Clustering of galaxies near damped Lyman-alpha systems with (z) = 2.6
NASA Technical Reports Server (NTRS)
Wolfe, A. M
1993-01-01
The galaxy two-point correlation function, xi, at (z) = 2.6 is determined by comparing the number of Ly-alpha-emitting galaxies in narrowband CCD fields selected for the presence of damped L-alpha absorption to their number in randomly selected control fields. Comparisons between the presented determination of (xi), a density-weighted volume average of xi, and model predictions for (xi) at large redshifts show that models in which the clustering pattern is fixed in proper coordinates are highly unlikely, while better agreement is obtained if the clustering pattern is fixed in comoving coordinates. Therefore, clustering of Ly-alpha-emitting galaxies around damped Ly-alpha systems at large redshifts is strong. It is concluded that the faint blue galaxies are drawn from a parent population different from normal galaxies, the presumed offspring of damped Ly-alpha systems.
ASYMMETRIC ABSORPTION PROFILES OF Ly{alpha} AND Ly{beta} IN DAMPED Ly{alpha} SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hee-Won, E-mail: hwlee@sejong.ac.kr
2013-08-01
Damped Ly{alpha} systems observed in the quasar spectra are characterized by a high neutral hydrogen column density, N{sub HI} > 2 x 10{sup 20} cm{sup -2}. The absorption wing profiles are often fitted using the Voigt function due to the fact that the scattering cross section near the resonant line center is approximately described by the Lorentzian function. Since a hydrogen atom has infinitely many p states that participate in the electric dipole interaction, the cross section starts to deviate from the Lorentzian in an asymmetric way in the line wing regions. We investigate this asymmetry in the absorption linemore » profiles around Ly{alpha} and Ly{beta} as a function of the neutral hydrogen column density N{sub HI}. In terms of {Delta}{lambda} {identical_to} {lambda} - {lambda}{sub {alpha}}, we expand the Kramers-Heisenberg formula around Ly{alpha} to find {sigma}({lambda}) {approx_equal} (0.5f{sub 12}){sup 2}{sigma}{sub T}({Delta}{lambda}/{lambda}{sub {alpha}}){sup -2}[1 + 3.792({Delta}{lambda}/{lambda}{sub {alpha}})], where f{sub 12} and {sigma}{sub T} are the oscillator strength of Ly{alpha} and the Thomson scattering cross section, respectively. In terms of {Delta}{lambda}{sub 2} {identical_to} {lambda} - {lambda}{sub {beta}} in the vicinity of Ly{beta}, the total scattering cross section, given as the sum of cross sections for Rayleigh and Raman scattering, is shown to be {sigma}({lambda}) {approx_equal} {sigma}{sub T}(0.5f{sub 13}){sup 2}(1 + R{sub 0})({Delta}{lambda}{sub 2}/{lambda}{sub {beta}}){sup -2}[1 - 24.68({Delta}{lambda}{sub 2}/{lambda}{sub {beta}})] with f{sub 13} and the factor R{sub 0} = 0.1342 being the oscillator strength for Ly{beta} and the ratio of the Raman cross section to Rayleigh cross section, respectively. A redward asymmetry develops around Ly{alpha}, whereas a blue asymmetry is obtained for Ly{beta}. The absorption center shifts are found to be almost proportional to the neutral hydrogen column density.« less
The z = 0.8596 damped Ly-alpha absorbing galaxy toward PKS 0454+039
NASA Technical Reports Server (NTRS)
Steidel, Charles C.; Bowen, David V.; Blades, J. Chris; Dickenson, Mark
1995-01-01
We present Hubble Space Telescope (HST) and ground-based data on the Z(sub abs) = 0.8596 metal-line absorption system along the line of sight to PKS 0454+0356. The system is a moderate-redshift damped Ly-alpha system, with N(H I) = (5.7 +/- 0.3) x 10(exp 20)/sq cm as measured from the Faint Object Spectrograph (FOS) spectrum. We also present ground-based images which we use to identify the galaxy which most probably gives rise to the damped system; the most likely candidate is relatively underluminous by QSO absorber standards M(sub B) approximately -19.0 for A(sub 0) = 0.5 and H(sub 0) = 50 km/s/Mpc) and lies approximately 8.5/h kpc in projection from the QSO sight line. Ground-based measurements of Zn II, Cr II, and Fe II absorption lines from this system allow us to infer abundances of (Zn/H) = -1.1, (Cr/H) = -1.2, and (Fe/H) = -1.2 indicating overall metallicity similar to damped systems at z is greater than 2, and that the depletion of Cr and Fe onto dust grains may be even less important than in many of the high-redshift systems of comparable metallicity. Limits previously placed on the 21 cm optical depth in the z = 0.8596 system, together with our new N(H I) measurement, suggest a very high spin temperature for the H I, T(sub s) is greater than 580 K.
A New Survey for Low-Redshift Damped Lyman-Alpha Lines in QSO MgII Systems
NASA Astrophysics Data System (ADS)
Rao, Sandhya
2000-07-01
Studies have shown that most of the observable neutral gas mass in the Universe resides in QSO damped LyAlpha {DLA} systems. However, at low redshift {z<1.65}, DLA can only be found by searching in the UV with HST. Such searches are crucial since z<1.65 corresponds to 3/4 of the age of the Universe. The identification of significant numbers of low- redshift DLA systems is imperative if we ever hope to effectively study this cosmologically massive component of neutral gas. To this end, we recently reported on the results of our initial HST survey to study low-redshift DLA absorbers in QSO MgII systems. We discovered 14 DLA systems and had a success rate of 14%. Now, based on these results and our improved understanding of the selection criteria for successful DLA searches, we propose a new survey for low-redshift DLA lines in QSO MgII systems. With our new revised selection criteria, we can empirically show that our success rate would be 35%. Specifically, we propose to observe the LyAlpha line of 55 MgII systems. We estimate that we will discover 19 new DLA systems with redshift z<1.65. Finding these systems will facilitate the type of research that can be done with DLA systems. By boot-strapping from the MgII statistics, we will be able to further improve the determination of the low- redshift statistical properties of DLA {their incidence and cosmological mass density} and open up new opportunities for studies at low redshift.
Moderate resolution spectrophotometry of high redshift quasars
NASA Technical Reports Server (NTRS)
Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.
1991-01-01
A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.
THE FIRST OBSERVATIONS OF LOW-REDSHIFT DAMPED Ly{alpha} SYSTEMS WITH THE COSMIC ORIGINS SPECTROGRAPH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meiring, J. D.; Tripp, T. M.; Prochaska, J. X.
2011-05-01
We report on the first Cosmic Origins Spectrograph observations of damped Ly{alpha} systems (DLAs) and sub-damped Ly{alpha} systems (sub-DLAs) discovered in a new survey of the gaseous halos of low-redshift galaxies. From observations of 37 sightlines, we have discovered three DLAs and four sub-DLAs. We measure the neutral gas density {Omega}{sub HI}, and redshift density d N/d z, of DLA and sub-DLA systems at z < 0.35. We find d N/dz = 0.25{sup +0.24}-{sub 0.14} and {Omega}{sub HI} = 1.4{sup +1.3}{sub -0.7} x 10{sup -3} for DLAs, and d N/d z = 0.08{sup +0.19}{sub -0.06} with {Omega}{sub HI} = 4.2{supmore » +9.6}{sub -3.5} x 10{sup -5} for sub-DLAs over a redshift path {Delta}z = 11.9. To demonstrate the scientific potential of such systems, we present a detailed analysis of the DLA at z{sub abs} = 0.1140 in the spectrum of SDSS J1009+0713. Profile fits to the absorption lines determine log N(H I) = 20.68 {+-} 0.10 with a metallicity determined from the undepleted element sulfur of [S/H] = -0.62 {+-} 0.18. The abundance pattern of this DLA is similar to that of higher z DLAs, showing mild depletion of the refractory elements Fe and Ti with [S/Fe] = +0.24 {+-} 0.22 and [S/Ti] = +0.28 {+-} 0.15. Nitrogen is underabundant in this system with [N/H] = -1.40 {+-} 0.14, placing this DLA below the plateau of the [N/{alpha}] measurements in the local universe at similar metallicities. This DLA has a simple kinematic structure with only two components required to fit the profiles and a kinematic width of {Delta}v{sub 90} = 52 km s{sup -1}. Imaging of the QSO field with the Hubble Space Telescope/Wide Field Camera 3 reveals a spiral galaxy at very small impact parameter to the QSO and several galaxies within 10'', or 20 comoving kpc at the redshift of the DLA. Follow-up spectra with the Low Resolution Imaging Spectrometer on the Keck telescope reveal that none of the nearby galaxies are at the redshift of the DLA. The spiral galaxy is identified as the host galaxy of the QSO based on the near perfect alignment of the nucleus and disk of the galaxy as well as spectra of an H II region showing emission lines at the QSO redshift. A small feature appears 0.''70 from the nucleus of the QSO after point-spread function subtraction, providing another candidate for the host galaxy of the DLA system. Even with these supporting data, we are unable to unambiguously identify the host galaxy of the DLA, exemplifying some of the difficulties in determining DLA hosts even at low redshift.« less
GAS MOTION STUDY OF Ly{alpha} EMITTERS AT z {approx} 2 USING FUV AND OPTICAL SPECTRAL LINES {sup ,}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, Takuya; Shimasaku, Kazuhiro; Nakajima, Kimihiko
2013-03-01
We present the results of Magellan/MMIRS and Keck/NIRSPEC spectroscopy for five Ly{alpha} emitters (LAEs) at z {approx_equal} 2.2 for which high-resolution FUV spectra from Magellan/MagE are available. We detect nebular emission lines including H{alpha} on the individual basis and low-ionization interstellar (LIS) absorption lines in a stacked FUV spectrum, and measure average offset velocities of the Ly{alpha} line, {Delta}v {sub Ly{alpha}}, and LIS absorption lines, {Delta}v {sub abs}, with respect to the systemic velocity defined by the nebular lines. For a sample of eight z {approx} 2-3 LAEs without active galactic nucleus from our study and the literature, we obtainmore » {Delta}v {sub Ly{alpha}} = 175 {+-} 35 km s{sup -1}, which is significantly smaller than that of Lyman-break Galaxies (LBGs), {Delta}v {sub Ly{alpha}} {approx_equal} 400 km s{sup -1}. The stacked FUV spectrum gives {Delta}v {sub abs} = -179 {+-} 73 km s{sup -1}, comparable to that of LBGs. These positive {Delta}v {sub Ly{alpha}} and negative {Delta}v {sub abs} suggest that LAEs also have outflows. In contrast to LBGs, however, the LAEs' {Delta}v {sub Ly{alpha}} is as small as |{Delta}v {sub abs}|, suggesting low neutral hydrogen column densities. Such a low column density with a small number of resonant scattering may cause the observed strong Ly{alpha} emission of LAEs. We find an anti-correlation between Ly{alpha} equivalent width (EW) and {Delta}v {sub Ly{alpha}} in a compilation of LAE and LBG samples. Although its physical origin is not clear, this anti-correlation result appears to challenge the hypothesis that a strong outflow, by means of a reduced number of resonant scattering, produces a large EW. If LAEs at z > 6 have similarly small {Delta}v {sub Ly{alpha}} values, constraints on the reionization history derived from the Ly{alpha} transmissivity may need to be revised.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Jeremy; Macdonald, Erin P.; Haynes, Martha P.
2011-11-20
We present the results of a pilot survey for neutral hydrogen (H I) 21 cm absorption in the Arecibo Legacy Fast Arecibo L-Band Feed Array (ALFALFA) Survey. This project is a wide-area 'blind' search for H I absorption in the local universe, spanning -650 km s{sup -1} < cz < 17, 500 km s{sup -1} and covering 517.0 deg{sup 2} (7% of the full ALFALFA survey). The survey is sensitive to H I absorption lines stronger than 7.7 mJy (8983 radio sources) and is 90% complete for lines stronger than 11.0 mJy (7296 sources). The total redshift interval sensitive tomore » all damped Ly{alpha} (DLA) systems (N{sub H{sub i}}{>=}2 Multiplication-Sign 10{sup 20} cm{sup -2}) is {Delta}z = 7.0 (129 objects, assuming T{sub s} = 100 K and covering fraction unity); for super-DLAs (N{sub H{sub i}}{>=}2 Multiplication-Sign 10{sup 21} cm{sup -2}) it is {Delta}z = 128.2 (2353 objects). We re-detect the intrinsic H I absorption line in UGC 6081 but detect no intervening absorption line systems. We compute a 95% confidence upper limit on the column density frequency distribution function f(N{sub H{sub i}},X) spanning four orders of magnitude in column density, 10{sup 19} (T{sub s} /100 K) (1/f) cm{sup -2}
2003-09-20
is defined at 3000 km s1 by the outer boundary of the Virgo cluster (Binggeli, Popescu, & Tammann 1993). We note that it is an LSB galaxy, with LB... Research Laboratory, 4555 OverlookAvenue SW, Code 7600A,Washington, DC 20375 Eric M. Monier Department of Astronomy, Ohio State University, Columbus...Association of Universities for Research in Astronomy (AURA), Inc. (WIYN is a joint facility of University of Wisconsin, Indiana University, Yale University
IUE detection of bursts of H Ly-alpha emission from Saturn
NASA Technical Reports Server (NTRS)
Clarke, J. T.; Moos, H. W.; Atreya, S. K.; Lane, A. L.
1981-01-01
A new investigation is reported of the potential sources of Ly-alpha emission in a series of observations of the Saturnian system carried out between January and July 1980 using the short wavelength spectrograph of the IUE Observatory. It is noted that north-south maps of the Ly-alpha emission across the planet disk show pronounced spatial asymmetries in emission brightness. These asymmetries vary to a marked extent on a time scale of days and are interpreted as bursts of Ly-alpha emission of as much as 1 kR brightness averaged over a 6 x 10 arcsec area, above a constant planetary emission level of 700-800 R. In fact, the Ly-alpha emission peaks manifest themselves as essentially point source features in these data; it is pointed out that if the emitting region is smaller than the 6 x 10 arcsec instrumental resolution, the surface brightness must be proportionally higher.
DIFFUSE Ly{alpha} EMITTING HALOS: A GENERIC PROPERTY OF HIGH-REDSHIFT STAR-FORMING GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steidel, Charles C.; Bogosavljevic, Milan; Shapley, Alice E.
2011-08-01
Using a sample of 92 UV continuum-selected, spectroscopically identified galaxies with (z) = 2.65, all of which have been imaged in the Ly{alpha} line with extremely deep narrow-band imaging, we examine galaxy Ly{alpha} emission profiles to very faint surface brightness limits. The galaxy sample is representative of spectroscopic samples of Lyman break galaxies (LBGs) at similar redshifts in terms of apparent magnitude, UV luminosity, inferred extinction, and star formation rate and was assembled without regard to Ly{alpha} emission properties. Approximately 45% (55%) of the galaxy spectra have Ly{alpha} appearing in net absorption (emission), with {approx_equal} 20% satisfying commonly used criteriamore » for the identification of 'Ly{alpha} emitters' (LAEs; W{sub 0}(Ly{alpha}) {>=} 20 A). We use extremely deep stacks of rest-UV continuum and continuum-subtracted Ly{alpha} images to show that all sub-samples exhibit diffuse Ly{alpha} emission to radii of at least 10'' ({approx}80 physical kpc). The characteristic exponential scale lengths for Ly{alpha} line emission exceed that of the {lambda}{sub 0} = 1220 A UV continuum light by factors of {approx}5-10. The surface brightness profiles of Ly{alpha} emission are strongly suppressed relative to the UV continuum light in the inner few kpc, by amounts that are tightly correlated with the galaxies' observed spectral morphology; however, all galaxy sub-subsamples, including that of galaxies for which Ly{alpha} appears in net absorption in the spectra, exhibit qualitatively similar diffuse Ly{alpha} emission halos. Accounting for the extended Ly{alpha} emission halos, which generally would not be detected in the slit spectra of individual objects or with typical narrow-band Ly{alpha} imaging, increases the total Ly{alpha} flux (and rest equivalent width W{sub 0}(Ly{alpha})) by an average factor of {approx}5, and by a much larger factor for the 80% of LBGs not classified as LAEs. We argue that most, if not all, of the observed Ly{alpha} emission in the diffuse halos originates in the galaxy H II regions but is scattered in our direction by H I gas in the galaxy's circum-galactic medium. The overall intensity of Ly{alpha} halos, but not the surface brightness distribution, is strongly correlated with the emission observed in the central {approx}1''-more luminous halos are observed for galaxies with stronger central Ly{alpha} emission. We show that whether or not a galaxy is classified as a giant 'Ly{alpha} blob' (LAB) depends sensitively on the Ly{alpha} surface brightness threshold reached by an observation. Accounting for diffuse Ly{alpha} halos, all LBGs would be LABs if surveys were sensitive to 10 times lower Ly{alpha} surface brightness thresholds; similarly, essentially all LBGs would qualify as LAEs.« less
KECK ECHELLETTE SPECTROGRAPH AND IMAGER OBSERVATIONS OF METAL-POOR DAMPED Ly{alpha} SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penprase, Bryan E.; Toro-Martinez, Irene; Beeler, Daniel J.
2010-09-20
We present the first results from a survey of SDSS quasars selected for strong H I damped Ly{alpha} (DLA) absorption with corresponding low equivalent width absorption from strong low-ion transitions (e.g., C II {lambda}1334 and Si II {lambda}1260). These metal-poor DLA candidates were selected from the SDSS fifth release quasar spectroscopic database, and comprise a large new sample for probing low-metallicity galaxies. Medium-resolution echellette spectra from the Keck Echellette Spectrograph and Imager spectrograph for an initial sample of 35 systems were obtained to explore the metal-poor tail of the DLA distribution and to investigate the nucleosynthetic patterns at these metallicities.more » We have estimated saturation corrections for the moderately underresolved spectra, and systems with very narrow Doppler parameters (b {<=} 5 km s{sup -1}) will likely have underestimated abundances. For those systems with Doppler parameters b > 5 km s{sup -1}, we have measured low-metallicity DLA gas with [X/H] <-2.4 for at least one of C, O, Si, or Fe. Assuming non-saturated components, we estimate that several DLA systems have [X/H] <-2.8, including five DLA systems with both low equivalent widths and low metallicity in transitions of both C II and O I. All of the measured DLA metallicities, however, exceed or are consistent with a metallicity of at least 1/1000 of solar, regardless of the effects of saturation in our spectra. Our results indicate that the metal-poor tail of galaxies at z {approx} 3 drops exponentially at [X/H] {approx}<-3. If the distribution of metallicity is Gaussian, the probability of identifying interstellar medium gas with lower abundance is extremely small, and our results suggest that DLA systems with [X/H] < -4.0 are extremely rare, and could comprise only 8 x 10{sup -7} of DLA systems. The relative abundances of species within these low-metallicity DLA systems are compared with stellar nucleosynthesis models, and are consistent with stars having masses of 30 M{sub sun} < M{sub *} < 100 M{sub sun}. The observed ratio of [C/O] for values of [O/H] <-2.5 exceeds values seen in moderate metallicity DLA systems, and also exceeds theoretical nucleosynthesis predictions for higher mass Population III stars. We also have observed a correlation between the column density N(C IV) with [Si/H] metallicity, suggestive of a trend between mass of the DLA system and its metallicity.« less
Lick slit spectra of thirty-eight objective prism quasar candidates and low metallicity halo stars
NASA Technical Reports Server (NTRS)
Tytler, David; Fan, Xiao-Ming; Junkkarinen, Vesa T.; Cohen, Ross D.
1993-01-01
Lick Observatory slit spectra of 38 objects which were claimed to have pronounced UV excess and emission lines are presented. Eleven QSOs, four galaxies at z of about 0.1, 22 stars, and one unidentified object with a low S/N spectrum were found. Of 11 objects which Zhan and Chen (1987, 1989) suggested were QSO with z(prism) not greater than 2.8; eight are QSOs. Six of the QSOs show absorption systems, including Q0000+027A with a relatively strong associated C IV absorption system, and Q0008+008 with a damped Ly-alpha system with an H I column density of 10 exp 21/sq cm. The equivalent widths of the Ca II K line, the G band, and the Balmer lines in 10 stars with the best spectra are measured, and metallicities are derived. Seven of them are in the range -2.5 to -1.7, while the others are less metal-poor.
THE LYMAN ALPHA REFERENCE SAMPLE: EXTENDED LYMAN ALPHA HALOS PRODUCED AT LOW DUST CONTENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, Matthew; Oestlin, Goeran; Duval, Florent
2013-03-10
We report on new imaging observations of the Lyman alpha emission line (Ly{alpha}), performed with the Hubble Space Telescope, that comprise the backbone of the Lyman alpha Reference Sample. We present images of 14 starburst galaxies at redshifts 0.028 < z < 0.18 in continuum-subtracted Ly{alpha}, H{alpha}, and the far ultraviolet continuum. We show that Ly{alpha} is emitted on scales that systematically exceed those of the massive stellar population and recombination nebulae: as measured by the Petrosian 20% radius, R{sub P20}, Ly{alpha} radii are larger than those of H{alpha} by factors ranging from 1 to 3.6, with an average ofmore » 2.4. The average ratio of Ly{alpha}-to-FUV radii is 2.9. This suggests that much of the Ly{alpha} light is pushed to large radii by resonance scattering. Defining the Relative Petrosian Extension of Ly{alpha} compared to H{alpha}, {xi}{sub Ly{alpha}} = R {sup Ly{alpha}}{sub P20}/R {sup H{alpha}}{sub P20}, we find {xi}{sub Ly{alpha}} to be uncorrelated with total Ly{alpha} luminosity. However, {xi}{sub Ly{alpha}} is strongly correlated with quantities that scale with dust content, in the sense that a low dust abundance is a necessary requirement (although not the only one) in order to spread Ly{alpha} photons throughout the interstellar medium and drive a large extended Ly{alpha} halo.« less
Studying Lyman-alpha escape and reionization in Green Pea galaxies
NASA Astrophysics Data System (ADS)
Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Gronke, Max; Leitherer, Claus; Wofford, Aida; Dijkstra, Mark
2017-01-01
Green Pea galaxies are low-redshift galaxies with extreme [OIII]5007 emission line. We built the first statistical sample of Green Peas observed by HST/COS and used them as analogs of high-z Lyman-alpha emitters to study Ly-alpha escape and Ly-alpha sizes. Using the HST/COS 2D spectra, we found that Ly-alpha sizes of Green Peas are larger than the UV continuum sizes. We found many correlations between Ly-alpha escape fraction and galactic properties -- dust extinction, Ly-alpha kinematic features, [OIII]/[OII] ratio, and gas outflow velocities. We fit an empirical relation to predict Ly-alpha escape fraction from dust extinction and Ly-alpha red-peak velocity. In the JWST era, we can use this relation to derive the IGM HI column density along the line of sight of each high-z Ly-alpha emitter and probe the reionization process.
The theory of QSO absorption line systems and their relationship to the galaxies
NASA Technical Reports Server (NTRS)
Charlton, Jane
1993-01-01
The fundamental goal of this effort is to paint a picture of what the Ly-alpha forest clouds are and how they are distributed in space. Progress during the first phase of this program involved development of the 'Cheshire Cat Model' of Ly-alpha clouds in which systems over a large range of column densities are produced by disks with somewhat smaller column densities than those of normal galaxies. A prediction of the slab model of Ly-alpha clouds was confirmed by a new observational result, and the comparison of models to the new data allowed an estimate of the pressure of the intergalactic medium. This result should be forthcoming in pre-print form within the next month. The various results will now be described in more detail.
QSO Lyalpha Absorption Lines in Galaxy Superclusters and Voids
NASA Astrophysics Data System (ADS)
Stocke, J. T.; Shull, J. M.; Penton, S.; Burks, G.; Donahue, M.
1993-12-01
We have used the Hubble Space Telescope (HST) Goddard High Resolution Spectrograph (GHRS) to search for Lyalpha absorption clouds in nearby galaxy voids (cz <= 10,000 km s(-1) ). Thus far, we have obtained GHRS spectra (G160M, 1225 -- 1255 Angstroms, 0.25 Angstroms resolution) of three very bright Active Galactic Nuclei, Mrk 501, I Zw I, and Mrk 335, at V <= 14.5. We find 4 probable (4.0 sigma - 4.5 sigma ) and 4 definite (5 sigma - 16 sigma ) Lyalpha absorption lines, with equivalent widths W_λ = 50 - 200 m Angstroms, corresponding to column densities N(H I) = 10(13) -- 10(14) cm(-2) , assuming a typical Doppler parameter of b = 25 km s(-1) . Based on an updated version of the CfA redshift survey (Huchra and Clemens, private communication), most of these Lyalpha systems appear to be associated with supercluster - sized ``strings'' of galaxies similar to the ``Great Wall''. Toward Mrk 501, the nearest bright galaxy at the redshift of the strongest (200 m Angstroms) Lyalpha cloud lies 500 h75(-1) kpc off the line of sight. Models of H I disks exposed to the intergalactic ionizing radiation field (Dove & Shull 1994, ApJ, 423, in press) show that the N(H I) = 10(13) cm(-2) contour in a typical spiral galaxy is reached at 100 kpc radial extent. Thus, the Lyalpha absorbers associated with galaxy-string systems may be the result of H I in an extended halo, in dwarf satellite galaxies (M_B > -15), or in tidally-stripped gas. Most importantly for cosmological origins of baryons, one (4.3 sigma ) Lyalpha absorption line in the spectrum of Mrk 501 lies within the galaxy void in the foreground of the ``Great Wall''. The nearest bright galaxy, to a level M_B <= -18.5 for H_0 = 75 km s(-1) Mpc(-1) , is more than 5 Mpc away. A pencil-beam survey of faint galaxies to M_B = -16.0 finds no galaxy within 100 h75(-1) kpc of the line of sight, at or near the absorber redshift.
The Local Ly(alpha) Forest: Association of Clouds with Superclusters and Voids
NASA Technical Reports Server (NTRS)
Stocke, John T.; Shull, J. Michael; Penton, Steve; Donahue, Megan; Carilli, Chris
1995-01-01
The Goddard High Resolution Spectrograph aboard the Hubble Space Telescope was used with the G160M grating to obtain high-resolution (6.2 A) spectra of three very bright active galactic nuclei located behind voids in the nearby distribution of bright galaxies (i.e., CfA and Arecibo redshift survey regions). A total of eight definite (greater than or equal to 4 sigma) Ly(alpha) absorption lines were discovered ranging in equivalent width from 26 to 240 mA at Galactocentric velocities 1740-7740 km/s. Of these eight systems, we locate seven in supercluster structures and one, in the sight line of Mrk 501 at 7740 km/s, in a void. In addition, one of two tentative (3-4 sigma) Ly(alpha) absorption lines are found in voids. Thus, the voids are not entirely devoid of matter, and not all Ly(alpha) clouds are associated with galaxies. Also, since the path lengths through voids and superclusters probed by our observations thus far are nearly equal, there is some statistical evidence that the Ly(alpha) clouds avoid the voids. The nearest galaxy neighbors to these absorbing clouds are 0.45-5.9 Mpc away, too far to be physically associated by most models. The lower equivalent width absorption lines (W(sub lambda) less than or equal to 100 mA) are consistent with random locations with respect to galaxies and may be truly intergalactic, similar to the bulk of the Ly(alpha) forest seen at high z. These results on local Ly(alpha) clouds are in full agreement with those found by Morris et al. (1993) for the 3C 273 sight line but are different from the results for higher equivalent width systems where closer cloud-galaxy associations were found by Lanzetta et al. (1994). Pencil-beam optical and 21 cm radio line observations of the area of sky surrounding Mrk 501 fail to find faint galaxies near the velocities of the Ly(alpha) clouds in that sight line. Specifically, for the 'void absorption' system at 7740 km/s, we find no galaxy at comparable redshift to the absorber within 100 h(sub 75)(sup -1) kpc (H(sub 0) = 75 h(sub 75) km/s Mpc(sup -1)) with an absolute magnitude of B less than or equal to - 16 and no object with H I mass greater than or equal to 7 x 10(exp 8) h(sub 75)(sup -2) M(solar) within 500 h(sub 75)(sup -1) kpc. Thus, neither a faint optical galaxy nor a gas-rich, optically dim or low surface brightness galaxy is present close to this absorber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, Girish; Hennawi, Joseph F.; Rollinde, Emmanuel
2013-08-01
Observations of damped Ly{alpha} absorbers (DLAs) can be used to measure gas-phase metallicities at large cosmological look-back times with high precision. Furthermore, relative abundances can still be measured accurately deep into the reionization epoch (z > 6) using transitions redward of Ly{alpha}, even though Gunn-Peterson absorption precludes measurement of neutral hydrogen. In this paper, we study the chemical evolution of DLAs using a model for the coupled evolution of galaxies and the intergalactic medium (IGM), which is constrained by a variety of observations. Our goal is to explore the influence of Population III stars on the abundance patterns of DLAsmore » to determine the degree to which abundance measurements can discriminate between different Population III stellar initial mass functions (IMFs). We include effects, such as inflows onto galaxies due to cosmological accretion and outflows from galaxies due to supernova feedback. A distinct feature of our model is that it self-consistently calculates the effect of Population III star formation on the reionization of an inhomogeneous IGM, thus allowing us to calculate the thermal evolution of the IGM and implement photoionization feedback on low-mass galaxy formation. We find that if the critical metallicity of Population III to II/I transition is {approx}< 10{sup -4} Z{sub Sun }, then the cosmic Population III star formation rate drops to zero for z < 8. Nevertheless, at high redshift (z {approx} 6), chemical signatures of Population III stars remain in low-mass galaxies (halo mass {approx}< 10{sup 9} M{sub Sun }). This is because photoionization feedback suppresses star formation in these galaxies until relatively low redshift (z {approx} 10), and the chemical record of their initial generation of Population III stars is retained. We model DLAs as these low-mass galaxies, and assign to them a mass-dependent H I absorption cross-section in order to predict the expected distribution of DLA abundance ratios. We find that these distributions are anchored toward abundance ratios set by Population II supernova yields, but they exhibit a tail which depends significantly on the Population III IMF for z > 5. Thus, a sample of DLA metallicity and relative abundance measurements at high redshift holds the promise to constrain Population III enrichment and the Population III IMF. We find that a sample of just 10 DLAs with relative abundances measured to an accuracy of 0.1 dex is sufficient to constrain the Population III IMF at 4{sigma}. These constraints may prove stronger than other probes of Population III enrichment, such as metal-poor stars and individual metal-poor DLAs. Our results provide a global picture of the thermal, ionization, and chemical evolution of the universe, and have the potential to rule out certain Population III scenarios.« less
A SUCCESSFUL BROADBAND SURVEY FOR GIANT Ly{alpha} NEBULAE. II. SPECTROSCOPIC CONFIRMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prescott, Moire K. M.; Dey, Arjun; Jannuzi, Buell T., E-mail: mkpresco@physics.ucsb.edu
2013-01-01
Using a systematic broadband search technique, we have carried out a survey for large Ly{alpha} nebulae (or Ly{alpha} {sup b}lobs{sup )} at 2 {approx}< z {approx}< 3 within 8.5 deg{sup 2} of the NOAO Deep Wide-Field Survey Booetes field, corresponding to a total survey comoving volume of Almost-Equal-To 10{sup 8} h {sup -3} {sub 70} Mpc{sup 3}. Here, we present our spectroscopic observations of candidate giant Ly{alpha} nebulae. Of 26 candidates targeted, 5 were confirmed to have Ly{alpha} emission at 1.7 {approx}< z {approx}< 2.7, 4 of which were new discoveries. The confirmed Ly{alpha} nebulae span a range of Ly{alpha}more » equivalent widths, colors, sizes, and line ratios, and most show spatially extended continuum emission. The remaining candidates did not reveal any strong emission lines, but instead exhibit featureless, diffuse, blue continuum spectra. Their nature remains mysterious, but we speculate that some of these might be Ly{alpha} nebulae lying within the redshift desert (i.e., 1.2 {approx}< z {approx}< 1.6). Our spectroscopic follow-up confirms the power of using deep broadband imaging to search for the bright end of the Ly{alpha} nebula population across enormous comoving volumes.« less
Exploring Damped Ly Alpha System Host Galaxies Using Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Toy, Vicki L.; Cucchiara, Antonino; Veilleux, Sylvain; Fumagalli, Michele; Rafelski, Marc; Rahmati, Alireza; Cenko, S. Bradley; Capone, John I.; Pasham, Dheeraj R.
2016-01-01
We present a sample of 45 Damped Ly-Alpha system [DLA; H I-N is greater than or equal to 2 x 10(exp. 20) cm(exp. -2)] counterparts (33 detections, 12 upper limits) which host gamma-ray bursts (GRB-DLAs) in order to investigate star formation and metallicity within galaxies hosting DLAs. Our sample spans z is approx. 2 - 6 and is nearly three times larger than any previously detected DLA counterparts survey based on quasar line-of-sight searches (QSO-DLAs). We report star formation rates (SFRs) from rest-frame UV photometry and spectral energy distribution modeling. We find that DLA counterpart SFRs are not correlated with either redshift or H I column density. Thanks to the combination of Hubble Space Telescope and ground-based observations, we also investigate DLA host star formation efficiency. Our GRB-DLA counterpart sample spans both higher efficiency and low efficiency star formation regions compared to the local Kennicutt-Schmidt relation, local star formation laws, and z is approximately 3 cosmological simulations. We also compare the depletion times of our DLA hosts sample to other objects in the local universe; our sample appears to deviate from the star formation efficiencies measured in local spiral and dwarf galaxies. Furthermore, we find similar efficiencies as local inner disks, SMC, and Lyman-break galaxy outskirts. Finally, our enrichment time measurements show a spread of systems with under- and over-abundance of metals, which may suggest that these systems had episodic star formation and a metal enrichment/depletion as a result of strong stellar feedback and/or metal inflow/outflow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennawi, Joseph F.; Prochaska, J. Xavier, E-mail: xavier@ucolick.org
2013-03-20
We have constructed a sample of 29 close projected quasar pairs where the background quasar spectrum reveals absorption from optically thick H I gas associated with the foreground quasar. These unique sightlines allow us to study the quasar circumgalactic medium (CGM) in absorption and emission simultaneously, because the background quasar pinpoints large concentrations of gas where Ly{alpha} emission, resulting from quasar-powered fluorescence, resonant Ly{alpha} scattering, and/or cooling radiation, is expected. A sensitive search (1{sigma} surface-brightness limits of SB{sub Ly{alpha}}{approx_equal}3 Multiplication-Sign 10{sup -18} erg s{sup -1} cm{sup -2} arcsec{sup -2}) for diffuse Ly{alpha} emission in the environments of the foreground (predominantlymore » radio-quiet) quasars is conducted using Gemini/GMOS and Keck/LRIS slit spectroscopy. We fail to detect large-scale {approx}100 kpc Ly{alpha} emission, either at the location of the optically thick absorbers or in the foreground quasar halos, in all cases except a single system. We interpret these non-detections as evidence that the gas detected in absorption is shadowed from the quasar UV radiation due to obscuration effects, which are frequently invoked in unified models of active galactic nuclei. Small-scale R {approx}< 50 kpc extended Ly{alpha} nebulosities are detected in 34% of our sample, which are likely the high-redshift analogs of the extended emission-line regions (EELRs) commonly observed around low-redshift (z < 0.5) quasars. This may be fluorescent recombination radiation from a population of very dense clouds with a low covering fraction illuminated by the quasar. We also detect a compact high rest-frame equivalent width (W{sub Ly{alpha}} > 50 A) Ly{alpha}-emitter with luminosity L{sub Ly{alpha}} = 2.1 {+-} 0.32 Multiplication-Sign 10{sup 41} erg s{sup -1} at small impact parameter R = 134 kpc from one foreground quasar, and argue that it is more likely to result from quasar-powered fluorescence, than simply be a star-forming galaxy clustered around the quasar. Our observations imply that much deeper integrations with upcoming integral-field spectrometers such as MUSE and KCWI will be able to routinely detect a diffuse Ly{alpha} glow around bright quasars on scales R {approx} 100 kpc and thus directly image the CGM.« less
A quadruple quasar coincident with a giant Ly-alpha nebula and a protocluster at z=2
NASA Astrophysics Data System (ADS)
Vignali, Cristian
2016-09-01
We propose to observe the only known quadruple AGN system in the Universe, embedded in a giant Ly-alpha nebula at z 2. These active nuclei and the large number of Ly-alpha emitting galaxies at the same redshift are clear indications that this is one of the most overdense protoclusters known z 2. We request a 140 ks Chandra exposure to (a) define the basic X-ray properties of all the AGN and then their bolometric luminosities and Eddington ratios, and compare these with those of "isolated" quasars at similar redshifts/luminosities; (b) detect the hot gas emission in the protocluster. Chandra is unique for this investigation: the close (few arcsec) distance of some of the AGN needs high spatial resolution, and the extended emission requires low background contribution.
Polarimetry of the HI Lyman-alpha for coronal magnetic field diagnostics
NASA Technical Reports Server (NTRS)
Fineschi, Silvano; Hoover, Richard B.; Zukic, Muamer; Kim, Jongmin; Walker, Arthur B. C., Jr.; Baker, Phillip, C.
1993-01-01
We discuss and analyze the possible sources of observational and instrumental uncertainty that can be encountered in measuring magnetic fields of the solar corona through polarimetric observations of the Hanle effect of the coronal Ly-alpha line. The Hanle effect is the modification of the linear polarization of a resonantly scattered line, due to the presence of a magnetic field. Simulated observations are used to examine how polarimetric measurements of this effect are affected by the line-of-sight integration, the electron collisions, and the Ly-alpha geocorona. We plan to implement the coronal magnetic field diagnostics via the Ly-alpha Hanle effect using an all-reflecting Ly-alpha coronagraph/polarimeter (Ly-alphaCoPo) which employs reflecting multilayer mirrors, polarizers, and filters. We discuss here the requirements for such an instrument, and analyze the sources of instrumental uncertainty for polarimetric observations of the coronal Ly-alpha Hanle effect. We conclude that the anticipated polarization signal from the corona and the expected performance of the Ly-alphaCoPo instrument are such that the Ly-alpha Hanle effect method for coronal field diagnostics is feasible.
Intergalactic Hydrogen Clouds at Low Redshift: Connections to Voids and Dwarf Galaxies
NASA Technical Reports Server (NTRS)
Shull, J. Michael; Stocke, John T.; Penton, Steve
1996-01-01
We provide new post-COSTAR data on one sightline (Mrk 421) and updated data from another (I Zw 1) from our Hubble Space Telescope (HST) survey of intergalactic Ly(alpha) clouds located along sightlines to four bright quasars passing through well-mapped galaxy voids (16000 km/s pathlength) and superclusters (18000 km/s). We report two more definite detections of low-redshift Ly(alpha) clouds in voids: one at 3047 km/s (heliocentric) toward Mrk 421 and a second just beyond the Local Supercluster at 2861 km/s toward I Zw 1, confirming our earlier discovery of Ly(alpha) absorption clouds in voids (Stocke et al., ApJ, 451, 24). We have now identified ten definite and one probable low-redshift neutral hydrogen absorption clouds toward four targets, a frequency of approximately one absorber every 3400 km/s above 10(exp 12.7/sq cm column density. Of these ten absorption systems, three lie within voids; the probable absorber also lies in a void. Thus, the tendency of Ly(alpha) absorbers to 'avoid the voids' is not as clear as we found previously. If the Ly(alpha) clouds are approximated as homogeneous spheres of 100 kpc radius, their masses are approximately 10(exp 9)solar mass (about 0.01 times that of bright L* galaxies) and they are 40 times more numerous, comparable to the density of dwarf galaxies and of low-mass halos in numerical CDM simulations. The Ly(alpha) clouds contribute a fraction Omega(sub cl)approximately equals 0.003/h(sub 75) to the closure density of the universe, comparable to that of luminous matter. These clouds probably require a substantial amount of nonbaryonic dark matter for gravitational binding. They may represent extended haloes of low-mass protogalaxies which have not experienced significant star formation or low-mass dwarf galaxies whose star formation ceased long ago, but blew out significant gaseous material.
NASA Technical Reports Server (NTRS)
Martin, Crystal L.; Dijkstra, Mark; Henry, Alaina L.; Soto, Kurt T.; Danforth, Charles W.; Wong, Joseph
2015-01-01
We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Ly(alpha) emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Ly(alpha) profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding -1000 km/s in three H II-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Ly(alpha) line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Ly(alpha) attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Ly(alpha) photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Ly(alpha) and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Ly(alpha) emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1-1% of the radiative cooling from the hot winds in the H II-dominated ULIRGs.
Lyman-alpha observations of Comet Kohoutek 1973 XII with Copernicus
NASA Technical Reports Server (NTRS)
Drake, J. F.; Jenkins, E. B.; Bertaux, J. L.; Festou, M.; Keller, H. U.
1976-01-01
Comet Kohoutek 1973 XII was observed with a telescope-spectrometer on the Copernicus satellite on six occasions over a 1-month period starting on January 29, 1974. Positive detection of the cometary Ly-alpha emission profile was obtained on January 29 and February 2. Earlier observations of the geocoronal Ly-alpha emission profile allowed an instrumental intensity calibration and confirmation of the computed instrumental profile for an extended source at the Ly-alpha wavelength. After allowing for broadening by the instrument, a hydrogen-outflow velocity of about 10.6 km/s is derived from the width of the Ly-alpha emission on January 29. The intensity calibration combined with an appropriate cometary model led to cometary water-production rates for January 29 and February 2. Only upper limits were obtained for Ly-alpha on and after February 14. Searches for OH and D led to negative results.
Copernicus observations of Ly-alpha and Mg II emission from HR 1099 /V711 Tauri/ and UX Ari
NASA Technical Reports Server (NTRS)
Weiler, E. J.
1978-01-01
Ultraviolet observations of two RS CVn binaries obtained with Copernicus are described. High-resolution (0.05 A) U1 observations indicate that both HR 1099 and UX Ari display broad Ly-alpha emission. The Ly-alpha emission strength from HR 1099 is variable and seems to be correlated with orbital phase, while the UX Ari results indicate no significant variation. Moderate resolution (0.51 A) V2 scans of both systems show variable Mg II h and k emission-line profiles which usually matched the velocity of the more active star in each binary. Additionally, displaced emission components were seen at velocities of up to + or - 250 km/s, indicative of high-velocity gas motions. The radial velocities of these emission features from HR 1099 are marginally correlated with orbital phase. Highly active and variable chromospheric phenomena are found to be the most consistent explanation of these results.
Toward unbiased determination of the redshift evolution of Lyman-alpha forest clouds
NASA Technical Reports Server (NTRS)
Lu, Limin; Zuo, Lin
1994-01-01
The possibility of using D(sub A), the mean depression of a quasar spectrum due to Ly-alpha forest absorption, to study the number density evolution of the Ly-alpha forest clouds is examined in some detail. Current D(sub A) measurements are made against a continuum that is a power-law extrapolation from the continuum longward of Ly-alpha emission. Compared to the line-counting approach, the D(sub A)-method has the advantage that the D(sub A) measurements are not affected by line-blending effects. However, we find using low-redshift quasar spectra obtained with the Hubble Space Telescope (HST), where the true continuum in the Ly-alpha forest can be estimated fairly reliably because of the much lower density of the Ly-alpha forest lines, that the extrapolated continuum often deviates systematically from the true continuum in the forest region. Such systematic continuum errors introduce large errors in the D(sub A) measurements. The current D(sub A) measurements may also be significantly biased by the possible presence of the Gunn-Peterson absorption. We propose a modification to the existing D(sub A)-method, namely, to measure D(sub A) against a locally established continuum in the Ly-alpha forest. Under conditions that the quasar spectrum has good resolution and S/N to allow for a reliable estimate of the local continuum in the Ly-alpha forest, the modified D(sub A) measurements should be largely free of the systematic uncertainties suffered by the existing D(sub A) measurements. We also introduce a formalism based on the work of Zuo (1993) to simplify the application of the D(sub A)-method(s) to real data. We discuss the merits and limitations of the modified D(sub A)-method, and conclude that it is a useful alternative. Our findings that the extrapolated continuum from longward of Ly-alpha emission often deviates systematically from the true continuum in the Ly-alpha forest present a major problem in the study of the Gunn-Peterson absorption.
NASA Astrophysics Data System (ADS)
Ballester, G. E.; Ben-Jaffel, L.; Clarke, J. T.; Gladstone, R.; Miller, S.; Trafton, L. M.; Trauger, J. T.
1998-09-01
An excess of H-Lyalpha emission from Uranus' sunlit hemisphere was detected by the IUE satellite in 1982, and some excess was confirmed with the Voyager 2 UVS during the 1986 encounter with Uranus. Radiative transfer modeling has shown that the Voyager H-Lyalpha observations did require emission additional to the scattered solar and IPM H-Lyalpha , and thus produced by internal processes in the upper atmosphere, such as aurora or other unidentified mechanisms. Subsequent IUE observations showed very large short- and long-term intensity variations that support an auroral source. However, although Voyager did identify UV auroral emissions by H_2 in the sunlit hemisphere, it did not detect a large H-Lyalpha auroral emission there, making it impossible to provide conclusive evidence that the H-Lyalpha enhancements observed by IUE are due to aurora. Auroral emissions are spatially confined, and resolution of the emission distribution could yield the needed evidence, or could alternatively provide observational clues to other possible causes of dayglow variations in the upper atmosphere. Uranus intrinsically weak H-Lyalpha emission ( ~ 1600 R on average) had not allowed for such an experiment in the past, but the high sensitivity in the FUV of the Space Telescope Imaging Spectrograph (STIS) on HST has now provided first images of Uranus in the FUV. The observations made on 29-30 July 1998 consisted of a FUV MAMA image in the open mode (25MAMA) and a consecutive image filtering out the H-Lyalpha (F25SRF2) to measure and subtract the disk reflected sunlight above 1250 Ang. A quick look at the data shows the H-Lyalpha emission and disk-reflected sunlight, with additional noise from the geocoronal background. We will present the results from these data, taking advantage of the time-tagging information to subtract the geocoronal background, and modeling of the underlying disk background. Four new observations will hopefully be made before October 1998 which will cover the full planet in longitude, and will use a different technique to improve the s/n of the H-Lyalpha detection.
A Ly{alpha} GALAXY AT REDSHIFT z = 6.944 IN THE COSMOS FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhoads, James E.; Hibon, Pascale; Malhotra, Sangeeta
2012-06-20
Ly{alpha} emitting galaxies can be used to study cosmological reionization, because a neutral intergalactic medium (IGM) scatters Ly{alpha} photons into diffuse halos whose surface brightness falls below typical survey detection limits. Here, we present the Ly{alpha} emitting galaxy LAE J095950.99+021219.1, identified at redshift z = 6.944 in the COSMOS field using narrowband imaging and follow-up spectroscopy with the IMACS instrument on the Magellan I Baade telescope. With a single object spectroscopically confirmed so far, our survey remains consistent with a wide range of IGM neutral fraction at z Almost-Equal-To 7, but further observations are planned and will help clarify themore » situation. Meantime, the object we present here is only the third Ly{alpha}-selected galaxy to be spectroscopically confirmed at z {approx}> 7, and is {approx}2-3 times fainter than the previously confirmed z Almost-Equal-To 7 Ly{alpha} galaxies.« less
Ly-alpha polarimeter design for CLASP rocket experiment
NASA Astrophysics Data System (ADS)
Kubo, M.; Watanabe, H.; Narukage, N.; Ishikawa, R.; Bando, T.; Kano, R.; Tsuneta, S.; Kobayashi, K.; Ichimoto, K.; Trujillo Bueno, J.; Song, D.
2011-12-01
A sounding-rocket program called the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is proposed to be launched in the Summer of 2014. CLASP will observe the upper solar chromosphere in Ly-alpha (121.567 nm), aiming to detect the linear polarization signal produced by scattering processes and the Hanle effect for the first time. The CLASP needs a rotating half-waveplate and a polarization analyzer working at the Ly-alpha wavelength to measure the linear polarization signal. We select Magnesium Fluoride (MgF2) as a material of the optical components because of its birefringent property and high transparency at UV wavelength. We have confirmed that the reflection at the Brewster's Angle of MgF2 plate is a good polarization analyzer for the Ly-alpha line by deriving its ordinary refractive index and extinction coefficient along the ordinary and extraordinary axes. These optical parameters are calculated with a least-square fitting in such a way that the reflectance and transmittance satisfy the Kramers-Kronig relation. The reflectance and transmittance against oblique incident angles for the s-polarized and the p-polarized light are measured using the synchrotron beamline at the Ultraviolet Synchrotron Orbital Radiation Facility (UVSOR). We have also measured a retardation of a zeroth-order waveplate made of MgF2. The thickness difference of the waveplate is 14.57 um.This waveplate works as a half-waveplate at 121.74 nm. From this measurement, we estimate that a waveplate with the thickness difference of 15.71 um will work as a half-waveplate at the Ly-alpha wavelength. We have developed a rotating waveplate - polarization analyzer system called a prototype of CLASP polarimeter, and input the perfect Stokes Q and U signals. The modulation patterns that are consistent with the theoretical prediction are successfully obtained in both cases.
DEEP LBT/LUCI SPECTROSCOPY OF AN Ly{alpha} EMITTER CANDIDATE AT z {approx_equal} 7.7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang Linhua; Bian Fuyan; Fan Xiaohui
2013-07-01
We present deep spectroscopic observations of an Ly{alpha} emitter (LAE) candidate at z {approx_equal} 7.7 using the infrared spectrograph LUCI on the 2 Multiplication-Sign 8.4 m Large Binocular Telescope (LBT). The candidate is the brightest among the four z {approx_equal} 7.7 LAE candidates found in a narrowband imaging survey by Krug et al. Our spectroscopic data include a total of 7.5 hr of integration with LBT/LUCI and are deep enough to significantly (3.2{sigma}-4.9{sigma}) detect the Ly{alpha} emission line of this candidate based on its Ly{alpha} flux 1.2 Multiplication-Sign 10{sup -17} erg s{sup -1} cm{sup -2} estimated from the narrowband photometry.more » However, we do not find any convincing signal at the expected position of its Ly{alpha} emission line, suggesting that this source is not an LAE at z {approx_equal} 7.7. The non-detection in this work, together with the previous studies of z {approx_equal} 7.7 LAEs, puts a strong constraint on the bright-end Ly{alpha} luminosity function (LF) at z {approx_equal} 7.7. We find a rapid evolution of the Ly{alpha} LF from z {approx_equal} 6.5 to 7.7: the upper limit of the z {approx_equal} 7.7 LF is more than five times lower than the z {approx_equal} 6.5 LF at the bright end (f{>=} 1.0 Multiplication-Sign 10{sup -17} erg s{sup -1} cm{sup -2} or L{>=} 6.9 Multiplication-Sign 10{sup 42} erg s{sup -1}). This is likely caused by an increasing neutral fraction in the intergalactic medium that substantially attenuates Ly{alpha} emission at z {approx_equal} 7.7.« less
Towards constraints on the epoch of reionization: A phenomenological approach
NASA Astrophysics Data System (ADS)
Malloy, Matthew
Based on observations of the early Universe, we know that shortly after the Big Bang, the Universe was composed almost entirely of neutral hydrogen and neutral helium. However, observations of nearby quasars suggest that the gas between galaxies today is neutral to less than one part in 104 . Thus, it must be the case that some process occurred that stripped the electrons from almost all atoms in the intergalactic medium. Understanding the timing and nature of this process, dubbed ''reionization'', is one of the great outstanding problems in astrophysics and cosmology today. In this thesis, we develop several methods for utilizing existing and future measurements in order to make progress toward this end. We begin by proposing two novel approaches for searching for signatures of underlying neutral hydrogen in the Lyalpha and Lybeta forest of distant quasars. We show that, if the Universe is >5% neutral at z ~ 5.5, then damping-wing absorption from neutral hydrogen and absorption from primordial deuterium should leave observable imprints in the Lyalpha and Lybeta forest, respectively. Furthermore, the presence of neutral islands should qualitatively alter the size distribution of absorbed regions. We continue by discussing the ability for the intergalactic medium to retain a thermal memory of the reionization process at redshifts z ~ 5, which in turn affects the small-scale structure in the Lyalpha forest. Motivated by this, we model the temperature of the intergalactic medium after reionization and develop a temperature measurement technique that should be able to distinguish between scenarios where reionization ends at z ~ 6 and at z ~ 10. Lastly, we turn our attention to 21-cm observations during reionization. We demonstrate that, while precise mapping of 21-cm emission from neutral hydrogen should be infeasible by first and second generation interferometers, it may be possible to make crude maps of the reionization process and identify individual ionized regions. This would provide us with direct confirmation that we are observing reionization and provide information regarding its timing and the nature of the ionizing sources.
Gas kinematics of Lyman Alpha Blobs at z=2-3
NASA Astrophysics Data System (ADS)
Yang, Yujin
2015-08-01
High-redshift Lyman alpha nebulae (Ly-alpha "blobs", LABs) are the site of massive galaxy formation and their early interaction with the intergalactic medium. Research in the past decade has struggled to make progress on the question of what powers these huge Ly-alpha halos and whether the Ly-alpha-emitting gas is outflowing or infalling. First, I will present our optical and NIR spectroscopic observations for the Ly-alpha and the redshifted nebular emission lines such as [OII], [OIII] and Halpha. Using three independent measures --- the velocity offset between the Ly-alpha line and the nonresonant [O III] or Halpha line, the offset of stacked interstellar metal absorption lines, and the spectrally resolved [O III] line profile --- we study the kinematics of gas along the line of sight to galaxies within each blob center. All these kinematic measures show that there are only weak outflows, therefore excluding gas inflows and extreme hyper/superwinds as a source of the extended Ly-alpha emission. I will also present the first detection of molecular gas from a Ly-alpha blob and our on-going effort to characterize the physical conditions of its ISM. The large velocity gradient (LVG) modeling using PdBI observations of CO(3-2), CO(5-4), CO(7-6), CI(2-1) lines suggests that two-phase medium is required to explain the blob's CO SEDs and dust continuum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhoads, James E.; Malhotra, Sangeeta; Cohen, Seth
We present the faintest spectroscopically confirmed sample of z {approx} 5 Lyman break galaxies (LBGs) to date. The sample is based on slitless grism spectra of the Hubble Ultra Deep Field region from the Grism ACS Program for Extragalactic Science (GRAPES) and Probing Evolution and Reionization Spectroscopically (PEARS) projects, using the G800L grism on the Hubble Space Telescope Advanced Camera for Surveys. We report here confirmations of 39 galaxies, preselected as candidate LBGs using photometric selection criteria. We compare a 'traditional' V-dropout selection, based on the work of Giavalisco et al., to a more liberal one (with V - imore » > 0.9), and find that the traditional criteria are about 64% complete and 81% reliable. We also study the Ly{alpha} emission properties of our sample. We find that Ly{alpha} emission is detected in {approx}1/4 of the sample, and that the liberal V-dropout color selection includes {approx}55% of previously published line-selected Ly{alpha} sources. Finally, we examine our stacked two-dimensional spectra. We demonstrate that strong, spatially extended ({approx}1'') Ly{alpha} emission is not a generic property of these LBGs, but that a modest extension of the Ly{alpha} photosphere (compared to the starlight) may be present in those galaxies with prominent Ly{alpha} emission.« less
Intense Ly-alpha emission from Uranus
NASA Technical Reports Server (NTRS)
Durrance, S. T.; Moos, H. W.
1982-01-01
The existence of intense atomic hydrogen Ly-alpha emission from Uranus is demonstrated here by utilizing the monochromatic imaging capabilities of the International Ultraviolet Explorer (IUE) spectrograph. Observations show increased emission in the vicinity of Uranus superimposed on the geocoronal/interplanetary background. If resonant scattering of solar Ly-alpha is the source of the 1.6 + or - 0.4 kR disk averaged brightness, then very high column densities of atomic H above the absorbing methane are required. Precipitation of trapped charged particles, i.e., aurora, could explain the emissions. This would imply a planetary magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanna, A.; Webb, J. K.; Curran, S. J.
2013-08-01
We report the detection of a strong H I 21 cm absorption system at z = 0.5344, as well as a candidate system at z = 0.3389, in the sight line toward the z = 2.64 quasar MG J0414+0534. This, in addition to the absorption at the host redshift and the other two intervening absorbers, takes the total to four (possibly five). The previous maximum number of 21 cm absorbers detected along a single sight line is two and so we suspect that this number of gas-rich absorbers is in some way related to the very red color of themore » background source. Despite this, no molecular gas (through OH absorption) has yet been detected at any of the 21 cm redshifts, although, from the population of 21 cm absorbers as a whole, there is evidence for a weak correlation between the atomic line strength and the optical-near-infrared color. In either case, the fact that so many gas-rich galaxies (likely to be damped Ly{alpha} absorption systems) have been found along a single sight line toward a highly obscured source may have far-reaching implications for the population of faint galaxies not detected in optical surveys, a possibility which could be addressed through future wide-field absorption line surveys with the Square Kilometer Array.« less
Fan; Strauss; Gunn; Lupton; Carilli; Rupen; Schmidt; Moustakas; Davis; Annis; Bahcall; Brinkmann; Brunner; Csabai; Doi; Fukugita; Heckman; Hennessy; Hindsley; Ivezic; Knapp; Lamb; Munn; Pauls; Pier; Rockosi; Schneider; Szalay; Tucker; York
1999-12-01
We report observations of a luminous unresolved object at redshift z=4.62, with a featureless optical spectrum redward of the Lyalpha forest region, discovered from Sloan Digital Sky Survey commissioning data. The redshift is determined by the onset of the Lyalpha forest at lambda approximately 6800 Å and a Lyman limit system at lambda=5120 Å. A strong Lyalpha absorption system with weak metal absorption lines at z=4.58 is also identified in the spectrum. The object has a continuum absolute magnitude of -26.6 at 1450 Å in the rest frame (h0=0.5, q0=0.5) and therefore cannot be an ordinary galaxy. It shows no radio emission (the 3 sigma upper limit of its flux at 6 cm is 60 µJy), indicating a radio-to-optical flux ratio at least as small as that of the radio-weakest BL Lacertae objects known. It is also not linearly polarized to a 3 sigma upper limit of 4% in the observed I band. Therefore, it is either the most distant BL Lac object known to date, with very weak radio emission, or a new type of unbeamed quasar, whose broad emission line region is very weak or absent.
Spectral Energy Distribution Fitting of Hetdex Pilot Survey Ly-alpha Emitters in Cosmos and Goods-N
NASA Technical Reports Server (NTRS)
Hagen, Alex; Ciardullo, Robin; Cronwall, Caryl; Acquaviva, Viviana; Bridge, Joanna; Zeimann, Gregory R.; Blanc, Guillermo; Bond, Nicholas; Finkelstein, Steven L.; Song, Mimi;
2014-01-01
We use broadband photometry extending from the rest-frame UV to the near-IR to fit the individual spectral energy distributions of 63 bright (L(Ly-alpha) greater than 10(exp 43) erg s(exp -1) Ly-alpha emitting galaxies (LAEs) in the redshift range 1.9 less than z less than 3.6. We find that these LAEs are quite heterogeneous, with stellar masses that span over three orders of magnitude, from 7.5 greater than logM/solar mass less than 10.5. Moreover, although most LAEs have small amounts of extinction, some high-mass objects have stellar reddenings as large as E(B - V ) is approximately 0.4. Interestingly, in dusty objects the optical depths for Ly-alpha and the UV continuum are always similar, indicating that Lya photons are not undergoing many scatters before escaping their galaxy. In contrast, the ratio of optical depths in low-reddening systems can vary widely, illustrating the diverse nature of the systems. Finally, we show that in the star-formation-rate-log-mass diagram, our LAEs fall above the "main-sequence" defined by z is approximately 3 continuum selected star-forming galaxies. In this respect, they are similar to submillimeter-selected galaxies, although most LAEs have much lower mass.
Determining coronal electron temperatures from observations with UVCS/SOHO
NASA Technical Reports Server (NTRS)
Fineschi, S.; Esser, R.; Habbal, S. R.; Karovska, M.; Romoli, M.; Strachan, L.; Kohl, J. L.; Huber, M. C. E.
1995-01-01
The electron temperature is a fundamental physical parameter of the coronal plasma. Currently, there are no direct measurements of this quantity in the extended corona. Observations with the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the upcoming Solar and Heliospheric Observatory (SOHO) mission can provide the most direct determination of the electron kinetic temperature (or, more precisely, the electron velocity distribution along the line of sight). This measurement is based on the observation of the Thomson-scattered Lyman alpha (Ly-alpha) profile. This observation is made particularly challenging by the fact that the integrated intensity of the electron-scattered Ly-alpha line is about 10(exp 3) times fainter than that of the resonantly-scattered Ly-alpha component. In addition, the former is distributed across 50 A (FWHM), unlike the latter that is concentrated in 1 A. These facts impose stringent requirements on the stray-light rejection properties of the coronagraph/spectrometer, and in particular on the requirements for the grating. We make use of laboratory measurements of the UVCS Ly-alpha grating stray-light, and of simulated electron-scattered Ly-alpha profiles to estimate the expected confidence levels of electron temperature determination. Models of different structures typical of the corona (e.g., streamers, coronal holes) are used for this parameter study.
High-Velocity Ly(Alpha) Emission from SMR 1987A
NASA Technical Reports Server (NTRS)
Michael, Eli; McCray, Richard; Borkowski, Kazimierz J.; Pun, Chu S. J.; Sonneborn, George
1998-01-01
The high-velocity Ly(Alpha) emission from SN 1987A observed with the Space Telescope Imaging Spectrograph (STIS) evidently comes from a reverse shock formed where the outer envelope of SN 1987A strikes ionized gas inside the inner circumstellar ring. The observations can be explained by a simple kinematic model, in which the Ly(Alpha) emission comes from hydrogen atoms with radial velocity approximately 15,000 km s(exp -1) crossing a reverse shock in the shape of a slightly prolate ellipsoid with equatorial radius 4.8 x 10(exp 17) cm or approximately 80% of the distance to the inner surface of the inner ring. N v double Lambda 1239, 1243 emission, if present, has a net luminosity approximately less than 30% times that of the Ly(Alpha) emission. Future STIS observations should enable us to predict the time of impact with the inner ring and to determine unambiguously whether or not N v emission is present. These observations will offer a unique opportunity to probe the structure of SN 1987A's circumstellar environment and the hydrodynamics and kinetics of very fast shocks.
NASA Technical Reports Server (NTRS)
Fumagalli, Michele; OMeara, John M.; Prochaska, J. Xavier; Rafelski, Marc; Kanekar, Nissim
2014-01-01
We present results from a survey designed to probe the star formation properties of 32 damped Ly alpha systems (DLAs) at redshifts of approximately 2.7. By using the "double-DLA" technique that eliminates the glare of the bright background quasars, we directly measure the rest-frame FUV flux from DLAs and their neighbouring galaxies. At the position of the absorbing gas, we place stringent constraints on the unobscured star formation rates (SFRs) of DLAs to 2 sigma limits of psi less than 0.09-0.27 solar mass yr(exp -1), corresponding to SFR surface densities sigma(sub sfr) less than 10(exp -2.6)-10(exp -1.5) solar mass yr(exp -1) kpc(exp -2). The implications of these limits for the star formation law, metal enrichment, and cooling rates of DLAs are examined. By studying the distribution of impact parameters as a function of SFRs for all the galaxies detected around these DLAs, we place new direct constraints on the bright end of the UV luminosity function of DLA hosts. We find that less than or equal to 13% of the hosts have psi greater than or equal to 2 solar mass yr(exp -1) at impact parameters b(sub dla) less than or equal to (psi/solar mass yr(exp -1))(exp 0.8) + 6 kpc, differently from current samples of confirmed DLA galaxies. Our observations also disfavor a scenario in which the majority of DLAs arise from bright LBGs at distances 20 less than or equal to b(sub dla) less than 100 kpc. These new findings corroborate a picture in which DLAs do not originate from highly star forming systems that are coincident with the absorbers, and instead suggest that DLAs are associated with faint, possibly isolated, star-forming galaxies. Potential shortcomings of this scenario and future strategies for further investigation are discussed.
Low redshift Lyman alpha absorption lines and the dark matter halos of disk galaxies
NASA Technical Reports Server (NTRS)
Maloney, Philip
1993-01-01
Recent observations using the Hubble Space Telescope of the z = 0.156 QSO 3C 273 have discovered a surprisingly large number of Ly-alpha absorption lines. In particular, Morris et al. found 9 certain and 7 possible Ly-alpha lines with equivalent widths above 25 mA. This is much larger (by a factor of 5-10) than the number expected from extrapolation of the high-redshift behavior of the Ly-alpha forest. Within the context of pressure-confined models for the Ly-alpha clouds, this behavior can be understood if the ionizing background declines sharply between z is approximately 2 and z is approximately 0. However, this requires that the ionizing photon flux drop as rapidly as the QSO volume emissivity; moreover, the absorbers must have a space density n(sub O) is approximately 2.6(N/10)h/((D/100 kpc)(sup 2)) Mpc(sup -3) where D is the present-day diameter of the absorbers. It is somewhat surprising that such necessarily fragile objects could have survived in such numbers to the present day. It is shown that it is plausible that the atomic hydrogen extents of spiral and irregular galaxies are large enough to produce the observed number of Ly-alpha absorption lines toward 3C 273, and that the neutral column densities and doppler b-values expected under these conditions fall in the range found by Morris et al. (1991).
Anomalous Temporal Behaviour of Broadband Ly Alpha Observations During Solar Flares from SDO/EVE
NASA Technical Reports Server (NTRS)
Milligan, Ryan O.; Chamberlin, Phillip C.
2016-01-01
Although it is the most prominent emission line in the solar spectrum, there has been a notable lack of studies devoted to variations in Lyman-alpha (Ly-alpha) emission during solar flares in recent years. However, the few examples that do exist have shown Ly-alpha emission to be a substantial radiator of the total energy budget of solar flares (of the order of 10 percent). It is also a known driver of fluctuations in the Earth's ionosphere. The EUV (Extreme Ultra-Violet) Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) now provides broadband, photometric Ly-alpha data at 10-second cadence with its Multiple EUV Grating Spectrograph-Photometer (MEGS-P) component, and has observed scores of solar flares in the 5 years since it was launched. However, the MEGS-P time profiles appear to display a rise time of tens of minutes around the time of the flare onset. This is in stark contrast to the rapid, impulsive increase observed in other intrinsically chromospheric features (H-alpha, Ly-beta, LyC, C III, etc.). Furthermore, the emission detected by MEGS-P peaks around the time of the peak of thermal soft X-ray emission and not during the impulsive phase when energy deposition in the chromosphere (often assumed to be in the form of non-thermal electrons) is greatest. The time derivative of Ly-alpha lightcurves also appears to resemble that of the time derivative of soft X-rays, reminiscent of the Neupert effect. Given that spectrally-resolved Ly-alpha observations during flares from SORCE / SOLSTICE (Solar Radiation and Climate Experiment / Solar Stellar Irradiance Comparison Experiment) peak during the impulsive phase as expected, this suggests that the atypical behaviour of MEGS-P data is a manifestation of the broadband nature of the observations. This could imply that other lines andor continuum emission that becomes enhanced during flares could be contributing to the passband. Users are hereby urged to exercise caution when interpreting broadband Ly-alpha observations of solar flares. Comparisons have also been made with other broadband Ly-alpha photometers such as PROBA2 (Project for On-Board Autonomy-2) / LYRA (Lyman Alpha Radiometer) and GOES (Geostationary Operational Environmental Satellite) / EUVE (Extreme Ultraviolet Explorer).
Ultraviolet observations of cool stars. V - The local density of interstellar matter
NASA Technical Reports Server (NTRS)
Mcclintock, W.; Henry, R. C.; Moos, H. W.; Linsky, J. L.
1976-01-01
A high-resolution Copernicus observation of the chromospheric Ly-alpha emission line of the nearby (3.3 pc) K dwarf epsilon Eri sets limits on the velocity, the velocity dispersion, and the density of atomic hydrogen in the local interstellar medium. Analysis shows that the interstellar Ly-alpha absorption is on the flat portion of the curve of growth. An upper limit of 0.12 per cu cm is derived for the atomic-hydrogen density. The value of this density is 0.08 (plus or minus 0.04 per cu cm if the velocity-dispersion parameter is 9 km/s, corresponding to a temperature of 5000 K. Also, the interstellar deuterium Ly-alpha line may be present in the spectrum.
The Universe at Moderate Redshift
NASA Technical Reports Server (NTRS)
Cen, Renyue; Ostriker, Jeremiah P.
1997-01-01
The report covers the work done in the past year and a wide range of fields including properties of clusters of galaxies; topological properties of galaxy distributions in terms of galaxy types; patterns of gravitational nonlinear clustering process; development of a ray tracing algorithm to study the gravitational lensing phenomenon by galaxies, clusters and large-scale structure, one of whose applications being the effects of weak gravitational lensing by large-scale structure on the determination of q(0); the origin of magnetic fields on the galactic and cluster scales; the topological properties of Ly(alpha) clouds the Ly(alpha) optical depth distribution; clustering properties of Ly(alpha) clouds; and a determination (lower bound) of Omega(b) based on the observed Ly(alpha) forest flux distribution. In the coming year, we plan to continue the investigation of Ly(alpha) clouds using larger dynamic range (about a factor of two) and better simulations (with more input physics included) than what we have now. We will study the properties of galaxies on 1 - 100h(sup -1) Mpc scales using our state-of-the-art large scale galaxy formation simulations of various cosmological models, which will have a resolution about a factor of 5 (in each dimension) better than our current, best simulations. We will plan to study the properties of X-ray clusters using unprecedented, very high dynamic range (20,000) simulations which will enable us to resolve the cores of clusters while keeping the simulation volume sufficiently large to ensure a statistically fair sample of the objects of interest. The details of the last year's works are now described.
Design and Fabrication of the All-Reflecting H-Lyman alpha Coronagraph/Polarimeter
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Johnson, R. Barry; Fineschi, Silvano; Walker, Arthur B. C., Jr.; Baker, Phillip C.; Zukic , Muamer; Kim, Jongmin
1993-01-01
We have designed, analyzed, and are now fabricating an All-Reflecting H-Lyman alpha Coronagraph/Polarimeter for solar research. This new instrument operates in a narrow bandpass centered at lambda 1215.7 A-the neutral hydrogen Lyman alpha (Ly-alpha) line. It is shorter and faster than the telescope which produced solar Ly-alpha images as a part of the MSSTA payload that was launched on May 13, 1991. The Ly-alpha line is produced and linearly polarized in the solar corona by resonance scattering, and the presence of a magnetic field modifies this polarization according to the Hanle effect. The Lyman alpha Coronagraph/Polarimeter instrument has been designed to measure coronal magnetic fields by interpreting, via the Hanle effect, the measured linear polarization of the coronal Ly-alpha line. Ultrasmooth mirrors, polarizers, and filters are being flow-polished for this instrument from CVD silicon carbide substrates. These optical components will be coated using advanced induced transmission and absorption thin film multilayer coatings, to optimize the reflectivity and polarization properties at 1215.7 A. We describe some of the solar imaging results obtained with the MSSTA Lyman alpha coronagraph. We also discuss the optical design parameters and fabrication plans for the All-Reflecting H-Lyman alpha Coronagraph/Polarimeter.
NASA Technical Reports Server (NTRS)
Mcclintock, W.; Linsky, J. L.; Henry, R. C.; Moos, H. W.
1975-01-01
A spectrometer on the Copernicus satellite has been used to confirm the existence of a line width-luminosity relation for the Ly-alpha and Mg II 2800-A chromospheric emission lines in K-type stars by observation of a K2 dwarf (epsilon Eri) and a K2 supergiant (epsilon Peg). Combined with previously reported observations of lines in three K giants (alpha Boo, alpha Tau, and beta Gem), the data are consistent with an identical dependence of line width on absolute visual magnitude for the Ca II K, Ly-alpha, and Mg II 2795-A lines. Surface fluxes of Ly-alpha, Mg II 2800-A, and O V 1218-A (upper limit) for epsilon Eri, and of Mg II 2800-A for epsilon Peg are also compared with values reported previously for the three giant stars.
NASA Astrophysics Data System (ADS)
Reimers, D.; Kohler, S.; Wisotzki, L.; Groote, D.; Rodriguez-Pascual, P.; Wamsteker, W.
1997-11-01
We report on observations of redshifted Heii303.8 Angstroms absorption in the high-redshift QSO HE2347-4342 (z=2.885, V=16.1) with the Goddard High Resolution Spectrograph on board HST in its low resolution mode (bigtriangleup lambda = 0.7 Angstroms). With f_λ=3.6\\ 10(-15) ergcm(-2) s(-1) Angstroms(-1) at the expected position of Heii304 Angstroms absorption it is the most UV-bright high redshift QSO discovered so far. We show that the Heii opacity as a function of redshift is patchy showing spectral regions with low Heii opacity (``voids'') and regions with high Heii opacity (blacked-out ``troughs'') and no detectable flux. Combination with high-resolution optical spectra of the Lyalpha forest using CASPEC at the 3.6m telescope shows that the voids can be explained either exclusively by Lyalpha forest cloud absorption with a moderate N_{subs {He{sc ii}}}/N_{subs {H{sc i}}} ratio eta <=100 and turbulent line broadening or by a combination of Lyalpha forest with eta = 45 and thermal broadening plus a diffuse medium with tau_ {subs {GP}}({subs {He{sc ) ii}}} ~ 0.3. Since the latter is a minimum assumption for the Lyalpha forest, a strict upper limit to a diffuse medium is Omega_ {subs {diff}}<0.02 h50(-1.5) at z=2.8. In the troughs in addition to the Lyalpha forest opacity a continuous Heii 304 Angstroms opacity tau = 4.8(+infty }_{-2) is required. In case of photoionization, the troughs would require a diffuse component with a density close to Omega =~ 0.077(eta /45)(-0.5) h50(-1.5) , i.e. all baryons in the universe, which is inconsistent, however, with the observed absence of such a component in the voids. A tentative interpretation is that we observe the epoch of partial Heii reionization of the universe with patches not yet reionized. In that case a diffuse component with Omega_ {subs {diff}}>= 1.3\\ 10(-4) h(-1}_{50) would be sufficient to explain the ``trough'' opacity. The size of the 1163--1172 Angstroms trough is ~ 6 h50(-1) Mpc or ~ 2300 kms(-1) , respectively. We also discuss partially resolved Heii absorption of a high-ionization associated absorption system. Despite its high luminosity HE2347-4342 does not show a Heii proximity effect. A possible reason is that the strong associated system shields the Heii ionizing continuum. Based on observations collected at the European Southern Observatory, La Silla, Chile (ESO No.\\ 58.B--0116). Based on IUE observations collected at the ESA VILSPA ground station near Madrid, Spain. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by Aura, Inc., under NASA contract NAS 5--26\\,555.
Lyman Alpha Searches at Redshift Z>7
NASA Astrophysics Data System (ADS)
Willis, Jon
2007-05-01
The ZEN survey is a narrow J-band survey for Ly-alpha emitting galaxies at z > 7. I will briefly review the pros and cons of narrow band observations before summarising the ZEN1 and ZEN2 searches based upon deep ISAAC pointings. I will then present ZEN3, consisting of wide field, narrow band observations of two fields using the CFHT WIRCam facility. I will conclude by reviewing the current sample of candidates and what we have learned about the z > 7 Ly-alpha emitting population.
Studies of H I and D I in the local interstellar medium
NASA Technical Reports Server (NTRS)
Murthy, J.; Henry, R. C.; Moos, H. W.; Vidal-Madjar, A.; Linsky, J. L.
1990-01-01
High-dispersion IUE spectra are presented of the hydrogen Ly-alpha chromospheric emission line of two nearby late-type stars, Capella and Lambda And. Both interstellar H I and D I Ly-alpha absorption can be seen against the chromospheric line, and the density, velocity dispersion, and bulk velocity of the gas in those lines of sight are derived. Limits are placed on the D/H ratio. The results are consistent with the current picture of the local interstellar medium.
NASA Technical Reports Server (NTRS)
Narukage, Noriyuki; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Kubo, Masahito; Katsukawa, Yukio; Ishikawa, Shinnosuke; Hara, Hiroshi; Suematsu, Yoshinori; Giono, Gabriel;
2015-01-01
We are planning an international rocket experiment Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is (2015 planned) that Lyman a line (Ly(alpha) line) polarization spectroscopic observations from the sun. The purpose of this experiment, detected with high accuracy of the linear polarization of the Ly(alpha) lines to 0.1% by using a Hanle effect is to measure the magnetic field of the chromosphere-transition layer directly. For polarization photometric accuracy achieved that approx. 0.1% required for CLASP, it is necessary to realize the monitoring device with a high throughput. On the other hand, Ly(alpha) line (vacuum ultraviolet rays) have a sensitive characteristics that is absorbed by the material. We therefore set the optical system of the reflection system (transmission only the wavelength plate), each of the mirrors, subjected to high efficiency of the multilayer coating in accordance with the role. Primary mirror diameter of CLASP is about 30 cm, the amount of heat about 30,000 J is about 5 minutes of observation time is coming mainly in the visible light to the telescope. In addition, total flux of the sun visible light overwhelmingly large and about 200 000 times the Ly(alpha) line wavelength region. Therefore, in terms of thermal management and 0.1% of the photometric measurement accuracy achieved telescope, elimination of the visible light is essential. We therefore, has a high reflectivity (> 50%) in Lya line, visible light is a multilayer coating be kept to a low reflectance (<5%) (cold mirror coating) was applied to the primary mirror. On the other hand, the efficiency of the polarization analyzer required chromospheric magnetic field measurement (the amount of light) Conventional (magnesium fluoride has long been known as a material for vacuum ultraviolet (MgF2) manufactured ellipsometer; Rs = 22%) about increased to 2.5 times were high efficiency reflective polarizing element analysis. This device, Bridou et al. (2011) is proposed "that is coated with a thin film of the substrate MgF2 and SiO2 fused silica." As a result of the measurement, Rs = 54.5%, to achieve a Rp = 0.3%, high efficiency, of course, capable of taking out only about s-polarized light. Other reflective optical elements (the secondary mirror, the diffraction gratingcollector mirror), subjected to high-reflection coating of Al + MgF2 (reflectance of about 80%), less than 5% in the entire optical system by these (CCD Science was achieved a high throughput as a device for a vacuum ultraviolet ray of the entire system less than 5% (CCD of QE is not included).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenker, Matthew A.; Ellis, Richard S.; Robertson, Brant E.
2012-01-10
Using deep Keck spectroscopy of Lyman break galaxies selected from infrared imaging data taken with the Wide Field Camera 3 on board the Hubble Space Telescope, we present new evidence for a reversal in the redshift-dependent fraction of star-forming galaxies with detectable Lyman alpha (Ly{alpha}) emission in the redshift range 6.3 < z < 8.8. Our earlier surveys with the DEIMOS spectrograph demonstrated a significant increase with redshift in the fraction of line emitting galaxies over the interval 4 < z < 6, particularly for intrinsically faint systems which dominate the luminosity density. Using the longer wavelength sensitivities of Lowmore » Resolution Imaging Spectrometer and NIRSPEC, we have targeted 19 Lyman break galaxies selected using recent WFC3/IR data whose photometric redshifts are in the range 6.3 < z < 8.8 and which span a wide range of intrinsic luminosities. Our spectroscopic exposures typically reach a 5{sigma} sensitivity of <50 A for the rest-frame equivalent width (EW) of Ly{alpha} emission. Despite the high fraction of emitters seen only a few hundred million years later, we find only two convincing and one possible line emitter in our more distant sample. Combining with published data on a further seven sources obtained using FORS2 on the ESO Very Large Telescope, and assuming continuity in the trends found at lower redshift, we discuss the significance of this apparent reversal in the redshift-dependent Ly{alpha} fraction in the context of our range in continuum luminosity. Assuming all the targeted sources are at their photometric redshift and our assumptions about the Ly{alpha} EW distribution are correct, we would expect to find so few emitters in less than 1% of the realizations drawn from our lower redshift samples. Our new results provide further support for the suggestion that, at the redshifts now being probed spectroscopically, we are entering the era where the intergalactic medium is partially neutral. With the arrival of more sensitive multi-slit infrared spectrographs, the prospects for improving the statistical validity of this result are promising.« less
Variability of Lyman-alpha emission from Jupiter
NASA Technical Reports Server (NTRS)
1979-01-01
The Jovian Lyman-alpha emission line was again observed in 1978 using the high resolution spectrometer on the Copernicus satellite. In intensity of 8.4+3.0 kilo Rayleighs was measured. This value represents a significant increase in intensity over previous (1976) Copernicus observations, but is lower than the recent (1979) values obtained by Voyager I and IUE. The increase in intensity was accompanied by a significant increase in line width, giving strong support to the theory that the emission results from resonant scattering of the solar Ly-alpha line by H atoms in the upper Jovian atmosphere. The strength of Jovian Ly-alpha emission correlates well with the level of solar activity. The solar extreme ultraviolet radiation varies with the solar cycle. This radiation causes the dissociation of H2 and CH4 into H atoms in the Jovian atmosphere. Therefore, in times of high solar activity, the H column density will increase, causing the observed stronger Jovian Ly-alpha emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakic, Olivera; Schaye, Joop; Steidel, Charles C.
We study the interface between galaxies and the intergalactic medium by measuring the absorption by neutral hydrogen in the vicinity of star-forming galaxies at z Almost-Equal-To 2.4. Our sample consists of 679 rest-frame UV-selected galaxies with spectroscopic redshifts that have impact parameters <2 (proper) Mpc to the line of sight of one of the 15 bright, background QSOs and that fall within the redshift range of its Ly{alpha} forest. We present the first two-dimensional maps of the absorption around galaxies, plotting the median Ly{alpha} pixel optical depth as a function of transverse and line-of-sight separation from galaxies. The Ly{alpha} opticalmore » depths are measured using an automatic algorithm that takes advantage of all available Lyman series lines. The median optical depth, and hence the median density of atomic hydrogen, drops by more than an order of magnitude around 100 kpc, which is similar to the virial radius of the halos thought to host the galaxies. The median remains enhanced, at the >3{sigma} level, out to at least 2.8 Mpc (i.e., >9 comoving Mpc), but the scatter at a given distance is large compared with the median excess optical depth, suggesting that the gas is clumpy. Within 100 (200) kpc, and over {+-}165 km s{sup -1}, the covering fraction of gas with Ly{alpha} optical depth greater than unity is 100{sup +0}{sub -32}% (66% {+-} 16%). Absorbers with {tau}{sub Ly{alpha}} > 0.1 are typically closer to galaxies than random. The mean galaxy overdensity around absorbers increases with the optical depth and also as the length scale over which the galaxy overdensity is evaluated is decreased. Absorbers with {tau}{sub Ly{alpha}} {approx} 1 reside in regions where the galaxy number density is close to the cosmic mean on scales {>=}0.25 Mpc. We clearly detect two types of redshift space anisotropies. On scales <200 km s{sup -1}, or <1 Mpc, the absorption is stronger along the line of sight than in the transverse direction. This 'finger of God' effect may be due to redshift errors, but is probably dominated by gas motions within or very close to the halos. On the other hand, on scales of 1.4-2.0 Mpc the absorption is compressed along the line of sight (with >3{sigma} significance), an effect that we attribute to large-scale infall (i.e., the Kaiser effect).« less
Imaging of the Field of 4C41.17 Below the Lyman Limit
NASA Technical Reports Server (NTRS)
Lacy, Mark; Rawlings, Steve
1997-01-01
Imaging of zeta greater than or equal to 3.4 radio galaxy fields below the Lyman continuum wavelength allows companion galaxies to be identified on the basis of red colors across the wavelength of redshifted Ly(alpha) and very red colors across the redshifted Lyman continuum. These arise due to a combination of absorption by intervening Ly(alpha) forest and Lyman-limit systems, and intrinsic Lyman-limit breaks in the galaxy spectral energy distribution caused by an Hi screen or breaks in stellar spectra. As a pilot study, we have imaged the field of the zeta = 3.8 radio galaxy 4C41.17 in U, V and R with the Auxiliary Port of the WHT. We find a number of potential companion galaxies, which require confirmation via spectroscopy or narrow-band imaging. The Lyman-limit in the spectrum of the radio galaxy itself and its implications for the origin of the UV flux is also discussed.
Clasp/SJ Observation of Time Variations of Lyman-Alpha Emissions in a Solar Active Region
NASA Technical Reports Server (NTRS)
Ishikawa, S.; Kubo, M.; Katsukawa, Y.; Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Winebarger, A.; Kobayashi, K.; Trujillo Bueno, J.;
2016-01-01
The Chromospheric Lyman-alpha SpectroPolarimeter (CLASP) is a sounding rocket experiment launched on September 3, 2015 to investigate the solar chromosphere, and the slit-jaw (SJ) optical system took Lya images with the high time cadence of 0.6 s. By the CLASP/SJ observation, many time variations in the solar chromosphere with the time scale of <1 minute were discovered (see the poster by Kubo et al., Pa-13). We focused on an active region and investigated the short (<30 s) time variations and relation to the coronal structure observed by SDO/AIA. We compared the Ly(alpha) time variations at footpoints of coronal magnetic fields observed by AIA 211 Å (approx.2 MK) and AIA 171 Å (0.6 MK), and non-loop regions. As the result, we found the <30 s Ly(alpha) time variations had more in the footpoint regions. On the other hand, the <30 s time variations had no dependency on the temperature of the loop.
Coronagraph observations and analyses of the ultraviolet solar corona
NASA Technical Reports Server (NTRS)
Kohl, John L.
1989-01-01
The major activities on the Spartan Ultraviolet Coronal Spectrometer project include both scientific and experimental/technical efforts. In the scientific area, a detailed analysis of the previously reported Doppler dimming of HI Ly-alpha from the July 1982 rocket flight has determined an outflow velocity at 2 solar radii from sun center to be between 153 and 251 km/s at 67 percent confidence. The technical activities include, several improvements made to the instrument that will result in enhanced scientific performance or in regaining a capability that had deteriorated during the delay time in the launch date. These include testing and characterizing the detector for OVI radiation, characterizing a serrated occulter at UV and visible wavelengths, fabricating and testing telescope mirrors with improved edges, testing and evaluating a new array detector system, modifying the slit mask mechanism and installing a mask in the instrument to block the Ly-alpha resonance line when the electron scattered component is being observed.
Line Profile of H Lyman (alpha) from Dissociative Excitation of H2 with Application to Jupiter
NASA Technical Reports Server (NTRS)
Ajello, Joseph M.; Kasnik, Isik; Ahmed, Syed M.; Clarke, John T.
1995-01-01
Observations of the H Lyman(alpha) (Ly-alpha) emission from Jupiter have shown pronounced emissions, exceeding solar fluorescence, in the polar aurora and equatorial "bulge" regions. The H Ly-alpha line profiles from these regions are broader than expected, indicating high-energy processes producing fast atoms as determined from the observed Doppler broadening. Toward understanding that process a high-resolution ultraviolet (UV) spectrometer was employed for the first measurement of the H Ly-alpha emission Doppler profile from dissociative excitation of H2 by electron impact. Analysis of the deconvolved line profile reveals the existence of a narrow central peak of 40 +/- 4 mA full width at half maximum and a broad pedestal base about 240 mA wide. Two distinct dissociation mechanisms account for this Doppler structure. Slow H(2p) atoms characterized by a distribution function with peak energy near 80 meV produce the peak profile, which is nearly independent of the electron impact energy. Slow H(2p) atoms arise from direct dissociation and predissociation of singly excited states which have a dissociation limit of 14.68 eV. The wings of H Ly-alpha arise from dissociative excitation of a series of doubly excited states which cross the Franck-Condon region between 23 and 40 eV. The profile of the wings is dependent on the electron impact energy, and the distribution function of fast H(2p) atoms is therefore dependent on the electron impact energy. The fast atom kinetic energy distribution at 100 eV electron impact energy spans the energy range from 1 to 10 eV with a peak near 4 eV. For impact energies above 23 eV the fast atoms contribute to a slightly asymmetric structure of the line profile. The absolute cross sections of the H Ly-alpha line peak and wings were measured over the range from 0 to 200 eV. Analytic model coefficients are given for the measured cross sections which can be applied to planetary atmosphere auroral and dayglow calculations. The dissociative excitation process, while one contributing process, appears insufficient by itself to explain the line broadening observed at Jupiter.
NASA Technical Reports Server (NTRS)
Ruiz-Velasco, A. E.; Swan, H.; Troja, E.; Malesani, D.; Fynbo, J. P. U.; Sterling, R. L. C.; Xu, D.; Aharonian, F.; Akerlof, C.; Andersen, M. I.;
2007-01-01
We report on follow-up observations of the gamma-ray burst GRB 060927 using the robotic ROTSE-IIIa telescope and a suite of larger aperture groundbased telescopes. An optical afterglow was detected 20 s after the burst, the earliest rest-frame detection of optical emission from any GRB. Spectroscopy performed with the VLT about 13 hours after the trigger shows a continuum break at lambda approx. equals 8070 A, produced by neutral hydrogen absorption at zeta = 5.6. We also detect an absorption line at 8158 A which we interpret as Si II lambda 1260 at zeta = 5.467. Hence, GRB 060927 is the second most distant GRB with a spectroscopically measured redshift. The shape of the red wing of the spectral break can be fitted by a damped Ly(alpha) profile with a column density with log(N(sub HI)/sq cm) = 22.50 +/- 0.15. We discuss the implications of this work for the use of GRBs as probes of the end of the dark ages and draw three main conclusions: i) GRB afterglows originating from zeta greater than or approx. equal to 6 should be relatively easy to detect from the ground, but rapid near-infrared monitoring is necessary to ensure that they are found; ii) The presence of large H I column densities in some GRBs host galaxies at zeta > 5 makes the use of GRBs to probe the reionization epoch via spectroscopy of the red damping wing challenging; iii) GRBs appear crucial to locate typical star-forming galaxies at zeta > 5 and therefore the type of galaxies responsible for the reionization of the universe.
Hydrodynamic Simulations and Tomographic Reconstructions of the Intergalactic Medium
NASA Astrophysics Data System (ADS)
Stark, Casey William
The Intergalactic Medium (IGM) is the dominant reservoir of matter in the Universe from which the cosmic web and galaxies form. The structure and physical state of the IGM provides insight into the cosmological model of the Universe, the origin and timeline of the reionization of the Universe, as well as being an essential ingredient in our understanding of galaxy formation and evolution. Our primary handle on this information is a signal known as the Lyman-alpha forest (or Ly-alpha forest) -- the collection of absorption features in high-redshift sources due to intervening neutral hydrogen, which scatters HI Ly-alpha photons out of the line of sight. The Ly-alpha forest flux traces density fluctuations at high redshift and at moderate overdensities, making it an excellent tool for mapping large-scale structure and constraining cosmological parameters. Although the computational methodology for simulating the Ly-alpha forest has existed for over a decade, we are just now approaching the scale of computing power required to simultaneously capture large cosmological scales and the scales of the smallest absorption systems. My thesis focuses on using simulations at the edge of modern computing to produce precise predictions of the statistics of the Ly-alpha forest and to better understand the structure of the IGM. In the first part of my thesis, I review the state of hydrodynamic simulations of the IGM, including pitfalls of the existing under-resolved simulations. Our group developed a new cosmological hydrodynamics code to tackle the computational challenge, and I developed a distributed analysis framework to compute flux statistics from our simulations. I present flux statistics derived from a suite of our large hydrodynamic simulations and demonstrate convergence to the per cent level. I also compare flux statistics derived from simulations using different discretizations and hydrodynamic schemes (Eulerian finite volume vs. smoothed particle hydrodynamics) and discuss differences in their convergence behavior, their overall agreement, and the implications for cosmological constraints. In the second part of my thesis, I present a tomographic reconstruction method that allows us to make 3D maps of the IGM with Mpc resolution. In order to make reconstructions of large surveys computationally feasible, I developed a new Wiener Filter application with an algorithm specialized to our problem, which significantly reduces the space and time complexity compared to previous implementations. I explore two scientific applications of the maps: finding protoclusters by searching the maps for large, contiguous regions of low flux and finding cosmic voids by searching the maps for regions of high flux. Using a large N-body simulation, I identify and characterize both protoclusters and voids at z = 2.5, in the middle of the redshift range being mapped by ongoing surveys. I provide simple methods for identifying protocluster and void candidates in the tomographic flux maps, and then test them on mock surveys and reconstructions. I present forecasts for sample purity and completeness and other scientific applications of these large, high-redshift objects.
A Luminosity Function of Ly(alpha)-Emitting Galaxies at Z [Approx. Equal to] 4.5(Sup 1),(Sup 2)
NASA Technical Reports Server (NTRS)
Dawson, Steve; Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel; Wang, JunXian; Dey, Arjun; Spinrad, Hyron; Jannuzi, Buell T.
2007-01-01
We present a catalog of 59 z [approx. equal to] 4:5 Ly(alpha)-emitting galaxies spectroscopically confirmed in a campaign of Keck DEIMOS follow-up observations to candidates selected in the Large Are (LALA) narrowband imaging survey.We targeted 97 candidates for spectroscopic follow-up; by accounting for the variety of conditions under which we performed spectroscopy, we estimate a selection reliability of approx.76%. Together with our previous sample of Keck LRIS confirmations, the 59 sources confirmed herein bring the total catalog to 73 spectroscopically confirmed z [approx. equal to] 4:5 Ly(alpha)- emitting galaxies in the [approx. equal to] 0.7 deg(exp 2) covered by the LALA imaging. As with the Keck LRIS sample, we find that a nonnegligible fraction of the co rest-frame equivalent widths (W(sub lambda)(sup rest)) that exceed the maximum predicted for normal stellar populations: 17%-31%(93%confidence) of the detected galaxies show (W(sub lambda)(sup rest)) 12%-27% (90% confidence) show (W(sub lambda)(sup rest)) > 240 A. We construct a luminosity function of z [approx. equal to] 4.5 Ly(alpha) emission lines for comparison to Ly(alpha) luminosity function < 6.6. We find no significant evidence for Ly(alpha) luminosity function evolution from z [approx. equal to] 3 to z [approx. equal to] 6. This result supports the conclusion that the intergalactic me largely reionized from the local universe out to z [approx. equal to] 6.5. It is somewhat at odds with the pronounced drop in the cosmic star formation rate density recently measured between z approx. 3 an z approx. 6 in continuum-selected Lyman-break galaxies, and therefore potentially sheds light on the relationship between the two populations.
NASA Technical Reports Server (NTRS)
Sako, Masao
2003-01-01
Radiative transfer effects due to overlapping X-ray lines in a high-temperature, optically thick, highly ionized medium are investigated. One particular example, in which the O VIII Lyalpha doublet (2(sup 2) P(sub 1/2,3/2)-1(sup 2) S(sub 1/2) coincides in frequency with the N VII Lyzeta lines (7(sup 2) P(sub 1/2,3/2)-1(sup 2) S(sub 1/2) is studied in detail to illustrate the effects on the properties of the emergent line spectrum. We solve the radiative transfer equation to study the energy transport of resonance-line radiation in a static, infinite, plane-parallel geometry, which is used to compute the destruction/escape probabilities for each of the lines for various total optical thicknesses of the medium, as well as destruction probabilities by sources of underlying photoelectric opacity. It is found that a large fraction of the O vIII Lyalpha line radiation can be destroyed by N VII, which can result in a reversal of the O VIII Lyalpha/N VII Lyalpha line intensity ratio similar to what may be seen under nonsolar abundances. Photoelectric absorption by ionized carbon and nitrogen can also subsequently increase the emission-line intensities of these ions. We show that line ratios, which are directly proportional to the abundance ratios in optically thin plasmas, are not good indicators of the true CNO abundances. Conversely, global spectral modeling that assumes optically thin conditions may yield incorrect abundance estimates when compared with observations, especially if the optical depth is large. Other potentially important overlapping lines and continua in the X-ray band are also identified, and their possible relevance to recent high-resolution spectroscopic observations with Chandra and XMM-Newton are briefly discussed.
EFFECTS OF ULTRAVIOLET BACKGROUND AND LOCAL STELLAR RADIATION ON THE H I COLUMN DENSITY DISTRIBUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagamine, Kentaro; Choi, Jun-Hwan; Yajima, Hidenobu, E-mail: kn@physics.unlv.ed
We study the impact of ultraviolet background (UVB) radiation field and the local stellar radiation on the H I column density distribution f(N{sub H{sub I}}) of damped Ly{alpha} systems (DLAs) and sub-DLAs at z = 3 using cosmological smoothed particle hydrodynamics simulations. We find that, in the previous simulations with an optically thin approximation, the UVB was sinking into the H I cloud too deeply, and therefore we underestimated the f(N{sub H{sub I}}) at 19 < log N{sub H{sub I}} < 21.2 compared to the observations. If the UVB is shut off in the high-density regions with n{sub gas}>6 xmore » 10{sup -3} cm{sup -3}, then we reproduce the observed f(N{sub H{sub I}}) at z = 3 very well. We also investigate the effect of local stellar radiation by postprocessing our simulation with a radiative transfer code and find that the local stellar radiation does not change the f(N{sub H{sub I}}) very much. Our results show that the shape of f(N{sub H{sub I}}) is determined primarily by the UVB with a much weaker effect by the local stellar radiation and that the optically thin approximation often used in cosmological simulation is inadequate to properly treat the ionization structure of neutral gas in and out of DLAs. Our result also indicates that the DLA gas is closely related to the transition region from optically thick neutral gas to optically thin ionized gas within dark matter halos.« less
NASA Technical Reports Server (NTRS)
Rafelski, Marc; Gardner, Jonathan P.; Fumagalli, Michele; Neeleman, Marcel; Teplitz, Harry I.; Grogin, Norman; Koekemoer, Anton M.; Scarlata, Claudia
2016-01-01
Current observational evidence suggests that the star formation rate (SFR)efficiency of neutral atomic hydrogen gas measured in damped Ly(alpha) systems (DLAs) at z approx. 3 is more than 10 times lower than predicted by the Kennicutt-Schmidt (KS)relation. To understand the origin of this deficit, and to investigate possible evolution with redshift and galaxy properties, we measure the SFR efficiency of atomic gas at z approx. 1, z approx. 2, and z approx. 3 around star-forming galaxies. We use new robust photometric redshifts in the Hubble Ultra Deep Field to create galaxy stacks in these three redshift bins, and measure the SFR efficiency by combining DLA absorber statistics with the observed rest-frame UV emission in the galaxies' outskirts. We find that the SFR efficiency of H I gas at z > 1 is approx. 1%-3% of that predicted by the KS relation. Contrary to simulations and models that predict a reduced SFR efficiency with decreasing metallicity and thus with increasing redshift, we find no significant evolution in the SFR efficiency with redshift. Our analysis instead suggests that the reduced SFR efficiency is driven by the low molecular content of this atomic-dominated phase, with metallicity playing a secondary effect in regulating the conversion between atomic and molecular gas. This interpretation is supported by the similarity between the observed SFR efficiency and that observed in local atomic-dominated gas, such as in the outskirts of local spiral galaxies and local dwarf galaxies.
Deuterium and the Local Interstellar Medium: Properties for the Procyon and Capella Lines of Sight
NASA Technical Reports Server (NTRS)
Linsky, Jeffrey L.; Diplas, Athanassios; Wood, Brian E.; Brown, Alexander; Ayres, Thomas R.; Savage, Blair D.
1995-01-01
We present Goddard High-Resolution Spectrograph observations of the interstellar H I and D I Ly-alpha lines and the Mg II and Fe II resonance lines formed along the lines of sight toward the nearby stars Procyon (3.5 pc, l = 214 deg, b = 13 deg) and Capella (12.5 pc, l = 163 deg, b = 5 deg). New observations of Capella were obtained at orbital phase 0.80, when the radial velocities of the intrinsic Ly-alpha emission lines of each star were nearly reversed from those of the previous observations at phase 0.26. Since the intrinsic Ly-alpha line of the Capella system (the 'continuum' against which the interstellar absorption is measured) has different shapes at phases 0.26 and 0.80, we can derive both the intrinsic stellar profiles and the interstellar absorption lines more precisely by jointly analyzing the two data sets. For the analysis of the Procyon line of sight, we first assumed that the intrinsic Ly-alpha line profile is a broadened solar profile, but this assumption does not lead to a good fit to the observed D I line profile for any value of D/H. We then assumed that (D/H)(sub LISM) = 1.6 x 10(exp -5), the same value as for the Capella line of sight, and we modified the broadened solar profile to achieve agreement between the simulated and observed line profiles. The resulting asymmetric intrinsic stellar line profile is consistent with the shapes of the scaled Mg II line profiles. We believe therefore that the Procyon data are consistent with (D/H)(sub LISM) = 1.6 x 10(exp -5), but the uncertainty in the intrinsic Ly-alpha emission-line profile does not permit us to conclude that the D/H ratio is constant in the local interstellar medium (LISM). The temperature and turbulence in the Procyon line of sight are T = 6900 +/- 80 (+/- 300 systematic error) K and zeta = 1.21 +/- 0.27 km/s. These properties are similar to those of Capella, except that the gas toward Procyon is divided into two velocity components separated by 2.6 km/s and the Procyon line of sight has a mean neutral hydrogen density that is a factor of 2.4 larger than that of the Capella line of sight. This suggests that the first 5.3 pc along the Capella line of sight lies within the local cloud and the remaining 7.2 pc lies in the hot gas surrounding the local cloud. We propose that n(H I) = 0.1065 +/- 0.0028 cm(exp -2) be adopted for the neutral hydrogen density within the local cloud and that zeta = 1.21 +/- 0.27 km/s be adopted for the nonthermal motions. The existence of different second velocity components toward the nearby stars Procyon and Sirius provides the first glimpse of a turbulent cloudlet boundary layer between the local cloud and the surrounding hot interstellar gas.
Novel Nano-particle, Temperature-Independent Damping System: Basic Science and Applications
2009-12-31
based impact damping or a fluid -based viscous damping system, and/d =fn in a frictional damping systems.. The increase in frequency is caused by either...to provide temperature independent damping. While the damping performance of a dry particle medium unlike a viscous fluid is said to be unaffected by...the mechanical components of the dampers are filled with selected particles. The advantages of particle damping over the conventional damping
NASA Astrophysics Data System (ADS)
Hou, Junfang; jing, Min; Zhang, Weihua; Lu, Yahui; He, Haiwen
2017-12-01
As for the isolation problem of electronic equipments on vehicle, the vibration response characteristics of dry friction damping isolation system under base displacement excitation was analyzed in theory by harmonic balance method, and the displacement response was compared between the isolation systems with dry friction damping and vicious damping separately. The results show that the isolation system with small dry friction damping can’t meet the demands of displacement reduction close to the natural frequency, and it can realize full-frequency vibration isolation by improving dry friction damping when the lock frequency passes beyond the resonance frequency band. The results imply that the damping mechanism of dry friction isolator can’t be described only by dry friction damping, and the composite damping with dry friction and vicious damping is more appropriate.
H I-SELECTED GALAXIES AS A PROBE OF QUASAR ABSORPTION SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okoshi, Katsuya; Nagashima, Masahiro; Gouda, Naoteru
2010-02-20
We investigate the properties of H I-rich galaxies detected in blind radio surveys within the hierarchical structure formation scenario using a semianalytic model of galaxy formation. By drawing a detailed comparison between the properties of H I-selected galaxies and H I absorption systems, we argue a link between the local galaxy population and quasar absorption systems, particularly for damped Lyalpha absorption (DLA) systems and sub-DLA systems. First, we evaluate how many H I-selected galaxies exhibit H I column densities as high as those of DLA systems. We find that H I-selected galaxies with H I masses M{sub H{sub I}} {approx}>more » 10{sup 8} M{sub sun} have gaseous disks that produce H I column densities comparable to those of DLA systems. We conclude that DLA galaxies where the H I column densities are as high as those of DLA systems, contribute significantly to the population of H I-selected galaxies at M{sub H{sub I}} {approx}> 10{sup 8} M{sub sun}. Second, we find that star formation rates (SFRs) correlate tightly with H I masses (M{sub H{sub I}}) rather than B- (and J-) band luminosities: SFR {proportional_to} M {sup alpha}{sub H{sub I}}, alpha = 1.25-1.40 for 10{sup 6} <= M{sub H{sub I}}/M{sub sun} <= 10{sup 11}. In the low-mass range M{sub H{sub I}} {approx}< 10{sup 8} M{sub sun}, sub-DLA galaxies replace DLA galaxies as the dominant population. The number fraction of sub-DLA galaxies relative to galaxies reaches 40%-60% for M{sub H{sub I}} {approx} 10{sup 8} M{sub sun} and 30%-80% for M{sub H{sub I}} {approx} 10{sup 7} M{sub sun}. The H I-selected galaxies at M{sub H{sub I}} {approx} 10{sup 7} M{sub sun} are a strong probe of sub-DLA systems that place stringent constraints on galaxy formation and evolution.« less
Hybrid Damping System for an Electronic Equipment Mounting Shelf
NASA Technical Reports Server (NTRS)
Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry
1997-01-01
The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-II. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.
Hybrid Damping System for an Electronic Equipment Mounting Shelf
NASA Technical Reports Server (NTRS)
Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry
1997-01-01
The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-11. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.
Discovery of a Color-selected Quasar at z = 5.50.
Stern; Spinrad; Eisenhardt; Bunker; Dawson; Stanford; Elston
2000-04-20
We present observations of RD J030117+002025, a quasar at z=5.50 discovered from deep, multicolor, ground-based observations covering 74 arcmin2. This is the most distant quasar or active galaxy currently known. The object was targeted as an R-band dropout, with RAB>26.3 (3 sigma limit in a 3&arcsec; diameter region), IAB=23.8, and zAB=23.4. The Keck/Low-Resolution Imaging Spectrometer spectrum shows broad Lyalpha/N v lambda1240 emission and sharp absorption decrements from the highly redshifted hydrogen forests. The fractional continuum depression due to the Lyalpha forest is DA=0.90. RD J030117+002025 is the least luminous high-redshift quasar known (MB approximately -22.7).
NASA Astrophysics Data System (ADS)
Hennig, Jan-Simon; Barr, Bryan W.; Bell, Angus S.; Cunningham, William; Danilishin, Stefan L.; Dupej, Peter; Gräf, Christian; Hough, James; Huttner, Sabina H.; Jones, Russell; Leavey, Sean S.; Pascucci, Daniela; Sinclair, Martin; Sorazu, Borja; Spencer, Andrew; Steinlechner, Sebastian; Strain, Kenneth A.; Wright, Jennifer; Zhang, Teng; Hild, Stefan
2017-12-01
Low-mass suspension systems with high-Q pendulum stages are used to enable quantum radiation pressure noise limited experiments. Utilizing multiple pendulum stages with vertical blade springs and materials with high-quality factors provides attenuation of seismic and thermal noise; however, damping of these high-Q pendulum systems in multiple degrees of freedom is essential for practical implementation. Viscous damping such as eddy-current damping can be employed, but it introduces displacement noise from force noise due to thermal fluctuations in the damping system. In this paper we demonstrate a passive damping system with adjustable damping strength as a solution for this problem that can be used for low-mass suspension systems without adding additional displacement noise in science mode. We show a reduction of the damping factor by a factor of 8 on a test suspension and provide a general optimization for this system.
Islam, Naz Niamul; Hannan, M A; Shareef, Hussain; Mohamed, Azah; Salam, M A
2014-01-01
Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability.
NASA Astrophysics Data System (ADS)
Rahimi, Z.; Rashahmadi, S.
2017-11-01
The thermo-elastic damping is a dominant source of internal damping in micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS). The internal damping cannot neither be controlled nor minimized unless either mechanical or geometrical properties are changed. Therefore, a novel FGMNEM system with a controllable thermo-elastic damping of axial vibration based on Eringen nonlocal theory is considered. The effects of different parameter like the gradient index, nonlocal parameter, length of nanobeam and ambient temperature on the thermo-elastic damping quality factor are presented. It is shown that the thermo-elastic damping can be controlled by changing different parameter.
Passive damping in EDS maglev systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rote, D. M.
2002-05-03
There continues to be strong interest in the subjects of damping and drag forces associated with electrodynamic suspension (EDS) systems. While electromagnetic drag forces resist the forward motion of a vehicle and therefore consume energy, damping forces control, at least in part, the response of the vehicle to disturbances. Ideally, one would like to reduce the drag forces as much as possible while retaining adequate damping forces to insure dynamic stability and satisfactory ride quality. These two goals turn out to be difficult to achieve in practice. It is well known that maglev systems tend to be intrinsically under damped.more » Consequently it is often necessary in a practical system design to enhance the damping passively or actively. For reasons of cost and simplicity, it is desirable to rely as much as possible on passive damping mechanisms. In this paper, rough estimates are made of the passive damping and drag forces caused by various mechanisms in EDS systems. No attention will be given to active control systems or secondary suspension systems which are obvious ways to augment passive damping mechanisms if the latter prove to be inadequate.« less
NASA Technical Reports Server (NTRS)
Sireteanu, T.
1974-01-01
An oscillating system with quadratic damping subjected to white noise excitation is replaced by a nonlinear, statistically equivalent system for which the associated Fokker-Planck equation can be exactly solved. The mean square responses are calculated and the optimum damping coefficient is determined with respect to the minimum mean square acceleration criteria. An application of these results to the optimization of automobile suspension damping is given.
Reprocessing of Soft X-ray Emission Lines in Black Hole Accretion Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauche, C W; Liedahl, D A; Mathiesen, B F
By means of a Monte Carlo code that accounts for Compton scattering and photoabsorption followed by recombination, we have investigated the radiation transfer of Ly{alpha}, He{alpha}, and recombination continua photons of H- and He-like C, N, O, and Ne produced in the photoionized atmosphere of a relativistic black hole accretion disk. We find that photoelectric opacity causes significant attenuation of photons with energies above the O VIII K-edge; that the conversion efficiencies of these photons into lower-energy lines and recombination continua are high; and that accounting for this reprocessing significantly (by factors of 21% to 105%) increases the flux ofmore » the Ly{alpha} and He{alpha} emission lines of H- and He-like C and O escaping the disk atmosphere.« less
Rocket and spacecraft studies of ultraviolet emissions from astrophysical targets
NASA Technical Reports Server (NTRS)
Fastie, W. G.; Moos, H. W.; Feldman, P. D.; Henry, R. C.
1975-01-01
Rocket and spacecraft far-UV spectral measurements of several astrophysical targets are reviewed. These include observations of Ly-alpha emissions from Arcturus, Apollo-17 far-UV spectrometry of eta UMa and five other stars, Apollo-17 observations of the lunar atmosphere and the diffuse UV background, and far-UV spectral studies of Venus, Jupiter, and Comet Kohoutek. The Arcturus observations indicated a chromosphere with neutral atomic-hydrogen and atomic-oxygen emissions as well as a very weak atomic-carbon line. The planetary studies revealed O I and C I emissions in the Venusian spectrum as well as large Ly-alpha emissions and possible molecular-hydrogen emissions in that of Jupiter. The lunar observations demonstrated that solar protons do not produce an atomic-hydrogen atmosphere on the moon.
The astrophysical consequences of intervening galaxy gas on fast radio bursts
NASA Astrophysics Data System (ADS)
Prochaska, J. Xavier; Neeleman, Marcel
2018-02-01
We adopt and analyze results on the incidence and physical properties of damped Ly$\\alpha$ systems (DLAs) to predict the astrophysical impact of gas in galaxies on observations of Fast Radio Bursts (FRBs). Three DLA measures form the basis of this analysis: (i) the HI column density distribution, parameterized as a double power-law; (ii) the incidence of DLAs with redshift (derived here), $\\ell(z)=A+B \\arctan(z-C)$ with $A=0.236_{-0.021}^{+0.016}, B=0.168_{-0.017}^{+0.010}, C=2.87_{-0.13}^{+0.17}$ and (iii) the electron density, parameterized as a log-normal deviate with mean $10^{-2.6} cm^{-3}$ and dispersion 0.3dex. Synthesizing these results, we estimate that the average rest-frame dispersion measure from the neutral medium of a single, intersecting galaxy is DM$^{NM}_{DLA}=0.25$ pc/cm^3. Analysis of AlIII and CII* absorption limits the putative warm ionized medium to contribute DM$^{WIM}_{DLA}<20$pc/cm^3. Given the low incidence of DLAs, we find that a population of FRBs at z=2 will incur DM(z=2)=0.01 pc/cm^3 on average, with a 99% c.l. upper bound of 0.22 pc/cm^3. Assuming that turbulence of the ISM in external galaxies is qualitatively similar to our Galaxy, we estimate that the angular broadening of an FRB by intersecting galaxies is negligible ($\\theta<0.1$mas). The temporal broadening is also predicted to be small, $\\tau \\approx 0.3$ms for a z=1 galaxy intersecting a z=2 FRB for an observing frequency of $\
Special class of nonlinear damping models in flexible space structures
NASA Technical Reports Server (NTRS)
Hu, Anren; Singh, Ramendra P.; Taylor, Lawrence W.
1991-01-01
A special class of nonlinear damping models is investigated in which the damping force is proportional to the product of positive integer or the fractional power of the absolute values of displacement and velocity. For a one-degree-of-freedom system, the classical Krylov-Bogoliubov 'averaging' method is used, whereas for a distributed system, both an ad hoc perturbation technique and the finite difference method are employed to study the effects of nonlinear damping. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on the damping ratio but also on the initial amplitude, the time to measure the response, the frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce the energy of the system and to pass energy to lower modes.
Damping characterization in large structures
NASA Technical Reports Server (NTRS)
Eke, Fidelis O.; Eke, Estelle M.
1991-01-01
This research project has as its main goal the development of methods for selecting the damping characteristics of components of a large structure or multibody system, in such a way as to produce some desired system damping characteristics. The main need for such an analytical device is in the simulation of the dynamics of multibody systems consisting, at least partially, of flexible components. The reason for this need is that all existing simulation codes for multibody systems require component-by-component characterization of complex systems, whereas requirements (including damping) often appear at the overall system level. The main goal was met in large part by the development of a method that will in fact synthesize component damping matrices from a given system damping matrix. The restrictions to the method are that the desired system damping matrix must be diagonal (which is almost always the case) and that interbody connections must be by simple hinges. In addition to the technical outcome, this project contributed positively to the educational and research infrastructure of Tuskegee University - a Historically Black Institution.
NASA Astrophysics Data System (ADS)
Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long
2017-09-01
This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.
Design, analysis, and testing of high frequency passively damped struts
NASA Technical Reports Server (NTRS)
Yiu, Y. C.; Davis, L. Porter; Napolitano, Kevin; Ninneman, R. Rory
1993-01-01
Objectives of the research are: (1) to develop design requirements for damped struts to stabilize control system in the high frequency cross-over and spill-over range; (2) to design, fabricate and test viscously damped strut and viscoelastically damped strut; (3) to verify accuracy of design and analysis methodology of damped struts; and (4) to design and build test apparatus, and develop data reduction algorithm to measure strut complex stiffness. In order to meet the stringent performance requirements of the SPICE experiment, the active control system is used to suppress the dynamic responses of the low order structural modes. However, the control system also inadvertently drives some of the higher order modes unstable in the cross-over and spill-over frequency range. Passive damping is a reliable and effective way to provide damping to stabilize the control system. It also improves the robustness of the control system. Damping is designed into the SPICE testbed as an integral part of the control-structure technology.
System identification of analytical models of damped structures
NASA Technical Reports Server (NTRS)
Fuh, J.-S.; Chen, S.-Y.; Berman, A.
1984-01-01
A procedure is presented for identifying linear nonproportionally damped system. The system damping is assumed to be representable by a real symmetric matrix. Analytical mass, stiffness and damping matrices which constitute an approximate representation of the system are assumed to be available. Given also are an incomplete set of measured natural frequencies, damping ratios and complex mode shapes of the structure, normally obtained from test data. A method is developed to find the smallest changes in the analytical model so that the improved model can exactly predict the measured modal parameters. The present method uses the orthogonality relationship to improve mass and damping matrices and the dynamic equation to find the improved stiffness matrix.
NASA Astrophysics Data System (ADS)
Ding, Zhe; Li, Li; Hu, Yujin
2018-01-01
Sophisticated engineering systems are usually assembled by subcomponents with significantly different levels of energy dissipation. Therefore, these damping systems often contain multiple damping models and lead to great difficulties in analyzing. This paper aims at developing a time integration method for structural systems with multiple damping models. The dynamical system is first represented by a generally damped model. Based on this, a new extended state-space method for the damped system is derived. A modified precise integration method with Gauss-Legendre quadrature is then proposed. The numerical stability and accuracy of the proposed integration method are discussed in detail. It is verified that the method is conditionally stable and has inherent algorithmic damping, period error and amplitude decay. Numerical examples are provided to assess the performance of the proposed method compared with other methods. It is demonstrated that the method is more accurate than other methods with rather good efficiency and the stable condition is easy to be satisfied in practice.
Controllable outrigger damping system for high rise building with MR dampers
NASA Astrophysics Data System (ADS)
Wang, Zhihao; Chang, Chia-Ming; Spencer, Billie F., Jr.; Chen, Zhengqing
2010-04-01
A novel energy dissipation system that can achieve the amplified damping ratio for a frame-core tube structures is explored, where vertical dampers are equipped between the outrigger and perimeter columns. The modal characteristics of the structural system with linear viscous dampers are theoretically analyzed from the simplified finite element model by parametric analysis. The result shows that modal damping ratios of the first several modes can increase a lot with this novel damping system. To improve the control performance of system, the semi-active control devices, magnetorheological (MR) dampers, are adopted to develop a controllable outrigger damping system. The clipped optimal control with the linear-quadratic Gaussian (LQG) acceleration feedback is adopted in this paper. The effectiveness of both passive and semi-active control outrigger damping systems is evaluated through the numerical simulation of a representative tall building subjected to two typical earthquake records.
Structural damping studies at cryogenic temperatures
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Buehrle, Ralph D.
1994-01-01
Results of an engineering study to measure changes in structural damping properties of two cryogenic wind tunnel model systems and two metallic test specimens at cryogenic temperatures are presented. Data are presented which indicate overall, a trend toward reduced structural damping at cryogenic temperatures (-250 degrees F) when compared with room temperature damping properties. The study was focused on structures and materials used for model systems tested in the National Transonic Facility (NTF). The study suggests that the significant reductions in damping at extremely cold temperatures are most likely associated with changes in mechanical joint compliance damping rather than changes in material (solid) damping.
NASA Technical Reports Server (NTRS)
Praderie, F.; Simonneau, E.; Snow, T. P., Jr.
1975-01-01
Copernicus satellite observations of the Ly-alpha profiles in alpha Lyrae (Vega) are used to determine whether classical radiative-equilibrium LTE model atmospheres can fit the thermal structure in the outer layers of that star. Two plane-parallel LTE model photospheres of alpha Lyrae are considered: a line-blanketed radiative-equilibrium model with an effective temperature of 9650 K and log g of 4.05, and the same model with a temperature of 9500 K and log g of 4.0. The profiles of the Ly-alpha wings are computed, and it is found that classical LTE models are unable to predict either the observed violet wing or the red wing longwards of 1239 A, regardless of the line source function. It is concluded that the electron temperature must increase outwards over the surface value reached in radiative equilibrium.
Jovian H2 dayglow emission (1978-1989)
NASA Technical Reports Server (NTRS)
Mcgrath, M. A.; Ballester, G. E.; Moos, H. W.
1990-01-01
The IUE data set accumulated through 10 years of Jovian equatorial observations is used to measure the long-term temporal variation of the H2 dayglow emission. The model that best fits the data indicates a possible correlation between long-term solar activity and the Jovian H2 emission in the region 1500-1700 A between 1978 and 1989, which spans the decline in solar activity for solar cycle 21 and the rise in solar activity accompanying solar cycle 22. The magnitude of the observed variation is closer to that of the solar Ly-alpha flux than the 10.7 cm radio flux. Short-wavelength H2 band emission intensity is inconsistent with the amount of long-wavelength emission but may be reconciled if relatively low-energy excitation or fluorescence of solar radiation is invoked. No persistent longitudinal feature analogous to the H I Ly-alpha can be identified.
Two-Degree-of-Freedom Mount System for Flutter Models
NASA Technical Reports Server (NTRS)
Farmer, M. G.
1983-01-01
Flexible rods replace conventional bearing supports to minimize structural damping. Aerodynamic damping not masked by effects of mount system, making more accurate studies possible of how aerodynamic damping varies as flow over model changed. New system called PAPA.
A FAST FLARE AND DIRECT REDSHIFT CONSTRAINT IN FAR-ULTRAVIOLET SPECTRA OF THE BLAZAR S5 0716+714
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danforth, Charles W.; Nalewajko, Krzysztof; France, Kevin
The BL Lacertae object S5 0716+714 is one of the most studied blazars on the sky due to its active variability and brightness in many bands, including very-high-energy gamma rays. We present here two serendipitous results from recent far-ultraviolet spectroscopic observations by the Cosmic Origins Spectrograph onboard the Hubble Space Telescope (HST). First, during the course of our 7.3 hr HST observations, the blazar increased in flux rapidly by {approx}40% (-0.45 mag hr{sup -1}) followed by a slower decline (+0.36 mag hr{sup -1}) to previous FUV flux levels. We model this flare using asymmetric flare templates and constrain the physicalmore » size and energetics of the emitting region. Furthermore, the spectral index of the object softens considerably during the course of the flare from {alpha}{sub {nu}} Almost-Equal-To -1.0 to {alpha}{sub {nu}} Almost-Equal-To -1.4. Second, we constrain the source redshift directly using the {approx}30 intervening absorption systems. A system at z = 0.2315 is detected in Ly{alpha}, Ly{beta}, O VI, and N V and defines the lower bound on the source redshift. No absorbers are seen in the remaining spectral coverage (0.2315 < z {sub Ly{alpha}} {approx}< 0.47) and we set a statistical upper bound of z < 0.322 (95% confidence) on the blazar. This is the first direct redshift limit for this object and is consistent with literature estimates of z = 0.31 {+-} 0.08 based on the detection of a host galaxy.« less
Introduction to the scientific application system of DAMPE (On behalf of DAMPE collaboration)
NASA Astrophysics Data System (ADS)
Zang, Jingjing
2016-07-01
The Dark Matter Particle Explorer (DAMPE) is a high energy particle physics experiment satellite, launched on 17 Dec 2015. The science data processing and payload operation maintenance for DAMPE will be provided by the DAMPE Scientific Application System (SAS) at the Purple Mountain Observatory (PMO) of Chinese Academy of Sciences. SAS is consisted of three subsystems - scientific operation subsystem, science data and user management subsystem and science data processing subsystem. In cooperation with the Ground Support System (Beijing), the scientific operation subsystem is responsible for proposing observation plans, monitoring the health of satellite, generating payload control commands and participating in all activities related to payload operation. Several databases developed by the science data and user management subsystem of DAMPE methodically manage all collected and reconstructed science data, down linked housekeeping data, payload configuration and calibration data. Under the leadership of DAMPE Scientific Committee, this subsystem is also responsible for publication of high level science data and supporting all science activities of the DAMPE collaboration. The science data processing subsystem of DAMPE has already developed a series of physics analysis software to reconstruct basic information about detected cosmic ray particle. This subsystem also maintains the high performance computing system of SAS to processing all down linked science data and automatically monitors the qualities of all produced data. In this talk, we will describe all functionalities of whole DAMPE SAS system and show you main performances of data processing ability.
NASA Astrophysics Data System (ADS)
Bai, Xian-Ming; Shah, Binoy; Keer, Leon; Wang, Jane; Snurr, Randall
2008-03-01
Mechanical damping systems with granular particles as the damping media have promising applications in extreme temperature conditions. In particle-based damping systems, the mechanical energy is dissipated through the inelastic collision and friction of particles. In the past, many experiments have been performed to investigate the particle damping problems. However, the detailed energy dissipation mechanism is still unclear due to the complex collision and flow behavior of dense particles. In this work, we use 3-D particle dynamics simulation to investigate the damping mechanism of an oscillating cylinder piston immerged in millimeter-size steel particles. The time evolution of the energy dissipation through the friction and inelastic collision is accurately monitored during the damping process. The contribution from the particle-particle interaction and particle-wall interaction is also separated for investigation. The effects of moisture, surface roughness, and density of particles are carefully investigated in the simulation. The comparison between the numerical simulation and experiment is also performed. The simulation results can help us understand the particle damping mechanism and design the new generation of particle damping devices.
Significance of modeling internal damping in the control of structures
NASA Technical Reports Server (NTRS)
Banks, H. T.; Inman, D. J.
1992-01-01
Several simple systems are examined to illustrate the importance of the estimation of damping parameters in closed-loop system performance and stability. The negative effects of unmodeled damping are particularly pronounced in systems that do not use collocated sensors and actuators. An example is considered for which even the actuators (a tip jet nozzle and flexible hose) for a simple beam produce significant damping which, if ignored, results in a model that cannot yield a reasonable time response using physically meaningful parameter values. It is concluded that correct damping modeling is essential in structure control.
Development of High-Resolution UV-VIS Diagnostics for Space Plasma Simulation
NASA Astrophysics Data System (ADS)
Taylor, Andrew; Batishchev, Oleg
2012-10-01
Non-invasive far-UV-VIS plasma emission allows remote diagnostics of plasma, which is particularly important for space application. Accurate vacuum tank space plasma simulations require monochromators with high spectral resolution (better than 0.01A) to capture important details of atomic and ionic lines, such as Ly-alpha, etc. We are building a new system based on the previous work [1], and will discuss the development of a spectrometry system that combines a single-pass vacuum far-UV-NIR spectrometer and a tunable Fabry-Perot etalon. [4pt] [1] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.
Ultra-low magnetic damping in metallic and half-metallic systems
NASA Astrophysics Data System (ADS)
Shaw, Justin
The phenomenology of magnetic damping is of critical importance to devices which seek to exploit the electronic spin degree of freedom since damping strongly affects the energy required and speed at which a device can operate. However, theory has struggled to quantitatively predict the damping, even in common ferromagnetic materials. This presents a challenge for a broad range of applications in magnonics, spintronics and spin-orbitronics that depend on the ability to precisely control the damping of a material. I will discuss our recent work to precisely measure the intrinsic damping in several metallic and half-metallic material systems and compare experiment with several theoretical models. This investigation uncovered a metallic material composed of Co and Fe that exhibit ultra-low values of damping that approach values found in thin film YIG. Such ultra-low damping is unexpected in a metal since magnon-electron scattering dominates the damping in conductors. However, this system possesses a distinctive feature in the bandstructure that minimizes the density of states at the Fermi energy n(EF). These findings provide the theoretical framework by which such ultra-low damping can be achieved in metallic ferromagnets and may enable a new class of experiments where ultra-low damping can be combined with a charge current. Half-metallic Heusler compounds by definition have a bandgap in one of the spin channels at the Fermi energy. This feature can also lead to exceptionally low values of the damping parameter. Our results show a strong correlation of the damping with the order parameter in Co2MnGe. Finally, I will provide an overview of the recent advances in achieving low damping in thin film Heusler compounds.
NASA Technical Reports Server (NTRS)
Craig, R. R., Jr.
1985-01-01
A component mode synthesis method for damped structures was developed and modal test methods were explored which could be employed to determine the relevant parameters required by the component mode synthesis method. Research was conducted on the following topics: (1) Development of a generalized time-domain component mode synthesis technique for damped systems; (2) Development of a frequency-domain component mode synthesis method for damped systems; and (3) Development of a system identification algorithm applicable to general damped systems. Abstracts are presented of the major publications which have been previously issued on these topics.
Dynamic characteristics of a novel damped outrigger system
NASA Astrophysics Data System (ADS)
Tan, Ping; Fang, Chuangjie; Zhou, Fulin
2014-06-01
This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method (DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and efficiency are verified in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the influences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coefficient. Results show that the modal damping ratio is significantly influenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.
NASA Astrophysics Data System (ADS)
Lázaro, Mario
2018-01-01
In this paper, nonviscous, nonproportional, vibrating structures are considered. Nonviscously damped systems are characterized by dissipative mechanisms which depend on the history of the response velocities via hereditary kernel functions. Solutions of the free motion equation lead to a nonlinear eigenvalue problem involving mass, stiffness and damping matrices. Viscoelasticity leads to a frequency dependence of this latter. In this work, a novel closed-form expression to estimate complex eigenvalues is derived. The key point is to consider the damping model as perturbed by a continuous fictitious parameter. Assuming then the eigensolutions as function of this parameter, the computation of the eigenvalues sensitivity leads to an ordinary differential equation, from whose solution arises the proposed analytical formula. The resulting expression explicitly depends on the viscoelasticity (frequency derivatives of the damping function), the nonproportionality (influence of the modal damping matrix off-diagonal terms). Eigenvectors are obtained using existing methods requiring only the corresponding eigenvalue. The method is validated using a numerical example which compares proposed with exact ones and with those determined from the linear first order approximation in terms of the damping matrix. Frequency response functions are also plotted showing that the proposed approach is valid even for moderately or highly damped systems.
Experimental study on the damping of FAST cabin suspension system
NASA Astrophysics Data System (ADS)
Li, Hui; Sun, Jing-hai; Zhang, Xin-yu; Zhu, Wen-bai; Pan, Gao-feng; Yang, Qing-ge
2012-09-01
The focus cabin suspension of the FAST telescope has structurally weak-stiffness dynamics with low damping performance, which makes it quite sensitive to wind-induced vibrations. A reasonable estimation about the damping is very important for the control performance evaluation of the prototype. It is a quite difficult task as the telescope is no at available yet. In the paper, a preliminary analysis is first made on the aerodynamic damping. Then a series of experimental models are tested for measuring the total damping. The scales of these models range from 10m to 50m in diameter while 6 test parameters are specially designed to check the damping sensitivity. The Ibrahim time domain (ITD) method is employed to identify the damping from the measured cabin response. The identification results indicate that the lowest damping ratio of the models is about 0.2%~0.4%. Friction-type cabin-cable joint seems to have main influence on the system damping.
Beacons in the dark: using the most distant galaxies to probe cosmic reionization
NASA Astrophysics Data System (ADS)
De Barros, Stephane
2017-08-01
One of the major unresolved problems in modern cosmology is when and how the universe was ionized. The consensus scenario is that ultra-faint, low-mass galaxies contributed most to the UV background at high-redshift and that reionization was an inhomogeneous process, with ionized bubbles created first around galaxy overdensities. The very surprising discovery of Ly-alpha emission lines around a large fraction of the most luminous galaxies at z=7.4-8.7, when we expect the universe to be highly neutral, could thus be explained by the fact that they lie in large HII bubbles which were ionized thanks to yet undetected fainter neighbors. Theoretical models indeed predict a boost of up to 6x larger galaxy counts around the brightest sources compared to the general field, when probing down to luminosities as faint as 0.1L_UV of the central source. Here we propose a direct test of these models by searching for fainter neighbors around three bright z>7.4 galaxies emitting Ly-alpha, including two sources that lie only 9 Mpc from each other and could share the same ionized bubble, as well as the most distant confirmed Ly-alpha emitter EGSY-8p7 at z=8.68. Given the expected overdensities, we have the opportunity to detect 20 (and up to 50) new z 7-9 galaxies with only a modest investment of HST time. These observations are thus maximally efficient at providing a large number of precious high-redshift targets for early JWST spectroscopy to directly study the galaxies that are in the process of ionizing the universe. Our imaging will further enhance the legacy of the CANDELS/EGS field, and we will make the reduced data available to the community immediately for JWST follow-up.
NASA Technical Reports Server (NTRS)
Bridge, Carrie R.; Blain, Andrew; Borys, Colin J. K.; Petty, Sara; Benford, Dominic; Eisenhardt, Peter; Farrah, Duncan; Griffith, Roger, L.; Jarrett, Tom; Lonsdale, Carol;
2013-01-01
By combining data from the NASA Wide-field Infrared Survey Explorer (WISE) mission with optical spectroscopy from the W. M. Keck telescope, we discover a mid-IR color criterion that yields a 78% success rate in identifying rare, typically radio-quiet, 1.6 approx. < z approx. < 4.6 dusty Ly-alpha emitters (LAEs). Of these, at least 37% have emission extended on scales of 30-100 kpc and are considered Ly-alpha "blobs" (LABs). The objects have a surface density of only approx.. 0.1 deg(exp -2), making them rare enough that they have been largely missed in deep, small area surveys. We measured spectroscopic redshifts for 92 of these galaxies, and find that the LAEs (LABs) have a median redshift of 2.3 (2.5). The WISE photometry coupled with data from Herschel (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) reveals that these galaxies are in the Hyper Luminous IR galaxy regime (L(sub IR) approx. > 10(exp 13)-10(exp 14) Solar L) and have warm colors. They are typically more luminous and warmer than other dusty, z approx.. 2 populations such as submillimeter-selected galaxies and dust-obscured galaxies. These traits are commonly associated with the dust being illuminated by intense active galactic nucleus activity. We hypothesize that the combination of spatially extended Ly-alpha, large amounts of warm IR-luminous dust, and rarity (implying a short-lived phase) can be explained if the galaxies are undergoing brief, intense "feedback" transforming them from an extreme dusty starburst/QSO into a mature galaxy.
NASA Technical Reports Server (NTRS)
Kriss, G. A.; Shull, J. M.; Oegerle, W.; Zheng, W.; Davidsen, A. F.; Songaila, A.; Tumlinson, J.; Cowie, L. L.; Dehavreng, J.-M.; Friedman, S. D.
2001-01-01
The neutral hydrogen and the ionized helium absorption in the spectra of high-redshift quasi-stellar objects (QSOs) are unique probes of structure in the universe at epochs intermediate between the earliest density fluctuations seen in the cosmic background radiation and the distribution of galaxies visible today. We present Far-Ultraviolet Spectroscopic Explorer (FUSE) observations of the line of sight to the QSO HE2347-4342 in the 1000-1187 angstrom band at a resolving power of 15,000. Above redshift z = 2.7, the IGM is largely opaque in He II Ly-alpha (304 angstroms). At lower redshifts, the optical depth gradually decreases to a mean value tau = 1 at z = 2.4. We resolve the He II Ly-alpha absorption as a discrete forest of absorption lines in the z = 2.3 - 2.7 redshift range. Approximately 50% of these spectral features have H I counterparts with column densities N(sub HI) > 10(exp 12.3)/sq cm visible in a Keck spectrum. These account for most of the observed opacity in He II Ly-alpha. The remainder have N(sub HI) < 10(exp 12.3)/sq cm, below the threshold for current observations. A short extrapolation of the power-law distribution of H I column densities to lower values can account for these new absorbers. The He II to H I column density ratio eta averages approximately 80, consistent with photoionization of the IGM by a hard ionizing spectrum resulting from the integrated light of quasars at high redshift, but there is considerable scatter. Values of eta > 100 in many locations indicate that there may be localized contributions from starbursts or heavily filtered QSO radiation.
The Characteristic Dimension of Lyman-Alpha Forest Clouds Toward Q0957+561
NASA Technical Reports Server (NTRS)
Dolan, J. F.; Michalitsianos, A. G.; Hill, R. J.; Nguyen, Q. T.; Fisher, Richard (Technical Monitor)
2000-01-01
Far-ultraviolet spectra of the gravitational lens components Q0957+561 A and B were obtained with the Hubble Space Telescope Faint Object Spectrograph to investigate the characteristic dimension of Lyman-alpha forest clouds in the direction of the quasar. If one makes the usual assumption that the absorbing structures are spherical clouds with a single radius, that radius can be found analytically from the ratio of Lyman-alpha lines in only one line of sight to the number in both. A simple power series approximation to this solution, accurate everywhere to better than 1%, will be presented. Absorption lines in Q0957+561 having equivalent width greater than 0.3 A in the observer's frame not previously identified as interstellar lines, metal lines, or higher order Lyman lines were taken to be Ly-alpha forest lines. The existence of each line in this consistently selected set was then verified by its presence in two archival FOS spectra with approximately 1.5 times higher signal to noise than our spectra. Ly-alpha forest lines appear at 41 distinct wavelengths in the spectra of the two images. One absorption line in the spectrum of image A has no counterpart in the spectrum of image B, and one line in image B has no counterpart in image A. Based on the separation of the lines of sight over the redshift range searched for Ly-alpha forest lines, the density of the absorbing clouds in the direction of Q0957+561 must change significantly over a radius R = 160 (+120, -70) h (sup -1) (sub 50) kpc (H (sub 0) 50 h (sub 50) km s (sup -1) kpc (sup -1), q (sub 0) = 1/2). The 95% confidence interval on R extends from (50 950) h (sup -1) (sub 50) kpc.
Finite element analysis of damped vibrations of laminated composite plates
NASA Astrophysics Data System (ADS)
Hu, Baogang
1992-11-01
Damped free vibrations of composite laminates are subjected to macromechanical analysis. Two models are developed: a viscoelastic damping model and a specific damping capacity model. The important symmetry property of the damping matrix is retained in both models. A modified modal strain energy method is proposed for evaluating modal damping in the viscoelastic model using a real (instead of a complex) eigenvalue problem solution. Numerical studies of multidegree of freedom systems are conducted to illustrate the improved accuracy of the method compared to the modal strain energy method. The experimental data reported in the literature for damped free vibrations in both polymer matrix and metal matrix composites were used in finite element analysis to test and compare the damping models. The natural frequencies and modal damping were obtained using both the viscoelastic and specific models. Results from both models are in satisfactory agreement with experimental data. Both models were found to be reasonably accurate for systems with low damping. Parametric studies were conducted to examine the effects on damping of the side to thickness ratio, the principal moduli ratio, the total number of layers, the ply angle, and the boundary conditions.
Non-stationary pre-envelope covariances of non-classically damped systems
NASA Astrophysics Data System (ADS)
Muscolino, G.
1991-08-01
A new formulation is given to evaluate the stationary and non-stationary response of linear non-classically damped systems subjected to multi-correlated non-separable Gaussian input processes. This formulation is based on a new and more suitable definition of the impulse response function matrix for such systems. It is shown that, when using this definition, the stochastic response of non-classically damped systems involves the evaluation of quantities similar to those of classically damped ones. Furthermore, considerations about non-stationary cross-covariances, spectral moments and pre-envelope cross-covariances are presented for a monocorrelated input process.
Angular Distribution of Ly(alpha) Resonant Photons Emergent from Optically Thick Medium
2012-02-26
cosmology : theory - intergalactic medium - radiation transfer - scattering 1Division of Applied Mathematics, Brown University, Providence, RI 02912, USA...It definitely cannot be described by the Eddington approximation. The evolution of the angular distribution of resonant photons is not trivial. We
NASA Technical Reports Server (NTRS)
Stepan, J.; Trujillo Bueno, J.; Gunar, S.; del Pino Aleman, T.; Heinzel, P.; Kano, R.; Ishikawa, R.; Narukage, M.; Bando, T.; Winebarger, Amy;
2016-01-01
The 400 arcsec spectrograph slit of CLASP crossed predominantly quiet regions of the solar chromosphere, from the limb towards the solar disk center. Interestingly, in the CLASP slit-jaw images and in the SDO images of the He I line at 304 A, we can identify a filament channel (FC) extending over more than 60 arcsec crossing the spectrograph slit. In order to interpret the peculiar spatial variation of the Q/1 and U/1 signals observed by CLASP in the hydrogen Ly-alpha line (1216 A) and in the Si Ill line (1206 A) in such a filament channel, it is necessary to perform multi-dimensional radiative transfer modeling. In this contribution, we show the first results of the two-dimensional calculations we are carrying out in given filament models, with the aim of determining the filament thermal and magnetic structure by comparing the theoretical and the observed polarization signals.
Intervening O vi Quasar Absorption Systems at Low Redshift: A Significant Baryon Reservoir.
Tripp; Savage; Jenkins
2000-05-01
Far-UV echelle spectroscopy of the radio-quiet QSO H1821+643 (zem=0.297), obtained with the Space Telescope Imaging Spectrograph (STIS) at approximately 7 km s-1 resolution, reveals four definite O vi absorption-line systems and one probable O vi absorber at 0.15
Vibration Reduction of Helicopter Blade Using Variable Dampers: A Feasibility Study
NASA Technical Reports Server (NTRS)
Lee, George C.; Liang, Zach; Gan, Quan; Niu, Tiecheng
2002-01-01
In the report, the investigation of controlling helicopter-blade lead-lag vibration is described. Current practice of adding passive damping may be improved to handle large dynamic range of the blade with several peaks of vibration resonance. To minimize extra-large damping forces that may damage the control system of blade, passive dampers should have relatively small damping coefficients, which in turn limit the effectiveness. By providing variable damping, a much larger damping coefficient to suppress the vibration can be realized. If the damping force reaches the maximum allowed threshold, the damper will be automatically switched into the mode with smaller damping coefficient to maintain near-constant damping force. Furthermore, the proposed control system will also have a fail-safe feature to guarantee the basic performation of a typical passive damper. The proposed control strategy to avoid resonant regions in the frequency domain is to generate variable damping force in combination with the supporting stiffness to manipulate the restoring force and conservative energy of the controlled blade system. Two control algorithms are developed and verified by a prototype variable damper, a digital controller and corresponding algorithms. Primary experiments show good potentials for the proposed variable damper: about 66% and 82% reductions in displacement at 1/3 length and the root of the blade respectively.
Dynamic response analysis of a 24-story damped steel structure
NASA Astrophysics Data System (ADS)
Feng, Demin; Miyama, Takafumi
2017-10-01
In Japanese and Chinese building codes, a two-stage design philosophy, damage limitation (small earthquake, Level 1) and life safety (extreme large earthquake, Level 2), is adopted. It is very interesting to compare the design method of a damped structure based on the two building codes. In the Chinese code, in order to be consistent with the conventional seismic design method, the damped structure is also designed at the small earthquake level. The effect of damper systems is considered by the additional damping ratio concept. The design force will be obtained from the damped design spectrum considering the reduction due to the additional damping ratio. The additional damping ratio by the damper system is usually calculated by a time history analysis method at the small earthquake level. The velocity dependent type dampers such as viscous dampers can function well even in the small earthquake level. But, if steel damper is used, which usually remains elastic in the small earthquake, there will be no additional damping ratio achieved. On the other hand, a time history analysis is used in Japan both for small earthquake and extreme large earthquake level. The characteristics of damper system and ductility of the structure can be modelled well. An existing 24-story steel frame is modified to demonstrate the design process of the damped structure based on the two building codes. Viscous wall type damper and low yield steel panel dampers are studied as the damper system.
Estimating the Effects of Damping Treatments on the Vibration of Complex Structures
2012-09-26
26 4.3 Literature review 26 4.3.1 CLD Theory 26 4.3.2 Temperature Profiling 28 4.4 Constrained Layer Damping Analysis 29 4.5 Results 35...Coordinate systems and length scales are noted. Constraining layer, viscoelastic layer and base layer pertain to the nomenclature used through CLD ...for vibrational damping 4.1 Introduction Constrained layer damping ( CLD ) treatment systems are widely used in complex structures to dissipate
Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; ...
2014-05-16
The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluatedmore » the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.« less
Eddy damping effect of additional conductors in superconducting levitation systems
NASA Astrophysics Data System (ADS)
Jiang, Zhao-Fei; Gou, Xiao-Fan
2015-12-01
Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC-PM levitation system, the HTSC with higher critical current density Jc can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC-PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/VCu, in which VCu is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.
NASA Astrophysics Data System (ADS)
López-Ruiz, F. F.; Guerrero, J.; Aldaya, V.; Cossío, F.
2012-08-01
Using a quantum version of the Arnold transformation of classical mechanics, all quantum dynamical systems whose classical equations of motion are non-homogeneous linear second-order ordinary differential equations (LSODE), including systems with friction linear in velocity such as the damped harmonic oscillator, can be related to the quantum free-particle dynamical system. This implies that symmetries and simple computations in the free particle can be exported to the LSODE-system. The quantum Arnold transformation is given explicitly for the damped harmonic oscillator, and an algebraic connection between the Caldirola-Kanai model for the damped harmonic oscillator and the Bateman system will be sketched out.
NASA Technical Reports Server (NTRS)
Min, James B.; Harris, Donald L.; Ting, J. M.
2011-01-01
For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.
Lyman Break Galaxies in the Hubble Ultra Deep Field through Deep U-Band Imaging
NASA Astrophysics Data System (ADS)
Rafelski, Marc; Wolfe, A. M.; Cooke, J.; Chen, H. W.; Armandroff, T. E.; Wirth, G. D.
2009-12-01
We introduce an extremely deep U-band image taken of the Hubble Ultra Deep Field (HUDF), with a one sigma depth of 30.7 mag arcsec-2 and a detection limiting magnitude of 28 mag arcsec-2. The observations were carried out on the Keck I telescope using the LRIS-B detector. The U-band image substantially improves the accuracy of photometric redshift measurements of faint galaxies in the HUDF at z=[2.5,3.5]. The U-band for these galaxies is attenuated by lyman limit absorption, allowing for more reliable selections of candidate Lyman Break Galaxies (LBGs) than from photometric redshifts without U-band. We present a reliable sample of 300 LBGs at z=[2.5,3.5] in the HUDF. Accurate redshifts of faint galaxies at z=[2.5,3.5] are needed to obtain empirical constraints on the star formation efficiency of neutral gas at high redshift. Wolfe & Chen (2006) showed that the star formation rate (SFR) density in damped Ly-alpha absorption systems (DLAs) at z=[2.5,3.5] is significantly lower than predicted by the Kennicutt-Schmidt law for nearby galaxies. One caveat to this result that we wish to test is whether LBGs are embedded in DLAs. If in-situ star formation is occurring in DLAs, we would see it as extended low surface brightness emission around LBGs. We shall use the more accurate photometric redshifts to create a sample of LBGs around which we will look for extended emission in the more sensitive and higher resolution HUDF images. The absence of extended emission would put limits on the SFR density of DLAs associated with LBGs at high redshift. On the other hand, detection of faint emission on scales large compared to the bright LBG cores would indicate the presence of in situ star formation in those DLAs. Such gas would presumably fuel the higher star formation rates present in the LBG cores.
Damping in high-temperature superconducting levitation systems
Hull, John R [Sammamish, WA
2009-12-15
Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.
The Characteristics of Vibration Isolation System with Damping and Stiffness Geometrically Nonlinear
NASA Astrophysics Data System (ADS)
Lu, Ze-Qi; Chen, Li-Qun; Brennan, Michael J.; Li, Jue-Ming; Ding, Hu
2016-09-01
The paper concerns an investigation into the use of both stiffness and damping nonlinearity in the vibration isolator to improve its effectiveness. The nonlinear damping and nonlinear stiffness are both achieved by horizontal damping and stiffness as the way of the geometrical nonlinearity. The harmonic balance method is used to analyze the force transmissibility of such vibration isolation system. It is found that as the horizontal damping increasing, the height of the force transmissibility peak is decreased and the high-frequency force transmissibility is almost the same. The results are also validated by some numerical method. Then the RMS of transmissibility under Gaussian white noise is calculated numerically, the results demonstrate that the beneficial effects of the damping nonlinearity can be achieved under random excitation.
Influence of damping on quantum interference - An exactly soluble model
NASA Technical Reports Server (NTRS)
Caldeira, A. O.; Leggett, A. J.
1985-01-01
This paper reports the result of a calculation which shows the effect of damping on the quantum interference of two Gaussian wave packets in a harmonic potential. The influence-functional method, which seems to be the most appropriate one for this kind of calculation, is used. It is shown that quantum-interference effects are severely diminished by the presence of damping even when its influence on the system is only light. The corrections to the undamped formulas are always expressible in terms of the phenomenological damping constant, the temperature (in the high-temperature limit), the cutoff frequency of the reservoir oscillators, and the mean number of quanta of energy intially present in the system. Both weakly and strongly damped systems are analyzed in the regime of low and high temperatures.
The Study of Damped Harmonic Oscillations Using an Electronic Counter
ERIC Educational Resources Information Center
Wadhwa, Ajay
2009-01-01
We study damped harmonic oscillations in mechanical systems like the loaded spring and simple pendulum with the help of an oscillation measuring electronic counter. The experimental data are used in a software program that solves the differential equation for damped vibrations of any system and determines its position, velocity and acceleration as…
Two methods for damping torsional vibrations in DFIG-based wind generators using power converters
NASA Astrophysics Data System (ADS)
Zhao, Zuyi; Lu, Yupu; Xie, Da; Yu, Songtao; Wu, Wangping
2017-01-01
This paper proposes novel damping control algorithms by using static synchronous compensator (STATCOM) and energy storage system (ESS) to damp torsional vibrations in doubly fed induction generator (DFIG) based wind turbine systems. It first analyses the operating characteristics of STATCOM and ESS for regulating power variations to increase grid voltage stability. Then, new control strategies for STATCOM and ESS are introduced to damp the vibrations. It is followed by illustration of their effectiveness to damp the drive train torsional vibrations of wind turbines, which can be caused by grid disturbances, such as voltage sags and frequency fluctuations. Results suggest that STATCOM is a promising technology to mitigate the torsional vibrations caused by grid voltage sags. By contrast, the ESS connected to the point of common coupling (PCC) of wind turbine systems shows even obvious advantages because of its capability of absorbing/releasing both active and reactive power. It can thus be concluded that STATCOM is useful for stabilizing power system voltage fluctuations, and ESS is more effective both in regulating PCC voltage fluctuations and damping torsional vibrations caused by grid voltage frequency fluctuations.
Stabilizing and destabilizing effects of damping in non-conservative systems: Some new results
NASA Astrophysics Data System (ADS)
Abdullatif, Mahmoud; Mukherjee, Ranjan; Hellum, Aren
2018-01-01
Previous work has amply demonstrated that non-conservative systems can be made unstable by the application of damping. Systems with two neutrally-stable damping levels, whereby the system initially gains stability but later loses stability as the level of damping is increased, have also been observed. The phenomenon of three damping-induced stability transitions has not been reported in the literature. Here we show that the addition of damping can cause non-conservative systems to become stable, then unstable, then stable again at the same value of the non-conservative forcing variable. This combination of stability transitions is found to exist for several example systems, including linkages with follower end forces and fluid-conveying pipes. Another interesting observation is that a given system can exhibit different forms of stability transitions in different regions of its parameter space. In a particular example, the neutral stability curves corresponding to two different modes are observed to intersect, such that the boundary separating the stable and unstable regions is piecewise continuous. This observation requires that the accepted definitions of "stabilizing" and "destabilizing" roles of damping be revised. All of these stability transition behaviors were found by applying the Routh-Hurwitz procedure, whereby the traditional procedure is first applied to the characteristic polynomial of the system, and then again to guarantee the existence of a second-order auxiliary polynomial in the Routh array. This procedure is developed in the context of examples, each of which concerns a classical apparatus who dynamics are more interesting than previously believed.
NASA Astrophysics Data System (ADS)
Tan, Ting; Yan, Zhimiao; Lei, Hong
2017-07-01
Galloping-based piezoelectric energy harvesters scavenge small-scale wind energy and convert it into electrical energy. For piezoelectric energy harvesting with the same vibrational source (galloping) but different (alternating-current (AC) and direct-current (DC)) interfaces, general analytical solutions of the electromechanical coupled distributed parameter model are proposed. Galloping is theoretically proven to appear when the linear aerodynamic negative damping overcomes the electrical damping and mechanical damping. The harvested power is demonstrated as being done by the electrical damping force. Via tuning the load resistance to its optimal value for optimal or maximal electrical damping, the harvested power of the given structure with the AC/DC interface is maximized. The optimal load resistances and the corresponding performances of such two systems are compared. The optimal electrical damping are the same but with different optimal load resistances for the systems with the AC and DC interfaces. At small wind speeds where the optimal electrical damping can be realized by only tuning the load resistance, the performances of such two energy harvesting systems, including the minimal onset speeds to galloping, maximal harvested powers and corresponding tip displacements are almost the same. Smaller maximal electrical damping with larger optimal load resistance is found for the harvester with the DC interface when compared to those for the harvester with the AC interface. At large wind speeds when the maximal electrical damping rather than the optimal electrical damping can be reached by tuning the load resistance alone, the harvester with the AC interface circuit is recommended for a higher maximal harvested power with a smaller tip displacement. This study provides a method using the general electrical damping to connect and compare the performances of piezoelectric energy harvesters with same excitation source but different interfaces.
The Effect of Global and Local Damping on the Perception of Hardness.
van Beek, Femke Elise; Heck, Dennis J F; Nijmeijer, Henk; Bergmann Tiest, Wouter M; Kappers, Astrid M L
2016-01-01
In tele-operation systems, damping is often injected to guarantee system stability during contact with hard objects. In this study, we used psychophysical experiments to assess the effect of adding damping on the user's perception of object hardness. In Experiments 1 and 2, combinations of stiffness and damping were tested to assess their effect on perceived hardness. In both experiments, two tasks were used: an in-contact task, starting at the object's surface, and a contact-transition task, including a free-air movement. In Experiment 3, the difference between inserting damping globally (equally throughout the workspace) and locally (inside the object only) was tested. In all experiments, the correlation between the participant's perceptual decision and force and position data was also investigated. Experiments 1 and 2 show that when injecting damping globally, perceived hardness slightly increased for an in-contact task, while it decreased considerably for a contact-transition task. Experiment 3 shows that this effect was mainly due to inserting damping globally, since there was a large perceptual difference between inserting damping globally and locally. The force and position parameters suggest that participants used the same force profile during the two movements of one trial and assessed the system's reaction to this force to perceive hardness.
Emergent large mechanical damping in ferroelastic-martensitic systems driven by disorder
NASA Astrophysics Data System (ADS)
Ni, Yan; Zhang, Zhen; Fang, Minxia; Hao, Yanshuang; Ding, Xiangdong; Otsuka, Kazuhiro; Ren, Xiaobing
2018-05-01
Disorders and point defects strongly interplay with the phase transition and alter the properties of ferroelastic-martensitic systems. Unusual static and quasistatic behaviors, such as time-dependent phase transitions, are discovered when disorders are introduced. However, the role of disorders on the ferroelastic system in vibrational environments at moderate frequency is rarely known, investigation of which could further shed light on their application as mechanical damping materials. Here we present the emergence of large damping capacity in ferroelastic-martensitic systems [including both the T i50 -xN i50 +x alloy and (C a1 -xS rx) Ti O3 ceramics] by introducing disorder (i.e., substitutional Ni and Sr, respectively). As the level disorder increases, the damping capacity of both systems raises and eventually reaches a maximum when long-range-ordered martensite tends to vanish. Moreover, near the disorder-induced phase boundary, we observe a large mechanical damping in ferroelastic ceramics (C a1 -xS rx) Ti O3 with a figure of merit ˜2 GP a1 /2 . Microscopic and dynamic investigations indicate that such damping plateau could result from the competing evolution of density and mobility of domain boundaries when disorder is introduced. Our work provides a degree of freedom to develop ferroelastic damping materials and a potential way to tune domain-boundary-mediated functionalities for other ferroic materials.
Human-in-the-loop evaluation of RMS Active Damping Augmentation
NASA Technical Reports Server (NTRS)
Demeo, Martha E.; Gilbert, Michael G.; Scott, Michael A.; Lepanto, Janet A.; Bains, Elizabeth M.; Jensen, Mary C.
1993-01-01
Active Damping Augmentation is the insertion of Controls-Structures Integration Technology to benefit the on-orbit performance of the Space Shuttle Remote Manipulator System. The goal is to reduce the vibration decay time of the Remote Manipulator System following normal payload maneuvers and operations. Simulation of Active Damping Augmentation was conducted in the realtime human-in-the-loop Systems Engineering Simulator at the NASA Johnson Space Center. The objective of this study was to obtain a qualitative measure of operational performance improvement from astronaut operators and to obtain supporting quantitative performance data. Sensing of vibratory motions was simulated using a three-axis accelerometer mounted at the end of the lower boom of the Remote Manipulator System. The sensed motions were used in a feedback control law to generate commands to the joint servo mechanisms which reduced the unwanted oscillations. Active damping of the Remote Manipulator System with an attached 3990 lb. payload was successfully demonstrated. Six astronaut operators examined the performance of an Active Damping Augmentation control law following single-joint and coordinated six-joint translational and rotational maneuvers. Active Damping Augmentation disturbance rejection of Orbiter thruster firings was also evaluated. Significant reductions in the dynamic response of the 3990 lb. payload were observed. Astronaut operators recommended investigation of Active Damping Augmentation benefits to heavier payloads where oscillations are a bigger problem (e.g. Space Station Freedom assembly operators).
Huang, Weiquan; Fang, Tao; Luo, Li; Zhao, Lin; Che, Fengzhu
2017-07-03
The grid strapdown inertial navigation system (SINS) used in polar navigation also includes three kinds of periodic oscillation errors as common SINS are based on a geographic coordinate system. Aiming ships which have the external information to conduct a system reset regularly, suppressing the Schuler periodic oscillation is an effective way to enhance navigation accuracy. The Kalman filter based on the grid SINS error model which applies to the ship is established in this paper. The errors of grid-level attitude angles can be accurately estimated when the external velocity contains constant error, and then correcting the errors of the grid-level attitude angles through feedback correction can effectively dampen the Schuler periodic oscillation. The simulation results show that with the aid of external reference velocity, the proposed external level damping algorithm based on the Kalman filter can suppress the Schuler periodic oscillation effectively. Compared with the traditional external level damping algorithm based on the damping network, the algorithm proposed in this paper can reduce the overshoot errors when the state of grid SINS is switched from the non-damping state to the damping state, and this effectively improves the navigation accuracy of the system.
Optimum Damping in a Non-Linear Base Isolation System
NASA Astrophysics Data System (ADS)
Jangid, R. S.
1996-02-01
Optimum isolation damping for minimum acceleration of a base-isolated structure subjected to earthquake ground excitation is investigated. The stochastic model of the El-Centro1940 earthquake, which preserves the non-stationary evolution of amplitude and frequency content of ground motion, is used as an earthquake excitation. The base isolated structure consists of a linear flexible shear type multi-storey building supported on a base isolation system. The resilient-friction base isolator (R-FBI) is considered as an isolation system. The non-stationary stochastic response of the system is obtained by the time dependent equivalent linearization technique as the force-deformation of the R-FBI system is non-linear. The optimum damping of the R-FBI system is obtained under important parametric variations; i.e., the coefficient of friction of the R-FBI system, the period and damping of the superstructure; the effective period of base isolation. The criterion selected for optimality is the minimization of the top floor root mean square (r.m.s.) acceleration. It is shown that the above parameters have significant effects on optimum isolation damping.
Wave propagation in elastic and damped structures with stabilized negative-stiffness components
NASA Astrophysics Data System (ADS)
Drugan, W. J.
2017-09-01
Effects on wave propagation achievable by introduction of a negative-stiffness component are investigated via perhaps the simplest discrete repeating element that can remain stable in the component's presence. When the system is elastic, appropriate tuning of the stabilized component's negative stiffness introduces a no-pass zone theoretically extending from zero to an arbitrarily high frequency, tunable by a mass ratio adjustment. When the negative-stiffness component is tuned to the system's stability limit and a mass ratio is sufficiently small, the system restricts propagation to waves of approximately a single arbitrary frequency, adjustable by tuning the stiffness ratio of the positive-stiffness components. The elastic system's general solutions are closed-form and transparent. When damping is added, the general solutions are still closed-form, but so complex that they do not clearly display how the negative stiffness component affects the system's response and how it should best be tuned to achieve desired effects. Approximate solutions having these features are obtained via four perturbation analyses: one for long wavelengths; one for small damping; and two for small mass ratios. The long-wavelengths solution shows that appropriate tuning of the negative-stiffness component can prevent propagation of long-wavelength waves. The small damping solution shows that the zero-damping low-frequency no-pass zone remains, while waves that do propagate are highly damped when a mass ratio is made small. Finally, very interesting effects are achievable at the full system's stability limit. For small mass ratios, the wavelength range of waves prohibited from propagation can be adjusted, from all to none, by tuning the system's damping: When one mass ratio is small, all waves with wavelengths larger than an arbitrary damping-adjusted value can be prohibited from propagation, while when the inverse of this mass ratio is small, all waves with wavelengths outside an arbitrary single adjustable value or range of values can be prohibited from propagation. All of the approximate solutions' analytically-transparent predictions are confirmed by the exact solution. The conclusions are that a stabilized tuned negative-stiffness component greatly enhances control of wave propagation in a purely elastic system, and when adjustable damping is added, even further control is facilitated.
Deaner, Brandon J.; Allen, Matthew S.; Starr, Michael James; ...
2015-01-20
Measurements are presented from a two-beam structure with several bolted interfaces in order to characterize the nonlinear damping introduced by the joints. The measurements (all at force levels below macroslip) reveal that each underlying mode of the structure is well approximated by a single degree-of-freedom (SDOF) system with a nonlinear mechanical joint. At low enough force levels, the measurements show dissipation that scales as the second power of the applied force, agreeing with theory for a linear viscously damped system. This is attributed to linear viscous behavior of the material and/or damping provided by the support structure. At larger forcemore » levels, the damping is observed to behave nonlinearly, suggesting that damping from the mechanical joints is dominant. A model is presented that captures these effects, consisting of a spring and viscous damping element in parallel with a four-parameter Iwan model. As a result, the parameters of this model are identified for each mode of the structure and comparisons suggest that the model captures the stiffness and damping accurately over a range of forcing levels.« less
Offline software for the DAMPE experiment
NASA Astrophysics Data System (ADS)
Wang, Chi; Liu, Dong; Wei, Yifeng; Zhang, Zhiyong; Zhang, Yunlong; Wang, Xiaolian; Xu, Zizong; Huang, Guangshun; Tykhonov, Andrii; Wu, Xin; Zang, Jingjing; Liu, Yang; Jiang, Wei; Wen, Sicheng; Wu, Jian; Chang, Jin
2017-10-01
A software system has been developed for the DArk Matter Particle Explorer (DAMPE) mission, a satellite-based experiment. The DAMPE software is mainly written in C++ and steered using a Python script. This article presents an overview of the DAMPE offline software, including the major architecture design and specific implementation for simulation, calibration and reconstruction. The whole system has been successfully applied to DAMPE data analysis. Some results obtained using the system, from simulation and beam test experiments, are presented. Supported by Chinese 973 Program (2010CB833002), the Strategic Priority Research Program on Space Science of the Chinese Academy of Science (CAS) (XDA04040202-4), the Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China (NSFC) and CAS (U1531126) and 100 Talents Program of the Chinese Academy of Science
Eigensolutions of nonviscously damped systems based on the fixed-point iteration
NASA Astrophysics Data System (ADS)
Lázaro, Mario
2018-03-01
In this paper, nonviscous, nonproportional, symmetric vibrating structures are considered. Nonviscously damped systems present dissipative forces depending on the time history of the response via kernel hereditary functions. Solutions of the free motion equation leads to a nonlinear eigenvalue problem involving mass, stiffness and damping matrices, this latter as dependent on frequency. Viscous damping can be considered as a particular case, involving damping forces as function of the instantaneous velocity of the degrees of freedom. In this work, a new numerical procedure to compute eigensolutions is proposed. The method is based on the construction of certain recursive functions which, under a iterative scheme, allow to reach eigenvalues and eigenvectors simultaneously and avoiding computation of eigensensitivities. Eigenvalues can be read then as fixed-points of those functions. A deep analysis of the convergence is carried out, focusing specially on relating the convergence conditions and error-decay rate to the damping model features, such as the nonproportionality and the viscoelasticity. The method is validated using two 6 degrees of freedom numerical examples involving both nonviscous and viscous damping and a continuous system with a local nonviscous damper. The convergence and the sequences behavior are in agreement with the results foreseen by the theory.
Oscillation damping means for magnetically levitated systems
Post, Richard F [Walnut Creek, CA
2009-01-20
The present invention presents a novel system and method of damping rolling, pitching, or yawing motions, or longitudinal oscillations superposed on their normal forward or backward velocity of a moving levitated system.
Damping and support in high-temperature superconducting levitation systems
Hull, John R [Sammamish, WA; McIver, Carl R [Everett, WA; Mittleider, John A [Kent, WA
2009-12-15
Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.
Xiao, Yanwen; Xu, Wei; Wang, Liang
2016-03-01
This paper focuses on the study of the stochastic Van der Pol vibro-impact system with fractional derivative damping under Gaussian white noise excitation. The equations of the original system are simplified by non-smooth transformation. For the simplified equation, the stochastic averaging approach is applied to solve it. Then, the fractional derivative damping term is facilitated by a numerical scheme, therewith the fourth-order Runge-Kutta method is used to obtain the numerical results. And the numerical simulation results fit the analytical solutions. Therefore, the proposed analytical means to study this system are proved to be feasible. In this context, the effects on the response stationary probability density functions (PDFs) caused by noise excitation, restitution condition, and fractional derivative damping are considered, in addition the stochastic P-bifurcation is also explored in this paper through varying the value of the coefficient of fractional derivative damping and the restitution coefficient. These system parameters not only influence the response PDFs of this system but also can cause the stochastic P-bifurcation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Yanwen; Xu, Wei, E-mail: weixu@nwpu.edu.cn; Wang, Liang
2016-03-15
This paper focuses on the study of the stochastic Van der Pol vibro-impact system with fractional derivative damping under Gaussian white noise excitation. The equations of the original system are simplified by non-smooth transformation. For the simplified equation, the stochastic averaging approach is applied to solve it. Then, the fractional derivative damping term is facilitated by a numerical scheme, therewith the fourth-order Runge-Kutta method is used to obtain the numerical results. And the numerical simulation results fit the analytical solutions. Therefore, the proposed analytical means to study this system are proved to be feasible. In this context, the effects onmore » the response stationary probability density functions (PDFs) caused by noise excitation, restitution condition, and fractional derivative damping are considered, in addition the stochastic P-bifurcation is also explored in this paper through varying the value of the coefficient of fractional derivative damping and the restitution coefficient. These system parameters not only influence the response PDFs of this system but also can cause the stochastic P-bifurcation.« less
NASA Technical Reports Server (NTRS)
Shemansky, D. E.; Hall, D. T.; Ajello, J. M.
1985-01-01
The cross sections sigma R 1 (2p) for excitation of H Ly-alpha emission produced by electron impact on H2 is reexamined. A more accurate estimate for sigma R 1 (2p) is obtained based on Born approximation estimates of the H2 Rydberg system cross sections using measured relative excitation functions. The obtained value is (8.18 + or -1.2) x 10 to the -18th sq cm at 100 eV, a factor of 0.69 below the value universally applied to cross section measurements over the past decade. Cross sections for the H2 Rydberg systems fixed in magnitude by the Born approximation have also been obtained using experimentally determined excitation functions. Accurate analytic expressions for these cross sections allow the direct calculation of rate coefficients.
Zhu, S.; Cai, Y.; Rote, D. M.; ...
1998-01-01
Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.
A novel approach to the analysis of squeezed-film air damping in microelectromechanical systems
NASA Astrophysics Data System (ADS)
Yang, Weilin; Li, Hongxia; Chatterjee, Aveek N.; Elfadel, Ibrahim (Abe M.; Ender Ocak, Ilker; Zhang, TieJun
2017-01-01
Squeezed-film damping (SFD) is a phenomenon that significantly affects the performance of micro-electro-mechanical systems (MEMS). The total damping force in MEMS mainly include the viscous damping force and elastic damping force. Quality factor (Q factor) is usually used to evaluate the damping in MEMS. In this work, we measure the Q factor of a resonator through experiments in a wide range of pressure levels. In fact, experimental characterizations of MEMS have some limitations because it is difficult to conduct experiments at very high vacuum and also hard to differentiate the damping mechanisms from the overall Q factor measurements. On the other hand, classical theoretical analysis of SFD is restricted to strong assumptions and simple geometries. In this paper, a novel numerical approach, which is based on lattice Boltzmann simulations, is proposed to investigate SFD in MEMS. Our method considers the dynamics of squeezed air flow as well as fluid-solid interactions in MEMS. It is demonstrated that Q factor can be directly predicted by numerical simulation, and our simulation results agree well with experimental data. Factors that influence SFD, such as pressure, oscillating amplitude, and driving frequency, are investigated separately. Furthermore, viscous damping and elastic damping forces are quantitatively compared based on comprehensive simulation. The proposed numerical approach as well as experimental characterization enables us to reveal the insightful physics of squeezed-film air damping in MEMS.
Modified multiple time scale method for solving strongly nonlinear damped forced vibration systems
NASA Astrophysics Data System (ADS)
Razzak, M. A.; Alam, M. Z.; Sharif, M. N.
2018-03-01
In this paper, modified multiple time scale (MTS) method is employed to solve strongly nonlinear forced vibration systems. The first-order approximation is only considered in order to avoid complexicity. The formulations and the determination of the solution procedure are very easy and straightforward. The classical multiple time scale (MS) and multiple scales Lindstedt-Poincare method (MSLP) do not give desire result for the strongly damped forced vibration systems with strong damping effects. The main aim of this paper is to remove these limitations. Two examples are considered to illustrate the effectiveness and convenience of the present procedure. The approximate external frequencies and the corresponding approximate solutions are determined by the present method. The results give good coincidence with corresponding numerical solution (considered to be exact) and also provide better result than other existing results. For weak nonlinearities with weak damping effect, the absolute relative error measures (first-order approximate external frequency) in this paper is only 0.07% when amplitude A = 1.5 , while the relative error gives MSLP method is surprisingly 28.81%. Furthermore, for strong nonlinearities with strong damping effect, the absolute relative error found in this article is only 0.02%, whereas the relative error obtained by MSLP method is 24.18%. Therefore, the present method is not only valid for weakly nonlinear damped forced systems, but also gives better result for strongly nonlinear systems with both small and strong damping effect.
Search for Jovian auroral hot spots
NASA Technical Reports Server (NTRS)
Atreya, S. K.; Barker, E. S.; Yung, Y. L.; Donahue, T. M.
1977-01-01
Auroral emission originating at the foot of the Io-associated flux tube at Jupiter has been detected with a high-resolution spectrometer/telescope on board the Orbiting Astronomical Observatory Copernicus. The emission intensity at Ly-alpha is found to be greater than 100 kR, and the emission is located at zenographic latitudes greater than 65 deg.
The quasar proximity effect in an equivalent-width-limited sample of the Lyman-alpha forest
NASA Technical Reports Server (NTRS)
Chernomordik, Viktor V.; Ozernoy, Leonid M.
1993-01-01
We have obtained a simple analytical approximation to the relationship between a rest-frame equivalent-width distribution for Ly-alpha forest absorption lines, N(W), and an H I column density distribution of the observed cloud number, N(N). Assuming a simple power-law form for N(N) proportional to N exp (1-beta), it is shown that beta = 1.4 turns out to agree fairly well with the observed form of N(W) in a broad range of column densities. We present a theoretical analysis of how the 'proximity effect' influences a W-limited sample of Ly-alpha forest lines. It is shown that this influence is considerably smaller than has been found before for a N-limited sample, for which an approximate value of beta was assumed rather than derived as has been done, for a W-limited sample, in the present paper. As a result, available observational data appear to be still consistent with the conjecture that the observed population of QSOs is the major source of the UV background at redshifts z about 2-4.
Time-Resolved Ultraviolet Spectroscopy of the M-Dwarf GJ 876 Exoplanetary System
NASA Technical Reports Server (NTRS)
France, Kevin; Linsky, Jeffrey L.; Tian, Feng; Froning, Cynthia S.; Roberge, Aki
2012-01-01
Extrasolar planets orbiting M-stars may represent our best chance to discover habitable worlds in the coming decade. The ultraviolet spectrum incident upon both Earth-like and Jovian planets is critically important for proper modeling of their atmospheric heating and chemistry. In order to provide more realistic inputs for atmospheric models of planets orbiting low-mass stars, we present new near- and far-ultraviolet (NUV and FUV) spectroscopy of the M-dwarf exoplanet host GJ 876 (U4V). Using the COS and STIS spectrographs aboard the Hubble Space Telescope, we have measured the 1150 - 3140 Ang. spectrum of GJ 876. We have reconstructed the stellar H I Ly-alpha emission line profile, and find that the integrated Ly-apha flux is roughly equal to the rest of the integrated flux (1150 - 1210 Ang + 1220 - 3140 Ang) in the entire ultraviolet bandpass (F(Ly-alpha)/F(FUV+NUV) approximately equals 0.7). This ratio is approximately 2500 x greater than the solar value. We describe the ultraviolet line spectrum and report surprisingly strong fluorescent emission from hot H2 (T(H2) > 2000 K). We show the light-curve of a chromospheric + transition region flare observed in several far-UV emission lines, with flare/ quiescent flux ratios :2: 10. The strong FUV radiation field of an M-star (and specifically Ly-alpha) is important for determining the abundance of O2 - and the formation of biomarkers - in the lower atmospheres of Earth-like planets in the habitable zones of low-mass stars.
Impact of Damping Uncertainty on SEA Model Response Variance
NASA Technical Reports Server (NTRS)
Schiller, Noah; Cabell, Randolph; Grosveld, Ferdinand
2010-01-01
Statistical Energy Analysis (SEA) is commonly used to predict high-frequency vibroacoustic levels. This statistical approach provides the mean response over an ensemble of random subsystems that share the same gross system properties such as density, size, and damping. Recently, techniques have been developed to predict the ensemble variance as well as the mean response. However these techniques do not account for uncertainties in the system properties. In the present paper uncertainty in the damping loss factor is propagated through SEA to obtain more realistic prediction bounds that account for both ensemble and damping variance. The analysis is performed on a floor-equipped cylindrical test article that resembles an aircraft fuselage. Realistic bounds on the damping loss factor are determined from measurements acquired on the sidewall of the test article. The analysis demonstrates that uncertainties in damping have the potential to significantly impact the mean and variance of the predicted response.
Damping in high-temperature superconducting levitation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hull, John R.
2009-12-15
Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The dampingmore » of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.« less
NASA Technical Reports Server (NTRS)
Ottander, John A.; Hall, Robert A.; Powers, Joseph F.
2017-01-01
One of the challenges of developing flight control systems for liquid-propelled space vehicles is ensuring stability and performance in the presence of parasitic minimally damped slosh dynamics in the liquid propellants. This can be especially difficult when the fundamental frequencies of the slosh motions are in proximity to the frequency used for vehicle control. The challenge is partially alleviated since the energy dissipation and effective damping in the slosh modes increases with amplitude. However, traditional launch vehicle control design methodology is performed with linearized systems using a fixed slosh damping corresponding to a slosh motion amplitude based on heritage values. This papers presents a method for performing the control design and analysis using damping at slosh amplitudes chosen based on the resulting limit cycle amplitude of the vehicle thrust vector system due to a control-slosh interaction under degraded phase and gain margin conditions.
NASA Technical Reports Server (NTRS)
Ottander, John A.; Hall, Robert A., Jr.; Powers, Joseph F.
2017-01-01
One of the challenges of developing flight control systems for liquid-propelled space vehicles is ensuring stability and performance in the presence of parasitic minimally damped slosh dynamics in the liquid propellants. This can be especially difficult when the fundamental frequencies of the slosh motions are in proximity to the frequency used for vehicle control. The challenge is partially alleviated since the energy dissipation and effective damping in the slosh modes increases with amplitude. However, traditional launch vehicle control design methodology is performed with linearized systems using a fixed slosh damping corresponding to a slosh motion amplitude based on heritage values. This papers presents a method for performing the control design and analysis using damping at slosh amplitudes chosen based on the resulting limit cycle amplitude of the vehicle thrust vector system due to a control-slosh interaction under degraded phase and gain margin conditions.
Measurements of Aerodynamic Damping in the MIT Transonic Rotor
NASA Technical Reports Server (NTRS)
Crawley, E. F.
1981-01-01
A method was developed and demonstrated for the direct measurement of aerodynamic forcing and aerodynamic damping of a transonic compressor. The method is based on the inverse solution of the structural dynamic equations of motion of the blade disk system in order to determine the forces acting on the system. The disturbing and damping forces acting on a given blade are determined if the equations of motion are expressed in individual blade coordinates. If the structural dynamic equations are transformed to multiblade coordinates, the damping can be measured for blade disk modes, and related to a reduced frequency and interblade phase angle. In order to measure the aerodynamic damping in this way, the free response to a known excitation is studied.
The Evolution of Ly-alpha Emitting Galaxies Between z = 2.1 and z = 3.l
NASA Technical Reports Server (NTRS)
Ciardullo, Robin; Gronwall,Caryl; Wolf, Christopher; McCathran, Emily; Bond, Nicholas A.; Gawiser, Eric; Guaita, Lucia; Feldmeier, John J.; Treister, Ezequiel; Padilla, Nelson;
2011-01-01
We describe the results of a new, wide-field survey for z= 3.1 Ly-alpha emission-line galaxies (LAEs) in the Extended Chandra Deep Field South (ECDF-S). By using a nearly top-hat 5010 Angstrom filter and complementary broadband photometry from the MUSYC survey, we identify a complete sample of 141 objects with monochromatic fluxes brighter than 2.4E-17 ergs/cm^2/s and observers-frame equivalent widths greater than 80 Angstroms (i.e., 20 Angstroms in the rest-frame of Ly-alpha). The bright-end of this dataset is dominated by x-ray sources and foreground objects with GALEX detections, but when these interlopers are removed, we are still left with a sample of 130 LAE candidates, 39 of which have spectroscopic confirmations. This sample overlaps the set of objects found in an earlier ECDF-S survey, but due to our filter's redder bandpass, it also includes 68 previously uncataloged sources. We confirm earlier measurements of the z=3.1 LAE emission-line luminosity function, and show that an apparent anti-correlation between equivalent width and continuum brightness is likely due to the effect of correlated errors in our heteroskedastic dataset. Finally, we compare the properties of z=3.1 LAEs to LAEs found at z=2.1. We show that in the approximately 1 Gyr after z approximately 3, the LAE luminosity function evolved significantly, with L * fading by approximately 0.4 mag, the number density of sources with L greater than 1.5E42 ergs/s declining by approximately 50%, and the equivalent width scalelength contracting from 70^{+7}_{-5} Angstroms to 50^{+9}_{-6} Angstroms. When combined with literature results, our observations demonstrate that over the redshift range z approximately 0 to z approximately 4, LAEs contain less than approximately 10% of the star-formation rate density of the universe.
MR damping system on Dongting Lake cable-stayed bridge
NASA Astrophysics Data System (ADS)
Chen, Z. Q.; Wang, X. Y.; Ko, J. M.; Ni, Y. Q.; Spencer, Billie F., Jr.; Yang, G.
2003-08-01
The Dongting Lake Bridge is a cable-stayed bridge crossing the Dongting Lake where it meets the Yangtze River in southern central China. After this bridge was completed in 1999, its cables were observed to be sensitive to rain-wind-induced vibration, especially under adverse weather conditions of both rain and wind. To investigate the possibility of using MR damping systems to reduce cable vibration, a joint project between the Central South University of China and the Hong Kong Polytechnic University was conducted. Based on the promising research results, the bridge authority decided to install MR damping systems on the longest 156 stay cables. The installation started in July 2001 and finished in June 2002, making it the world's first application of MR dampers on cable-stayed bridge to suppress the rain-wind-induced cable vibration. As a visible and permanent aspect of bridge, the MR damping system must be aesthetically pleasing, reliable, durable, easy to maintain, as well as effective in vibration mitigation. Substantial work was done to meet these requirements. This paper describes the implementation of MR damping systems for cable vibration reduction.
Active/Passive Control of Sound Radiation from Panels using Constrained Layer Damping
NASA Technical Reports Server (NTRS)
Gibbs, Gary P.; Cabell, Randolph H.
2003-01-01
A hybrid passive/active noise control system utilizing constrained layer damping and model predictive feedback control is presented. This system is used to control the sound radiation of panels due to broadband disturbances. To facilitate the hybrid system design, a methodology for placement of constrained layer damping which targets selected modes based on their relative radiated sound power is developed. The placement methodology is utilized to determine two constrained layer damping configurations for experimental evaluation of a hybrid system. The first configuration targets the (4,1) panel mode which is not controllable by the piezoelectric control actuator, and the (2,3) and (5,2) panel modes. The second configuration targets the (1,1) and (3,1) modes. The experimental results demonstrate the improved reduction of radiated sound power using the hybrid passive/active control system as compared to the active control system alone.
Passively damped vibration welding system and method
Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao
2013-04-02
A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.
Measurement of damping of graphite epoxy composite materials and structural joints
NASA Technical Reports Server (NTRS)
Crocker, Malcolm J.; Rao, Mohan D.; Raju, P. K.; Yan, Xinche
1989-01-01
The damping capacity of graphite epoxy materials and structural joints was evaluated. The damping ratio of different composite specimens and bonded joints were systematically evaluated under normal atmospheric conditions and in a vacuum environment. Free and forced vibration test methods were employed for measuring the damping ratios. The effect of edge support conditions on the damping value of a composite tube specimen was studied by using a series of experiments performed on the specimen with different edge supports. It was found that simulating a free-free boundary conditions by having no constraints at the ends gives the lowest value of the material damping of the composite. The accuracy of the estimation of the damping ratio value was improved by using a curve-fitting technique on the response data obtained through measurement. The effect of outgassing (moisture desorption) on the damping capacity was determined by measuring the damping ratio of the tube specimen in a vacuum environment before and after outgassing had occurred. The effects of high and low temperatures on the damping was also investigated by using a series of experiments on tube and beam specimens. An analytical model to study the vibrations of a bonded lap joint system was formulated. Numerical results were generated for different overlap ratios of the system. These were compared with experimental results. In order to determine the influence of bonded joints on the material damping capacity, experiments were conducted on bonded lap-jointed and double-butt-jointed specimens. These experimental results were compared with simple beam specimens with no joints.
Dynamic characteristics of the blisk with synchronized switch damping based on negative capacitor
NASA Astrophysics Data System (ADS)
Liu, J.; Li, L.; Huang, X.; Jezequel, L.
2017-10-01
In this paper, we propose a method to suppress the vibration of the integral bladed disk ('blisk' for short) in aero-engines using synchronized switch damping based on negative capacitor (SSDNC). Different from the classical piezoelectric shunt damping, SSDNC is a type of nonlinear piezoelectric damping. A multi-harmonic balance method combined with the alternating frequency/time method (MHBM-AFT) is used to predict and further analyze the dynamic characteristics of the electromechanical system, and an arc-length continuation technique is used to improve the convergence of the method. In order to validate the algorithm as well as to recognize the characteristics of the system with SSDNC, a two degree-of-freedom (2-DOF) system with SSDNC is studied at first. The nonlinear complex modal information is calculated and compared with those of the corresponding system with a linear RL shunt circuit. The results indicate that the natural frequencies and modal damping ratio do not change with the modal amplitude, which means that SSDNC has the same modal damping corresponding to different system energy levels. In addition, SSDNC can improve the damping level of all the modes nearly without affecting the natural frequencies of the system. Then, the forced response of the blisk with SSDNC in the frequency domain is calculated and analyzed, including a tuned blisk, which is excited by the traveling wave excitation with a single harmonic and multi-harmonic, and a mistuned blisk, which is excited by traveling wave excitation with a single harmonic and multi-harmonic. We present two advantages of the SSDNC technique when compared with piezoelectric shunt damping. First, SSDNC can suppress the vibration of the blisk under a multi-harmonic wideband the traveling wave, and second, the vibration suppression performance of SSDNC is insensitive to the mistuning of mechanical parameters of the blisk. The results will be of great significance in overcoming the problem of the amplitude magnification induced by the inevitable mistuning of the blisk in aero-engines.
Damping device for a stationary labyrinth seal
NASA Technical Reports Server (NTRS)
El-Aini, Yehia M. (Inventor); Mitchell, William S. (Inventor); Roberts, Lawrence P. (Inventor); Montgomery, Stuart K. (Inventor); Davis, Gary A. (Inventor)
2010-01-01
A stationary labyrinth seal system includes a seal housing having an annular cavity, a plurality of damping devices, and a retaining ring. The damping devices are positioned within the annular cavity and are maintained within the annular cavity by the retaining ring.
DAISY-DAMP: A distributed AI system for the dynamic allocation and management of power
NASA Technical Reports Server (NTRS)
Hall, Steven B.; Ohler, Peter C.
1988-01-01
One of the critical parameters that must be addressed when designing a loosely coupled Distributed AI SYstem (DAISY) has to do with the degree to which authority is centralized or decentralized. The decision to implement the Dynamic Allocation and Management of Power (DAMP) system as a network of cooperating agents mandated this study. The DAISY-DAMP problem is described; the component agents of the system are characterized; and the communication protocols system elucidated. The motivations and advantages in designing the system with authority decentralized is discussed. Progress in the area of Speech Act theory is proposed as playing a role in constructing decentralized systems.
NASA Technical Reports Server (NTRS)
Newman, Frederick A.
1988-01-01
Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynanmic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall performance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.
NASA Technical Reports Server (NTRS)
Newman, Frederick A.
1988-01-01
Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynamic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall preformance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.
Design of passive piezoelectric damping for space structures. Final Report Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Hagood, Nesbitt W., IV; Aldrich, Jack B.; Vonflotow, Andreas H.
1994-01-01
Passive damping of structural dynamics using piezoceramic electromechanical energy conversion and passive electrical networks is a relatively recent concept with little implementation experience base. This report describes an implementation case study, starting from conceptual design and technique selection, through detailed component design and testing to simulation on the structure to be damped. About 0.5kg. of piezoelectric material was employed to damp the ASTREX testbed, a 500kg structure. Emphasis was placed upon designing the damping to enable high bandwidth robust feedback control. Resistive piezoelectric shunting provided the necessary broadband damping. The piezoelectric element was incorporated into a mechanically-tuned vibration absorber in order to concentrate damping into the 30 to 40 Hz frequency modes at the rolloff region of the proposed compensator. A prototype of a steel flex-tensional motion amplification device was built and tested. The effective stiffness and damping of the flex-tensional device was experimentally verified. When six of these effective springs are placed in an orthogonal configuration, strain energy is absorbed from all six degrees of freedom of a 90kg. mass. A NASTRAN finite element model of the testbed was modified to include the six-spring damping system. An analytical model was developed for the spring in order to see how the flex-tensional device and piezoelectric dimensions effect the critical stress and strain energy distribution throughout the component. Simulation of the testbed demonstrated the damping levels achievable in the completed system.
Passive and Active Control of Space Structures (PACOSS)
NASA Astrophysics Data System (ADS)
Morosow, G.; Harcrow, H.; Rogers, L.
1985-04-01
Passive and Active Control of Space Structures (PACOSS) is a five-year program designed to investigate highly damped structures in conjunction with active control systems, and in particular to develop technology that integrates passive damping and active control to achieve precise pointing control. Major areas of research include metal matrix composites; viscoelastic materials; damping devices; dynamic test article design, fabrication and testing; and active damping.
A soft damping function for dispersion corrections with less overfitting
NASA Astrophysics Data System (ADS)
Ucak, Umit V.; Ji, Hyunjun; Singh, Yashpal; Jung, Yousung
2016-11-01
The use of damping functions in empirical dispersion correction schemes is common and widespread. These damping functions contain scaling and damping parameters, and they are usually optimized for the best performance in practical systems. In this study, it is shown that the overfitting problem can be present in current damping functions, which can sometimes yield erroneous results for real applications beyond the nature of training sets. To this end, we present a damping function called linear soft damping (lsd) that suffers less from this overfitting. This linear damping function damps the asymptotic curve more softly than existing damping functions, attempting to minimize the usual overcorrection. The performance of the proposed damping function was tested with benchmark sets for thermochemistry, reaction energies, and intramolecular interactions, as well as intermolecular interactions including nonequilibrium geometries. For noncovalent interactions, all three damping schemes considered in this study (lsd, lg, and BJ) roughly perform comparably (approximately within 1 kcal/mol), but for atomization energies, lsd clearly exhibits a better performance (up to 2-6 kcal/mol) compared to other schemes due to an overfitting in lg and BJ. The number of unphysical parameters resulting from global optimization also supports the overfitting symptoms shown in the latter numerical tests.
Niamul Islam, Naz; Hannan, M A; Mohamed, Azah; Shareef, Hussain
2016-01-01
Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS) and thyristor-controlled series compensation (TCSC) damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA). A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI) model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO) for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation.
Translational damping on high-frequency flapping wings
NASA Astrophysics Data System (ADS)
Parks, Perry A.
Flapping fliers such as insects and birds depend on passive translational and rotational damping to terminate quick maneuvers and to provide a source of partial stability in an otherwise unstable dynamic system. Additionally, passive translational and rotational damping reduce the amount of active kinematic changes that must be made to terminate maneuvers and maintain stability. The study of flapping-induced damping phenomena also improves the understanding of micro air vehicle (MAV) dynamics needed for the synthesis of effective flight control strategies. Aerodynamic processes which create passive translational and rotational damping as a direct result of symmetric flapping with no active changes in wing kinematics have been previously studied and were termed flapping counter-force (FCF) and flapping counter-torque (FCT), respectively. In this first study of FCF measurement in air, FCF generation is measured using a pendulum system designed to isolate and measure the relationship of translational flapping-induced damping with wingbeat frequency for a 2.86 gram mechanical flapper equipped with real cicada wings. Analysis reveals that FCF generation and wingbeat frequency are directly proportional, as expected from previous work. The quasi-steady FCF model using Blade-Element-Theory is used as an estimate for translational flapping-induced damping. In most cases, the model proves to be accurate in predicting the relationship between flapping-induced damping and wingbeat frequency. "Forward-backward" motion proves to have the strongest flapping-induced damping while "up-down" motion has the weakest.
Control System Damps Vibrations
NASA Technical Reports Server (NTRS)
Kopf, E. H., Jr.; Brown, T. K.; Marsh, E. L.
1983-01-01
New control system damps vibrations in rotating equipment with help of phase-locked-loop techniques. Vibrational modes are controlled by applying suitable currents to drive motor. Control signals are derived from sensors mounted on equipment.
Damping system for torsion modes of mirror isolation filters in TAMA300
NASA Astrophysics Data System (ADS)
Arase, Y.; Takahashi, R.; Arai, K.; Tatsumi, D.; Fukushima, M.; Yamazaki, T.; Fujimoto, Masa-Katsu; Agatsuma, K.; Nakagawa, N.
2008-07-01
The seismic attenuation system (SAS) in TAMA300 consists of a three-legged inverted pendulum and mirror isolation filters in order to provide a high level of seismic isolation. However, the mirror isolation filters have torsion modes with long decay time which disturb the interferometer operation for about half an hour if they get excited. In order to damp the torsion modes of the filters, we constructed a digital damping system using reflective photosensors with a large linear range. This system was installed to all of four SASs. By damping of the target torsion modes, the effective quality factors of the torsion modes are reduced to less than 10 or to unmeasurable level. This system is expected to reduce the inoperative period by the torsion mode excitation, and thus will contribute to improve the duty time of the gravitational wave detector.
NASA Astrophysics Data System (ADS)
Charroyer, L.; Chiello, O.; Sinou, J.-J.
2016-12-01
In this paper, the study of a damped mass-spring system of three degrees of freedom with friction is proposed in order to highlight the differences in mode coupling instabilities between planar and rectilinear friction assumptions. Well-known results on the effect of structural damping in the field of friction-induced vibration are extended to the specific case of a damped mechanical system with planar friction. It is emphasised that the lowering and smoothing effects are not so intuitive in this latter case. The stability analysis is performed by calculating the complex eigenvalues of the linearised system and by using the Routh-Hurwitz criterion. Parametric studies are carried out in order to evaluate the effects of various system parameters on stability. Special attention is paid to the understanding of the role of damping and the associated destabilisation paradox in mode-coupling instabilities with planar and rectilinear friction assumptions.
NASA Technical Reports Server (NTRS)
Alberts, Thomas E.; Xia, Houchun; Chen, Yung
1992-01-01
The effectiveness of constrained viscoelastic layer damping treatment designs is evaluated separately as passive control measures for low frequency joint dominated modes and higher frequency boom flexure dominated modes using a NASTRAN finite element analysis. Passive damping augmentation is proposed which is based on a constrained viscoelastic layer damping treatment applied to the surface of the manipulators's flexible booms. It is pointed out that even the joint compliance dominated modes can be damped to some degree through appropriate design of the treatment.
Modeling meniscus rise in capillary tubes using fluid in rigid-body motion approach
NASA Astrophysics Data System (ADS)
Hamdan, Mohammad O.; Abu-Nabah, Bassam A.
2018-04-01
In this study, a new term representing net flux rate of linear momentum is introduced to Lucas-Washburn equation. Following a fluid in rigid-body motion in modeling the meniscus rise in vertical capillary tubes transforms the nonlinear Lucas-Washburn equation to a linear mass-spring-damper system. The linear nature of mass-spring-damper system with constant coefficients offers a nondimensional analytical solution where meniscus dynamics are dictated by two parameters, namely the system damping ratio and its natural frequency. This connects the numerous fluid-surface interaction physical and geometrical properties to rather two nondimensional parameters, which capture the underlying physics of meniscus dynamics in three distinct cases, namely overdamped, critically damped, and underdamped systems. Based on experimental data available in the literature and the understanding meniscus dynamics, the proposed model brings a new approach of understanding the system initial conditions. Accordingly, a closed form relation is produced for the imbibition velocity, which equals half of the Bosanquet velocity divided by the damping ratio. The proposed general analytical model is ideal for overdamped and critically damped systems. While for underdamped systems, the solution shows fair agreement with experimental measurements once the effective viscosity is determined. Moreover, the presented model shows meniscus oscillations around equilibrium height occur if the damping ratio is less than one.
NASA Astrophysics Data System (ADS)
Zhang, Song; Zhang, Hong; Xu, Ting; Wang, Wenxin; Zhu, Yuhang; Li, Daimin; Zhang, Zhiyi; Yi, Juemin; Wang, Wei
2018-06-01
In this paper we investigate the strong exciton-plasmon coupling in a hybrid system consisting of an atomic thick WS2 monolayer and a gold nanogroove array. We theoretically identify the coexistence of two damping pathways: a coherent damping pathway resulting from the resonant dipole-dipole interaction and a coupling-induced incoherent damping pathway due to the spontaneous emissions of a photon by one subsystem and its subsequent reabsorption by the other. We show that the interplay between both interaction processes not only determines the optical property of the hybrid system, but also results in a pronounced modification of the radiative damping due to the formation of super- and subradiant polariton states. Importantly, we reveal that the radiative damping property of the polariton modes is determined only by the effect of coupling-induced sub- and super-radiance, which is distinctly different from that previously observed in a metal-molecular hybrid system where pure dephasing of J-aggregate excitons dominates the polariton dynamics. Our findings may pave the way towards active manipulation of polariton dynamics and offer possibilities for realizing coherent active control in novel plasmonic devices.
Damping of a fluid-conveying pipe surrounded by a viscous annulus fluid
NASA Astrophysics Data System (ADS)
Kjolsing, Eric J.; Todd, Michael D.
2017-04-01
To further the development of a downhole vibration based energy harvester, this study explores how fluid velocity affects damping in a fluid-conveying pipe stemming from a viscous annulus fluid. A linearized equation of motion is formed which employs a hydrodynamic forcing function to model the annulus fluid. The system is solved in the frequency domain through the use of the spectral element method. The three independent variables investigated are the conveyed fluid velocity, the rotational stiffness of the boundary (using elastic springs), and the annulus fluid viscosity. It was found that, due to the hydrodynamic functions frequency-dependence, increasing the conveyed fluid velocity increases the systems damping ratio. It was also noted that stiffer systems saw the damping ratio increase at a slower rate when compared to flexible systems as the conveyed fluid velocity was increased. The results indicate that overestimating the stiffness of a system can lead to underestimated damping ratios and that this error is made worse if the produced fluid velocity or annulus fluid viscosity is underestimated. A numeric example was provided to graphically illustrate these errors. Approved for publication, LA-UR-15-28006.
Optimal integral force feedback for active vibration control
NASA Astrophysics Data System (ADS)
Teo, Yik R.; Fleming, Andrew J.
2015-11-01
This paper proposes an improvement to Integral Force Feedback (IFF), which is a popular method for active vibration control of structures and mechanical systems. Benefits of IFF include robustness, guaranteed stability and simplicity. However, the maximum damping performance is dependent on the stiffness of the system; hence, some systems cannot be adequately controlled. In this paper, an improvement to the classical force feedback control scheme is proposed. The improved method achieves arbitrary damping for any mechanical system by introducing a feed-through term. The proposed improvement is experimentally demonstrated by actively damping an objective lens assembly for a high-speed confocal microscope.
NASA Technical Reports Server (NTRS)
Newman, Frederick A.
1988-01-01
Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gauge output power spectra. The combined damping consists of aerodynamic and structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given equivalent speed, equivalent mass flow, and pressure ratio while structural and mechanical damping are assumed to be constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third stage rotor blade aerodynamic damping is presented and discussed for 70, 80, 90, and 100 percent design equivalent speed. The compressor overall performance and experimental Campbell diagrams for the third stage rotor blade row are also presented.
Vibration isolation and damping in high precision equipment
NASA Astrophysics Data System (ADS)
Bukkems, B.; Ruijl, T.; Simons, J.
2017-06-01
All systems located in a laboratory environment or factory are subject to disturbances. These disturbances can either come from the surroundings, e.g. floor-induced vibrations, or from the system itself, e.g. stage-induced vibrations. In many cases it is needed to minimize the effect of these disturbances. This can either be done by isolating the system from its disturbance source or by applying damping to the system. In this paper we present various cases in which we have effectively reduced the impact of disturbances on the system's performance, either by improving its isolation system, by minimizing the impact of stage reaction forces, or by designing polymer damping into the system.
Design and experiment study of a semi-active energy-regenerative suspension system
NASA Astrophysics Data System (ADS)
Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie
2015-01-01
A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration.
Design of ground test suspension systems for verification of flexible space structures
NASA Technical Reports Server (NTRS)
Cooley, V. M.; Juang, J. N.; Ghaemmaghami, P.
1988-01-01
A simple model demonstrates the frequency-increasing effects of a simple cable suspension on flexible test article/suspension systems. Two passive suspension designs, namely a negative spring mechanism and a rolling cart mechanism, are presented to alleviate the undesirable frequency-increasing effects. Analysis methods are provided for systems in which the augmentations are applied to both discrete and continuous representations of test articles. The damping analyses are based on friction equivalent viscous damping. Numerical examples are given for comparing the two augmentations with respect to minimizing frequency and damping increases.
Inertia-Wheel Vibration-Damping System
NASA Technical Reports Server (NTRS)
Fedor, Joseph V.
1990-01-01
Proposed electromechanical system would damp vibrations in large, flexible structure. In active vibration-damping system motors and reaction wheels at tips of appendages apply reaction torques in response to signals from accelerometers. Velocity signal for vibrations about one axis processes into control signal to oppose each of n vibrational modes. Various modes suppressed one at a time. Intended primarily for use in spacecraft that has large, flexible solar panels and science-instrument truss assembly, embodies principle of control interesting in its own right and adaptable to terrestrial structures, vehicles, and instrument platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xian-Xu, E-mail: bai@hfut.edu.cn; Wereley, Norman M.; Hu, Wei
A single-degree-of-freedom (SDOF) semi-active vibration control system based on a magnetorheological (MR) damper with an inner bypass is investigated in this paper. The MR damper employing a pair of concentric tubes, between which the key structure, i.e., the inner bypass, is formed and MR fluids are energized, is designed to provide large dynamic range (i.e., ratio of field-on damping force to field-off damping force) and damping force range. The damping force performance of the MR damper is modeled using phenomenological model and verified by the experimental tests. In order to assess its feasibility and capability in vibration control systems, themore » mathematical model of a SDOF semi-active vibration control system based on the MR damper and skyhook control strategy is established. Using an MTS 244 hydraulic vibration exciter system and a dSPACE DS1103 real-time simulation system, experimental study for the SDOF semi-active vibration control system is also conducted. Simulation results are compared to experimental measurements.« less
Linear system identification via backward-time observer models
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh Q.
1992-01-01
Presented here is an algorithm to compute the Markov parameters of a backward-time observer for a backward-time model from experimental input and output data. The backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) for the backward-time system identification. The identified backward-time system Markov parameters are used in the Eigensystem Realization Algorithm to identify a backward-time state-space model, which can be easily converted to the usual forward-time representation. If one reverses time in the model to be identified, what were damped true system modes become modes with negative damping, growing as the reversed time increases. On the other hand, the noise modes in the identification still maintain the property that they are stable. The shift from positive damping to negative damping of the true system modes allows one to distinguish these modes from noise modes. Experimental results are given to illustrate when and to what extent this concept works.
Aeromechanical stability augmentation using semi-active friction-based lead-lag damper
NASA Astrophysics Data System (ADS)
Agarwal, Sandeep
2005-11-01
Lead-lag dampers are present in most rotors to provide the required level of damping in all flight conditions. These dampers are a critical component of the rotor system, but they also represent a major source of maintenance cost. In present rotor systems, both hydraulic and elastomeric lead-lag dampers have been used. Hydraulic dampers are complex mechanical components that require hydraulic fluids and have high associated maintenance costs. Elastomeric dampers are conceptually simpler and provide a "dry" rotor, but are rather costly. Furthermore, their damping characteristics can degrade with time without showing external signs of failure. Hence, the dampers must be replaced on a regular basis. A semi-active friction based lead-lag damper is proposed as a replacement for hydraulic and elastomeric dampers. Damping is provided by optimized energy dissipation due to frictional forces in semi-active joints. An actuator in the joint modulates the normal force that controls energy dissipation at the frictional interfaces, resulting in large hysteretic loops. Various selective damping strategies are developed and tested for a simple system containing two different frequency modes in its response, one of which needs to be damped out. The system reflects the situation encountered in rotor response where 1P excitation is present along with the potentially unstable regressive lag motion. Simulation of the system response is obtained to compare their effectiveness. Next, a control law governing the actuation in the lag damper is designed to generate the desired level of damping for performing adaptive selective damping of individual blade lag motion. Further, conceptual design of a piezoelectric friction based lag damper for a full-scale rotor is presented and various factors affecting size, design and maintenance cost, damping capacity, and power requirements of the damper are discussed. The selective semi-active damping strategy is then studied in the context of classical ground resonance problem. In view of the inherent nonlinearity in the system due to friction phenomena, multiblade transformation from rotating frame to nonrotating frame is not useful. Stability analysis of the system is performed in the rotating frame to gain an understanding of the dynamic characteristics of rotor system with attached semi-active friction based lag dampers. This investigation is extended to the ground resonance stability analysis of a comprehensive UH-60 model within the framework of finite element based multibody dynamics formulations. Simulations are conducted to study the performance of several integrated lag dampers ranging from passive to semi-active ones with varying levels of selectivity. Stability analysis is performed for a nominal range of rotor speeds using Prony's method.
NASA Astrophysics Data System (ADS)
Buyco, K.; Heaton, T. H.
2016-12-01
Current U.S. seismic code and performance-based design recommendations quantify ground motion intensity using 5%-damped spectral acceleration when estimating the collapse vulnerability of buildings. This intensity measure works well for predicting inter-story drift due to moderate shaking, but other measures have been shown to be better for estimating collapse risk.We propose using highly-damped (>10%) spectral acceleration to assess collapse vulnerability. As damping is increased, the spectral acceleration at a given period T begins to behave like a weighted average of the corresponding lowly-damped (i.e. 5%) spectrum at a range of periods. Weights for periods longer than T increase as damping increases. Using high damping is physically intuitive for two reasons. Firstly, ductile buildings dissipate a large amount of hysteretic energy before collapse and thus behave more like highly-damped systems. Secondly, heavily damaged buildings experience period-lengthening, giving further credence to the weighted-averaging property of highly-damped spectral acceleration.To determine the optimal damping value(s) for this ground motion intensity measure, we conduct incremental dynamic analysis for a suite of ground motions on several different mid-rise steel buildings and select the damping value yielding the lowest dispersion of intensity at the collapse threshold. Spectral acceleration calculated with damping as high as 70% has been shown to be a better indicator of collapse than that with 5% damping.
Vibrating Systems with Singular Mass-Inertia Matrices
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1996-01-01
Vibrating systems with singular mass-inertia matrices arise in recent continuum models of Smart Structures (beams with PZT strips) in assessing the damping attainable with rate feedback. While they do not quite yield 'distributed' controls, we show that they can provide a fixed nonzero lower bound for the damping coefficient at all mode frequencies. The mathematical machinery for modelling the motion involves the theory of Semigroups of Operators. We consider a Timoshenko model for torsion only, a 'smart string,' where the damping coefficient turns out to be a constant at all frequencies. We also observe that the damping increases initially with the feedback gain but decreases to zero eventually as the gain increases without limit.
NASA Astrophysics Data System (ADS)
Pal, Suvajit; Ghosh, Manas
2014-07-01
We investigate the profiles of diagonal components of static and frequency-dependent third nonlinear (γxxxx and γyyyy) polarizability of repulsive impurity doped quantum dots. The dopant impurity potential takes a GAUSSIAN form. We have considered propagation of the dopant within an environment that damps the motion. The study focuses on role of damping strength on the diagonal components of both static and frequency-dependent third nonlinear polarizability of the doped system. The doped system is further exposed to an external electric field of given intensity. Damping subtly modulates the dot-impurity interaction and fabricates the polarizability components in a noticeable manner.
Damping Property and Vibration Analysis of Blades with Viscoelastic Layers
NASA Astrophysics Data System (ADS)
Huang, Shyh-Chin; Chiu, Yi-Jui; Lu, Yao-Ju
This paper showed the damping effect and the vibration analysis of a shaft-disk-blade system with viscoelastic layers on blades. The focus of the research is on the shaft's torsional vibration and the blade's bending vibration. The equations of motion were derived from the energy approach. This model, unlike the previous, used only two displacement functions for layered blades. Then, the assumed-modes method was employed to discretize the equations. The analyses of natural frequencies damping property were discussed afterwards. The numerical results showed the damping effects due to various constraining layer (CL) thickness and viscoelastic material (VEM) thickness. The research also compared FRF's of the systems with and without viscoelastic layers. It is concluded that both CL and VEM layers promote the damping capability but the marginal effect decreases with their thickness. The CLD treatment also found drop the natural frequencies slightly.
Salgotra, Aprajita; Pan, Somnath
2018-05-01
This paper explores a two-level control strategy by blending local controller with centralized controller for the low frequency oscillations in a power system. The proposed control scheme provides stabilization of local modes using a local controller and minimizes the effect of inter-connection of sub-systems performance through a centralized control. For designing the local controllers in the form of proportional-integral power system stabilizer (PI-PSS), a simple and straight forward frequency domain direct synthesis method is considered that works on use of a suitable reference model which is based on the desired requirements. Several examples both on one machine infinite bus and multi-machine systems taken from the literature are illustrated to show the efficacy of the proposed PI-PSS. The effective damping of the systems is found to be increased remarkably which is reflected in the time-responses; even unstable operation has been stabilized with improved damping after applying the proposed controller. The proposed controllers give remarkable improvement in damping the oscillations in all the illustrations considered here and as for example, the value of damping factor has been increased from 0.0217 to 0.666 in Example 1. The simulation results obtained by the proposed control strategy are favourably compared with some controllers prevalent in the literature. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Active damping of the e-p instability at the Los Alamos Proton Storage Ring
NASA Astrophysics Data System (ADS)
Macek, R. J.; Assadi, S.; Byrd, J. M.; Deibele, C. E.; Henderson, S. D.; Lee, S. Y.; McCrady, R. C.; Pivi, M. F. T.; Plum, M. A.; Walbridge, S. B.; Zaugg, T. J.
2007-12-01
A prototype of an analog, transverse (vertical) feedback system for active damping of the two-stream (e-p) instability has been developed and successfully tested at the Los Alamos Proton Storage Ring (PSR). This system was able to improve the instability threshold by approximately 30% (as measured by the change in RF buncher voltage at instability threshold). The feedback system configuration, setup procedures, and optimization of performance are described. Results of several experimental tests of system performance are presented including observations of instability threshold improvement and grow-damp experiments, which yield estimates of instability growth and damping rates. A major effort was undertaken to identify and study several factors limiting system performance. Evidence obtained from these tests suggests that performance of the prototype was limited by higher instability growth rates arising from beam leakage into the gap at lower RF buncher voltage and the onset of instability in the horizontal plane, which had no feedback.
Modal Analysis of Embedded Passive Damping Materials in Composite Plates with Different Orientations
NASA Technical Reports Server (NTRS)
Kehoe, Michael; Kolkailah, Faysal A.; Elghandour, Eltahry I.
1998-01-01
This report presents an experimental and numerical investigation of the free vibration of cantilevered composite plates with and without passive damping. A total of seven composite material plates are considered. The lay-up sequences for the two plates without damping are [90/90/0/0], and [90/0/90/0]; the other five plates are the same as the first two with two embedded layers of passive damping material. The passive damping material is embedded at different locations in the plate with orientation [90/0/90/0],. The damping material employed is a 3M material (SJ-2015 ISD 112) with peak damping properties in the ambient temperature range (32 F to 140 F). The composite material used is a carbon fiber (977-2)/epoxy resin (IM7). The effect of the passive damping system employed in this study for the composite plates are discussed. Modal testing is performed on these plates to determine resonant frequencies, amplitude and mode shape information. Numerical results are obtained using COSMOS/M software for the plates without damping. The experimental and numerical results are in very good agreement for different laminated plates without damping layers.
Material Damping Experiments at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Levine, Marie; White, Christopher
2003-01-01
A unique experimental facility has been designed to measure damping of materials at cryogenic temperatures. The test facility pays special attention to removing other sources of damping in the measurement by avoiding frictional interfaces, decoupling the test specimen from the support system, and by using a non-contacting measurement device; Damping data is obtained for materials (AI, GrEp, Be, Fused Quartz), strain amplitudes (less than 10-6 ppm), frequencies (20Hz-330Hz) and temperatures (20K-293K) relevant to future precision optical space missions. The test data shows a significant decrease in viscous damping at cryogenic temperatures and can be as low as 10-4%, but the amount of the damping decrease is a function of frequency and material. Contrary to the other materials whose damping monotonically decreased with temperature, damping of Fused Quartz increased substantially at cryo, after reaching a minimum at around l50 K. The damping is also shown to be insensitive to strain for low strain levels. At room temperatures, the test data correlates well to the analytical predictions of the Zener damping model. Discrepancies at cryogenic temperatures between the model predictions and the test data are observed.
Delay-dependent stability and added damping of SDOF real-time dynamic hybrid testing
NASA Astrophysics Data System (ADS)
Chi, Fudong; Wang, Jinting; Jin, Feng
2010-09-01
It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and added damping of SDOF systems in RTDHT. The exponential delay term is transferred into a rational fraction by the Padé approximation, and the delay-dependent stability conditions and instability mechanism of SDOF RTDHT systems are investigated by the root locus technique. First, the stability conditions are discussed separately for the cases of stiffness, mass, and damping experimental substructure. The use of root locus plots shows that the added damping effect and instability mechanism for mass are different from those for stiffness. For the stiffness experimental substructure case, the instability results from the inherent mode because of an obvious negative damping effect of the delay. For the mass case, the delay introduces an equivalent positive damping into the inherent mode, and instability occurs at an added high frequency mode. Then, the compound stability condition is investigated for a general case and the results show that the mass ratio may have both upper and lower limits to remain stable. Finally, a high-emulational virtual shaking table model is built to validate the stability conclusions.
Resolved spectroscopy of adolescent and infant galaxies (1 < z < 10)
NASA Astrophysics Data System (ADS)
Wright, Shelley; IRIS Science Team
2014-07-01
The combination of integral field spectroscopy (IFS) and adaptive optics (AO) on TMT will be revolutionary in studying the distant universe. The high angular resolution exploited by an AO system with this large aperture will be essential for studying high-redshift (1 < z < 5) galaxies' kinematics and chemical abundance histories. At even greater distances, TMT will be essential for conducting follow-up spectroscopy of Ly-alpha emission from first lights galaxies (6 < z < 10) and determining their kinematics and morphologies. I will present simulations and sensitivity calculations for high-z and first light galaxies using the diffraction-limited instrument IRIS coupled with NFIRAOS. I will put these simulations in context with current IFS+AO high-z observations and future capabilities with JWST.
NASA Technical Reports Server (NTRS)
Nikolajsen, Jorgen L.; Hoque, M. S.
1989-01-01
A new type of vibration damper for rotor systems was developed and tested. The damper contains electroviscous fluid which solidifies and provides Coulomb damping when an electric voltage is imposed across the fluid. The damping capacity is controlled by the voltage. The damper was incorporated in a flexible rotor system and found to be able to damp out high levels of unbalanced excitation. Other proven advantages include controllability, simplicity, and no requirement for oil supply. Still unconfirmed are the capabilities to eliminate critical speeds and to suppress rotor instabilities.
Nonlinear damping based semi-active building isolation system
NASA Astrophysics Data System (ADS)
Ho, Carmen; Zhu, Yunpeng; Lang, Zi-Qiang; Billings, Stephen A.; Kohiyama, Masayuki; Wakayama, Shizuka
2018-06-01
Many buildings in Japan currently have a base-isolation system with a low stiffness that is designed to shift the natural frequency of the building below the frequencies of the ground motion due to earthquakes. However, the ground motion observed during the 2011 Tohoku earthquake contained strong long-period waves that lasted for a record length of 3 min. To provide a novel and better solution against the long-period waves while maintaining the performance of the standard isolation range, the exploitation of the characteristics of nonlinear damping is proposed in this paper. This is motivated by previous studies of the authors, which have demonstrated that nonlinear damping can achieve desired performance over both low and high frequency regions and the optimal nonlinear damping force can be realized by closed loop controlled semi-active dampers. Simulation results have shown strong vibration isolation performance on a building model with identified parameters and have indicated that nonlinear damping can achieve low acceleration transmissibilities round the structural natural frequency as well as the higher ground motion frequencies that have been frequently observed during most earthquakes in Japan. In addition, physical building model based laboratory experiments are also conducted, The results demonstrate the advantages of the proposed nonlinear damping technologies over both traditional linear damping and more advanced Linear-Quadratic Gaussian (LQG) feedback control which have been used in practice to address building isolation system design and implementation problems. In comparison with the tuned-mass damper and other active control methods, the proposed solution offers a more pragmatic, low-cost, robust and effective alternative that can be readily installed into the base-isolation system of most buildings.
Viscous damped space structure for reduced jitter
NASA Technical Reports Server (NTRS)
Wilson, James F.; Davis, L. Porter
1987-01-01
A technique to provide modal vibration damping in high performance space structures was developed which uses less than one once of incompressible fluid. Up to 50 percent damping can be achieved which can reduce the settling times of the lowest structural mode by as much as 50 to 1. This concept allows the designers to reduce the weight of the structure while improving its dynamic performance. Damping by this technique is purely viscous and has been shown by test to be linear over 5 orders of input magnitude. Amplitudes as low as 0.2 microinch were demonstrated. Damping in the system is independent of stiffness and relatively insensitive to temperature.
Vibration Damping Workshop Proceedings Held at Long Beach, California on 27-29 February 1984.
1984-11-11
control system with a sensing accelerometer plus a differentiating network is an extremely effective damping system, if - the magnitude of the... devopment /operating cost by 340M UU -2 p 0 i -L . ..’ - . , ,.. . ,, _,_ ... . .-; .. :: -- _. . , .:... : . -.. .*. - - -.- 2 -,-i-. . i
Design of a New Integrated Structure of the Active Suspension System and Emergency Lane Change Test
NASA Astrophysics Data System (ADS)
Zhao, Jing-bo; Liu, Hai-mei; Zhang, Lan-chun; Bei, Shao-yi
2017-09-01
An integrated structure of the active suspension system was proposed in order to solve the problem of the individual control of the height of the body or the adjustable damping of the active suspension system of the electric vehicle, which improve the vibration reduction performance of the vehicle. The air bag was used to replace the traditional spiral spring, and the traditional shock absorber was replaced by the damping adjustable shock absorber, and the control module received the body acceleration sensor and the horizontal height sensor signal. The system controlled adjustable damping coefficient of shock absorber through the height of the car body the output of the air pump relay and the height control valve and the output of the electromagnetic valve of the adjustable damping shock absorber, and the emergency lane change test was carried out under different modes of speed of 60km/h. The experimental results indicated that the damping value was greater, average roll angle, yaw angle and average vehicle lateral acceleration were small when vehicle body was in the state of emergency lane change, which verified the feasibility of the integrated control strategy and structure design of the active suspension system. The research has important theoretical research value and engineering application prospect for designing and controlling strategy of vehicle chassis integrated control system.
Passively Damped Laminated Piezoelectric Shell Structures with Integrated Electric Networks
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1999-01-01
Multi-field mechanics are presented for curvilinear piezoelectric laminates interfaced with distributed passive electric components. The equations of motion for laminated piezoelectric shell structures with embedded passive electric networks are directly formulated and solved using a finite element methodology. The modal damping and frequencies of the piezoelectric shell are calculated from the poles of the system. Experimental and numerical results are presented for the modal damping and frequency of composite beams with a resistively shunted piezoceramic patch. The modal damping and frequency of plates, cylindrical shells and cylindrical composite blades with piezoelectric-resistor layers are predicted. Both analytical and experimental studies illustrate a unique dependence of modal damping and frequencies on the shunting resistance and show the effect of structural shape and curvature on piezoelectric damping.
Passively Shunted Piezoelectric Damping of Centrifugally-Loaded Plates
NASA Technical Reports Server (NTRS)
Duffy, Kirsten P.; Provenza, Andrew J.; Trudell, Jeffrey J.; Min, James B.
2009-01-01
Researchers at NASA Glenn Research Center have been investigating shunted piezoelectric circuits as potential damping treatments for turbomachinery rotor blades. This effort seeks to determine the effects of centrifugal loading on passively-shunted piezoelectric - damped plates. Passive shunt circuit parameters are optimized for the plate's third bending mode. Tests are performed both non-spinning and in the Dynamic Spin Facility to verify the analysis, and to determine the effectiveness of the damping under centrifugal loading. Results show that a resistive shunt circuit will reduce resonant vibration for this configuration. However, a tuned shunt circuit will be required to achieve the desired damping level. The analysis and testing address several issues with passive shunt circuit implementation in a rotating system, including piezoelectric material integrity under centrifugal loading, shunt circuit implementation, and tip mode damping.
Cell Death and DAMPs in Acute Pancreatitis
Kang, Rui; Lotze, Michael T; Zeh, Herbert J; Billiar, Timothy R; Tang, Daolin
2014-01-01
Cell death and inflammation are key pathologic responses of acute pancreatitis (AP), the leading cause of hospital admissions for gastrointestinal disorders. It is becoming increasingly clear that damage-associated molecular pattern molecules (DAMPs) play an important role in the pathogenesis of AP by linking local tissue damage to systemic inflammation syndrome. Endogenous DAMPs released from dead, dying or injured cells initiate and extend sterile inflammation via specific pattern recognition receptors. Inhibition of the release and activity of DAMPs (for example, high mobility group box 1, DNA, histones and adenosine triphosphate) provides significant protection against experimental AP. Moreover, increased serum levels of DAMPs in patients with AP correlate with disease severity. These findings provide novel insight into the mechanism, diagnosis and management of AP. DAMPs might be an attractive therapeutic target in AP. PMID:25105302
Quantum behaviour of pumped and damped triangular Bose-Hubbard systems
NASA Astrophysics Data System (ADS)
Chianca, C. V.; Olsen, M. K.
2017-12-01
We propose and analyse analogs of optical cavities for atoms using three-well Bose-Hubbard models with pumping and losses. We consider triangular configurations. With one well pumped and one damped, we find that both the mean-field dynamics and the quantum statistics show a quantitative dependence on the choice of damped well. The systems we analyse remain far from equilibrium, preserving good coherence between the wells in the steady-state. We find quadrature squeezing and mode entanglement for some parameter regimes and demonstrate that the trimer with pumping and damping at the same well is the stronger option for producing non-classical states. Due to recent experimental advances, it should be possible to demonstrate the effects we investigate and predict.
High-damping-performance magnetorheological material for passive or active vibration control
NASA Astrophysics Data System (ADS)
Liu, Taixiang; Yang, Ke; Yan, Hongwei; Yuan, Xiaodong; Xu, Yangguang
2016-10-01
Optical assembly and alignment system plays a crucial role for the construction of high-power or high-energy laser facility, which attempts to ignite fusion reaction and go further to make fusion energy usable. In the optical assembly and alignment system, the vibration control is a key problem needs to be well handled and a material with higher damping performance is much desirable. Recently, a new kind of smart magneto-sensitive polymeric composite material, named magnetorheological plastomer (MRP), was synthesized and reported as a high-performance magnetorheological material and this material has a magneto-enhanced high-damping performance. The MRP behaves usually in an intermediate state between fluid-like magnetorheological fluid and solid-like magnetorheological elastomer. The state of MRP, as well as the damping performance of MRP, can be tuned by adjusting the ratio of hard segments and soft segments, which are ingredients to synthesize the polymeric matrix. In this work, a series of MRP are prepared by dispersing micron-sized, magneto-sensitive carbonyl iron powders with related additives into polyurethane-based, magnetically insensitive matrix. It is found that the damping performance of MRP depends much on magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. Especially, the damping capacity of MRP can be tuned in a large range by adjusting external magnetic field. It is promising that the MRP will have much application in passive and active vibration control, such as vibration reduction in optical assembly and alignment system, vibration isolation or absorption in vehicle suspension system, etc.
IUE observations of hydrogen and deuterium in the local interstellar medium
NASA Technical Reports Server (NTRS)
Murthy, J.; Henry, R. C.; Moos, H. W.; Landsman, W. B.; Linsky, J. L.
1987-01-01
High-resolution Ly-alpha spectra of the late-type stars Epsilon Eri, Procyon, Altair, Capella, and HR 1099 taken with the short-wavelength camera on IUE are presented. The density, velocity dispersion, and bulk velocity of the interstellar H I toward each of the stars is derived from the spectra. Lower limits on the deuterium-to-hydrogen ratio toward these stars are obtained.
Intergalactic Helium Absorption toward High-Redshift Quasars
NASA Technical Reports Server (NTRS)
Giroux, Mark L.; Fardal, Mark A.; Shull, J. Michael
1995-01-01
The recent Hubble Space Telescope (HST) observations of the z(q) = 3.286 quasar Q0302-003 (Jakobsen et at. 1994) and the z(q) = 3.185 quasar Q1935-67 by Tytler (1995) show absorption edges at the redshifted wavelength of He II 304 A. A key goal is to distinguish between contributions from discrete Ly-alpha forest clouds and a smoothly distributed intergalactic medium (IGM). We model the contributions from each of these sources of He II absorption, including the distribution of line Doppler widths and column densities, the 'He II proximity effect' from the quasar, and a self-consistent derivation of the He II opacity of the universe as a function of the spectrum of ionizing sources, with the assumption that both the clouds and the IGM are photoionized. The He II edge can be fully accounted for by He II line blanketing for reasonable distributions of line widths and column densities in the Ly-alpha forest, provided that the ionizing sources have spectral index alpha(s) greater than 1.5, and any He II proximity effect is neglected. Even with some contribution from a diffuse IGM, it is difficult to account for the edge observed by Jakobsen et al. (1994) with a 'hard' source spectrum (alpha(s) less than 1.3). The proximity effect modifies the relative contributions of the clouds and IGM to tau(He II) near the quasar (z approx. less than z(q)) and markedly increases the amount of He II absorption required. This implies, for example, that to account for the He II edge with line blanketing alone, the minimum spectral index alpha(s) must be increased from 1.5 to 1.9. We demonstrate the need for higher resolution observations that characterize the change in transmission as z approaches z(q) and resolve line-free gaps in the continuum. We set limits on the density of the diffuse IGM and suggest that the IGM and Ly-alpha clouds are likely to be a significant repository for dark baryons.
Swept sine testing of rotor-bearing system for damping estimation
NASA Astrophysics Data System (ADS)
Chandra, N. Harish; Sekhar, A. S.
2014-01-01
Many types of rotating components commonly operate above the first or second critical speed and they are subjected to run-ups and shutdowns frequently. The present study focuses on developing FRF of rotor bearing systems for damping estimation from swept-sine excitation. The principle of active vibration control states that with increase in angular acceleration, the amplitude of vibration due to unbalance will reduce and the FRF envelope will shift towards the right (or higher frequency). The frequency response function (FRF) estimated by tracking filters or Co-Quad analyzers was proved to induce an error into the FRF estimate. Using Fast Fourier Transform (FFT) algorithm and stationary wavelet transform (SWT) decomposition FRF distortion can be reduced. To obtain a theoretical clarity, the shifting of FRF envelope phenomenon is incorporated into conventional FRF expressions and validation is performed with the FRF estimated using the Fourier Transform approach. The half-power bandwidth method is employed to extract damping ratios from the FRF estimates. While deriving half-power points for both types of responses (acceleration and displacement), damping ratio (ζ) is estimated with different approximations like classical definition (neglecting damping ratio of order higher than 2), third order (neglecting damping ratios with order higher than 4) and exact (no assumptions on damping ratio). The use of stationary wavelet transform to denoise the noise corrupted FRF data is explained. Finally, experiments are performed on a test rotor excited with different sweep rates to estimate the damping ratio.
Damping the e-p instability in the SNS accumulator ring
NASA Astrophysics Data System (ADS)
Evans, N. J.; Deibele, C.; Aleksandrov, A.; Xie, Z.
2018-03-01
A broadband, digital damper system for both transverse planes developed for the SNS accumulator ring has recently damped the first indications of the broadband 50-150 MHz e-p instability in a 1.2 MW neutron production beam. This paper presents details of the design and operation of the SNS damper system as well as results of active damping of the e-p instability in the SNS ring showing a reduction in power of betatron oscillation over the 10-300 MHz band of up to 70%. The spectral content of the beam during operation, with and without the damper system is presented and performance of the damper system is evaluated.
Satellite Dynamic Damping via Active Force Control Augmentation
NASA Astrophysics Data System (ADS)
Varatharajoo, Renuganth
2012-07-01
An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC technique. Keywords: Satellite, Dynamic Damping, Attitude Control, AFC Technique,
NASA Astrophysics Data System (ADS)
Zhang, J. Y.; Jiang, Y.
2017-10-01
To ensure satisfactory dynamic performance of controllers in time-delayed power systems, a WAMS-based control strategy is investigated in the presence of output feedback delay. An integrated approach based on Pade approximation and particle swarm optimization (PSO) is employed for parameter configuration of PSS. The coordination configuration scheme of power system controllers is achieved by a series of stability constraints at the aim of maximizing the minimum damping ratio of inter-area mode of power system. The validity of this derived PSS is verified on a prototype power system. The findings demonstrate that the proposed approach for control design could damp the inter-area oscillation and enhance the small-signal stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shaobu; Huang, Renke; Huang, Zhenyu
The objective of this research work is to develop decoupled modulation control methods for damping inter-area oscillations with low frequencies, so the damping control can be more effective and easier to design with less interference among different oscillation modes in the power system. A signal-decoupling algorithm was developed that can enable separation of multiple oscillation frequency contents and extraction of a “pure” oscillation frequency mode that are fed into Power System Stabilizers (PSSs) as the modulation input signals. As a result, instead of introducing interferences between different oscillation modes from the traditional approaches, the output of the new PSS modulationmore » control signal mainly affects only one oscillation mode of interest. The new decoupled modulation damping control algorithm has been successfully developed and tested on the standard IEEE 4-machine 2-area test system and a minniWECC system. The results are compared against traditional modulation controls, which demonstrates the validity and effectiveness of the newly-developed decoupled modulation damping control algorithm.« less
Status of E-ELT M5 scale-one demonstrator
NASA Astrophysics Data System (ADS)
Barriga, Pablo; Sedghi, Babak; Dimmler, Martin; Kornweibel, Nick
2014-07-01
The fifth mirror of the European Extremely Large Telescope optical train is a field stabilization tip/tilt unit responsible for correcting the dynamical tip and tilt caused mainly by wind load on the telescope. A scale-one prototype including the inclined support, the fixed frame and a basic control system was designed and manufactured by NTE-SENER (Spain) and CSEM (Switzerland) as part of the prototyping and design activities. All interfaces to the mirror have been reproduced on a dummy structure reproducing the inertial characteristics of the optical element. The M5 unit is required to have sufficient bandwidth for tip/tilt reference commands coming from the wavefront control system. Such a bandwidth can be achieved using local active damping loop to damp the low frequency mechanical modes before closing a position loop. Prototyping on the M5 unit has been undertaken in order to demonstrate the E-ELT control system architecture, concepts and development standards and to further study active damping strategies. The control system consists of two nested loops: a local damping loop and a position loop. The development of this control system was undertaken following the E-ELT control system development standards in order to determine their applicability and performance and includes hardware selection, communication, synchronization, configuration, and data logging. In this paper we present the current status of the prototype M5 control system and the latest results on the active damping control strategy, in particular the promising results obtained with the method of positive position feedback.
NASA Technical Reports Server (NTRS)
West, Jeff; Yang, H. Q.; Brodnick, Jacob; Sansone, Marco; Westra, Douglas
2016-01-01
The Miles equation has long been used to predict slosh damping in liquid propellant tanks due to ring baffles. The original work by Miles identifies defined limits to its range of application. Recent evaluations of the Space Launch System identified that the Core Stage baffle designs resulted in violating the limits of the application of the Miles equation. This paper describes the work conducted by NASA/MSFC to develop methods to predict slosh damping from ring baffles for conditions for which Miles equation is not applicable. For asymptotically small slosh amplitudes or conversely large baffle widths, an asymptotic expression for slosh damping was developed and calibrated using historical experimental sub-scale slosh damping data. For the parameter space that lies between region of applicability of the asymptotic expression and the Miles equation, Computational Fluid Dynamics simulations of slosh damping were used to develop an expression for slosh damping. The combined multi-regime slosh prediction methodology is shown to be smooth at regime boundaries and consistent with both sub-scale experimental slosh damping data and the results of validated Computational Fluid Dynamics predictions of slosh damping due to ring baffles.
Basic research on design analysis methods for rotorcraft vibrations
NASA Technical Reports Server (NTRS)
Hanagud, S.
1991-01-01
The objective of the present work was to develop a method for identifying physically plausible finite element system models of airframe structures from test data. The assumed models were based on linear elastic behavior with general (nonproportional) damping. Physical plausibility of the identified system matrices was insured by restricting the identification process to designated physical parameters only and not simply to the elements of the system matrices themselves. For example, in a large finite element model the identified parameters might be restricted to the moduli for each of the different materials used in the structure. In the case of damping, a restricted set of damping values might be assigned to finite elements based on the material type and on the fabrication processes used. In this case, different damping values might be associated with riveted, bolted and bonded elements. The method itself is developed first, and several approaches are outlined for computing the identified parameter values. The method is applied first to a simple structure for which the 'measured' response is actually synthesized from an assumed model. Both stiffness and damping parameter values are accurately identified. The true test, however, is the application to a full-scale airframe structure. In this case, a NASTRAN model and actual measured modal parameters formed the basis for the identification of a restricted set of physically plausible stiffness and damping parameters.
NASA Astrophysics Data System (ADS)
Challa, Vinod R.; Prasad, M. G.; Fisher, Frank T.
2009-09-01
Vibration energy harvesting is being pursued as a means to power wireless sensors and ultra-low power autonomous devices. From a design standpoint, matching the electrical damping induced by the energy harvesting mechanism to the mechanical damping in the system is necessary for maximum efficiency. In this work two independent energy harvesting techniques are coupled to provide higher electrical damping within the system. Here the coupled energy harvesting device consists of a primary piezoelectric energy harvesting device to which an electromagnetic component is added to better match the total electrical damping to the mechanical damping in the system. The first coupled device has a resonance frequency of 21.6 Hz and generates a peak power output of ~332 µW, compared to 257 and 244 µW obtained from the optimized, stand-alone piezoelectric and electromagnetic energy harvesting devices, respectively, resulting in a 30% increase in power output. A theoretical model has been developed which closely agrees with the experimental results. A second coupled device, which utilizes the d33 piezoelectric mode, shows a 65% increase in power output in comparison to the corresponding stand-alone, single harvesting mode devices. This work illustrates the design considerations and limitations that one must consider to enhance device performance through the coupling of multiple harvesting mechanisms within a single energy harvesting device.
Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter
2014-01-01
Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.
Structural dynamics and vibrations of damped, aircraft-type structures
NASA Technical Reports Server (NTRS)
Young, Maurice I.
1992-01-01
Engineering preliminary design methods for approximating and predicting the effects of viscous or equivalent viscous-type damping treatments on the free and forced vibration of lightly damped aircraft-type structures are developed. Similar developments are presented for dynamic hysteresis viscoelastic-type damping treatments. It is shown by both engineering analysis and numerical illustrations that the intermodal coupling of the undamped modes arising from the introduction of damping may be neglected in applying these preliminary design methods, except when dissimilar modes of these lightly damped, complex aircraft-type structures have identical or nearly identical natural frequencies. In such cases, it is shown that a relatively simple, additional interaction calculation between pairs of modes exhibiting this 'modal response' phenomenon suffices in the prediction of interacting modal damping fractions. The accuracy of the methods is shown to be very good to excellent, depending on the normal natural frequency separation of the system modes, thereby permitting a relatively simple preliminary design approach. This approach is shown to be a natural precursor to elaborate finite element, digital computer design computations in evaluating the type, quantity, and location of damping treatment.
Gravity-oriented satellite dynamics subject to gravitational and active damping torques
NASA Astrophysics Data System (ADS)
Sarychev, V. A.; Gutnik, S. A.
2018-01-01
The dynamics of the rotational motion of a satellite moving in the central Newtonian field of force over a circular orbit under the effect of gravitational and active damping torques, which depend on the satellite angular velocity projections, has been investigated. The paper proposes a method of determining all equilibrium positions (equilibrium orientations) of a satellite in the orbital coordinate system for specified values of damping coefficients and principal central moments of inertia. The conditions of their existence have been obtained. For a zero equilibrium position where the axes of the satellite-centered coordinate system coincide with the axes of the orbital coordinate system, the necessary and sufficient conditions for asymptotic stability are obtained using the Routh-Hurwitz criterion. A detailed analysis of the regions where the conditions of the asymptotic stability of a zero equilibrium position are fulfilled have been obtained depending on three dimensionless parameters of the problem, and the numerical study of the process of attenuation of satellite's spatial oscillations for various damping coefficients has been carried out. It has been shown that there is a wide range of damping parameters from which, by choosing the necessary values, one can provide the asymptotic stability of satellite's zero equilibrium position in the orbital coordinate system.
Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2
NASA Astrophysics Data System (ADS)
Lorenzini, E. C.; Arnold, D. A.; Cosmo, M.; Grossi, M. D.
1986-10-01
The following topics related to the dynamics of the 4-mass tethered system are addressed: (1) the development of damping algorithms for damping the out-of-plane libration of the system and the interaction of the out-of-plane control with the other degrees of freedom; and (2) the development of environmental models to be added to the dynamics simulation computer code. The environmental models are specifically a new drag routine based on the Jacchia's 1977 model, a J(2) model and an accurate thermal model of the wire. Regarding topic (1) a survey of various out-of-plane libration control laws was carried out. Consequently a yo-yo control law with amplitude of the tether length variation proportional to the amplitude of the out-of-game libration has been selected. This control law provides good damping when applied to a (theoretical) two-dimensional system. In the actual 3-dimensional 4-mass tethered system, however, energy is transferred to the least damped degrees of freedom (the out-of-plane lateral deflections are still undamped in the present simulations) in such a way as to decrease the effectiveness of the algorithm for out-of-plane libration control. The addition of damping algorithms for the out-of-plane lateral deflections is therefore necessary.
Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2
NASA Technical Reports Server (NTRS)
Lorenzini, E. C.; Arnold, D. A.; Cosmo, M.; Grossi, M. D.
1986-01-01
The following topics related to the dynamics of the 4-mass tethered system are addressed: (1) the development of damping algorithms for damping the out-of-plane libration of the system and the interaction of the out-of-plane control with the other degrees of freedom; and (2) the development of environmental models to be added to the dynamics simulation computer code. The environmental models are specifically a new drag routine based on the Jacchia's 1977 model, a J(2) model and an accurate thermal model of the wire. Regarding topic (1) a survey of various out-of-plane libration control laws was carried out. Consequently a yo-yo control law with amplitude of the tether length variation proportional to the amplitude of the out-of-game libration has been selected. This control law provides good damping when applied to a (theoretical) two-dimensional system. In the actual 3-dimensional 4-mass tethered system, however, energy is transferred to the least damped degrees of freedom (the out-of-plane lateral deflections are still undamped in the present simulations) in such a way as to decrease the effectiveness of the algorithm for out-of-plane libration control. The addition of damping algorithms for the out-of-plane lateral deflections is therefore necessary.
Symmetry and Circularization in the Damped Kepler Problem
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Hamilton, Brian
2007-05-01
Generically, a Hamiltonian system to which damping (non-Hamiltonian) forces are added loses its symmetry. It is a non-trivial fact that the eccentricity vector of lightly damped Kepler orbits is a constant for linear damping only. We describe the group theoretic background necessary to understand this fact and to relate it to that analogue of the Landau criterion for superfluidity associated with the general problem of orbit circularization. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.C2.4
NASA Technical Reports Server (NTRS)
Bhat, S. T.; Buono, D. F.; Hibner, D. H.
1981-01-01
High load damping requirements for modern jet engines are discussed. The design of damping systems which could satisfy these requirements is also discusseed. In order to evaluate high load damping requirements, engines in three major classes were studied; large transport engines, small general aviation engines, and military engines. Four damper concepts applicable to these engines were evaluated; multi-ring, cartridge, curved beam, and viscous/friction. The most promising damper concept was selected for each engine and performance was assessed relative to conventional dampers and in light of projected damping requirements for advanced jet engines.
Optical rotation of levitated spheres in high vacuum
NASA Astrophysics Data System (ADS)
Monteiro, Fernando; Ghosh, Sumita; van Assendelft, Elizabeth C.; Moore, David C.
2018-05-01
A circularly polarized laser beam is used to levitate and control the rotation of microspheres in high vacuum. At low pressure, rotation frequencies as high as 6 MHz are observed for birefringent vaterite spheres, limited by centrifugal stresses. Due to the extremely low damping in high vacuum, the controlled optical rotation of amorphous SiO2 spheres is also observed at rates above several MHz. At 10-7 mbar, a damping time of 6 ×104 s is measured for a 10 -μ m -diam SiO2 sphere. No additional damping mechanisms are observed above gas damping, indicating that even longer damping times may be possible with operation at lower pressure. The controlled optical rotation of microspheres at MHz frequencies with low damping, including for materials that are not intrinsically birefringent, provides a tool for performing precision measurements using optically levitated systems.
Modelling and study of active vibration control for off-road vehicle
NASA Astrophysics Data System (ADS)
Zhang, Junwei; Chen, Sizhong
2014-05-01
In view of special working characteristics and structure, engineering machineries do not have conventional suspension system typically. Consequently, operators have to endure severe vibrations which are detrimental both to their health and to the productivity of the loader. Based on displacement control, a kind of active damping method is developed for a skid-steer loader. In this paper, the whole hydraulic system for active damping method is modelled which include swash plate dynamics model, proportional valve model, piston accumulator model, pilot-operated check valve model, relief valve model, pump loss model, and cylinder model. A new road excitation model is developed for the skid-steer loader specially. The response of chassis vibration acceleration to road excitation is verified through simulation. The simulation result of passive accumulator damping is compared with measurements and the comparison shows that they are close. Based on this, parallel PID controller and track PID controller with acceleration feedback are brought into the simulation model, and the simulation results are compared with passive accumulator damping. It shows that the active damping methods with PID controllers are better in reducing chassis vibration acceleration and pitch movement. In the end, the test work for active damping method is proposed for the future work.
Simulation of the injection damping and resonance correction systems for the HEB of the SSC
NASA Astrophysics Data System (ADS)
Li, M.; Zhang, P.; Machida, S.
1993-12-01
An injection damping and resonance correction system for the High Energy Booster (HEB) of the Superconducting Super Collider (SSC) was investigated by means of multiparticle tracking. For an injection damping study, the code Simpsons is modified to utilize two Beam Position Monitors (BPM) and two dampers. The particles of 200 Gev/c, numbered 1024 or more, with Gaussian distribution in 6-D phase space are injected into the HEB with certain injection offsets. The whole bunch of particles is then kicked in proportion to the BPM signals with some upper limit. Tracking these particles up to several hundred turns while the damping system is acting shows the turn-by-turn emittance growth, which is caused by the tune spread due to nonlinearity of the lattice and residual chromaticity with synchrotron oscillations. For a resonance correction study, the operating tune is scanned as a function of time so that a bunch goes through a resonance. The performance of the resonance correction system is demonstrated. We optimize the system parameters which satisfy the emittance budget of the HEB, taking into account the realistic hardware requirement.
Tuned dynamics stabilizes an idealized regenerative axial-torsional model of rotary drilling
NASA Astrophysics Data System (ADS)
Gupta, Sunit K.; Wahi, Pankaj
2018-01-01
We present an exact stability analysis of a dynamical system idealizing rotary drilling. This system comprises lumped parameter axial-torsional modes of the drill-string coupled via the cutting forces and torques. The kinematics of cutting is modeled through a functional description of the cut surface which evolves as per a partial differential equation (PDE). Linearization of this model is straightforward as opposed to the traditional state-dependent delay (SDDE) model and both the approaches result in the same characteristic equation. A systematic study on the key system parameters influencing the stability characteristics reveals that torsional damping is very critical and stable drilling is, in general, not possible in its absence. The stable regime increases as the natural frequency of the axial mode approaches that of the torsional mode and a 1:1 internal resonance leads to a significant improvement in the system stability. Hence, from a practical point of view, a drill-string with 1:1 internal resonance is desirable to avoid vibrations during rotary drilling. For the non-resonant case, axial damping reduces the stable range of operating parameters while for the resonant case, an optimum value of axial damping (equal to the torsional damping) results in the largest stable regime. Interestingly, the resonant (tuned) system has a significant parameter regime corresponding to stable operation even in the absence of damping.
Equivalent Viscous Damping Methodologies Applied on VEGA Launch Vehicle Numerical Model
NASA Astrophysics Data System (ADS)
Bartoccini, D.; Di Trapani, C.; Fransen, S.
2014-06-01
Part of the mission analysis of a spacecraft is the so- called launcher-satellite coupled loads analysis which aims at computing the dynamic environment of the satellite and of the launch vehicle for the most severe load cases in flight. Evidently the damping of the coupled system shall be defined with care as to not overestimate or underestimate the loads derived for the spacecraft. In this paper the application of several EqVD (Equivalent Viscous Damping) for Craig an Bampton (CB)-systems are investigated. Based on the structural damping defined for the various materials in the parent FE-models of the CB-components, EqVD matrices can be computed according to different methodologies. The effect of these methodologies on the numerical reconstruction of the VEGA launch vehicle dynamic environment will be presented.
NASA Technical Reports Server (NTRS)
Ahmadian, M.; Inman, D. J.
1982-01-01
Systems described by the matrix differental equation are considered. An interactive design routine is presented for positive definite mass, damping, and stiffness matrices. Designing is accomplished by adjusting the mass, damping, and stiffness matrices to obtain a desired oscillation behavior. The algorithm also features interactively modifying the physical structure of the system, obtaining the matrix structure and a number of other system properties. In case of a general system, where the M, C, and K matrices lack any special properties, a routine for the eigenproblem solution of the system is developed. The latent roots are obtained by computing the characteristic polynomial of the system and solving for its roots. The above routines are prepared in FORTRAN IV and prove to be usable for the machines with low core memory.
Emergence of anisotropic Gilbert damping in ultrathin Fe layers on GaAs(001)
NASA Astrophysics Data System (ADS)
Chen, L.; Mankovsky, S.; Wimmer, S.; Schoen, M. A. W.; Körner, H. S.; Kronseder, M.; Schuh, D.; Bougeard, D.; Ebert, H.; Weiss, D.; Back, C. H.
2018-05-01
As a fundamental parameter in magnetism, the phenomenological Gilbert damping constant α determines the performance of many spintronic devices. For most magnetic materials, α is treated as an isotropic parameter entering the Landau-Lifshitz-Gilbert equation. However, could the Gilbert damping be anisotropic? Although several theoretical approaches have suggested that anisotropic α could appear in single-crystalline bulk systems, experimental evidence of its existence is scarce. Here, we report the emergence of anisotropic magnetic damping by exploring a quasi-two-dimensional single-crystalline ferromagnetic metal/semiconductor interface—that is, a Fe/GaAs(001) heterojunction. The observed anisotropic damping shows twofold C2v symmetry, which is expected from the interplay of interfacial Rashba and Dresselhaus spin-orbit interaction, and is manifested by the anisotropic density of states at the Fe/GaAs (001) interface. This discovery of anisotropic damping will enrich the understanding of magnetization relaxation mechanisms and can provide a route towards the search for anisotropic damping at other ferromagnetic metal/semiconductor interfaces.
Active damping of spacecraft structural appendage vibrations
NASA Technical Reports Server (NTRS)
Fedor, Joseph V. (Inventor)
1990-01-01
An active vibration damper system, for bending in two orthogonal directions and torsion, in each of three mutually perpendicular axes is located at the extremities of the flexible appendages of a space platform. The system components for each axis includes: an accelerometer, filtering and signal processing apparatus, and a DC motor-inertia wheel torquer. The motor torquer, when driven by a voltage proportional to the relative vibration tip velocity, produces a reaction torque for opposing and therefore damping a specific modal velocity of vibration. The relative tip velocity is obtained by integrating the difference between the signal output from the accelerometer located at the end of the appendage with the output of a usually carried accelerometer located on a relatively rigid body portion of the space platform. A selector switch, with sequential stepping logic or highest modal vibration energy logic, steps to another modal tip velocity channel and receives a signal voltage to damp another vibration mode. In this manner, several vibration modes can be damped with a single sensor/actuator pair. When a three axis damper is located on each of the major appendages of the platform, then all of the system vibration modes can be effectively damped.
Effects of Active Sting Damping on Common Research Model Data Quality
NASA Technical Reports Server (NTRS)
Acheson, Michael J.; Balakrishna, S.
2011-01-01
Recent tests using the Common Research Model (CRM) at the Langley National Transonic Facility (NTF) and the Ames 11-foot Transonic Wind Tunnel (11' TWT) produced large sets of data that have been used to examine the effects of active damping on transonic tunnel aerodynamic data quality. In particular, large statistically significant sets of repeat data demonstrate that the active damping system had no apparent effect on drag, lift and pitching moment repeatability during warm testing conditions, while simultaneously enabling aerodynamic data to be obtained post stall. A small set of cryogenic (high Reynolds number) repeat data was obtained at the NTF and again showed a negligible effect on data repeatability. However, due to a degradation of control power in the active damping system cryogenically, the ability to obtain test data post-stall was not achieved during cryogenic testing. Additionally, comparisons of data repeatability between NTF and 11-ft TWT CRM data led to further (warm) testing at the NTF which demonstrated that for a modest increase in data sampling time, a 2-3 factor improvement in drag, and pitching moment repeatability was readily achieved not related with the active damping system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenyu; Zhou, Ning; Tuffner, Francis K.
Small signal stability problems are one of the major threats to grid stability and reliability in the U.S. power grid. An undamped mode can cause large-amplitude oscillations and may result in system breakups and large-scale blackouts. There have been several incidents of system-wide oscillations. Of those incidents, the most notable is the August 10, 1996 western system breakup, a result of undamped system-wide oscillations. Significant efforts have been devoted to monitoring system oscillatory behaviors from measurements in the past 20 years. The deployment of phasor measurement units (PMU) provides high-precision, time-synchronized data needed for detecting oscillation modes. Measurement-based modal analysis,more » also known as ModeMeter, uses real-time phasor measurements to identify system oscillation modes and their damping. Low damping indicates potential system stability issues. Modal analysis has been demonstrated with phasor measurements to have the capability of estimating system modes from both oscillation signals and ambient data. With more and more phasor measurements available and ModeMeter techniques maturing, there is yet a need for methods to bring modal analysis from monitoring to actions. The methods should be able to associate low damping with grid operating conditions, so operators or automated operation schemes can respond when low damping is observed. The work presented in this report aims to develop such a method and establish a Modal Analysis for Grid Operation (MANGO) procedure to aid grid operation decision making to increase inter-area modal damping. The procedure can provide operation suggestions (such as increasing generation or decreasing load) for mitigating inter-area oscillations.« less
Experimental validation of solid rocket motor damping models
NASA Astrophysics Data System (ADS)
Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio
2017-12-01
In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe damping properties of slender launch vehicles in payload/launcher coupled load analysis.
Experimental validation of solid rocket motor damping models
NASA Astrophysics Data System (ADS)
Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio
2018-06-01
In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe damping properties of slender launch vehicles in payload/launcher coupled load analysis.
A Look at Damped Harmonic Oscillators through the Phase Plane
ERIC Educational Resources Information Center
Daneshbod, Yousef; Latulippe, Joe
2011-01-01
Damped harmonic oscillations appear naturally in many applications involving mechanical and electrical systems as well as in biological systems. Most students are introduced to harmonic motion in an elementary ordinary differential equation (ODE) course. Solutions to ODEs that describe simple harmonic motion are usually found by investigating the…
Low-authority control synthesis for large space structures
NASA Technical Reports Server (NTRS)
Aubrun, J. N.; Margulies, G.
1982-01-01
The control of vibrations of large space structures by distributed sensors and actuators is studied. A procedure is developed for calculating the feedback loop gains required to achieve specified amounts of damping. For moderate damping (Low Authority Control) the procedure is purely algebraic, but it can be applied iteratively when larger amounts of damping are required and is generalized for arbitrary time invariant systems.
NASA Technical Reports Server (NTRS)
Michalopoulos, C. D.
1976-01-01
An analysis of one and multidegree of freedom systems with classical damping is presented. Definition and minimization of error functions for each system are discussed. Systems with classical and nonclassical normal modes are studied, and results for first order perturbation are given. An alternative method of matching power spectral densities is provided, and numerical results are reviewed.
NASA Astrophysics Data System (ADS)
Cao, Hao; Cao, Xiaoyu; Chen, Fei; Li, Ming; Zhang, Bolin; Wei, Jilong
2017-12-01
This paper presents a new kind of tilting-pad gas seal. This design is introduced to reduce the tangential seal force and to improve the stability of rotor system finally. A seal test rig is set up. The paper compares the leakage between tilting-pad seal and fixed pad seal. The result shows that the leakage ratio of the tilting-pad seal is close to the leakage ratio of the fixed pad seal. The work done by seal force on the cylinder system is calculated as an index of comparison between these two seals. Result shows that the work done by the fixed pad seal is greater than the work done by the tilting-pad seal. Moreover, system damping factor is used to compare the stabilities of these two seals. The impact tests on the cylinder system are done under different conditions. The system damping factors are calculated from the damped waves of system vibration. Test results show that the damping factor of the tilting pad seal is higher than that of the fixed pad seal in both the vertical and the horizontal directions.
Piro, L; Garmire, G; Garcia, M; Stratta, G; Costa, E; Feroci, M; Mészáros, P; Vietri, M; Bradt, H; Frail, D; Frontera, F; Halpern, J; Heise, J; Hurley, K; Kawai, N; Kippen, R M; Marshall, F; Murakami, T; Sokolov, V V; Takeshima, T; Yoshida, A
2000-11-03
We report on the discovery of two emission features observed in the x-ray spectrum of the afterglow of the gamma-ray burst (GRB) of 16 December 1999 by the Chandra X-ray Observatory. These features are identified with the Ly(alpha) line and the narrow recombination continuum by hydrogenic ions of iron at a redshift z = 1.00 +/- 0.02, providing an unambiguous measurement of the distance of a GRB. Line width and intensity imply that the progenitor of the GRB was a massive star system that ejected, before the GRB event, a quantity of iron approximately 0.01 of the mass of the sun at a velocity approximately 0.1 of the speed of light, probably by a supernova explosion.
Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing
NASA Technical Reports Server (NTRS)
Howard, Samuel A.; DellaCorte, Christopher; Valco, Mark J.; Prahl, Joseph M.; Heshmat, Hooshang
2001-01-01
Using a high-temperature optically based displacement measurement system, a foil air bearing's stiffness and damping characteristics were experimentally determined. Results were obtained over a range of modified Sommerfeld Number from 1.5E6 to 1.5E7, and at temperatures from 25 to 538 C. An Experimental procedure was developed comparing the error in two curve fitting functions to reveal different modes of physical behavior throughout the operating domain. The maximum change in dimensionless stiffness was 3.0E-2 to 6.5E-2 over the Sommerfeld Number range tested. Stiffness decreased with temperature by as much as a factor of two from 25 to 538 C. Dimensionless damping was a stronger function of Sommerfeld Number ranging from 20 to 300. The temperature effect on damping being more qualitative, showed the damping mechanism shifted from viscous type damping to frictional type as temperature increased.
Gao, Kai; Huang, Lianjie
2017-11-13
Conventional perfectly matched layers (PML) can be unstable for certain kinds of anisotropic media. Multi-axial PML removes such instability using nonzero damping coe cients in the directions tangential with the PML interface. While using non-zero damping pro le ratios can stabilize PML, it is important to obtain the smallest possible damping pro le ratios to minimize arti cial re ections caused by these non-zero ratios, particularly for 3D general anisotropic media. Using the eigenvectors of the PML system matrix, we develop a straightforward and e cient numerical algorithm to determine the optimal damping pro le ratios to stabilize PML inmore » 2D and 3D general anisotropic media. Numerical examples show that our algorithm provides optimal damping pro le ratios to ensure the stability of PML and complex-frequency-shifted PML for elastic-wave modeling in 2D and 3D general anisotropic media.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Kai; Huang, Lianjie
Conventional perfectly matched layers (PML) can be unstable for certain kinds of anisotropic media. Multi-axial PML removes such instability using nonzero damping coe cients in the directions tangential with the PML interface. While using non-zero damping pro le ratios can stabilize PML, it is important to obtain the smallest possible damping pro le ratios to minimize arti cial re ections caused by these non-zero ratios, particularly for 3D general anisotropic media. Using the eigenvectors of the PML system matrix, we develop a straightforward and e cient numerical algorithm to determine the optimal damping pro le ratios to stabilize PML inmore » 2D and 3D general anisotropic media. Numerical examples show that our algorithm provides optimal damping pro le ratios to ensure the stability of PML and complex-frequency-shifted PML for elastic-wave modeling in 2D and 3D general anisotropic media.« less
Experimentally determined stiffness and damping of an inherently compensated air squeeze-film damper
NASA Technical Reports Server (NTRS)
Cunningham, R. E.
1975-01-01
Values of damping and stiffness were determined experimentally for an externally pressurized, inherently compensated, compressible squeeze-film damper up to excitation frequencies of 36,000 cycles per minute. Experimental damping values were higher than theory predicted at low squeeze numbers and less than predicted at high squeeze numbers. Experimental values of air film stiffness were less than theory predicted at low squeeze numbers and much greater at higher squeeze numbers. Results also indicate sufficient damping to attenuate amplitudes and forces at the critical speed when using three dampers in the flexible support system of a small, lightweight turborotor.
Study on Active Suppression Control of Drivetrain Oscillations in an Electric Vehicle
NASA Astrophysics Data System (ADS)
Huang, Lei; Cui, Ying
2017-07-01
Due to the low damping in a central driven electric vehicle and lack of passive damping mechanisms as compared with a conventional vehicle, the vehicle may endure torsional vibrations which may deteriorates the vehicle’s drivability. Thus active damping control strategy is required to reduce the undesirable oscillations in an EV. In this paper, the origin of the vibration and the design of a damping control method to suppress such oscillations to improve the drivability of an EV are studied. The traction motor torque that is given by the vehicle controller is adjusted according to the acceleration rate of the motor speed to attenuate the resonant frequency. Simulations and experiments are performed to validate the system. The results show that the proposed control system can effectively suppress oscillations and hence improve drivability.
Probabilistic performance-based design for high performance control systems
NASA Astrophysics Data System (ADS)
Micheli, Laura; Cao, Liang; Gong, Yongqiang; Cancelli, Alessandro; Laflamme, Simon; Alipour, Alice
2017-04-01
High performance control systems (HPCS) are advanced damping systems capable of high damping performance over a wide frequency bandwidth, ideal for mitigation of multi-hazards. They include active, semi-active, and hybrid damping systems. However, HPCS are more expensive than typical passive mitigation systems, rely on power and hardware (e.g., sensors, actuators) to operate, and require maintenance. In this paper, a life cycle cost analysis (LCA) approach is proposed to estimate the economic benefit these systems over the entire life of the structure. The novelty resides in the life cycle cost analysis in the performance based design (PBD) tailored to multi-level wind hazards. This yields a probabilistic performance-based design approach for HPCS. Numerical simulations are conducted on a building located in Boston, MA. LCA are conducted for passive control systems and HPCS, and the concept of controller robustness is demonstrated. Results highlight the promise of the proposed performance-based design procedure.
Rubber-coated bellows improves vibration damping in vacuum lines
NASA Technical Reports Server (NTRS)
Hegland, D. E.; Smith, R. J.
1966-01-01
Compact-vibration damping systems, consisting of rubber-coated metal bellows with a sliding O-ring connector, are used in vacuum lines. The device presents a metallic surface to the vacuum system and combines flexibility with the necessary stiffness. It protects against physical damage, reduces fatigue failure, and provides easy mating of nonparallel lines.
Dynamics of cochlear nonlinearity: Automatic gain control or instantaneous damping?
Altoè, Alessandro; Charaziak, Karolina K; Shera, Christopher A
2017-12-01
Measurements of basilar-membrane (BM) motion show that the compressive nonlinearity of cochlear mechanical responses is not an instantaneous phenomenon. For this reason, the cochlear amplifier has been thought to incorporate an automatic gain control (AGC) mechanism characterized by a finite reaction time. This paper studies the effect of instantaneous nonlinear damping on the responses of oscillatory systems. The principal results are that (i) instantaneous nonlinear damping produces a noninstantaneous gain control that differs markedly from typical AGC strategies; (ii) the kinetics of compressive nonlinearity implied by the finite reaction time of an AGC system appear inconsistent with the nonlinear dynamics measured on the gerbil basilar membrane; and (iii) conversely, those nonlinear dynamics can be reproduced using an harmonic oscillator with instantaneous nonlinear damping. Furthermore, existing cochlear models that include instantaneous gain-control mechanisms capture the principal kinetics of BM nonlinearity. Thus, an AGC system with finite reaction time appears neither necessary nor sufficient to explain nonlinear gain control in the cochlea.
Double-beam cantilever structure with embedded intelligent damping block: Dynamics and control
NASA Astrophysics Data System (ADS)
Szmidt, Tomasz; Pisarski, Dominik; Bajer, Czesław; Dyniewicz, Bartłomiej
2017-08-01
In this paper a semi-active method to control the vibrations of twin beams connected at their tips by a smart damping element is investigated. The damping element can be made of a magnetorheological elastomer or a smart material of another type, for instance vacuum packed particles. What is crucial is the ability to modify the storage and loss moduli of the damping block by means of devices attached directly to the vibrating structure. First, a simple dynamical model of the system is proposed. The continuous model is discretized using the Galerkin procedure. Then, a practical state-feedback control law is developed. The control strategy aims at achieving the best instantaneous energy dissipation of the system. Numerical simulations confirm its effectiveness in reducing free vibrations. The proposed control strategy appears to be robust in the sense that its application does not require any knowledge of the initial conditions imposed on the structure, and its performance is better than passive solutions, especially for the system induced in the first mode.
Liu, Hesen; Zhu, Lin; Pan, Zhuohong; ...
2015-09-14
One of the main drawbacks of the existing oscillation damping controllers that are designed based on offline dynamic models is adaptivity to the power system operating condition. With the increasing availability of wide-area measurements and the rapid development of system identification techniques, it is possible to identify a measurement-based transfer function model online that can be used to tune the oscillation damping controller. Such a model could capture all dominant oscillation modes for adaptive and coordinated oscillation damping control. our paper describes a comprehensive approach to identify a low-order transfer function model of a power system using a multi-input multi-outputmore » (MIMO) autoregressive moving average exogenous (ARMAX) model. This methodology consists of five steps: 1) input selection; 2) output selection; 3) identification trigger; 4) model estimation; and 5) model validation. The proposed method is validated by using ambient data and ring-down data in the 16-machine 68-bus Northeast Power Coordinating Council system. Our results demonstrate that the measurement-based model using MIMO ARMAX can capture all the dominant oscillation modes. Compared with the MIMO subspace state space model, the MIMO ARMAX model has equivalent accuracy but lower order and improved computational efficiency. The proposed model can be applied for adaptive and coordinated oscillation damping control.« less
The Dust-to-Gas Ratio in the Damped Ly alpha Clouds Towards the Gravitationally Lensed QSO 0957+561
NASA Technical Reports Server (NTRS)
Zuo, Lin; Beaver, E. A.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Lyons, R. W.
1997-01-01
We present HST/FOS spectra of the two bright images (A and B) of the gravitationally lensed QSO 0957+561 in the wavelength range 2200-3300 A. We find that the absorption system (Z(sub abs)) = 1.3911) near z(sub em) is a weak, damped Ly alpha system with strong Ly alpha absorption lines seen in both images. However, the H(I) column densities are different, with the line of sight to image A intersecting a larger column density. The continuum shapes of the two spectra differ in the sense that the flux level of image A increases more slowly toward shorter wavelengths than that of image B. We explain this as the result of differential reddening by dust grains in the damped Ly alpha absorber. A direct outcome of this explanation is a determination of the dust-to-gas ratio, k, in the damped Ly alpha system. We derive k = 0.55 + 0.18 for a simple 1/lambda extinction law and k = 0.31 + 0.10 for the Galactic extinction curve. For gravitationally lensed systems with damped Ly alpha absorbers, our method is a powerful tool for determining the values and dispersion of k, and the shapes of extinction curves, especially in the FUV and EUV regions. We compare our results with previous work.
UV Spectral Variability and the Lyman-Alpha Forest in the Lensed Quasar Q0957+561
NASA Technical Reports Server (NTRS)
Dolan, J. F.; Michalitsianos, A. G.; Nguyen, Q. T.; Hill, R. J.
1999-01-01
Far-ultraviolet spectra of the gravitational lens components Q0957+561 A and B were obtained with the Hubble Space Telescope Faint Object Spectrograph (FOS) at five equally spaced epochs, one every two weeks. We confirm the flux variability of the quasar's Lyman-alpha and O VI lambda 1037 emission lines reported in IUE (International Ultraviolet Explorer) spectra. The fluxes in these lines vary on a time scale of weeks in the local rest frame (LRF), independently of each other and of the surrounding continuum. The individual spectra of each image were co-added to investigate the properties of the Lyman-alpha forest along the two lines of sight to the quasar. Absorption lines having equivalent width W (sub lambda) greater than or equal to 0.3 Angstroms in the LRF not previously identified as interstellar lines, metal lines, or higher order Lyman lines were taken to be LY-alpha forest lines. The existence of each line in this consistently selected set was then verified by its presence in two archival FOS spectra with approx. 1.5 times higher signal to noise than our co-added spectra. Ly-alpha forest lines with W (sub lambda) greater than or equal to 0.3 Angstroms appear at 42 distinct wavelengths in the spectra of the two images. Two absorption lines in the spectrum of image A have no counterpart at that wavelength in the spectrum of image B, and two lines in image B have no counterpart in image A. Based on the separation of the lines of sight at the redshift of the absorption lines appearing in only one spectrum, the density of the absorbing clouds in the direction of Q0957+561 must change significantly over a distance of 79 (+34, -26) h (sub 50) (sup -1) kpc in the simplified model where the absorbers are treated as spherical clouds and the characteristic dimension is the radius. (We adopt H (sub 0)= 50 h (sub 50) km s (sup -1) kpc (sup -1), q (sub 0) = 1/2, and LAMBDA = 0 throughout the paper.) The two limits define the 68% confidence interval on the characteristic dimension, equivalent to the 1 sigma confidence interval for a Gaussian distribution. The 95% confidence interval extends from (32 - 250) h (sub 50) (sup -1) kpc. We show in the Appendix that the fraction of Ly-alpha forest lines that appear in only one spectrum can be expressed as a rapidly converging power series in 1/r, where r the ratio of the radius of the cloud to the separation of the two LOS at the redshift of the cloud. This power series can be rewritten to give r in terms of the fraction of Ly-alpha forest wavelengths that appear in the spectrum of only one image. A simple linear approximation to the solution which everywhere agrees with the power series solution to better than 0.8% for r greater than or equal to 2 is derived in the Appendix.
Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors
Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia
2017-01-01
Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design of the five-axis bearing control system and facilitate the initial suspension test of the rotor for various micromotor devices. PMID:28505089
Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors.
Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia
2017-05-13
Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design of the five-axis bearing control system and facilitate the initial suspension test of the rotor for various micromotor devices.
Bounce-harmonic Landau Damping of Plasma Waves
NASA Astrophysics Data System (ADS)
Anderegg, Francois
2015-11-01
We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v
PDCI Wide-Area Damping Control: PSLF Simulations of the 2016 Open and Closed Loop Test Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilches Bernal, Felipe; Pierre, Brian Joseph; Elliott, Ryan Thomas
To demonstrate and validate the performance of the wide-are a damping control system, the project plans to conduct closed-loop tests on the PDCI in summer/fall 2016. A test plan details the open and closed loop tests to be conducted on the P DCI using the wide-area damping control system. To ensure the appropriate level of preparedness, simulations were performed in order to predict and evaluate any possible unsafe operations before hardware experiments are attempted. This report contains the result s from these simulations using the power system dynamics software PSLF (Power System Load Flow, trademark of GE). The simulations usemore » the WECC (Western Electricity Coordinating Council) 2016 light summer and heavy summer base cases.« less
Modeling of viscous damping of perforated planar microstructures. Applications in acoustics
NASA Astrophysics Data System (ADS)
Homentcovschi, Dorel; Miles, Ronald N.
2004-11-01
The paper contains an analysis of the viscous damping in perforated planar microstructures that often serve as backplates or protecting surfaces in capacitive microsensors. The focus of this work is on planar surfaces containing an offset system of periodic oval holes or its limit cases: a system of circular holes or of slits. The viscous damping is calculated as the sum of squeeze film and the holes' resistances. The optimum number of holes is determined which minimizes the total viscous damping for a given percentage of open area. Graphs and formulas are provided for designing these devices. In the case the open area is higher than 15% the numerical results show that the influence of the holes' geometry (circular or oval) has a slight influence on viscous damping. As the planar structures containing oval holes assure a better protection against dust particles and water drops, they should be preferred in designing protective surfaces for microphones working in a natural environment. The obtained results also can be applied in designing other MEMS devices that use capacitive sensing such as accelerometers, micromechanical switches, resonators, and tunable microoptical interferometers. .
Aeroelastic Stability of a Four-Bladed Semi-Articulated Soft-Inplane Tiltrotor Model
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Corso, Lawrence M.; Brown, Ross K.
2003-01-01
A new four-bladed, semi-articulated, soft-inplane rotor system, designed as a candidate for future heavy-lift rotorcraft, was tested at model scale on the Wing and Rotor Aeroelastic Testing System (WRATS), a 1/5-size aeroelastic wind-tunnel model based on the V-22. The experimental investigation included a hover test with the model in helicopter mode subject to ground resonance conditions, and a forward flight test with the model in airplane mode subject to whirl-flutter conditions. An active control system designed to augment system damping was also tested as part of this investigation. Results of this study indicate that the new four-bladed, soft-inplane rotor system in hover has adequate damping characteristics and is stable throughout its rotor-speed envelope. However, in airplane mode it produces very low damping in the key wing beam-bending mode, and has a low whirl-flutter stability boundary with respect to airspeed. The active control system was successful in augmenting the damping of the fundamental system modes, and was found to be robust with respect to changes in rotor speed and airspeed. Finally, conversion-mode dynamic loads were measured on the rotor and these were found to be signi.cantly lower for the new soft-inplane hub than for the previous baseline stiff - inplane hub.
Aeroelastic Stability of a Four-Bladed Semi-Articulated Soft-Inplane Tiltrotor Model
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Corso, Lawrence M.; Brown, Ross
2003-01-01
A new four-bladed, semi-articulated, soft-inplane rotor system, designed as a candidate for future heavy-lift rotorcraft, was tested at model scale on the Wing and Rotor Aeroelastic Testing System (WRATS), a 1/5-size aeroelastic wind-tunnel model based on the V-22. The experimental investigation included a hover test with the model in helicopter mode subject to ground resonance conditions, and a forward flight test with the model in airplane mode subject to whirl-flutter conditions. An active control system designed to augment system damping was also tested as part of this investigation. Results of this study indicate that the new four-bladed, soft-inplane rotor system in hover has adequate damping characteristics and is stable throughout its rotor-speed envelope. However, in airplane mode it produces very low damping in the key wing beam-bending mode, and has a low whirl-flutter stability boundary with respect to airspeed. The active control system was successful in augmenting the damping of the fundamental system modes, and was found to be robust with respect to changes in rotor-speed and airspeed. Finally, conversion-mode dynamic loads were measured on the rotor and these were found to be significantly lower for the new soft-inplane hub than for the previous baseline stiff-inplane hub.
NASA Astrophysics Data System (ADS)
Yang, C.; Zhang, Y. K.; Liang, X.
2014-12-01
Damping effect of an unsaturated-saturated system on tempospatialvariations of pressurehead and specificflux was investigated. The variance and covariance of both pressure head and specific flux in such a system due to a white noise infiltration were obtained by solving the moment equations of water flow in the system and verified with Monte Carlo simulations. It was found that both the pressure head and specific flux in this case are temporally non-stationary. The variance is zero at early time due to a deterministic initial condition used, then increases with time, and approaches anasymptotic limit at late time.Both pressure head and specific flux arealso non-stationary in space since the variance decreases from source to sink. The unsaturated-saturated systembehavesasa noise filterand it damps both the pressure head and specific flux, i.e., reduces their variations and enhances their correlation. The effect is stronger in upper unsaturated zone than in lower unsaturated zone and saturated zone. As a noise filter, the unsaturated-saturated system is mainly a low pass filter, filtering out the high frequency components in the time series of hydrological variables. The damping effect is much stronger in the saturated zone than in the saturated zone.
Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.
2016-01-01
Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.
Symbolic-Numerical Modeling of the Influence of Damping Moments on Satellite Dynamics
NASA Astrophysics Data System (ADS)
Gutnik, Sergey A.; Sarychev, Vasily A.
2018-02-01
The dynamics of a satellite on a circular orbit under the influence of gravitational and active damping torques, which are proportional to the projections of the angular velocity of the satellite, is investigated. Computer algebra Gröbner basis methods for the determination of all equilibrium orientations of the satellite in the orbital coordinate system with given damping torque and given principal central moments of inertia were used. The conditions of the equilibria existence depending on three damping parameters were obtained from the analysis of the real roots of the algebraic equations spanned by the constructed Gröbner basis. Conditions of asymptotic stability of the satellite equilibria and the transition decay processes of the spatial oscillations of the satellite at different damping parameters have also been obtained.
The absorption spectrum of the QSO PKS 2126-158 (z_em =3.27) at high resolution
NASA Astrophysics Data System (ADS)
D'Odorico, V.; Cristiani, S.; D'Odorico, S.; Fontana, A.; Giallongo, E.
1998-01-01
Spectra of the z_em = 3.268 quasar PKS 2126-158 have been obtained in the range lambda lambda 4300-6620 Angstroms with a resolution Rsmallimeq27000 and an average signal-to-noise ratio s/nsmallimeq 25 per resolution element. The list of the identified absorption lines is given together with their fitted column densities and Doppler widths. The modal value of the Doppler parameter distribution for the Lyalpha lines is smallimeq 25 km s(-1) . The column density distribution can be described by a power-law dn / dN ~ N(-beta ) with beta smallimeq 1.5. 12 metal systems have been identified, two of which were previously unknown. In order to make the column densities of the intervening systems compatible with realistic assumptions about the cloud sizes and the silicon to carbon overabundance, it is necessary to assume a jump beyond the He II edge in the spectrum of the UV ionizing background at z smallim 3 a factor 10 larger than the standard predictions for the integrated quasar contribution. An enlarged sample of C IV absorptions (71 doublets) has been used to analyze the statistical properties of this class of absorbers strictly related to galaxies. The column density distribution is well described by a single power-law, with beta =1.64 and the Doppler parameter distribution shows a modal value b_CIV smallimeq 14 km s(-1) . The two point correlation function has been computed in the velocity space for the individual components of C IV features. A significant signal is obtained for scales smaller than 200- 300 km s(-1) , xi (30< Delta v < 90 km\\ s(-1) ) = 33 +/- 3. A trend of decreasing clustering amplitude with decreasing column density is apparent, analogously to what has been observed for Lyalpha lines. Based on observations collected at the European Southern Observatory, La Silla, Chile (ESO No. 2-013-49K). Table 2 is only available in electronic from via anonymous ftp 130.79.128.5 or http://cdsweb.u-strasbg.fr/Abstract.html
VizieR Online Data Catalog: Census of QSOs Narrow Absorption Lines (Misawa+, 2007)
NASA Astrophysics Data System (ADS)
Misawa, T.; Charlton, J. C.; Eracleous, M.; Ganguly, R.; Tytler, D.; Kirkman, D.; Suzuki, N.; Lubin, D.
2009-04-01
The quasars in our sample were originally selected and observed in a survey aimed at measuring the deuterium-to-hydrogen abundance ratio (D/H) in the Ly{alpha} forest. The observations were carried out with Keck HIRES through a 1.14" slit resulting in a velocity resolution of ~8km/s (FWHM). The spectra were extracted by the automated program, MAKEE, written by Tom Barlow. (2 data files).
NASA Technical Reports Server (NTRS)
Provenza, Andrew J.; Duffy, Kirsten P.
2010-01-01
Experiments to determine the effects of turbomachinery fan blade damping concepts such as passively shunted piezoelectric materials on blade response are ongoing at the NASA Glenn Research Center. A vertical rotor is suspended and excited with active magnetic bearings (AMBs) usually in a vacuum chamber to eliminate aerodynamic forces. Electromagnetic rotor excitation is superimposed onto rotor PD-controlled support and can be fixed to either a stationary or rotating frame of reference. The rotor speed is controlled with an air turbine system. Blade vibrations are measured using optical probes as part of a Non-Contacting Stress Measurement System (NSMS). Damping is calculated from these measurements. It can be difficult to get accurate damping measurements using this experimental setup and some of the details of how to obtain quality results are seemingly nontrivial. The intent of this paper is to present those details.
Reduction of magneto rheological dampers stiffness by incorporating of an eddy current damper
NASA Astrophysics Data System (ADS)
Asghar Maddah, Ali; Hojjat, Yousef; Reza Karafi, Mohammad; Reza Ashory, Mohammad
2017-05-01
In this paper, a hybrid damper is developed to achieve lower stiffness compared to magneto rheological dampers. The hybrid damper consists of an eddy current damper (ECD) and a Magneto Rheological Damper (MRD). The aim of this research is to reduce the stiffness of MRDs with equal damping forces. This work is done by adding an eddy current passive damper to a semi-active MRD. The ECDs are contactless dampers which show an almost viscous damping behavior without increasing the stiffness of a system. However, MRDs increase damping and stiffness of a system simultaneously, when a magnetic field is applied. Damping of each part is studied theoretically and experimentally. A semi-empirical model is developed to explain the viscoelastic behavior of the damper. The experimental results showed that the hybrid damper is able to dissipate energy as much as those of MRDs while its stiffness is 12% lower at a zero excitation current.
Highly damped kinematic coupling for precision instruments
Hale, Layton C.; Jensen, Steven A.
2001-01-01
A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.
Automated dynamic analytical model improvement for damped structures
NASA Technical Reports Server (NTRS)
Fuh, J. S.; Berman, A.
1985-01-01
A method is described to improve a linear nonproportionally damped analytical model of a structure. The procedure finds the smallest changes in the analytical model such that the improved model matches the measured modal parameters. Features of the method are: (1) ability to properly treat complex valued modal parameters of a damped system; (2) applicability to realistically large structural models; and (3) computationally efficiency without involving eigensolutions and inversion of a large matrix.
Physical explanations of the destabilizing effect of damping in rotating parts
NASA Technical Reports Server (NTRS)
Crandall, S. H.
1980-01-01
The destabilizing effect of rotating damping was investigated. When the rotation was faster than the whirl, rotating damping drags the orbiting particle forward. When stationary damping was also present, the stability borderline was readily determined by balancing the backward and forward drags. A key notion was that a forward whirl at rate omega a sub n with respect to stationary axes appears to be a backward whirl at rate Omega - omega sub n with respect to a system rotating supercritically at rate Omega. The growth rate of unstable whirls (or the decay rate of stable whirls was readily estimated by a simple energy balance.
Nonlinear damping for vibration isolation of microsystems using shear thickening fluid
NASA Astrophysics Data System (ADS)
Iyer, S. S.; Vedad-Ghavami, R.; Lee, H.; Liger, M.; Kavehpour, H. P.; Candler, R. N.
2013-06-01
This work reports the measurement and analysis of nonlinear damping of micro-scale actuators immersed in shear thickening fluids (STFs). A power-law damping term is added to the linear second-order model to account for the shear-dependent viscosity of the fluid. This nonlinear model is substantiated by measurements of oscillatory motion of a torsional microactuator. At high actuation forces, the vibration velocity amplitude saturates. The model accurately predicts the nonlinear damping characteristics of the STF using a power-law index extracted from independent rheology experiments. This result reveals the potential to use STFs as adaptive, passive dampers for vibration isolation of microelectromechanical systems.
NASA Astrophysics Data System (ADS)
Wierschem, Nicholas E.; Quinn, D. Dane; Hubbard, Sean A.; Al-Shudeifat, Mohammad A.; McFarland, D. Michael; Luo, Jie; Fahnestock, Larry A.; Spencer, Billie F.; Vakakis, Alexander F.; Bergman, Lawrence A.
2012-12-01
This work reports on the first experimental study of the broadband targeted energy transfer properties of a two-degree-of-freedom (two-DOF) essentially nonlinear energy absorber. In particular, proper design of the absorber allows for an extended range of energy over which it serves to significantly enhance the damping observed in the structural system to which it is attached. Comparisons of computational and experimental results validate the proposed design as a means of drastically enhancing the damping properties of a structure by passive broadband targeted energy transfers to a strongly nonlinear, multidegree-of-freedom attachment.
NASA Technical Reports Server (NTRS)
Della-Corte, Christopher
2012-01-01
Foil gas bearings are a key technology in many commercial and emerging oilfree turbomachinery systems. These bearings are nonlinear and have been difficult to analytically model in terms of performance characteristics such as load capacity, power loss, stiffness, and damping. Previous investigations led to an empirically derived method to estimate load capacity. This method has been a valuable tool in system development. The current work extends this tool concept to include rules for stiffness and damping coefficient estimation. It is expected that these rules will further accelerate the development and deployment of advanced oil-free machines operating on foil gas bearings.
Quantum System Identification via L1-norm Minimization
2011-06-30
number of entangled states for varying levels of amplitude damping γ. tude damping γ. In photonic systems γ is the probability of a photon loss. In...quantum process is a photonic entangling gate. A measurement configuration is defined as some combination of state preparation and an observable...first experimental demonstration of QPT via CS on a photonic system at the University of Queensland. The latter experimental results showed the
Damping Effects of Drogue Parachutes on Orion Crew Module Dynamics
NASA Technical Reports Server (NTRS)
Aubuchon, Vanessa V.; Owens, D. Bruce
2016-01-01
Because simulations of the Orion Crew Module (CM) dynamics with drogue parachutes deployed were under-predicting the amount of damping seen in free-flight tests, an attach-point damping model was applied to the Orion system. A key hypothesis in this model is that the drogue parachutes' net load vector aligns with the CM drogue attachment point velocity vector. This assumption seems reasonable and has historically produced good results, but has never been experimentally verified. The wake of the CM influences the drogue parachutes, which makes performance predictions of the parachutes difficult. Many of these effects are not currently modeled in the simulations. A forced oscillation test of the CM with parachutes was conducted in the NASA LaRC 20-Ft Vertical Spin Tunnel (VST) to gather additional data to validate and refine the attach-point damping model. A second loads balance was added to the original Orion VST model to measure the drogue parachute loads independently of the CM. The objective of the test was to identify the contribution of the drogues to CM damping and provide additional information to quantify wake effects and the interactions between the CM and parachutes. The drogue parachute force vector was shown to be highly dependent on the CM wake characteristics. Based on these wind tunnel test data, the attach-point damping model was determined to be a sufficient approximation of the parachute dynamics in relationship to the CM dynamics for preliminary entry vehicle system design. More wake effects should be included to better model the system.
Two-phase damping and interface surface area in tubes with vertical internal flow
NASA Astrophysics Data System (ADS)
Béguin, C.; Anscutter, F.; Ross, A.; Pettigrew, M. J.; Mureithi, N. W.
2009-01-01
Two-phase flow is common in the nuclear industry. It is a potential source of vibration in piping systems. In this paper, two-phase damping in the bubbly flow regime is related to the interface surface area and, therefore, to flow configuration. Experiments were performed with a vertical tube clamped at both ends. First, gas bubbles of controlled geometry were simulated with glass spheres let to settle in stagnant water. Second, air was injected in stagnant alcohol to generate a uniform and measurable bubble flow. In both cases, the two-phase damping ratio is correlated to the number of bubbles (or spheres). Two-phase damping is directly related to the interface surface area, based on a spherical bubble model. Further experiments were carried out on tubes with internal two-phase air-water flows. A strong dependence of two-phase damping on flow parameters in the bubbly flow regime is observed. A series of photographs attests to the fact that two-phase damping in bubbly flow increases for a larger number of bubbles, and for smaller bubbles. It is highest immediately prior to the transition from bubbly flow to slug or churn flow regimes. Beyond the transition, damping decreases. It is also shown that two-phase damping increases with the tube diameter.
NASA Astrophysics Data System (ADS)
Alawasa, Khaled Mohammad
Voltage-source converters (VSCs) have gained widespread acceptance in modern power systems. The stability and dynamics of power systems involving these devices have recently become salient issues. In the small-signal sense, the dynamics of VSC-based systems is dictated by its incremental output impedance, which is formed by a combination of 'passive' circuit components and 'active' control elements. Control elements such as control parameters, control loops, and control topologies play a significant role in shaping the impedance profile. Depending on the control schemes and strategies used, VSC-based systems can exhibit different incremental impedance dynamics. As the control elements and dynamics are involved in the impedance structure, the frequency-dependent output impedance might have a negative real-part (i.e., a negative resistance). In the grid-connected mode, the negative resistance degrades the system damping and negatively impacts the stability. In high-voltage networks where high-power VSC-based systems are usually employed and where sub-synchronous dynamics usually exist, integrating large VSC-based systems might reduce the overall damping and results in unstable dynamics. The objectives of this thesis are to (1) investigate and analyze the output impedance properties under different control strategies and control functions, (2) identify and characterize the key contributors to the impedance and sub-synchronous damping profiles, and (3) propose mitigation techniques to minimize and eliminate the negative impact associated with integrating VSC-based systems into power systems. Different VSC configurations are considered in this thesis; in particular, the full-scale and partial-scale topologies (doubly fed-induction generators) are addressed. Additionally, the impedance and system damping profiles are studied under two different control strategies: the standard vector control strategy and the recently-developed power synchronization control strategy. Furthermore, this thesis proposes a simple and robust technique for damping the sub-synchronous resonance in a power system.
Damping torque analysis of VSC-based system utilizing power synchronization control
NASA Astrophysics Data System (ADS)
Fu, Q.; Du, W. J.; Zheng, K. Y.; Wang, H. F.
2017-05-01
Power synchronization control is a new control strategy of VSC-HVDC for connecting a weak power system. Different from the vector control method, this control method utilizes the internal synchronization mechanism in ac systems, in principle, similar to the operation of a synchronous machine. So that the parameters of controllers in power synchronization control will change the electromechanical oscillation modes and make an impact on the transient stability of power system. This paper present a mathematical model for small-signal stability analysis of VSC station used power synchronization control and analyse the impact of the dynamic interactions by calculating the contribution of the damping torque from the power synchronization control, besides, the parameters of controllers which correspond to damping torque and synchronous torque in the power synchronization control is defined respectively. At the end of the paper, an example power system is presented to demonstrate and validate the theoretical analysis and associated conclusions are made.
The effect of damping on a quantum system containing a Kerr-like medium
NASA Astrophysics Data System (ADS)
Mohamed, A.-B. A.; Sebawe Abdalla, M.; Obada, A.-S. F.
2018-05-01
An analytical description is given for a model which represents the interaction between Su(1,1) and Su(2) quantum systems taking into account Su(1,1)-cavity damping and Kerr medium properties. The analytic solution for the master equation of the density matrix is obtained. The examination of the effects of the damping parameter as well as the Kerr-like medium features is performed. The atomic inversion is discussed where the revivals and collapses phenomenon is realized at the considered period of time. Our study is extended to include the degree of entanglement where the system shows partial entanglement in all cases, however, disentanglement is also observed. The death and rebirth is seen in the system provided one selects the suitable values of the parameters. The correlation function of the system shows non-classical as well as classical behavior.
NASA Astrophysics Data System (ADS)
Guangwen, Xu; Xi, Li; Ze, Yao
2018-06-01
To solve the damping problem of water hammer wave in the modeling method of water diversion system of hydropower station, this paper introduces the feedback regulation technology from head to flow, that is: A fixed water head is taken out for flow feedback, and the following conclusions are obtained through modeling and simulation. Adjusting the feedback coefficient F of the water head to the flow rate can change the damping characteristic of the system, which can simulate the attenuation process of the water shock wave in the true water diversion pipeline. Even if a small feedback coefficient is introduced, the damping effect of the system is very obvious, but it has little effect on the amplitude of the first water shock wave after the transition process. Therefore, it is feasible and reasonable to introduce water head to flow rate feedback coefficient F in hydraulic turbine diversion system.
Direct heuristic dynamic programming for damping oscillations in a large power system.
Lu, Chao; Si, Jennie; Xie, Xiaorong
2008-08-01
This paper applies a neural-network-based approximate dynamic programming method, namely, the direct heuristic dynamic programming (direct HDP), to a large power system stability control problem. The direct HDP is a learning- and approximation-based approach to addressing nonlinear coordinated control under uncertainty. One of the major design parameters, the controller learning objective function, is formulated to directly account for network-wide low-frequency oscillation with the presence of nonlinearity, uncertainty, and coupling effect among system components. Results include a novel learning control structure based on the direct HDP with applications to two power system problems. The first case involves static var compensator supplementary damping control, which is used to provide a comprehensive evaluation of the learning control performance. The second case aims at addressing a difficult complex system challenge by providing a new solution to a large interconnected power network oscillation damping control problem that frequently occurs in the China Southern Power Grid.
Determining the effective system damping of highway bridges.
DOT National Transportation Integrated Search
2009-06-01
This project investigates four methods for modeling modal damping ratios of short-span and isolated : concrete bridges subjected to strong ground motion, which can be used for bridge seismic analysis : and design based on the response spectrum method...
Vibrational resonance in an inhomogeneous medium with periodic dissipation
NASA Astrophysics Data System (ADS)
Roy-Layinde, T. O.; Laoye, J. A.; Popoola, O. O.; Vincent, U. E.; McClintock, P. V. E.
2017-09-01
The role of nonlinear dissipation in vibrational resonance (VR) is investigated in an inhomogeneous system characterized by a symmetric and spatially periodic potential and subjected to nonuniform state-dependent damping and a biharmonic driving force. The contributions of the parameters of the high-frequency signal to the system's effective dissipation are examined theoretically in comparison to linearly damped systems, for which the parameter of interest is the effective stiffness in the equation of slow vibration. We show that the VR effect can be enhanced by varying the nonlinear dissipation parameters and that it can be induced by a parameter that is shared by the damping inhomogeneity and the system potential. Furthermore, we have apparently identified the origin of the nonlinear-dissipation-enhanced response: We provide evidence of its connection to a Hopf bifurcation, accompanied by monotonic attractor enlargement in the VR regime.
The second hyperpolarizability of systems described by the space-fractional Schrödinger equation
NASA Astrophysics Data System (ADS)
Dawson, Nathan J.; Nottage, Onassis; Kounta, Moussa
2018-01-01
The static second hyperpolarizability is derived from the space-fractional Schrödinger equation in the particle-centric view. The Thomas-Reiche-Kuhn sum rule matrix elements and the three-level ansatz determines the maximum second hyperpolarizability for a space-fractional quantum system. The total oscillator strength is shown to decrease as the space-fractional parameter α decreases, which reduces the optical response of a quantum system in the presence of an external field. This damped response is caused by the wavefunction dependent position and momentum commutation relation. Although the maximum response is damped, we show that the one-dimensional quantum harmonic oscillator is no longer a linear system for α ≠ 1, where the second hyperpolarizability becomes negative before ultimately damping to zero at the lower fractional limit of α → 1 / 2.
Design and testing of a magnetic suspension and damping system for a space telescope
NASA Technical Reports Server (NTRS)
Ockman, N. J.
1972-01-01
The basic equations of motion are derived for a two dimensional, three degree of freedom simulation of a space telescope coupled to a spacecraft by means of a magnetic suspension and isolation system. The system consists of paramagnetic or ferromagnetic discs confined to the magnetic field between two Helmholtz coils. Damping is introduced by varying the magnetic field in proportion to a velocity signal derived from the telescope. The equations of motion are nonlinear, similar in behavior to the one-dimensional Van der Pol equation. The computer simulation was verified by testing a 264-kilogram air bearing platform which simulates the telescope in a frictionless environment. The simulation demonstrated effective isolation capabilities for disturbance frequencies above resonance. Damping in the system improved the response near resonance and prevented the build-up of large oscillatory amplitudes.
NASA Technical Reports Server (NTRS)
Smith, Andrew M.; Davis, R. Benjamin; LaVerde, Bruce T.; Fulcher, Clay W.; Jones, Douglas C.; Waldon, James M.; Craigmyle, Benjamin B.
2012-01-01
This validation study examines the effect on vibroacoustic response resulting from the installation of cable bundles on a curved orthogrid panel. Of interest is the level of damping provided by the installation of the cable bundles and whether this damping could be potentially leveraged in launch vehicle design. The results of this test are compared with baseline acoustic response tests without cables. Damping estimates from the measured response data are made using a new software tool that leverages a finite element model of the panel in conjunction with advanced optimization techniques. While the full test series is not yet complete, the first configuration of cable bundles that was assessed effectively increased the viscous critical damping fraction of the system by as much as 0.02 in certain frequency ranges.
NASA Astrophysics Data System (ADS)
Chang, Chia-Ming; Keefe, Andrew; Carter, William B.; Henry, Christopher P.; McKnight, Geoff P.
2014-04-01
Structural assemblies incorporating negative stiffness elements have been shown to provide both tunable damping properties and simultaneous high stiffness and damping over prescribed displacement regions. In this paper we explore the design space for negative stiffness based assemblies using analytical modeling combined with finite element analysis. A simplified spring model demonstrates the effects of element stiffness, geometry, and preloads on the damping and stiffness performance. Simplified analytical models were validated for realistic structural implementations through finite element analysis. A series of complementary experiments was conducted to compare with modeling and determine the effects of each element on the system response. The measured damping performance follows the theoretical predictions obtained by analytical modeling. We applied these concepts to a novel sandwich core structure that exhibited combined stiffness and damping properties 8 times greater than existing foam core technologies.
Weakly damped modes in star clusters and galaxies
NASA Technical Reports Server (NTRS)
Weinberg, Martin D.
1994-01-01
A perturber may excite a coherent mode in a star cluster or galaxy. If the stellar system is stable, it is commonly assumed that such a mode will be strongly damped and therefore of little practical consequence other than redistributing momentum and energy deposited by the perturber. This paper demonstrates that this assumption is false; weakly damped modes exist and may persist long enough to have observable consequences. To do this, a method for investigating the dispersion relation for spherical stellar systems and for locating weakly damped modes in particular is developed and applied to King models of varying concentration. This leads to a following remarkable result: King models exhibit very weakly damped m = 1 modes over a wide range of concentration (0.67 less than or equal to c less than or equal to 1.5 have been examined). The predicted damping time is tens of hundreds of crossing times. This mode causes the peak density to shift from and slowly revolve about the initial center. The existence of the mode is supported by n-body simulation. Higher order modes and possible astronomical consequences are discussed. Weakly damped modes, for example, may provide a neutral explanation for observed discrepancies between density and kinematic centers in galaxies, off-center nuclei, the location of velocity cusps due to massive black holes, and both m = 1 and barlike disturbances of disks enbedded in massive halos or spheroids. Gravitational shocking may excite the m = 1 mode in globular clusters, which could modify their subsequent evolution and displace the positions of exotic remnants.
Quantum damped oscillator I: Dissipation and resonances
NASA Astrophysics Data System (ADS)
Chruściński, Dariusz; Jurkowski, Jacek
2006-04-01
Quantization of a damped harmonic oscillator leads to so called Bateman’s dual system. The corresponding Bateman’s Hamiltonian, being a self-adjoint operator, displays the discrete family of complex eigenvalues. We show that they correspond to the poles of energy eigenvectors and the corresponding resolvent operator when continued to the complex energy plane. Therefore, the corresponding generalized eigenvectors may be interpreted as resonant states which are responsible for the irreversible quantum dynamics of a damped harmonic oscillator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danforth, Charles W.; Stocke, John T.; Keeney, Brian A.
2011-12-10
Thermally broadened Ly{alpha} absorbers (BLAs) offer an alternate method to using highly ionized metal absorbers (O VI, O VII, etc.) to probe the warm-hot intergalactic medium (WHIM, T = 10{sup 5}-10{sup 7} K). Until now, WHIM surveys via BLAs have been no less ambiguous than those via far-UV and X-ray metal-ion probes. Detecting these weak, broad features requires background sources with a well-characterized far-UV continuum and data of very high quality. However, a recent Hubble Space Telescope/Cosmic Origins Spectrograph (COS) observation of the z = 0.03 blazar Mrk 421 allows us to perform a metal-independent search for WHIM gas withmore » unprecedented precision. The data have high signal-to-noise ratio (S/N Almost-Equal-To 50 per {approx}20 km s{sup -1} resolution element) and the smooth, power-law blazar spectrum allows a fully parametric continuum model. We analyze the Mrk 421 sight line for BLA absorbers, particularly for counterparts to the proposed O VII WHIM systems reported by Nicastro et al. based on Chandra/Low Energy Transmission Grating observations. We derive the Ly{alpha} profiles predicted by the X-ray observations. The S/N of the COS data is high (S/N Almost-Equal-To 25 pixel{sup -1}), but much higher S/N can be obtained by binning the data to widths characteristic of the expected BLA profiles. With this technique, we are sensitive to WHIM gas over a large (N{sub H}, T) parameter range in the Mrk 421 sight line. We rule out the claimed Nicastro et al. O VII detections at their nominal temperatures (T {approx} 1-2 Multiplication-Sign 10{sup 6} K) and metallicities (Z = 0.1 Z{sub Sun }) at {approx}> 2{sigma} level. However, WHIM gas at higher temperatures and/or higher metallicities is consistent with our COS non-detections.« less
Evolution of Structure in the Intergalactic Medium and the Nature of the LY-Alpha Forest
NASA Technical Reports Server (NTRS)
Bi, Hongguang; Davidsen, Arthur F.
1997-01-01
We have performed a detailed statistical study of the evolution of structure in a photoionized intergalactic medium (IGM) using analytical simulations to extend the calculation into the mildly nonlinear density regime found to prevail at z = 3. Our work is based on a simple fundamental conjecture: that the probability distribution function of the density of baryonic diffuse matter in the universe is described by a lognormal (LN) random field. The LN distribution has several attractive features and follows plausibly from the assumption of initial linear Gaussian density and velocity fluctuations at arbitrarily early times. Starting with a suitably normalized power spectrum of primordial fluctuations in a universe dominated by cold dark matter (CDM), we compute the behavior of the baryonic matter, which moves slowly toward minima in the dark matter potential on scales larger than the Jeans length. We have computed two models that succeed in matching observations. One is a nonstandard CDM model with OMEGA = 1, h = 0.5, and GAMMA = 0.3, and the other is a low-density flat model with a cosmological constant (LCDM), with OMEGA = 0.4, OMEGA(sub LAMBDA) = 0.6, and h = 0.65. In both models, the variance of the density distribution function grows with time, reaching unity at about z = 4, where the simulation yields spectra that closely resemble the Ly-alpha forest absorption seen in the spectra of high-z quasars. The calculations also successfully predict the observed properties of the Ly-alpha forest clouds and their evolution from z = 4 down to at least z = 2, assuming a constant intensity for the metagalactic UV background over this redshift range. However, in our model the forest is not due to discrete clouds, but rather to fluctuations in a continuous intergalactic medium. At z = 3; typical clouds with measured neutral hydrogen column densities N(sub H I) = 10(exp 13.3), 10(exp 13.5), and 10(exp 11.5) /sq cm correspond to fluctuations with mean total densities approximately 10, 1, and 0.1 times the universal mean baryon density. Perhaps surprisingly, fluctuations whose amplitudes are less than or equal to the mean density still appear as "clouds" because in our model more than 70% of the volume of the IGM at z = 3 is filled with gas at densities below the mean value.
Ahn
2000-02-10
Among a number of gamma-ray bursts whose host galaxies are known, GRB 971214 stands out for its high redshift (z>/=3) and the Lyalpha emission line having a P Cygni-type profile, which is interpreted to be a direct consequence of the expanding supershell. From a profile-fitting analysis, we estimate the expansion velocity of the supershell (vexp=1500 km s-1) and the neutral column density (NHi=1020 cm -2). The redshift z=3.418 of the host galaxy proposed by Kulkarni et al. in 1998 has been revised to be z=3.425 from our profile analysis. The observed Lyalpha profile is fitted well by a Gaussian curve, which yields the Lyalpha luminosity LLyalpha=&parl0;1.8+/-0.8&parr0;x1042 ergs s-1. Assuming that the photon source is a giant H ii region, we deduce the electron number density in the H ii region ne=&parl0;40+/-10&parr0;&parl0;L/LLyalpha&parr0;0.5&parl0;R/100 pc&parr0;-1.5 cm-3, which corresponds to the illumination by about 104 O5 stars. We estimate the star formation rate to be RSF=7+/-3 M middle dot in circle yr-1 with the internal and the Galactic extinction corrected. The theory on the evolution of supernova remnants is used to propose that the supershell is at the adiabatic phase, with its radius R=18E1&solm0;253 pc, its age t=4.7x103E1&solm0;253 yr, and the density of the ambient medium n1=5.4E-1&solm0;253 cm-3, where E53=E&solm0;1053 ergs; we estimate the kinetic energy of the supershell to be Ek=7.3x1052E53 ergs. These values are consistent with the hypothesis that the supershell is the remnant of a gamma-ray burst. We note similarities between supershells found in nearby galaxies and remote primeval galaxies and propose that the gamma-ray burst may have occurred in a giant H ii region whose environment is similar to that in star-forming galaxies.
NASA Astrophysics Data System (ADS)
Bapat, V. A.; Prabhu, P.
1980-11-01
The problem of designing an optimum Lanchester damper for a viscously damped single degree of freedom system subjected to inertial harmonic excitation is investigated. Two criteria are used for optimizing the performance of the damper: (i) minimum motion transmissibility; (ii) minimum force transmissibility. Explicit expressions are developed for determining the absorber parameters.
An Electromagnetic Tool for Damping and Fatigue Analysis
2004-03-01
Serway , Raymond A . Physics For Scientists & Engineers (3rd Edition). Philadelphia: Saunders College Publishing, 1990. 15. Kurtus, Ron...system was initially designed to reduce the time and manpower required to characterize damping treatments. It is based on a digitally controlled...the capability to study fatigue under a free boundary condition. The system consists of a test specimen suspended by a pendulum to closely
Dynamic damping of vibrations of technical object with two degrees of freedom
NASA Astrophysics Data System (ADS)
Khomenko, A. P.; Eliseev, S. V.; Artyunin, A. I.
2017-10-01
Approach to the solution of problems of dynamic damping for the technical object with two degrees of freedom on the elastic supports is developed. Such tasks are typical for the dynamics of technological vibrating machines, machining machine tools and vehicles. The purpose of the study is to justify the possibility of obtaining regimes of simultaneous dynamic damping of oscillations in two coordinates. The achievement of the goal is based on the use of special devices for the transformation of motion, introduced parallel to the elastic element. The dynamic effect is provided by the possibility of changing the relationships between the reduced masses of devices for transforming motion. The method of structural mathematical modeling is used, in which the mechanical oscillatory system is compared, taking into account the principle of dynamic analogies, the dynamically equivalent structural diagram of the automatic control system. The concept of transfer functions of systems interpartial relations and generalized ideas about the partial frequencies and frequencies dynamic damping is applied. The concept of a frequency diagram that determines the mutual distribution of graphs of frequency characteristics in the interaction of the elements of the system is introduced.
The HI Environment of Nearby Lyman-alpha Absorbers
NASA Technical Reports Server (NTRS)
VanGorkom, J. H.; Carilli, C. L.; Stocke, John T.; Perlman, Eric S.; Shull, J. Michael
1996-01-01
We present the results of a VLA and WSRT search for H I emission from the vicinity of seven nearby clouds, which were observed in Ly-alpha absorption with HST toward Mrk 335, Mrk 501, and PKS 2155-304. Around the absorbers, we searched a volume of 4O' x 40' x 1000 km/s; for one of the absorbers we probed a velocity range of only 600 km/s. The H I mass sensitivity (5 sigma) very close to the lines of sight varies from 5 x 10(exp 6) solar mass at best to 5 x 10(exp 8) solar mass at worst. We detected H I emission in the vicinity of four out of seven absorbers. The closest galaxy we find to the absorbers is a small dwarf galaxy at a projected distance of 68 h(exp -1) kpc from the sight line toward Mrk 335. This optically uncataloged galaxy has the same velocity (V = 1970 km/s) as one of the absorbers, is fainter than the SMC, and has an H I mass of only 4 x 10(exp 7) solar mass. We found a somewhat more luminous galaxy at exactly the velocity (V = 5100 km/s) of one of the absorbers toward PKS 2155-304 at a projected distance of 230 h(exp -1) kpc from the sight line. Two other, stronger absorbers toward PKS 2155-304 at V approx. 17,000 km/s appear to be associated with a loose group of three bright spiral galaxies, at projected distances of 300 to 600 h(exp -1) kpc. These results support the conclusions emerging from optical searches that most nearby Ly-alpha forest clouds trace the large-scale structures outlined by the optically luminous galaxies, although this is still based on small-number statistics. We do not find any evidence from the H I distribution or kinematics that there is a physical association between an absorber and its closest galaxy. While the absorbing clouds are at the systemic velocity of the galaxies, the H I extent of the galaxies is fairly typical, and at least an order of magnitude smaller than the projected distance to the sight line at which the absorbers are seen. On the other hand, we also do not find evidence against such a connection. In total, we detected H I emission from five galaxies, of which two were previously uncataloged and one did not have a known redshift. No H I emission was detected from the vicinity of the two absorbers, which are located in a void and a region of very low galaxy density; but the limits are somewhat less stringent than for the other sight lines. These results are similar to what has been found in optically unbiased H I surveys. Thus, presence of Ly-alpha absorbers does not significantly alter the H I detection rate in their environment.
Hasanvand, Hamed; Mozafari, Babak; Arvan, Mohammad R; Amraee, Turaj
2015-11-01
This paper addresses the application of a static Var compensator (SVC) to improve the damping of interarea oscillations. Optimal location and size of SVC are defined using bifurcation and modal analysis to satisfy its primary application. Furthermore, the best-input signal for damping controller is selected using Hankel singular values and right half plane-zeros. The proposed approach is aimed to design a robust PI controller based on interval plants and Kharitonov's theorem. The objective here is to determine the stability region to attain robust stability, the desired phase margin, gain margin, and bandwidth. The intersection of the resulting stability regions yields the set of kp-ki parameters. In addition, optimal multiobjective design of PI controller using particle swarm optimization (PSO) algorithm is presented. The effectiveness of the suggested controllers in damping of local and interarea oscillation modes of a multimachine power system, over a wide range of loading conditions and system configurations, is confirmed through eigenvalue analysis and nonlinear time domain simulation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Neutral particle beam sensing and steering
Maier, II, William B.; Cobb, Donald D.; Robiscoe, Richard T.
1991-01-01
The direction of a neutral particle beam (NPB) is determined by detecting Ly.alpha. radiation emitted during motional quenching of excited H(2S) atoms in the beam during movement of the atoms through a magnetic field. At least one detector is placed adjacent the beam exit to define an optical axis that intercepts the beam at a viewing angle to include a volume generating a selected number of photons for detection. The detection system includes a lens having an area that is small relative to the NPB area and a pixel array located in the focal plane of the lens. The lens viewing angle and area pixel array are selected to optimize the beam tilt sensitivity. In one embodiment, two detectors are placed coplanar with the beam axis to generate a difference signal that is insensitive to beam variations other than beam tilt.
Low-redshift Lyman-alpha absorption lines and the dark matter halos of disk galaxies
NASA Technical Reports Server (NTRS)
Maloney, Philip
1992-01-01
Ultraviolet observations of the low-redshift quasar 3C 273 using the Hubble Space Telescope have revealed many more Lyman-alpha absorption lines than would be expected from extrapolation of the absorption systems seen toward QSOs at z about 2. It is shown here that these absorption lines can plausibly be produced by gas at large radii in the disks of spiral and irregular galaxies; the gas is confined by the dark matter halos and ionized and heated by the extragalactic radiation field. This scenario does not require the extragalactic ionizing radiation field to decline as rapidly with decreasing z as the QSO emissivity. Observations of Ly-alpha absorption through the halos of known galaxies at low redshift will constrain both the extragalactic background and the properties of galactic halos.
On the Hamilton approach of the dissipative systems
NASA Astrophysics Data System (ADS)
Zimin, B. A.; Zorin, I. S.; Sventitskaya, V. E.
2018-05-01
In this paper we consider the problem of constructing equations describing the states of dissipative dynamical systems (media with absorption or damping). The approaches of Lagrange and Hamilton are discussed. A non-symplectic extension of the Poisson brackets is formulated. The application of the Hamiltonian formalism here makes it possible to obtain explicit equations for the dynamics of a nonlinear elastic system with damping and a one-dimensional continuous medium with internal friction.
Flutter prediction for a wing with active aileron control
NASA Technical Reports Server (NTRS)
Penning, K.; Sandlin, D. R.
1983-01-01
A method for predicting the vibrational stability of an aircraft with an analog active aileron flutter suppression system (FSS) is expained. Active aileron refers to the use of an active control system connected to the aileron to damp vibrations. Wing vibrations are sensed by accelerometers and the information is used to deflect the aileron. Aerodynamic force caused by the aileron deflection oppose wing vibrations and effectively add additional damping to the system.
Estimation of hysteretic damping of structures by stochastic subspace identification
NASA Astrophysics Data System (ADS)
Bajrić, Anela; Høgsberg, Jan
2018-05-01
Output-only system identification techniques can estimate modal parameters of structures represented by linear time-invariant systems. However, the extension of the techniques to structures exhibiting non-linear behavior has not received much attention. This paper presents an output-only system identification method suitable for random response of dynamic systems with hysteretic damping. The method applies the concept of Stochastic Subspace Identification (SSI) to estimate the model parameters of a dynamic system with hysteretic damping. The restoring force is represented by the Bouc-Wen model, for which an equivalent linear relaxation model is derived. Hysteretic properties can be encountered in engineering structures exposed to severe cyclic environmental loads, as well as in vibration mitigation devices, such as Magneto-Rheological (MR) dampers. The identification technique incorporates the equivalent linear damper model in the estimation procedure. Synthetic data, representing the random vibrations of systems with hysteresis, validate the estimated system parameters by the presented identification method at low and high-levels of excitation amplitudes.
Methods of and system for swing damping movement of suspended objects
Jones, J.F.; Petterson, B.J.; Strip, D.R.
1991-03-05
A payload suspended from a gantry is swing damped in accordance with a control algorithm based on the periodic motion of the suspended mass or by servoing on the forces induced by the suspended mass. 13 figures.
Sub-synchronous resonance damping using high penetration PV plant
NASA Astrophysics Data System (ADS)
Khayyatzadeh, M.; Kazemzadeh, R.
2017-02-01
The growing need to the clean and renewable energy has led to the fast development of transmission voltage-level photovoltaic (PV) plants all over the world. These large scale PV plants are going to be connected to power systems and one of the important subjects that should be investigated is the impact of these plants on the power system stability. Can large scale PV plants help to damp sub-synchronous resonance (SSR) and how? In this paper, this capability of a large scale PV plant is investigated. The IEEE Second Benchmark Model aggregated with a PV plant is utilized as the case study. A Wide Area Measurement System (WAMS) based conventional damping controller is designed and added to the main control loop of PV plant in order to damp the SSR and also investigation of the destructive effect of time delay in remote feedback signal. A new optimization algorithm called teaching-learning-based-optimization (TLBO) algorithm has been used for managing the optimization problems. Fast Furrier Transformer (FFT) analysis and also transient simulations of detailed nonlinear system are considered to investigate the performance of the controller. Robustness of the proposed system has been analyzed by facing the system with disturbances leading to significant changes in generator and power system operating point, fault duration time and PV plant generated power. All the simulations are carried out in MATLAB/SIMULINK environment.
Modeling and dynamic properties of dual-chamber solid and liquid mixture vibration isolator
NASA Astrophysics Data System (ADS)
Li, F. S.; Chen, Q.; Zhou, J. H.
2016-07-01
The dual-chamber solid and liquid mixture (SALiM) vibration isolator, mainly proposed for vibration isolation of heavy machines with low frequency, consists of four principle parts: SALiM working media including elastic elements and incompressible oil, multi-layers bellows container, rigid reservoir and the oil tube connecting the two vessels. The isolation system under study is governed by a two-degrees-of-freedom (2-DOF) nonlinear equation including quadratic damping. Simplifying the nonlinear damping into viscous damping, the equivalent stiffness and damping model is derived from the equation for the response amplitude. Theoretical analysis and numerical simulation reveal that the isolator's stiffness and damping have multiple properties with different parameters, among which the effects of exciting frequency, vibrating amplitude, quadratic damping coefficient and equivalent stiffness of the two chambers on the isolator's dynamics are discussed in depth. Based on the boundary characteristics of stiffness and damping and the main causes for stiffness hardening effect, improvement strategies are proposed to obtain better dynamic properties. At last, experiments were implemented and the test results were generally consistent with the theoretical ones, which verified the reliability of the nonlinear dynamic model.
NASA Astrophysics Data System (ADS)
Li, Pimao; Zhang, Youtong; Li, Tieshuan; Xie, Lizhe
2015-03-01
The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot, but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently. In this paper, a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation. Linear model of the improved high pressure common-rail system(HPCRS) including injector, the pipe connecting common-rail with injector and the hydraulic filter is built. Fuel pressure fluctuation at injector inlet, on which frequency domain analysis is conducted through fast Fourier transformation, is acquired at different target pressure and different damping hole diameter experimentally. The linear model is validated and can predict the natural frequencies of the system. Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model, and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists. Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally, and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter. The amplitude of main injection fuel mass deviation can be reduced by 73% at most under pilot-main injection mode, and the amplitude of post injection fuel mass deviation can be reduced by 92% at most under main-post injection mode. Fuel mass of a single injection increases with the increasing of the damping hole diameter. The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection.
Coherence evolution in two-qubit system going through amplitude damping channel
NASA Astrophysics Data System (ADS)
Zhao, MingJing; Ma, Teng; Ma, YuQuan
2018-02-01
In this paper, we analyze the evolution of quantum coherence in a two-qubit system going through the amplitude damping channel. After they have gone through this channel many times, we analyze the systems with respect to the coherence of their output states. When only one subsystem goes through the channel, frozen coherence occurs if and only if this subsystem is incoherent and an auxiliary condition is satisfied for the other subsystem. When two subsystems go through this quantum channel, quantum coherence can be frozen if and only if the two subsystems are both incoherent. We also investigate the evolution of coherence for maximally incoherent-coherent states and derive an equation for the output states after one or two subsystems have gone through the amplitude damping channel.
A Faraday rotation search for magnetic fields in quasar damped Ly alpha absorption systems
NASA Technical Reports Server (NTRS)
Oren, Abraham L.; Wolfe, Arthur M.
1995-01-01
We present the results of a Faraday rotation survey of 61 radio-bright QSOs conducted at the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA). The Galactic contribution to the Faraday rotation is estimated and subtracted to determine the extragalactic rotation measure (RRM) for each source. Eleven of these QSOs are known to exhibit damped Ly alpha absorption. The rate of incidence of significant Faraday rotation of these 11 sources is compared to the remaining 50 and is found to be higher at the 99.8% confidence level. However, as this is based upon only two detections of Faraday rotation in the damped Ly alpha sample, the result is only tentative. If the two detections in the damped Ly alpha sample are dug to the absorbing systems, then the inferred rotation measure induced by these systems is roughly 250 rad/sq m. The two detections were for the two lowest redshift absorbers in the sample. We find that a rotation measure of 250 rad/sq m would have gone undetected for any other absorber in the damped Ly alpha sample due to the 1/(1 + 2) squared dilution of the observed RRM with redshift. Thus the data are consistent with, but do not prove, the hypothesis that Faraday rotation is a generic property of damped Ly alpha absorbers. We do not confirm the suggestion that the amplitude of RRMs increases with redshift. Rather, the data are consistent with no redshift evolution. We find that the uncertainty in the estimation of the Galactic rotation measure (GRM) is a more serious problem than previously realized for extra-galactic Faraday rotation studies of QSO absorbers. A careful analysis of current methods for estimating GRM indicate that it can be determined to an accuracy of about 15 - 20 rad/sq m. Previous studies underestimated this uncertainty by more than a factor of 2. Due to this uncertainty, rotation measures such as we suspect are associated with damped Ly alpha absorption systems can only be detected at redshifts less than z approximately equal 1.
Dynamic behaviour analysis of an energy accumulation system comprising a composite flywheel
NASA Astrophysics Data System (ADS)
Portnov, G. G.; Kulakov, V. L.; Barinov, I. N.
1994-01-01
A simple system for energy accumulation comprising a rim and a massive shaft with elastic couplings was considered; the shaft runs in elastic damping bearings. Forced vibrations of the flywheel system induced by linear and angular eccentricities of composite rim were investigated. The effect of variation of different parameters of the system (stiffness of bearings, viscous friction coefficients of bearings, mass and moment of inertia of the shaft) on damping of radial and angular forced vibrations has been estimated.
Optimal apparent damping as a function of the bandwidth of an array of vibration absorbers.
Vignola, Joseph; Glean, Aldo; Judge, John; Ryan, Teresa
2013-08-01
The transient response of a resonant structure can be altered by the attachment of one or more substantially smaller resonators. Considered here is a coupled array of damped harmonic oscillators whose resonant frequencies are distributed across a frequency band that encompasses the natural frequency of the primary structure. Vibration energy introduced to the primary structure, which has little to no intrinsic damping, is transferred into and trapped by the attached array. It is shown that, when the properties of the array are optimized to reduce the settling time of the primary structure's transient response, the apparent damping is approximately proportional to the bandwidth of the array (the span of resonant frequencies of the attached oscillators). Numerical simulations were conducted using an unconstrained nonlinear minimization algorithm to find system parameters that result in the fastest settling time. This minimization was conducted for a range of system characteristics including the overall bandwidth of the array, the ratio of the total array mass to that of the primary structure, and the distributions of mass, stiffness, and damping among the array elements. This paper reports optimal values of these parameters and demonstrates that the resulting minimum settling time decreases with increasing bandwidth.
Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect.
Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng
2016-01-01
Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems.
NASA Astrophysics Data System (ADS)
Zhang, Junzhi; Li, Yutong; Lv, Chen; Gou, Jinfang; Yuan, Ye
2017-03-01
The flexibility of the electrified powertrain system elicits a negative effect upon the cooperative control performance between regenerative and hydraulic braking and the active damping control performance. Meanwhile, the connections among sensors, controllers, and actuators are realized via network communication, i.e., controller area network (CAN), that introduces time-varying delays and deteriorates the control performances of the closed-loop control systems. As such, the goal of this paper is to develop a control algorithm to cope with all these challenges. To this end, the models of the stochastic network induced time-varying delays, based on a real in-vehicle network topology and on a flexible electrified powertrain, were firstly built. In order to further enhance the control performances of active damping and cooperative control of regenerative and hydraulic braking, the time-varying delays compensation algorithm for the electrified powertrain active damping during regenerative braking was developed based on a predictive scheme. The augmented system is constructed and the H∞ performance is analyzed. Based on this analysis, the control gains are derived by solving a nonlinear minimization problem. The simulations and hardware-in-loop (HIL) tests were carried out to validate the effectiveness of the developed algorithm. The test results show that the active damping and cooperative control performances are enhanced significantly.
Sampling considerations for modal analysis with damping
NASA Astrophysics Data System (ADS)
Park, Jae Young; Wakin, Michael B.; Gilbert, Anna C.
2015-03-01
Structural health monitoring (SHM) systems are critical for monitoring aging infrastructure (such as buildings or bridges) in a cost-effective manner. Wireless sensor networks that sample vibration data over time are particularly appealing for SHM applications due to their flexibility and low cost. However, in order to extend the battery life of wireless sensor nodes, it is essential to minimize the amount of vibration data these sensors must collect and transmit. In recent work, we have studied the performance of the Singular Value Decomposition (SVD) applied to the collection of data and provided new finite sample analysis characterizing conditions under which this simple technique{also known as the Proper Orthogonal Decomposition (POD){can correctly estimate the mode shapes of the structure. Specifically, we provided theoretical guarantees on the number and duration of samples required in order to estimate a structure's mode shapes to a desired level of accuracy. In that previous work, however, we considered simplified Multiple-Degree-Of-Freedom (MDOF) systems with no damping. In this paper we consider MDOF systems with proportional damping and show that, with sufficiently light damping, the POD can continue to provide accurate estimates of a structure's mode shapes. We support our discussion with new analytical insight and experimental demonstrations. In particular, we study the tradeoffs between the level of damping, the sampling rate and duration, and the accuracy to which the structure's mode shapes can be estimated.
Spectroscopic survey of the far-ultraviolet /1160-1700 A/ emissions of Capella
NASA Technical Reports Server (NTRS)
Vitz, R. C.; Weiser, H.; Moos, H. W.; Weinstein, A.; Warden, E. S.
1976-01-01
A far-ultraviolet spectral survey of Capella (Alpha Aur, G5 III + G0 III) has been obtained using a highly sensitive rocketborne spectrograph with a microchannel plate detector. The spectral distribution is very similar to that of the sun; however, if the line surface fluxes are due to the primary (G5 III), then, except for Ly-alpha, they are about an order of magnitude greater than those of the quiet sun
Linear frictional forces cause orbits to neither circularize nor precess
NASA Astrophysics Data System (ADS)
Hamilton, B.; Crescimanno, M.
2008-06-01
For the undamped Kepler potential the lack of precession has historically been understood in terms of the Runge-Lenz symmetry. For the damped Kepler problem this result may be understood in terms of the generalization of Poisson structure to damped systems suggested recently by Tarasov (2005 J. Phys. A: Math. Gen. 38 2145). In this generalized algebraic structure the orbit-averaged Runge-Lenz vector remains a constant in the linearly damped Kepler problem to leading order in the damping coefficient. Beyond Kepler, we prove that, for any potential proportional to a power of the radius, the orbit shape and precession angle remain constant to leading order in the linear friction coefficient.
Damping Experiment of Spinning Composite Plates With Embedded Viscoelastic Material
NASA Technical Reports Server (NTRS)
Mehmed, Oral
1998-01-01
One way to increase gas turbine engine blade reliability and durability is to reduce blade vibration. It is well known that vibration can be reduced by adding damping to metal and composite blade-disk systems. As part of a joint research effort of the NASA Lewis Research Center and the University of California, San Diego, the use of integral viscoelastic damping treatment to reduce the vibration of rotating composite fan blades was investigated. The objectives of this experiment were to verify the structural integrity of composite plates with viscoelastic material patches embedded between composite layers while under large steady forces from spinning, and to measure the damping and natural frequency variation with rotational speed.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher
2010-01-01
Foil gas bearings are a key technology in many commercial and emerging Oil-Free turbomachinery systems. These bearings are non-linear and have been difficult to analytically model in terms of performance characteristics such as load capacity, power loss, stiffness and damping. Previous investigations led to an empirically derived method, a rule-of-thumb, to estimate load capacity. This method has been a valuable tool in system development. The current paper extends this tool concept to include rules for stiffness and damping coefficient estimation. It is expected that these rules will further accelerate the development and deployment of advanced Oil-Free machines operating on foil gas bearings
Characterization of High Damping Fe-Cr-Mo and Fe-Cr-Al Alloys for Naval Ships Application.
1988-03-01
austenitic , and martensitic. The high damping Fe-Cr-based alloys are closely related to ferritic stainless steels . Ferritic stainless steel consists of an Fe...cm reveme it Prectiaq #no ’uenf r oy o.o(a tflrowf U S9GO..P Damping; Ship Silencing; Ferritic Stainless Steels ; Ti-Ni 7 LhV I,. Cintunue on roere .r...decreased. E. METALLURGY OF THE IRON-CHROMIUM ALLOY SYSTEM 1. Physical Properties Stainless steels are divided into three main classes: ferritic
Magnetization dissipation in the ferromagnetic semiconductor (Ga,Mn)As
NASA Astrophysics Data System (ADS)
Hals, Kjetil M. D.; Brataas, Arne
2011-09-01
We compute the Gilbert damping in (Ga,Mn)As based on the scattering theory of magnetization relaxation. The disorder scattering is included nonperturbatively. In the clean limit, spin pumping from the localized d electrons to the itinerant holes dominates the relaxation processes. In the diffusive regime, the breathing Fermi-surface effect is balanced by the effects of interband scattering, which cause the Gilbert damping constant to saturate at around 0.005. In small samples, the system shape induces a large anisotropy in the Gilbert damping.
A passively controlled appendage deployment system for the San Marco D/L spacecraft
NASA Technical Reports Server (NTRS)
Lang, W. E.; Frisch, H. P.; Schwartz, D. A.
1984-01-01
The analytical simulation of deployment dynamics of these two axis concepts as well as the evolution of practical designs for the add on deployable inertia boom units is described. With the boom free to swing back in response to Coriolis forces as well as outwards in response to centrifugal forces, the kinematics of motion are complex but admit the possibility of absorbing deployment energy in frictional or other damping devices about the radial axis, where large amplitude motions can occur and where the design envelope allows more available volume. An acceptable range is defined for frictional damping for any given spin rate. Inadequate damping allows boom motions which strike the spacecraft; excessive damping causes the boom to swing out and latch with damaging violence. The acceptable range is a design parameter and must accommodate spin rate tolerance and also the tolerance and repeatability of the damping mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shustov, V.
1993-07-15
The objective of the research is a further development of the engineering concept of seismic isolation. Neglecting the transient stage of seismic loading results in a widespread misjudgement: The force of resistance associated with velocity is mostly conceived as a source of damping vibrations, though it is an active force at the same time, during an earthquake type excitation. For very pliant systems such as base isolated structures with relatively low bearing stiffness and with artificially added heavy damping mechanism, the so called `damping`` force may occur even the main pushing force at an earthquake. Thus, one of the twomore » basic pillars of the common seismic isolation philosophy, namely, the doctrine of usefulness and necessity of a strong damping mechanism, is turning out to be a self-deception, sometimes even jeopardizing the safety of structures and discrediting the very idea of seismic isolation. There is a way out: breaking with damping dependancy.« less
Coupled oscillators in identification of nonlinear damping of a real parametric pendulum
NASA Astrophysics Data System (ADS)
Olejnik, Paweł; Awrejcewicz, Jan
2018-01-01
A damped parametric pendulum with friction is identified twice by means of its precise and imprecise mathematical model. A laboratory test stand designed for experimental investigations of nonlinear effects determined by a viscous resistance and the stick-slip phenomenon serves as the model mechanical system. An influence of accurateness of mathematical modeling on the time variability of the nonlinear damping coefficient of the oscillator is proved. A free decay response of a precisely and imprecisely modeled physical pendulum is dependent on two different time-varying coefficients of damping. The coefficients of the analyzed parametric oscillator are identified with the use of a new semi-empirical method based on a coupled oscillators approach, utilizing the fractional order derivative of the discrete measurement series treated as an input to the numerical model. Results of application of the proposed method of identification of the nonlinear coefficients of the damped parametric oscillator have been illustrated and extensively discussed.
NASA Technical Reports Server (NTRS)
Ottander, John A.; Hall, Robert A.; Powers, J. F.
2018-01-01
A method is presented that allows for the prediction of the magnitude of limit cycles due to adverse control-slosh interaction in liquid propelled space vehicles using non-linear slosh damping. Such a method is an alternative to the industry practice of assuming linear damping and relying on: mechanical slosh baffles to achieve desired stability margins; accepting minimal slosh stability margins; or time domain non-linear analysis to accept time periods of poor stability. Sinusoidal input describing functional analysis is used to develop a relationship between the non-linear slosh damping and an equivalent linear damping at a given slosh amplitude. In addition, a more accurate analytical prediction of the danger zone for slosh mass locations in a vehicle under proportional and derivative attitude control is presented. This method is used in the control-slosh stability analysis of the NASA Space Launch System.
On the Use of Material-Dependent Damping in ANSYS for Mode Superposition Transient Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, J.; Wei, X.
The mode superposition method is often used for dynamic analysis of complex structures, such as the seismic Category I structures in nuclear power plants, in place of the less efficient full method, which uses the full system matrices for calculation of the transient responses. In such applications, specification of material-dependent damping is usually desirable because complex structures can consist of multiple types of materials that may have different energy dissipation capabilities. A recent review of the ANSYS manual for several releases found that the use of material-dependent damping is not clearly explained for performing a mode superposition transient dynamic analysis.more » This paper includes several mode superposition transient dynamic analyses using different ways to specify damping in ANSYS, in order to determine how material-dependent damping can be specified conveniently in a mode superposition transient dynamic analysis.« less
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Cabell, Randolph H.; Fuller, Chris R.
2008-01-01
This paper describes a combined control strategy designed to reduce sound radiation from stiffened aircraft-style panels. The control architecture uses robust active damping in addition to high-authority linear quadratic Gaussian (LQG) control. Active damping is achieved using direct velocity feedback with triangularly shaped anisotropic actuators and point velocity sensors. While active damping is simple and robust, stability is guaranteed at the expense of performance. Therefore the approach is often referred to as low-authority control. In contrast, LQG control strategies can achieve substantial reductions in sound radiation. Unfortunately, the unmodeled interaction between neighboring control units can destabilize decentralized control systems. Numerical simulations show that combining active damping and decentralized LQG control can be beneficial. In particular, augmenting the in-bandwidth damping supplements the performance of the LQG control strategy and reduces the destabilizing interaction between neighboring control units.
Damping Experiment of Spinning Composite Plates with Embedded Viscoelastic Material
NASA Technical Reports Server (NTRS)
Mehmed, Oral; Kosmatka, John B.
1997-01-01
One way to increase gas turbine engine blade reliability and durability is to reduce blade vibration. It is well known that vibration reduction can be achieved by adding damping to metal and composite blade-disk systems. This experiment was done to investigate the use of integral viscoelastic damping treatments to reduce vibration of rotating composite fan blades. It is part of a joint research effort with NASA LeRC and the University of California, San Diego (UCSD). Previous vibration bench test results obtained at UCSD show that plates with embedded viscoelastic material had over ten times greater damping than similar untreated plates; and this was without a noticeable change in blade stiffness. The objectives of this experiment, were to verify the structural integrity of composite plates with viscoelastic material embedded between composite layers while under large steady forces from spinning, and to measure the damping and natural frequency variation with rotational speed.
The estimation of material and patch parameters in a PDE-based circular plate model
NASA Technical Reports Server (NTRS)
Banks, H. T.; Smith, Ralph C.; Brown, D. E.; Metcalf, Vern L.; Silcox, R. J.
1995-01-01
The estimation of material and patch parameters for a system involving a circular plate, to which piezoceramic patches are bonded, is considered. A partial differential equation (PDE) model for the thin circular plate is used with the passive and active contributions form the patches included in the internal and external bending moments. This model contains piecewise constant parameters describing the density, flexural rigidity, Poisson ratio, and Kelvin-Voigt damping for the system as well as patch constants and a coefficient for viscous air damping. Examples demonstrating the estimation of these parameters with experimental acceleration data and a variety of inputs to the experimental plate are presented. By using a physically-derived PDE model to describe the system, parameter sets consistent across experiments are obtained, even when phenomena such as damping due to electric circuits affect the system dynamics.
NASA Technical Reports Server (NTRS)
Gilyard, G. B.; Edwards, J. W.
1983-01-01
Flight flutter-test results of the first aeroelastic research wing (ARW-1) of NASA's drones for aerodynamic and structural testing program are presented. The flight-test operation and the implementation of the active flutter-suppression system are described as well as the software techniques used to obtain real-time damping estimates and the actual flutter testing procedure. Real-time analysis of fast-frequency aileron excitation sweeps provided reliable damping estimates. The open-loop flutter boundary was well defined at two altitudes; a maximum Mach number of 0.91 was obtained. Both open-loop and closed-loop data were of exceptionally high quality. Although the flutter-suppression system provided augmented damping at speeds below the flutter boundary, an error in the implementation of the system resulted in the system being less stable than predicted. The vehicle encountered system-on flutter shortly after crossing the open-loop flutter boundary on the third flight and was lost. The aircraft was rebuilt. Changes made in real-time test techniques are included.
IUE monitoring of the spatial distribution of the H Ly-alpha emission from Jupiter
NASA Technical Reports Server (NTRS)
Clarke, J. T.; Feldman, P. D.; Moos, H. W.
1981-01-01
North-south spatial maps of the Jovian H Lyman-alpha emission observed with the IUE satellite support the identification of a marked longitudinal asymmetry in the equatorial brightness, with the peak around lambda III(1965) = 50-100 deg longitude, and show a weaker planet-wide equatorial brightening above the level predicted by a plane-parallel layer model. IUE observations made 18 months after the initial discovery of the localized emission bulge establish that it is fixed with respect to Jupiter's magnetic longitude (lambda III system) and not with respect to atmospheric longitude (lambda II system). In addition, a decrease in brightness of 20% in the region of the emission bulge has been observed over a one yr interval, while the rest of the planet remained roughly constant in brightness. This decrease is more than would be expected as a result of changes in the incident solar Lyman-alpha flux, indicating a real decrease in reflectivity in this region of Jupiter's upper atmosphere.
Vibration control of large linear quadratic symmetric systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Jeon, G. J.
1983-01-01
Some unique properties on a class of the second order lambda matrices were found and applied to determine a damping matrix of the decoupled subsystem in such a way that the damped system would have preassigned eigenvalues without disturbing the stiffness matrix. The resulting system was realized as a time invariant velocity only feedback control system with desired poles. Another approach using optimal control theory was also applied to the decoupled system in such a way that the mode spillover problem could be eliminated. The procedures were tested successfully by numerical examples.
On the experimental prediction of the stability threshold speed caused by rotating damping
NASA Astrophysics Data System (ADS)
Vervisch, B.; Derammelaere, S.; Stockman, K.; De Baets, P.; Loccufier, M.
2016-08-01
An ever increasing demand for lighter rotating machinery and higher operating speeds results in a raised probability of instabilities. Rotating damping is one of the reasons, instability occurs. Rotating damping, or rotor internal damping, is the damping related to all rotating parts while non-rotating damping appearing in the non-rotating parts. The present study describes a rotating setup, designed to investigate rotating damping experimentally. An efficient experimental procedure is presented to predict the stability threshold of a rotating machine. The setup consists of a long thin shaft with a disk in the middle and clamped boundary conditions. The goal is to extract the system poles as a function of the rotating speed. The real parts of these poles are used to construct the decay rate plot, which is an indication for the stability. The efficiency of the experimental procedure relies on the model chosen for the rotating shaft. It is shown that the shaft behavior can be approximated by a single degree of freedom model that incorporates a speed dependent damping. As such low measurement effort and only one randomly chosen measurement location are needed to construct the decay rate plot. As an excitation, an automated impact hammer is used and the response is measured by eddy current probes. The proposed method yields a reliable prediction of the stability threshold speed which is validated through measurements.
SOHO Ultraviolet Coronagraph Spectrometer (UVCS) Mission Operations and Data Analysis
NASA Technical Reports Server (NTRS)
Gurman, Joseph (Technical Monitor); Kohl, John L.
2004-01-01
The scientific goal of UVCS is to obtain detailed empirical descriptions of the extended solar corona as it evolves over the solar cycle and to use these descriptions to identify and understand the physical processes responsible for coronal heating, solar wind acceleration, coronal mass ejections (CMEs), and the phenomena that establish the plasma properties of the solar wind as measured by "in situ" solar wind instruments. This report covers the period from 15 February 2003 to 14 April 2004. During that time, UVCS observations have consisted of three types: 1) standard synoptic observations comprising, primarily, the H I Lyalpha line profile and the 0 VI 103.2 and 103.7 nm intensity over a range of heights from 1.5 to about 3.0 solar radii and covering 360 degrees about the Sun, 2) sit and stare observations for major flare watches, and 3) special observations designed by the UVCS Lead Observer of the Week for a specific scientific purpose. The special observations are often coordinated with those of other space-based and ground-based instruments and they often are part of SOHO joint observation programs and campaigns. Lead observers have included UVCS Co-Investigators, scientists from the solar physics community and several graduate and undergraduate level students. UVCS has continued to achieve its purpose of using powerful spectroscopic diagnostic techniques to obtain a much more detailed description of coronal structures and dynamic phenomena than existed before the SOHO mission. The new descriptions of coronal mass ejections (CMEs) and coronal structures from UVCS have inspired a large number of theoretical studies aimed at identifying the physical processes responsible for CMEs and solar wind acceleration in coronal holes and streamers. UVCS has proven to be a very stable instrument. Stellar observations have demonstrated its radiometric stability. UVCS has not required any flight software modifications and all mechanisms are operational. The UVCS 0 VI Channel with its redundant optical path for wavelengths near H I Lyalpha is capable of observing the entire UVCS wavelength range. The regions of the detector currently being used require different grating angles for direct OVI observations and redundant path H I Lyalpha observations, and so those can no longer be observed simultaneously. Since December 1998, the 0 VI Channel has been used for all UVCS observations. Although the H I Lyalpha Channel and detector are still operational, increases in the dark count up to about 5x10(exp 4) counts/sec/pixel and an increase in high voltage current to within a factor of two of the maximum used in the laboratory before flight led to the decision to not use that detector after 1998. The visible light channel functioned nominally during the reporting period. UVCS data, data analysis software, calibration files and the mission log are available from the SOHO archive and SAO. All UVCS data are now available within three months of the observations to scientists and the general public via the SOHO Data Archive and SAO. UVCS has resulted in 33 scientific papers in 2003. There were numerous presentations at scientific meetings. UVCS Education and Public Outreach activities involved nine members of the UVCS team. During the reporting period, there were over a dozen events directed at students and teachers, museum audiences, and public audiences via the mass media, internet and educational literature.
NASA Astrophysics Data System (ADS)
Zhou, Xuhong; Cao, Liang; Chen, Y. Frank; Liu, Jiepeng; Li, Jiang
2016-01-01
The developed pre-stressed cable reinforced concrete truss (PCT) floor system is a relatively new floor structure, which can be applied to various long-span structures such as buildings, stadiums, and bridges. Due to the lighter mass and longer span, floor vibration would be a serviceability concern problem for such systems. In this paper, field testing and theoretical analysis for the PCT floor system were conducted. Specifically, heel-drop impact and walking tests were performed on the PCT floor system to capture the dynamic properties including natural frequencies, mode shapes, damping ratios, and acceleration response. The PCT floor system was found to be a low frequency (<10 Hz) and low damping (damping ratio<2 percent) structural system. The comparison of the experimental results with the AISC's limiting values indicates that the investigated PCT system exhibits satisfactory vibration perceptibility, however. The analytical solution obtained from the weighted residual method agrees well with the experimental results and thus validates the proposed analytical expression. Sensitivity studies using the analytical solution were also conducted to investigate the vibration performance of the PCT floor system.
Damping in Materials for Spintronic Applications
NASA Astrophysics Data System (ADS)
Mewes, Claudia
The next generation of spintronic devices relies strongly on the development of new materials with high spin polarization, optimized intrinsic damping and tunable magnetic anisotropy. Therefore, technological progress in this area depends heavily on the successful search for new materials as well as on a deeper understanding of the fundamental mechanisms of the spin polarization, the damping and the magnetic anisotropy. This talk will focus on different aspects of materials with a low intrinsic relaxation rate. Our results are based on first principles calculations in combination with a non-orthogonal tight-binding model to predict those material properties for complex materials which can be used for example in new spin based memory devices or logic devices. However, the intrinsic damping parameter predicted from first principle calculations does not take into account adjacent layers that are present in the final device. Spin pumping is a well-known contribution that has to be taken into account for practical applications using multilayer structures. More recently a strong unidirectional contribution to the relaxation in exchange bias systems has been observed experimentally. To describe this phenomenon theoretically we use the formalism of an anisotropic Gilbert damping tensor that takes the place of the (scalar) Gilbert damping parameter in the Landau-Lifshitz-Gilbert equation of motion. While for single crystals this anisotropy is expected to be small, making experimental confirmation difficult, the broken symmetry in exchange bias systems provides an excellent testing ground to study the modified magnetization dynamics under the influence of unidirectional damping. C.K.A. Mewes would like to thank her colleague T. Mewes and her students J.B. Mohammadi, A.E. Farrar. We acknowledge support by the NSF-CAREER Award No. 1452670, and NSF-CAREER Award No. 0952929.
Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.
Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio
2018-02-01
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
A hybrid electromagnetic shock absorber for active vehicle suspension systems
NASA Astrophysics Data System (ADS)
Ebrahimi, Babak; Bolandhemmat, Hamidreza; Behrad Khamesee, Mir; Golnaraghi, Farid
2011-02-01
The use of electromagnetic dampers (ED) in vehicle active suspension systems has drawn considerable attention in the past few years, attributed to the fact that active suspension systems have shown superior performance in improving ride comfort and road handling of terrain vehicles, compared with their passive and semi-active counterparts. Although demonstrating superb performance, active suspensions still have some shortcomings that must be overcome. They have high energy consumption, weight, and cost and are not fail-safe in case of a power breakdown. The novel hybrid ED, which is proposed in this paper, is a potential solution to the above-mentioned drawbacks of conventional active suspension systems. The proposed hybrid ED is designed to inherit the high-performance characteristics of an active ED with the reliability of a passive damper in a single package. The eddy current damping effect is utilised as a source of the passive damping. First, a prototype ED is designed and fabricated. The prototype ED is then utilised to experimentally establish the design requirements for a real-size active ED. This is accomplished by comparing its vibration isolation performance in a 1-DOF quarter-car test rig with that of a same-class semi-active damper. Then, after a real-size active ED is designed, the concept of hybrid damper is introduced to the damper design to address the drawbacks of the active ED. Finally, the finite-element method is used to accurately model and analyse the designed hybrid damper. It is demonstrated that by introducing the eddy current damping effect to the active part, a passive damping of approximately 1570 Ns/m is achieved. This amount of passive damping guarantees that the damper is fail-safe and reduces the power consumption more than 70%, compared with an active ED in an automotive active suspension system.
Decoherence in quantum lossy systems: superoperator and matrix techniques
NASA Astrophysics Data System (ADS)
Yazdanpanah, Navid; Tavassoly, Mohammad Kazem; Moya-Cessa, Hector Manuel
2017-06-01
Due to the unavoidably dissipative interaction between quantum systems with their environments, the decoherence flows inevitably into the systems. Therefore, to achieve a better understanding on how decoherence affects on the damped systems, a fundamental investigation of master equation seems to be required. In this regard, finding out the missed information which has been lost due to irreversibly of the dissipative systems, is also of practical importance in quantum information science. Motivating by these facts, in this work we want to use superoperator and matrix techniques, by which we are able to illustrate two methods to obtain the explicit form of density operators corresponding to damped systems at arbitrary temperature T ≥ 0. To establish the potential abilities of the suggested methods, we apply them to deduce the density operator of some practical well-known quantum systems. Using the superoperator techniques, at first we obtain the density operator of a damped system which includes a qubit interacting with a single-mode quantized field within an optical cavity. As the second system, we study the decoherence of a quantized field within an optical damped cavity. We also use our proposed matrix method to study the decoherence of a system which includes two qubits in the interaction with each other via dipole-dipole interaction and at the same time with a quantized field in a lossy cavity. The influences of dissipation on the decoherence of dynamical properties of these systems are also numerically investigated. At last, the advantages of the proposed superoperator techniques in comparison with matrix method are explained.
NASA Astrophysics Data System (ADS)
Youssef, Jamal Ben; Brosseau, Christian
2006-12-01
The microwave damping mechanisms in magnetic inhomogeneous systems have displayed a richness of phenomenology that has attracted widespread interest over the years. Motivated by recent experiments, we report an extensive experimental study of the Gilbert damping parameter of multicomponent metal oxides micro- and nanophases. We label the former by M samples, and the latter by N samples. The main thrust of this examination is the magnetization dynamics in systems composed of mixtures of magnetic (γ-Fe2O3) and nonmagnetic (ZnO and epoxy resin) materials fabricated via powder processing. Detailed ferromagnetic resonance (FMR) measurements on N and M samples are described so to determine changes in the microwave absorption over the 6-18GHz frequency range as a function of composition and static magnetic field. The FMR linewidth and the field dependent resonance were measured for the M and N samples, at a given volume fraction of the magnetic phase. The asymmetry in the form and change in the linewidth for the M samples are caused by the orientation distribution of the local anisotropy fields, whereas the results for the N samples suggest that the linewidth is very sensitive to details of the spatial magnetic inhomogeneities. For N samples, the peak-to-peak linewidth increases continuously with the volume content of magnetic material. The influence of the volume fraction of the magnetic phase on the static internal field was also investigated. Furthermore, important insights are gleaned through analysis of the interrelationship between effective permeability and Gilbert damping constant. Different mechanisms have been considered to explain the FMR linewidth: the intrinsic Gilbert damping, the broadening induced by the magnetic inhomogeneities, and the extrinsic magnetic relaxation. We observed that the effective Gilbert damping constant of the series of N samples are found to be substantially smaller in comparison to M samples. This effect is attributed to the surface anisotropy contribution to the anisotropy of Fe2O3 nanoparticles. From these measurements, the characteristic intrinsic damping dependent on the selected material and the damping due to surface/interface effects and interparticle interaction were estimated. The inhomogeneous linewidth (damping) due to surface/interface effects decreases with diminishing particle size, whereas the homogeneous linewidth (damping) due to interactions increases with increasing volume fraction of magnetic particles (i.e., reducing the separation between neighboring magnetic phases) in the composite.
NASA Technical Reports Server (NTRS)
Warmbrodt, W.; Mccloud, J. L., II
1981-01-01
A helicopter bearingless main rotor was tested. Areas of investigation included aeroelastic stability, aerodynamic performance, and rotor loads as a function of collective pitch setting, RPM, airspeed and shaft angle. The rotor/support system was tested with the wind tunnel balance dampers installed and, subsequently, removed. Modifications to the rotor hub were tested. These included a reduction in the rotor control system stiffness and increased flexbeam structural damping. The primary objective of the test was to determine aeroelastic stability of the fundamental flexbeam/blade chordwise bending mode. The rotor was stable for all conditions. Damping of the rotor chordwise bending mode increases with increased collective pitch angle at constant operating conditions. No significant decrease in rotor damping occured due to frequency coalescence between the blade chordwise fundamental bending mode and the support system.
DAMPs, MAMPs, and NAMPs in plant innate immunity.
Choi, Hyong Woo; Klessig, Daniel F
2016-10-26
Multicellular organisms have evolved systems/mechanisms to detect various forms of danger, including attack by microbial pathogens and a variety of pests, as well as tissue and cellular damage. Detection via cell-surface receptors activates an ancient and evolutionarily conserved innate immune system. Potentially harmful microorganisms are recognized by the presence of molecules or parts of molecules that have structures or chemical patterns unique to microbes and thus are perceived as non-self/foreign. They are referred to as Microbe-Associated Molecular Patterns (MAMPs). Recently, a class of small molecules that is made only by nematodes, and that functions as pheromones in these organisms, was shown to be recognized by a wide range of plants. In the presence of these molecules, termed Nematode-Associated Molecular Patterns (NAMPs), plants activate innate immune responses and display enhanced resistance to a broad spectrum of microbial and nematode pathogens. In addition to pathogen attack, the relocation of various endogenous molecules or parts of molecules, generally to the extracellular milieu, as a result of tissue or cellular damage is perceived as a danger signal, and it leads to the induction of innate immune responses. These relocated endogenous inducers are called Damage-Associated Molecular Patterns (DAMPs). This mini-review is focused on plant DAMPs, including the recently discovered Arabidopsis HMGB3, which is the counterpart of the prototypic animal DAMP HMGB1. The plant DAMPs will be presented in the context of plant MAMPs and NAMPs, as well as animal DAMPs.
Spectral damping scaling factors for shallow crustal earthquakes in active tectonic regions
Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Campbell, Kenneth; Abrahamson, Norman; Silva, Walter
2012-01-01
Ground motion prediction equations (GMPEs) for elastic response spectra, including the Next Generation Attenuation (NGA) models, are typically developed at a 5% viscous damping ratio. In reality, however, structural and non-structural systems can have damping ratios other than 5%, depending on various factors such as structural types, construction materials, level of ground motion excitations, among others. This report provides the findings of a comprehensive study to develop a new model for a Damping Scaling Factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE to spectral ordinates with damping ratios between 0.5 to 30%. Using the updated, 2011 version of the NGA database of ground motions recorded in worldwide shallow crustal earthquakes in active tectonic regions (i.e., the NGA-West2 database), dependencies of the DSF on variables including damping ratio, spectral period, moment magnitude, source-to-site distance, duration, and local site conditions are examined. The strong influence of duration is captured by inclusion of both magnitude and distance in the DSF model. Site conditions are found to have less significant influence on DSF and are not included in the model. The proposed model for DSF provides functional forms for the median value and the logarithmic standard deviation of DSF. This model is heteroscedastic, where the variance is a function of the damping ratio. Damping Scaling Factor models are developed for the “average” horizontal ground motion components, i.e., RotD50 and GMRotI50, as well as the vertical component of ground motion.
Tropp, James; Van Criekinge, Mark
2010-09-01
The basic equation describing radiation damping in nuclear magnetic resonance (NMR) is rewritten by means of the reciprocity principle, to remove the dependence of the damping constant upon filling factor - a parameter which is neither uniquely defined for easily measured. The new equation uses instead the transceive efficiency, i.e. the peak amplitude of the radiofrequency B field in laboratory coordinates, divided by the square root of the resistance of the detection coil, for which a simple and direct means of measurement exists. We use the efficiency to define the intrinsic damping constant, i.e. that which obtains when both probe and preamplifier are perfectly matched to the system impedance. For imperfect matching of the preamp, it is shown that the damping constant varies with electrical distance to the probe, and equations are given and simulations performed, to predict the distance dependence, which (for lossless lines) is periodic modulo a half wavelength. Experimental measurements of the radiation-damped free induction NMR signal of protons in neat water are performed at a static B field strength of 14.1T; and an intrinsic damping constant measured using the variable line method. For a sample of 5mm diameter, in an inverse detection probe we measure an intrinsic damping constant of 204 s(-1), corresponding to a damping linewidth of 65 Hz for small tip angles. The predicted intrinsic linewidth, based upon three separate measurements of the efficiency, is 52.3 Hz, or 80% of the measured value. (c) 2010 Elsevier Inc. All rights reserved.
Ahmed, Ashik; Al-Amin, Rasheduzzaman; Amin, Ruhul
2014-01-01
This paper proposes designing of Static Synchronous Series Compensator (SSSC) based damping controller to enhance the stability of a Single Machine Infinite Bus (SMIB) system by means of Invasive Weed Optimization (IWO) technique. Conventional PI controller is used as the SSSC damping controller which takes rotor speed deviation as the input. The damping controller parameters are tuned based on time integral of absolute error based cost function using IWO. Performance of IWO based controller is compared to that of Particle Swarm Optimization (PSO) based controller. Time domain based simulation results are presented and performance of the controllers under different loading conditions and fault scenarios is studied in order to illustrate the effectiveness of the IWO based design approach.
Active vibration damping of the Space Shuttle remote manipulator system
NASA Technical Reports Server (NTRS)
Scott, Michael A.; Gilbert, Michael G.; Demeo, Martha E.
1991-01-01
The feasibility of providing active damping augmentation of the Space Shuttle Remote Manipulator System (RMS) following normal payload handling operations is investigated. The approach used in the analysis is described, and the results for both linear and nonlinear performance analysis of candidate laws are presented, demonstrating that significant improvement in the RMS dynamic response can be achieved through active control using measured RMS tip acceleration data for feedback.
Aspects of Coulomb damping in rotors supported on hydrodynamic bearings
NASA Technical Reports Server (NTRS)
Morton, P. G.
1982-01-01
The paper is concerned with the effect of friction in drive couplings on the non-sychronous whirling of a shaft. A simplified model is used to demonstrate the effect of large coupling misalignments on the stability of the system. It is concluded that provided these misalignments are large enough, the system becomes totally stable provided the shaft is supported on bearings exhibiting a viscous damping capacity.
Mathematical Models of the Circadian Sleep-Wake Cycle.
1984-05-01
circadian geber , 97,98 system precision, 4 Form factor Damped oscillators, mutual excitation of, and relationship to ratio of deviations, 37 self-sustainment...rhythms, 5-6 Forced internal desynebronization, by Zeit- incorporation of, into models of circadian geber , 97,98 system precision, 4 Form factor Damped...equation, for modeling of circadian geber phase, and modification by fre- rhythms, 19 quency coefficient, 54,55,56 Oscillatory range, effects of
Reducing model uncertainty effects in flexible manipulators through the addition of passive damping
NASA Technical Reports Server (NTRS)
Alberts, T. E.
1987-01-01
An important issue in the control of practical systems is the effect of model uncertainty on closed loop performance. This is of particular concern when flexible structures are to be controlled, due to the fact that states associated with higher frequency vibration modes are truncated in order to make the control problem tractable. Digital simulations of a single-link manipulator system are employed to demonstrate that passive damping added to the flexible member reduces adverse effects associated with model uncertainty. A controller was designed based on a model including only one flexible mode. This controller was applied to larger order systems to evaluate the effects of modal truncation. Simulations using a Linear Quadratic Regulator (LQR) design assuming full state feedback illustrate the effect of control spillover. Simulations of a system using output feedback illustrate the destabilizing effect of observation spillover. The simulations reveal that the system with passive damping is less susceptible to these effects than the untreated case.
The formation of co-orbital planets and their resulting transit signatures
NASA Astrophysics Data System (ADS)
Granados Contreras, Agueda Paula; Boley, Aaron
2018-04-01
Systems with Tightly-packed Inner Planets (STIPs) are metastable, exhibiting sudden transitions to an unstable state that can potentially lead to planet consolidation. When these systems are embedded in a gaseous disc, planet-disc interactions can significantly reduce the frequency of instabilities, and if they do occur, disc torques alter the dynamical outcomes. We ran a suite of N-body simulations of synthetic 6-planet STIPs using an independent implementation of IAS15 that includes a prescription for gaseous tidal damping. The algorithm is based on the results of disc simulations that self-consistently evolve gas and planets. Even for very compact configurations, the STIPS are resistant to instability when gas is present. However, instability can still occur, and in some cases, the combination of system instability and gaseous damping leads to the formation of co-orbiting planets that are stable even when gas damping is removed. While rare, such systems should be detectable in transit surveys, although the dynamics of the system can make the transit signature difficult to identify.
Mitigation of Subsynchronous Resonance with Fractional-order PI based UPFC controller
NASA Astrophysics Data System (ADS)
Raju, D. Koteswara; Umre, Bhimrao S.; Junghare, Anjali S.; Babu, B. Chitti
2017-02-01
Due to incorporation of series capacitor compensation in transmission line for stability improvement, subsynchronous oscillations are generated at turbine-generator shaft. These oscillations can damage the shaft system if these are not well suppressed. In order to damp out these oscillations, usually power system network should have sufficient damping and the increase of network damping is obtained by the injection of subsynchronous component of voltage and current into the line, which are extracted from the measured signal of the system. However, the effectiveness of damp out of these subsynchronous oscillations is possibly by incorporating UPFC in the transmission line network is of high interest and it should be further investigated. This research article proposes the mitigation of subsynchronous resonance (SSR) using fractional-order PI (FOPI) based unified power flow controller (UPFC). The robustness of the proposed controller is tested for 25%, 55% and 70% series compensation with a symmetrical fault (L-L-L fault). Further, Eigenvalue analysis and Fast Fourier Transform (FFT) analysis against operating point variations and uncertainties in the system are also examined. The IEEE first benchmark model is adopted for this study and the superiority of the FOPI based UPFC controller over PI based UPFC controller is discussed by comparing the results with various performance indices.
Second Sound in Systems of One-Dimensional Fermions
Matveev, K. A.; Andreev, A. V.
2017-12-27
We study sound in Galilean invariant systems of one-dimensional fermions. At low temperatures, we find a broad range of frequencies in which in addition to the waves of density there is a second sound corresponding to ballistic propagation of heat in the system. The damping of the second sound mode is weak, provided the frequency is large compared to a relaxation rate that is exponentially small at low temperatures. At lower frequencies the second sound mode is damped, and the propagation of heat is diffusive.
Second Sound in Systems of One-Dimensional Fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matveev, K. A.; Andreev, A. V.
We study sound in Galilean invariant systems of one-dimensional fermions. At low temperatures, we find a broad range of frequencies in which in addition to the waves of density there is a second sound corresponding to ballistic propagation of heat in the system. The damping of the second sound mode is weak, provided the frequency is large compared to a relaxation rate that is exponentially small at low temperatures. At lower frequencies the second sound mode is damped, and the propagation of heat is diffusive.
Chaotic vibrations of the duffing system with fractional damping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syta, Arkadiusz; Litak, Grzegorz; Lenci, Stefano
2014-03-15
We examined the Duffing system with a fractional damping term. Calculating the basins of attraction, we demonstrate a broad spectrum of non-linear behaviour connected with sensitivity to the initial conditions and chaos. To quantify dynamical response of the system, we propose the statistical 0-1 test as well as the maximal Lyapunov exponent; the application of the latter encounter a few difficulties because of the memory effect due to the fractional derivative. The results are confirmed by bifurcation diagrams, phase portraits, and Poincaré sections.
Second Sound in Systems of One-Dimensional Fermions
NASA Astrophysics Data System (ADS)
Matveev, K. A.; Andreev, A. V.
2017-12-01
We study sound in Galilean invariant systems of one-dimensional fermions. At low temperatures, we find a broad range of frequencies in which in addition to the waves of density there is a second sound corresponding to the ballistic propagation of heat in the system. The damping of the second sound mode is weak, provided the frequency is large compared to a relaxation rate that is exponentially small at low temperatures. At lower frequencies, the second sound mode is damped, and the propagation of heat is diffusive.
Nonequilibrium-thermodynamics approach to open quantum systems
NASA Astrophysics Data System (ADS)
Semin, Vitalii; Petruccione, Francesco
2014-11-01
Open quantum systems are studied from the thermodynamical point of view unifying the principle of maximum informational entropy and the hypothesis of relaxation times hierarchy. The result of the unification is a non-Markovian and local-in-time master equation that provides a direct connection for dynamical and thermodynamical properties of open quantum systems. The power of the approach is illustrated by the application to the damped harmonic oscillator and the damped driven two-level system, resulting in analytical expressions for the non-Markovian and nonequilibrium entropy and inverse temperature.
High stability design for new centrifugal compressor
NASA Technical Reports Server (NTRS)
Kanki, H.; Katayama, K.; Morii, S.; Mouri, Y.; Umemura, S.; Ozawa, U.; Oda, T.
1989-01-01
It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions.
Extraction of Modal Parameters from Spacecraft Flight Data
NASA Technical Reports Server (NTRS)
James, George H.; Cao, Timothy T.; Fogt, Vincent A.; Wilson, Robert L.; Bartkowicz, Theodore J.
2010-01-01
The modeled response of spacecraft systems must be validated using flight data as ground tests cannot adequately represent the flight. Tools from the field of operational modal analysis would typically be brought to bear on such structures. However, spacecraft systems have several complicated issues: 1. High amplitudes of loads; 2. Compressive loads on the vehicle in flight; 3. Lack of generous time-synchronized flight data; 4. Changing properties during the flight; and 5. Major vehicle changes due to staging. A particularly vexing parameter to extract is modal damping. Damping estimation has become a more critical issue as new mass-driven vehicle designs seek to use the highest damping value possible. The paper will focus on recent efforts to utilize spacecraft flight data to extract system parameters, with a special interest on modal damping. This work utilizes the analysis of correlation functions derived from a sliding window technique applied to the time record. Four different case studies are reported in the sequence that drove the authors understanding. The insights derived from these four exercises are preliminary conclusions for the general state-of-the-art, but may be of specific utility to similar problems approached with similar tools.
DAMPs, ageing, and cancer: The 'DAMP Hypothesis'.
Huang, Jin; Xie, Yangchun; Sun, Xiaofang; Zeh, Herbert J; Kang, Rui; Lotze, Michael T; Tang, Daolin
2015-11-01
Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schoerling, Daniel; Antoniou, Fanouria; Bernhard, Axel; Bragin, Alexey; Karppinen, Mikko; Maccaferri, Remo; Mezentsev, Nikolay; Papaphilippou, Yannis; Peiffer, Peter; Rossmanith, Robert; Rumolo, Giovanni; Russenschuck, Stephan; Vobly, Pavel; Zolotarev, Konstantin
2012-04-01
To achieve high luminosity at the collision point of the Compact Linear Collider (CLIC), the normalized horizontal and vertical emittances of the electron and positron beams must be reduced to 500 and 4 nm before the beams enter the 1.5 TeV linear accelerators. An effective way to accomplish ultralow emittances with only small effects on the electron polarization is using damping rings operating at 2.86 GeV equipped with superconducting wiggler magnets. This paper describes a technical design concept for the CLIC damping wigglers.
NASA Instep/mdmsc Jitter Suppression Experiment (JITTER)
NASA Technical Reports Server (NTRS)
White, Edward V.
1992-01-01
The objectives are the following: (1) to develop and demonstrate in-space performance of both passive and active damping systems for suppression of micro-amplitude vibration on an actual application structure and operate despite uncertain dynamics and uncertain disturbance characteristics; and (2) to correlate ground and in-space performance - the performance metric is vibration attenuation. The goals are to achieve vibration suppression equivalent to 5 percent passive damping in selected models and 15 percent active damping in selected modes. Various aspects of this experiment are presented in viewgraph form.
Quantization of the damped harmonic oscillator revisited
NASA Astrophysics Data System (ADS)
Baldiotti, M. C.; Fresneda, R.; Gitman, D. M.
2011-04-01
We return to the description of the damped harmonic oscillator with an assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model proposed by one of the authors. We argue the latter has better high energy behavior and is connected to existing open-systems approaches.
Suspended chains damp wind-induced oscillations of tall flexible structures
NASA Technical Reports Server (NTRS)
Reed, W. H., III
1968-01-01
Hanging-chain system, which is a form of impact damper, suppresses wind-induced bending oscillations of tall cylindrical antenna masts. A cluster of chains enclosed in a neoprene shroud is suspended inside the tip of the antenna mast, forming a simple method of damping structural vibrations.
Six degree of freedom active vibration damping for space application
NASA Technical Reports Server (NTRS)
Haynes, Leonard S.
1993-01-01
Work performed during the period 1 Jan. - 31 Mar. 1993 on six degree of freedom active vibration damping for space application is presented. A performance and cost report is included. Topics covered include: actuator testing; mechanical amplifier design; and neural network control system development and experimental evaluation.
NASA Astrophysics Data System (ADS)
Xie, Longhan; Li, Jiehong; Li, Xiaodong; Huang, Ledeng; Cai, Siqi
2018-01-01
Hydraulic dampers are used to decrease the vibration of a vehicle, where vibration energy is dissipated as heat. In addition to resulting in energy waste, the damping coefficient in hydraulic dampers cannot be changed during operation. In this paper, an energy-harvesting vehicle damper was proposed to replace traditional hydraulic dampers. The goal is not only to recover kinetic energy from suspension vibration but also to change the damping coefficient during operation according to road conditions. The energy-harvesting damper consists of multiple generators that are independently controlled by switches. One of these generators connects to a tunable resistor for fine tuning the damping coefficient, while the other generators are connected to a control and rectifying circuit, each of which both regenerates electricity and provides a constant damping coefficient. A mathematical model was built to investigate the performance of the energy-harvesting damper. By controlling the number of switched-on generators and adjusting the value of the external tunable resistor, the damping can be fine tuned according to the requirement. In addition to the capability of damping tuning, the multiple controlled generators can output a significant amount of electricity. A prototype was built to test the energy-harvesting damper design. Experiments on an MTS testing system were conducted, with results that validated the theoretical analysis. Experiments show that changing the number of switched-on generators can obviously tune the damping coefficient of the damper and simultaneously produce considerable electricity.
Near-infrared and optical spectroscopy of FSC 10214+4724
NASA Technical Reports Server (NTRS)
Soifer, B. T.; Cohen, J. G.; Armus, L.; Matthews, K.; Neugebauer, G.; Oke, J. B.
1995-01-01
New infrared and optical spectroscopic observations, obtained with the W. M. Keck Telescope, are reported for the highly luminous infrared source FSC 10214+4724. The rest frame optical spectrum shows new emission lines of (Ne III), (Ne V), (O I), (O II), (S II), and He(+), while the rest frame ultraviolet spectrum shows new lines of O IV) + Si IV, N III, N IV), Si II, Ne IV, and possibly N II and (Ne III), as well as clearly showing that Ly-alpha is self-absorbed. The emission-line spectrum is most characteristic of a Seyfert 2 nucleus. The preponderance of spectroscopic evidence strengthens the case for a dust-enshrouded Active galactic nuclei (AGN) powering much or most of the observed luminosity. The various spectral lines lead to a wide range in the inferred reddening and ionization parameter for this system, suggesting that we are viewing several environments through differing extinctions.
On The Dynamics and Design of a Two-body Wave Energy Converter
NASA Astrophysics Data System (ADS)
Liang, Changwei; Zuo, Lei
2016-09-01
A two-body wave energy converter oscillating in heave is studied in this paper. The energy is extracted through the relative motion between the floating and submerged bodies. A linearized model in the frequency domain is adopted to study the dynamics of such a two-body system with consideration of both the viscous damping and the hydrodynamic damping. The closed form solution of the maximum absorption power and corresponding power take-off parameters are obtained. The suboptimal and optimal designs for a two-body system are proposed based on the closed form solution. The physical insight of the optimal design is to have one of the damped natural frequencies of the two body system the same as, or as close as possible to, the excitation frequency. A case study is conducted to investigate the influence of the submerged body on the absorption power of a two-body system subjected to suboptimal and optimal design under regular and irregular wave excitations. It is found that the absorption power of the two-body system can be significantly higher than that of the single body system with the same floating buoy in both regular and irregular waves. In regular waves, it is found that the mass of the submerged body should be designed with an optimal value in order to achieve the maximum absorption power for the given floating buoy. The viscous damping on the submerged body should be as small as possible for a given mass in both regular and irregular waves.
Comparison of vibration damping of standard and PDCPD housing of the electric power steering system
NASA Astrophysics Data System (ADS)
Płaczek, M.; Wróbel, A.; Baier, A.
2017-08-01
A comparison of two different types of electric power steering system housing is presented. The first considered type of the housing was a standard one that is made of an aluminium alloy. The second one is made of polydicyclopentadiene polymer (PDCPD) and was produced using the RIM technology. Considered elements were analysed in order to verify their properties of vibrations damping. This property is very important taking into account noise generated by elements of a car’s power steering system. During the carried out tests vibrations of analysed power steering housings were measured using Marco Fiber Composite (MFC) piezoelectric transducers. Results obtained for both considered power steering housings in case of the same parameters of vibrations excitations were measured and juxtaposed. Obtained results were analysed in order to verify if the housing made of PDCPD polymer has better properties of vibration damping than the standard one.
Quantized mode of a leaky cavity
NASA Astrophysics Data System (ADS)
Dutra, S. M.; Nienhuis, G.
2000-12-01
We use Thomson's classical concept of mode of a leaky cavity to develop a quantum theory of cavity damping. This theory generalizes the conventional system-reservoir theory of high-Q cavity damping to arbitrary Q. The small system now consists of damped oscillators corresponding to the natural modes of the leaky cavity rather than undamped oscillators associated with the normal modes of a fictitious perfect cavity. The formalism unifies semiclassical Fox-Li modes and the normal modes traditionally used for quantization. It also lays the foundations for a full quantum description of excess noise. The connection with Siegman's semiclassical work is straightforward. In a wider context, this theory constitutes a radical departure from present models of dissipation in quantum mechanics: unlike conventional models, system and reservoir operators no longer commute with each other. This noncommutability is an unavoidable consequence of having to use natural cavity modes rather than normal modes of a fictitious perfect cavity.
NASA Technical Reports Server (NTRS)
Nettles, W. E.; Paul, W. F.; Adams, D. O.
1974-01-01
Results of a design and flight test program conducted to define the effect of rotating pushrod damping on stall-flutter induced control loads are presented. The CH-54B helicopter was chosen as the test aircraft because it exhibited stall induced control loads. Damping was introduced into the CH-54B control system by replacing the standard pushrod with spring-damper assemblies. Design features of the spring-damper are described and the results of a dynamic analysis are shown which define the pushrod stiffness and damping requirements. Flight test measurements taken at 47,000 lb gross weight with and without the damper are presented. The results indicate that the spring-damper pushrods reduced high frequency, stall-induced rotating control loads by almost 50%. Fixed system control loads were reduced by 40%. Handling qualities in stall were unchanged, as expected.
Dynamic Analysis of Geared Rotors by Finite Elements
NASA Technical Reports Server (NTRS)
Kahraman, A.; Ozguven, H. Nevzat; Houser, D. R.; Zakrajsek, J. J.
1992-01-01
A finite element model of a geared rotor system on flexible bearings has been developed. The model includes the rotary inertia of on shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis geared rotors by calculating the critical speeds and determining the response of any point on the shafts to mass unbalances, geometric eccentricities of gears, and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.
Damping Effects of Drogue Parachutes on Orion Crew Module Dynamics
NASA Technical Reports Server (NTRS)
Aubuchon, Vanessa V.
2013-01-01
Currently, simulation predictions of the Orion Crew Module (CM) dynamics with drogue parachutes deployed are under-predicting the amount of damping as seen in free-flight tests. The Apollo Legacy Chute Damping model has been resurrected and applied to the Orion system. The legacy model has been applied to predict CM damping under drogue parachutes for both Vertical Spin Tunnel free flights and the Pad Abort-1 flight test. Comparisons between the legacy Apollo prediction method and test data are favorable. A key hypothesis in the Apollo legacy drogue damping analysis is that the drogue parachutes' net load vector aligns with the CM drogue attachment point velocity vector. This assumption seems reasonable and produces good results, but has never been quantitatively proven. The wake of the CM influences the drogue parachutes, which makes performance predictions of the parachutes difficult. Many of these effects are not currently modeled in the simulations. A forced oscillation test of the CM with parachutes was conducted in the NASA LaRC 20-Ft Vertical Spin Tunnel (VST) to gather additional data to validate and refine the Apollo legacy drogue model. A second loads balance was added to the original Orion VST model to measure the drogue parachute loads independently of the CM. The objective of the test was to identify the contribution of the drogues to CM damping and provide additional information to quantify wake effects and the interactions between the CM and parachutes. The drogue parachute force vector was shown to be highly dependent on the CM wake characteristics. Based on these wind tunnel test data, the Apollo Legacy Chute Damping model was determined to be a sufficient approximation of the parachute dynamics in relationship to the CM dynamics for preliminary entry vehicle system design. More wake effects should be included to better model the system. These results are being used to improve simulation model fidelity of CM flight with drogues deployed, which has been identified by the project as key to a successful Orion Critical Design Review.
Transition of multidiffusive states in a biased periodic potential
NASA Astrophysics Data System (ADS)
Zhang, Jia-Ming; Bao, Jing-Dong
2017-03-01
We study a frequency-dependent damping model of hyperdiffusion within the generalized Langevin equation. The model allows for the colored noise defined by its spectral density, assumed to be proportional to ωδ -1 at low frequencies with 0 <δ <1 (sub-Ohmic damping) or 1 <δ <2 (super-Ohmic damping), where the frequency-dependent damping is deduced from the noise by means of the fluctuation-dissipation theorem. It is shown that for super-Ohmic damping and certain parameters, the diffusive process of the particle in a titled periodic potential undergos sequentially four time regimes: thermalization, hyperdiffusion, collapse, and asymptotical restoration. For analyzing transition phenomenon of multidiffusive states, we demonstrate that the first exist time of the particle escaping from the locked state into the running state abides by an exponential distribution. The concept of an equivalent velocity trap is introduced in the present model; moreover, reformation of ballistic diffusive system is also considered as a marginal situation but does not exhibit the collapsed state of diffusion.
Optimum design of a novel pounding tuned mass damper under harmonic excitation
NASA Astrophysics Data System (ADS)
Wang, Wenxi; Hua, Xugang; Wang, Xiuyong; Chen, Zhengqing; Song, Gangbing
2017-05-01
In this paper, a novel pounding tuned mass damper (PTMD) utilizing pounding damping is proposed to reduce structural vibration by increasing the damping ratio of a lightly damped structure. The pounding boundary covered by viscoelastic material is fixed right next to the tuned mass when the spring-mass system is in the equilibrium position. The dynamic properties of the proposed PTMD, including the natural frequency and the equivalent damping ratio, are derived theoretically. Moreover, the numerical simulation method by using an impact force model to study the PTMD is proposed and validated by pounding experiments. To minimize the maximum dynamic magnification factor under harmonic excitations, an optimum design of the PTMD is developed. Finally, the optimal PTMD is implemented to control a lightly damped frame structure. A comparison of experimental and simulated results reveals that the proposed impact force model can accurately model the pounding force. Furthermore, the proposed PTMD is effective to control the vibration in a wide frequency range, as demonstrated experimentally.
Validation of Analytical Damping Ratio by Fatigue Stress Limit
NASA Astrophysics Data System (ADS)
Foong, Faruq Muhammad; Chung Ket, Thein; Beng Lee, Ooi; Aziz, Abdul Rashid Abdul
2018-03-01
The optimisation process of a vibration energy harvester is usually restricted to experimental approaches due to the lack of an analytical equation to describe the damping of a system. This study derives an analytical equation, which describes the first mode damping ratio of a clamp-free cantilever beam under harmonic base excitation by combining the transverse equation of motion of the beam with the damping-stress equation. This equation, as opposed to other common damping determination methods, is independent of experimental inputs or finite element simulations and can be solved using a simple iterative convergence method. The derived equation was determined to be correct for cases when the maximum bending stress in the beam is below the fatigue limit stress of the beam. However, an increasing trend in the error between the experiment and the analytical results were observed at high stress levels. Hence, the fatigue limit stress was used as a parameter to define the validity of the analytical equation.
NASA Astrophysics Data System (ADS)
Bachmann, F.; de Oliveira, R.; Sigg, A.; Schnyder, V.; Delpero, T.; Jaehne, R.; Bergamini, A.; Michaud, V.; Ermanni, P.
2012-07-01
Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty.
Applications of tuned mass dampers to improve performance of large space mirrors
NASA Astrophysics Data System (ADS)
Yingling, Adam J.; Agrawal, Brij N.
2014-01-01
In order for future imaging spacecraft to meet higher resolution imaging capability, it will be necessary to build large space telescopes with primary mirror diameters that range from 10 m to 20 m and do so with nanometer surface accuracy. Due to launch vehicle mass and volume constraints, these mirrors have to be deployable and lightweight, such as segmented mirrors using active optics to correct mirror surfaces with closed loop control. As a part of this work, system identification tests revealed that dynamic disturbances inherent in a laboratory environment are significant enough to degrade the optical performance of the telescope. Research was performed at the Naval Postgraduate School to identify the vibration modes most affecting the optical performance and evaluate different techniques to increase damping of those modes. Based on this work, tuned mass dampers (TMDs) were selected because of their simplicity in implementation and effectiveness in targeting specific modes. The selected damping mechanism was an eddy current damper where the damping and frequency of the damper could be easily changed. System identification of segments was performed to derive TMD specifications. Several configurations of the damper were evaluated, including the number and placement of TMDs, damping constant, and targeted structural modes. The final configuration consisted of two dampers located at the edge of each segment and resulted in 80% reduction in vibrations. The WFE for the system without dampers was 1.5 waves, with one TMD the WFE was 0.9 waves, and with two TMDs the WFE was 0.25 waves. This paper provides details of some of the work done in this area and includes theoretical predictions for optimum damping which were experimentally verified on a large aperture segmented system.
Chung, Michael K H; Zhang, Nong; Tansley, Geoff D; Qian, Yi
2004-12-01
The VentrAssist implantable rotary blood pump, intended for long-term ventricular assist, is under development and is currently being tested for its rotor-dynamic stability. The pump consists of a shaftless impeller, which also acts as the rotor of the brushless DC motor. The impeller remains passively suspended in the pump cavity by hydrodynamic forces, which result from the small clearances between the outside surfaces of the impeller and the pump cavity. These small clearances range from approximately 50 microm to 230 microm in size in the version of pump reported here. This article presents experimental investigation into the dynamic characteristics of the impeller-bearing-pump housing system of the rotary blood pump for increasing pump speeds at different flow rates. The pump was mounted on a suspension system consisting of a platform and springs, where the natural frequency and damping ratio for the suspension system were determined. Real-time measurements of the impeller's displacement were performed using Hall effect sensors. A vertical disturbance force was exerted onto the pump housing, causing the impeller to be displaced in vertical direction from its dynamic equilibrium position within the pump cavity. The impeller displacement was represented by a decaying sine wave, which indicated the impeller restoring to its equilibrium position. From the decaying sine wave the natural frequency and stiffness coefficient of the system were determined. Furthermore, the logarithmic decrement method was used to determine the damping ratio and eventually the damping coefficient of the system. Results indicate that stiffness and damping coefficients increased as flow rate and pump speed increased, representing an increase in stability with these changing conditions. However, pump speed had a greater influence on the stiffness and damping coefficients than flow rate did, which was evident through dynamic analysis. Overall the experimental method presented in this article was successful in determining the dynamic characteristics of the system.
NASA Astrophysics Data System (ADS)
Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander
2016-05-01
The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.
Noisy oscillator: Random mass and random damping.
Burov, Stanislav; Gitterman, Moshe
2016-11-01
The problem of a linear damped noisy oscillator is treated in the presence of two multiplicative sources of noise which imply a random mass and random damping. The additive noise and the noise in the damping are responsible for an influx of energy to the oscillator and its dissipation to the surrounding environment. A random mass implies that the surrounding molecules not only collide with the oscillator but may also adhere to it, thereby changing its mass. We present general formulas for the first two moments and address the question of mean and energetic stabilities. The phenomenon of stochastic resonance, i.e., the expansion due to the noise of a system response to an external periodic signal, is considered for separate and joint action of two sources of noise and their characteristics.
Effect of Damping and Yielding on the Seismic Response of 3D Steel Buildings with PMRF
Haldar, Achintya; Rodelo-López, Ramon Eduardo; Bojórquez, Eden
2014-01-01
The effect of viscous damping and yielding, on the reduction of the seismic responses of steel buildings modeled as three-dimensional (3D) complex multidegree of freedom (MDOF) systems, is studied. The reduction produced by damping may be larger or smaller than that of yielding. This reduction can significantly vary from one structural idealization to another and is smaller for global than for local response parameters, which in turn depends on the particular local response parameter. The uncertainty in the estimation is significantly larger for local response parameter and decreases as damping increases. The results show the limitations of the commonly used static equivalent lateral force procedure where local and global response parameters are reduced in the same proportion. It is concluded that estimating the effect of damping and yielding on the seismic response of steel buildings by using simplified models may be a very crude approximation. Moreover, the effect of yielding should be explicitly calculated by using complex 3D MDOF models instead of estimating it in terms of equivalent viscous damping. The findings of this paper are for the particular models used in the study. Much more research is needed to reach more general conclusions. PMID:25097892
Effect of damping and yielding on the seismic response of 3D steel buildings with PMRF.
Reyes-Salazar, Alfredo; Haldar, Achintya; Rodelo-López, Ramon Eduardo; Bojórquez, Eden
2014-01-01
The effect of viscous damping and yielding, on the reduction of the seismic responses of steel buildings modeled as three-dimensional (3D) complex multidegree of freedom (MDOF) systems, is studied. The reduction produced by damping may be larger or smaller than that of yielding. This reduction can significantly vary from one structural idealization to another and is smaller for global than for local response parameters, which in turn depends on the particular local response parameter. The uncertainty in the estimation is significantly larger for local response parameter and decreases as damping increases. The results show the limitations of the commonly used static equivalent lateral force procedure where local and global response parameters are reduced in the same proportion. It is concluded that estimating the effect of damping and yielding on the seismic response of steel buildings by using simplified models may be a very crude approximation. Moreover, the effect of yielding should be explicitly calculated by using complex 3D MDOF models instead of estimating it in terms of equivalent viscous damping. The findings of this paper are for the particular models used in the study. Much more research is needed to reach more general conclusions.
NASA Astrophysics Data System (ADS)
Martel, Carlos; Sánchez-Álvarez, J. J.
2017-06-01
Mistuning can dangerously increase the vibration amplitude of the forced response of a turbomachinery rotor. In the case of damping coming from aerodynamic effects the situation is more complicated because the magnitude of the damping changes for the different travelling wave modes of the system. This damping variability modifies the effect of mistuning, and it can even result in a reduction of the mistuned forced response amplitude below that of the tuned case (this is not possible in the usual case of constant material damping). In this paper the Asymptotic Mistuning Model (AMM) methodology is used to analyze this situation. The AMM is a reduced order model that is systematically derived from the mistuned bladed disk full model using a perturbative procedure based on the small size of the mistuning and the damping. The AMM allows to derive a very simple expression for an upper bound of the maximum amplification factor of the vibration amplitude that the system can experience (an extension of the well known Whitehead 1966 result to include the effect of non-uniform aerodamping). This new upper bound gives information on the mechanisms involved in the amplification/reduction of the mistuned response: (i) the number of modes participating in the response, and (ii) the ratio between the aerodamping of the directly forced mode and that of the of the rest of the modes. A FEM of a mistuned bladed disk is also used to verify the AMM predictions for several different forcing configurations, and both results show a very good quantitative agreement.
Lei, Youming; Zheng, Fan
2016-12-01
Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.
Modeling of automotive driveline system for reducing gear rattles
NASA Astrophysics Data System (ADS)
Shangguan, Wen-Bin; Liu, Xue-Lai; Yin, Yuming; Rakheja, Subhash
2018-03-01
A nonlinear torsional model for a driveline system with 4 degrees of freedom is proposed for studying gear rattle if a car is at idle. The time-varying meshing stiffness of geared teeth, gear backlash, and the damping from oil film are included in the model. The dynamic responses of the driveline system, such as clutch angular displacement, meshing force and relative displacement between geared teeth, are calculated using the presented model. The influences of stiffness and damping of a clutch on gear rattle of geared teeth in a generic transmission are investigated. Based on the calculation and analysis results, a design guideline to select clutch's stiffness and damping is developed to reduce gear rattle for a car at idle. Taking a generic driveline system of a passenger car as an example, the developed method is experimentally validated by comparing the baseline clutch and revised clutch, in terms of the measured noise inside engine compartment and cab and vibrations at transmission housing.
Comparison of adaptive critic-based and classical wide-area controllers for power systems.
Ray, Swakshar; Venayagamoorthy, Ganesh Kumar; Chaudhuri, Balarko; Majumder, Rajat
2008-08-01
An adaptive critic design (ACD)-based damping controller is developed for a thyristor-controlled series capacitor (TCSC) installed in a power system with multiple poorly damped interarea modes. The performance of this ACD computational intelligence-based method is compared with two classical techniques, which are observer-based state-feedback (SF) control and linear matrix inequality LMI-H(infinity) robust control. Remote measurements are used as feedback signals to the wide-area damping controller for modulating the compensation of the TCSC. The classical methods use a linearized model of the system whereas the ACD method is purely measurement-based, leading to a nonlinear controller with fixed parameters. A comparative analysis of the controllers' performances is carried out under different disturbance scenarios. The ACD-based design has shown promising performance with very little knowledge of the system compared to classical model-based controllers. This paper also discusses the advantages and disadvantages of ACDs, SF, and LMI-H(infinity).
Damping parameter study of a perforated plate with bias flow
NASA Astrophysics Data System (ADS)
Mazdeh, Alireza
One of the main impediments to successful operation of combustion systems in industrial and aerospace applications including gas turbines, ramjets, rocket motors, afterburners (augmenters) and even large heaters/boilers is the dynamic instability also known as thermo-acoustic instability. Concerns with this ongoing problem have grown with the introduction of Lean Premixed Combustion (LPC) systems developed to address the environmental concerns associated with the conventional combustion systems. The most common way to mitigate thermo-acoustic instability is adding acoustic damping to the combustor using acoustic liners. Recently damping properties of bias flow initially introduced to liners only for cooling purposes have been recognized and proven to be an asset in enhancing the damping effectiveness of liners. Acoustic liners are currently being designed using empirical design rules followed by build-test-improve steps; basically by trial and error. There is growing concerns on the lack of reliability associated with the experimental evaluation of the acoustic liners with small size apertures. The development of physics-based tools in assisting the design of such liners has become of great interest to practitioners recently. This dissertation focuses primarily on how Large-Eddy Simulations (LES) or similar techniques such as Scaled Adaptive Simulation (SAS) can be used to characterize damping properties of bias flow. The dissertation also reviews assumptions made in the existing analytical, semi-empirical, and numerical models, provides a criteria to rank order the existing models, and identifies the best existing theoretical model. Flow field calculations by LES provide good insight into the mechanisms that led to acoustic damping. Comparison of simulation results with empirical and analytical studies shows that LES simulation is a viable alternative to the empirical and analytical methods and can accurately predict the damping behavior of liners. Currently the role of LES for research studies concerned with damping properties of liners is limited to validation of other empirical or theoretical approaches. This research has shown that LES can go beyond that and can be used for performing parametric studies to characterize the sensitivity of acoustic properties of multi--perforated liners to the changes in the geometry and flow conditions and be used as a tool to design acoustic liners. The conducted research provides an insightful understanding about the contribution of different flow and geometry parameters such as perforated plate thickness, aperture radius, porosity factors and bias flow velocity. While the study agrees with previous observations obtained by analytical or experimental methods, it also quantifies the impact from these parameters on the acoustic impedance of perforated plate, a key parameter to determine the acoustic performance of any system. The conducted study has also explored the limitations and capabilities of commercial tool when are applied for performing simulation studies on damping properties of liners. The overall agreement between LES results and previous studies proves that commercial tools can be effectively used for these applications under certain conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, S.; Mathur, S.; Pieri, M.
2010-09-15
We report the results of a systematic search for signatures of metal lines in quasar spectra of the Sloan Digital Sky Survey (SDSS) data release 3 (DR3), focusing on finding intervening absorbers via detection of their O VI doublet. Here, we present the search algorithm and criteria for distinguishing candidates from spurious Ly{alpha} forest lines. In addition, we compare our findings with simulations of the Ly{alpha} forest in order to estimate the detectability of O VI doublets over various redshift intervals. We have obtained a sample of 1756 O VI doublet candidates with rest-frame equivalent width (EW) {>=}0.05 A inmore » 855 active galactic nuclei spectra (out of 3702 objects with redshifts in the accessible range for O VI detection). This sample is further subdivided into three groups according to the likelihood of being real and the potential for follow-up observation of the candidate. The group with the cleanest and most secure candidates is comprised of 145 candidates. Sixty-nine of these reside at a velocity separation {>=}5000 km s{sup -1} from the QSO and can therefore be classified tentatively as intervening absorbers. Most of these absorbers have not been picked up by earlier, automated QSO absorption line detection algorithms. This sample increases the number of known O VI absorbers at redshifts beyond z{sub abs{>=}} 2.7 substantially.« less
2014-09-01
Micromechanics and Microengineering . 2005;15:176–184. 10. Mohite SS, Kesari H, Sonti VR, Pratap R. Analytical solutions for the stiffness and damping...coefficients of squeeze films in MEMS devices with perforated back plates. Journal of Micromechanics and Microengineering . 2005;15:2083–2092. 11. Younis MI
Optimization of a Nutation Damper Attached to a Spin-Stabilized Satellite.
1994-12-01
characteristic roots describe the damping of the simple system. The damping time index, as proposed by Borelli and Leliakov (5:345), is defined as the...Viscous Ring Damper for a Freely Precessing Satellite." International Journal of Mechanical Sciences. Vol. 8. 1966. pp. 383- 395. 5. Borelli , R. L
NASA Astrophysics Data System (ADS)
Cyranka, Jacek; Mucha, Piotr B.; Titi, Edriss S.; Zgliczyński, Piotr
2018-04-01
The paper studies the issue of stability of solutions to the forced Navier-Stokes and damped Euler systems in periodic boxes. It is shown that for large, but fixed, Grashoff (Reynolds) number the turbulent behavior of all Leray-Hopf weak solutions of the three-dimensional Navier-Stokes equations, in periodic box, is suppressed, when viewed in the right frame of reference, by large enough average flow of the initial data; a phenomenon that is similar in spirit to the Landau damping. Specifically, we consider an initial data which have large enough spatial average, then by means of the Galilean transformation, and thanks to the periodic boundary conditions, the large time independent forcing term changes into a highly oscillatory force; which then allows us to employ some averaging principles to establish our result. Moreover, we also show that under the action of fast oscillatory-in-time external forces all two-dimensional regular solutions of the Navier-Stokes and the damped Euler equations converge to a unique time-periodic solution.
Exact solutions for discrete breathers in a forced-damped chain.
Gendelman, O V
2013-06-01
Exact solutions for symmetric on-site discrete breathers (DBs) are obtained in a forced-damped linear chain with on-site vibro-impact constraints. The damping in the system is caused by inelastic impacts; the forcing functions should satisfy conditions of periodicity and antisymmetry. Global conditions for existence and stability of the DBs are established by a combination of analytic and numeric methods. The DB can lose its stability through either pitchfork, or Neimark-Sacker bifurcations. The pitchfork bifurcation is related to the internal dynamics of each individual oscillator. It is revealed that the coupling can suppress this type of instability. To the contrary, the Neimark-Sacker bifurcation occurs for relatively large values of the coupling, presumably due to closeness of the excitation frequency to a boundary of the propagation zone of the chain. Both bifurcation mechanisms seem to be generic for the considered type of forced-damped lattices. Some unusual phenomena, like nonmonotonous dependence of the stability boundary on the forcing amplitude, are revealed analytically for the initial system and illustrated numerically for small periodic lattices.
Progressive phase trends in plates with embedded acoustic black holes.
Conlon, Stephen C; Feurtado, Philip A
2018-02-01
Acoustic black holes (ABHs) have been explored and demonstrated to be effective passive treatments for broadband noise and vibration control. Performance metrics for assessing damping concepts are often focused on maximizing structural damping loss factors. Optimally performing damping treatments can reduce the resonant response of a driven system well below the direct field response. This results in a finite structure whose vibration input-output response follows that of an infinite structure. The vibration mobility transfer functions between locations on a structure can be used to assess the structure's vibration response phase, and compare its phase response characteristics to those of idealized systems. This work experimentally explores the phase accumulation in finite plates, with and without embedded grids of ABHs. The measured results are compared and contrasted with theoretical results for finite and infinite uniform plates. Accumulated phase characteristics, their spatial dependence and limits, are examined for the plates and compared to theoretical estimates. The phase accumulation results show that the embedded acoustic black hole treatments can significantly enhance the damping of the plates to the point that their phase accumulation follows that of an infinite plate.
NASA Astrophysics Data System (ADS)
Fredette, Luke; Singh, Rajendra
2017-02-01
A spectral element approach is proposed to determine the multi-axis dynamic stiffness terms of elastomeric isolators with fractional damping over a broad range of frequencies. The dynamic properties of a class of cylindrical isolators are modeled by using the continuous system theory in terms of homogeneous rods or Timoshenko beams. The transfer matrix type dynamic stiffness expressions are developed from exact harmonic solutions given translational or rotational displacement excitations. Broadband dynamic stiffness magnitudes (say up to 5 kHz) are computationally verified for axial, torsional, shear, flexural, and coupled stiffness terms using a finite element model. Some discrepancies are found between finite element and spectral element models for the axial and flexural motions, illustrating certain limitations of each method. Experimental validation is provided for an isolator with two cylindrical elements (that work primarily in the shear mode) using dynamic measurements, as reported in the prior literature, up to 600 Hz. Superiority of the fractional damping formulation over structural or viscous damping models is illustrated via experimental validation. Finally, the strengths and limitations of the spectral element approach are briefly discussed.
Vadose zone controls on damping of climate-induced transient recharge fluxes in U.S. agroecosystems
NASA Astrophysics Data System (ADS)
Gurdak, Jason
2017-04-01
Understanding the physical processes in the vadose zone that link climate variability with transient recharge fluxes has particular relevance for the sustainability of groundwater-supported irrigated agriculture and other groundwater-dependent ecosystems. Natural climate variability on interannual to multidecadal timescales has well-documented influence on precipitation, evapotranspiration, soil moisture, infiltration flux, and can augment or diminish human stresses on water resources. Here the behavior and damping depth of climate-induced transient water flux in the vadose zone is explored. The damping depth is the depth in the vadose zone that the flux variation damps to 5% of the land surface variation. Steady-state recharge occurs when the damping depth is above the water table, and transient recharge occurs when the damping depth is below the water table. Findings are presented from major agroecosystems of the United States (U.S.), including the High Plains, Central Valley, California Coastal Basin, and Mississippi Embayment aquifer systems. Singular spectrum analysis (SSA) is used to identify quasi-periodic signals in precipitation and groundwater time series that are coincident with the Arctic Oscillation (AO) (6-12 mo cycle), Pacific/North American oscillation (PNA) (<1-4 yr cycle), El Niño/Southern Oscillation (ENSO) (2-7 yr cycle), North Atlantic Oscillation (NAO) (3-6 yr cycle), Pacific Decadal Oscillation (PDO) (15-30 yr cycle), and Atlantic Multidecadal Oscillation (AMO) (50-70 yr cycle). SSA results indicate that nearly all of the quasi-periodic signals in the precipitation and groundwater levels have a statistically significant lag correlation (95% confidence interval) with the AO, PNA, ENSO, NAO, PDO, and AMO indices. Results from HYDRUS-1D simulations indicate that transient water flux through the vadose zone are controlled by highly nonlinear interactions between mean infiltration flux and infiltration period related to the modes of climate variability and the local soil textures, layering, and depth to the water table. Simulation results for homogeneous profiles generally show that shorter-period climate oscillations, smaller mean fluxes, and finer-grained soil textures generally produce damping depths closer to land surface. Simulation results for layered soil textures indicate more complex responses in the damping depth, including the finding that finer-textured layers in a coarser soil profile generally result in damping depths closer to land surface, while coarser-textured layers in coarser soil profile result in damping depths deeper in the vadose zone. Findings from this study improve understanding of how vadose zone properties influences transient recharge flux and damp climate variability signals in groundwater systems, and have important implications for sustainable management of groundwater resources and coupled agroecosystems under future climate variability and change.
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeffrey
2016-01-01
To meet the flight control damping requirement, baffles of various configurations have been devised to increase the natural viscous damping and decrease the magnitude of the slosh forces and torques. In the design of slosh baffles, the most widely used damping equation is the one derived by Miles, which is based on the experiments of Keulegan and Carpenter. This equation has been used in predicting damping of the baffled tanks in different diameters ranging from 12 to 112 inches. The analytical expression of Miles equation is easy to use, especially in the design of complex baffle system. Previous investigations revealed that some experiments had shown good agreements with the prediction method of Miles, whereas other experiments have shown significant deviations. For example, damping from Miles equation differs from experimental measurements by as much as 100 percent over a range of tank diameters from 12 to 112 inches, oscillation amplitudes from 0.1 to 1.5 baffle widths, and baffle depths of 0.3 to 0.5 tank radius. Previously, much of this difference has been attributed to experimental scatter. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between Miles equation and experimental measurement, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use CFD technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. A well validated CFD solver, developed at NASA MSFC, Loci-STREAM-VOF, is applied to study vorticity field around the baffle and around the fluid interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data are then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (h/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.
Damping of prominence longitudinal oscillations due to mass accretion
NASA Astrophysics Data System (ADS)
Ruderman, Michael S.; Luna, Manuel
2016-06-01
We study the damping of longitudinal oscillations of a prominence thread caused by the mass accretion. We suggested a simple model describing this phenomenon. In this model we considered a thin curved magnetic tube filled with the plasma. The prominence thread is in the central part of the tube and it consists of dense cold plasma. The parts of the tube at the two sides of the thread are filled with hot rarefied plasma. We assume that there are flows of rarefied plasma toward the thread caused by the plasma evaporation at the magnetic tube footpoints. Our main assumption is that the hot plasma is instantaneously accommodated by the thread when it arrives at the thread, and its temperature and density become equal to those of the thread. Then we derive the system of ordinary differential equations describing the thread dynamics. We solve this system of ordinary differential equations in two particular cases. In the first case we assume that the magnetic tube is composed of an arc of a circle with two straight lines attached to its ends such that the whole curve is smooth. A very important property of this model is that the equations describing the thread oscillations are linear for any oscillation amplitude. We obtain the analytical solution of the governing equations. Then we obtain the analytical expressions for the oscillation damping time and periods. We find that the damping time is inversely proportional to the accretion rate. The oscillation periods increase with time. We conclude that the oscillations can damp in a few periods if the inclination angle is sufficiently small, not larger that 10°, and the flow speed is sufficiently large, not less that 30 km s-1. In the second model we consider the tube with the shape of an arc of a circle. The thread oscillates with the pendulum frequency dependent exclusively on the radius of curvature of the arc. The damping depends on the mass accretion rate and the initial mass of the threads, that is the mass of the thread at the moment when it is perturbed. First we consider small amplitude oscillations and use the linear description. Then we consider nonlinear oscillations and assume that the damping is slow, meaning that the damping time is much larger that the characteristic oscillation time. The thread oscillations are described by the solution of the nonlinear pendulum problem with slowly varying amplitude. The nonlinearity reduces the damping time, however this reduction is small. Again the damping time is inversely proportional to the accretion rate. We also obtain that the oscillation periods decrease with time. However even for the largest initial oscillation amplitude considered in our article the period reduction does not exceed 20%. We conclude that the mass accretion can damp the motion of the threads rapidly. Thus, this mechanism can explain the observed strong damping of large-amplitude longitudinal oscillations. In addition, the damping time can be used to determine the mass accretion rate and indirectly the coronal heating.
NASA Technical Reports Server (NTRS)
Fralick, G. C.
1982-01-01
It is shown that a conventional electronic frequency compensator does not provide adequate compensation near the resonant frequency of a lightly damped second order system, such as the drag force anemometer. The reason for this is discussed, and a simple circuit modification is presented which overcomes the difficulty. The improvement is shown in theoretical frequency response curves as well as in the experimental results from some typical drag force anemometers.
NASA Astrophysics Data System (ADS)
Ding, Ruqi; Xu, Bing; Zhang, Junhui; Cheng, Min
2017-08-01
Independent metering control systems are promising fluid power technologies compared with traditional valve controlled systems. By breaking the mechanical coupling between the inlet and outlet, the meter-out valve can open as large as possible to reduce energy consumptions. However, the lack of damping in outlet causes stronger vibrations. To address the problem, the paper designs a hybrid control method combining dynamic pressure-feedback and active damping control. The innovation resides in the optimization of damping by introducing pressure feedback to make trade-offs between high stability and fast response. To achieve this goal, the dynamic response pertaining to the control parameters consisting of feedback gain and cut-off frequency, are analyzed via pole-zero locations. Accordingly, these parameters are tuned online in terms of guaranteed dominant pole placement such that the optimal damping can be accurately captured under a considerable variation of operating conditions. The experiment is deployed in a mini-excavator. The results pertaining to different control parameters confirm the theoretical expectations via pole-zero locations. By using proposed self-tuning controller, the vibrations are almost eliminated after only one overshoot for different operation conditions. The overshoots are also reduced with less decrease of the response time. In addition, the energy-saving capability of independent metering system is still not affected by the improvement of controllability.
NASA Astrophysics Data System (ADS)
Johnson, Erik A.; Elhaddad, Wael M.; Wojtkiewicz, Steven F.
2016-04-01
A variety of strategies have been developed over the past few decades to determine controllable damping device forces to mitigate the response of structures and mechanical systems to natural hazards and other excitations. These "smart" damping devices produce forces through passive means but have properties that can be controlled in real time, based on sensor measurements of response across the structure, to dramatically reduce structural motion by exploiting more than the local "information" that is available to purely passive devices. A common strategy is to design optimal damping forces using active control approaches and then try to reproduce those forces with the smart damper. However, these design forces, for some structures and performance objectives, may achieve high performance by selectively adding energy, which cannot be replicated by a controllable damping device, causing the smart damper performance to fall far short of what an active system would provide. The authors have recently demonstrated that a model predictive control strategy using hybrid system models, which utilize both continuous and binary states (the latter to capture the switching behavior between dissipative and non-dissipative forces), can provide reductions in structural response on the order of 50% relative to the conventional clipped-optimal design strategy. This paper explores the robustness of this newly proposed control strategy through evaluating controllable damper performance when the structure model differs from the nominal one used to design the damping strategy. Results from the application to a two-degree-of-freedom structure model confirms the robustness of the proposed strategy.
NASA Astrophysics Data System (ADS)
Bai, Xian-Xu; Zhong, Wei-Min; Zou, Qi; Zhu, An-Ding; Sun, Jun
2018-07-01
Based on the structural design concept of ‘functional integration’, this paper proposes the principle of a power-generated magnetorheological energy absorber with velocity self-sensing capability (PGMREA), which realizes the integration of controllable damping mechanism and mechanical energy-electrical energy conversion mechanism in structure profile and multiple functions in function profile, including controllable damping, power generation and velocity self-sensing. The controllable damping mechanism consists of an annular gap and a ball screw. The annular gap fulfilled with MR fluid that operates in pure shear mode under controllable electromagnetic field. The rotational damping torque generated from the controllable damping mechanism is translated to a linear damping force via the ball screw. The mechanical energy-electrical energy conversion mechanism is realized by the ball screw and a generator composed of a permanent magnet rotor and a generator stator. The ball screw based mechanical energy-electrical energy conversion mechanism converts the mechanical energy of excitations to electrical energy for storage or directly to power the controllable damping mechanism of the PGMREA. The velocity self-sensing capability of the PGMREA is achieved via signal processing using the mechanical energy-electrical energy conversion information. Based on the principle of the proposed PGMREA, the mathematical model of the PGMREA is established, including the damping force, generated power and self-sensing velocity. The electromagnetic circuit of the PGMREA is simulated and verified via a finite element analysis software ANSYS. The developed PGMREA prototype is experimentally tested on a servo-hydraulic testing system. The model-based predicted results and the experimental results are compared and analyzed.
Hybrid experimental/analytical models of structural dynamics - Creation and use for predictions
NASA Technical Reports Server (NTRS)
Balmes, Etienne
1993-01-01
An original complete methodology for the construction of predictive models of damped structural vibrations is introduced. A consistent definition of normal and complex modes is given which leads to an original method to accurately identify non-proportionally damped normal mode models. A new method to create predictive hybrid experimental/analytical models of damped structures is introduced, and the ability of hybrid models to predict the response to system configuration changes is discussed. Finally a critical review of the overall methodology is made by application to the case of the MIT/SERC interferometer testbed.
Direct system parameter identification of mechanical structures with application to modal analysis
NASA Technical Reports Server (NTRS)
Leuridan, J. M.; Brown, D. L.; Allemang, R. J.
1982-01-01
In this paper a method is described to estimate mechanical structure characteristics in terms of mass, stiffness and damping matrices using measured force input and response data. The estimated matrices can be used to calculate a consistent set of damped natural frequencies and damping values, mode shapes and modal scale factors for the structure. The proposed technique is attractive as an experimental modal analysis method since the estimation of the matrices does not require previous estimation of frequency responses and since the method can be used, without any additional complications, for multiple force input structure testing.
Damping treatment for an aircraft hard-mounted antenna system in a vibroacoustic environment
NASA Astrophysics Data System (ADS)
Tate, Ralph E.; Rupert, Carl L.
1990-10-01
This paper discusses the design, analysis, and testing of 'add-on' damping treatments for the Band 6, 7, 8 radar antenna packages that are hard-mounted on the B-1B Aft Equipment Bay (AEB) where equipment failures are routinely occurring during take-off maneuvers at maximum throttle settings. This damage results from the intense vibroacoustical environment generated by the three-stage afterburning engines. Failure rates have been sufficiently high to warrant a 'quick fix' involving damping treatments that can be installed in a short time with minimal modification to the existing structure.
NASA Astrophysics Data System (ADS)
Phu, Do Xuan; Choi, Seung-Bok
2015-02-01
In this work, a new high-load magnetorheological (MR) fluid mount system is devised and applied to control vibration in a ship engine. In the investigation of vibration-control performance, a new modified indirect fuzzy sliding mode controller is formulated and realized. The design of the proposed MR mount is based on the flow mode of MR fluid, and it includes two separated coils for generating a magnetic field. An optimization process is carried out to achieve maximal damping force under certain design constraints, such as the allowable height of the mount. As an actuating smart fluid, a new plate-like iron-particle-based MR fluid is used, instead of the conventional spherical iron-particle-based MR fluid. After evaluating the field-dependent yield stress of the MR fluid, the field-dependent damping force required to control unwanted vibration in the ship engine is determined. Subsequently, an appropriate-sized MR mount is manufactured and its damping characteristics are evaluated. After confirming the sufficient damping force level of the manufactured MR mount, a medium-sized ship engine mount system consisting of eight MR mounts is established, and its dynamic governing equations are derived. A new modified indirect fuzzy sliding mode controller is then formulated and applied to the engine mount system. The displacement and velocity responses show that the unwanted vibrations of the ship engine system can be effectively controlled in both the axial and radial directions by applying the proposed control methodology.
Experimental studies of tuned particle damper: Design and characterization
NASA Astrophysics Data System (ADS)
Zhang, Kai; Xi, Yanhui; Chen, Tianning; Ma, Zhihao
2018-01-01
To better suppress the structural vibration in the micro vibration and harsh environment, a new type of damper, tuned particle damper (TPD), was designed by combining the advantage of classical dynamic vibration absorber (DVA) and particle damper (PD). An equivalent theoretical model was established to describe the dynamic behavior of a cantilever system treated with TPD. By means of a series of sine sweep tests, the dynamic characteristic of TPD under different excitation intensity was explored and the damping performance of TPD was investigated by comparing with classical DVA and PD with the same mass ratio. Experimental results show that with the increasing of excitation intensity TPD shows two different dynamic characteristics successively, i.e., PD-like and DVA-like. TPD shows a wider suppression frequency band than classical DVA and better practicability than PD in the micro vibration environment. Moreover, to characterize the dynamic characteristic of TPD, a simple evaluation of the equivalent dynamic mass and equivalent dynamic damping of the cantilever system treated with TPD was performed by fitting the experimental data to the presented theoretical model. Finally, based on the rheology behaviors of damping particles reported by the previous research results, an approximate phase diagram which shows the motion states of damping particles in TPD was employed to analyze the dynamic characteristic of TPD and several motion states of damping particles in TPD were presented via a high-speed camera.
Connecting dissipation and noncommutativity: A Bateman system case study
NASA Astrophysics Data System (ADS)
Pal, Sayan Kumar; Nandi, Partha; Chakraborty, Biswajit
2018-06-01
We present an approach to the problem of quantization of the damped harmonic oscillator. To start with, we adopt the standard method of doubling the degrees of freedom of the system (Bateman form) and then, by introducing some new parameters, we get a generalized coupled set of equations from the Bateman form. Using the corresponding time-independent Lagrangian, quantum effects on a pair of Bateman oscillators embedded in an ambient noncommutative space (Moyal plane) are analyzed by using both path integral and canonical quantization schemes within the framework of the Hilbert-Schmidt operator formulation. Our method is distinct from those existing in the literature and where the ambient space was taken to be commutative. Our quantization shows that we end up again with a Bateman system except that the damping factor undergoes renormalization. Strikingly, the corresponding expression shows that the renormalized damping factor can be nonzero even if "bare" one is zero to begin with. In other words, noncommutativity can act as a source of dissipation. Conversely, the noncommutative parameter θ , taken to be a free one now, can be fine tuned to get a vanishing renormalized damping factor. This indicates in some sense a "duality" between dissipation and noncommutativity. Our results match the existing results in the commutative limit.
Development of a non-piston MR suspension rod for variable mass systems
NASA Astrophysics Data System (ADS)
Deng, Huaxia; Han, Guanghui; Zhang, Jin; Wang, Mingxian; Ma, Mengchao; Zhong, Xiang; Yu, Liandong
2018-06-01
The semi-active suspension systems for variable mass systems require long work stroke and variable damping, while the currently piston structure limits the work stroke for the magnetorheological (MR) dampers. The main work of this paper is to design a semi-active non-piston MR (NPMR) suspension rod for the reduction of the vibration of an automatic impeller washing machine, which is a typical variable mass system. The designed suspension rod locates in the suspension system that links the internal tub to the washing machine cabinet. The NPMR suspension rod includes a MR part and a air part. The MR part can provide low initial damping force and the unlimited work stroke compared with the piston MR damper. The hysteretic response tests and vibration performance evaluation with different loadings are conducted to verify the dynamic performance for the designed rod. The measured damping force of the MR part varies from 5 to 20 N. Studies of dehydration mode experiments of the washing machine indicate that its vibration acceleration with the NPMR suspension rods can reduce to half of the original passive ones in certain conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, David L.
2015-01-23
Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams ofmore » electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring, and that an instability associated with residual gas in the beam pipe would limit the intensity of the electron ring. It was also not clear whether the required very small beam size could be achieved. The results of this study are important contributions to the design of both the electron and positron damping rings in which all of those challenges are addressed and overcome. Our findings are documented in the ILC Technical Design Report, a document that represents the work of an international collaboration of scientists. Our contributions include design of the beam magnetic optics for the 3 km circumference damping rings, the vacuum system and surface treatments for electron cloud mitigation, the design of the guide field magnets, design of the superconducting damping wigglers, and new detectors for precision measurement of beam properties. Our study informed the specification of the basic design parameters for the damping rings, including alignment tolerances, magnetic field errors, and instrumentation. We developed electron cloud modelling tools and simulations to aid in the interpretation of the measurements that we carried out in the Cornell Electron-positron Storage Ring (CESR). The simulations provide a means for systematic extrapolation of our measurements at CESR to the proposed ILC damping rings, and ultimately to specify how the beam pipes should be fabricated in order to minimize the effects of the electron cloud. With the conclusion of this study, the design of the essential components of the damping rings is complete, including the development and characterization (with computer simulations) of the beam optics, specification of techniques for minimizing beam size, design of damping ring instrumentation, R&D into electron cloud suppression methods, tests of long term durability of electron cloud coatings, and design of damping ring vacuum system components.« less
Optimization analysis of a new vane MRF damper
NASA Astrophysics Data System (ADS)
Zhang, J. Q.; Feng, Z. Z.; Jing, Q.
2009-02-01
The primary purpose of this study was to provide the optimization analysis certain characteristics and benefits of a vane MRF damper. Based on the structure of conventional vane hydraulic damper for heavy vehicle, a narrow arc gap between clapboard and rotary vane axle, which one rotates relative to the other, was designed for MRF valve and the mathematical model of damping was deduced. Subsequently, the finite element analysis of electromagnetic circuit was done by ANSYS to perform the optimization process. Some ways were presented to augment the damping adjustable multiple under the condition of keeping initial damping forces and to increase fluid dwell time through the magnetic field. The results show that the method is useful in the design of MR dampers and the damping adjustable range of vane MRF damper can meet the requirement of heavy vehicle semi-active suspension system.
Development of a low-cost, low micro-vibration CMG for small agile satellite applications
NASA Astrophysics Data System (ADS)
Kawak, B. J.
2017-02-01
The agility of the spacecraft which refers to the spacecraft's ability to execute fast and accurate manoeuvers within a fixed period of time, is a key satellite parameter. The spacecraft' s agility is directly proportional to the spacecraft actuators' output torque. For high torque inertial actuators (>0.5 Nm), Control Moment Gyroscope (CMG) exhibits better performances in terms of mass and electrical power consumption than reaction wheels. However, in addition to the complex steering law required to avoid CMG singularities, one of the reasons why CMGs are not widely used is also due to their high micro-vibration emission which may interfere and disrupt the spacecraft' s sensitive instruments such as optical payloads. In this paper, an innovative two-stage viscoelastic isolation system has been designed and implemented in a new low micro-vibration CMG prototype. The first stage of the damping system acts at bearing level to attenuate the possible shock vibrations while the second stage acts at mechanism level to attenuate the structural resonances and motor noise. The developed CMG enables to combine high actuator output torque with a low micro-vibration signature. The viscoelastic damping system is cost effective as it is a fully passive system which requires no thermal control and no electronics. Furthermore, the attenuation provided by this innovative two stage damping system can reach a slope up to -80 dB/dec which leads to a Mini-CMG micro-vibration signature lower than similar output torque reaction wheels not equipped with a damping system.
Mechanical Face Seal Dynamics.
1985-12-01
1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE -,1 - " P V 7 V - • ... f -N- PRE FACE This final...dimensionless mass m and support damping 1), ~ at-e aisas M"= -1,,i -4 4) y positive. ’he damping D is Ihe tinplete system of momeints acting on tile
High-Speed Video Analysis of Damped Harmonic Motion
ERIC Educational Resources Information Center
Poonyawatpornkul, J.; Wattanakasiwich, P.
2013-01-01
In this paper, we acquire and analyse high-speed videos of a spring-mass system oscillating in glycerin at different temperatures. Three cases of damped harmonic oscillation are investigated and analysed by using high-speed video at a rate of 120 frames s[superscript -1] and Tracker Video Analysis (Tracker) software. We present empirical data for…
Effectiveness of large booms as nutation dampers for spin stabilized spacecraft
NASA Technical Reports Server (NTRS)
Eke, F. O.
1991-01-01
The issue of using long slender booms as pendulous nutation damping devices on spinning aircraft is discussed. Motivation comes from experience with the Galileo Spacecraft, whose magnetometer boom also serves as a passive nutation damper for the spacecraft. Performance analysis of a spacecraft system equipped with such systems are relatively insensitive to changes in the damping constant of the device. However, the size and arrangement of such a damper raises important questions concerning spacecraft stability in general.
Analytical Solution and Physics of a Propellant Damping Device
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John
2011-01-01
NASA design teams have been investigating options for "detuning" Ares I to prevent oscillations originating in the vehicle solid-rocket main stage from synching up with the natural resonance of the rest of the vehicle. An experimental work started at NASA MSFC center in 2008 using a damping device showed great promise in damping the vibration level of an 8 resonant tank. However, the mechanisms of the vibration damping were not well understood and there were many unknowns such as the physics, scalability, technology readiness level (TRL), and applicability for the Ares I vehicle. The objectives of this study are to understand the physics of intriguing slosh damping observed in the experiments, to further validate a Computational Fluid Dynamics (CFD) software in propellant sloshing against experiments with water, and to study the applicability and efficiency of the slosh damper to a full scale propellant tank and to cryogenic fluids. First a 2D fluid-structure interaction model is built to model the system resonance of liquid sloshing and structure vibration. A damper is then added into the above model to simulate experimentally observed system damping phenomena. Qualitative agreement is found. An analytical solution is then derived from the Newtonian dynamics for the thrust oscillation damper frequency, and a slave mass concept is introduced in deriving the damper and tank interaction dynamics. The paper will elucidate the fundamental physics behind the LOX damper success from the derivation of the above analytical equation of the lumped Newtonian dynamics. Discussion of simulation results using high fidelity multi-phase, multi-physics, fully coupled CFD structure interaction model will show why the LOX damper is unique and superior compared to other proposed mitigation techniques.
Application of USNRC NUREG/CR-6661 and draft DG-1108 to evolutionary and advanced reactor designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang 'Apollo', Chen
2006-07-01
For the seismic design of evolutionary and advanced nuclear reactor power plants, there are definite financial advantages in the application of USNRC NUREG/CR-6661 and draft Regulatory Guide DG-1108. NUREG/CR-6661, 'Benchmark Program for the Evaluation of Methods to Analyze Non-Classically Damped Coupled Systems', was by Brookhaven National Laboratory (BNL) for the USNRC, and Draft Regulatory Guide DG-1108 is the proposed revision to the current Regulatory Guide (RG) 1.92, Revision 1, 'Combining Modal Responses and Spatial Components in Seismic Response Analysis'. The draft Regulatory Guide DG-1108 is available at http://members.cox.net/apolloconsulting, which also provides a link to the USNRC ADAMS site to searchmore » for NUREG/CR-6661 in text file or image file. The draft Regulatory Guide DG-1108 removes unnecessary conservatism in the modal combinations for closely spaced modes in seismic response spectrum analysis. Its application will be very helpful in coupled seismic analysis for structures and heavy equipment to reduce seismic responses and in piping system seismic design. In the NUREG/CR-6661 benchmark program, which investigated coupled seismic analysis of structures and equipment or piping systems with different damping values, three of the four participants applied the complex mode solution method to handle different damping values for structures, equipment, and piping systems. The fourth participant applied the classical normal mode method with equivalent weighted damping values to handle differences in structural, equipment, and piping system damping values. Coupled analysis will reduce the equipment responses when equipment, or piping system and structure are in or close to resonance. However, this reduction in responses occurs only if the realistic DG-1108 modal response combination method is applied, because closely spaced modes will be produced when structure and equipment or piping systems are in or close to resonance. Otherwise, the conservatism in the current Regulatory Guide 1.92, Revision 1, will overshadow the advantage of coupled analysis. All four participants applied the realistic modal combination method of DG-1108. Consequently, more realistic and reduced responses were obtained. (authors)« less
The role of DAMPS in ALA-PDT for skin squamous cell carcinoma (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wang, Xiuli; Wang, Xiaojie; Ji, Jie; Zhang, Haiyan; Shi, Lei
2016-03-01
5-Aminolevulinic acid mediated photodynamic therapy (ALA-PDT) is an established local approach for skin squamous cell carcinoma. It is believed that dangerous signals damage-associated molecular patterns (DAMPs) play an important role in ALA-PDT. In this study, we evaluated in vitro and in vivo expressions of major DAMPs, calreticulin (CRT), heat shock proteins 70 (HSP70), and high mobility group box 1 (HMGB1), induced by ALA-PDT using immunohistochemistry, western blot, and ELISA in a squamous cell carcinoma (SCC) mouse model. The role of DAMPs in the maturation of DCs potentiated by ALA-PDT-treated tumor cells was detected by FACS and ELISA. Our results showed that ALA-PDT enhanced the expression of CRT, HSP70, and HMGB1. These induced DAMPs played an important role in activating DCs by PDT-treated tumor cells, including phenotypic maturation (upregulation of surface expression of MHC-II, CD80, and CD86) and functional maturation (enhanced capability to secrete IFN-γ and IL-12). Furthermore, injecting ALA-PDT-treated tumor cells into naïve mice resulted in complete protection against cancer cells of the same origin. Our findings indicate that ALA-PDT can upregulate DAMPs and enhance tumor immunogenicity, providing a promising strategy for inducing a systemic anticancer immune response.
Gupta, T C
2007-08-01
A 15 degrees of freedom lumped parameter vibratory model of human body is developed, for vertical mode vibrations, using anthropometric data of the 50th percentile US male. The mass and stiffness of various segments are determined from the elastic modulii of bones and tissues and from the anthropometric data available, assuming the shape of all the segments is ellipsoidal. The damping ratio of each segment is estimated on the basis of the physical structure of the body in a particular posture. Damping constants of various segments are calculated from these damping ratios. The human body is modeled as a linear spring-mass-damper system. The optimal values of the damping ratios of the body segments are estimated, for the 15 degrees of freedom model of the 50th percentile US male, by comparing the response of the model with the experimental response. Formulating a similar vibratory model of the 50th percentile Indian male and comparing the frequency response of the model with the experimental response of the same group of subjects validate the modeling procedure. A range of damping ratios has been considered to develop a vibratory model, which can predict the vertical harmonic response of the human body.
A dynamic and harmonic damped finite element analysis model of stapedotomy.
Blayney, A W; Williams, K R; Rice, H J
1997-03-01
This study was undertaken in an attempt to better understand the mechanics of sound transmission at the footplate following stapedotomy. The insertion of a Teflon (polytetrafluoroethylene) stapes prosthesis introduces new constraints within the reconstructed ossicular chain which have an effect on the normal vibration patterns of the tympanic membrane. In a finite element model of the ear, constraints have been reproduced as a series of spring constants in the incus/prosthesis/footplate interfaces incorporating damping to simulate the impedance of the inner ear. At zero damping, the frequency response at the pseudo stapes footplate exhibit several maxima and minima between 800 Hz and 2.5 Hz. At higher damping values, these maxima and minima become smoothened out with two or three naturals occurring over the same frequency range. Severe ankylosis of a diseased footplate is reproduced by over-damped conditions. The umbo, incus and stapes footplate vibrate in phase with similar frequencies at light damping levels. The movement of the prosthesis at the pseudo-footplate can be large in the out of plane axis of the ossicular chain, unless sufficient support is provided at the reconstructed footplate. Clinically, this would suggest the vein graft interposed between the piston and stapedotomy hole should endow resistance and elasticity to the system.
NASA Astrophysics Data System (ADS)
Bai, Wen; Dai, Junwu; Zhou, Huimeng; Yang, Yongqiang; Ning, Xiaoqing
2017-10-01
Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic performance of two typical types of PEE and proposes a damping method for PEE based on multiple tuned mass dampers (MTMD). An MTMD damping device involving three mass units, named a triple tuned mass damper (TTMD), is designed and manufactured. Through shake table tests and finite element analysis, the dynamic characteristics of the PEE are studied and the effectiveness of the MTMD damping method is verified. The adverse influence of MTMD redundant mass to damping efficiency is studied and relevant equations are derived. MTMD robustness is verified through adjusting TTMD control frequencies. The damping effectiveness of TTMD, when the peak ground acceleration far exceeds the design value, is studied. Both shake table tests and finite element analysis indicate that MTMD is effective and robust in attenuating PEE seismic responses. TTMD remains effective when the PGA far exceeds the design value and when control deviations are considered.
An efficient delivery of DAMPs on the cell surface by the unconventional secretion pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Haiyan; Wang, Lan; Ruan, Yuanyuan
2011-01-21
Research highlights: {yields} Hsp60 transported to cell surface through the classical secretory pathway was modified with N-glycosylation. {yields} HSAPB-N18 could efficiently deliver Hsp60 to the cell surface via the unconventional secretory pathway. {yields} Cell surface Hsp60 delivered by HASPB-N18 has a proper conformation. {yields} HASPB-N18 is an efficient delivery signal for other DAMP molecules such as Hsp70 and HMGB1. -- Abstract: Damage-associated molecular patterns (DAMPs) are signals released from dying cells evoking the immune system response in several inflammatory disorders. In normal situations, many of DAMPs are nuclear or cytosolic proteins with defined intracellular function, but they could be foundmore » on the cell surface following tissue injury. The biological function of the translocated DAMPs is still not well known and an efficient delivery of these molecules on the cell surface is required to clarify their biological effects. In this study, we demonstrated that an unclassical secretory signal peptide, N-terminal 18 amino acids of HASPB (HASPB-N18), could efficiently deliver Hsp60, Hsp70, and HMGB1 on the cell surface. Furthermore, the delivery of these molecules on the cell surface by HASPB-N18 is not limited to a special cell line because several cell lines could use this delivery signal to deliver these molecules on the cell surface. Moreover, we demonstrated that Hsp60 on the cell surface delivered by HASPB-N18 could be recognized by a soluble form of LOX-1, which implies that DAMPs on the cell surface delivered by HASPB-N18 have a proper conformation during transport. Therefore, delivery of DAMPs by HASPB-N18 is a reliable model to further understand the biological significance of DAMPs on the cell surface.« less
Porous elastic system with nonlinear damping and sources terms
NASA Astrophysics Data System (ADS)
Freitas, Mirelson M.; Santos, M. L.; Langa, José A.
2018-02-01
We study the long-time behavior of porous-elastic system, focusing on the interplay between nonlinear damping and source terms. The sources may represent restoring forces, but may also be focusing thus potentially amplifying the total energy which is the primary scenario of interest. By employing nonlinear semigroups and the theory of monotone operators, we obtain several results on the existence of local and global weak solutions, and uniqueness of weak solutions. Moreover, we prove that such unique solutions depend continuously on the initial data. Under some restrictions on the parameters, we also prove that every weak solution to our system blows up in finite time, provided the initial energy is negative and the sources are more dominant than the damping in the system. Additional results are obtained via careful analysis involving the Nehari Manifold. Specifically, we prove the existence of a unique global weak solution with initial data coming from the "good" part of the potential well. For such a global solution, we prove that the total energy of the system decays exponentially or algebraically, depending on the behavior of the dissipation in the system near the origin. We also prove the existence of a global attractor.
NASA Astrophysics Data System (ADS)
Lozia, Z.; Zdanowicz, P.
2016-09-01
The paper presents the optimization of damping in the passive suspension system of a motor vehicle moving rectilinearly with a constant speed on a road with rough surface of random irregularities, described according to the ISO classification. Two quarter-car 2DoF models, linear and non-linear, were used; in the latter, nonlinearities of spring characteristics of the suspension system and pneumatic tyres, sliding friction in the suspension system, and wheel lift-off were taken into account. The smoothing properties of vehicle tyres were represented in both models. The calculations were carried out for three roads of different quality, with simulating four vehicle speeds. Statistical measures of vertical vehicle body vibrations and of changes in the vertical tyre/road contact force were used as the criteria of system optimization and model comparison. The design suspension displacement limit was also taken into account. The optimum suspension damping coefficient was determined and the impact of undesirable sliding friction in the suspension system on the calculation results was estimated. The results obtained make it possible to evaluate the impact of the structure and complexity of the model used on the results of the optimization.
Non-synchronous rotating damping effects in gyroscopic rotating systems
NASA Astrophysics Data System (ADS)
Brusa, Eugenio; Zolfini, Giacomo
2005-03-01
The effects of non-synchronous rotating damping, i.e., of energy dissipation in elements rotating at a speed different from that of the main rotor, on the dynamic behaviour of the latter have been already studied in a previous paper (J. Rotating Machinery 6 (6) (2000)) for the case of non-gyroscopic rotating systems. A planar model, namely the Jeffcott's rotor, was used. The present study is aimed at investigating, through analytical and numerical models, the behaviour of rotors having a non-negligible gyroscopic effect. The parameters of the system affecting the dynamic stability are identified and the threshold of instability is then computed. A sort of map of stability is provided to allow mechanical engineers predicting possibile range of instability for forward and backward whirling motions. An experimental validation on a simple test rig is presented in order to show the effectiveness of the proposed stability analysis. Non-synchronous rotating damping is implemented by using a non-synchronous electromagnetic damper based on eddy currents.
NASA Technical Reports Server (NTRS)
Saffer, Rex A.; Wade, Richard A.; Liebert, James; Green, Richard F.; Sion, Edward M.; Bechtold, J.; Foss, Diana; Kidder, K.
1993-01-01
Ultraviolet spectroscopy, optical spectroscopy, and spectrophotometry have been used to study the excess UV stars PG 0308 + 096 and PG 1026 + 002. Both objects are short-period binary systems, each containing a DA white dwarf star and a dM star. Orbital periods of approximately 0.284 day for PG 0308 + 096, and aproximately 0.597 day for PG 1026, have been found by spectroscopic analysis of the H-alpha emission line. Ly-alpha and Balmer line profile fitting were used to estimate the mass of white dwarf stars; mass estimates for the dM stars are based on their spectral types. The orbital inclinations are derived from these masses, the periods, and amplitudes of the H-alpha radial velocity curves. The equivalent width of the H-alpha emission line, in each binary system, varies with the orbital phase in such a manner as to imply that it arises, in large part at least, from the hemisphere of the M star that faces the white dwarf star.
Three-dimensional inverse modelling of damped elastic wave propagation in the Fourier domain
NASA Astrophysics Data System (ADS)
Petrov, Petr V.; Newman, Gregory A.
2014-09-01
3-D full waveform inversion (FWI) of seismic wavefields is routinely implemented with explicit time-stepping simulators. A clear advantage of explicit time stepping is the avoidance of solving large-scale implicit linear systems that arise with frequency domain formulations. However, FWI using explicit time stepping may require a very fine time step and (as a consequence) significant computational resources and run times. If the computational challenges of wavefield simulation can be effectively handled, an FWI scheme implemented within the frequency domain utilizing only a few frequencies, offers a cost effective alternative to FWI in the time domain. We have therefore implemented a 3-D FWI scheme for elastic wave propagation in the Fourier domain. To overcome the computational bottleneck in wavefield simulation, we have exploited an efficient Krylov iterative solver for the elastic wave equations approximated with second and fourth order finite differences. The solver does not exploit multilevel preconditioning for wavefield simulation, but is coupled efficiently to the inversion iteration workflow to reduce computational cost. The workflow is best described as a series of sequential inversion experiments, where in the case of seismic reflection acquisition geometries, the data has been laddered such that we first image highly damped data, followed by data where damping is systemically reduced. The key to our modelling approach is its ability to take advantage of solver efficiency when the elastic wavefields are damped. As the inversion experiment progresses, damping is significantly reduced, effectively simulating non-damped wavefields in the Fourier domain. While the cost of the forward simulation increases as damping is reduced, this is counterbalanced by the cost of the outer inversion iteration, which is reduced because of a better starting model obtained from the larger damped wavefield used in the previous inversion experiment. For cross-well data, it is also possible to launch a successful inversion experiment without laddering the damping constants. With this type of acquisition geometry, the solver is still quite effective using a small fixed damping constant. To avoid cycle skipping, we also employ a multiscale imaging approach, in which frequency content of the data is also laddered (with the data now including both reflection and cross-well data acquisition geometries). Thus the inversion process is launched using low frequency data to first recover the long spatial wavelength of the image. With this image as a new starting model, adding higher frequency data refines and enhances the resolution of the image. FWI using laddered frequencies with an efficient damping schemed enables reconstructing elastic attributes of the subsurface at a resolution that approaches half the smallest wavelength utilized to image the subsurface. We show the possibility of effectively carrying out such reconstructions using two to six frequencies, depending upon the application. Using the proposed FWI scheme, massively parallel computing resources are essential for reasonable execution times.
Billaudel, Bernard; Taxile, Murielle; Poulletier de Gannes, Florence; Ruffie, Gilles; Lagroye, Isabelle; Veyret, Bernard
2009-06-01
An increase in Ornithine Decarboxylase (ODC) activity was reported in L929 murine fibroblast cells after exposure to a digital cellular telephone signal. This result was not confirmed by several other studies, including the one reported in a companion paper. As a partner in the Perform-B programme, we extended this study to human neuroblastoma cells (SH-SY5Y), using well-defined waveguide systems to imitate exposure to radiofrequency radiation (RFR): Digital Advanced Mobile Phone System (DAMPS) or Global System for Mobile communications (GSM) signals emitted by mobile phones. Human neuroblastoma cells (SH-SY5Y) were exposed at various Specific Absorption Rates (SAR) to DAMPS or GSM signals using different set-ups. Cell ODC activities were assayed using 14CO2 generation from 14C-labeled L-ornithine. SH-SY5Y cells were incubated for 20 hours, and were blindly exposed to 50 Hz-modulated DAMPS-835 or 217 Hz-modulated GSM-1800 for 8 or 24 h using Information Technologies in Society (IT'IS) waveguides equipped with fans. After cell lysis, ODC activity was determined using 14C-labeled L-ornithine. ODC activity was estimated by the 14CO2 generated from 14C-labeled L-ornithine, as generated d.p.m. 14CO2/h/mg protein. The results showed that, irrespective of the signal used (835 MHz/DAMPS, or 1800 MHz/GSM) and exposure conditions (duration and SAR), human SH-SY5Y neuroblastoma cells did not exhibit any alteration in ODC enzyme activity. This work did not show a significant effect of mobile phone RFR exposure on ODC activity in neuroblastoma cells (SH-SY5Y).
Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation.
Vogl, Thomas; Stratis, Athanasios; Wixler, Viktor; Völler, Tom; Thurainayagam, Sumita; Jorch, Selina K; Zenker, Stefanie; Dreiling, Alena; Chakraborty, Deblina; Fröhling, Mareike; Paruzel, Peter; Wehmeyer, Corinna; Hermann, Sven; Papantonopoulou, Olympia; Geyer, Christiane; Loser, Karin; Schäfers, Michael; Ludwig, Stephan; Stoll, Monika; Leanderson, Tomas; Schultze, Joachim L; König, Simone; Pap, Thomas; Roth, Johannes
2018-05-01
Autoimmune diseases, such as psoriasis and arthritis, show a patchy distribution of inflammation despite systemic dysregulation of adaptive immunity. Thus, additional tissue-derived signals, such as danger-associated molecular patterns (DAMPs), are indispensable for manifestation of local inflammation. S100A8/S100A9 complexes are the most abundant DAMPs in many autoimmune diseases. However, regulatory mechanisms locally restricting DAMP activities are barely understood. We now unravel for the first time, to our knowledge, a mechanism of autoinhibition in mice and humans restricting S100-DAMP activity to local sites of inflammation. Combining protease degradation, pull-down assays, mass spectrometry, and targeted mutations, we identified specific peptide sequences within the second calcium-binding EF-hands triggering TLR4/MD2-dependent inflammation. These binding sites are free when S100A8/S100A9 heterodimers are released at sites of inflammation. Subsequently, S100A8/S100A9 activities are locally restricted by calcium-induced (S100A8/S100A9)2 tetramer formation hiding the TLR4/MD2-binding site within the tetramer interphase, thus preventing undesirable systemic effects. Loss of this autoinhibitory mechanism in vivo results in TNF-α-driven fatal inflammation, as shown by lack of tetramer formation in crossing S100A9-/- mice with 2 independent TNF-α-transgene mouse strains. Since S100A8/S100A9 is the most abundant DAMP in many inflammatory diseases, specifically blocking the TLR4-binding site of active S100 dimers may represent a promising approach for local suppression of inflammatory diseases, avoiding systemic side effects.
Optimal power, power limit, and damping of vibration piezoelectric power harvesters
NASA Astrophysics Data System (ADS)
Liao, Yabin; Sodano, Henry
2018-03-01
Power harvesting describes the process of acquiring the ambient energy surrounding a system and converting it into usable electrical energy. Much of the work over the past two decades has focused on the conversion of ambient vibration energy sources using piezoelectric, electromagnetic and electrostatic transduction. Attempts were made to obtain a general model that could be applied to any transduction mechanism. Of the most interest is an electromagnetic generator model that was used by many researchers to model piezoelectric power harvesters. Two major results from the model are the power limit expression and the equal relationship between the electrically induced damping and the mechanical damping to reach the power limit. However, piezoelectric power harvesters cannot be accurately modeled by this electromagnetic model due to the essential difference in physics. There have also been attempts to obtain the power limit expression based on piezoelectric relationships, but they either neglect the piezoelectric backward coupling to the structure, or assume the power limit occurs at the resonance of the system. This paper obtains the power limit expression based on the piezoelectric coupled equations without those assumptions. In addition, the relationship between the electrically induced damping and mechanical damping at the power limit is studied. Furthermore, a closed-form criterion is derived and proposed to define strongly and weakly coupling power harvesters, whose differences in power characteristics are explained through analytical and numerical analysis. While most of the discussion is focused on linear power harvesters connected to a resistive circuit, the aim of this paper is to provide a comprehensive and deep understanding of this simple configuration, answers to important questions, and a starting point to develop a more general theory on power harvesters because similar system characteristics are observed in power harvesters with more complexities.
On optimization of energy harvesting from base-excited vibration
NASA Astrophysics Data System (ADS)
Tai, Wei-Che; Zuo, Lei
2017-12-01
This paper re-examines and clarifies the long-believed optimization conditions of electromagnetic and piezoelectric energy harvesting from base-excited vibration. In terms of electromagnetic energy harvesting, it is typically believed that the maximum power is achieved when the excitation frequency and electrical damping equal the natural frequency and mechanical damping of the mechanical system respectively. We will show that this optimization condition is only valid when the acceleration amplitude of base excitation is constant and an approximation for small mechanical damping when the excitation displacement amplitude is constant. To this end, a two-variable optimization analysis, involving the normalized excitation frequency and electrical damping ratio, is performed to derive the exact optimization condition of each case. When the excitation displacement amplitude is constant, we analytically show that, in contrast to the long-believed optimization condition, the optimal excitation frequency and electrical damping are always larger than the natural frequency and mechanical damping ratio respectively. In particular, when the mechanical damping ratio exceeds a critical value, the optimization condition is no longer valid. Instead, the average power generally increases as the excitation frequency and electrical damping ratio increase. Furthermore, the optimization analysis is extended to consider parasitic electrical losses, which also shows different results when compared with existing literature. When the excitation acceleration amplitude is constant, on the other hand, the exact optimization condition is identical to the long-believed one. In terms of piezoelectric energy harvesting, it is commonly believed that the optimal power efficiency is achieved when the excitation and the short or open circuit frequency of the harvester are equal. Via a similar two-variable optimization analysis, we analytically show that the optimal excitation frequency depends on the mechanical damping ratio and does not equal the short or open circuit frequency. Finally, the optimal excitation frequencies and resistive loads are derived in closed-form.
Vortex-Induced Vibrations of a Flexibly-Mounted Cyber-Physical Rectangular Plate
NASA Astrophysics Data System (ADS)
Onoue, Kyohei; Strom, Benjamin; Song, Arnold; Breuer, Kenneth
2013-11-01
We have developed a cyber-physical system to explore the vortex-induced vibration (VIV) behavior of a flat plate mounted on a virtual spring damper support. The plate is allowed to oscillate about its mid-chord and the measured angular position, velocity, and torque are used as inputs to a feedback control system that provides a restoring torque and can simulate a wide range of structural dynamic behavior. A series of experiments were carried out using different sized plates, and over a range of freestream velocities, equilibrium angles of attack, and simulated stiffness and damping. We observe a synchronization phenomenon over a wide range of parameter space, wherein the plate oscillates at moderate to large amplitude with a frequency dictated by the natural structural frequency of the system. Additionally, the existence of bistable states is reflected in the hysteretic response of the system. The cyber-physical damping extracts energy from the flow and the efficiency of this harvesting mechanism is characterized over a range of dimensionless stiffness and damping parameters. This research is funded by the Air Force Office of Scientific Research (AFOSR).
Identifying Bearing Rotodynamic Coefficients Using an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Miller, Brad A.; Howard, Samuel A.
2008-01-01
An Extended Kalman Filter is developed to estimate the linearized direct and indirect stiffness and damping force coefficients for bearings in rotor dynamic applications from noisy measurements of the shaft displacement in response to imbalance and impact excitation. The bearing properties are modeled as stochastic random variables using a Gauss-Markov model. Noise terms are introduced into the system model to account for all of the estimation error, including modeling errors and uncertainties and the propagation of measurement errors into the parameter estimates. The system model contains two user-defined parameters that can be tuned to improve the filter's performance; these parameters correspond to the covariance of the system and measurement noise variables. The filter is also strongly influenced by the initial values of the states and the error covariance matrix. The filter is demonstrated using numerically simulated data for a rotor bearing system with two identical bearings, which reduces the number of unknown linear dynamic coefficients to eight. The filter estimates for the direct damping coefficients and all four stiffness coefficients correlated well with actual values, whereas the estimates for the cross-coupled damping coefficients were the least accurate.
Adaptive synchronized switch damping on an inductor: a self-tuning switching law
NASA Astrophysics Data System (ADS)
Kelley, Christopher R.; Kauffman, Jeffrey L.
2017-03-01
Synchronized switch damping (SSD) techniques exploit low-power switching between passive circuits connected to piezoelectric material to reduce structural vibration. In the classical implementation of SSD, the piezoelectric material remains in an open circuit for the majority of the vibration cycle and switches briefly to a shunt circuit at every displacement extremum. Recent research indicates that this switch timing is only optimal for excitation exactly at resonance and points to more general optimal switch criteria based on the phase of the displacement and the system parameters. This work proposes a self-tuning approach that implements the more general optimal switch timing for synchronized switch damping on an inductor (SSDI) without needing any knowledge of the system parameters. The law involves a gradient-based search optimization that is robust to noise and uncertainties in the system. Testing of a physical implementation confirms this law successfully adapts to the frequency and parameters of the system. Overall, the adaptive SSDI controller provides better off-resonance steady-state vibration reduction than classical SSDI while matching performance at resonance.
Simulation of a flexible spinning vehicle
NASA Technical Reports Server (NTRS)
Baudry, W. A.
1972-01-01
Results are presented of experimental investigation of the controlled and uncontrolled dynamical behavior of a rotating or artificial gravity space station including flexible body effects. A dynamically scaled model was supported by a spherical air bearing which provided a nearly moment free environment. Reaction jet system were provided for spin-up and spin-down and for damping of wobble motion. Two single-gimbal gyros were arranged as a control moment gyro wobble damping system. Remotely controllable movable masses were provided to simulate mass shift disturbances such as arise from crew motions. An active mass balance wobble damping system which acted to minimize the wobble motions induced by crew motions was also installed. Flexible body effects were provided by a pair of inertia augmentation booms. Inertia augmentation booms are contemplated for use on rotating space stations to cause the spin axis moment of inertia to be the largest of the three moments of inertia as is necessary to assure gyroscopic stability. Test runs were made with each of the control systems with the booms locked (rigid body) and unlocked (flexible body).
Dynamic Analysis of a Rotor System Supported on Squeeze Film Damper with Air Entrainment
NASA Astrophysics Data System (ADS)
Zhang, Wei; Han, Bingbing; Zhang, Kunpeng; Ding, Qian
2017-12-01
Squeeze film dampers (SFDs) are widely used in compressors and turbines to suppress the vibration while traversing critical speeds. In practical applications, air ingestion from the outside environment and cavitation may lead to a foamy lubricant that weakens oil film damping and dynamic performance of rotor system. In this paper, a rigid rotor model is established considering both lateral and pitching vibration under different imbalance excitations to evaluate the effect of air entrainment on rotor system. Tests with three different imbalances are carried out on a rotor-SFD apparatus. Volume controlled air in mixture ranging from pure oil to all air are supplied to the SFD. The transient response of rotor is measured in the experiments. The results show that two-phase flow produces significant influence on the system stability and dynamical response. The damping properties are weakened by entrained air, such as the damping on high frequency components of rolling ball bearing. Super-harmonic resonance and bifurcation are observed, as well as the low frequency components due to air entrainment.
Effect of oxygen plasma on nanomechanical silicon nitride resonators
NASA Astrophysics Data System (ADS)
Luhmann, Niklas; Jachimowicz, Artur; Schalko, Johannes; Sadeghi, Pedram; Sauer, Markus; Foelske-Schmitz, Annette; Schmid, Silvan
2017-08-01
Precise control of tensile stress and intrinsic damping is crucial for the optimal design of nanomechanical systems for sensor applications and quantum optomechanics in particular. In this letter, we study the influence of oxygen plasma on the tensile stress and intrinsic damping of nanomechanical silicon nitride resonators. Oxygen plasma treatments are common steps in micro and nanofabrication. We show that oxygen plasma for only a few minutes oxidizes the silicon nitride surface, creating several nanometer thick silicon dioxide layers with a compressive stress of 1.30(16) GPa. Such oxide layers can cause a reduction in the effective tensile stress of a 50 nm thick stoichiometric silicon nitride membrane by almost 50%. Additionally, intrinsic damping linearly increases with the silicon dioxide film thickness. An oxide layer of 1.5 nm grown in just 10 s in a 50 W oxygen plasma almost doubled the intrinsic damping. The oxide surface layer can be efficiently removed in buffered hydrofluoric acid.
Direct measurement of Kramers turnover with a levitated nanoparticle
NASA Astrophysics Data System (ADS)
Rondin, Loïc; Gieseler, Jan; Ricci, Francesco; Quidant, Romain; Dellago, Christoph; Novotny, Lukas
2017-12-01
Understanding the thermally activated escape from a metastable state is at the heart of important phenomena such as the folding dynamics of proteins, the kinetics of chemical reactions or the stability of mechanical systems. In 1940, Kramers calculated escape rates both in the high damping and low damping regimes, and suggested that the rate must have a maximum for intermediate damping. This phenomenon, today known as the Kramers turnover, has triggered important theoretical and numerical studies. However, as yet, there is no direct and quantitative experimental verification of this turnover. Using a nanoparticle trapped in a bistable optical potential, we experimentally measure the nanoparticle's transition rates for variable damping and directly resolve the Kramers turnover. Our measurements are in agreement with an analytical model that is free of adjustable parameters. The levitated nanoparticle presented here is a versatile experimental platform for studying and simulating a wide range of stochastic processes and testing theoretical models and predictions.
Aeroelastic Stability of Modern Bearingless Rotors: A Parametric Investigation
NASA Technical Reports Server (NTRS)
Nguyen, Khanh Q.
1994-01-01
The University of Maryland Advanced Rotorcraft Code (UMARC) is utilized to study the effects of blade design parameters on the aeroelastic stability of an isolated modern bearingless rotor blade in hover. The McDonnell Douglas Advanced Rotor Technology (MDART) Rotor is the baseline rotor investigated. Results indicate that kinematic pitch-lag coupling introduced through the control system geometry and the damping levels of the shear lag dampers strongly affect the hover inplane damping of the baseline rotor blade. Hub precone, pitchcase chordwise stiffness, and blade fundamental torsion frequency have small to moderate influence on the inplane damping, while blade pre-twist and placements of blade fundamental flapwise and chord-wise frequencies have negligible effects. A damperless configuration with a leading edge pitch-link, 15 deg of pitch-link cant angle, and reduced pitch-link stiffness is shown to be stable with an inplane damping level in excess of 2.7 percent critical at the full hover tip speed.
Electric Generator in the System for Damping Oscillations of Vehicles
NASA Astrophysics Data System (ADS)
Serebryakov, A.; Kamolins, E.; Levin, N.
2017-04-01
The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types) and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.
The dynamics and control of large flexible asymmetric spacecraft
NASA Astrophysics Data System (ADS)
Humphries, T. T.
1991-02-01
This thesis develops the equations of motion for a large flexible asymmetric Earth observation satellite and finds the characteristics of its motion under the influence of control forces. The mathematical model of the structure is produced using analytical methods. The equations of motion are formed using an expanded momentum technique which accounts for translational motion of the spacecraft hub and employs orthogonality relations between appendage and vehicle modes. The controllability and observability conditions of the full spacecraft motions using force and torque actuators are defined. A three axis reaction wheel control system is implemented for both slewing the spacecraft and controlling its resulting motions. From minor slew results it is shown that the lowest frequency elastic mode of the spacecraft is more important than higher frequency modes, when considering the effects of elastic motion on instrument pointing from the hub. Minor slews of the spacecraft configurations considered produce elastic deflections resulting in rotational attitude motions large enough to contravene pointing accuracy requirements of instruments aboard the spacecraft hub. Active vibration damping is required to reduce these hub motions to acceptable bounds in sufficiently small time. A comparison between hub mounted collocated and hub/appendage mounted non-collocated control systems verifies that provided the non-collocated system is stable, it can more effectively damp elastic modes whilst maintaining adequate damping of rigid modes. Analysis undertaken shows that the reaction wheel controller could be replaced by a thruster control system which decouples the modes of the spacecraft motion, enabling them to be individually damped.
The Shock and Vibration Digest. Volume 16, Number 5
1984-05-01
Lu, Y.P. and Everstine, G.C., "More on Finite Element Modelling of Damped Composite 45. Narayanan, S., Verma, J.P., and Mallik , A.K., Systems," J...78-78-FBA, p 461 (1978). 46. Narayanan, S. and Mallik , A.K., "Free Vibrations of Thin Walled Open Section Beams with Con- 34. Lunden, R., "Damping of
A mechanical energy harvested magnetorheological damper with linear-rotary motion converter
NASA Astrophysics Data System (ADS)
Chu, Ki Sum; Zou, Li; Liao, Wei-Hsin
2016-04-01
Magnetorheological (MR) dampers are promising to substitute traditional oil dampers because of adaptive properties of MR fluids. During vibration, significant energy is wasted due to the energy dissipation in the damper. Meanwhile, for conventional MR damping systems, extra power supply is needed. In this paper, a new energy harvester is designed in an MR damper that integrates controllable damping and energy harvesting functions into one device. The energy harvesting part of this MR damper has a unique mechanism converting linear motion to rotary motion that would be more stable and cost effective when compared to other mechanical transmissions. A Maxon motor is used as a power generator to convert the mechanical energy into electrical energy to supply power for the MR damping system. Compared to conventional approaches, there are several advantages in such an integrated device, including weight reduction, ease in installation with less maintenance. A mechanical energy harvested MR damper with linear-rotary motion converter and motion rectifier is designed, fabricated, and tested. Experimental studies on controllable damping force and harvested energy are performed with different transmissions. This energy harvesting MR damper would be suitable to vehicle suspensions, civil structures, and smart prostheses.
NASA Astrophysics Data System (ADS)
Mahfouzi, Farzad; Kioussis, Nicholas
Gilbert damping in metallic ferromagnets is mainly governed by the exchange coupling between the electrons and the magnetic degree of freedom, where the time dependent evolution of the magnetization leads to the excitation of electrons and loss of energy as a result of flow of spin and charge currents. However, it turns out that when the magnetization evolves slowly in time, in the presence of spin-orbit interaction (SOI), the resonant electronic excitations has a major contribution to the damping which leads to infinite result in ballistic regime. In this work we consider the inelastic spin-flip scattering of electrons from the magnetic moments and show that in the presence of SOI it leads to the relaxation of the excited electrons. We show that in the case of clean crystal systems such scattering leads to a linear dependence of the Gilbert on the SOI strength and in the limit of diffusive systems we get the Gilbert damping expression obtained from Kambersky's Fermi breathing approach. This research was supported by NSF-PREM Grant No. DMR-1205734
State transition of a non-Ohmic damping system in a corrugated plane.
Lü, Kun; Bao, Jing-Dong
2007-12-01
Anomalous transport of a particle subjected to non-Ohmic damping of the power delta in a tilted periodic potential is investigated via Monte Carlo simulation of the generalized Langevin equation. It is found that the system exhibits two relative motion modes: the locked state and the running state. In an environment of sub-Ohmic damping (0
Consequences of eccentricity and inclination damping for the in-situ formation of STIPs
NASA Astrophysics Data System (ADS)
Granados Contreras, Agueda Paula
2018-01-01
In Boley, Granados, and Gladman (2016), we proposed that hot and warm Jupiters could form in-situ from the consolidation of planets in meta-stable, high-multiplicity System with Tightly-packed Inner Planets (STIPs) in the presence of gas. Under this hypothesis, the timing of instability within the STIP relative to the gas depletion timescale can lead to a wide range of planetary diversity, from short-orbital period gas giants to high-density, massive planets. The simulations used Kepler-11 as a base and assumed that a gas giant could form if instability in the gaseous disc led to the consolidation of a 10 Mearth core. The results showed that such consolidation could work, in principle. However, in the simulations we excluded the effects of eccentricity and inclination damping. We present new simulations that explore this effect on the consolidation paradigm. For the parameters so far explored, gas damping significantly increases the stability of the system, although consolidation does occur in some cases. We further find that the eccentricity damping can lead to the formation of stable co-orbiting planets, although this is a rare outcome. Briefly, we explore the implications of the detection of transiting co-orbital planets.
Active Damping Using Distributed Anisotropic Actuators
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.
2010-01-01
A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.
Spatial Shifts in Tidal-Fluvial Environments
NASA Astrophysics Data System (ADS)
Dykstra, S. L.; Dzwonkowski, B.
2017-12-01
Fresh water discharge damps tidal propagation and increases the phase lag, which has important impacts on system-wide sediment transport process and ecological structure. Here, the role of discharge on spatial variability in the dynamics of tidal rivers is investigated in Mobile Bay and Delta, a microtidal diurnal system where discharge ranges multiple orders of magnitude. Long-term observations at 7 velocity stations and 20 water level stations, ranging over 260km along the system, were analyzed. Observations of the tidal extinguishing point in both velocity and water level were highly variable with significant shifts in location covering a distance over 140km. The velocity stations also allowed for measuring the extent of flood (i.e. point where tidal flow is arrested by discharge) shifting 100km. With increased discharge, flow characteristics at station locations can transition from an estuary (i.e. bidirectional tidal flow) to a tidal river to a traditional fluvial environment. This revealed systematic discharge induced damping and an increase in phase lag. Interestingly, before damping occurs, the tide amplifies ( 15%) seaward of the extent of flood. Another consistent pattern is the higher sensitivity of the velocity signal to discharge than water level. This causes the velocity to lag more and create progressive tides. In a microtidal diurnal system, the signal propagates further inland than a semidiurnal tide due to its lower frequency but is easily damped due to the small amplitude, creating large shifts. Previous research has focused on environments dominated by semidiurnal tides with similar magnitudes to discharge using water level observations. For example, the well studied Columbia and the St. Lawrence rivers have small shifts in their tidal extinguishing point O(10km) (Jay 2016, Matte 2014). These shifts are not large enough to observe process like discharge-induced amplification and damping at the same site like in the Mobile system, but they may indicate a decoupling of the water level and velocity signal by discharge. Throughout the world, shifts in tidal rivers are created by seasonal discharge patterns, but large storms can quickly disrupt a system and move it over 140km in a few days.
Zou, Weiyao; Burns, Stephen A.
2012-01-01
A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. PMID:22441462
Vibration Power Flow In A Constrained Layer Damping Cylindrical Shell
NASA Astrophysics Data System (ADS)
Wang, Yun; Zheng, Gangtie
2012-07-01
In this paper, the vibration power flow in a constrained layer damping (CLD) cylindrical shell using wave propagation approach is investigated. The dynamic equations of the shell are derived with the Hamilton principle in conjunction with the Donnell shell assumption. With these equations, the dynamic responses of the system under a line circumferential cosine harmonic exciting force is obtained by employing the Fourier transform and the residue theorem. The vibration power flows inputted to the system and transmitted along the shell axial direction are both studied. The results show that input power flow varies with driving frequency and circumferential mode order, and the constrained damping layer can obviously restrict the exciting force from inputting power flow into the base shell especially for a thicker viscoelastic layer, a thicker or stiffer constraining layer (CL), and a higher circumferential mode order, can rapidly attenuate the vibration power flow transmitted along the base shell axial direction.
Zou, Weiyao; Burns, Stephen A
2012-03-20
A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. © 2012 Optical Society of America
System and method for damping vibration in a drill string using a magnetorheological damper
Wassell, Mark Ellsworth; Burgess, Daniel E.; Barbely, Jason R.; Thompson, Fred Lamar
2018-05-22
A system for damping vibration in a drill string can include a magnetorheological fluid valve assembly having a supply of a magnetorheological fluid. A remanent magnetic field is induced in the valve during operation that can be used to provide the magnetic field for operating the valve so as to eliminate the need to energize the coils except temporarily when changing the amount of damping required. The current to be supplied to the coil for inducing a desired magnetic field in the valve is determined based on the limiting hysteresis curve of the valve and the history of the magnetization of the value using a binary search methodology. The history of the magnetization of the valve is expressed as a series of sets of current and it resulting magnetization at which the current experienced a reversal compared to prior values of the current.
Observing Supernova 1987A with the Refurbished Hubble Space Telescope
NASA Technical Reports Server (NTRS)
France, Kevin; McCray, Richard; Heng, Kevin; Kirshner, Robert P.; Challis, Peter; Bouchet, Patrice; Crotts, Arlin; Dwek, Eli; Fransson, Claes; Garnavich, Peter M.;
2010-01-01
The young remnant of supernova 1987A (SN 1987A) offers an unprecedented glimpse into the hydrodynamics and kinetics of fast astrophysical shocks. We have been monitoring SN 1987A with the Hubble Space Telescope (HST) since it was launched. The recent repair of the Space Telescope Imaging Spectrograph (STIS) allows us to compare observations in 2004, just before its demise, with those in 2010, shortly after its resuscitation by NASA astronauts. We find that the Ly-alpha and H-alpha lines from shock emission continue to brighten, while their maximum velocities continue to decrease. We report evidence for nearly coherent, resonant scattering of Lya photons (to blueshifts approximately -12,000 km /s) from hotspots on the equatorial ring. We also report emission to the red of Ly-alpha that we attribute to N v lambda lambda 1239,1243 Angstrom line emission. These lines are detectable because, unlike hydrogen atoms, N4+ ions emit hundreds of photons before they are ionized. The profiles of the N v lines differ markedly from that of H-alpha. We attribute this to scattering of N4+ ions by magnetic fields in the ionized plasma. Thus, N v emission provides a unique probe of the isotropization zone of the collisionless shock. Observations with the recently installed Cosmic Origins Spectrograph (COS) will enable us to observe the N v lambda lambda 1239,1243 Angstrom line profiles with much higher signal-to-noise ratios than possible with STIS and may reveal lines of other highly ionized species (such as C IVlambda lambda 1548,1551 Angstrom) that will test our explanation for the N v emission
Quasar Feedback at the Peak of Galaxy Formation Epoch
NASA Astrophysics Data System (ADS)
Liu, Guilin; Zakamska, Nadia L.; Strauss, Michael A.; Greene, Jenny E.; Alexandroff, Rachael
2013-02-01
The correlations between properties of supermassive black holes and stellar spheroids in galaxies imply a physical connection between these two components in spite of their vastly different masses and physical scales. Using Gemini GMOS IFU, we demonstrated that powerful ionized gas winds are a ubiquitous feature in luminous radio-quiet obscured z 0.5 quasars. We now plan to extend this discovery to the era of peak galaxy formation and quasar activity - to the epoch when feedback was most prominent and the galaxy vs. black hole correlations were established. We propose a GMOS IFU survey to map the spatial distribution and the kinematics of Ly(alpha) and N sc v 1240Å emission around 5 obscured quasars at z=3-3.4. We will use Ly(alpha) observations to directly probe the effects of ionizing radiation of obscured quasars on their large-scale environments and N sc v observations to look for signatures of unbound quasar-driven outflows. We will observe in the g-band on sub-galactic and galaxy- wide scales (spatial resolution 3-6 kpc, field of view 40times50 kpc^2 at z=3). Obscured quasars likely constitute the majority of the quasar population and may represent the relatively early enshrouded phase of black hole growth; thus, luminous obscured quasars are the most likely sites of quasar ionization- and wind-feedback, as we found at low redshifts. Our proposed GMOS observations will provide a definitive probe of the effects of quasars on their galaxy-wide and large-scale environments close to the peak of galaxy formation epoch.
A round trip from Caldirola to Bateman systems
NASA Astrophysics Data System (ADS)
Guerrero, J.; López-Ruiz, F. F.; Aldaya, V.; Cossío, F.
2011-03-01
For the quantum Caldirola-Kanai Hamiltonian, describing a quantum damped harmonic oscillator, a couple of constant of motion operators generating the Heisenberg algebra can be found. The inclusion in this algebra, in a unitary manner, of the standard time evolution generator , which is not a constant of motion, requires a non-trivial extension of this basic algebra and the physical system itself, which now includes a new dual particle. This enlarged algebra, when exponentiated, leads to a group, named the Bateman group, which admits unitary representations with support in the Hilbert space of functions satisfying the Schrodinger equation associated with the quantum Bateman Hamiltonian, either as a second order differential operator as well as a first order one. The classical Bateman Hamiltonian describes a dual system of a damped (losing energy) particle and a dual (gaining energy) particle. The classical Bateman system has a solution submanifold containing the trajectories of the original system as a submanifold. When restricted to this submanifold, the Bateman dual classical Hamiltonian leads to the Caldirola-Kanai Hamiltonian for a single damped particle. This construction can also be done at the quantum level, and the Caldirola-Kanai Hamiltonian operator can be derived from the Bateman Hamiltonian operator when appropriate constraints are imposed.
A self-sensing magnetorheological damper with power generation
NASA Astrophysics Data System (ADS)
Chen, Chao; Liao, Wei-Hsin
2012-02-01
Magnetorheological (MR) dampers are promising for semi-active vibration control of various dynamic systems. In the current MR damper systems, a separate power supply and dynamic sensor are required. To enable the MR damper to be self-powered and self-sensing in the future, in this paper we propose and investigate a self-sensing MR damper with power generation, which integrates energy harvesting, dynamic sensing and MR damping technologies into one device. This MR damper has self-contained power generation and velocity sensing capabilities, and is applicable to various dynamic systems. It combines the advantages of energy harvesting—reusing wasted energy, MR damping—controllable damping force, and sensing—providing dynamic information for controlling system dynamics. This multifunctional integration would bring great benefits such as energy saving, size and weight reduction, lower cost, high reliability, and less maintenance for the MR damper systems. In this paper, a prototype of the self-sensing MR damper with power generation was designed, fabricated, and tested. Theoretical analyses and experimental studies on power generation were performed. A velocity-sensing method was proposed and experimentally validated. The magnetic-field interference among three functions was prevented by a combined magnetic-field isolation method. Modeling, analysis, and experimental results on damping forces are also presented.
Toll-Like Receptor Signaling in Burn Wound Healing and Scarring
D'Arpa, Peter; Leung, Kai P.
2017-01-01
Significance: Damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) emanate from burn-injured tissue and enter systemic circulation. Locally and systemically, they activate pattern-recognition receptors, including toll-like receptors (TLRs), to stimulate cytokine secretion, which in the severest burns typically results in extreme systemic cytokine levels, a dysfunctioning immune system, infection, impaired healing, and excessive scarring. This system-wide disruption of homeostasis can advance to life-threatening, multiorgan dysfunction syndrome. Knowledge of DAMP- and PAMP-TLR signaling may lead to treatments that ameliorate local and systemic inflammation and reduce scarring and other burn injury sequela. Recent Advances: Many PAMPs and DAMPs, the TLRs they activate, and their downstream signaling molecules have been shown to contribute to local and systemic inflammation and tissue damage following burn injury. Critical Issues: Whether TLR-pathway-targeting treatments applied at different times postburn injury might improve scarring remains an open question. The evaluation of this question requires the use of appropriate preclinical and clinical burn models carried out until after mature scar has formed. Future Directions: After TLR-pathway-targeting treatments are evaluated in porcine burn wound models and their safety is demonstrated, they can be tested in proof-of-concept clinical burn wound models. PMID:29062590
Quantum damped oscillator II: Bateman’s Hamiltonian vs. 2D parabolic potential barrier
NASA Astrophysics Data System (ADS)
Chruściński, Dariusz
2006-04-01
We show that quantum Bateman’s system which arises in the quantization of a damped harmonic oscillator is equivalent to a quantum problem with 2D parabolic potential barrier known also as 2D inverted isotropic oscillator. It turns out that this system displays the family of complex eigenvalues corresponding to the poles of analytical continuation of the resolvent operator to the complex energy plane. It is shown that this representation is more suitable than the hyperbolic one used recently by Blasone and Jizba.
High resolution upgrade of the ATF damping ring BPM system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terunuma, N.; Urakawa, J.; /KEK, Tsukuba
2008-05-01
A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.
A wind-tunnel investigation of a B-52 model flutter suppression system
NASA Technical Reports Server (NTRS)
Redd, L. T.; Gilman, J., Jr.; Cooley, D. E.; Sevart, F. D.
1974-01-01
Flutter modeling techniques have been successfully extended to the difficult case of the active suppression of flutter. The demonstration was conducted in a transonic dynamics tunnel using a 1/30 scale, elastic, dynamic model of a Boeing B-52 control configured vehicle. The results from the study show that with the flutter suppression system operating there is a substantial increase in the damping associated with the critical flutter mode. The results also show good correlation between the damping characteristics of the model and the aircraft.
Conclusive identification of quantum channels via monogamy of quantum correlations
NASA Astrophysics Data System (ADS)
Kumar, Asutosh; Singha Roy, Sudipto; Pal, Amit Kumar; Prabhu, R.; Sen(De), Aditi; Sen, Ujjwal
2016-10-01
We investigate the action of global noise and local channels, namely, amplitude-damping, phase-damping, and depolarizing channels, on monogamy of quantum correlations, such as negativity and quantum discord, in three-qubit systems. We discuss the monotonic and non-monotonic variation, and robustness of the monogamy scores. By using monogamy scores, we propose a two-step protocol to conclusively identify the noise applied to the quantum system, by using generalized Greenberger-Horne-Zeilinger and generalized W states as resource states. We discuss a possible generalization of the results to higher number of parties.
System for damping vibrations in a turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, III, Herbert Chidsey; Johnson, Curtis Alan; Taxacher, Glenn Curtis
2015-11-24
A system for damping vibrations in a turbine includes a first rotating blade having a first ceramic airfoil, a first ceramic platform connected to the first ceramic airfoil, and a first root connected to the first ceramic platform. A second rotating blade adjacent to the first rotating blade includes a second ceramic airfoil, a second ceramic platform connected to the second ceramic airfoil, and a second root connected to the second ceramic platform. A non-metallic platform damper has a first position in simultaneous contact with the first and second ceramic platforms.
Development of Semi-Empirical Damping Equation for Baffled Tank with Oblate Spheroidal Dome
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff; Brodnick, Jacob; Eberhart, Chad
2016-01-01
Propellant slosh is a potential source of disturbance that can significantly impact the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring-mass-damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. The typical parameters required by the mechanical model include natural frequency of the slosh, slosh mass, slosh mass center location, and the critical damping ratio. A fundamental study has been undertaken at NASA MSFC to understand the fluid damping physics from a ring baffle in the barrel section of a propellant tank. An asymptotic damping equation and CFD blended equation have been derived by NASA MSFC team to complement the popularly used Miles equation at different flow regimes. The new development has found success in providing a nonlinear damping model for the Space Launch System. The purpose of this study is to further extend the semi-empirical damping equations into the oblate spheroidal dome section of the propellant tanks. First, previous experimental data from the spherical baffled tank are collected and analyzed. Several methods of taking the dome curvature effect, including a generalized Miles equation, area projection method, and equalized fill height method, are assessed. CFD simulation is used to shed light on the interaction of vorticity around the baffle with the locally curved wall and liquid-gas interface. The final damping equation will be validated by a recent subscale test with an oblate spheroidal dome conducted at NASA MSFC.
Liquid rocket engine combustion stabilization devices
NASA Technical Reports Server (NTRS)
1974-01-01
Combustion instability, which results from a coupling of the combustion process and the fluid dynamics of the engine system, was investigated. The design of devices which reduce coupling (combustion chamber baffles) and devices which increase damping (acoustic absorbers) are described. Included in the discussion are design criteria and recommended practices, structural and mechanical design, thermal control, baffle geometry, baffle/engine interactions, acoustic damping analysis, and absorber configurations.
USDA-ARS?s Scientific Manuscript database
Environmentally friendly control measures are needed for soilborne diseases of crops grown in organic and conventional production systems. We tested ethanol extracts from cultures of Serratia marcescens N4-5 and N2-4, Burkholderia cepacia BC-1 and BC-2, and B. ambifaria BC-F for control of damping-o...
NASA Astrophysics Data System (ADS)
Angu, Rittu; Mehta, R. K.
2018-04-01
This paper presents a robust controller known as Extended State Observer (ESO) in order to improve the stability and voltage regulation of a synchronous machine connected to an infinite bus power system through a transmission line. The ESO-based control scheme is implemented with an automatic voltage regulator in conjunction with an excitation system to enhance the damping of low frequency power system oscillations, as the Power System Stabilizer (PSS) does. The implementation of PSS excitation control techniques however requires reliable information about the entire states, though they are not always directly measureable. To address this issue, the proposed ESO provides the estimate of system states as well as disturbance state together in order to improve not only the damping but also compensates system efficiently in presence of parameter uncertainties and external disturbances. The Closed-Loop Poles (CLPs) of the system have been assigned by the symmetric root locus technique, with the desired level of system damping provided by the dominant CLPs. The performance of the system is analyzed through simulating at different operating conditions. The control method is not only capable of providing zero estimation error in steady-state, but also shows robustness in tracking the reference command under parametric variations and external disturbances. Illustrative examples have been provided to demonstrate the effectiveness of the developed methodology.
Control of rotordynamic instability in a typical gas turbine's power system
NASA Technical Reports Server (NTRS)
Veikos, N. M.; Page, R. H.; Tornillo, E. J.
1984-01-01
The effect of rotor internal friction on the system's stability was studied when operated above the first critical speed. This internal friction is commonly caused by sliding press fits or sliding splines. Under conditions of high speed and low bearing damping, these systems will occassionally whirl at a frequency less than the shaft's rotational speed. This subsynchronous precession is a self excited phenomenon and stress reversals are created. This phenomenon was observed during engine testing. The reduction of spline friction and/or the inclusion of squeeze film damping have controlled the instability. Case history and the detail design of the squeeze film dampers is discussed.
Flight Flutter Testing of Rotary Wing Aircraft Using a Control System Oscillation Technique
NASA Technical Reports Server (NTRS)
Yen, J. G.; Viswanathan, S.; Matthys, C. G.
1976-01-01
A flight flutter testing technique is described in which the rotor controls are oscillated by series actuators to excite the rotor and airframe modes of interest, which are then allowed to decay. The moving block technique is then used to determine the damped frequency and damping variation with rotor speed. The method proved useful for tracking the stability of relatively well damped modes. The results of recently completed flight tests of an experimental soft-in-plane rotor are used to illustrate the technique. Included is a discussion of the application of this technique to investigation of the propeller whirl flutter stability characteristics of the NASA/Army XV-15 VTOL tilt rotor research aircraft.
NASA Astrophysics Data System (ADS)
Králik, Juraj
2017-07-01
The paper presents the probabilistic and sensitivity analysis of the efficiency of the damping devices cover of nuclear power plant under impact of the container of nuclear fuel of type TK C30 drop. The finite element idealization of nuclear power plant structure is used in space. The steel pipe damper system is proposed for dissipation of the kinetic energy of the container free fall. The experimental results of the shock-damper basic element behavior under impact loads are presented. The Newmark integration method is used for solution of the dynamic equations. The sensitivity and probabilistic analysis of damping devices was realized in the AntHILL and ANSYS software.
Preliminary studies on SMA embedded wind turbine blades for passive control of vibration
NASA Astrophysics Data System (ADS)
Haghdoust, P.; Cinquemani, S.; Lo Conte, A.
2018-03-01
Wind turbine blades are being bigger and bigger, thus requiring lightweight structures that are more flexible and thus more sensitive to dynamic excitations and to vibration problems. This paper investigates a preliminary architecture of large wind turbine blades, embedding thin sheets of SMA to passively improve their total damping. A phenomenological material model is used for simulation of strain-dependent damping in SMA materials and an user defined material model was developed for this purpose. The response of different architectures of SMA embedded blades have been investigated in the time domain to find an optimal solution in which the less amount of SMA is used while the damping of the system is maximized
NASA Astrophysics Data System (ADS)
Zhileykin, M. M.; Kotiev, G. O.; Nagatsev, M. V.
2018-02-01
In order to meet the growing mobility requirements for the wheeled vehicles on all types of terrain the engineers have to develop a large number of specialized control algorithms for the multi-axle wheeled vehicle (MWV) suspension improving such qualities as ride comfort, handling and stability. The authors have developed an adaptive algorithm of the dynamic damping of the MVW body oscillations. The algorithm provides high ride comfort and high mobility of the vehicle. The article discloses a method for synthesis of an adaptive dynamic continuous algorithm of the MVW body oscillation damping and provides simulation results proving high efficiency of the developed control algorithm.
NASA Astrophysics Data System (ADS)
Liu, Qiang; Chattopadhyay, Aditi
2000-06-01
Aeromechanical stability plays a critical role in helicopter design and lead-lag damping is crucial to this design. In this paper, the use of segmented constrained damping layer (SCL) treatment and composite tailoring is investigated for improved rotor aeromechanical stability using formal optimization technique. The principal load-carrying member in the rotor blade is represented by a composite box beam, of arbitrary thickness, with surface bonded SCLs. A comprehensive theory is used to model the smart box beam. A ground resonance analysis model and an air resonance analysis model are implemented in the rotor blade built around the composite box beam with SCLs. The Pitt-Peters dynamic inflow model is used in air resonance analysis under hover condition. A hybrid optimization technique is used to investigate the optimum design of the composite box beam with surface bonded SCLs for improved damping characteristics. Parameters such as stacking sequence of the composite laminates and placement of SCLs are used as design variables. Detailed numerical studies are presented for aeromechanical stability analysis. It is shown that optimum blade design yields significant increase in rotor lead-lag regressive modal damping compared to the initial system.
Rotor blades for turbine engines
Piersall, Matthew R; Potter, Brian D
2013-02-12
A tip shroud that includes a plurality of damping fins, each damping fin including a substantially non-radially-aligned surface that is configured to make contact with a tip shroud of a neighboring rotor blade. At least one damping fin may include a leading edge damping fin and at least one damping fin may include a trailing edge damping fin. The leading edge damping fin may be configured to correspond to the trailing edge damping fin.
NASA Astrophysics Data System (ADS)
Brewick, P. T.; Smyth, A. W.
2014-12-01
The accurate and reliable estimation of modal damping from output-only vibration measurements of structural systems is a continuing challenge in the fields of operational modal analysis (OMA) and system identification. In this paper a modified version of the blind source separation (BSS)-based Second-Order Blind Identification (SOBI) method was used to perform modal damping identification on a model bridge structure under varying loading conditions. The bridge model was created with finite elements and consisted of a series of stringer beams supported by a larger girder. The excitation was separated into two categories: ambient noise and traffic loads with noise modeled with random forcing vectors and traffic simulated with moving loads for cars and partially distributed moving masses for trains. The acceleration responses were treated as the mixed output signals for the BSS algorithm. The modified SOBI method used a windowing technique to maximize the amount of information used for blind identification from the responses. The modified SOBI method successfully found the mode shapes for both types of excitation with strong accuracy, but power spectral densities (PSDs) of the recovered modal responses showed signs of distortion for the traffic simulations. The distortion had an adverse affect on the damping ratio estimates for some of the modes but no correlation could be found between the accuracy of the damping estimates and the accuracy of the recovered mode shapes. The responses and their PSDs were compared to real-world collected data and patterns similar to distortion were observed implying that this issue likely affects real-world estimates.
Study on global performances and mooring-induced damping of a semi-submersible
NASA Astrophysics Data System (ADS)
Xiong, Ling-zhi; Yang, Jian-min; Lv, Hai-ning; Zhao, Wen-hua; Kou, Yu-feng
2016-10-01
The harsh environmental conditions bring strong nonlinearities to the hydrodynamic performances of the offshore floating platforms, which challenge the reliable prediction of the platform coupled with the mooring system. The present study investigates a typical semi-submersible under both the operational and the survival conditions through numerical and experimental methods. The motion responses, the mooring line tensions, and the wave loads on the longitudinal mid-section are investigated by both the fully non-linearly coupled numerical simulation and the physical experiment. Particularly, in the physical model test, the wave loads distributed on the semi-submersible's mid-section were measured by dividing the model into two parts, namely the port and the starboard parts, which were rigidly connected by three six-component force transducers. It is concluded that both the numerical and physical model can have good prediction of the semi-submersible's global responses. In addition, an improved numerical approach is proposed for the estimation of the mooring-induced damping, and is validated by both the experimental and the published results. The characteristics of the mooring-induced damping are further summarized in various sea states, including the operational and the survival environments. In order to obtain the better prediction of the system response in deep water, the mooring-induced damping of the truncated mooring lines applied in the physical experiment are compensated by comparing with those in full length. Furthermore, the upstream taut and the downstream slack mooring lines are classified and investigated to obtain the different mooring line damping performances in the comparative study.
Ultraviolet observation of nova LMC 2012 with STIS/HST
NASA Astrophysics Data System (ADS)
Shore, S. N.; Schwarz, G.; Page, K.; Osborne, J. P.; Starrfield, S.; Walter, F.; Woodward, C. E.; Bode, M.; Ness, J.-U.
2012-05-01
Nova LMC 2012 (ATel #4002, #4043) was observed with STIS on the Hubble Space Telescope on 2012 May 7 (MJD 56055) at three settings with medium resolution (E140M, E230M, with exposure times of 724 sec per setting) covering 1150 - 3000 A. There is only one strong emission line in the entire spectral range: N V 1240 (S/N ~ 15, 0.5 A binning, integrated (not dereddened) flux of 1.2E-13 erg/s/cm^2, FWZI ~ 7500 km/s); the blue wing is blended with Ly-alpha absorption (MW+LMC).
A Doppler dimming determination of coronal outflow velocity
NASA Technical Reports Server (NTRS)
Strachan, Leonard; Kohl, John L.; Weiser, Heinz; Withbroe, George L.; Munro, Richard H.
1993-01-01
Outflow velocities in a polar coronal hole are derived from observations made during a 1982 sounding rocket flight. The velocity results are derived from a Doppler dimming analysis of resonantly scattered H I Ly-alpha. This analysis indicates radial outflow velocities of 217 km/s at 2 solar radii from sun-center with an uncertainty range of 153 to 251 km/s at a confidence level of 67 percent. These results are best characterized as strong evidence for supersonic outflow within 2 solar radii of sun-center in a polar coronal hole. Several means for obtaining improved accuracy in future observations are discussed.
Predicting Ly-alpha intensities in coronal streamers
NASA Technical Reports Server (NTRS)
Noci, Giancarlo; Poletto, Giannina; Suess, Steven T.; Wang, A.-H.; Wu, S. T.
1992-01-01
SOHO (Solar and Heliospheric Observatory) UVCS (Ultraviolet Coronagraph Spectrometer) will make long term observations of coronal streamers in UV lines, providing a new tool for the analysis of structures which have been known for decades but are still far from being adequately described. Work to evaluate the Lyman alpha brightness of coronal streamers is reported, adopting the streamer models obtained, via a time dependent numerical relaxation technique. This will yield understanding on the role of geometric versus physical factors in determining the streamer lyman alpha intensity and provide guidelines for UVCS observational operations. Future prospects along this line of research are summarized.
Observations of interstellar hydrogen and deuterium toward Alpha Centauri A
NASA Technical Reports Server (NTRS)
Landsman, W. B.; Henry, R. C.; Moos, H. W.; Linsky, J. L.
1984-01-01
A composite profile is presented of the Ly-alpha emission line of Alpha Cen A, obtained from 10 individual spectra with the high-resolution spectrograph aboard the International Ultraviolet Explorer (IUE) satellite. There is excellent overall agreement with two previous Copernicus observations. Interstellar deuterium is detected, and a lower limit is set on the deuterium to hydrogen ratio of nDI/nHI greater than 8 x 10 to the -6th. In addition, the deuterium bulk velocity appears blueshifted by 8 + or - 2 km/s with respect to interstellar hydrogen, suggesting a nonuniform medium along the line of sight.
NASA Technical Reports Server (NTRS)
Dolan, Joseph; Fisher, Richard R. (Technical Monitor)
2001-01-01
Far-ultraviolet spectra of the gravitational lens components Q0957+561 A and 9 were obtained with the Hubble Space Telescope Faint Object Spectrograph (FOS) at five equally spaced epochs, one every two weeks. We confirm the flux variability of the quasar's Lyman-alpha and 0 VI emission lines reported by Dolan et al. (1995) in IUE spectra. The fluxes in these lines vary on a time scale of weeks in the observer's rest frame, independently of each other and of the surrounding continuum. The individual spectra of each image were co-added to investigate the properties of the Lyman-alpha forest along the two lines of sight to the quasar. Absorption lines having equivalent width W > 0.3 A in the observer's frame not previously identified by Michalitsianos et al. (1997) as interstellar lines, metal lines, or higher order Lyman lines were taken to be Ly-alpha forest lines. The existence of each line in this consistently selected set was then verified by its presence in two archival FOS spectra with -1.5 times higher signal to noise than our co-added spectra. Ly-alpha forest lines with W > 0.3 A appear at 41 distinct wavelengths in the spectra of the two images. one absorption line in the spectrum of image A has no counterpart in the spectrum of image B and one line in image B has no counterpart in image A. Based on the separation of the lines of sight over the redshift range searched for Ly-forest lines, the density of the absorbing clouds in the direction of Q0957+561 must change significantly over a distance R = 160 (+120, -70)/ h(sub 50) kpc in the simplified model where the absorbers are treated as spherical clouds and the characteristic dimension, R, is the radius. (We adopt H(sub 0) = 50 h(sub 50) km/s/ kpc, q(sub 0) = 1/2, and lambda = 0 throughout the paper.) The 95% confidence interval on R extends from (50 - 950)/h(sub 50) kpc We show in the Appendix that the fraction of Ly-alpha forest lines that appear in only one spectrum can be expressed as a rapidly converging power series in 1/r, where r the ratio of the radius of the cloud to the separation of the two lines of sight at the redshift of the cloud. This power series can be rewritten to give r in terms of the fraction of Ly-forest wavelengths that appear in the spectrum of only one image. A simple linear approximation to the solution that everywhere agrees with the power series solution to better than 0.8% for r > 2 is derived in the Appendix.
Oscillations studied with the smartphone ambient light sensor
NASA Astrophysics Data System (ADS)
Sans, J. A.; Manjón, F. J.; Pereira, A. L. J.; Gomez-Tejedor, J. A.; Monsoriu, J. A.
2013-11-01
This paper makes use of a smartphone's ambient light sensor to analyse a system of two coupled springs undergoing either simple or damped oscillatory motion. The period, frequency and stiffness of the spring, together with the damping constant and extinction time, are extracted from light intensity curves obtained using a free Android application. The results demonstrate the instructional value of mobile phone sensors as a tool in the physics laboratory.
System and method for damping vibration in a drill string using a magnetorheological damper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wassell, Mark Ellsworth; Burgess, Daniel E; Barbely, Jason R
2012-01-03
A system for damping vibration in a drill string can include a magnetorheological fluid valve assembly having a supply of a magnetorheological fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil for inducing a magnetic field thatmore » alters the resistance of the magnetorheological fluid to flow between the first and second chambers, thereby increasing the damping provided by the valve. A remnant magnetic field is induced in one or more components of the magnetorheological fluid valve during operation that can be used to provide the magnetic field for operating the valve so as to eliminate the need to energize the coils during operation except temporarily when changing the amount of damping required, thereby eliminating the need for a turbine alternator power the magnetorheological fluid valve. A demagnetization cycle can be used to reduce the remnant magnetic field when necessary.« less
NASA Astrophysics Data System (ADS)
Chen, Lin; Sun, Limin; Nagarajaiah, Satish
2016-09-01
Lateral dampers have been extensively studied and implemented for supplementing modal damping in cable vibration mitigation. When considering the cable flexural stiffness that is actually present, albeit small, there is another degree of freedom of the cable at the lateral damper, namely the rotation, that can be constrained by a rotational damper to achieve larger additional damping. This is of particular significance for long cables where the near-anchorage lateral damper alone is usually insufficient. The problem of a cable with bending stiffness, attached with both lateral and rotational dampers at an intermediate point, is therefore considered in this study. The characteristic equation of the resulting system is formulated by assembling the dynamic stiffness from the two segments divided by the damper, which is subsequently solved using argument principle method. Dynamics of the controlled system is thus discussed in general through parametric analysis. For the case where the damper location is close to the anchorage, asymptotic solutions for complex frequency and damping ratio are provided; explicit formulas for determining the optimal damper coefficients are also derived. It is found that when the lateral and rotational damper coefficients are properly balanced, the proposed strategy can achieve up to 30 percent damping enhancement compared to the case with only the lateral damper, in practical cable bending stiffness range.
NASA Astrophysics Data System (ADS)
Li, Chuan-Hsun; Blasing, David; Chen, Yong
2017-04-01
In cold atom systems, spin excitations have been shown to be a sensitive probe of interactions and quantum statistical effects, and can be used to study spin transport in both Fermi and Bose gases. In particular, spin-dipole mode (SDM) is a type of excitation that can generate a spin current without a net mass current. We present recent measurements and analysis of SDM in a disorder-free, interacting three-dimensional (3D) 87Rb Bose-Einstein condensate (BEC) by applying spin-dependent synthetic electric fields to actuate head-on collisions between two BECs of different spin states. We experimentally study and compare the behaviors of the system following SDM excitations in the presence as well as absence of synthetic 1D spin-orbit coupling (SOC). We find that in the absence of SOC, SDM is relatively weakly damped, accompanied with collision-induced thermalization which heats up the atomic cloud. However, in the presence of SOC, we find that SDM is more strongly damped with reduced thermalization, and observe excitation of a quadrupole mode that exhibits BEC shape oscillation even after SDM is damped out. Such a mode conversion bears analogies with the Beliaev coupling process or the parametric frequency down conversion of light in nonlinear optics.
GOES-R active vibration damping controller design, implementation, and on-orbit performance
NASA Astrophysics Data System (ADS)
Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.
2018-01-01
GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. To meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping for the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.
GOES-R Active Vibration Damping Controller Design, Implementation, and On-Orbit Performance
NASA Technical Reports Server (NTRS)
Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.
2017-01-01
GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. In order to meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping of the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.
Identifying Bearing Rotordynamic Coefficients using an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Miller, Brad A.; Howard, Samuel A.
2008-01-01
An Extended Kalman Filter is developed to estimate the linearized direct and indirect stiffness and damping force coefficients for bearings in rotor-dynamic applications from noisy measurements of the shaft displacement in response to imbalance and impact excitation. The bearing properties are modeled as stochastic random variables using a Gauss-Markov model. Noise terms are introduced into the system model to account for all of the estimation error, including modeling errors and uncertainties and the propagation of measurement errors into the parameter estimates. The system model contains two user-defined parameters that can be tuned to improve the filter s performance; these parameters correspond to the covariance of the system and measurement noise variables. The filter is also strongly influenced by the initial values of the states and the error covariance matrix. The filter is demonstrated using numerically simulated data for a rotor-bearing system with two identical bearings, which reduces the number of unknown linear dynamic coefficients to eight. The filter estimates for the direct damping coefficients and all four stiffness coefficients correlated well with actual values, whereas the estimates for the cross-coupled damping coefficients were the least accurate.
Influence of mistuning on blade torsional flutter
NASA Technical Reports Server (NTRS)
Srinivasan, A. V.
1980-01-01
An analytical technique for the prediction of fan blade flutter was evaluated by utilizing first stage fan flutter data from tests on an advanced high performance engine. The formulation includes both aerodynamic and mechanical coupling among all the blades of the assembly. Mistuning is accounted for in the analysis so that individual blade inertias, frequencies, or damping can be considered. Airfoil stability was predicted by calculating a flutter determinant, the eigenvalues of which indicate the extent of susceptibility to flutter. When blade to blade differences in frequencies are considered, a stable system is predicted for the test points examined. For a tuned system, it was found that torsional flutter can be predicted at a limited number of interblade phase angles. Examination of these phase angles indicated that they were "close" to the condition of acoustic resonance. For the range of Mach numbers and reduced frequencies considered, the so called subcritical flutter cannot be predicted. The essential influence of mechanical coupling among the blades is to change the frequencies of the system with little or no change in damping; however, aerodynamic coupling together with mechanical coupling could change not only frequencies, but also damping in the system, with a trend toward instability.
Structural damping results from vibration tests of straight piping sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ware, A.G.; Thinnes, G.L.
EG and G Idaho is assisting the USNRC and the Pressure Vessel Research Committee in supporting a final position on revised damping values for structural analyses of nuclear piping systems. As part of this program, a series of vibrational tests on 76-mm and 203-mm (3-in. amd 8-in.) Schedule 40 carbon steel piping was conducted to determine the changes in structural damping due to various parametric effects. The 10-m (33-ft) straight sections of piping were rigidly supported at the ends. Spring, rod, and constant force hangers, as well as a sway brace and snubbers were included as intermediate supports. Excitation wasmore » provided by low-force level hammer inpacts, a hydraulic shaker, and a 445-kN (50-ton) overhead crane. Data was recorded using acceleration, strain, and displacement time histories. This paper presents results from the testing showing the effect of stress level and type of supports on structural damping in piping.« less
Computational aspects of helicopter trim analysis and damping levels from Floquet theory
NASA Technical Reports Server (NTRS)
Gaonkar, Gopal H.; Achar, N. S.
1992-01-01
Helicopter trim settings of periodic initial state and control inputs are investigated for convergence of Newton iteration in computing the settings sequentially and in parallel. The trim analysis uses a shooting method and a weak version of two temporal finite element methods with displacement formulation and with mixed formulation of displacements and momenta. These three methods broadly represent two main approaches of trim analysis: adaptation of initial-value and finite element boundary-value codes to periodic boundary conditions, particularly for unstable and marginally stable systems. In each method, both the sequential and in-parallel schemes are used and the resulting nonlinear algebraic equations are solved by damped Newton iteration with an optimally selected damping parameter. The impact of damped Newton iteration, including earlier-observed divergence problems in trim analysis, is demonstrated by the maximum condition number of the Jacobian matrices of the iterative scheme and by virtual elimination of divergence. The advantages of the in-parallel scheme over the conventional sequential scheme are also demonstrated.
The effect of friction in coulombian damper
NASA Astrophysics Data System (ADS)
Wahad, H. S.; Tudor, A.; Vlase, M.; Cerbu, N.; Subhi, K. A.
2017-02-01
The study aimed to analyze the damping phenomenon in a system with variable friction, Stribeck type. Shock absorbers with limit and dry friction, is called coulombian shock-absorbers. The physical damping vibration phenomenon, in equipment, is based on friction between the cushioning gasket and the output regulator of the shock-absorber. Friction between them can be dry, limit, mixture or fluid. The friction is depending on the contact pressure and lubricant presence. It is defined dimensionless form for the Striebeck curve (µ friction coefficient - sliding speed v). The friction may damp a vibratory movement or can maintain it (self-vibration), depending on the µ with v (it can increase / decrease or it can be relative constant). The solutions of differential equation of movement are obtained for some work condition of one damper for automatic washing machine. The friction force can transfer partial or total energy or generates excitation energy in damper. The damping efficiency is defined and is determined analytical for the constant friction coefficient and for the parabolic friction coefficient.
Modified computation of the nozzle damping coefficient in solid rocket motors
NASA Astrophysics Data System (ADS)
Liu, Peijin; Wang, Muxin; Yang, Wenjing; Gupta, Vikrant; Guan, Yu; Li, Larry K. B.
2018-02-01
In solid rocket motors, the bulk advection of acoustic energy out of the nozzle constitutes a significant source of damping and can thus influence the thermoacoustic stability of the system. In this paper, we propose and test a modified version of a historically accepted method of calculating the nozzle damping coefficient. Building on previous work, we separate the nozzle from the combustor, but compute the acoustic admittance at the nozzle entry using the linearized Euler equations (LEEs) rather than with short nozzle theory. We compute the combustor's acoustic modes also with the LEEs, taking the nozzle admittance as the boundary condition at the combustor exit while accounting for the mean flow field in the combustor using an analytical solution to Taylor-Culick flow. We then compute the nozzle damping coefficient via a balance of the unsteady energy flux through the nozzle. Compared with established methods, the proposed method offers competitive accuracy at reduced computational costs, helping to improve predictions of thermoacoustic instability in solid rocket motors.
NASA Astrophysics Data System (ADS)
Tavassoly, M. K.; Daneshmand, R.; Rustaee, N.
2018-06-01
In this paper we study the linear and nonlinear (intensity-dependent) interactions of two two-level atoms with a single-mode quantized field far from resonance, while the phase-damping effect is also taken into account. To find the analytical solution of the atom-field state vector corresponding to the considered model, after deducing the effective Hamiltonian we evaluate the time-dependent elements of the density operator using the master equation approach and superoperator method. Consequently, we are able to study the influences of the special nonlinearity function f (n) = √ {n}, the intensity of the initial coherent state field and the phase-damping parameter on the degree of entanglement of the whole system as well as the field and atom. It is shown that in the presence of damping, by passing time, the amount of entanglement of each subsystem with the rest of system, asymptotically reaches to its stationary and maximum value. Also, the nonlinear interaction does not have any effect on the entanglement of one of the atoms with the rest of system, but it changes the amplitude and time period of entanglement oscillations of the field and the other atom. Moreover, this may cause that, the degree of entanglement which may be low (high) at some moments of time becomes high (low) by entering the intensity-dependent function in the atom-field coupling.
Proceedings of Damping 1993, volume 3
NASA Astrophysics Data System (ADS)
Portis, Bonnie L.
1993-06-01
Presented are individual papers of Damping '93, held 24-26 February 1993 in San Francisco. The subjects included: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; applications to aircraft; space structures; Marine structures; and commercial products; defense applications; and payoffs of vibration suppression.
Proceedings of Damping 1993, volume 1
NASA Astrophysics Data System (ADS)
Portis, Bonnie L.
1993-06-01
Presented are individual papers of Damping '93 held 24-26 February, 1993, in San Francisco. The subjects included: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; application to aircraft; space structures; marine structures; commercial products; defense applications; and payoffs of vibration suppression.
NASA Astrophysics Data System (ADS)
Thenozhi, Suresh; Tang, Yu
2018-01-01
Frequency response functions (FRF) are often used in the vibration controller design problems of mechanical systems. Unlike linear systems, the FRF derivation for nonlinear systems is not trivial due to their complex behaviors. To address this issue, the convergence property of nonlinear systems can be studied using convergence analysis. For a class of time-invariant nonlinear systems termed as convergent systems, the nonlinear FRF can be obtained. The present paper proposes a nonlinear FRF based adaptive vibration controller design for a mechanical system with cubic damping nonlinearity and a satellite system. Here the controller gains are tuned such that a desired closed-loop frequency response for a band of harmonic excitations is achieved. Unlike the system with cubic damping, the satellite system is not convergent, therefore an additional controller is utilized to achieve the convergence property. Finally, numerical examples are provided to illustrate the effectiveness of the proposed controller.
Damping of gravitational waves by matter
NASA Astrophysics Data System (ADS)
Baym, Gordon; Patil, Subodh P.; Pethick, C. J.
2017-10-01
We develop a unified description, via the Boltzmann equation, of damping of gravitational waves by matter, incorporating collisions. We identify two physically distinct damping mechanisms—collisional and Landau damping. We first consider damping in flat spacetime, and then generalize the results to allow for cosmological expansion. In the first regime, maximal collisional damping of a gravitational wave, independent of the details of the collisions in the matter is, as we show, significant only when its wavelength is comparable to the size of the horizon. Thus damping by intergalactic or interstellar matter for all but primordial gravitational radiation can be neglected. Although collisions in matter lead to a shear viscosity, they also act to erase anisotropic stresses, thus suppressing the damping of gravitational waves. Damping of primordial gravitational waves remains possible. We generalize Weinberg's calculation of gravitational wave damping, now including collisions and particles of finite mass, and interpret the collisionless limit in terms of Landau damping. While Landau damping of gravitational waves cannot occur in flat spacetime, the expansion of the universe allows such damping by spreading the frequency of a gravitational wave of given wave vector.
Sub-millikelvin stabilization of a closed cycle cryocooler.
Dubuis, Guy; He, Xi; Božović, Ivan
2014-10-01
Intrinsic temperature oscillations (with the amplitude up to 1 K) of a closed cycle cryocooler are stabilized by a simple thermal damping system. It employs three different materials with different thermal conductivity and specific heat at various temperatures. The amplitude of oscillations of the sample temperature is reduced to less than 1 mK, in the temperature range from 4 K to 300 K, while the cooling power is virtually undiminished. The damping system is small, inexpensive, can be retrofitted to most existing closed cycle cryocoolers, and may improve measurements of any temperature-sensitive physics properties.
Sub-millikelvin stabilization of a closed cycle cryocooler
Dubuis, Guy; He, Xi; Božović, Ivan
2014-10-03
In this study, intrinsic temperature oscillations (with the amplitude up to 1 K) of a closed cycle cryocooler are stabilized by a simple thermal damping system. It employs three different materials with different thermal conductivity and capacity at various temperatures. The amplitude of oscillations of the sample temperature is reduced to less than 1 mK, in the temperature range from 4 K to 300 K, while the cooling power is virtually undiminished. The damping system is small, inexpensive, can be retrofitted to most existing closed cycle cryocoolers, and may improve measurements of any temperature-sensitive physics properties.
2003-12-01
Heating and Cooling Device 42 5.2.3 Multiple Tip STM ~ 43 5.2.3.1 Novel Nanomanipulator MM3 43 5.2.3.2 Four Tip STM Assembly 44 5.2.3.3 Vibration ...Analysis of Eddy Current Damping System of Multiple TIP STM " 44 5.2.3.4 Active Vibration Damping System 46 5.3 First Results 47 5.3.1 UHV-SEM...side: Actual device side and top view. 44 46. Setup for the vibration analysis experiment. 45 47. Relaxation of the STM unit, (a) without the eddy
Dwyer, Mirjana Dimitrijev; He, Lizhong; James, Michael; Nelson, Andrew; Middelberg, Anton P. J.
2013-01-01
Mixtures of a large, structured protein with a smaller, unstructured component are inherently complex and hard to characterize at interfaces, leading to difficulties in understanding their interfacial behaviours and, therefore, formulation optimization. Here, we investigated interfacial properties of such a mixed system. Simplicity was achieved using designed sequences in which chemical differences had been eliminated to isolate the effect of molecular size and structure, namely a short unstructured peptide (DAMP1) and its longer structured protein concatamer (DAMP4). Interfacial tension measurements suggested that the size and bulk structuring of the larger molecule led to much slower adsorption kinetics. Neutron reflectometry at equilibrium revealed that both molecules adsorbed as a monolayer to the air–water interface (indicating unfolding of DAMP4 to give a chain of four connected DAMP1 molecules), with a concentration ratio equal to that in the bulk. This suggests the overall free energy of adsorption is equal despite differences in size and bulk structure. At small interfacial extensional strains, only molecule packing influenced the stress response. At larger strains, the effect of size became apparent, with DAMP4 registering a higher stress response and interfacial elasticity. When both components were present at the interface, most stress-dissipating movement was achieved by DAMP1. This work thus provides insights into the role of proteins' molecular size and structure on their interfacial properties, and the designed sequences introduced here can serve as effective tools for interfacial studies of proteins and polymers. PMID:23303222
The Vibration Ring. Phase 1; [Seedling Fund
NASA Technical Reports Server (NTRS)
Asnani, Vivake M.; Krantz, Timothy L.; Delap, Damon C.; Stringer, David B.
2014-01-01
The vibration ring was conceived as a driveline damping device to prevent structure-borne noise in machines. It has the appearance of a metal ring, and can be installed between any two driveline components like an ordinary mechanical spacer. Damping is achieved using a ring-shaped piezoelectric stack that is poled in the axial direction and connected to an electrical shunt circuit. Surrounding the stack is a metal structure, called the compression cage, which squeezes the stack along its poled axis when excited by radial driveline forces. The stack in turn generates electrical energy, which is either dissipated or harvested using the shunt circuit. Removing energy from the system creates a net damping effect. The vibration ring is much stiffer than traditional damping devices, which allows it to be used in a driveline without disrupting normal operation. In phase 1 of this NASA Seedling Fund project, a combination of design and analysis was used to examine the feasibility of this concept. Several designs were evaluated using solid modeling, finite element analysis, and by creating prototype hardware. Then an analytical model representing the coupled electromechanical response was formulated in closed form. The model was exercised parametrically to examine the stiffness and loss factor spectra of the vibration ring, as well as simulate its damping effect in the context of a simplified driveline model. The results of this work showed that this is a viable mechanism for driveline damping, and provided several lessons for continued development.
Response of discrete linear systems to forcing functions with inequality constraints.
NASA Technical Reports Server (NTRS)
Michalopoulos, C. D.; Riley, T. A.
1972-01-01
An analysis is made of the maximum response of discrete, linear mechanical systems to arbitrary forcing functions which lie within specified bounds. Primary attention is focused on the complete determination of the forcing function which will engender maximum displacement to any particular mass element of a multi-degree-of-freedom system. In general, the desired forcing function is found to be a bang-bang type function, i.e., a function which switches from the maximum to the minimum bound and vice-versa at certain instants of time. Examples of two-degree-of-freedom systems, with and without damping, are presented in detail. Conclusions are drawn concerning the effect of damping on the switching times and the general procedure for finding these times is discussed.
Proceedings of Damping 1993, volume 2
NASA Astrophysics Data System (ADS)
Portis, Bonnie L.
1993-06-01
Presented are individual papers of Damping '93, held 24-26 Feb. 1993 in San Francisco. The subjects included the following: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; applications to aircraft; space structures; marine structures; and commercial products; defense applications; and payoffs of vibration suppression.
Bach, D; Schmich, F; Masselter, T; Speck, T
2015-09-03
The active transport of fluids by pumps plays an essential role in engineering and biology. Due to increasing energy costs and environmental issues, topics like noise reduction, increase of efficiency and enhanced robustness are of high importance in the development of pumps in engineering. The study compares pumps in biology and engineering and assesses biomimetic potentials for improving man-made pumping systems. To this aim, examples of common challenges, applications and current biomimetic research for state-of-the art pumps are presented. The biomimetic research is helped by the similar configuration of many positive displacement pumping systems in biology and engineering. In contrast, the configuration and underlying pumping principles for fluid dynamic pumps (FDPs) differ to a greater extent in biology and engineering. However, progress has been made for positive displacement as well as for FDPs by developing biomimetic devices with artificial muscles and cilia that improve energetic efficiency and fail-safe operation or reduce noise. The circulatory system of vertebrates holds a high biomimetic potential for the damping of pressure pulsations, a common challenge in engineering. Damping of blood pressure pulsation results from a nonlinear viscoelastic behavior of the artery walls which represent a complex composite material. The transfer of the underlying functional principle could lead to an improvement of existing technical solutions and be used to develop novel biomimetic damping solutions. To enhance efficiency or thrust of man-made fluid transportation systems, research on jet propulsion in biology has shown that a pulsed jet can be tuned to either maximize thrust or efficiency. The underlying principle has already been transferred into biomimetic applications in open channel water systems. Overall there is a high potential to learn from nature in order to improve pumping systems for challenges like the reduction of pressure pulsations, increase of jet propulsion efficiency or the reduction of wear.
NASA Astrophysics Data System (ADS)
Tubino, Federica
2018-03-01
The effect of human-structure interaction in the vertical direction for footbridges is studied based on a probabilistic approach. The bridge is modeled as a continuous dynamic system, while pedestrians are schematized as moving single-degree-of-freedom systems with random dynamic properties. The non-dimensional form of the equations of motion allows us to obtain results that can be applied in a very wide set of cases. An extensive Monte Carlo simulation campaign is performed, varying the main non-dimensional parameters identified, and the mean values and coefficients of variation of the damping ratio and of the non-dimensional natural frequency of the coupled system are reported. The results obtained can be interpreted from two different points of view. If the characterization of pedestrians' equivalent dynamic parameters is assumed as uncertain, as revealed from a current literature review, then the paper provides a range of possible variations of the coupled system damping ratio and natural frequency as a function of pedestrians' parameters. Assuming that a reliable characterization of pedestrians' dynamic parameters is available (which is not the case at present, but could be in the future), the results presented can be adopted to estimate the damping ratio and natural frequency of the coupled footbridge-pedestrian system for a very wide range of real structures.
NASA Astrophysics Data System (ADS)
Zhu, Xiaoyuan; Zhang, Hui; Cao, Dongpu; Fang, Zongde
2015-06-01
Integrated motor-transmission (IMT) powertrain system with directly coupled motor and gearbox is a good choice for electric commercial vehicles (e.g., pure electric buses) due to its potential in motor size reduction and energy efficiency improvement. However, the controller design for powertrain oscillation damping becomes challenging due to the elimination of damping components. On the other hand, as controller area network (CAN) is commonly adopted in modern vehicle system, the network-induced time-varying delays that caused by bandwidth limitation will further lead to powertrain vibration or even destabilize the powertrain control system. Therefore, in this paper, a robust energy-to-peak controller is proposed for the IMT powertrain system to address the oscillation damping problem and also attenuate the external disturbance. The control law adopted here is based on a multivariable PI control, which ensures the applicability and performance of the proposed controller in engineering practice. With the linearized delay uncertainties characterized by polytopic inclusions, a delay-free closed-loop augmented system is established for the IMT powertrain system under discrete-time framework. The proposed controller design problem is then converted to a static output feedback (SOF) controller design problem where the feedback control gains are obtained by solving a set of linear matrix inequalities (LMIs). The effectiveness as well as robustness of the proposed controller is demonstrated by comparing its performance against that of a conventional PI controller.