as the soluble factors from biofilm of mixed cultures, whereas the soluble factors of MSSA cultures were less toxic than those of C. albicans or mixed cultures. The soluble factors from biofilm of mixed cultures were the most toxic to the NOK-si and HaCaT cells, as confirmed by analyses of PI labelling and cell morphology. Soluble factors from biofilm of single-species MSSA and mixed-species cultures induced the production of IL-6, NO and TNF-α by J744A.1 macrophages. The production of IL-6 and NO induced by the soluble factors from biofilm of mixed cultures was lower than that induced by the soluble factors from biofilm of single-species MSSA cultures, whereas the soluble factors from biofilm of C. albicans cultures induced only low levels of NO. Soluble factors from 36-h-old biofilm of C. albicans and MSSA cultures promoted cell death and inflammatory responses.

  8. Cytotoxicity of TiO{sub 2} nanoparticles towards freshwater sediment microorganisms at low exposure concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumari, Jyoti; Kumar, Deepak; Mathur, Ankita

    2014-11-15

    There is a persistent need to assess the effects of TiO{sub 2} nanoparticles on the aquatic ecosystem owing to their increasing usage in consumer products and risk of environmental release. The current study is focused on TiO{sub 2} nanoparticle-induced acute toxicity at sub-ppm level (≤1 ppm) on the three different freshwater sediment bacterial isolates and their consortium under two different irradiation (visible light and dark) conditions. The consortium of the bacterial isolates was found to be less affected by the exposure to the nanoparticles compared to the individual cells. The oxidative stress contributed considerably towards the cytotoxicity under both lightmore » and dark conditions. A statistically significant increase in membrane permeability was noted under the dark conditions as compared to the light conditions. The optical and fluorescence microscopic images showed aggregation and chain formation of the bacterial cells, when exposed to the nanoparticles. The electron microscopic (SEM, TEM) observations suggested considerable damage of cells and bio-uptake of nanoparticles. The exopolysaccrides (EPS) production and biofilm formation were noted to increase in the presence of the nanoparticles, and expression of the key genes involved in biofilm formation was studied by RT-PCR. - Highlights: • Toxicity of NPs towards freshwater sediment bacteria at sub-ppm concentrations. • Decreased toxicity of the nanoparticles in the consortium of microorganisms. • Enhanced bacterial resistance through EPS and biofilm formation in the presence of NPs. • Considerable surface damage of cells and internalization of NPs. • Gene expression analyses related to biofilm formation in the presence of NPs.« less

  9. Eradicating group A streptococcus bacteria and biofilms using functionalised multi-wall carbon nanotubes.

    PubMed

    Levi-Polyachenko, Nicole; Young, Christie; MacNeill, Christopher; Braden, Amy; Argenta, Louis; Reid, Sean

    2014-11-01

    The aim of this study was to demonstrate that multi-wall carbon nanotubes can be functionalised with antibodies to group A streptoccocus (GAS) for targeted photothermal ablation of planktonic and biofilm residing bacteria. Antibodies for GAS were covalently attached to carboxylated multi-wall carbon nanotubes and incubated with either planktonic or biofilm GAS. Bacterium was then exposed to 1.3 W/cm(2) of 800 nm light for 10-120 s, and then serially diluted onto agar plates from which the number of colony forming units was determined. Photothermal ablation of GAS on the surface of full thickness ex vivo porcine skin and histological sectioning were done to examine damage in adjacent tissue. Approximately 14% of the GAS antibody-functionalised nanotubes attached to the bacterium, and this amount was found to be capable of inducing photothermal ablation of GAS upon exposure to 1.3 W/cm(2) of 800 nm light. Cell viability was not decreased upon exposure to nanotubes or infrared light alone. Compared to carboxylated multi-wall carbon nanotubes, antibody-labelled nanotubes enhanced killing in both planktonic and biofilm GAS in conjunction with infrared light. Analysis of GAS photothermally ablated in direct contact with ex vivo porcine skin shows that heat sufficient for killing GAS remains localised and does not cause collateral damage in tissue adjacent to the treated area. The results of this study support the premise that carbon nanotubes may be effectively utilised as highly localised photothermal agents with the potential for translation into the clinical treatment of bacterial infections of soft tissue.

  10. Growth inhibition of Candida species by Wickerhamomyces anomalus mycocin and a lactone compound of Aureobasidium pullulans.

    PubMed

    Tay, Sun-Tee; Lim, Su-Lin; Tan, Hui-Wee

    2014-11-08

    The increasing resistance of Candida yeasts towards antifungal compounds and the limited choice of therapeutic drugs have spurred great interest amongst the scientific community to search for alternative anti-Candida compounds. Mycocins and fungal metabolites have been reported to have the potential for treatment of fungal infections. In this study, the growth inhibition of Candida species by a mycocin produced by Wickerhamomyces anomalus and a lactone compound from Aureobasidium pullulans were investigated. Mycocin was purified from the culture supernatant of an environmental isolate of W. anomalus using Sephadex G-75 gel filtration column chromatography. The mycocin preparation was subjected to SDS-PAGE analysis followed by MALDI TOF/TOF mass spectrometry analysis. The thermal and temperature stability of the mycocin were determined. The glucanase activity of the mycocin was investigated by substrate staining of the mycocin with 4-methyl-umbelliferyl-ß-D-glucoside (MUG). Gas chromatography mass spectrometry (GCMS) analysis was used to identify anti-Candida metabolite in the culture supernatant of an environmental isolate of Aureobasidium pullulans. The inhibitory effects of the anti-Candida compound against planktonic and biofilm cultures of various Candida species were determined using broth microdilution and biofilm quantitation methods. A mycocin active against Candida mesorugosa but not C. albicans, C. parapsilosis and C. krusei was isolated from the culture supernatant of W. anomalus in this study. The mycocin, identified as exo-ß-1,3 glucanase by MALDI TOF/TOF mass spectrometry, was stable at pH 3-6 and temperature ranging from 4-37°C. The glucanase activity of the mycocin was confirmed by substrate staining with MUG. 5-hydroxy-2-decenoic acid lactone (HDCL) was identified from the culture supernatant of A. pullulans. Using a commercial source of HDCL, the planktonic and biofilm MICs of HDCL against various Candida species were determined in this study. W. anomalus mycocin demonstrated a narrow spectrum of activity targeting only against C. mesorugosa, while HDCL demonstrated a broad spectrum of inhibitory action against multiple Candida species. The growth inhibition of W. anomalus mycocin and the lactone compound from A. pullulans against Candida yeasts should be further explored for therapeutic potentials against candidiasis.

  11. Beauveria bassiana, Metarhizium anisopliae, and Metarhizium anisopliae var. acridum conidia: tolerance to imbibitional damage

    USDA-ARS?s Scientific Manuscript database

    When dry fungal cells are immersed in water, rapid imbibition (water uptake) may compromise the plasma membrane, killing the cell. This study investigated the impact of imbibitional damage (measured in terms of reduced viability) on Beauveria bassiana (Bb), Metarhizium anisopliae (Ma) and M. anisop...

  12. The role of effectors and host immunity in plant-necrotrophic fungal interactions.

    PubMed

    Wang, Xuli; Jiang, Nan; Liu, Jinling; Liu, Wende; Wang, Guo-Liang

    2014-01-01

    Fungal diseases pose constant threats to the global economy and food safety. As the largest group of plant fungal pathogens, necrotrophic fungi cause heavy crop losses worldwide. The molecular mechanisms of the interaction between necrotrophic fungi and plants are complex and involve sophisticated recognition and signaling networks. Here, we review recent findings on the roles of phytotoxin and proteinaceous effectors, pathogen-associated molecular patterns (PAMPs), and small RNAs from necrotrophic fungi. We also consider the functions of damage-associated molecular patterns (DAMPs), the receptor-like protein kinase BIK1, and epigenetic regulation in plant immunity to necrotrophic fungi.

  13. Limonene inhibits Candida albicans growth by inducing apoptosis.

    PubMed

    Thakre, Archana; Zore, Gajanan; Kodgire, Santosh; Kazi, Rubina; Mulange, Shradha; Patil, Rajendra; Shelar, Amruta; Santhakumari, Bayitigeri; Kulkarni, Mahesh; Kharat, Kiran; Karuppayil, Sankunny Mohan

    2018-07-01

    Anti-Candida potential of limonene was evaluated against planktonic growth, biofilm (adhesion, development and maturation) and morphogenesis of Candida albicans in this study. Limonene is a major constituent of citrus oil and most frequently used terpene in food and beverage industry due to its pleasant fragrance, nontoxic, and is generally recognized as safe (GRAS) flavoring agent as well as treatment option in many gastrointestinal diseases.Limonene exhibited excellent anti-Candida activity and was equally effective against planktonic growth of C. albicans isolates differentially susceptible to FLC (N = 35). Limonene inhibited morphogenesis significantly at low concentration. However, it showed stage dependent activity against biofilm formation, that is, it was more effective against adhesion followed by development and maturation. Limonene also exhibited excellent synergy with FLC against planktonic and biofilm growth. SWATH-MS analysis led to identification of limonene responsive proteins that provided molecular insight of its anti-Candida activity. Proteomic analysis revealed upregulation of proteins involved in cell wall glucan synthesis (Kre6); oxidative stress (Rhr2, Adh7 and Ebp1); DNA damage stress (Mbf1 and Npl3); nucleolar stress (Rpl11, Rpl7, Rpl29, Rpl15) and down regulation of cytoskeleton organization (Crn1, Pin3, Cct8, Rbl2), and so forth, in response to limonene. Limonene mediated down regulation of Tps3 indicates activation of caspase (CaMca1) and induction of apoptosis in C. albicans. These results suggest that limonene inhibits C. albicans growth by cell wall/membrane damage induced oxidative stress that leads to DNA damage resulting into modulation of cell cycle and induction of apoptosis through nucleolar stress and metacaspase dependent pathway.

  14. Evaluation of Microorganisms Cultured from Injured and Repressed Tissue Regeneration Sites in Endangered Giant Aquatic Ozark Hellbender Salamanders

    PubMed Central

    Nickerson, Cheryl A.; Ott, C. Mark; Castro, Sarah L.; Garcia, Veronica M.; Molina, Thomas C.; Briggler, Jeffrey T.; Pitt, Amber L.; Tavano, Joseph J.; Byram, J. Kelly; Barrila, Jennifer; Nickerson, Max A.

    2011-01-01

    Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury rates, disease, and habitat variables to adequately assess changes through time. We cultured and identified microorganisms isolated from abnormal/injured and repressed tissue regeneration sites of the endangered Ozark Hellbender, Cryptobranchus alleganiensis bishopi, to discover potential causative agents responsible for their significant decline in health and population. This organism and our study site were chosen because the population and habitat of C. a. bishopi have been intensively studied from 1969–2009, and the abnormality/injury rate and apparent lack of regeneration were established. Although many bacterial and fungal isolates recovered were common environmental organisms, several opportunistic pathogens were identified in association with only the injured tissues of C.a. bishopi. Bacterial isolates included Aeromonas hydrophila, a known amphibian pathogen, Granulicetella adiacens, Gordonai terrae, Stenotrophomonas maltophilia, Aerococcus viridans, Streptococcus pneumoniae and a variety of Pseudomonads, including Pseudomonas aeruginosa, P. stutzeri, and P. alcaligenes. Fungal isolates included species in the genera Penicillium, Acremonium, Cladosporium, Curvularia, Fusarium, Streptomycetes, and the Class Hyphomycetes. Many of the opportunistic pathogens identified are known to form biofilms. Lack of isolation of the same organism from all wounds suggests that the etiological agent responsible for the damage to C. a. bishopi may not be a single organism. To our knowledge, this is the first study to profile the external microbial consortia cultured from a Cryptobranchid salamander. The incidence of abnormalities/injury and retarded regeneration in C. a. bishopi may have many contributing factors including disease and habitat degradation. Results from this study may provide insight into other amphibian population declines. PMID:22205979

  15. Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus

    NASA Astrophysics Data System (ADS)

    Beaussart, Audrey; El-Kirat-Chatel, Sofiane; Fontaine, Thierry; Latgé, Jean-Paul; Dufrêne, Yves F.

    2015-09-01

    Many fungal pathogens produce cell surface polysaccharides that play essential roles in host-pathogen interactions. In Aspergillus fumigatus, the newly discovered polysaccharide galactosaminogalactan (GAG) mediates adherence to a variety of substrates through molecular mechanisms that are poorly understood. Here we use atomic force microscopy to unravel the localization and adhesion of GAG on living fungal cells. Using single-molecule imaging with tips bearing anti-GAG antibodies, we found that GAG is massively exposed on wild-type (WT) germ tubes, consistent with the notion that this glycopolymer is secreted by the mycelium of A. fumigatus, while it is lacking on WT resting conidia and on germ tubes from a mutant (Δuge3) deficient in GAG. Imaging germ tubes with tips bearing anti-β-glucan antibodies shows that exposure of β-glucan is strongly increased in the Δuge3 mutant, indicating that this polysaccharide is masked by GAG during hyphal growth. Single-cell force measurements show that expression of GAG on germ tubes promotes specific adhesion to pneumocytes and non-specific adhesion to hydrophobic substrates. These results provide a molecular foundation for the multifunctional adhesion properties of GAG, thus suggesting it could be used as a potential target in anti-adhesion therapy and immunotherapy. Our methodology represents a powerful approach for characterizing the nanoscale organization and adhesion of cell wall polysaccharides during fungal morphogenesis, thereby contributing to increase our understanding of their role in biofilm formation and immune responses.

  16. Repurposing Toremifene for Treatment of Oral Bacterial Infections.

    PubMed

    Gerits, Evelien; Defraine, Valerie; Vandamme, Katleen; De Cremer, Kaat; De Brucker, Katrijn; Thevissen, Karin; Cammue, Bruno P A; Beullens, Serge; Fauvart, Maarten; Verstraeten, Natalie; Michiels, Jan

    2017-03-01

    The spread of antibiotic resistance and the challenges associated with antiseptics such as chlorhexidine have necessitated a search for new antibacterial agents against oral bacterial pathogens. As a result of failing traditional approaches, drug repurposing has emerged as a novel paradigm to find new antibacterial agents. In this study, we examined the effects of the FDA-approved anticancer agent toremifene against the oral bacteria Porphyromonas gingivalis and Streptococcus mutans We found that the drug was able to inhibit the growth of both pathogens, as well as prevent biofilm formation, at concentrations ranging from 12.5 to 25 μM. Moreover, toremifene was shown to eradicate preformed biofilms at concentrations ranging from 25 to 50 μM. In addition, we found that toremifene prevents P. gingivalis and S. mutans biofilm formation on titanium surfaces. A time-kill study indicated that toremifene is bactericidal against S. mutans Macromolecular synthesis assays revealed that treatment with toremifene does not cause preferential inhibition of DNA, RNA, or protein synthesis pathways, indicating membrane-damaging activity. Biophysical studies using fluorescent probes and fluorescence microscopy further confirmed the membrane-damaging mode of action. Taken together, our results suggest that the anticancer agent toremifene is a suitable candidate for further investigation for the development of new treatment strategies for oral bacterial infections. Copyright © 2017 American Society for Microbiology.

  17. Acetylsalicylic acid (aspirin) reduces damage to reconstituted human tissues infected with Candida species by inhibiting extracellular fungal lipases

    PubMed Central

    Trofa, David; Agovino, Mariangela; Stehr, Frank; Schäfer, Wilhelm; Rykunov, Dmitry; Fiser, András; Hamari, Zsuzsanna; Nosanchuk, Joshua D.; Gácser, Attila

    2009-01-01

    A reconstituted human tissue model was used to mimic Candida albicans and Candida parapsilosis infection in order to investigate the protective effects of acetylsalicylic acid (aspirin, ASA). We found that therapeutic concentrations of ASA reduced tissue damage in the in vitro infection model. We further evaluated the lipase inhibitory effects of ASA by investigating the growth of C. albicans, C. parapsilosis and C. parapsilosis lipase negative (Δcplip1-2/Δcplip1-2) mutants in a lipid rich minimal medium supplemented with olive oil and found that a therapeutic concentration of ASA inhibited the growth of wild type fungi. The lipase inhibitors quinine and ebelactone B were also shown to reduce growth and protect against tissue damage from Candida species, respectively. A lipolytic activity assay also showed that therapeutic concentrations of ASA inhibited C. antarctica and C. cylindracea purified lipases obtained through a commercial kit. The relationship between ASA and lipase was characterized through a computed structural model of the Lipase-2 protein from C. parapsilosis in complex with ASA. The results suggest that development of inhibitors of fungal lipases could result in broad-spectrum therapeutics, especially since fungal lipases are not homologous to their human analogues. PMID:19703582

  18. A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans

    PubMed Central

    Shapiro, Rebecca S.; Chavez, Alejandro; Porter, Caroline B. M.; Hamblin, Meagan; Kaas, Christian S.; DiCarlo, James E.; Zeng, Guisheng; Xu, Xiaoli; Revtovich, Alexey V.; Kirienko, Natalia V.; Wang, Yue; Church, George M.; Collins, James J.

    2018-01-01

    Candida albicans is the leading cause of fungal infections; yet, complex genetic interaction analysis remains cumbersome in this diploid pathogen. Here, we developed a CRISPR-Cas9-based ‘gene drive array’ (GDA) platform to facilitate efficient genetic analysis in C. albicans. In our system, a modified DNA donor molecule acts as a selfish genetic element, replaces the targeted site, and propagates to replace additional wild-type loci. Using mating-competent C. albicans haploids, each carrying a different gene drive disabling a gene of interest, we are able to create diploid strains that are homozygous double-deletion mutants. We generate double-gene deletion libraries to demonstrate this technology, targeting antifungal efflux and biofilm adhesion factors. We screen these libraries to identify virulence regulators and determine how genetic networks shift under diverse conditions. This platform transforms our ability to perform genetic interaction analysis in C. albicans and is readily extended to other fungal pathogens. PMID:29062088

  19. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis.

    PubMed

    Klimesova, Klara; Jiraskova Zakostelska, Zuzana; Tlaskalova-Hogenova, Helena

    2018-01-01

    Host's physiology is significantly influenced by microbiota colonizing the epithelial surfaces. Complex microbial communities contribute to proper mucosal barrier function, immune response, and prevention of pathogen invasion and have many other crucial functions. The oral cavity and large intestine are distant parts of the digestive tract, both heavily colonized by commensal microbiota. Nevertheless, they feature different proportions of major bacterial and fungal phyla, mostly due to distinct epithelial layers organization and different oxygen levels. A few obligate anaerobic strains inhabiting the oral cavity are involved in the pathogenesis of oral diseases. Interestingly, these microbiota components are also enriched in gut inflammatory and tumor tissue. An altered microbiota composition - dysbiosis - and formation of polymicrobial biofilms seem to play important roles in the development of oral diseases and colorectal cancer. In this review, we describe the differences in composition of commensal microbiota in the oral cavity and large intestine and the mechanisms by which microbiota affect the inflammatory and carcinogenic response of the host.

  20. Essential Oils and Antifungal Activity

    PubMed Central

    Coppola, Raffaele; De Feo, Vincenzo

    2017-01-01

    Since ancient times, folk medicine and agro-food science have benefitted from the use of plant derivatives, such as essential oils, to combat different diseases, as well as to preserve food. In Nature, essential oils play a fundamental role in protecting the plant from biotic and abiotic attacks to which it may be subjected. Many researchers have analyzed in detail the modes of action of essential oils and most of their components. The purpose of this brief review is to describe the properties of essential oils, principally as antifungal agents, and their role in blocking cell communication mechanisms, fungal biofilm formation, and mycotoxin production. PMID:29099084

  1. Studies of Pseudomonas aeruginosa Mutants Indicate Pyoverdine as the Central Factor in Inhibition of Aspergillus fumigatus Biofilm.

    PubMed

    Sass, Gabriele; Nazik, Hasan; Penner, John; Shah, Hemi; Ansari, Shajia Rahman; Clemons, Karl V; Groleau, Marie-Christine; Dietl, Anna-Maria; Visca, Paolo; Haas, Hubertus; Déziel, Eric; Stevens, David A

    2018-01-01

    Pseudomonas aeruginosa and Aspergillus fumigatus are common opportunistic bacterial and fungal pathogens, respectively. They often coexist in airways of immunocompromised patients and individuals with cystic fibrosis, where they form biofilms and cause acute and chronic illnesses. Hence, the interactions between them have long been of interest and it is known that P. aeruginosa can inhibit A. fumigatus in vitro We have approached the definition of the inhibitory P. aeruginosa molecules by studying 24 P. aeruginosa mutants with various virulence genes deleted for the ability to inhibit A. fumigatus biofilms. The ability of P. aeruginosa cells or their extracellular products produced during planktonic or biofilm growth to affect A. fumigatus biofilm metabolism or planktonic A. fumigatus growth was studied in agar and liquid assays using conidia or hyphae. Four mutants, the pvdD pchE , pvdD , lasR rhlR , and lasR mutants, were shown to be defective in various assays. This suggested the P. aeruginosa siderophore pyoverdine as the key inhibitory molecule, although additional quorum sensing-regulated factors likely contribute to the deficiency of the latter two mutants. Studies of pure pyoverdine substantiated these conclusions and included the restoration of inhibition by the pyoverdine deletion mutants. A correlation between the concentration of pyoverdine produced and antifungal activity was also observed in clinical P. aeruginosa isolates derived from lungs of cystic fibrosis patients. The key inhibitory mechanism of pyoverdine was chelation of iron and denial of iron to A. fumigatus IMPORTANCE Interactions between human pathogens found in the same body locale are of vast interest. These interactions could result in exacerbation or amelioration of diseases. The bacterium Pseudomonas aeruginosa affects the growth of the fungus Aspergillus fumigatus Both pathogens form biofilms that are resistant to therapeutic drugs and host immunity. P. aeruginosa and A. fumigatus biofilms are found in vivo , e.g., in the lungs of cystic fibrosis patients. Studying 24 P. aeruginosa mutants, we identified pyoverdine as the major anti- A. fumigatus compound produced by P. aeruginosa Pyoverdine captures iron from the environment, thus depriving A. fumigatus of a nutrient essential for its growth and metabolism. We show how microbes of different kingdoms compete for essential resources. Iron deprivation could be a therapeutic approach to the control of pathogen growth. Copyright © 2017 American Society for Microbiology.

  2. Competitive Interactions between C. albicans, C. glabrata and C. krusei during Biofilm Formation and Development of Experimental Candidiasis.

    PubMed

    Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Vilela, Simone Furgeri Godinho; dos Santos, Jéssica Diane; de Barros, Patrícia Pimentel; Prata, Márcia Cristina de Azevedo; Anbinder, Ana Lia; Fuchs, Beth Burgwyn; Jorge, Antonio Olavo Cardoso; Mylonakis, Eleftherios; Junqueira, Juliana Campos

    2015-01-01

    In this study, we evaluated the interactions between Candida albicans, Candida krusei and Candida glabrata in mixed infections. Initially, these interactions were studied in biofilms formed in vitro. CFU/mL values of C. albicans were lower in mixed biofilms when compared to the single biofilms, verifying 77% and 89% of C. albicans reduction when this species was associated with C. glabrata and C. krusei, respectively. After that, we expanded this study for in vivo host models of experimental candidiasis. G. mellonella larvae were inoculated with monotypic and heterotypic Candida suspensions for analysis of survival rate and quantification of fungal cells in the haemolymph. In the groups with single infections, 100% of the larvae died within 18 h after infection with C. albicans. However, interaction groups achieved 100% mortality after 72 h of infection by C. albicans-C. glabrata and 96 h of infection by C. albicans-C. krusei. C. albicans CFU/mL values from larvae hemolymph were lower in the interacting groups compared with the monoespecies group after 12 h of infection. In addition, immunosuppressed mice were also inoculated with monotypic and heterotypic microbial suspensions to induce oral candidiasis. C. albicans CFU/mL values recovered from oral cavity of mice were higher in the group with single infection by C. albicans than the groups with mixed infections by C. albicans-C. glabrata and C. albicans-C. krusei. Moreover, the group with single infection by C. albicans had a higher degree of hyphae and epithelial changes in the tongue dorsum than the groups with mixed infections. We concluded that single infections by C. albicans were more harmful for animal models than mixed infections with non-albicans species, suggesting that C. albicans establish competitive interactions with C. krusei and C. glabrata during biofilm formation and development of experimental candidiasis.

  3. Competitive Interactions between C. albicans, C. glabrata and C. krusei during Biofilm Formation and Development of Experimental Candidiasis

    PubMed Central

    Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Vilela, Simone Furgeri Godinho; dos Santos, Jéssica Diane; de Barros, Patrícia Pimentel; Prata, Márcia Cristina de Azevedo; Anbinder, Ana Lia; Fuchs, Beth Burgwyn; Jorge, Antonio Olavo Cardoso; Mylonakis, Eleftherios; Junqueira, Juliana Campos

    2015-01-01

    In this study, we evaluated the interactions between Candida albicans, Candida krusei and Candida glabrata in mixed infections. Initially, these interactions were studied in biofilms formed in vitro. CFU/mL values of C. albicans were lower in mixed biofilms when compared to the single biofilms, verifying 77% and 89% of C. albicans reduction when this species was associated with C. glabrata and C. krusei, respectively. After that, we expanded this study for in vivo host models of experimental candidiasis. G. mellonella larvae were inoculated with monotypic and heterotypic Candida suspensions for analysis of survival rate and quantification of fungal cells in the haemolymph. In the groups with single infections, 100% of the larvae died within 18 h after infection with C. albicans. However, interaction groups achieved 100% mortality after 72 h of infection by C. albicans-C. glabrata and 96 h of infection by C. albicans-C. krusei. C. albicans CFU/mL values from larvae hemolymph were lower in the interacting groups compared with the monoespecies group after 12 h of infection. In addition, immunosuppressed mice were also inoculated with monotypic and heterotypic microbial suspensions to induce oral candidiasis. C. albicans CFU/mL values recovered from oral cavity of mice were higher in the group with single infection by C. albicans than the groups with mixed infections by C. albicans-C. glabrata and C. albicans-C. krusei. Moreover, the group with single infection by C. albicans had a higher degree of hyphae and epithelial changes in the tongue dorsum than the groups with mixed infections. We concluded that single infections by C. albicans were more harmful for animal models than mixed infections with non-albicans species, suggesting that C. albicans establish competitive interactions with C. krusei and C. glabrata during biofilm formation and development of experimental candidiasis. PMID:26146832

  4. Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage.

    PubMed

    Christian, Natalie; Herre, Edward Allen; Mejia, Luis C; Clay, Keith

    2017-07-12

    It is increasingly recognized that microbiota affect host health and physiology. However, it is unclear what factors shape microbiome community assembly in nature, and how microbiome assembly can be manipulated to improve host health. All plant leaves host foliar endophytic fungi, which make up a diverse, environmentally acquired fungal microbiota. Here, we experimentally manipulated assembly of the cacao tree ( Theobroma cacao ) fungal microbiome in nature and tested the effect of assembly outcome on host health. Using next-generation sequencing, as well as culture-based methods coupled with Sanger sequencing, we found that manipulating leaf litter exposure and location within the forest canopy significantly altered microbiome composition in cacao. Exposing cacao seedlings to leaf litter from healthy conspecific adults enriched the seedling microbiome with Colletotrichum tropicale , a fungal endophyte known to enhance pathogen resistance of cacao seedlings by upregulating host defensive pathways. As a result, seedlings exposed to healthy conspecific litter experienced reduced pathogen damage. Our results link processes that affect the assembly and composition of microbiome communities to their functional consequences for host success, and have broad implications for understanding plant-microbe interactions. Deliberate manipulation of the plant-fungal microbiome also has potentially important applications for cacao production and other agricultural systems in general. © 2017 The Author(s).

  5. Effects of nanosecond pulsed electric fields (nsPEFs) on the human fungal pathogen Candida albicans: an in vitro study

    NASA Astrophysics Data System (ADS)

    Guo, Jinsong; Dang, Jie; Wang, Kaile; Zhang, Jue; Fang, Jing

    2018-05-01

    Candida albicans is the leading human fungal pathogen that causes many life-threatening infections. Notably, the current clinical trial data indicate that Candida species shows the emerging resistance to anti-fungal drugs. The aim of this study was to evaluate the antifungal effects of nanosecond pulsed electric fields (nsPEFs) as a novel drug-free strategy in vitro. In this study, we investigated the inactivation and permeabilization effects of C. albicans under different nsPEFs exposure conditions (100 pulses, 100 ns in duration, intensities of 20, 40 kV cm‑1). Cell death was studied by annexin-V and propidium iodide staining. The changes of intracellular Ca2+ concentration after nsPEFs treatment were observed using Fluo-4 AM. Results show that C. albicans cells and biofilms were both obviously inhibited and destroyed after nsPEFs treatment. Furthermore, C. albicans cells were significantly permeabilized after nsPEFs treatment. Additionally, nsPEFs exposure led to a large amount of DNA and protein leakage. Importantly, nsPEFs induced a field strength-dependent apoptosis in C. albicans cells. Further experiments revealed that Ca2+ involved in nsPEFs induced C. albicans apoptosis. In conclusion, this proof-of-concept study provides a potential alternative drug-free strategy for killing pathogenic Candida species.

  6. A Murine Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory Immunopathogenic Response.

    PubMed

    Nash, Evelyn E; Peters, Brian M; Lilly, Elizabeth A; Noverr, Mairi C; Fidel, Paul L

    2016-01-01

    Candida glabrata is the second most common organism isolated from women with vulvovaginal candidiasis (VVC), particularly in women with uncontrolled diabetes mellitus. However, mechanisms involved in the pathogenesis of C. glabrata-associated VVC are unknown and have not been studied at any depth in animal models. The objective of this study was to evaluate host responses to infection following efforts to optimize a murine model of C. glabrata VVC. For this, various designs were evaluated for consistent experimental vaginal colonization (i.e., type 1 and type 2 diabetic mice, exogenous estrogen, varying inocula, and co-infection with C. albicans). Upon model optimization, vaginal fungal burden and polymorphonuclear neutrophil (PMN) recruitment were assessed longitudinally over 21 days post-inoculation, together with vaginal concentrations of IL-1β, S100A8 alarmin, lactate dehydrogenase (LDH), and in vivo biofilm formation. Consistent and sustained vaginal colonization with C. glabrata was achieved in estrogenized streptozotocin-induced type 1 diabetic mice. Vaginal PMN infiltration was consistently low, with IL-1β, S100A8, and LDH concentrations similar to uninoculated mice. Biofilm formation was not detected in vivo, and co-infection with C. albicans did not induce synergistic immunopathogenic effects. This data suggests that experimental vaginal colonization of C. glabrata is not associated with an inflammatory immunopathogenic response or biofilm formation.

  7. A Murine Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory Immunopathogenic Response

    PubMed Central

    Nash, Evelyn E.; Peters, Brian M.; Lilly, Elizabeth A.; Noverr, Mairi C.; Fidel, Paul L.

    2016-01-01

    Candida glabrata is the second most common organism isolated from women with vulvovaginal candidiasis (VVC), particularly in women with uncontrolled diabetes mellitus. However, mechanisms involved in the pathogenesis of C. glabrata-associated VVC are unknown and have not been studied at any depth in animal models. The objective of this study was to evaluate host responses to infection following efforts to optimize a murine model of C. glabrata VVC. For this, various designs were evaluated for consistent experimental vaginal colonization (i.e., type 1 and type 2 diabetic mice, exogenous estrogen, varying inocula, and co-infection with C. albicans). Upon model optimization, vaginal fungal burden and polymorphonuclear neutrophil (PMN) recruitment were assessed longitudinally over 21 days post-inoculation, together with vaginal concentrations of IL-1β, S100A8 alarmin, lactate dehydrogenase (LDH), and in vivo biofilm formation. Consistent and sustained vaginal colonization with C. glabrata was achieved in estrogenized streptozotocin-induced type 1 diabetic mice. Vaginal PMN infiltration was consistently low, with IL-1β, S100A8, and LDH concentrations similar to uninoculated mice. Biofilm formation was not detected in vivo, and co-infection with C. albicans did not induce synergistic immunopathogenic effects. This data suggests that experimental vaginal colonization of C. glabrata is not associated with an inflammatory immunopathogenic response or biofilm formation. PMID:26807975

  8. Airway toxicity of house dust and its fungal composition.

    PubMed

    Piecková, Elena; Wilkins, Ken

    2004-01-01

    House dust is an important source of different toxic metabolites as well as allergens, including those of fungal origin, in the indoor environment. A bio-assay employing 1-day-old chick tracheas was used to characterize airway effects of 2-butanone and dimethylsulphoxide (Me2SO) extracts of 23 dust samples collected from water damaged (13) and control (10) Danish schools. Direct microscopical analysis of samples, followed by cultivation on dichloran 18 % glycerol agar at 25 degrees C for 10 days to establish their mycoflora, was performed. The in vitro ciliostatic potential of the chloroform-extractable endo- and exometabolites of 41 representative fungal isolates was determined. Nine dust extracts in 2-butanone (2 from damp rooms) or 10 (6) in Me(2)SO showed some ciliostatic activity in the 3-days' experiment. Fungal composition of dust from buildings with leakage was almost identical with that from undamaged houses, as well as the fungal colony counts from the damp schools and the control samples. Aspergillus spp. were prevalent in the samples - 31 or 40 % of all fungi, followed by Penicillium spp. and Cladosporium cladosporioides. Alternaria spp., Chaetomium spp., Mucor spp., Mycelia sterilia, Paecilomyces variotii, Rhizopus sp., Ulocladium sp. and yeasts were each isolated in less than 8 % of the fungal content. No Aspergillus flavus isolate (8 in total) was aflatoxigenic,em>in vitro. Alternaria spp., Aspergillus spp., Botrytis cinerea, Penicillium spp., C. cladosporioides, Chaetomium spp. and Ulocladium sp.; in total, 88 % of all fungi tested, produced ciliostatically active metabolites. These toxigenic strains were also present in 4 dust samples from controls and 5 dust samples from water damaged buildings. Extracts of these dust samples were also toxic in bioassay. There were bio-detectable concentrations (10-20 microg of extracts/ml of the organ culture medium) of toxic compounds in house dust. Contribution of fungal metabolites to its toxic effect should be studied further.

  9. 7 CFR 51.2 - Terms defined.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; mechanical injuries resulting from improper handling after packing; progressive pathological, physiological, and virus diseases, including fungal and bacterial roots; and freezing damage which may occur in...

  10. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm.

    PubMed

    Zhang, Peiyu; Xu, Dake; Li, Yingchao; Yang, Ke; Gu, Tingyue

    2015-02-01

    In the microbiologically influenced corrosion (MIC) caused by sulfate reducing bacteria (SRB), iron oxidation happens outside sessile cells while the utilization of the electrons released by the oxidation process for sulfate reduction occurs in the SRB cytoplasm. Thus, cross-cell wall electron transfer is needed. It can only be achieved by electrogenic biofilms. This work hypothesized that the electron transfer is a bottleneck in MIC by SRB. To prove this, MIC tests were carried out using 304 stainless steel coupons covered with the Desulfovibrio vulgaris (ATCC 7757) biofilm in the ATCC 1249 medium. It was found that both riboflavin and flavin adenine dinucleotide (FAD), two common electron mediators that enhance electron transfer, accelerated pitting corrosion and weight loss on the coupons when 10ppm (w/w) of either of them was added to the culture medium in 7-day anaerobic lab tests. This finding has important implications in MIC forensics and biofilm synergy in MIC that causes billions of dollars of damages to the US industry each year. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Enhancing plant productivity while suppressing biofilm growth in a windowfarm system using beneficial bacteria and ultraviolet irradiation.

    PubMed

    Lee, Seungjun; Ge, Chongtao; Bohrerova, Zuzana; Grewal, Parwinder S; Lee, Jiyoung

    2015-07-01

    Common problems in a windowfarm system (a vertical and indoor hydroponic system) are phytopathogen infections in plants and excessive buildup of biofilms. The objectives of this study were (i) to promote plant health by making plants more resistant to infection by using beneficial biosurfactant-producing Pseudomonas chlororaphis around the roots and (ii) to minimize biofilm buildup by ultraviolet (UV) irradiation of the water reservoir, thereby extending the lifespan of the whole system with minimal maintenance. Pseudomonas chlororaphis-treated lettuce grew significantly better than nontreated lettuce, as indicated by enhancement of color, mass, length, and number of leaves per head (p < 0.05). The death rate of the lettuce was reduced by ∼ 50% when the lettuce was treated with P. chlororaphis. UV irradiation reduced the bacteria (4 log reduction) and algae (4 log reduction) in the water reservoirs and water tubing systems. Introduction of P. chlororaphis into the system promoted plant growth and reduced damage caused by the plant pathogen Pythium ultimum. UV irradiation of the water reservoir reduced algal and biofilm growth and extended the lifespan of the system.

  12. The mechanism of action of Russian propolis ethanol extracts against two antibiotic-resistant biofilm-forming bacteria.

    PubMed

    Bryan, J; Redden, P; Traba, C

    2016-02-01

    The interaction between antibiotic-resistant Staphylococcus aureus and antibiotic-sensitive Escherichia coli biofilm-forming bacteria and Russian propolis ethanol extracts was evaluated. In this study, bacterial cell death occurred when the cell membranes of bacteria interacted specifically with the antibacterial compounds found in propolis. In order to understand the Russian propolis ethanol extract mechanism of action, microscopy and bacterial lysis studies were conducted. Results uncovered from these experiments imply that the mechanism of action of Russian propolis ethanol extracts is structural rather than functional. The results obtained throughout this study demonstrate cell membrane damage, resulting in cell lysis and eventually bacterial death. Most strains of bacteria and subsequently biofilms, have evolved and have altered their chemical composition in an attempt to protect themselves from antibiotics. The resistant nature of bacteria stems from the chemical rather than the physical means of inactivation of antibiotics. The results uncovered in this work demonstrate the potential application of Russian propolis ethanol extracts as a very efficient and effective method for bacterial and biofilm inactivation. © 2015 The Society for Applied Microbiology.

  13. Influence of Botanical Origin and Chemical Composition on the Protective Effect against Oxidative Damage and the Capacity to Reduce In Vitro Bacterial Biofilms of Monofloral Honeys from the Andean Region of Ecuador

    PubMed Central

    García-Tenesaca, Marilyn; Navarrete, Eillen S.; Iturralde, Gabriel A.; Villacrés Granda, Irina M.; Tejera, Eduardo; Beltrán-Ayala, Pablo

    2017-01-01

    Three types of monofloral honey from the Andean regions of Ecuador (Avocado, Eucalyptus, and Rapeseed honey) were analyzed to determine their floral origin, physicochemical parameters, chemical composition, antioxidant capacity, and their capacity to reduce in vitro bacterial biofilms. The chemical composition varied considerably depending on floral origin. The highest values of bioactive compounds were found in Avocado honey, classified as dark amber in color, while the lowest values were found in Eucalyptus honey followed by Rapeseed honey, both classified as extra light amber. When compared to Eucalyptus and Rapeseed honey, Avocado honey showed a more effective superoxide scavenging activity, chelating metal ions capacity, and a higher ability to protect human erythrocyte membranes against lipid peroxidation. For antimicrobial activity, the hydrogen peroxide content and the capacity to inhibit the biofilm formation, and to remove preformed biofilm from Staphylococcus aureus and Klebsiella pneumoniae was determined. Avocado honey showed the highest values of hydrogen peroxide content, as well as the highest capacity to reduce in vitro bacterial biofilms. A correlation between color vs. phenolics content vs. superoxide scavenging activity vs. chelating metal ions capacity, and the capacity to protect human erythrocyte membranes against lipid peroxidation was found. PMID:29295525

  14. Influence of Botanical Origin and Chemical Composition on the Protective Effect against Oxidative Damage and the Capacity to Reduce In Vitro Bacterial Biofilms of Monofloral Honeys from the Andean Region of Ecuador.

    PubMed

    García-Tenesaca, Marilyn; Navarrete, Eillen S; Iturralde, Gabriel A; Villacrés Granda, Irina M; Tejera, Eduardo; Beltrán-Ayala, Pablo; Giampieri, Francesca; Battino, Maurizio; Alvarez-Suarez, José M

    2017-12-23

    Three types of monofloral honey from the Andean regions of Ecuador (Avocado, Eucalyptus, and Rapeseed honey) were analyzed to determine their floral origin, physicochemical parameters, chemical composition, antioxidant capacity, and their capacity to reduce in vitro bacterial biofilms. The chemical composition varied considerably depending on floral origin. The highest values of bioactive compounds were found in Avocado honey, classified as dark amber in color, while the lowest values were found in Eucalyptus honey followed by Rapeseed honey, both classified as extra light amber. When compared to Eucalyptus and Rapeseed honey, Avocado honey showed a more effective superoxide scavenging activity, chelating metal ions capacity, and a higher ability to protect human erythrocyte membranes against lipid peroxidation. For antimicrobial activity, the hydrogen peroxide content and the capacity to inhibit the biofilm formation, and to remove preformed biofilm from Staphylococcus aureus and Klebsiella pneumoniae was determined. Avocado honey showed the highest values of hydrogen peroxide content, as well as the highest capacity to reduce in vitro bacterial biofilms. A correlation between color vs. phenolics content vs. superoxide scavenging activity vs. chelating metal ions capacity, and the capacity to protect human erythrocyte membranes against lipid peroxidation was found.

  15. Elucidation of innovative antibiofilm materials.

    PubMed

    Marcano, Aracelys; Ba, Ousmane; Thebault, Pascal; Crétois, Raphaël; Marais, Stéphane; Duncan, Anthony C

    2015-12-01

    It is known for roughly a decade that bacterial communities (called biofilms) are responsible for significant enhanced antibiotherapy resistance. Biofilms are involved in tissue persistent infection, causing direct or collateral damage leading to chronic wounds development and impairing natural wound healing. In this study, we are interested in the development of supported protein materials which consist of asymmetric membranes as reservoir supports for the incorporation and controlled release of biomolecules capable of dissolving biofilms (or preventing their formation) and their use as wound dressing for chronic wound treatment. In a first step, polyhydroxyalkanoates (PHAs) asymmetric membranes were prepared using wet phase inversion technique. Scanning microscopy (SEM) analysis has showed the influence of different processing parameters. In a second step, the porous side of the membranes were functionalized with a surface treatment and then loaded with the antibiofilm agent (dispersin B). In a third step, the properties and antibiofilm performance of the loaded-membranes were evaluated. Exposure of Staphylococcus epidermidis biofilms to such systems weakly inhibited biofilm formation (weak preventive effect) but caused their detachment and disaggregation (strong curative effect). These initial results are promising since they open the way to a new generation of effective tools in the struggle against persistent bacterial infections exhibiting enhanced antibiotherapy resistance, and in particular in the case of infected chronic wounds. Copyright © 2015. Published by Elsevier B.V.

  16. Frequency of sucrose exposure on the cariogenicity of a biofilm-caries model

    PubMed Central

    Díaz-Garrido, Natalia; Lozano, Carla; Giacaman, Rodrigo A.

    2016-01-01

    Objective: Although sucrose is considered the most cariogenic carbohydrate in the human diet, the question of how many exposures are needed to induce damage on the hard dental tissues remains unclear. To approach this question, different frequencies of daily sucrose exposure were tested on a relevant biological caries model. Materials and Methods: Biofilms of the Streptococcus mutans were formed on enamel slabs and exposed to cariogenic challenges with 10% sucrose for 5 min at 0, 1, 3, 5, 8, or 10 times per day. After 5 days, biofilms were retrieved to analyze biomass, protein content, viable bacteria, and polysaccharide formation. Enamel demineralization was evaluated by percentage of microhardness loss (percentage surface hardness loss [%SHL]). Results: Biomass, protein content, polysaccharide production, acidogenicity of the biofilm, and %SHL proportionally increased with the number of daily exposures to sucrose (P < 0.05). One daily sucrose exposure was enough to induce 20% more demineralization than the negative unexposed control. Higher frequencies induced greater demineralization and more virulent biofilms, but eight and ten exposures were not different between them in most of the analyzed variables (P > 0.05). Conclusions: Higher sucrose exposure seems to increase cariogenicity, in a frequency-dependent manner, by the modification of bacterial virulent properties. PMID:27403051

  17. The role of effectors and host immunity in plant–necrotrophic fungal interactions

    PubMed Central

    Wang, Xuli; Jiang, Nan; Liu, Jinling; Liu, Wende; Wang, Guo-Liang

    2014-01-01

    Fungal diseases pose constant threats to the global economy and food safety. As the largest group of plant fungal pathogens, necrotrophic fungi cause heavy crop losses worldwide. The molecular mechanisms of the interaction between necrotrophic fungi and plants are complex and involve sophisticated recognition and signaling networks. Here, we review recent findings on the roles of phytotoxin and proteinaceous effectors, pathogen-associated molecular patterns (PAMPs), and small RNAs from necrotrophic fungi. We also consider the functions of damage-associated molecular patterns (DAMPs), the receptor-like protein kinase BIK1, and epigenetic regulation in plant immunity to necrotrophic fungi. PMID:25513773

  18. Lovastatin synergizes with itraconazole against planktonic cells and biofilms of Candida albicans through the regulation on ergosterol biosynthesis pathway.

    PubMed

    Zhou, Yujie; Yang, Hong; Zhou, Xuedong; Luo, Hongke; Tang, Fan; Yang, Jin; Alterovitz, Gil; Cheng, Lei; Ren, Biao

    2018-06-01

    The increase of fungal infectious diseases and lack of safe and efficacious antifungal drugs result in the urgent need of new therapeutic strategies. Here, we repurposed the lovastatin (LOV) as a synergistic antifungal potentiator to itraconazole (ITZ) against Candida albicans planktonic cells and biofilms in vitro for the first time. Mutants from ergosterol biosynthesis pathway were employed and key gene expression profiles of ergosterol pathway were also measured. LOV single treatment was unable to inhibit C. albicans strains except the ERG3 and ERG11 double mutant. LOV and ITZ combination was capable of inhibiting the C. albicans planktonic cells and biofilms synergistically including the ITZ resistant mutants. The synergistic antifungal ability was stronger in either ERG11 or ERG3 dysfunctional mutants compared to wild type. The combination lost the synergistic activities in the ERG11 and ERG3 double mutant, while it was sensitive to LOV single treatment. The expression of HMG1, encoding HMG-CoA the target of LOV, was significantly upregulated in ERG11 and ERG3 double mutant strain by the treatment of the combination at 1.5 and 3 h. The combination also significantly increased the HMG1 expression in mutants from ergosterol pathway compared with wild type. The ERG11 and ERG3 gene expressions were upregulated by ITZ and its combination with LOV, but seemingly not by LOV single treatment after 1.5 and 3 h. The combination of LOV and ITZ on C. albicans planktonic cells and biofilms highlights its potential clinical practice especially against the azole drug-resistant mutants.

  19. Dissection of the cis-2-decenoic acid signaling network in Pseudomonas aeruginosa using microarray technique

    PubMed Central

    Rahmani-Badi, Azadeh; Sepehr, Shayesteh; Fallahi, Hossein; Heidari-Keshel, Saeed

    2015-01-01

    Many bacterial pathogens use quorum-sensing (QS) signaling to regulate the expression of factors contributing to virulence and persistence. Bacteria produce signals of different chemical classes. The signal molecule, known as diffusible signal factor (DSF), is a cis-unsaturated fatty acid that was first described in the plant pathogen Xanthomonas campestris. Previous works have shown that human pathogen, Pseudomonas aeruginosa, also synthesizes a structurally related molecule, characterized as cis-2-decenoic acid (C10: Δ2, CDA) that induces biofilm dispersal by multiple types of bacteria. Furthermore, CDA has been shown to be involved in inter-kingdom signaling that modulates fungal behavior. Therefore, an understanding of its signaling mechanism could suggest strategies for interference, with consequences for disease control. To identify the components of CDA signaling pathway in this pathogen, a comparative transcritpome analysis was conducted, in the presence and absence of CDA. A protein-protein interaction (PPI) network for differentially expressed (DE) genes with known function was then constructed by STRING and Cytoscape. In addition, the effects of CDA in combination with antimicrobial agents on the biofilm surface area and bacteria viability were evaluated using fluorescence microscopy and digital image analysis. Microarray analysis identified 666 differentially expressed genes in the presence of CDA and gene ontology (GO) analysis revealed that in P. aeruginosa, CDA mediates dispersion of biofilms through signaling pathways, including enhanced motility, metabolic activity, virulence as well as persistence at different temperatures. PPI data suggested that a cluster of five genes (PA4978, PA4979, PA4980, PA4982, PA4983) is involved in the CDA synthesis and perception. Combined treatments using both CDA and antimicrobial agents showed that following exposure of the biofilms to CDA, remaining cells on the surface were easily removed and killed by antimicrobials. PMID:25972860

  20. Differential effects of plant ontogeny and damage type on phloem and foliage monoterpenes in jack pine (Pinus banksiana).

    PubMed

    Erbilgin, Nadir; Colgan, L Jessie

    2012-08-01

    Coniferous trees have both constitutive and inducible defences that deter or kill herbivores and pathogens. We investigated constitutive and induced monoterpene responses of jack pine (Pinus banksiana Lamb.) to a number of damage types: a fungal associate of the mountain pine beetle (Dendroctonus ponderosae Hopkins), Grosmannia clavigera (Robinson-Jeffrey & R.W. Davidson); two phytohormones, methyl jasmonate (MJ) and methyl salicylate (MS); simulated herbivory; and mechanical wounding. We only included the fungal, MJ and mechanical wounding treatments in the field experiments while all treatments were part of the greenhouse studies. We focused on both constitutive and induced responses between juvenile and mature jack pine trees and differences in defences between phloem and needles. We found that phytohormone applications and fungal inoculation resulted in the greatest increase in monoterpenes in both juvenile and mature trees. Additionally, damage types differentially affected the proportions of individual monoterpenes: MJ-treated mature trees had higher myrcene and β-pinene than fungal-inoculated mature trees, while needles of juveniles inoculated with the fungus contained higher limonene than MJ- or MS-treated juveniles. Although the constitutive monoterpenes were higher in the phloem of juveniles than mature jack pine trees, the phloem of mature trees had a much higher magnitude of induction. Further, induced monoterpene concentrations in juveniles were higher in phloem than in needles. There was no difference in monoterpene concentration between phytohormone applications and G. clavigera inoculation in mature trees, while in juvenile trees MJ was different from both G. clavigera and simulated herbivory in needle monoterpenes, but there was no difference between phytohormone applications and simulated herbivory in the phloem.

  1. Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens

    PubMed Central

    2014-01-01

    Background Biosurfactants (BS) are amphiphilic compounds produced by microbes, either on the cell surface or secreted extracellularly. BS exhibit strong antimicrobial and anti-adhesive properties, making them good candidates for applications used to combat infections. In this study, our goal was to assess the in vitro antimicrobial, anti-adhesive and anti-biofilm abilities of BS produced by Lactobacillus jensenii and Lactobacillus rhamnosus against clinical Multidrug Resistant (MDR) strains of Acinetobacter baumannii, Escherichia coli, and Staphylococcus aureus (MRSA). Cell-bound BS from both L. jensenii and L. rhamnosus were extracted and isolated. The surface activities of crude BS samples were evaluated using an oil spreading assay. The antimicrobial, anti-adhesive and anti-biofilm activities of both BS against the above mentioned MDR pathogens were determined. Results Surface activities for both BS ranged from 6.25 to 25 mg/ml with clear zones observed between 7 and 11 cm. BS of both L. jensenii and L. rhamnosus showed antimicrobial activities against A. baumannii, E. coli and S. aureus at 25-50 mg/ml. Anti-adhesive and anti-biofilm activities were also observed for the aforementioned pathogens between 25 and 50 mg/ml. Finally, analysis by electron microscope indicated that the BS caused membrane damage for A. baumannii and pronounced cell wall damage in S. aureus. Conclusion Our results indicate that BS isolated from two Lactobacilli strains has antibacterial properties against MDR strains of A. baumannii, E. coli and MRSA. Both BS also displayed anti-adhesive and anti-biofilm abilities against A. baumannii, E. coli and S. aureus. Together, these capabilities may open up possibilities for BS as an alternative therapeutic approach for the prevention and/or treatment of hospital-acquired infections. PMID:25124936

  2. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities

    NASA Astrophysics Data System (ADS)

    Hahn, C.; Hans, M.; Hein, C.; Mancinelli, R. L.; Mücklich, F.; Wirth, R.; Rettberg, P.; Hellweg, C. E.; Moeller, R.

    2017-12-01

    Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of antimicrobial activity.

  3. Chemotaxis in P. Aeruginosa Biofilm Formation

    NASA Astrophysics Data System (ADS)

    Bienvenu, Samuel; Strain, Shinji; Thatcher, Travis; Gordon, Vernita

    2010-10-01

    Pseudomonas biofilms form infections in the lungs of Cystic Fibrosis (CF) patients that damage lung tissue and lead to death. Previous work shows chemotaxis is important for Pseudomonas in CF lungs. The work studied swimming bacteria at high concentrations. In contrast, medically relevant biofilms initiate from sparse populations of surface-bound bacteria. The recent development of software techniques for automated, high-throughput bacteria tracking leaves us well-poised to quantitatively study these chemotactic conditions. We will develop experimental systems for such studies, focusing on L-Arginine (an amino acid), D-Galactose (a sugar present in lungs), and succinate and glucose (carbon sources for bacteria). This suite of chemoattractants will allow us to study how chemoattractant characteristics--size and diffusion behavior--change bacterial response; the interaction of competing chemoattractants; and, differences in bacterial behaviors, like motility modes, in response to different types of chemoattractions and varying neighbor cell density.

  4. Evaluation of fungal growth on cellulose-containing and inorganic ceiling tile.

    PubMed

    Karunasena, E; Markham, N; Brasel, T; Cooley, J D; Straus, D C

    2001-01-01

    Buildings with poor indoor air quality (IAQ) frequently have many areas with surface fungal contamination. Studies have demonstrated that certain fungal genera (e.g., Cladosporium, Penicillium, and Stachybotrys) are able to grow on building materials such as wallpaper, drywall, and ceiling tiles, particularly after water damage has occurred. Due to the increasing awareness of sick building syndrome (SBS), it has become essential to identify building materials that prevent the interior growth of fungi. The objective of this study was to identify building materials that would not support the growth of certain fungal genera, regardless of whether an external food source was made available. The growth of three fungal genera (Cladosporium, Penicillium, and Stachybotrys) was evaluated on cellulose-containing ceiling tile (CCT) and inorganic ceiling tile (ICT). Both types of ceiling tile were exposed to environmental conditions which can occur inside a building. Our results show that ICT did not support the growth of these three fungal genera while CCT did. Our data demonstrate that ICT could serve as an ideal replacement for CCT.

  5. Conophthorin from almond host plant and fungal spores and its ecological relation to navel orangeworm: a natural products chemist's perspective

    USDA-ARS?s Scientific Manuscript database

    The navel orangeworm (Amyelois transitella) is a major insect pest that brings about significant monetary damage to California tree nuts – almonds, pistachios, and walnuts. During their development, larvae of navel orangeworm feed upon the meat of these nuts causing physical damage and ultimately lo...

  6. Nonsteroidal Anti-inflammatory Drugs (NSAIDS) Inhibit the Growth and Reproduction of Chaetomium globosum and Other Fungi Associated with Water-Damaged Buildings.

    PubMed

    Dalmont, Kelsey; Biles, Charles L; Konsure, Heather; Dahal, Sujita; Rowsey, Tyler; Broge, Matthew; Poudyal, Shubhra; Gurung, Tara; Shrestha, Sabina; Biles, Caleb L; Cluck, Terry; Howard, Alisha

    2017-12-01

    Indoor mold due to water damage causes serious human respiratory disorders, and the remediation to homes, schools, and businesses is a major expense. Prevention of mold infestation of building materials would reduce health problems and building remediation costs. Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit yeasts and a limited number of filamentous fungi. The purpose of this research was to determine the possible inhibitory activity of nonsteroidal anti-inflammatory drugs (NSAIDs) on germination, fungal growth, and reproduction of Chaetomium globosum and other important filamentous fungi that occur in water-damaged buildings. Several NSAIDs were found to inhibit C. globosum germination, growth, and reproduction. The most effective NSAIDs inhibiting C. globosum were ibuprofen, diflunisal, and diclofenac. Fusarium oxysporum, Fusarium solani, Aspergillus niger, and Stachybotrys atra were also tested on the various media with similar results obtained. However, F. oxysporum and A. niger exhibited a higher level of resistance to aspirin and NaSAL when compared to the C. globosum isolates. The inhibition exhibited by NSAIDs was variable depending on growth media and stage of fungal development. These compounds have a great potential of inhibiting fungal growth on building materials such as gypsum board. Formulations of sprays or building materials with NSAID-like chemical treatments may hold promise in reducing mold in homes and buildings.

  7. 7 CFR 51.2 - Terms defined.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... resulting from improper handling after packing; progressive pathological, physiological, and virus diseases, including fungal and bacterial roots; and freezing damage which may occur in transit or storage; or any...

  8. RNA repair: an antidote to cytotoxic eukaryal RNA damage.

    PubMed

    Nandakumar, Jayakrishnan; Schwer, Beate; Schaffrath, Raffael; Shuman, Stewart

    2008-07-25

    RNA healing and sealing enzymes drive informational and stress response pathways entailing repair of programmed 2',3' cyclic PO(4)/5'-OH breaks. Fungal, plant, and phage tRNA ligases use different strategies to discriminate the purposefully broken ends of the anticodon loop. Whereas phage ligase recognizes the tRNA fold, yeast and plant ligases do not and are instead hardwired to seal only the tRNA 3'-OH, 2'-PO(4) ends formed by healing of a cyclic phosphate. tRNA anticodon damage inflicted by secreted ribotoxins such as fungal gamma-toxin underlies a rudimentary innate immune system. Yeast cells are susceptible to gamma-toxin because the sealing domain of yeast tRNA ligase is unable to rectify a break at the modified wobble base of tRNA(Glu(UUC)). Plant andphage tRNA repair enzymes protect yeast from gamma-toxin because they are able to reverse the damage. Our studies underscore how a ribotoxin exploits an Achilles' heel in the target cell's tRNA repair system.

  9. Randomized study of minocycline and edetic acid as a locking solution for central line (port-a-cath) in children with cancer.

    PubMed

    Ferreira Chacon, Julieta Maria; Hato de Almeida, Emília; de Lourdes Simões, Regina; Lazzarin C Ozório, Viviane; Alves, Benaia Cândida; Mello de Andréa, Maria Lydia; Santiago Biernat, Marcela; Biernat, João Carlos

    2011-01-01

    Contamination of central catheters is frequent, and biofilm perpetuates infections. Heparin does not protect against infections because it has no antibiotic action. Minocycline and edetic acid (M-EDTA), a potent calcium chelating agent that destroys bacterial and fungal cell membrane and disrupts biofilm, may be an alternative to allow the associated antibiotic to act locally at a high and safe concentration. Fifty children with cancer and a port-a-cath were followed up: 26 received heparin (group 1) and 24 M-EDTA (group 2). A total of 762 serial prospective blood cultures were obtained, 387 from group 1 and 375 from group 2. In group 1 (heparin), 19 blood cultures were positive, and infection incidence was 73.1% (19/26 ports). In group 2 (M-EDTA), 5 blood cultures were positive, and the incidence rate was 20.8% (5/24 ports). M-EDTA, compared with heparin, prevents and treats catheter infections, and is a promising alternative to decrease sepsis during chemotherapy. Copyright © 2011 S. Karger AG, Basel.

  10. Antimicrobial Effects of Antipyretics.

    PubMed

    Zimmermann, Petra; Curtis, Nigel

    2017-04-01

    Antipyretics are some of the most commonly used drugs. Since they are often coadministered with antimicrobial therapy, it is important to understand the interactions between these two classes of drugs. Our review is the first to summarize the antimicrobial effects of antipyretic drugs and the underlying mechanisms involved. Antipyretics can inhibit virus replication, inhibit or promote bacterial or fungal growth, alter the expression of virulence factors, change the surface hydrophobicity of microbes, influence biofilm production, affect the motility, adherence, and metabolism of pathogens, interact with the transport and release of antibiotics by leukocytes, modify the susceptibility of bacteria to antibiotics, and induce or reduce the frequency of mutations leading to antimicrobial resistance. While antipyretics may compromise the efficacy of antimicrobial therapy, they can also be beneficial, for example, in the management of biofilm-associated infections, in reducing virulence factors, in therapy of resistant pathogens, and in inducing synergistic effects. In an era where it is becoming increasingly difficult to find new antimicrobial drugs, targeting virulence factors, enhancing the efficacy of antimicrobial therapy, and reducing resistance may be important strategies. Copyright © 2017 American Society for Microbiology.

  11. Antifungal Effects of Saponin Extract from Rhizomes of Dioscorea panthaica Prain et Burk against Candida albicans

    PubMed Central

    Zhuang, Xinming; Feng, Xuechao

    2018-01-01

    Candida albicans is the most common fungal pathogen causing serious diseases, while there are only a paucity of antifungal drugs. Therefore, the present study was performed to investigate the antifungal effects of saponin extract from rhizomes of Dioscorea panthaica Prain et Burk (Huangshanyao Saponin extract, HSE) against C. albicans. HSE inhibits the planktonic growth and biofilm formation and development of C. albicans. 16–64 μg/mL of HSE could inhibit adhesion to polystyrene surfaces, transition from yeast to filamentous growth, and production of secreted phospholipase and could also induce endogenous reactive oxygen species (ROS) production and disrupt cell membrane in planktonic cells. Inhibitory activities against extracellular exopolysaccharide (EPS) production and ROS production in preformed biofilms could be inhibited by 64–256 μg/mL of HSE. Cytotoxicity against human Chang's liver cells is low, with a half maximal inhibitory concentration (IC50) of about 256 μg/mL. In sum, our study suggested that HSE might be used as a potential antifungal therapeutic against C. albicans. PMID:29853962

  12. Biofilm and Planktonic Bacterial and Fungal Communities Transforming High-Molecular-Weight Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Folwell, Benjamin D.

    2016-01-01

    High-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs) are natural components of fossil fuels that are carcinogenic and persistent in the environment, particularly in oil sands process-affected water (OSPW). Their hydrophobicity and tendency to adsorb to organic matter result in low bioavailability and high recalcitrance to degradation. Despite the importance of microbes for environmental remediation, little is known about those involved in HMW-PAH transformations. Here, we investigated the transformation of HMW-PAHs using samples of OSPW and compared the bacterial and fungal community compositions attached to hydrophobic filters and in suspension. It was anticipated that the hydrophobic filters with sorbed HMW-PAHs would select for microbes that specialize in adhesion. Over 33 days, more pyrene was removed (75% ± 11.7%) than the five-ring PAHs benzo[a]pyrene (44% ± 13.6%) and benzo[b]fluoranthene (41% ± 12.6%). For both bacteria and fungi, the addition of PAHs led to a shift in community composition, but thereafter the major factor determining the fungal community composition was whether it was in the planktonic phase or attached to filters. In contrast, the major determinant of the bacterial community composition was the nature of the PAH serving as the carbon source. The main bacteria enriched by HMW-PAHs were Pseudomonas, Bacillus, and Microbacterium species. This report demonstrates that OSPW harbors microbial communities with the capacity to transform HMW-PAHs. Furthermore, the provision of suitable surfaces that encourage PAH sorption and microbial adhesion select for different fungal and bacterial species with the potential for HMW-PAH degradation. PMID:26850299

  13. Gum arabic capped-silver nanoparticles inhibit biofilm formation by multi-drug resistant strains of Pseudomonas aeruginosa.

    PubMed

    Ansari, Mohammad Azam; Khan, Haris Manzoor; Khan, Aijaz Ahmed; Cameotra, Swaranjit Singh; Saquib, Quaiser; Musarrat, Javed

    2014-07-01

    Clinical isolates (n = 55) of Pseudomonas aeruginosa were screened for the extended spectrum β-lactamases and metallo-β-lactamases activities and biofilm forming capability. The aim of the study was to demonstrate the antibiofilm efficacy of gum arabic capped-silver nanoparticles (GA-AgNPs) against the multi-drug resistant (MDR) biofilm forming P. aeruginosa. The GA-AgNPs were characterized by UV-spectroscopy, X-ray diffraction, and high resolution-transmission electron microscopy analysis. The isolates were screened for their biofilm forming ability, using the Congo red agar, tube method and tissue culture plate assays. The biofilm forming ability was further validated and its inhibition by GA-AgNPs was demonstrated by performing the scanning electron microscopy (SEM) and confocal laser scanning microscopy. SEM analysis of GA-AgNPs treated bacteria revealed severely deformed and damaged cells. Double fluorescent staining with propidium iodide and concanavalin A-fluorescein isothiocyanate concurrently detected the bacterial cells and exopolysaccharides (EPS) matrix. The CLSM results exhibited the GA-AgNPs concentration dependent inhibition of bacterial growth and EPS matrix of the biofilm colonizers on the surface of plastic catheters. Treatment of catheters with GA-AgNPs at 50 µg ml(-1) has resulted in 95% inhibition of bacterial colonization. This study elucidated the significance of GA-AgNPs, as the next generation antimicrobials, in protection against the biofilm mediated infections caused by MDR P. aeruginosa. It is suggested that application of GA-AgNPs, as a surface coating material for dispensing antibacterial attributes to surgical implants and implements, could be a viable approach for controlling MDR pathogens after adequate validations in clinical settings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A bioinspired approach to the generation of novel antimicrobial materials

    NASA Astrophysics Data System (ADS)

    Nowlin, Kyle S.

    Advancements in particle beam microscopy have allowed scientists to discover a wealth of surface architectures with nanoscale dimensions, many of which endow the surfaces with fascinating properties. Investigations of such surfaces have revealed some exciting physical phenomena, ranging from complex interactions with light such as brilliant iridescent colors resulting from diffraction and interference to water repelling self-cleaning superhydrophobic surfaces. Interestingly, the biological world, especially that of insects, has perhaps contributed the greatest number of these discoveries and will likely continue to do so as long as scientists entertain the idea that nature still has a vast collection of lessons to teach us. Examples of such phenomena include the structurally derived colors displayed by Chrysiridia rhipheus (Madagascan sunset moth), the anti-reflective and self-cleaning wings of Psaltoda claripennis (Clanger cicada), along with its more recent discovery of mechanically induced bactericidal activity. The implications of such a discovery are truly revolutionary as it is the first time that surface topography has been linked to microbial death. With this discovery a new defensive strategy against biofilm derived pathogenesis and related problems has arrived and must be further investigated for a more thorough understanding. It's a generally accepted notion that fungi much like bacteria can form complex protective biofilms and are undoubtedly a source of pathogenesis. For example C. albicans is the fourth most frequent organism found in the blood of hospitalized patients. While bacterial infections have been given much attention, less has been given to fungal biofilms though they are a major source of nosocomial infections attributed in part to adhesion to invasive devices such as catheters, cardiac pacemakers, prosthetic heart valves etc. S. cerevisiae, a generally non-pathogenic yeast, has been proposed as a model for fungal biofilm formation with similar behaviors but far more genetic tools available. In the present work I investigate the effects that the nano-structured wings of our local Dog Day cicada Tibicen tibicen have on adhered S. cerevisiae to assess for antifungal activity. Resembling that of the bactericidal activity, my study concludes antifungal activity of a cell rupturing mechanical nature attributed to the nano-topography of the Dog Day cicada wing. Following this discovery I utilize nano-sphere lithography (NSL) to fabricate analogous nanostructures as well as proportionally smaller and larger nanostructures in common synthetic polymers to be tested for translation of function. Studies with E. coli and S. cerevisiae reveal the overlooked but fundamentally important mechanical properties of nano-structures as they apply to mechanical microbicidal functionality. In addition to biocidal activity studies, I also demonstrate the remarkable anti-adhesive nature of a particular scale nano-patterned surface relative to flat surfaces of analogous chemistry.

  15. Anti-biofilm action of nitric oxide-releasing alkyl-modified poly(amidoamine) dendrimers against Streptococcus mutans.

    PubMed

    Backlund, Christopher J; Worley, Brittany V; Schoenfisch, Mark H

    2016-01-01

    The effect of nitric oxide (NO)-releasing dendrimer hydrophobicity on Streptococcus mutans killing and biofilm disruption was examined at pH 7.4 and 6.4, the latter relevant to dental caries. Generation 1 (G1) poly(amidoamine) (PAMAM) dendrimers were modified with alkyl epoxides to generate propyl-, butyl-, hexyl-, octyl-, and dodecyl-functionalized dendrimers. The resulting secondary amines were reacted with NO to form N-diazeniumdiolate NO donor-modified dendrimer scaffolds (total NO ∼1μmol/mg). The bactericidal action of the NO-releasing dendrimers against both planktonic and biofilm-based S. mutans proved greatest with increasing alkyl chain length and at lower pH. Improved bactericidal efficacy at pH 6.4 was attributed to increased scaffold surface charge that enhanced dendrimer-bacteria association and ensuing membrane damage. For shorter alkyl chain (i.e., propyl and butyl) dendrimer modifications, increased antibacterial action at pH 6.4 was due to faster NO-release kinetics from proton-labile N-diazeniumdiolate NO donors. Octyl- and dodecyl-modified PAMAM dendrimers proved most effective for eradicating S. mutans biofilms with NO release mitigating dendrimer scaffold cytotoxicity. We report the antibacterial and anti-biofilm efficacy of dual-action nitric oxide (NO)-releasing dendrimers against S. mutans, an etiological agent in dental caries. This work was undertaken to enhance the anti-biofilm action of these scaffolds by employing various alkyl chain modifications. Furthermore, we evaluated the ability of NO to eradicate cariogenic biofilms. We found that at the lower pH associated with dental caries (pH ∼6.4), NO has a more pronounced antibacterial effect for alkyl modifications less capable of biofilm penetration and membrane disruption. Of greatest significance, we introduce dendrimers as a new macromolecular antibacterial agent against the cariogenic bacteria S. mutans. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Population structure of Cercospora sojina collected from different soybean culitvars in Milan and Jackson Tennessee

    USDA-ARS?s Scientific Manuscript database

    Frogeye Leaf Spot (FLS) of soybean is caused by the fungal pathogen, Cercospora sojina Hara. FLS causes significant damage resulting in a yield loss of 4 to 6 Bu/Acre, mostly in the Southern U.S. Since its first report in South Carolina in 1924 it has caused significant damage resulting in a yield ...

  17. Semiochemicals to monitor insect pests – future opportunities for an effective host plant volatile blend to attract navel orangeworm in pistachio orchards

    USDA-ARS?s Scientific Manuscript database

    The navel orangeworm (Amyelois transitella) has been a major insect pest of California tree nut orchards for the past five decades. In particular, almond and pistachio orchards suffer major annual economic damage due to both physical and associated fungal damage caused by navel orangeworm larvae. Un...

  18. Design of Embedded-Hybrid Antimicrobial Peptides with Enhanced Cell Selectivity and Anti-Biofilm Activity

    PubMed Central

    Xu, Wei; Zhu, Xin; Tan, Tingting; Li, Weizhong; Shan, Anshan

    2014-01-01

    Antimicrobial peptides have attracted considerable attention because of their broad-spectrum antimicrobial activity and their low prognostic to induce antibiotic resistance which is the most common source of failure in bacterial infection treatment along with biofilms. The method to design hybrid peptide integrating different functional domains of peptides has many advantages. In this study, we designed an embedded-hybrid peptide R-FV-I16 by replacing a functional defective sequence RR7 with the anti-biofilm sequence FV7 embedded in the middle position of peptide RI16. The results demonstrated that the synthetic hybrid the peptide R-FV-I16 had potent antimicrobial activity over a wide range of Gram-negative and Gram-positive bacteria, as well as anti-biofilm activity. More importantly, R-FV-I16 showed lower hemolytic activity and cytotoxicity. Fluorescent assays demonstrated that R-FV-I16 depolarized the outer and the inner bacterial membranes, while scanning electron microscopy and transmission electron microscopy further indicated that this peptide killed bacterial cells by disrupting the cell membrane, thereby damaging membrane integrity. Results from SEM also provided evidence that R-FV-I16 inherited anti-biofilm activity from the functional peptide sequence FV7. Embedded-hybrid peptides could provide a new pattern for combining different functional domains and showing an effective avenue to screen for novel antimicrobial agents. PMID:24945359

  19. The defensive role of foliar endophytic fungi for a South American tree

    PubMed Central

    González-Teuber, Marcia

    2016-01-01

    Fungal endophytes colonize living internal plant tissues without causing any visible symptoms of disease. Endophytic fungi associated with healthy leaves may play an important role in the protection of hosts against herbivores and pathogens. In this study, the diversity of foliar endophytic fungi (FEF) of the southern temperate tree Embothrium coccineum (Proteaceae), as well as their role in plant protection in nature was determined. Fungal endophytes were isolated from 40 asymptomatic leaves by the culture method for molecular identification of the 18S rRNA gene. A relationship between FEF frequency and plant protection was evaluated in juveniles of E. coccineum. Fungal endophyte frequency was estimated using real-time PCR analyses to determine endophyte DNA content per plant. A total of 178 fungal isolates were identified, with sequence data revealing 34 different operational taxonomic units (OTUs). A few common taxa dominated the fungal endophyte community, whereas most taxa qualified as rare. A significant positive correlation between plant protection (evaluated in terms of percentage of leaf damage) and FEF frequency was found. Furthermore, in vitro confrontation assays indicated that FEF were able to inhibit the growth of fungal pathogens. The data showed a relatively high diversity of fungal endophytes associated with leaves of E. coccineum, and suggest a positive relationship between fungal endophyte frequencies in leaves and host protection in nature. PMID:27339046

  20. β-lapachone and α-nor-lapachone modulate Candida albicans viability and virulence factors.

    PubMed

    Moraes, D C; Curvelo, J A R; Anjos, C A; Moura, K C G; Pinto, M C F R; Portela, M B; Soares, R M A

    2018-03-26

    Candida albicans is the most important fungal pathogen that causes infections in humans, and the search for new therapeutic strategies for its treatment is essential. The aim of this study was to evaluate the activity of seven naphthoquinones (β-lapachone, β-nor-lapachone, bromide-β-lapachone, hydroxy-β-lapachone, α-lapachone, α-nor-lapachone and α-xyloidone) on the growth of a fluconazole-resistant C. albicans oral clinical isolate and the effects of these compounds on the viability of mammalian cells, on yeast's morphogenesis, biofilm formation and cell wall mannoproteins availability. All the compounds were able to completely inhibit the yeast growth. β-lapachone and α-nor-lapachone were the less cytotoxic compounds against L929 and RAW 264.7 cells. At IC 50 , β-lapachone inhibited morphogenesis in 92%, while the treatment of yeast cells with α-nor-lapachone decreased yeast-to-hyphae transition in 42%. At 50μg/ml, β-lapachone inhibited biofilm formation by 84%, whereas α-nor-lapachone reduced biofilm formation by 64%. The treatment of yeast cells with β-lapachone decreased cell wall mannoproteins availability in 28.5%, while α-nor-lapachone was not able to interfere on this virulence factor. Taken together, data show that β-lapachone and α-nor-lapachone exhibited in vitro cytotoxicity against a fluconazole-resistant C. albicans strain, thus demonstrating to be promising candidates to be used in the treatment of infections caused by this fungus. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Growth, biofilm formation, antifungal susceptibility and oxidative stress resistance of Candida glabrata are affected by different glucose concentrations.

    PubMed

    Ng, Tzu Shan; Desa, Mohd Nasir Mohd; Sandai, Doblin; Chong, Pei Pei; Than, Leslie Thian Lung

    2016-06-01

    Glucose is an important fuel source to support many living organisms. Its importance in the physiological fitness and pathogenicity of Candida glabrata, an emerging human fungal pathogen has not been extensively studied. The present study aimed to investigate the effects of glucose on the growth, biofilm formation, antifungal susceptibility and oxidative stress resistance of C. glabrata. In addition, its effect on the expression of a putative high affinity glucose sensor gene, SNF3 was also investigated. Glucose concentrations were found to exert effects on the physiological responses of C. glabrata. The growth rate of the species correlated positively to the amount of glucose. In addition, low glucose environments were found to induce C. glabrata to form biofilm and resist amphotericin B. Conversely, high glucose environments promoted oxidative stress resistance of C. glabrata. The expression of CgSNF3 was found to be significantly up-regulated in low glucose environments. The expression of SNF3 gene in clinical isolates was found to be higher compared to ATCC laboratory strains in low glucose concentrations, which may explain the better survivability of clinical isolates in the low glucose environment. These observations demonstrated the impact of glucose in directing the physiology and virulence fitness of C. glabrata through the possible modulation by SNF3 as a glucose sensor, which in turn aids the species to adapt, survive and thrive in hostile host environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Detection of human pathogenic Fusarium species in hospital and communal sink biofilms by using a highly specific monoclonal antibody.

    PubMed

    Al-Maqtoofi, Marwan; Thornton, Christopher R

    2016-11-01

    The fungus Fusarium is well known as a plant pathogen, but has recently emerged as an opportunistic pathogen of humans. Habitats providing direct human exposure to infectious propagules are largely unknown, but there is growing evidence that plumbing systems are sources of human pathogenic strains in the Fusarium solani species complex (FSSC) and Fusarium oxysporum species complex (FOSC), the most common groups infecting humans. Here, a newly developed Fusarium-specific monoclonal antibody (mAb ED7) was used to track FSSC and FOSC strains in sink drain biofilms by detecting its target antigen, an extracellular 200 kDa carbohydrate, in saline swabs. The antigen was detectable in 52% of swab samples collected from sinks across a University campus and a tertiary care hospital. The mAb was 100% accurate in detecting FSSC, FOSC, and F. dimerum species complex (FDSC) strains that were present, as mixed fungal communities, in 83% of sink drain biofilms. Specificity of the ELISA was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of culturable yeasts and molds that were recovered using mycological culture, while translation elongation factor (TEF)-1α analysis of Fusarium isolates included FSSC 1-a, FOSC 33, and FDSC ET-gr, the most common clinical pathotypes in each group. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Evaluating the combined efficacy of polymers with fungicides for protection of museum textiles against fungal deterioration in Egypt.

    PubMed

    Abdel-Kareem, Omar

    2010-01-01

    Fungal deterioration is one of the highest risk factors for damage of historical textile objects in Egypt. This paper represents both a study case about the fungal microflora deteriorating historical textiles in the Egyptian Museum and the Coptic museum in Cairo, and evaluation of the efficacy of several combinations of polymers with fungicides for the reinforcement of textiles and their prevention against fungal deterioration. Both cotton swab technique and biodeteriorated textile part technique were used for isolation of fungi from historical textile objects. The plate method with the manual key was used for identification of fungi. The results show that the most dominant fungi isolated from the tested textile samples belong to Alternaria, Aspergillus, Chaetomium, Penicillium and Trichoderma species. Microbiological testing was used for evaluating the usefulness of the suggested conservation materials (polymers combined with fungicides) in prevention of the fungal deterioration of ancient Egyptian textiles. Textile samples were treated with 4 selected polymers combined with two selected fungicides. Untreated and treated textile samples were deteriorated by 3 selected active fungal strains isolated from ancient Egyptian textiles. This study reports that most of the tested polymers combined with the tested fungicides prevented the fungal deterioration of textiles. Treatment of ancient textiles by suggested polymers combined with the suggested fungicides not only reinforces these textiles, but also prevents fungal deterioration and increases the durability of these textiles. The tested polymers without fungicides reduce the fungal deterioration of textiles but do not prevent it completely.

  4. 1,4-Naphthoquinone derivatives potently suppress Candida albicans growth, inhibit formation of hyphae and show no toxicity toward zebrafish embryos.

    PubMed

    Janeczko, Monika; Kubiński, Konrad; Martyna, Aleksandra; Muzyczka, Angelika; Boguszewska-Czubara, Anna; Czernik, Sławomir; Tokarska-Rodak, Małgorzata; Chwedczuk, Marta; Demchuk, Oleg M; Golczyk, Hieronim; Masłyk, Maciej

    2018-04-01

    In this study, we applied various assays to find new activities of 1,4-naphthoquinone derivatives for potential anti-Candida albicans applications. These assays determined (a) the antimicrobial effect on growth/cell multiplication in fungal cultures, (b) the effect on formation of hyphae and biofilm, (c) the influence on cell membrane integrity, (d) the effect on cell morphology using atomic force microscopy, and (e) toxicity against zebrafish embryos. We have demonstrated the activity of these compounds against different Candida species and clinical isolates of C. albicans. 1,4-Naphthoquinones significantly affected fungal strains at 8-250 mg l -1 of MIC. Interestingly, at concentrations below MICs, the chemicals showed effectiveness in inhibition of hyphal formation and cell aggregation in Candida. Of note, atomic force microscopy (AFM) analysis revealed an influence of the compounds on cell morphological properties. However, at low concentrations (0.8-31.2 mg l -1 ), it did not exert any evident toxic effects on zebrafish embryos. Our research has evidenced the effectiveness of 1,4-naphthoquinones as potential anti-Candida agents.

  5. Fungal flora of Egyptian baladi bread with special reference to the mutagenic effects of their toxic metabolites.

    PubMed

    Megalla, S E; Abdou, R F; Bagy, M M

    1985-01-01

    The fungal flora of wheat flour and baladi bread in upper Egypt were investigated. Most of the isolated fungal species belong to the genus Aspergillus. The presence of non heat resistant fungi of the both flat surfaces of baladi bread, came from contamination after baking and from improper handling at homes. Among the heat resistant fungi, A. fumigatus and A. niger, were recorded to inhabit the spongy crumb although the high temperature of baking process which reached approximately 100 degrees C in the center of the bread. The mutagenic effects of the fungal metabolites of the extract of mouldy Egypt were investigated. Most of the isolated fungal species all stages of mitotic division. The most interesting effect of these fungal metabolites were the induction of tripolar and quadripolar spindle. Multinucleate and polyploid cells were also observed under relatively high concentrations. It was noticed that at either higher concentrations or lower concentrations with long exposure, damaged cells were observed. The hazards involved through the consumption of individuals to such mouldy bread, is accumulation of possible deleterious effects from both long and short term exposure to these toxic metabolites.

  6. Molds in the Environment

    MedlinePlus

    ... visit this page: About CDC.gov . Mold Cleanup & Remediation Homeowner’s and Renter’s Guide to Mold Cleanup After ... Home or Building with Mold Damage Prevention and Remediation Strategies for the Control and Removal of Fungal ...

  7. Probing the cellular damage in bacteria induced by GaN nanoparticles using confocal laser Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sahoo, Prasana; Murthy, P. Sriyutha; Dhara, S.; Venugopalan, V. P.; Das, A.; Tyagi, A. K.

    2013-08-01

    Understanding the mechanism of nanoparticle (NP) induced toxicity in microbes is of potential importance to a variety of disciplines including disease diagnostics, biomedical implants, and environmental analysis. In this context, toxicity to bacterial cells and inhibition of biofilm formation by GaN NPs and their functional derivatives have been investigated against gram positive and gram negative bacterial species down to single cellular level. High levels of inhibition of biofilm formation (>80 %) was observed on treatments with GaN NPs at sub-micro molar concentrations. These results were substantiated with morphological features investigated with field emission scanning electron microscope, and the observed changes in vibrational modes of microbial cells using Raman spectroscopy. Raman spectra provided molecular interpretation of cell damage by registering signatures of molecular vibrations of individual living microbial cells and mapping the interplay of proteins at the cell membrane. As compared to the untreated cells, Raman spectra of NP-treated cells showed an increase in the intensities of characteristic protein bands, which confirmed membrane damage and subsequent release of cellular contents outside the cells. Raman spectral mapping at single cellular level can facilitate understanding of the mechanistic aspect of toxicity of GaN NPs. The effect may be correlated to passive diffusion causing mechanical damage to the membrane or ingress of Ga3+ (ionic radius 0.076 nm) which can potentially interfere with bacterial metabolism, as it resembles Fe2+ (ionic radius 0.077 nm), which is essential for energy metabolism.

  8. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis

    PubMed Central

    Scorzoni, Liliana; de Paula e Silva, Ana C. A.; Marcos, Caroline M.; Assato, Patrícia A.; de Melo, Wanessa C. M. A.; de Oliveira, Haroldo C.; Costa-Orlandi, Caroline B.; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2017-01-01

    The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the preliminary testing of new antifungal agents. In general, many years are required from discovery of a new antifungal to clinical use. However, the development of new antifungal strategies will reduce the therapeutic time and/or increase the quality of life of patients. PMID:28167935

  9. Towards a Scalable, Biomimetic, Antibacterial Coating

    NASA Astrophysics Data System (ADS)

    Dickson, Mary Nora

    Corneal afflictions are the second leading cause of blindness worldwide. When a corneal transplant is unavailable or contraindicated, an artificial cornea device is the only chance to save sight. Bacterial or fungal biofilm build up on artificial cornea devices can lead to serious complications including the need for systemic antibiotic treatment and even explantation. As a result, much emphasis has been placed on anti-adhesion chemical coatings and antibiotic leeching coatings. These methods are not long-lasting, and microorganisms can eventually circumvent these measures. Thus, I have developed a surface topographical antimicrobial coating. Various surface structures including rough surfaces, superhydrophobic surfaces, and the natural surfaces of insects' wings and sharks' skin are promising anti-biofilm candidates, however none meet the criteria necessary for implementation on the surface of an artificial cornea device. In this thesis I: 1) developed scalable fabrication protocols for a library of biomimetic nanostructure polymer surfaces 2) assessed the potential these for poly(methyl methacrylate) nanopillars to kill or prevent formation of biofilm by E. coli bacteria and species of Pseudomonas and Staphylococcus bacteria and improved upon a proposed mechanism for the rupture of Gram-negative bacterial cell walls 3) developed a scalable, commercially viable method for producing antibacterial nanopillars on a curved, PMMA artificial cornea device and 4) developed scalable fabrication protocols for implantation of antibacterial nanopatterned surfaces on the surfaces of thermoplastic polyurethane materials, commonly used in catheter tubings. This project constitutes a first step towards fabrication of the first entirely PMMA artificial cornea device. The major finding of this work is that by precisely controlling the topography of a polymer surface at the nano-scale, we can kill adherent bacteria and prevent biofilm formation of certain pathogenic bacteria, without the use of any chemical antibiotic agents. Such nanotopographic coatings can be applied to implantable polymer medical devices with scalable, commercializable processes, and may deter or delay biofilm formation, potentially improving patient outcomes. This thesis also opens the door for adaptation of antibacterial, nanopillared surfaces for other applications including other medical devices, marine applications and environmental surfaces.

  10. Isolation of Fungal Pathogens to an Edible Mushroom, Pleurotus eryngii, and Development of Specific ITS Primers

    PubMed Central

    Kim, Sang-Woo; Kim, Sinil; Lee, Hyun-Jun; Park, Ju-Wan

    2013-01-01

    Fungal pathogens have caused severe damage to the commercial production of Pleurotus eryngii, the king oyster mushroom, by reducing production yield, causing deterioration of commercial value, and shortening shelf-life. Four strains of pathogenic fungi, including Trichoderma koningiopsis DC3, Phomopsis sp. MP4, Mucor circinelloides MP5, and Cladosporium bruhnei MP6, were isolated from the bottle culture of diseased P. eryngii. A species-specific primer set was designed for each fungus from the ITS1-5.8S rDNA-ITS2 sequences. PCR using the ITS primer set yielded a unique DNA band for each fungus without any cross-reaction, proving the validity of our method in detection of mushroom fungal pathogens. PMID:24493949

  11. Fungal Microbiomes Associated with Green and Non-Green Building Materials

    PubMed Central

    Coombs, Kanistha; Vesper, Stephen; Green, Brett J.; Yermakov, Mikhail; Reponen, Tiina

    2018-01-01

    Water-damaged buildings can lead to fungal growth and occupant health problems. Green building materials, derived from renewable sources, are increasingly utilized in construction and renovations. However, the question as to what fungi will grow on these green compared to non-green materials, after they get wet, has not been adequately studied. By determining what fungi grow on each type of material, the potential health risks can be more adequately assessed. In this study, we inoculated green and non-green pieces of ceiling tile, composite board, drywall, and flooring with indoor dust containing a complex mixture of naturally occurring fungi. The materials were saturated with water and incubated for two months in a controlled environment. The resulting fungal microbiomes were evaluated using ITS amplicon sequencing. Overall, the richness and diversity of the mycobiomes on each pair of green and non-green pieces were not significantly different. However, different genera dominated on each type of material. For example, Aspergillus spp. had the highest relative abundance on green and non-green ceiling tiles and green composite boards, but Peniophora spp. dominated the non-green composite board. In contrast, Penicillium spp. dominated green and non-green flooring samples. Green gypsum board was dominated by Phialophora spp. and Stachybotrys spp., but non-green gypsum board by Myrothecium spp. These data suggest that water-damaged green and non-green building materials can result in mycobiomes that are dominated by fungal genera whose member species pose different potentials for health risks. PMID:29681691

  12. Fungal Microbiomes Associated with Green and Non-Green Building Materials.

    PubMed

    Coombs, Kanistha; Vesper, Stephen; Green, Brett J; Yermakov, Mikhail; Reponen, Tiina

    2017-01-01

    Water-damaged buildings can lead to fungal growth and occupant health problems. Green building materials, derived from renewable sources, are increasingly utilized in construction and renovations. However, the question as to what fungi will grow on these green compared to non-green materials, after they get wet, has not been adequately studied. By determining what fungi grow on each type of material, the potential health risks can be more adequately assessed. In this study, we inoculated green and non-green pieces of ceiling tile, composite board, drywall, and flooring with indoor dust containing a complex mixture of naturally occurring fungi. The materials were saturated with water and incubated for two months in a controlled environment. The resulting fungal microbiomes were evaluated using ITS amplicon sequencing. Overall, the richness and diversity of the mycobiomes on each pair of green and non-green pieces were not significantly different. However, different genera dominated on each type of material. For example, Aspergillus spp. had the highest relative abundance on green and non-green ceiling tiles and green composite boards, but Peniophora spp. dominated the non-green composite board. In contrast, Penicillium spp. dominated green and non-green flooring samples. Green gypsum board was dominated by Phialophora spp. and Stachybotrys spp., but non-green gypsum board by Myrothecium spp. These data suggest that water-damaged green and non-green building materials can result in mycobiomes that are dominated by fungal genera whose member species pose different potentials for health risks.

  13. Critical environmental and genotypic factors for Fusarium verticillioides infection, fungal growth and fumonisin contamination in maize grown in northwestern Spain.

    PubMed

    Cao, Ana; Santiago, Rogelio; Ramos, Antonio J; Souto, Xosé C; Aguín, Olga; Malvar, Rosa Ana; Butrón, Ana

    2014-05-02

    In northwestern Spain, where weather is rainy and mild throughout the year, Fusarium verticillioides is the most prevalent fungus in kernels and a significant risk of fumonisin contamination has been exposed. In this study, detailed information about environmental and maize genotypic factors affecting F. verticillioides infection, fungal growth and fumonisin content in maize kernels was obtained in order to establish control points to reduce fumonisin contamination. Evaluations were conducted in a total of 36 environments and factorial regression analyses were performed to determine the contribution of each factor to variability among environments, genotypes, and genotype × environment interactions for F. verticillioides infection, fungal growth and fumonisin content. Flowering and kernel drying were the most critical periods throughout the growing season for F. verticillioides infection and fumonisin contamination. Around flowering, wetter and cooler conditions limited F. verticillioides infection and growth, and high temperatures increased fumonisin contents. During kernel drying, increased damaged kernels favored fungal growth, and higher ear damage by corn borers and hard rainfall favored fumonisin accumulation. Later planting dates and especially earlier harvest dates reduced the risk of fumonisin contamination, possibly due to reduced incidence of insects and accumulation of rainfall during the kernel drying period. The use of maize varieties resistant to Sitotroga cerealella, with good husk coverage and non-excessive pericarp thickness could also be useful to reduce fumonisin contamination of maize kernels. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Porcine/Chicken or Human Nephropathy as the Result of Joint Mycotoxins Interaction

    PubMed Central

    Stoev, Stoycho D.; Denev, Stefan A.

    2013-01-01

    A survey was made of the literature concerning the occurrence and incidence of mycotoxic nephropathy in pigs and chicks in different countries. Various etiological factors contributing to the development of the disease were considered. The main nephrotoxic fungi as well as the specific conditions for their growth and toxins production were briefly described. A survey was made about the most frequent nephrotoxic fungal contaminants in various feedstuffs from plant origin. In addition, their natural quantities and importance for development of mycotoxic porcine/chick nephropathy (MPN/MCN) are also explored. In addition, a survey was made of the feedstuffs representing the most favorable environment for nephrotoxic fungal growth as well as the most favorable storehouse conditions for this fungal growth were shortly described. The significance of some underestimated fungal species, which can provoke kidney damage, was studied. The importance of joint mycotoxin interaction and newly identified fungal metabolites in the complex etiology of mycotoxic nephropathy ranged in some countries is deeply investigated. The toxicity of the low contamination levels of some combinations of mycotoxins often administered by pigs and chicks in the practice was carefully studied. PMID:24008340

  15. Conservation of Mannan Synthesis in Fungi of the Zygomycota and Ascomycota Reveals a Broad Diagnostic Target

    PubMed Central

    Hubbard, Breeana; Kvam, Alexander J.; Gates-Hollingsworth, Marcellene; Green, Heather R.; Soukup, Eric; Limper, Andrew H.; Kozel, Thomas R.

    2018-01-01

    ABSTRACT Ascomycetes and zygomycetes account for the majority of (i) fungi responsible for cutaneous, subcutaneous, and invasive human fungal infections, (ii) plant fungal pathogens, (iii) fungi that threaten global biodiversity, (iv) fungal agents of agricultural spoilage, and (v) fungi in water-damaged buildings. Rapid recognition of fungal infection (or contamination) enables early treatment (or remediation). A bioinformatics search found homologues of Saccharomyces cerevisiae Mnn9p present in members of the Zygomycota and Ascomycota phyla and absent in members of the Chytridiomycota and Basidiomycota. Mnn9p is a component of the yeast mannan polymerization complex and is necessary for α-1,6 mannan production. A monoclonal antibody (2DA6) was produced that was reactive with purified mannans of Mucor, Rhizopus, Aspergillus, Fusarium, and Candida species. Experimentation using a 2DA6 antigen capture enzyme-linked immunosorbent assay (ELISA) and extracts of fungi from the four phyla found agreement between the presence or absence of Mnn9p homologues and production or lack of production of mannan reactive with 2DA6. Studies of cell extracts from yeast mannan mutants identified α-1,6 mannan as the epitope recognized by 2DA6. To translate this finding into a point-of-use diagnostic, a 2DA6 lateral flow immunoassay was constructed that detected mannan in (i) extracts of dermatophytes and fungi that produce trauma-related infection and (ii) tissue from plants infected with Grosmannia clavigera or Sclerotium cepivorum. These studies (i) revealed that the conservation of α-1,6-linked mannan in fungi of the Zygomycota and Ascomycota can be exploited as a broad diagnostic target and (ii) have provided a means to detect that target in an immunoassay platform that is well suited for clinic or field use. IMPORTANCE A key question asked when faced with an infection, an infestation, or environmental damage is whether it is a fungus. Identification of fungi as the cause of the problem can lead to remediation or treatment. Zygomycetes and ascomycetes account for the vast majority of fungal causes of human, animal, and plant disease, large-scale biodiversity loss, agricultural spoilage, and contamination of water-damaged buildings. These studies revealed the conservation of a common cell wall structural component of zygomycetes and ascomycetes to be a diagnostic target applicable to multiple pathogenic fungi and have leveraged that insight for practical use. Monoclonal antibodies reactive with this pan-fungal structure were produced and used to construct immunoassays (including ELISA and lateral flow assay) for detection of a broad range of pathogenic fungi. PMID:29720523

  16. A microscopy method for scanning transmission electron microscopy imaging of the antibacterial activity of polymeric nanoparticles on a biofilm with an ionic liquid.

    PubMed

    Takahashi, Chisato; Muto, Shunsuke; Yamamoto, Hiromitsu

    2017-08-01

    In this study, we developed a scanning transmission electron microscopy (STEM) method for imaging the antibacterial activity of organic polymeric nanoparticles (NPs) toward biofilms formed by Staphylococcus epidermidis bacterial cells, for optimizing NPs to treat biofilm infections. The combination of sample preparation method using a hydrophilic ionic liquid (IL) and STEM observation using the cooling holder eliminates the need for specialized equipment and techniques for biological sample preparation. The annular dark-field STEM results indicated that the two types of biodegradable poly-(DL-lactide-co-glycolide) (PLGA) NPs: PLGA modified with chitosan (CS), and clarithromycin (CAM)-loaded + CS-modified PLGA, prepared by emulsion solvent diffusion exhibited different antibacterial activities in nanoscale. To confirm damage to the sample during STEM observation, we observed the PLGA NPs and the biofilm treated with PLGA NPs by both the conventional method and the newly developed method. The optimized method allows microstructure of the biofilm treated with PLGA NPs to be maintained for 25 min at a current flow of 40 pA. The developed simple sample preparation method would be helpful to understand the interaction of drugs with target materials. In addition, this technique could contribute to the visualization of other deformable composite materials at the nanoscale level. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1432-1437, 2017. © 2016 Wiley Periodicals, Inc.

  17. DEBS - a unification theory for dry eye and blepharitis.

    PubMed

    Rynerson, James M; Perry, Henry D

    2016-01-01

    For many years, blepharitis and dry eye disease have been thought to be two distinct diseases, and evaporative dry eye distinct from aqueous insufficiency. In this treatise, we propose a new way of looking at dry eye, both evaporative and insufficiency, as the natural sequelae of decades of chronic blepharitis. Dry eye is simply the late form and late manifestation of one disease, blepharitis. We suggest the use of a new term in describing this one chronic disease, namely dry eye blepharitis syndrome (DEBS). Bacteria colonize the lid margin within a structure known as a biofilm. The biofilm allows for population densities that initiate quorum-sensing gene activation. These newly activated gene products consist of inflammatory virulence factors, such as exotoxins, cytolytic toxins, and super-antigens, which are then present for the rest of the patient's life. The biofilm never goes away; it only thickens with age, producing increasing quantities of bacterial virulence factors, and thus, increasing inflammation. These virulence factors are likely the culprits that first cause follicular inflammation, then meibomian gland dysfunction, aqueous insufficiency, and finally, after many decades, lid destruction. We suggest that there are four stages of DEBS which correlate with the clinical manifestations of folliculitis, meibomitis, lacrimalitis, and finally lid structure damage evidenced by entropion, ectropion, and floppy eyelid syndrome. When one fully understands the structure and location of the glands within the lid, it becomes easy to understand this staged disease process. The longer a gland can resist the relentless encroachment of the invading biofilm, the longer it can maintain normal function. The stages depend purely on anatomy and years of biofilm presence. Dry eye now becomes a very easy disease to understand. We feel that dry eye should be treated and prevented by early and routine biofilm removal through electromechanical lid margin debridement.

  18. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities.

    PubMed

    Hahn, C; Hans, M; Hein, C; Mancinelli, R L; Mücklich, F; Wirth, R; Rettberg, P; Hellweg, C E; Moeller, R

    2017-12-01

    Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of antimicrobial activity. Key Words: Contact killing-E. coli-S. cohnii-Antimicrobial copper surfaces-Copper oxide layers-Human health-Planetary protection. Astrobiology 17, 1183-1191.

  19. Bacteria present in carotid arterial plaques are found as biofilm deposits which may contribute to enhanced risk of plaque rupture.

    PubMed

    Lanter, Bernard B; Sauer, Karin; Davies, David G

    2014-06-10

    Atherosclerosis, a disease condition resulting from the buildup of fatty plaque deposits within arterial walls, is the major underlying cause of ischemia (restriction of the blood), leading to obstruction of peripheral arteries, congestive heart failure, heart attack, and stroke in humans. Emerging research indicates that factors including inflammation and infection may play a key role in the progression of atherosclerosis. In the current work, atherosclerotic carotid artery explants from 15 patients were all shown to test positive for the presence of eubacterial 16S rRNA genes. Density gradient gel electrophoresis of 5 of these samples revealed that each contained 10 or more distinct 16S rRNA gene sequences. Direct microscopic observation of transverse sections from 5 diseased carotid arteries analyzed with a eubacterium-specific peptide nucleic acid probe revealed these to have formed biofilm deposits, with from 1 to 6 deposits per thin section of plaque analyzed. A majority, 93%, of deposits was located proximal to the internal elastic lamina and associated with fibrous tissue. In 6 of the 15 plaques analyzed, 16S rRNA genes from Pseudomonas spp. were detected. Pseudomonas aeruginosa biofilms have been shown in our lab to undergo a dispersion response when challenged with free iron in vitro. Iron is known to be released into the blood by transferrin following interaction with catecholamine hormones, such as norepinephrine. Experiments performed in vitro showed that addition of physiologically relevant levels of norepinephrine induced dispersion of P. aeruginosa biofilms when grown under low iron conditions in the presence but not in the absence of physiological levels of transferrin. The association of bacteria with atherosclerosis has been only superficially studied, with little attention focused on the potential of bacteria to form biofilms within arterial plaques. In the current work, we show that bacteria form biofilm deposits within carotid arterial plaques, and we demonstrate that one species we have identified in plaques can be stimulated in vitro to undergo a biofilm dispersion response when challenged with physiologically relevant levels of norepinephrine in the presence of transferrin. Biofilm dispersion is characterized by the release of bacterial enzymes into the surroundings of biofilm microcolonies, allowing bacteria to escape the biofilm matrix. We believe these enzymes may have the potential to damage surrounding tissues and facilitate plaque rupture if norepinephrine is able to stimulate biofilm dispersion in vivo. This research, therefore, suggests a potential mechanistic link between hormonal state and the potential for heart attack and stroke. Copyright © 2014 Lanter et al.

  20. Adaptation of the Black Yeast Wangiella dermatitidis to Ionizing Radiation: Molecular and Cellular Mechanisms

    DTIC Science & Technology

    2012-11-01

    laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing...damaged nuclear reactor at Chernobyl , which are constantly exposed to ionizing radiation, harbor large of amounts of microorganisms, including fungal...species [3,4]. Furthermore, Zhdanova et al. reported that beta and gamma radiation promoted directional growth of fungi isolated from the Chernobyl

  1. The effect of Zuccagnia punctata, an Argentine medicinal plant, on virulence factors from candida species.

    PubMed

    Gabriela, Nuño; Rosa, Alberto María; Catiana, Zampini Iris; Soledad, Cuello; Mabel, Ordoñez Roxana; Esteban, Sayago Jorge; Veronica, Baroni; Daniel, Wunderlin; Ines, Isla María

    2014-07-01

    Zuccagnia punctata Cav. has been used as a traditional medicine in Argentina for the treatment of bacterial and fungal infections. In this study, we evaluated the ability of Z. punctata extract (ZpE) and compounds isolated from it to inhibit the growth and virulence factors of Candida species. ZpE showed inhibitory activity against planktonic cells of all assayed Candida species with MIC values of 400 microg/mL and with MFC values between 400 and 1,200 microg/mL. The principal identified compounds by HPLC-MS/MS and UV-VIS were chalcones (2',4'-dihydroxy-3'-methoxychalcone, 2',4'- dihydroxychalcone), flavones (galangin, 3,7-dihydroxyflavone and chrysin) and flavanones (naringenin, 7-hydroxyflavanone and pinocembrine). These compounds were more effective as inhibitors than the extracts upon biofilm formation as well as on preformed Candida biofilm and yeast germ tube formation. Furthermore, ZpE and chalcones are able to inhibit exoenzymes, which are responsible for the invasion mechanisms of the pathogens. All these effects could moderate colonization, thereby suppressing the pathogen invasive potential. Our results indicate that ZpE and chalcones could be used in antifungal therapy.

  2. Mutualistic interaction between Salmonella enterica and Aspergillus niger and its effects on Zea mays colonization

    PubMed Central

    Balbontín, Roberto; Vlamakis, Hera; Kolter, Roberto

    2014-01-01

    Salmonella Typhimurium inhabits a variety of environments and is able to infect a broad range of hosts. Throughout its life cycle, some hosts can act as intermediates in the path to the infection of others. Aspergillus niger is a ubiquitous fungus that can often be found in soil or associated to plants and microbial consortia. Recently, S. Typhimurium was shown to establish biofilms on the hyphae of A. niger. In this work, we have found that this interaction is stable for weeks without a noticeable negative effect on either organism. Indeed, bacterial growth is promoted upon the establishment of the interaction. Moreover, bacterial biofilms protect the fungus from external insults such as the effects of the anti-fungal agent cycloheximide. Thus, the Salmonella–Aspergillus interaction can be defined as mutualistic. A tripartite gnotobiotic system involving the bacterium, the fungus and a plant revealed that co-colonization has a greater negative effect on plant growth than colonization by either organism in dividually. Strikingly, co-colonization also causes a reduction in plant invasion by S. Typhimurium. This work demonstrates that S. Typhimurium and A. niger establish a mutualistic interaction that alters bacterial colonization of plants and affects plant physiology. PMID:25351041

  3. Mycotoxin production by indoor molds.

    PubMed

    Fog Nielsen, Kristian

    2003-07-01

    Fungal growth in buildings starts at a water activity (a(w)) near 0.8, but significant quantities of mycotoxins are not produced unless a(w) reaches 0.95. Stachybotrys generates particularly high quantities of many chemically distinct metabolites in water-damaged buildings. These metabolites are carried by spores, and can be detected in air samples at high spore concentrations. Very little attention has been paid to major metabolites of Stachybotrys called spirocyclic drimanes, and the precise structures of the most abundant of these compounds are unknown. Species of Aspergillus and Penicillium prevalent in the indoor environment produce relatively low concentrations of mycotoxins, with the exception of sterigmatocystins that can represent up to 1% of the biomass of A. versicolor at a(w)'s close to 1. The worst-case scenario for homeowners is produced by consecutive episodes of water damage that promote fungal growth and mycotoxin synthesis, followed by drier conditions that facilitate the liberation of spores and hyphal fragments.

  4. Effect of Holarrhena antidysentrica (Ha) and Andrographis paniculata (Ap) on the biofilm formation and cell membrane integrity of opportunistic pathogen Salmonella typhimurium.

    PubMed

    Tanwar, Ankit; Chawla, Raman; Chakotiya, Ankita Singh; Thakur, Pallavi; Goel, Rajeev; Basu, Mitra; Arora, Rajesh; Khan, Haider Ali

    2016-12-01

    Increasing occurrence of gastroenteritis outbreaks caused by food borne opportunistic microorganisms has become a major problem in food industry as well as in immunocompromised host. Antimicrobial agents are losing their efficacy due to increase in the microbial resistance. For such reasons, conventional treatment has become limited to manage the infections state. Need of the hour is to instigate the search for safer holistic alternatives. The present study was hence conducted to assess the antibiofilm effect and mode of action of aquo alcoholic extracts of Holarrhena antidysentrica (Ha) and Andrographis paniculata (Ap) against the Salmonella enterica serovar typhimurium. Both the extracts were screened for the presence of phytocompounds followed by the characterization using Attenuated Total Reflection (ATR) infrared spectroscopy and bioactivity finger print analysis. Anti-biofilm assays were determined to test the potential of both extracts to inhibit the biofilm formation, while Propidium Iodide (PI) uptake analysis revealed that cell membrane was damaged by the exposure of nutraceuticals for 1 h. This study has demonstrated that both nutraceuticals have anti-biofilm and antimicrobial activity perturbing the membrane integrity of food-borne S. typhimurium and could be used as curative remedy to control the food borne microbial infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications.

    PubMed

    Kumar, Sachin; Raj, Shammy; Kolanthai, Elayaraja; Sood, A K; Sampath, S; Chatterjee, Kaushik

    2015-02-11

    Toward designing the next generation of resorbable biomaterials for orthopedic applications, we studied poly(ε-caprolactone) (PCL) composites containing graphene. The role, if any, of the functionalization of graphene on mechanical properties, stem cell response, and biofilm formation was systematically evaluated. PCL composites of graphene oxide (GO), reduced GO (RGO), and amine-functionalized GO (AGO) were prepared at different filler contents (1%, 3%, and 5%). Although the addition of the nanoparticles to PCL markedly increased the storage modulus, this increase was largest for GO followed by AGO and RGO. In vitro cell studies revealed that the AGO and GO particles significantly increased human mesenchymal stem cell proliferation. AGO was most effective in augmenting stem cell osteogenesis leading to mineralization. Bacterial studies revealed that interaction with functionalized GO induced bacterial cell death because of membrane damage, which was further accentuated by amine groups in AGO. As a result, AGO composites were best at inhibiting biofilm formation. The synergistic effect of oxygen containing functional groups and amine groups on AGO imparts the optimal combination of improved modulus, favorable stem cell response, and biofilm inhibition in AGO-reinforced composites desired for orthopedic applications. This work elucidates the importance of chemical functionalization of graphene in polymer composites for biomedical applications.

  6. Ultrasonic Enhancement of Antibiotic Action on Escherichia coli Biofilms: an In Vivo Model

    PubMed Central

    Rediske, Andrea M.; Roeder, Beverly L.; Brown, Maren K.; Nelson, Jared L.; Robison, Rachel L.; Draper, David O.; Schaalje, G. Bruce; Robison, Richard A.; Pitt, William G.

    1999-01-01

    Biofilm infections are a common complication of prosthetic devices in humans. Previous in vitro research has determined that low-frequency ultrasound combined with aminoglycoside antibiotics is an effective method of killing biofilms. We report the development of an in vivo model to determine if ultrasound enhances antibiotic action. Two 24-h-old Escherichia coli (ATCC 10798) biofilms grown on polyethylene disks were implanted subcutaneously on the backs of New Zealand White female rabbits, one on each side of the spine. Low-frequency (28.48-kHz) and low-power-density (100- and 300-mW/cm2) continuous ultrasound treatment was applied for 24 h with and without systemic administration of gentamicin. The disks were then removed, and the number of viable bacteria on each disk was determined. At the low ultrasonic power used in this study, exposure to ultrasound only (no gentamicin) caused no significant difference in bacterial viability. In the presence of antibiotic, there was a significant reduction due to 300-mW/cm2 ultrasound (P = 0.0485) but no significant reduction due to 100-mW/cm2 ultrasound. Tissue damage to the skin was noted at the 300-mW/cm2 treatment level. Further development of this technique has promise in treatment of clinical implant infections. PMID:10223938

  7. Ultrasonic enhancement of antibiotic action on Escherichia coli biofilms: an in vivo model.

    PubMed

    Rediske, A M; Roeder, B L; Brown, M K; Nelson, J L; Robison, R L; Draper, D O; Schaalje, G B; Robison, R A; Pitt, W G

    1999-05-01

    Biofilm infections are a common complication of prosthetic devices in humans. Previous in vitro research has determined that low-frequency ultrasound combined with aminoglycoside antibiotics is an effective method of killing biofilms. We report the development of an in vivo model to determine if ultrasound enhances antibiotic action. Two 24-h-old Escherichia coli (ATCC 10798) biofilms grown on polyethylene disks were implanted subcutaneously on the backs of New Zealand White female rabbits, one on each side of the spine. Low-frequency (28.48-kHz) and low-power-density (100- and 300-mW/cm2) continuous ultrasound treatment was applied for 24 h with and without systemic administration of gentamicin. The disks were then removed, and the number of viable bacteria on each disk was determined. At the low ultrasonic power used in this study, exposure to ultrasound only (no gentamicin) caused no significant difference in bacterial viability. In the presence of antibiotic, there was a significant reduction due to 300-mW/cm2 ultrasound (P = 0.0485) but no significant reduction due to 100-mW/cm2 ultrasound. Tissue damage to the skin was noted at the 300-mW/cm2 treatment level. Further development of this technique has promise in treatment of clinical implant infections.

  8. Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma.

    PubMed

    Maisch, Tim; Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G; Li, Yang-Fang; Morfill, Gregor; Zimmermann, Julia L

    2012-06-01

    Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damaging heat-sensitive materials. This so-called cold atmospheric plasma is produced by applying high voltage to accelerate electrons, which ionize the surrounding air, leading to the production of charged particles, reactive species, and photons. A newly developed plasma device was used, which exhibits a large plasma-generating surface area of 9 by 13 cm (117 cm(2)). Different time points were selected to achieve an optimum inactivation efficacy range of ≥3 log(10) to 5 log(10) reduction in CFU per milliliter, and the results were compared with those of 70% ethanol. The results obtained show that contact-free antifungal inactivation of Candida biofilms by cold atmospheric plasma is a promising tool for disinfection of surfaces (and items) in both health care settings and the food industry, where ethanol disinfection should be avoided.

  9. Contact-Free Inactivation of Candida albicans Biofilms by Cold Atmospheric Air Plasma

    PubMed Central

    Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G.; Li, Yang-Fang; Morfill, Gregor; Zimmermann, Julia L.

    2012-01-01

    Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damaging heat-sensitive materials. This so-called cold atmospheric plasma is produced by applying high voltage to accelerate electrons, which ionize the surrounding air, leading to the production of charged particles, reactive species, and photons. A newly developed plasma device was used, which exhibits a large plasma-generating surface area of 9 by 13 cm (117 cm2). Different time points were selected to achieve an optimum inactivation efficacy range of ≥3 log10 to 5 log10 reduction in CFU per milliliter, and the results were compared with those of 70% ethanol. The results obtained show that contact-free antifungal inactivation of Candida biofilms by cold atmospheric plasma is a promising tool for disinfection of surfaces (and items) in both health care settings and the food industry, where ethanol disinfection should be avoided. PMID:22467505

  10. Mast Cell Activation Protects Cornea by Promoting Neutrophil Infiltration via Stimulating ICAM-1 and Vascular Dilation in Fungal Keratitis.

    PubMed

    Xie, Yanting; Zhang, Hongmin; Liu, Susu; Chen, Guoming; He, Siyu; Li, Zhijie; Wang, Liya

    2018-05-30

    The role of mast cells (MCs) in fungal infection is largely unknown. This study was to explore a protective role and mechanism of MCs in fungal keratitis. Experimental fungal keratitis (FK) mouse model was developed. Mice untreated (UT) or receiving corneal wound without fungal infection (Mock) were used as controls. Large number of connective tissue MCs was found in normal mice. MC activation with degranulation was largely observed, and the percentage of degranulated/total cells was high in FK. Dilated limbal vasculature with increased permeability, as well as largely infiltrated neutrophils with stimulated ICAM-1 protein levels were observed in corneas of FK mice, when compared with Mock and UT mice. Interestingly, pretreatment with cromolyn sodium (Block) significantly blocked MC degranulation, dramatically suppressed vascular dilation and permeability, and markedly reduced neutrophil infiltration with lower ICAM-1 levels in FK mice at 6-24 hours. Furthermore, the Block mice manifested prolonged disease course, increased pathological damage, and vigorous fungus growth, with much higher corneal perforation rate than FK mice at 72 h. These findings reveal a novel phenomenon that MCs play a vital role in protecting cornea against fungal infection through degranulation that promotes neutrophil infiltration via stimulating ICAM-1 production and limbal vascular dilation and permeability.

  11. Hypoxia enhances innate immune activation to Aspergillus fumigates through cell wall modulation

    PubMed Central

    Shepardson, Kelly M.; Ngo, Lisa Y.; Aimanianda, Vishukumar; Latge, Jean-Paul; Barker, Bridget M.; Blosser, Sara J.; Iwakura, Yoichiro; Hohl, Tobias M.; Cramer, Robert A.

    2013-01-01

    Infection by the human fungal pathogen Aspergillus fumigatus induces hypoxic microenvironments within the lung that can alter the course of fungal pathogenesis. How hypoxic microenvironments shape the composition and immune activating potential of the fungal cell wall remains undefined. Herein we demonstrate that hypoxic conditions increase the hyphal cell wall thickness and alter its composition particularly by augmenting total and surface-exposed β-glucan content. In addition, hypoxia-induced cell wall alterations increase macrophage and neutrophil responsiveness and antifungal activity as judged by inflammatory cytokine production and ability to induce hyphal damage. We observe that these effects are largely dependent on the mammalian β-glucan receptor dectin-1. In a corticosteroid model of invasive pulmonary aspergillosis, A. fumigatus β-glucan exposure correlates with the presence of hypoxia in situ. Our data suggest that hypoxia-induced fungal cell wall changes influence the activation of innate effector cells at sites of hyphal tissue invasion, which has potential implications for therapeutic outcomes of invasive pulmonary aspergillosis. PMID:23220005

  12. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines.

    PubMed

    Chen, Annie I; Dolben, Emily F; Okegbe, Chinweike; Harty, Colleen E; Golub, Yuriy; Thao, Sandy; Ha, Dae Gon; Willger, Sven D; O'Toole, George A; Harwood, Caroline S; Dietrich, Lars E P; Hogan, Deborah A

    2014-10-01

    In chronic infections, pathogens are often in the presence of other microbial species. For example, Pseudomonas aeruginosa is a common and detrimental lung pathogen in individuals with cystic fibrosis (CF) and co-infections with Candida albicans are common. Here, we show that P. aeruginosa biofilm formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic-di-GMP (c-di-GMP), and levels of c-di-GMP were 2-fold higher in the presence of ethanol. Through a genetic screen, we found that the diguanylate cyclase WspR was required for ethanol stimulation of c-di-GMP. Multiple lines of evidence indicate that ethanol stimulates WspR signaling through its cognate sensor WspA, and promotes WspR-dependent activation of Pel exopolysaccharide production, which contributes to biofilm maturation. We also found that ethanol stimulation of WspR promoted P. aeruginosa colonization of CF airway epithelial cells. P. aeruginosa production of phenazines occurs both in the CF lung and in culture, and phenazines enhance ethanol production by C. albicans. Using a C. albicans adh1/adh1 mutant with decreased ethanol production, we found that fungal ethanol strongly altered the spectrum of P. aeruginosa phenazines in favor of those that are most effective against fungi. Thus, a feedback cycle comprised of ethanol and phenazines drives this polymicrobial interaction, and these relationships may provide insight into why co-infection with both P. aeruginosa and C. albicans has been associated with worse outcomes in cystic fibrosis.

  13. Global Transcriptome Changes Underlying Colony Growth in the Opportunistic Human Pathogen Aspergillus fumigatus

    PubMed Central

    Gibbons, John G.; Beauvais, Anne; Beau, Remi; McGary, Kriston L.

    2012-01-01

    Aspergillus fumigatus is the most common and deadly pulmonary fungal infection worldwide. In the lung, the fungus usually forms a dense colony of filaments embedded in a polymeric extracellular matrix. To identify candidate genes involved in this biofilm (BF) growth, we used RNA-Seq to compare the transcriptomes of BF and liquid plankton (PL) growth. Sequencing and mapping of tens of millions sequence reads against the A. fumigatus transcriptome identified 3,728 differentially regulated genes in the two conditions. Although many of these genes, including the ones coding for transcription factors, stress response, the ribosome, and the translation machinery, likely reflect the different growth demands in the two conditions, our experiment also identified hundreds of candidate genes for the observed differences in morphology and pathobiology between BF and PL. We found an overrepresentation of upregulated genes in transport, secondary metabolism, and cell wall and surface functions. Furthermore, upregulated genes showed significant spatial structure across the A. fumigatus genome; they were more likely to occur in subtelomeric regions and colocalized in 27 genomic neighborhoods, many of which overlapped with known or candidate secondary metabolism gene clusters. We also identified 1,164 genes that were downregulated. This gene set was not spatially structured across the genome and was overrepresented in genes participating in primary metabolic functions, including carbon and amino acid metabolism. These results add valuable insight into the genetics of biofilm formation in A. fumigatus and other filamentous fungi and identify many relevant, in the context of biofilm biology, candidate genes for downstream functional experiments. PMID:21724936

  14. Patients with Long-Term Oral Carriage Harbor High-Persister Mutants of Candida albicans▿

    PubMed Central

    LaFleur, Michael D.; Qi, Qingguo; Lewis, Kim

    2010-01-01

    Fungal biofilms produce a small number of persister cells which can tolerate high concentrations of fungicidal agents. Persisters form upon attachment to a surface, an important step in the pathogenesis of Candida strains. The periodic application of antimicrobial agents may select for strains with increased levels of persister cells. In order to test this possibility, 150 isolates of Candida albicans and C. glabrata were obtained from cancer patients who were at high risk for the development of oral candidiasis and who had been treated with topical chlorhexidine once a day. Persister levels were measured by exposing biofilms growing in the wells of microtiter plates to high concentrations of amphotericin B and plating for survivors. The persister levels of the isolates varied from 0.2 to 9%, and strains isolated from patients with long-term carriage had high levels of persisters. High-persister strains were isolated from every patient with Candida carriage of more than 8 consecutive weeks but from no patients with transient carriage. All of the high-persister isolates had an amphotericin B MIC that was the same as that for the wild type, indicating that these strains were drug-tolerant rather than drug-resistant mutants. Biofilms of the majority of high-persister strains also showed an increased tolerance to chlorhexidine and had the same MIC for this antimicrobial as the wild type. This study suggests that persister cells are clinically relevant, and antimicrobial therapy selects for high-persister strains in vivo. The drug tolerance of persisters may be a critical but overlooked component responsible for antimicrobial drug failure and relapsing infections. PMID:19841146

  15. Miltefosine has post-antifungal effect and induces apoptosis in Cryptococcus yeasts.

    PubMed

    Spadari, Cristina de Castro; Vila, Taissa; Rozental, Sonia; Ishida, Kelly

    2018-05-29

    Cryptococcus spp. are common opportunistic fungal pathogens, particularly in HIV patients. The approved drug miltefosine (MFS) has potential as an alternative antifungal against cryptococcosis; however, the mechanism of action of MFS in Cryptococcus is poorly understood. Here, we examined the effects of MFS on C. neoformans and C. gattii yeasts (planktonic and biofilm lifestyles), to clarify its mechanism of action. MFS presented inhibitory and fungicidal effects against planktonic Cryptococcus cells, with similar activity against dispersion biofilm cells, while sessile biofilm cells were less sensitive to MFS. Interestingly, MFS had post-antifungal effect on Cryptococcus , with a proliferation delay of up to 8.15 h after short exposure to fungicidal doses. MFS at fungicidal concentrations increased plasma membrane permeability, likely due to direct interaction with ergosterol, as suggested by competition assays with exogenous ergosterol. Moreover, MFS reduced the mitochondrial membrane potential, increased ROS production, and induced DNA fragmentation and condensation, all of which are hallmarks of apoptosis. Transmission electron microscopy analysis showed that MFS-treated yeasts had a reduced mucopolysaccharide capsule (confirmed by morphometry in light microscopy), plasma membrane irregularities, mitochondrial swelling and a less conspicuous cell wall. Our results suggest that MFS increases plasma membrane permeability in Cryptococcus via interaction with ergosterol, and also affects the mitochondrial membrane, eventually leading to apoptosis, in line with its fungicidal activity. These findings confirm the potential of MFS as an antifungal against C. neoformans and C. gattii, and warrants further studies to establish clinical protocols for MFS use against cryptococcosis. Copyright © 2018 American Society for Microbiology.

  16. Fungal histidine phosphotransferase plays a crucial role in photomorphogenesis and pathogenesis in Magnaporthe oryzae

    NASA Astrophysics Data System (ADS)

    Mohanan, Varsha C.; Chandarana, Pinal M.; Chattoo, Bharat. B.; Patkar, Rajesh N.; Manjrekar, Johannes

    2017-05-01

    Two-component signal transduction (TCST) pathways play crucial roles in many cellular functions such as stress responses, biofilm formation and sporulation. The histidine phosphotransferase (HPt), which is an intermediate phosphotransfer protein in a two-component system, transfers a phosphate group to a phosphorylatable aspartate residue in the target protein(s), and up-regulates stress-activated MAP kinase cascades. Most fungal genomes carry a single copy of the gene coding for HPt, which are potential antifungal targets. However, unlike the histidine kinases (HK) or the downstream response regulators (RR) in two-component system, the HPts have not been well studied in phytopathogenic fungi. In this study, we investigated the role of HPt in the model rice-blast fungal pathogen Magnaporthe oryzae. We found that in M. oryzae an additional isoform of the HPT gene YPD1 was expressed specifically in response to light. Further, the expression of light-regulated genes such as those encoding envoy and blue-light-harvesting protein, and PAS domain containing HKs was significantly reduced upon down-regulation of YPD1 in M. oryzae. Importantly, down-regulation of YPD1 led to a significant decrease in the ability to penetrate the host cuticle and in light-dependent conidiation in M. oryzae. Thus, our results indicate that Ypd1 plays an important role in asexual development and host invasion, and suggest that YPD1 isoforms likely have distinct roles to play in the rice-blast pathogen M. oryzae.

  17. Niche-Specific Requirement for Hyphal Wall protein 1 in Virulence of Candida albicans

    PubMed Central

    Staab, Janet F.; Datta, Kausik; Rhee, Peter

    2013-01-01

    Specialized Candida albicans cell surface proteins called adhesins mediate binding of the fungus to host cells. The mammalian transglutaminase (TG) substrate and adhesin, Hyphal wall protein 1 (Hwp1), is expressed on the hyphal form of C. albicans where it mediates fungal adhesion to epithelial cells. Hwp1 is also required for biofilm formation and mating thus the protein functions in both fungal-host and self-interactions. Hwp1 is required for full virulence of C. albicans in murine models of disseminated candidiasis and of esophageal candidiasis. Previous studies correlated TG activity on the surface of oral epithelial cells, produced by epithelial TG (TG1), with tight binding of C. albicans via Hwp1 to the host cell surfaces. However, the contribution of other Tgs, specifically tissue TG (TG2), to disseminated candidiasis mediated by Hwp1 was not known. A newly created hwp1 null strain in the wild type SC5314 background was as virulent as the parental strain in C57BL/6 mice, and virulence was retained in C57BL/6 mice deleted for Tgm2 (TG2). Further, the hwp1 null strains displayed modestly reduced virulence in BALB/c mice as did strain DD27-U1, an independently created hwp1Δ/Δ in CAI4 corrected for its ura3Δ defect at the URA3 locus. Hwp1 was still needed to produce wild type biofilms, and persist on murine tongues in an oral model of oropharyngeal candidiasis consistent with previous studies by us and others. Finally, lack of Hwp1 affected the translocation of C. albicans from the mouse intestine into the bloodstream of mice. Together, Hwp1 appears to have a minor role in disseminated candidiasis, independent of tissue TG, but a key function in host- and self-association to the surface of oral mucosa. PMID:24260489

  18. Biatriosporin D displays anti-virulence activity through decreasing the intracellular cAMP levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ming; Chang, Wenqiang; Shi, Hongzhuo

    Candidiasis has long been a serious human health problem, and novel antifungal approaches are greatly needed. During both superficial and systemic infection, C. albicans relies on a battery of virulence factors, such as adherence, filamentation, and biofilm formation. In this study, we found that a small phenolic compound, Biatriosporin D (BD), isolated from an endolichenic fungus, Biatriospora sp., displayed anti-virulence activity by inhibiting adhesion, hyphal morphogenesis and biofilm formation of C. albicans. Of note is the high efficacy of BD in preventing filamentation with a much lower dose than its MIC value. Furthermore, BD prolonged the survival of worms infectedmore » by C. albicans in vivo. Quantitative real-time PCR analysis, exogenous cAMP rescue experiments and intracellular cAMP measurements revealed that BD regulates the Ras1-cAMP-Efg1 pathway by reducing cAMP levels to inhibit the hyphal formation. Further investigation showed that BD could upregulate Dpp3 to synthesize much more farnesol, which could inhibit the activity of Cdc35 and reduce the generation of cAMP. Taken together, these findings indicate that BD stimulates the expression of Dpp3 to synthesize more farnesol that directly inhibits the Cdc35 activity, reducing intracellular cAMP and thereby disrupting the morphologic transition and attenuating the virulence of C. albicans. Our study uncovers the underlying mechanism of BD as a prodrug in fighting against pathogenic C. albicans and provides a potential application of BD in fighting clinically relevant fungal infections by targeting fungal virulence. - Highlights: • BD inhibits the filamentation of C. albicans in multiple hypha-inducing conditions. • BD can prolong the survival of nematodes infected by C. albicans. • BD stimulates the expression of Dpp3 to synthesize more farnesol. • BD reduces intracellular cAMP and regulates Ras1-cAMP-PKA pathway.« less

  19. Methamphetamine enhances Cryptococcus neoformans pulmonary infection and dissemination to the brain.

    PubMed

    Patel, Dhavan; Desai, Gunjan M; Frases, Susana; Cordero, Radames J B; DeLeon-Rodriguez, Carlos M; Eugenin, Eliseo A; Nosanchuk, Joshua D; Martinez, Luis R

    2013-07-30

    Methamphetamine (METH) is a major addictive drug of abuse in the United States and worldwide, and its use is linked to HIV acquisition. The encapsulated fungus Cryptococcus neoformans is the most common cause of fungal meningitis in patients with AIDS. In addition to functioning as a central nervous system stimulant, METH has diverse effects on host immunity. Using a systemic mouse model of infection and in vitro assays in order to critically assess the impact of METH on C. neoformans pathogenesis, we demonstrate that METH stimulates fungal adhesion, glucuronoxylomannan (GXM) release, and biofilm formation in the lungs. Interestingly, structural analysis of the capsular polysaccharide of METH-exposed cryptococci revealed that METH alters the carbohydrate composition of this virulence factor, an event of adaptation to external stimuli that can be advantageous to the fungus during pathogenesis. Additionally, we show that METH promotes C. neoformans dissemination from the respiratory tract into the brain parenchyma. Our findings provide novel evidence of the impact of METH abuse on host homeostasis and increased permissiveness to opportunistic microorganisms. Methamphetamine (METH) is a major health threat to our society, as it adversely changes people's behavior, as well as increases the risk for the acquisition of diverse infectious diseases, particularly those that enter through the respiratory tract or skin. This report investigates the effects of METH use on pulmonary infection by the AIDS-related fungus Cryptococcus neoformans. This drug of abuse stimulates colonization and biofilm formation in the lungs, followed by dissemination of the fungus to the central nervous system. Notably, C. neoformans modifies its capsular polysaccharide after METH exposure, highlighting the fungus's ability to adapt to environmental stimuli, a possible explanation for its pathogenesis. The findings may translate into new knowledge and development of therapeutic and public health strategies to deal with the devastating complications of METH abuse.

  20. Histopathologic criteria to confirm white-nose syndrome in bats

    USGS Publications Warehouse

    Meteyer, Carol U.; Buckles, Elizabeth L.; Blehert, David S.; Hicks, Alan C.; Green, David E.; Shearn-Bochsler, Valerie I.; Thomas, Nancy J.; Gargas, Andrea; Behr, Melissa

    2009-01-01

    White-nose syndrome (WNS) is a cutaneous fungal disease of hibernating bats associated with a novel Geomyces sp. fungus. Currently, confirmation of WNS requires histopathologic examination. Invasion of living tissue distinguishes this fungal infection from those caused by conventional transmissible dermatophytes. Although fungal hyphae penetrate the connective tissue of glabrous skin and muzzle, there is typically no cellular inflammatory response in hibernating bats. Preferred tissue samples to diagnose this fungal infection are rostral muzzle with nose and wing membrane fixed in 10% neutral buffered formalin. To optimize detection, the muzzle is trimmed longitudinally, the wing membrane is rolled, and multiple cross-sections are embedded to increase the surface area examined. Periodic acid-Schiff stain is essential to discriminate the nonpigmented fungal hyphae and conidia. Fungal hyphae form cup-like epidermal erosions and ulcers in the wing membrane and pinna with involvement of underlying connective tissue. In addition, fungal hyphae are present in hair follicles and in sebaceous and apocrine glands of the muzzle with invasion of tissue surrounding adnexa. Fungal hyphae in tissues are branching and septate, but the diameter and shape of the hyphae may vary from parallel walls measuring 2 ??m in diameter to irregular walls measuring 3-5 ??m in diameter. When present on short aerial hyphae, curved conidia are approximately 2.5 ??m wide and 7.5 ??m in curved length. Conidia have a more deeply basophilic center, and one or both ends are usually blunt. Although WNS is a disease of hibernating bats, severe wing damage due to fungal hyphae may be seen in bats that have recently emerged from hibernation. These recently emerged bats also have a robust suppurative inflammatory response.

  1. Histopathologic criteria to confirm white-nose syndrome in bats.

    PubMed

    Meteyer, Carol Uphoff; Buckles, Elizabeth L; Blehert, David S; Hicks, Alan C; Green, D Earl; Shearn-Bochsler, Valerie; Thomas, Nancy J; Gargas, Andrea; Behr, Melissa J

    2009-07-01

    White-nose syndrome (WNS) is a cutaneous fungal disease of hibernating bats associated with a novel Geomyces sp. fungus. Currently, confirmation of WNS requires histopathologic examination. Invasion of living tissue distinguishes this fungal infection from those caused by conventional transmissible dermatophytes. Although fungal hyphae penetrate the connective tissue of glabrous skin and muzzle, there is typically no cellular inflammatory response in hibernating bats. Preferred tissue samples to diagnose this fungal infection are rostral muzzle with nose and wing membrane fixed in 10% neutral buffered formalin. To optimize detection, the muzzle is trimmed longitudinally, the wing membrane is rolled, and multiple cross-sections are embedded to increase the surface area examined. Periodic acid-Schiff stain is essential to discriminate the nonpigmented fungal hyphae and conidia. Fungal hyphae form cup-like epidermal erosions and ulcers in the wing membrane and pinna with involvement of underlying connective tissue. In addition, fungal hyphae are present in hair follicles and in sebaceous and apocrine glands of the muzzle with invasion of tissue surrounding adnexa. Fungal hyphae in tissues are branching and septate, but the diameter and shape of the hyphae may vary from parallel walls measuring 2 microm in diameter to irregular walls measuring 3-5 microm in diameter. When present on short aerial hyphae, curved conidia are approximately 2.5 microm wide and 7.5 microm in curved length. Conidia have a more deeply basophilic center, and one or both ends are usually blunt. Although WNS is a disease of hibernating bats, severe wing damage due to fungal hyphae may be seen in bats that have recently emerged from hibernation. These recently emerged bats also have a robust suppurative inflammatory response.

  2. Effect of Selenium on Control of Postharvest Gray Mold of Tomato Fruit and the Possible Mechanisms Involved

    PubMed Central

    Wu, Zhilin; Yin, Xuebin; Bañuelos, Gary S.; Lin, Zhi-Qing; Zhu, Zhu; Liu, Ying; Yuan, Linxi; Li, Miao

    2016-01-01

    Selenium (Se) has important benefits for crop growth and stress tolerance at low concentrations. However, there is very little information on antimicrobial effect of Se against the economically important fungus Botrytis cinerea. In the present study, using sodium selenite as Se source, we investigated the effect of Se salts on spore germination and mycelial growth of the fungal pathogen in vitro and gray mold control in harvested tomato fruit. Se treatment at 24 mg/L significantly inhibited spore germination of the fungal pathogen and effectively controlled gray mold in harvested tomato fruit. Se treatment at 24 mg/L seems to induce the generation of intracellular reactive oxygen species in the fungal spores. The membrane integrity damage was observed with fluorescence microscopy following staining with propidium iodide after treatment of the spores with Se. These results suggest that Se has the potential for controlling gray mold rot of tomato fruits and might be useful in integrated control against gray mold disease of postharvest fruits and vegetables caused by B. cinerea. The mechanisms by which Se decreased gray mold decay of tomato fruit may be directly related to the severe damage to the conidia plasma membrane and loss of cytoplasmic materials from the hyphae. PMID:26779128

  3. [The research of the innate defense regulator peptide on the effects of methicillin resistant staphylococcus aureus biofilm].

    PubMed

    Shi, X; Qin, Y X; Wan, X Y

    2018-01-23

    Objective: To investigate the destruction of the mature biofilm and the inhibitory effect of the biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA) by different concentrations of the innate defense regulatory peptide (IDR-1018). Methods: 1 ×10(5)CFU /ml MRSA was inoculated uniformly into 96 well plates, the biofilm model would be completed after 48 h. Given the different concentration of IDR-1018 solution as the experimental group double diluted with tryptic soy broth (TSB), the concentration in bacteria suspension reached 3.75-1 000 mg/L respectively. Erythromycin is double diluted into different concentration gradient, combined with low concentration (15 mg/L) of IDR-1018 as the mixed group.The same amount of TSB treated as the blank control group. The growth of the biofilm was measured through the measurement of the value of absorbance (A)by the semi-quantitative method of crystal violet staining at 24 h. Using SPSS 18.0 as statistical software to analyze the data. Results: Compared with the control group ( A (595)=1.764 ± 0.026), IDR-1018 significantly damaged the mature MRSA biofilm, and function was worked in a dose-dependent method. With decreasing drug concentration, the destruction of the biofilm decreased correspondingly. When the concentration was as low as 15 mg/L, A (595) = 0.946 ± 0.047( t =32.955, P <0.01). When the concentration was 7.5 mg/L, A (595) = 1.211±0.054 ( t =12.731, P <0.05). When the concentration was 3.75 mg/L, A (595)=1.360±0.066( t =4.843, P <0.05), the difference was still statistically significant compared with the control group. For the immature biofilm, compared with the control group( A (595)=1.689±0.068), IDR-1018 still had a significant inhibitory effect on the formation process of MRSA biofilm when the concentration was as low as 15 mg/L ( A (595)=0.846±0.057, t =34.127, P <0.01). The inhibition of biofilm had a certain decline, when the concentration was 7.5 mg/L ( A (595)=1.402 ± 0.181, t =5.240, P <0.05). But the difference was still statistically significant compared with the control group. However, the inhibitory effect was significantly decreased when the concentration was 3.75 mg/L ( A (595)=1.631±0.190, t =0.913, P >0.05). When the low concentration (15 mg/L) of IDR-1018 and different concentrations of erythromycin were used together, the destruction and inhibition of MRSA biofilm was significantly higher than using erythromycin or IDR-1018 alone. Conclusion: IDR-1018 can play a good inhibitory role in the formation process of MRSA biofilm, and can play a good role in destroying MRSA biofilm.

  4. Bacterial Contribution in Chronicity of Wounds.

    PubMed

    Rahim, Kashif; Saleha, Shamim; Zhu, Xudong; Huo, Liang; Basit, Abdul; Franco, Octavio Luiz

    2017-04-01

    A wound is damage of a tissue usually caused by laceration of a membrane, generally the skin. Wound healing is accomplished in three stages in healthy individuals, including inflammatory, proliferative, and remodeling stages. Healing of wounds normally starts from the inflammatory phase and ends up in the remodeling phase, but chronic wounds remain in an inflammatory stage and do not show progression due to some specific reasons. Chronic wounds are classified in different categories, such as diabetic foot ulcer (DFU), venous leg ulcers (VLU) and pressure ulcer (PU), surgical site infection (SSI), abscess, or trauma ulcers. Globally, the incidence rate of DFU is 1-4 % and prevalence rate is 5.3-10.5 %. However, colonization of pathogenic bacteria at the wound site is associated with wound chronicity. Most chronic wounds contain more than one bacterial species and produce a synergetic effect that results in previously non-virulent bacterial species becoming virulent and causing damage to the host. While investigating bacterial diversity in chronic wounds, Staphylococcus, Pseudomonas, Peptoniphilus, Enterobacter, Stenotrophomonas, Finegoldia, and Serratia were found most frequently in chronic wounds. Recently, it has been observed that bacteria in chronic wounds develop biofilms that contribute to a delay in healing. In a mature biofilm, bacteria grow slowly due to deficiency of nutrients that results in the resistance of bacteria to antibiotics. The present review reflects the reasons why acute wounds become chronic. Interesting findings include the bacterial load, which forms biofilms and shows high-level resistance toward antibiotics, which is a threat to human health in general and particularly to some patients who have acute wounds.

  5. Candida parapsilosis Protects Premature Intestinal Epithelial Cells from Invasion and Damage by Candida albicans

    PubMed Central

    Gonia, Sara; Archambault, Linda; Shevik, Margaret; Altendahl, Marie; Fellows, Emily; Bliss, Joseph M.; Wheeler, Robert T.; Gale, Cheryl A.

    2017-01-01

    Candida is a leading cause of late-onset sepsis in premature infants and is thought to invade the host via immature or damaged epithelial barriers. We previously showed that the hyphal form of Candida albicans invades and causes damage to premature intestinal epithelial cells (pIECs), whereas the non-hyphal Candida parapsilosis, also a fungal pathogen of neonates, has less invasion and damage abilities. In this study, we investigated the potential for C. parapsilosis to modulate pathogenic interactions of C. albicans with the premature intestine. While a mixed infection with two fungal pathogens may be expected to result in additive or synergistic damage to pIECs, we instead found that C. parapsilosis was able to protect pIECs from invasion and damage by C. albicans. C. albicans-induced pIEC damage was reduced to a similar extent by multiple different C. parapsilosis strains, but strains differed in their ability to inhibit C. albicans invasion of pIECs, with the inhibitory activity correlating with their adhesiveness for C. albicans and epithelial cells. C. parapsilosis cell-free culture fractions were also able to significantly reduce C. albicans adhesion and damage to pIECs. Furthermore, coadministration of C. parapsilosis cell-free fractions with C. albicans was associated with decreased infection and mortality in zebrafish. These results indicate that C. parapsilosis is able to reduce invasion, damage, and virulence functions of C. albicans. Additionally, the results with cellular and cell-free fractions of yeast cultures suggest that inhibition of pathogenic interactions between C. albicans and host cells by C. parapsilosis occurs via secreted molecules as well as by physical contact with the C. parapsilosis cell surface. We propose that non-invasive commensals can be used to inhibit virulence features of pathogens and deserve further study as a non-pharmacological strategy to protect the fragile epithelial barriers of premature infants. PMID:28382297

  6. Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology and cellular physiology.

    PubMed

    Gupta, Rani; Kumari, Arti; Syal, Poonam; Singh, Yogesh

    2015-01-01

    Lipase catalyzes hydrolysis of fats in lipid water interphase and perform variety of biotransformation reactions under micro aqueous conditions. The major sources include microbial lipases; among these yeast and fungal lipases are of special interest because they can carry out various stereoselective reactions. These lipases are highly diverse and are categorized into three classes on the basis of oxyanion hole: GX, GGGX and Y. The detailed phylogenetic analysis showed that GX family is more diverse than GGGX and Y family. Sequence and structural comparisons revealed that lipases are conserved only in the signature sequence region. Their characteristic structural determinants viz. lid, binding pocket and oxyanion hole are hotspots for mutagenesis. Few examples are cited in this review to highlight the multidisciplinary approaches for designing novel enzyme variants with improved thermo stability and substrate specificity. In addition, we present a brief account on biotechnological applications of lipases. Lipases have also gained attention as virulence factors, therefore, we surveyed the role of lipases in yeast physiology related to colonization, adhesion, biofilm formation and pathogenesis. The new genomic era has opened numerous possibilities to genetically manipulate lipases for food, fuel and pharmaceuticals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans.

    PubMed

    González, Alex; Bellenberg, Sören; Mamani, Sigde; Ruiz, Lina; Echeverría, Alex; Soulère, Laurent; Doutheau, Alain; Demergasso, Cecilia; Sand, Wolfgang; Queneau, Yves; Vera, Mario; Guiliani, Nicolas

    2013-04-01

    Biofilm formation plays a pivotal role in bioleaching activities of bacteria in both industrial and natural environments. Here, by visualizing attached bacterial cells on energetic substrates with different microscopy techniques, we obtained the first direct evidence that it is possible to positively modulate biofilm formation of the extremophilic bacterium Acidithiobacillus ferrooxidans on sulfur and pyrite surfaces by using Quorum Sensing molecules of the N-acylhomoserine lactone type (AHLs). Our results revealed that AHL-signaling molecules with a long acyl chain (12 or 14 carbons) increased the adhesion of A. ferrooxidans cells to these substrates. In addition, Card-Fish experiments demonstrated that C14-AHL improved the adhesion of indigenous A. ferrooxidans cells from a mixed bioleaching community to pyrite. Finally, we demonstrated that this improvement of cell adhesion is correlated with an increased production of extracellular polymeric substances. Our results open up a promising means to develop new strategies for the improvement of bioleaching efficiency and metal recovery, which could also be used to control environmental damage caused by acid mine/rock drainage.

  8. Solar Radiation Stress in Natural Acidophilic Biofilms of Euglena mutabilis Revealed by Metatranscriptomics and PAM Fluorometry.

    PubMed

    Puente-Sánchez, Fernando; Olsson, Sanna; Gómez-Rodriguez, Manuel; Souza-Egipsy, Virginia; Altamirano-Jeschke, Maria; Amils, Ricardo; Parro, Victor; Aguilera, Angeles

    2016-02-01

    The daily photosynthetic performance of a natural biofilm of the extreme acidophilic Euglena mutabilis from Río Tinto (SW, Spain) under full solar radiation was analyzed by means of pulse amplitude-modulated (PAM) fluorescence measurements and metatrascriptomic analysis. Natural E. mutabilis biofilms undergo large-scale transcriptomic reprogramming during midday due to a dynamic photoinhibition and solar radiation stress. Photoinhibition is due to UV radiation and not to light intensity, as revealed by PAM fluorometry analysis. In order to minimize the negative effects of solar radiation, our data supports the presence of a circadian rhythm in this euglenophyte that increases their opportunity to survive. Differential gene expression throughout the day (at 12:00, 20:00 and night) was monitored by massive Illumina parallel sequencing of metatranscriptomic libraries. The transcription pattern was altered in genes involved in Photosystem II stability and repair, UV damaged DNA repair, non-photochemical quenching and oxidative stress, supporting the photoinhibition detected by PAM fluorometry at midday. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. [The origin of hydrogen peroxide in oral cavity and its role in oral microecology balance].

    PubMed

    Keke, Zhang; Xuedong, Zhou; Xin, Xu

    2017-04-01

    Hydrogen peroxide, an important antimicrobial agent in oral cavity, plays a significant role in the balance of oral microecology. At the early stage of biofilm formation, about 80% of the detected initial colonizers belong to the genus Streptococcus. These oral streptococci use different oxidase to produce hydrogen peroxide. Recent studies showed that the produced hydrogen peroxide plays a critical role in modulating oral microecology. Hydrogen peroxide modulates biofilm development attributed to its growth inhibitory nature. Hydrogen peroxide production is closely associated with extracellular DNA(eDNA) release from microbe and the development of its competent cell which are critical for biofilm development and also serves as source for horizontal gene transfer. Microbe also can reduce the damage to themselves through several detoxification mechanisms. Moreover, hydrogen peroxide is also involved in the regulation of interactions between oral microorganisms and host. Taken together, hydrogen peroxide is an imperative ecological factor that contributes to the microbial equilibrium in the oral cavity. Here we will give a brief review of both the origin and the function in the oral microecology balance of hydrogen peroxide.

  10. Microbial biofilm formation and its consequences for the CELSS program

    NASA Technical Reports Server (NTRS)

    Mitchell, R.

    1994-01-01

    A major goal of the Controlled Ecology Life Support System (CELSS) program is to provide reliable and efficient life support systems for long-duration space flights. A principal focus of the program is on the growth of higher plants in growth chambers. These crops should be grown without the risk of damage from microbial contamination. While it is unlikely that plant pathogens will pose a risk, there are serious hazards associated with microorganisms carried in the nutrient delivery systems and in the atmosphere of the growth chamber. Our experience in surface microbiology showed that colonization of surfaces with microorganisms is extremely rapid even when the inoculum is small. After initial colonization extensive biofilms accumulate on moist surfaces. These microbial films metabolize actively and slough off continuously to the air and water. During plant growth in the CELSS program, microbial biofilms have the potential to foul sensors and to plug nutrient delivery systems. In addition both metabolic products of microbial growth and degradation products of materials being considered for use as nutrient reservoirs and for delivery are likely sources of chemicals known to adversly affect plant growth.

  11. Physical Analysis of the Biomolecules Causing Periodontitis

    NASA Astrophysics Data System (ADS)

    Shin, Jehun; Lee, Seong Hyeon; Kim, Chai Rin

    Periodontitis caused by microorganisms that adhere to and grow on the tooth's surfaces, is an inflammatory diseases causing gum infection. The disease damages the soft tissues that surround and support the teeth and destroys the bone that supports teeth and finally causes tooth loss. An increased risk of stroke and heart attack problems are related to the periodontitis as well. Most bacteria or pathogens attach to gum surface where they form a biofilm. Bacterial cells in biofilms are well protected against antibiotics. The mechanisms of action are still unknown, and it is difficult to control pathogens with antibiotics in biofilm infections and thus the study on the antibiotics is needed. In this research, a number of natural water soluble, small-sized antibiotics molecules and their derivatives are studied. Molecular editing programs such as Gamess, Chemcraft and Avogadro, with an auto-optimization feature that determines the theoretical values of the structure's atomic properties are used to build virtually any molecule with the optimized geometry according to various force field options. The UFF (Universal Force Field) is used for optimizing most molecules.

  12. Antifungal defense of probiotic Lactobacillus rhamnosus GG is mediated by blocking adhesion and nutrient depletion.

    PubMed

    Mailänder-Sánchez, Daniela; Braunsdorf, Christina; Grumaz, Christian; Müller, Christoph; Lorenz, Stefan; Stevens, Philip; Wagener, Jeanette; Hebecker, Betty; Hube, Bernhard; Bracher, Franz; Sohn, Kai; Schaller, Martin

    2017-01-01

    Candida albicans is an inhabitant of mucosal surfaces in healthy individuals but also the most common cause of fungal nosocomial blood stream infections, associated with high morbidity and mortality. As such life-threatening infections often disseminate from superficial mucosal infections we aimed to study the use of probiotic Lactobacillus rhamnosus GG (LGG) in prevention of mucosal C. albicans infections. Here, we demonstrate that LGG protects oral epithelial tissue from damage caused by C. albicans in our in vitro model of oral candidiasis. Furthermore, we provide insights into the mechanisms behind this protection and dissect direct and indirect effects of LGG on C. albicans pathogenicity. C. albicans viability was not affected by LGG. Instead, transcriptional profiling using RNA-Seq indicated dramatic metabolic reprogramming of C. albicans. Additionally, LGG had a significant impact on major virulence attributes, including adhesion, invasion, and hyphal extension, whose reduction, consequently, prevented epithelial damage. This was accompanied by glucose depletion and repression of ergosterol synthesis, caused by LGG, but also due to blocked adhesion sites. Therefore, LGG protects oral epithelia against C. albicans infection by preventing fungal adhesion, invasion and damage, driven, at least in parts, by metabolic reprogramming due to nutrient limitation caused by LGG.

  13. Conservation of Mannan Synthesis in Fungi of the Zygomycota and Ascomycota Reveals a Broad Diagnostic Target.

    PubMed

    Burnham-Marusich, Amanda R; Hubbard, Breeana; Kvam, Alexander J; Gates-Hollingsworth, Marcellene; Green, Heather R; Soukup, Eric; Limper, Andrew H; Kozel, Thomas R

    2018-01-01

    Ascomycetes and zygomycetes account for the majority of (i) fungi responsible for cutaneous, subcutaneous, and invasive human fungal infections, (ii) plant fungal pathogens, (iii) fungi that threaten global biodiversity, (iv) fungal agents of agricultural spoilage, and (v) fungi in water-damaged buildings. Rapid recognition of fungal infection (or contamination) enables early treatment (or remediation). A bioinformatics search found homologues of Saccharomyces cerevisiae Mnn9p present in members of the Zygomycota and Ascomycota phyla and absent in members of the Chytridiomycota and Basidiomycota. Mnn9p is a component of the yeast mannan polymerization complex and is necessary for α-1,6 mannan production. A monoclonal antibody (2DA6) was produced that was reactive with purified mannans of Mucor , Rhizopus , Aspergillus , Fusarium , and Candida species. Experimentation using a 2DA6 antigen capture enzyme-linked immunosorbent assay (ELISA) and extracts of fungi from the four phyla found agreement between the presence or absence of Mnn9p homologues and production or lack of production of mannan reactive with 2DA6. Studies of cell extracts from yeast mannan mutants identified α-1,6 mannan as the epitope recognized by 2DA6. To translate this finding into a point-of-use diagnostic, a 2DA6 lateral flow immunoassay was constructed that detected mannan in (i) extracts of dermatophytes and fungi that produce trauma-related infection and (ii) tissue from plants infected with Grosmannia clavigera or Sclerotium cepivorum These studies (i) revealed that the conservation of α-1,6-linked mannan in fungi of the Zygomycota and Ascomycota can be exploited as a broad diagnostic target and (ii) have provided a means to detect that target in an immunoassay platform that is well suited for clinic or field use. IMPORTANCE A key question asked when faced with an infection, an infestation, or environmental damage is whether it is a fungus. Identification of fungi as the cause of the problem can lead to remediation or treatment. Zygomycetes and ascomycetes account for the vast majority of fungal causes of human, animal, and plant disease, large-scale biodiversity loss, agricultural spoilage, and contamination of water-damaged buildings. These studies revealed the conservation of a common cell wall structural component of zygomycetes and ascomycetes to be a diagnostic target applicable to multiple pathogenic fungi and have leveraged that insight for practical use. Monoclonal antibodies reactive with this pan-fungal structure were produced and used to construct immunoassays (including ELISA and lateral flow assay) for detection of a broad range of pathogenic fungi. Copyright © 2018 Burnham-Marusich et al.

  14. Molds and mycotoxins in indoor environments--a survey in water-damaged buildings.

    PubMed

    Bloom, Erica; Nyman, Eva; Must, Aime; Pehrson, Christina; Larsson, Lennart

    2009-11-01

    Mycotoxins are toxic, secondary metabolites frequently produced by molds in water-damaged indoor environments. We studied the prevalence of selected, potent mycotoxins and levels of fungal biomass in samples collected from water-damaged indoor environments in Sweden during a 1-year period. One hundred samples of building materials, 18 samples of settled dust, and 37 samples of cultured dust were analyzed for: (a) mycoflora by microscopy and culture; (b) fungal chemical marker ergosterol and hydrolysis products of macrocyclic trichothecenes and trichodermin (verrucarol and trichodermol) by gas chromatography-tandem mass spectrometry; and (c) sterigmatocystin, gliotoxin, aflatoxin B(1), and satratoxin G and H by high performance liquid chromatography-tandem mass spectrometry. Sixty-six percent of the analyzed building materials samples, 11% of the settled dust samples, and 51% of the cultured dust samples were positive for at least one of the studied mycotoxins. In addition, except in the case of gliotoxin, mycotoxin-positive building material samples contained 2-6 times more ergosterol than mycotoxin-negative samples. We show that (a) molds growing on a range of different materials indoors in water-damaged buildings generally produce mycotoxins, and (b) mycotoxin-containing particles in mold-contaminated environments may settle on surfaces above floor level. The mass spectrometry methods used in this study are valuable tools in further research to survey mycotoxin exposure and investigate potential links with health effects.

  15. Production and characterization of IgM monoclonal antibodies against hyphal antigens of Stachybotrys species

    EPA Science Inventory

    Stachybotrys is a hydrophilic fungal genus that is well known for its ability to colonize water-damaged building materials in indoor environments. Personal exposure to Stachybotrys chartarum allergens, mycotoxins, cytolytic peptides, and other immunostimulatory macromolecules has...

  16. Effective Targeted Photothermal Ablation of Multidrug Resistant Bacteria and Their Biofilms with NIR-Absorbing Gold Nanocrosses.

    PubMed

    Teng, Choon Peng; Zhou, Tielin; Ye, Enyi; Liu, Shuhua; Koh, Leng Duei; Low, Michelle; Loh, Xian Jun; Win, Khin Yin; Zhang, Lianhui; Han, Ming-Yong

    2016-08-01

    With the rapid evolution of antibiotic resistance in bacteria, antibiotic-resistant bacteria (in particular, multidrug-resistant bacteria) and their biofilms have been becoming more and more difficult to be effectively treated with conventional antibiotics. As such, there is a great demand to develop a nonantibiotic approach in efficiently eliminating such bacteria. Here, multibranched gold nanocrosses with strong near-infrared absorption falling in the biological window, which heat up quickly under near-infrared-light irradiation are presented. The gold nanocrosses are conjugated to secondary and primary antibodies for targeting PcrV, a type III secretion protein, which is uniquely expressed on the bacteria superbug, Pseudomonas aeruginosa. The conjugated gold nanocrosses are capable of completely destroying P. aeruginosa and its biofilms upon near-infrared-light irradiation for 5 min with an 800 nm laser at a low power density of ≈3.0 W cm(-2) . No bacterial activity is detected after 48 h postirradiation, which indicates that the heat generated from the irradiated plasmonic gold nanocrosses attached to bacteria is effective in eliminating and preventing the re-growth of the bacteria. Overall, the conjugated gold nanocrosses allow targeted and effective photothermal ablation of multidrug-resistant bacteria and their biofilms in the localized region with reduced nonspecific damage to normal tissue. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Microbiological Profile of Adenoid Hypertrophy Correlates to Clinical Diagnosis in Children

    PubMed Central

    Szalmás, Anita; Csomor, Péter; Kónya, József; Sziklai, István; Szekanecz, Zoltán; Karosi, Tamás

    2013-01-01

    Objective. Adenoid hypertrophy is a common condition in childhood, which may be associated with recurring acute otitis media (RAOM), otitis media with effusion (OME), and obstructive sleep apnea syndrome (OSAS). These different clinical characteristics have some clinical overlap; however, they might be explained by distinct immunologic and infectious profiles and result in various histopathologic findings of adenoid specimens. Methods. A total of 59 children with adenoid hypertrophy undergoing adenoidectomy were studied. Three series of identical adenoid specimens were processed to hematoxylin-eosin (H.E.) and Gram staining and to respiratory virus specific real-time PCR, respectively. Results. According to the clinical characteristics, patients were recruited into three groups: RAOM (n = 25), OME (n = 19), and OSAS (n = 15). Bacterial biofilms were detected in 21 cases, while at least one of the studied respiratory viruses was detected in 52 specimens. RAOM cases were significantly associated with biofilm existence (n = 20, P < 0.001). In contrast, OME group was characterized by the absence of bacterial biofilm and by normal mucosa. Showing a statistically significant correlation, all OME cases were positive for human bocavirus (HBoV, P < 0.001). Conclusions. Bacterial biofilms might contribute to the damage of respiratory epithelium and recurring acute infections resulting in RAOM. In OME cases persisting respiratory viruses, mainly HBoV, can cause subsequent lymphoid hyperplasia leading to ventilation disorders and impaired immunoreactivity of the middle ear cleft. PMID:24175295

  18. Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa

    PubMed Central

    Lewenza, Shawn

    2013-01-01

    Extracellular DNA (eDNA) is in the environment, bodily fluids, in the matrix of biofilms, and accumulates at infection sites. eDNA can function as a nutrient source, a universal biofilm matrix component, and an innate immune effector in eDNA traps. In biofilms, eDNA is required for attachment, aggregation, and stabilization of microcolonies. We have recently shown that eDNA can sequester divalent metal cations, which has interesting implications on antibiotic resistance. eDNA binds metal cations and thus activates the Mg2+-responsive PhoPQ and PmrAB two-component systems. In Pseudomonas aeruginosa and many other Gram-negative bacteria, the PhoPQ/PmrAB systems control various genes required for virulence and resisting killing by antimicrobial peptides (APs), including the pmr genes (PA3552–PA3559) that are responsible for the addition of aminoarabinose to lipid A. The PA4773–PA4775 genes are a second DNA-induced cluster and are required for the production of spermidine on the outer surface, which protects the outer membrane from AP treatment. Both modifications mask the negative surface charges and limit membrane damage by APs. DNA-enriched biofilms or planktonic cultures have increased antibiotic resistance phenotypes to APs and aminoglycosides. These dual antibiotic resistance and immune evasion strategies may be expressed in DNA-rich environments and contribute to long-term survival. PMID:23419933

  19. The oral microbiome in dental caries.

    PubMed

    Struzycka, Izabela

    2014-01-01

    Dental caries is one of the most common chronic and multifactorial diseases affecting the human population. The appearance of a caries lesion is determined by the coexistence of three main factors: acidogenic and acidophilic microorganisms, carbohydrates derived from the diet, and host factors. Socio-economic and behavioral factors also play an important role in the etiology of the disease. Caries develops as a result of an ecological imbalance in the stable oral microbiom. Oral microorganisms form dental plaque on the surfaces of teeth, which is the cause of the caries process, and shows features of the classic biofilm. Biofilm formation appears to be influenced by large scale changes in protein expression over time and under genetic control Cariogenic microorganisms produce lactic, formic, acetic and propionic acids, which are a product of carbohydrate metabolism. Their presence causes a decrease in pH level below 5.5, resulting in demineralization of enamel hydroxyapatite crystals and proteolytic breakdown of the structure of tooth hard tissues. Streptococcus mutans, other streptococci of the so-called non-mutans streptococci group, Actinomyces and Lactobacillus play a key role in this process. Dental biofilm is a dynamic, constantly active metabolically structure. The alternating processes of decrease and increase of biofilm pH occur, which are followed by the respective processes of de- and remineralisation of the tooth surface. In healthy conditions, these processes are in balance and no permanent damage to the tooth enamel surface occurs.

  20. Building-associated neurological damage modeled in human cells: a mechanism of neurotoxic effects by exposure to mycotoxins in the indoor environment.

    PubMed

    Karunasena, Enusha; Larrañaga, Michael D; Simoni, Jan S; Douglas, David R; Straus, David C

    2010-12-01

    Damage to human neurological system cells resulting from exposure to mycotoxins confirms a previously controversial public health threat for occupants of water-damaged buildings. Leading scientific organizations disagree about the ability of inhaled mycotoxins in the indoor environment to cause adverse human health effects. Damage to the neurological system can result from exposure to trichothecene mycotoxins in the indoor environment. This study demonstrates that neurological system cell damage can occur from satratoxin H exposure to neurological cells at exposure levels that can be found in water-damaged buildings contaminated with fungal growth. The constant activation of inflammatory and apoptotic pathways at low levels of exposure in human brain capillary endothelial cells, astrocytes, and neural progenitor cells may amplify devastation to neurological tissues and lead to neurological system cell damage from indirect events triggered by the presence of trichothecenes.

Top