Sample records for damping controller design

  1. Design, analysis, and testing of high frequency passively damped struts

    NASA Technical Reports Server (NTRS)

    Yiu, Y. C.; Davis, L. Porter; Napolitano, Kevin; Ninneman, R. Rory

    1993-01-01

    Objectives of the research are: (1) to develop design requirements for damped struts to stabilize control system in the high frequency cross-over and spill-over range; (2) to design, fabricate and test viscously damped strut and viscoelastically damped strut; (3) to verify accuracy of design and analysis methodology of damped struts; and (4) to design and build test apparatus, and develop data reduction algorithm to measure strut complex stiffness. In order to meet the stringent performance requirements of the SPICE experiment, the active control system is used to suppress the dynamic responses of the low order structural modes. However, the control system also inadvertently drives some of the higher order modes unstable in the cross-over and spill-over frequency range. Passive damping is a reliable and effective way to provide damping to stabilize the control system. It also improves the robustness of the control system. Damping is designed into the SPICE testbed as an integral part of the control-structure technology.

  2. Passive and Active Control of Space Structures (PACOSS)

    NASA Astrophysics Data System (ADS)

    Morosow, G.; Harcrow, H.; Rogers, L.

    1985-04-01

    Passive and Active Control of Space Structures (PACOSS) is a five-year program designed to investigate highly damped structures in conjunction with active control systems, and in particular to develop technology that integrates passive damping and active control to achieve precise pointing control. Major areas of research include metal matrix composites; viscoelastic materials; damping devices; dynamic test article design, fabrication and testing; and active damping.

  3. Design of static synchronous series compensator based damping controller employing invasive weed optimization algorithm.

    PubMed

    Ahmed, Ashik; Al-Amin, Rasheduzzaman; Amin, Ruhul

    2014-01-01

    This paper proposes designing of Static Synchronous Series Compensator (SSSC) based damping controller to enhance the stability of a Single Machine Infinite Bus (SMIB) system by means of Invasive Weed Optimization (IWO) technique. Conventional PI controller is used as the SSSC damping controller which takes rotor speed deviation as the input. The damping controller parameters are tuned based on time integral of absolute error based cost function using IWO. Performance of IWO based controller is compared to that of Particle Swarm Optimization (PSO) based controller. Time domain based simulation results are presented and performance of the controllers under different loading conditions and fault scenarios is studied in order to illustrate the effectiveness of the IWO based design approach.

  4. Research of vibration control based on current mode piezoelectric shunt damping circuit

    NASA Astrophysics Data System (ADS)

    Liu, Weiwei; Mao, Qibo

    2017-12-01

    The piezoelectric shunt damping circuit using current mode approach is imposed to control the vibration of a cantilever beam. Firstly, the simulated inductance with large values are designed for the corresponding RL series shunt circuits. Moreover, with an example of cantilever beam, the second natural frequency of the beam is targeted to control for experiment. By adjusting the values of the equivalent inductance and equivalent resistance of the shunt circuit, the optimal damping of the shunt circuit is obtained. Meanwhile, the designed piezoelectric shunt damping circuit stability is experimental verified. Experimental results show that the proposed piezoelectric shunt damping circuit based on current mode circuit has good vibration control performance. However, the control performance will be reduced if equivalent inductance and equivalent resistance values deviate from optimal values.

  5. Hybrid Damping System for an Electronic Equipment Mounting Shelf

    NASA Technical Reports Server (NTRS)

    Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry

    1997-01-01

    The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-II. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.

  6. Hybrid Damping System for an Electronic Equipment Mounting Shelf

    NASA Technical Reports Server (NTRS)

    Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry

    1997-01-01

    The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-11. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.

  7. Comparative study of popular objective functions for damping power system oscillations in multimachine system.

    PubMed

    Islam, Naz Niamul; Hannan, M A; Shareef, Hussain; Mohamed, Azah; Salam, M A

    2014-01-01

    Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability.

  8. Improved Power System Stability Using Backtracking Search Algorithm for Coordination Design of PSS and TCSC Damping Controller.

    PubMed

    Niamul Islam, Naz; Hannan, M A; Mohamed, Azah; Shareef, Hussain

    2016-01-01

    Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS) and thyristor-controlled series compensation (TCSC) damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA). A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI) model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO) for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation.

  9. Integrated active and passive control design methodology for the LaRC CSI evolutionary model

    NASA Technical Reports Server (NTRS)

    Voth, Christopher T.; Richards, Kenneth E., Jr.; Schmitz, Eric; Gehling, Russel N.; Morgenthaler, Daniel R.

    1994-01-01

    A general design methodology to integrate active control with passive damping was demonstrated on the NASA LaRC CSI Evolutionary Model (CEM), a ground testbed for future large, flexible spacecraft. Vibration suppression controllers designed for Line-of Sight (LOS) minimization were successfully implemented on the CEM. A frequency-shaped H2 methodology was developed, allowing the designer to specify the roll-off of the MIMO compensator. A closed loop bandwidth of 4 Hz, including the six rigid body modes and the first three dominant elastic modes of the CEM was achieved. Good agreement was demonstrated between experimental data and analytical predictions for the closed loop frequency response and random tests. Using the Modal Strain Energy (MSE) method, a passive damping treatment consisting of 60 viscoelastically damped struts was designed, fabricated and implemented on the CEM. Damping levels for the targeted modes were more than an order of magnitude larger than for the undamped structure. Using measured loss and stiffness data for the individual damped struts, analytical predictions of the damping levels were very close to the experimental values in the (1-10) Hz frequency range where the open loop model matched the experimental data. An integrated active/passive controller was successfully implemented on the CEM and was evaluated against an active-only controller. A two-fold increase in the effective control bandwidth and further reductions of 30 percent to 50 percent in the LOS RMS outputs were achieved compared to an active-only controller. Superior performance was also obtained compared to a High-Authority/Low-Authority (HAC/LAC) controller.

  10. Proceedings of Damping 1993, volume 3

    NASA Astrophysics Data System (ADS)

    Portis, Bonnie L.

    1993-06-01

    Presented are individual papers of Damping '93, held 24-26 February 1993 in San Francisco. The subjects included: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; applications to aircraft; space structures; Marine structures; and commercial products; defense applications; and payoffs of vibration suppression.

  11. Proceedings of Damping 1993, volume 1

    NASA Astrophysics Data System (ADS)

    Portis, Bonnie L.

    1993-06-01

    Presented are individual papers of Damping '93 held 24-26 February, 1993, in San Francisco. The subjects included: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; application to aircraft; space structures; marine structures; commercial products; defense applications; and payoffs of vibration suppression.

  12. Practical Methodology for the Inclusion of Nonlinear Slosh Damping in the Stability Analysis of Liquid-Propelled Space Vehicles

    NASA Technical Reports Server (NTRS)

    Ottander, John A.; Hall, Robert A.; Powers, Joseph F.

    2017-01-01

    One of the challenges of developing flight control systems for liquid-propelled space vehicles is ensuring stability and performance in the presence of parasitic minimally damped slosh dynamics in the liquid propellants. This can be especially difficult when the fundamental frequencies of the slosh motions are in proximity to the frequency used for vehicle control. The challenge is partially alleviated since the energy dissipation and effective damping in the slosh modes increases with amplitude. However, traditional launch vehicle control design methodology is performed with linearized systems using a fixed slosh damping corresponding to a slosh motion amplitude based on heritage values. This papers presents a method for performing the control design and analysis using damping at slosh amplitudes chosen based on the resulting limit cycle amplitude of the vehicle thrust vector system due to a control-slosh interaction under degraded phase and gain margin conditions.

  13. Practical Methodology for the Inclusion of Nonlinear Slosh Damping in the Stability Analysis of Liquid-propelled Space Vehicles

    NASA Technical Reports Server (NTRS)

    Ottander, John A.; Hall, Robert A., Jr.; Powers, Joseph F.

    2017-01-01

    One of the challenges of developing flight control systems for liquid-propelled space vehicles is ensuring stability and performance in the presence of parasitic minimally damped slosh dynamics in the liquid propellants. This can be especially difficult when the fundamental frequencies of the slosh motions are in proximity to the frequency used for vehicle control. The challenge is partially alleviated since the energy dissipation and effective damping in the slosh modes increases with amplitude. However, traditional launch vehicle control design methodology is performed with linearized systems using a fixed slosh damping corresponding to a slosh motion amplitude based on heritage values. This papers presents a method for performing the control design and analysis using damping at slosh amplitudes chosen based on the resulting limit cycle amplitude of the vehicle thrust vector system due to a control-slosh interaction under degraded phase and gain margin conditions.

  14. Proceedings of Damping 1993, volume 2

    NASA Astrophysics Data System (ADS)

    Portis, Bonnie L.

    1993-06-01

    Presented are individual papers of Damping '93, held 24-26 Feb. 1993 in San Francisco. The subjects included the following: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; applications to aircraft; space structures; marine structures; and commercial products; defense applications; and payoffs of vibration suppression.

  15. RMS active damping augmentation

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Scott, Michael A.; Demeo, Martha E.

    1992-01-01

    The topics are presented in viewgraph form and include: RMS active damping augmentation; potential space station assembly benefits to CSI; LaRC/JSC bridge program; control law design process; draper RMS simulator; MIMO acceleration control laws improve damping; potential load reduction benefit; DRS modified to model distributed accelerations; accelerometer location; Space Shuttle aft cockpit simulator; simulated shuttle video displays; SES test goals and objectives; and SES modifications to support RMS active damping augmentation.

  16. Dynamic analysis to evaluate viscoelastic passive damping augmentation for the Space Shuttle Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Alberts, Thomas E.; Xia, Houchun; Chen, Yung

    1992-01-01

    The effectiveness of constrained viscoelastic layer damping treatment designs is evaluated separately as passive control measures for low frequency joint dominated modes and higher frequency boom flexure dominated modes using a NASTRAN finite element analysis. Passive damping augmentation is proposed which is based on a constrained viscoelastic layer damping treatment applied to the surface of the manipulators's flexible booms. It is pointed out that even the joint compliance dominated modes can be damped to some degree through appropriate design of the treatment.

  17. Decentralized Control of Sound Radiation using a High-Authority/Low-Authority Control Strategy with Anisotropic Actuators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Fuller, Chris R.

    2008-01-01

    This paper describes a combined control strategy designed to reduce sound radiation from stiffened aircraft-style panels. The control architecture uses robust active damping in addition to high-authority linear quadratic Gaussian (LQG) control. Active damping is achieved using direct velocity feedback with triangularly shaped anisotropic actuators and point velocity sensors. While active damping is simple and robust, stability is guaranteed at the expense of performance. Therefore the approach is often referred to as low-authority control. In contrast, LQG control strategies can achieve substantial reductions in sound radiation. Unfortunately, the unmodeled interaction between neighboring control units can destabilize decentralized control systems. Numerical simulations show that combining active damping and decentralized LQG control can be beneficial. In particular, augmenting the in-bandwidth damping supplements the performance of the LQG control strategy and reduces the destabilizing interaction between neighboring control units.

  18. Application of polynomial control to design a robust oscillation-damping controller in a multimachine power system.

    PubMed

    Hasanvand, Hamed; Mozafari, Babak; Arvan, Mohammad R; Amraee, Turaj

    2015-11-01

    This paper addresses the application of a static Var compensator (SVC) to improve the damping of interarea oscillations. Optimal location and size of SVC are defined using bifurcation and modal analysis to satisfy its primary application. Furthermore, the best-input signal for damping controller is selected using Hankel singular values and right half plane-zeros. The proposed approach is aimed to design a robust PI controller based on interval plants and Kharitonov's theorem. The objective here is to determine the stability region to attain robust stability, the desired phase margin, gain margin, and bandwidth. The intersection of the resulting stability regions yields the set of kp-ki parameters. In addition, optimal multiobjective design of PI controller using particle swarm optimization (PSO) algorithm is presented. The effectiveness of the suggested controllers in damping of local and interarea oscillation modes of a multimachine power system, over a wide range of loading conditions and system configurations, is confirmed through eigenvalue analysis and nonlinear time domain simulation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Damping-tunable energy-harvesting vehicle damper with multiple controlled generators: Design, modeling and experiments

    NASA Astrophysics Data System (ADS)

    Xie, Longhan; Li, Jiehong; Li, Xiaodong; Huang, Ledeng; Cai, Siqi

    2018-01-01

    Hydraulic dampers are used to decrease the vibration of a vehicle, where vibration energy is dissipated as heat. In addition to resulting in energy waste, the damping coefficient in hydraulic dampers cannot be changed during operation. In this paper, an energy-harvesting vehicle damper was proposed to replace traditional hydraulic dampers. The goal is not only to recover kinetic energy from suspension vibration but also to change the damping coefficient during operation according to road conditions. The energy-harvesting damper consists of multiple generators that are independently controlled by switches. One of these generators connects to a tunable resistor for fine tuning the damping coefficient, while the other generators are connected to a control and rectifying circuit, each of which both regenerates electricity and provides a constant damping coefficient. A mathematical model was built to investigate the performance of the energy-harvesting damper. By controlling the number of switched-on generators and adjusting the value of the external tunable resistor, the damping can be fine tuned according to the requirement. In addition to the capability of damping tuning, the multiple controlled generators can output a significant amount of electricity. A prototype was built to test the energy-harvesting damper design. Experiments on an MTS testing system were conducted, with results that validated the theoretical analysis. Experiments show that changing the number of switched-on generators can obviously tune the damping coefficient of the damper and simultaneously produce considerable electricity.

  20. Performance and robustness of hybrid model predictive control for controllable dampers in building models

    NASA Astrophysics Data System (ADS)

    Johnson, Erik A.; Elhaddad, Wael M.; Wojtkiewicz, Steven F.

    2016-04-01

    A variety of strategies have been developed over the past few decades to determine controllable damping device forces to mitigate the response of structures and mechanical systems to natural hazards and other excitations. These "smart" damping devices produce forces through passive means but have properties that can be controlled in real time, based on sensor measurements of response across the structure, to dramatically reduce structural motion by exploiting more than the local "information" that is available to purely passive devices. A common strategy is to design optimal damping forces using active control approaches and then try to reproduce those forces with the smart damper. However, these design forces, for some structures and performance objectives, may achieve high performance by selectively adding energy, which cannot be replicated by a controllable damping device, causing the smart damper performance to fall far short of what an active system would provide. The authors have recently demonstrated that a model predictive control strategy using hybrid system models, which utilize both continuous and binary states (the latter to capture the switching behavior between dissipative and non-dissipative forces), can provide reductions in structural response on the order of 50% relative to the conventional clipped-optimal design strategy. This paper explores the robustness of this newly proposed control strategy through evaluating controllable damper performance when the structure model differs from the nominal one used to design the damping strategy. Results from the application to a two-degree-of-freedom structure model confirms the robustness of the proposed strategy.

  1. Design of a New Integrated Structure of the Active Suspension System and Emergency Lane Change Test

    NASA Astrophysics Data System (ADS)

    Zhao, Jing-bo; Liu, Hai-mei; Zhang, Lan-chun; Bei, Shao-yi

    2017-09-01

    An integrated structure of the active suspension system was proposed in order to solve the problem of the individual control of the height of the body or the adjustable damping of the active suspension system of the electric vehicle, which improve the vibration reduction performance of the vehicle. The air bag was used to replace the traditional spiral spring, and the traditional shock absorber was replaced by the damping adjustable shock absorber, and the control module received the body acceleration sensor and the horizontal height sensor signal. The system controlled adjustable damping coefficient of shock absorber through the height of the car body the output of the air pump relay and the height control valve and the output of the electromagnetic valve of the adjustable damping shock absorber, and the emergency lane change test was carried out under different modes of speed of 60km/h. The experimental results indicated that the damping value was greater, average roll angle, yaw angle and average vehicle lateral acceleration were small when vehicle body was in the state of emergency lane change, which verified the feasibility of the integrated control strategy and structure design of the active suspension system. The research has important theoretical research value and engineering application prospect for designing and controlling strategy of vehicle chassis integrated control system.

  2. Principle, design and validation of a power-generated magnetorheological energy absorber with velocity self-sensing capability

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Xu; Zhong, Wei-Min; Zou, Qi; Zhu, An-Ding; Sun, Jun

    2018-07-01

    Based on the structural design concept of ‘functional integration’, this paper proposes the principle of a power-generated magnetorheological energy absorber with velocity self-sensing capability (PGMREA), which realizes the integration of controllable damping mechanism and mechanical energy-electrical energy conversion mechanism in structure profile and multiple functions in function profile, including controllable damping, power generation and velocity self-sensing. The controllable damping mechanism consists of an annular gap and a ball screw. The annular gap fulfilled with MR fluid that operates in pure shear mode under controllable electromagnetic field. The rotational damping torque generated from the controllable damping mechanism is translated to a linear damping force via the ball screw. The mechanical energy-electrical energy conversion mechanism is realized by the ball screw and a generator composed of a permanent magnet rotor and a generator stator. The ball screw based mechanical energy-electrical energy conversion mechanism converts the mechanical energy of excitations to electrical energy for storage or directly to power the controllable damping mechanism of the PGMREA. The velocity self-sensing capability of the PGMREA is achieved via signal processing using the mechanical energy-electrical energy conversion information. Based on the principle of the proposed PGMREA, the mathematical model of the PGMREA is established, including the damping force, generated power and self-sensing velocity. The electromagnetic circuit of the PGMREA is simulated and verified via a finite element analysis software ANSYS. The developed PGMREA prototype is experimentally tested on a servo-hydraulic testing system. The model-based predicted results and the experimental results are compared and analyzed.

  3. Probabilistic performance-based design for high performance control systems

    NASA Astrophysics Data System (ADS)

    Micheli, Laura; Cao, Liang; Gong, Yongqiang; Cancelli, Alessandro; Laflamme, Simon; Alipour, Alice

    2017-04-01

    High performance control systems (HPCS) are advanced damping systems capable of high damping performance over a wide frequency bandwidth, ideal for mitigation of multi-hazards. They include active, semi-active, and hybrid damping systems. However, HPCS are more expensive than typical passive mitigation systems, rely on power and hardware (e.g., sensors, actuators) to operate, and require maintenance. In this paper, a life cycle cost analysis (LCA) approach is proposed to estimate the economic benefit these systems over the entire life of the structure. The novelty resides in the life cycle cost analysis in the performance based design (PBD) tailored to multi-level wind hazards. This yields a probabilistic performance-based design approach for HPCS. Numerical simulations are conducted on a building located in Boston, MA. LCA are conducted for passive control systems and HPCS, and the concept of controller robustness is demonstrated. Results highlight the promise of the proposed performance-based design procedure.

  4. A Multi-Mode Blade Damping Control using Shunted Piezoelectric Transducers with Active Feedback Structure

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Morrison, Carlos; Min, James

    2009-01-01

    The Structural Dynamics and. Mechanics branch (RXS) is developing smart adaptive structures to improve fan blade damping at resonances using piezoelectric (PE) transducers. In this presentation, only one shunted PE transducer was used to demonstrate active control of multi-mode blade resonance damping on a titanium alloy (Ti-6A1-4V) flat plate model, regardless of bending, torsion, and 2-stripe modes. This work would have a significant impact on the conventional passive shunt damping world because the standard feedback control design tools can now be used to design and implement electric shunt for vibration control. In other words, the passive shunt circuit components using massive inductors and. resistors for multi-mode resonance control can be replaced with digital codes. Furthermore, this active approach with multi patches can simultaneously control several modes in the engine operating range. Dr. Benjamin Choi presented the analytical and experimental results from this work at the Propulsion-Safety and. Affordable Readiness (P-SAR) Conference in March, 2009.

  5. Robot vibration control using inertial damping forces

    NASA Technical Reports Server (NTRS)

    Lee, Soo Han; Book, Wayne J.

    1991-01-01

    This paper concerns the suppression of the vibration of a large flexible robot by inertial forces of a small robot which is located at the tip of the large robot. A controller for generating damping forces to a large robot is designed based on the two time scale model. The controller does not need to calculate the quasi-steady variables and is efficient in computation. Simulation results show the effectiveness of the inertial forces and the controller designed.

  6. Robot vibration control using inertial damping forces

    NASA Technical Reports Server (NTRS)

    Lee, Soo Han; Book, Wayne J.

    1989-01-01

    The suppression is examined of the vibration of a large flexible robot by inertial forces of a small robot which is located at the tip of the large robot. A controller for generating damping forces to a large robot is designed based on the two time scale mode. The controller does not need to calculate the quasi-steady state variables and is efficient in computation. Simulation results show the effectiveness of the inertial forces and the controller designed.

  7. Model based PI power system stabilizer design for damping low frequency oscillations in power systems.

    PubMed

    Salgotra, Aprajita; Pan, Somnath

    2018-05-01

    This paper explores a two-level control strategy by blending local controller with centralized controller for the low frequency oscillations in a power system. The proposed control scheme provides stabilization of local modes using a local controller and minimizes the effect of inter-connection of sub-systems performance through a centralized control. For designing the local controllers in the form of proportional-integral power system stabilizer (PI-PSS), a simple and straight forward frequency domain direct synthesis method is considered that works on use of a suitable reference model which is based on the desired requirements. Several examples both on one machine infinite bus and multi-machine systems taken from the literature are illustrated to show the efficacy of the proposed PI-PSS. The effective damping of the systems is found to be increased remarkably which is reflected in the time-responses; even unstable operation has been stabilized with improved damping after applying the proposed controller. The proposed controllers give remarkable improvement in damping the oscillations in all the illustrations considered here and as for example, the value of damping factor has been increased from 0.0217 to 0.666 in Example 1. The simulation results obtained by the proposed control strategy are favourably compared with some controllers prevalent in the literature. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Experimental and analytical studies on multiple tuned mass dampers for seismic protection of porcelain electrical equipment

    NASA Astrophysics Data System (ADS)

    Bai, Wen; Dai, Junwu; Zhou, Huimeng; Yang, Yongqiang; Ning, Xiaoqing

    2017-10-01

    Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic performance of two typical types of PEE and proposes a damping method for PEE based on multiple tuned mass dampers (MTMD). An MTMD damping device involving three mass units, named a triple tuned mass damper (TTMD), is designed and manufactured. Through shake table tests and finite element analysis, the dynamic characteristics of the PEE are studied and the effectiveness of the MTMD damping method is verified. The adverse influence of MTMD redundant mass to damping efficiency is studied and relevant equations are derived. MTMD robustness is verified through adjusting TTMD control frequencies. The damping effectiveness of TTMD, when the peak ground acceleration far exceeds the design value, is studied. Both shake table tests and finite element analysis indicate that MTMD is effective and robust in attenuating PEE seismic responses. TTMD remains effective when the PGA far exceeds the design value and when control deviations are considered.

  9. The Shock and Vibration Bulletin: Proceedings on the Symposium on ShocK and Vibration (52nd) Held in New Orleans, Louisiana on 26-28 October 1981. Part 5. Mathematical Modeling and Structural Dynamics

    DTIC Science & Technology

    1982-05-01

    ment analysis to evaluate viscoelastic damping treatments for HCF control . Steps for analyzing passive damping treatments are presented. Design criteria... design earthquake levels could structures such as piers, drydocks, power result in destruction of such critical strut- plants, control towers, and...and J.R. Curreri, "Some Aspects of 2 Vibration Control Support Designs ," The Shock p m 0.0005161 lb-sec n and vibration Symposium Bulletin, The Shock

  10. Design of passive piezoelectric damping for space structures. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hagood, Nesbitt W., IV; Aldrich, Jack B.; Vonflotow, Andreas H.

    1994-01-01

    Passive damping of structural dynamics using piezoceramic electromechanical energy conversion and passive electrical networks is a relatively recent concept with little implementation experience base. This report describes an implementation case study, starting from conceptual design and technique selection, through detailed component design and testing to simulation on the structure to be damped. About 0.5kg. of piezoelectric material was employed to damp the ASTREX testbed, a 500kg structure. Emphasis was placed upon designing the damping to enable high bandwidth robust feedback control. Resistive piezoelectric shunting provided the necessary broadband damping. The piezoelectric element was incorporated into a mechanically-tuned vibration absorber in order to concentrate damping into the 30 to 40 Hz frequency modes at the rolloff region of the proposed compensator. A prototype of a steel flex-tensional motion amplification device was built and tested. The effective stiffness and damping of the flex-tensional device was experimentally verified. When six of these effective springs are placed in an orthogonal configuration, strain energy is absorbed from all six degrees of freedom of a 90kg. mass. A NASTRAN finite element model of the testbed was modified to include the six-spring damping system. An analytical model was developed for the spring in order to see how the flex-tensional device and piezoelectric dimensions effect the critical stress and strain energy distribution throughout the component. Simulation of the testbed demonstrated the damping levels achievable in the completed system.

  11. Design and experiment study of a semi-active energy-regenerative suspension system

    NASA Astrophysics Data System (ADS)

    Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie

    2015-01-01

    A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration.

  12. Optimum design of a novel pounding tuned mass damper under harmonic excitation

    NASA Astrophysics Data System (ADS)

    Wang, Wenxi; Hua, Xugang; Wang, Xiuyong; Chen, Zhengqing; Song, Gangbing

    2017-05-01

    In this paper, a novel pounding tuned mass damper (PTMD) utilizing pounding damping is proposed to reduce structural vibration by increasing the damping ratio of a lightly damped structure. The pounding boundary covered by viscoelastic material is fixed right next to the tuned mass when the spring-mass system is in the equilibrium position. The dynamic properties of the proposed PTMD, including the natural frequency and the equivalent damping ratio, are derived theoretically. Moreover, the numerical simulation method by using an impact force model to study the PTMD is proposed and validated by pounding experiments. To minimize the maximum dynamic magnification factor under harmonic excitations, an optimum design of the PTMD is developed. Finally, the optimal PTMD is implemented to control a lightly damped frame structure. A comparison of experimental and simulated results reveals that the proposed impact force model can accurately model the pounding force. Furthermore, the proposed PTMD is effective to control the vibration in a wide frequency range, as demonstrated experimentally.

  13. Evaluation of a stall-flutter spring-damper pushrod in the rotating control system of a CH-54B helicopter

    NASA Technical Reports Server (NTRS)

    Nettles, W. E.; Paul, W. F.; Adams, D. O.

    1974-01-01

    Results of a design and flight test program conducted to define the effect of rotating pushrod damping on stall-flutter induced control loads are presented. The CH-54B helicopter was chosen as the test aircraft because it exhibited stall induced control loads. Damping was introduced into the CH-54B control system by replacing the standard pushrod with spring-damper assemblies. Design features of the spring-damper are described and the results of a dynamic analysis are shown which define the pushrod stiffness and damping requirements. Flight test measurements taken at 47,000 lb gross weight with and without the damper are presented. The results indicate that the spring-damper pushrods reduced high frequency, stall-induced rotating control loads by almost 50%. Fixed system control loads were reduced by 40%. Handling qualities in stall were unchanged, as expected.

  14. Active/Passive Control of Sound Radiation from Panels using Constrained Layer Damping

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2003-01-01

    A hybrid passive/active noise control system utilizing constrained layer damping and model predictive feedback control is presented. This system is used to control the sound radiation of panels due to broadband disturbances. To facilitate the hybrid system design, a methodology for placement of constrained layer damping which targets selected modes based on their relative radiated sound power is developed. The placement methodology is utilized to determine two constrained layer damping configurations for experimental evaluation of a hybrid system. The first configuration targets the (4,1) panel mode which is not controllable by the piezoelectric control actuator, and the (2,3) and (5,2) panel modes. The second configuration targets the (1,1) and (3,1) modes. The experimental results demonstrate the improved reduction of radiated sound power using the hybrid passive/active control system as compared to the active control system alone.

  15. A passively controlled appendage deployment system for the San Marco D/L spacecraft

    NASA Technical Reports Server (NTRS)

    Lang, W. E.; Frisch, H. P.; Schwartz, D. A.

    1984-01-01

    The analytical simulation of deployment dynamics of these two axis concepts as well as the evolution of practical designs for the add on deployable inertia boom units is described. With the boom free to swing back in response to Coriolis forces as well as outwards in response to centrifugal forces, the kinematics of motion are complex but admit the possibility of absorbing deployment energy in frictional or other damping devices about the radial axis, where large amplitude motions can occur and where the design envelope allows more available volume. An acceptable range is defined for frictional damping for any given spin rate. Inadequate damping allows boom motions which strike the spacecraft; excessive damping causes the boom to swing out and latch with damaging violence. The acceptable range is a design parameter and must accommodate spin rate tolerance and also the tolerance and repeatability of the damping mechanisms.

  16. Seismic design of passive tuned mass damper parameters using active control algorithm

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Ming; Shia, Syuan; Lai, Yong-An

    2018-07-01

    Tuned mass dampers are a widely-accepted control method to effectively reduce the vibrations of tall buildings. A tuned mass damper employs a damped harmonic oscillator with specific dynamic characteristics, thus the response of structures can be regulated by the additive dynamics. The additive dynamics are, however, similar to the feedback control system in active control. Therefore, the objective of this study is to develop a new tuned mass damper design procedure based on the active control algorithm, i.e., the H2/LQG control. This design facilitates the similarity of feedback control in the active control algorithm to determine the spring and damper in a tuned mass damper. Given a mass ratio between the damper and structure, the stiffness and damping coefficient of the tuned mass damper are derived by minimizing the response objective function of the primary structure, where the structural properties are known. Varying a single weighting in this objective function yields the optimal TMD design when the minimum peak in the displacement transfer function of the structure with the TMD is met. This study examines various objective functions as well as derives the associated equations to compute the stiffness and damping coefficient. The relationship between the primary structure and optimal tuned mass damper is parametrically studied. Performance is evaluated by exploring the h2-and h∞-norms of displacements and accelerations of the primary structure. In time-domain analysis, the damping effectiveness of the tune mass damper controlled structures is investigated under impulse excitation. Structures with the optimal tuned mass dampers are also assessed under seismic excitation. As a result, the proposed design procedure produces an effective tuned mass damper to be employed in a structure against earthquakes.

  17. Linear Proof-Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III; Crossley, Edward A.; Miller, James B.; Jones, Irby W.; Davis, C. Calvin; Behun, Vaughn D.; Goodrich, Lewis R., Sr.

    1995-01-01

    Linear proof-mass actuator (LPMA) is friction-driven linear mass actuator capable of applying controlled force to structure in outer space to damp out oscillations. Capable of high accelerations and provides smooth, bidirectional travel of mass. Design eliminates gears and belts. LPMA strong enough to be used terrestrially where linear actuators needed to excite or damp out oscillations. High flexibility designed into LPMA by varying size of motors, mass, and length of stroke, and by modifying control software.

  18. Passive eddy-current damping as a means of vibration control in cryogenic turbomachinery

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1986-01-01

    Lateral shaft vibrations produced by a rotating unbalance weight were damped by means of eddy currents generated in copper conductors that were precessing cyclicly in the gap formed by the pole faces of C-shaped, permanent magnets. The damper assembly, which was located at the lower bearing support of a vertically oriented rotor was completely immersed in liquid nitrogen during the test run. The test rotor was operated over a speed range from 800 to 10,000 rpm. Three magnet/conductor designs were evaluated. Experimental damping coefficients varied from 180 to 530 N sec/m. Reasonable agreement was noted for theoretical values of damping for these same assemblies. Values of damping coefficients varied from 150 to 780 N sec/m. The results demonstrate that passive eddy-current damping is a viable candidate for vibration control in cryogenic turbomachinery.

  19. Comparison of adaptive critic-based and classical wide-area controllers for power systems.

    PubMed

    Ray, Swakshar; Venayagamoorthy, Ganesh Kumar; Chaudhuri, Balarko; Majumder, Rajat

    2008-08-01

    An adaptive critic design (ACD)-based damping controller is developed for a thyristor-controlled series capacitor (TCSC) installed in a power system with multiple poorly damped interarea modes. The performance of this ACD computational intelligence-based method is compared with two classical techniques, which are observer-based state-feedback (SF) control and linear matrix inequality LMI-H(infinity) robust control. Remote measurements are used as feedback signals to the wide-area damping controller for modulating the compensation of the TCSC. The classical methods use a linearized model of the system whereas the ACD method is purely measurement-based, leading to a nonlinear controller with fixed parameters. A comparative analysis of the controllers' performances is carried out under different disturbance scenarios. The ACD-based design has shown promising performance with very little knowledge of the system compared to classical model-based controllers. This paper also discusses the advantages and disadvantages of ACDs, SF, and LMI-H(infinity).

  20. Study on Active Suppression Control of Drivetrain Oscillations in an Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Cui, Ying

    2017-07-01

    Due to the low damping in a central driven electric vehicle and lack of passive damping mechanisms as compared with a conventional vehicle, the vehicle may endure torsional vibrations which may deteriorates the vehicle’s drivability. Thus active damping control strategy is required to reduce the undesirable oscillations in an EV. In this paper, the origin of the vibration and the design of a damping control method to suppress such oscillations to improve the drivability of an EV are studied. The traction motor torque that is given by the vehicle controller is adjusted according to the acceleration rate of the motor speed to attenuate the resonant frequency. Simulations and experiments are performed to validate the system. The results show that the proposed control system can effectively suppress oscillations and hence improve drivability.

  1. Passive damping in EDS maglev systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rote, D. M.

    2002-05-03

    There continues to be strong interest in the subjects of damping and drag forces associated with electrodynamic suspension (EDS) systems. While electromagnetic drag forces resist the forward motion of a vehicle and therefore consume energy, damping forces control, at least in part, the response of the vehicle to disturbances. Ideally, one would like to reduce the drag forces as much as possible while retaining adequate damping forces to insure dynamic stability and satisfactory ride quality. These two goals turn out to be difficult to achieve in practice. It is well known that maglev systems tend to be intrinsically under damped.more » Consequently it is often necessary in a practical system design to enhance the damping passively or actively. For reasons of cost and simplicity, it is desirable to rely as much as possible on passive damping mechanisms. In this paper, rough estimates are made of the passive damping and drag forces caused by various mechanisms in EDS systems. No attention will be given to active control systems or secondary suspension systems which are obvious ways to augment passive damping mechanisms if the latter prove to be inadequate.« less

  2. Status of E-ELT M5 scale-one demonstrator

    NASA Astrophysics Data System (ADS)

    Barriga, Pablo; Sedghi, Babak; Dimmler, Martin; Kornweibel, Nick

    2014-07-01

    The fifth mirror of the European Extremely Large Telescope optical train is a field stabilization tip/tilt unit responsible for correcting the dynamical tip and tilt caused mainly by wind load on the telescope. A scale-one prototype including the inclined support, the fixed frame and a basic control system was designed and manufactured by NTE-SENER (Spain) and CSEM (Switzerland) as part of the prototyping and design activities. All interfaces to the mirror have been reproduced on a dummy structure reproducing the inertial characteristics of the optical element. The M5 unit is required to have sufficient bandwidth for tip/tilt reference commands coming from the wavefront control system. Such a bandwidth can be achieved using local active damping loop to damp the low frequency mechanical modes before closing a position loop. Prototyping on the M5 unit has been undertaken in order to demonstrate the E-ELT control system architecture, concepts and development standards and to further study active damping strategies. The control system consists of two nested loops: a local damping loop and a position loop. The development of this control system was undertaken following the E-ELT control system development standards in order to determine their applicability and performance and includes hardware selection, communication, synchronization, configuration, and data logging. In this paper we present the current status of the prototype M5 control system and the latest results on the active damping control strategy, in particular the promising results obtained with the method of positive position feedback.

  3. Liquid rocket engine combustion stabilization devices

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Combustion instability, which results from a coupling of the combustion process and the fluid dynamics of the engine system, was investigated. The design of devices which reduce coupling (combustion chamber baffles) and devices which increase damping (acoustic absorbers) are described. Included in the discussion are design criteria and recommended practices, structural and mechanical design, thermal control, baffle geometry, baffle/engine interactions, acoustic damping analysis, and absorber configurations.

  4. Robust lateral blended-wing-body aircraft feedback control design using a parameterized LFR model and DGK-iteration

    NASA Astrophysics Data System (ADS)

    Schirrer, A.; Westermayer, C.; Hemedi, M.; Kozek, M.

    2013-12-01

    This paper shows control design results, performance, and limitations of robust lateral control law designs based on the DGK-iteration mixed-μ-synthesis procedure for a large, flexible blended wing body (BWB) passenger aircraft. The aircraft dynamics is preshaped by a low-complexity inner loop control law providing stabilization, basic response shaping, and flexible mode damping. The μ controllers are designed to further improve vibration damping of the main flexible modes by exploiting the structure of the arising significant parameter-dependent plant variations. This is achieved by utilizing parameterized Linear Fractional Representations (LFR) of the aircraft rigid and flexible dynamics. Designs with various levels of LFR complexity are carried out and discussed, showing the achieved performance improvement over the initial controller and their robustness and complexity properties.

  5. Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors

    PubMed Central

    Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia

    2017-01-01

    Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design of the five-axis bearing control system and facilitate the initial suspension test of the rotor for various micromotor devices. PMID:28505089

  6. Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors.

    PubMed

    Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia

    2017-05-13

    Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design of the five-axis bearing control system and facilitate the initial suspension test of the rotor for various micromotor devices.

  7. Damping Characteristics of Metal Matrix Composites

    DTIC Science & Technology

    1989-05-25

    DAMPING OF METAL MATRIX COMPOSITES - -.......... 7-1 7.1 EPERIMENTAL PROCEDURE .............................................................. 7-1 7.2 M...space structures (LSS). A critical design concern for LSS is suppression of vibrations, caused by onboard and hostile threat-related disturbances during...acquisi- tion pointing and tracing (APT) phases of maneuvering. Various active and passive control mea- sures can be incorporated in the designs of

  8. Modelling and identification for control of gas bearings

    NASA Astrophysics Data System (ADS)

    Theisen, Lukas R. S.; Niemann, Hans H.; Santos, Ilmar F.; Galeazzi, Roberto; Blanke, Mogens

    2016-03-01

    Gas bearings are popular for their high speed capabilities, low friction and clean operation, but suffer from poor damping, which poses challenges for safe operation in presence of disturbances. Feedback control can achieve enhanced damping but requires low complexity models of the dominant dynamics over its entire operating range. Models from first principles are complex and sensitive to parameter uncertainty. This paper presents an experimental technique for "in situ" identification of a low complexity model of a rotor-bearing-actuator system and demonstrates identification over relevant ranges of rotational speed and gas injection pressure. This is obtained using parameter-varying linear models that are found to capture the dominant dynamics. The approach is shown to be easily applied and to suit subsequent control design. Based on the identified models, decentralised proportional control is designed and shown to obtain the required damping in theory and in a laboratory test rig.

  9. Reducing model uncertainty effects in flexible manipulators through the addition of passive damping

    NASA Technical Reports Server (NTRS)

    Alberts, T. E.

    1987-01-01

    An important issue in the control of practical systems is the effect of model uncertainty on closed loop performance. This is of particular concern when flexible structures are to be controlled, due to the fact that states associated with higher frequency vibration modes are truncated in order to make the control problem tractable. Digital simulations of a single-link manipulator system are employed to demonstrate that passive damping added to the flexible member reduces adverse effects associated with model uncertainty. A controller was designed based on a model including only one flexible mode. This controller was applied to larger order systems to evaluate the effects of modal truncation. Simulations using a Linear Quadratic Regulator (LQR) design assuming full state feedback illustrate the effect of control spillover. Simulations of a system using output feedback illustrate the destabilizing effect of observation spillover. The simulations reveal that the system with passive damping is less susceptible to these effects than the untreated case.

  10. A design procedure for active control of beam vibrations

    NASA Technical Reports Server (NTRS)

    Dickerson, S. L.; Jarocki, G.

    1983-01-01

    The transverse vibrations of beams is discussed and a methodology for the design of an active damping device is given. The Bernoulli-Euler equation is used to derive a transcendental transfer function, which relates a torque applied at one end of the beam to the rotational position and velocity at that point. The active damping device consists of a wire, a linear actuator and a short torque arm attached to one end of the beam. The action of the actuator varies a tension in the wire and creates a torque which opposes the rotation of the beam and thus damps vibration. A design procedure for such an active damper is given. This procedure shows the relationships and trade-offs between the actuator stroke, power required, stress levels in the wire and beam and the geometry of the beam and wire. It is shown that by consideration of the frequency response at the beam natural frequencies, the aforementioned relationships can be greatly simplified. Similarly, a simple way of estimating the effective damping ratios and eigenvalue locations of actively controlled beams is presented.

  11. Decoupled Modulation Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shaobu; Huang, Renke; Huang, Zhenyu

    The objective of this research work is to develop decoupled modulation control methods for damping inter-area oscillations with low frequencies, so the damping control can be more effective and easier to design with less interference among different oscillation modes in the power system. A signal-decoupling algorithm was developed that can enable separation of multiple oscillation frequency contents and extraction of a “pure” oscillation frequency mode that are fed into Power System Stabilizers (PSSs) as the modulation input signals. As a result, instead of introducing interferences between different oscillation modes from the traditional approaches, the output of the new PSS modulationmore » control signal mainly affects only one oscillation mode of interest. The new decoupled modulation damping control algorithm has been successfully developed and tested on the standard IEEE 4-machine 2-area test system and a minniWECC system. The results are compared against traditional modulation controls, which demonstrates the validity and effectiveness of the newly-developed decoupled modulation damping control algorithm.« less

  12. Optimization of the structural and control system for LSS with reduced-order model

    NASA Technical Reports Server (NTRS)

    Khot, N. S.

    1989-01-01

    The objective is the simultaneous design of the structural and control system for space structures. The minimum weight of the structure is the objective function, and the constraints are placed on the closed loop distribution of the frequencies and the damping parameters. The controls approach used is linear quadratic regulator with constant feedback. A reduced-order control system is used. The effect of uncontrolled modes is taken into consideration by the model error sensitivity suppression (MESS) technique which modified the weighting parameters for the control forces. For illustration, an ACOSS-FOUR structure is designed for a different number of controlled modes with specified values for the closed loop damping parameters and frequencies. The dynamic response of the optimum designs for an initial disturbance is compared.

  13. Wide-area Power System Damping Control Coordination Based on Particle Swarm Optimization with Time Delay Considered

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Jiang, Y.

    2017-10-01

    To ensure satisfactory dynamic performance of controllers in time-delayed power systems, a WAMS-based control strategy is investigated in the presence of output feedback delay. An integrated approach based on Pade approximation and particle swarm optimization (PSO) is employed for parameter configuration of PSS. The coordination configuration scheme of power system controllers is achieved by a series of stability constraints at the aim of maximizing the minimum damping ratio of inter-area mode of power system. The validity of this derived PSS is verified on a prototype power system. The findings demonstrate that the proposed approach for control design could damp the inter-area oscillation and enhance the small-signal stability.

  14. Active member vibration control experiment in a KC-135 reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Lawrence, C. R.; Lurie, B. J.; Chen, G.-S.; Swanson, A. D.

    1991-01-01

    An active member vibration control experiment in a KC-135 reduced gravity environment was carried out by the Air Force Flight Dynamics Laboratory and the Jet Propulsion Laboratory. Two active members, consisting of piezoelectric actuators, displacement sensors, and load cells, were incorporated into a 12-meter, 104 kg box-type test structure. The active member control design involved the use of bridge (compound) feedback concept, in which the collocated force and velocity signals are feedback locally. An impact-type test was designed to accommodate the extremely short duration of the reduced gravity testing window in each parabolic flight. The moving block analysis technique was used to estimate the modal frequencies and dampings from the free-decay responses. A broadband damping performance was demonstrated up to the ninth mode of 40 Hz. The best damping performance achieved in the flight test was about 5 percent in the fourth mode of the test structure.

  15. Robust control of integrated motor-transmission powertrain system over controller area network for automotive applications

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyuan; Zhang, Hui; Cao, Dongpu; Fang, Zongde

    2015-06-01

    Integrated motor-transmission (IMT) powertrain system with directly coupled motor and gearbox is a good choice for electric commercial vehicles (e.g., pure electric buses) due to its potential in motor size reduction and energy efficiency improvement. However, the controller design for powertrain oscillation damping becomes challenging due to the elimination of damping components. On the other hand, as controller area network (CAN) is commonly adopted in modern vehicle system, the network-induced time-varying delays that caused by bandwidth limitation will further lead to powertrain vibration or even destabilize the powertrain control system. Therefore, in this paper, a robust energy-to-peak controller is proposed for the IMT powertrain system to address the oscillation damping problem and also attenuate the external disturbance. The control law adopted here is based on a multivariable PI control, which ensures the applicability and performance of the proposed controller in engineering practice. With the linearized delay uncertainties characterized by polytopic inclusions, a delay-free closed-loop augmented system is established for the IMT powertrain system under discrete-time framework. The proposed controller design problem is then converted to a static output feedback (SOF) controller design problem where the feedback control gains are obtained by solving a set of linear matrix inequalities (LMIs). The effectiveness as well as robustness of the proposed controller is demonstrated by comparing its performance against that of a conventional PI controller.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xian-Xu, E-mail: bai@hfut.edu.cn; Wereley, Norman M.; Hu, Wei

    A single-degree-of-freedom (SDOF) semi-active vibration control system based on a magnetorheological (MR) damper with an inner bypass is investigated in this paper. The MR damper employing a pair of concentric tubes, between which the key structure, i.e., the inner bypass, is formed and MR fluids are energized, is designed to provide large dynamic range (i.e., ratio of field-on damping force to field-off damping force) and damping force range. The damping force performance of the MR damper is modeled using phenomenological model and verified by the experimental tests. In order to assess its feasibility and capability in vibration control systems, themore » mathematical model of a SDOF semi-active vibration control system based on the MR damper and skyhook control strategy is established. Using an MTS 244 hydraulic vibration exciter system and a dSPACE DS1103 real-time simulation system, experimental study for the SDOF semi-active vibration control system is also conducted. Simulation results are compared to experimental measurements.« less

  17. Nonlinear damping based semi-active building isolation system

    NASA Astrophysics Data System (ADS)

    Ho, Carmen; Zhu, Yunpeng; Lang, Zi-Qiang; Billings, Stephen A.; Kohiyama, Masayuki; Wakayama, Shizuka

    2018-06-01

    Many buildings in Japan currently have a base-isolation system with a low stiffness that is designed to shift the natural frequency of the building below the frequencies of the ground motion due to earthquakes. However, the ground motion observed during the 2011 Tohoku earthquake contained strong long-period waves that lasted for a record length of 3 min. To provide a novel and better solution against the long-period waves while maintaining the performance of the standard isolation range, the exploitation of the characteristics of nonlinear damping is proposed in this paper. This is motivated by previous studies of the authors, which have demonstrated that nonlinear damping can achieve desired performance over both low and high frequency regions and the optimal nonlinear damping force can be realized by closed loop controlled semi-active dampers. Simulation results have shown strong vibration isolation performance on a building model with identified parameters and have indicated that nonlinear damping can achieve low acceleration transmissibilities round the structural natural frequency as well as the higher ground motion frequencies that have been frequently observed during most earthquakes in Japan. In addition, physical building model based laboratory experiments are also conducted, The results demonstrate the advantages of the proposed nonlinear damping technologies over both traditional linear damping and more advanced Linear-Quadratic Gaussian (LQG) feedback control which have been used in practice to address building isolation system design and implementation problems. In comparison with the tuned-mass damper and other active control methods, the proposed solution offers a more pragmatic, low-cost, robust and effective alternative that can be readily installed into the base-isolation system of most buildings.

  18. Optimisation of flight dynamic control based on many-objectives meta-heuristic: a comparative study

    NASA Astrophysics Data System (ADS)

    Bureerat, Sujin; Pholdee, Nantiwat; Radpukdee, Thana

    2018-05-01

    Development of many objective meta-heuristics (MnMHs) is a currently interesting topic as they are suitable to real applications of optimisation problems which usually require many ob-jectives. However, most of MnMHs have been mostly developed and tested based on stand-ard testing functions while the use of MnMHs to real applications is rare. Therefore, in this work, MnMHs are applied for optimisation design of flight dynamic control. The design prob-lem is posed to find control gains for minimising; the control effort, the spiral root, the damp-ing in roll root, sideslip angle deviation, and maximising; the damping ratio of the dutch-roll complex pair, the dutch-roll frequency, bank angle at pre-specified times 1 seconds and 2.8 second subjected to several constraints based on Military Specifications (1969) requirement. Several established many-objective meta-heuristics (MnMHs) are used to solve the problem while their performances are compared. With this research work, performance of several MnMHs for flight control is investigated. The results obtained will be the baseline for future development of flight dynamic and control.

  19. Six degree of freedom active vibration damping for space application

    NASA Technical Reports Server (NTRS)

    Haynes, Leonard S.

    1993-01-01

    Work performed during the period 1 Jan. - 31 Mar. 1993 on six degree of freedom active vibration damping for space application is presented. A performance and cost report is included. Topics covered include: actuator testing; mechanical amplifier design; and neural network control system development and experimental evaluation.

  20. Experimental study on the damping of FAST cabin suspension system

    NASA Astrophysics Data System (ADS)

    Li, Hui; Sun, Jing-hai; Zhang, Xin-yu; Zhu, Wen-bai; Pan, Gao-feng; Yang, Qing-ge

    2012-09-01

    The focus cabin suspension of the FAST telescope has structurally weak-stiffness dynamics with low damping performance, which makes it quite sensitive to wind-induced vibrations. A reasonable estimation about the damping is very important for the control performance evaluation of the prototype. It is a quite difficult task as the telescope is no at available yet. In the paper, a preliminary analysis is first made on the aerodynamic damping. Then a series of experimental models are tested for measuring the total damping. The scales of these models range from 10m to 50m in diameter while 6 test parameters are specially designed to check the damping sensitivity. The Ibrahim time domain (ITD) method is employed to identify the damping from the measured cabin response. The identification results indicate that the lowest damping ratio of the models is about 0.2%~0.4%. Friction-type cabin-cable joint seems to have main influence on the system damping.

  1. Vibration control of a ship engine system using high-load magnetorheological mounts associated with a new indirect fuzzy sliding mode controller

    NASA Astrophysics Data System (ADS)

    Phu, Do Xuan; Choi, Seung-Bok

    2015-02-01

    In this work, a new high-load magnetorheological (MR) fluid mount system is devised and applied to control vibration in a ship engine. In the investigation of vibration-control performance, a new modified indirect fuzzy sliding mode controller is formulated and realized. The design of the proposed MR mount is based on the flow mode of MR fluid, and it includes two separated coils for generating a magnetic field. An optimization process is carried out to achieve maximal damping force under certain design constraints, such as the allowable height of the mount. As an actuating smart fluid, a new plate-like iron-particle-based MR fluid is used, instead of the conventional spherical iron-particle-based MR fluid. After evaluating the field-dependent yield stress of the MR fluid, the field-dependent damping force required to control unwanted vibration in the ship engine is determined. Subsequently, an appropriate-sized MR mount is manufactured and its damping characteristics are evaluated. After confirming the sufficient damping force level of the manufactured MR mount, a medium-sized ship engine mount system consisting of eight MR mounts is established, and its dynamic governing equations are derived. A new modified indirect fuzzy sliding mode controller is then formulated and applied to the engine mount system. The displacement and velocity responses show that the unwanted vibrations of the ship engine system can be effectively controlled in both the axial and radial directions by applying the proposed control methodology.

  2. Making chaotic behavior in a damped linear harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Konishi, Keiji

    2001-06-01

    The present Letter proposes a simple control method which makes chaotic behavior in a damped linear harmonic oscillator. This method is a modified scheme proposed in paper by Wang and Chen (IEEE CAS-I 47 (2000) 410) which presents an anti-control method for making chaotic behavior in discrete-time linear systems. We provide a systematic procedure to design parameters and sampling period of a feedback controller. Furthermore, we show that our method works well on numerical simulations.

  3. Active vibration absorber for CSI evolutionary model: Design and experimental results

    NASA Technical Reports Server (NTRS)

    Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan

    1991-01-01

    The development of control of large flexible structures technology must include practical demonstration to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility was developed to study practical implementation of new control technologies under realistic conditions. The design is discussed of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. The primary performance objective considered is damping augmentation of the first nine structural modes. Comparison of experimental and predicted closed loop damping is presented, including test and simulation time histories for open and closed loop cases. Although the simulation and test results are not in full agreement, robustness of this design under model uncertainty is demonstrated. The basic advantage of this second order controller design is that the stability of the controller is model independent.

  4. Nonlinear frequency response based adaptive vibration controller design for a class of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Thenozhi, Suresh; Tang, Yu

    2018-01-01

    Frequency response functions (FRF) are often used in the vibration controller design problems of mechanical systems. Unlike linear systems, the FRF derivation for nonlinear systems is not trivial due to their complex behaviors. To address this issue, the convergence property of nonlinear systems can be studied using convergence analysis. For a class of time-invariant nonlinear systems termed as convergent systems, the nonlinear FRF can be obtained. The present paper proposes a nonlinear FRF based adaptive vibration controller design for a mechanical system with cubic damping nonlinearity and a satellite system. Here the controller gains are tuned such that a desired closed-loop frequency response for a band of harmonic excitations is achieved. Unlike the system with cubic damping, the satellite system is not convergent, therefore an additional controller is utilized to achieve the convergence property. Finally, numerical examples are provided to illustrate the effectiveness of the proposed controller.

  5. Control design challenges of large space systems and spacecraft control laboratory experiment (SCOLE)

    NASA Technical Reports Server (NTRS)

    Lin, Jiguan Gene

    1987-01-01

    The quick suppression of the structural vibrations excited by bang-bang (BB) type time-optional slew maneuvers via modal-dashpot design of velocity output feedback control was investigated. Simulation studies were conducted, and modal dashpots were designed for the SCOLE flexible body dynamics. A two-stage approach was proposed for rapid slewing and precision pointing/retargeting of large, flexible space systems: (1) slew the whole system like a rigid body in a minimum time under specified limits on the control moments and forces, and (2) damp out the excited structural vibrations afterwards. This approach was found promising. High-power modal/dashpots can suppress very large vibrations, and can add a desirable amount of active damping to modeled modes. Unmodeled modes can also receive some concomitant active damping, as a benefit of spillover. Results also show that not all BB type rapid pointing maneuvers will excite large structural vibrations. When properly selected small forces (e.g., vernier thrusters) are used to complete the specified slew maneuver in the shortest time, even BB-type maneuvers will excite only small vibrations (e.g., 0.3 ft peak deflection for a 130 ft beam).

  6. Impacting load control of floating supported friction plate and its experimental verification

    NASA Astrophysics Data System (ADS)

    Ning, Keyan; Wang, Yu; Huang, Dingchuan; Yin, Lei

    2017-05-01

    Friction plates are key components in automobile transmission system. Unfortunately, due to the tough working condition i.e. high impact, high temperature, fracture and plastic deformation are easily observed in friction plates. In order to reduce the impact load and increase the impact resistance and life span of the friction plate. This paper presents a variable damping design method and structure, by punching holes in the key position of the friction plate and filling it with damping materials, the impact load of the floating support friction plate can be controlled. Simulation is applied to study the effect of the position and number of damping holes on tooth root stress. Furthermore, physic test was designed and conducted to validate the correctness and effectiveness of the proposed method. Test result shows that the impact load of the new structure is reduced by 40% and its fatigue life is 4.7 times larger. The new structure provides a new way for floating supported friction plates design.

  7. Direct heuristic dynamic programming for damping oscillations in a large power system.

    PubMed

    Lu, Chao; Si, Jennie; Xie, Xiaorong

    2008-08-01

    This paper applies a neural-network-based approximate dynamic programming method, namely, the direct heuristic dynamic programming (direct HDP), to a large power system stability control problem. The direct HDP is a learning- and approximation-based approach to addressing nonlinear coordinated control under uncertainty. One of the major design parameters, the controller learning objective function, is formulated to directly account for network-wide low-frequency oscillation with the presence of nonlinearity, uncertainty, and coupling effect among system components. Results include a novel learning control structure based on the direct HDP with applications to two power system problems. The first case involves static var compensator supplementary damping control, which is used to provide a comprehensive evaluation of the learning control performance. The second case aims at addressing a difficult complex system challenge by providing a new solution to a large interconnected power network oscillation damping control problem that frequently occurs in the China Southern Power Grid.

  8. Design of a magnetorheological automotive shock absorber

    NASA Astrophysics Data System (ADS)

    Lindler, Jason E.; Dimock, Glen A.; Wereley, Norman M.

    2000-06-01

    Double adjustable shock absorbers allow for independent adjustment of the yield force and post-yield damping in the force versus velocity response. To emulate the performance of a conventional double adjustable shock absorber, a magnetorheological (MR) automotive shock absorber was designed and fabricated at the University of Maryland. Located in the piston head, an applied magnetic field between the core and flux return increases the force required for a given piston rod velocity. Between the core and flux return, two different shaped gaps meet the controllable performance requirements of a double adjustable shock. A uniform gap between the core and the flux return primarily adjusts the yield force of the shock absorber, while a non-uniform gap allows for control of the post-yield damping. Force measurements from sinusoidal displacement cycles, recorded on a mechanical damper dynamometer, validate the performance of uniform and non- uniform gaps for adjustment of the yield force and post-yield damping, respectively.

  9. Control of large space structures

    NASA Technical Reports Server (NTRS)

    Gran, R.; Rossi, M.; Moyer, H. G.; Austin, F.

    1979-01-01

    The control of large space structures was studied to determine what, if any, limitations are imposed on the size of spacecraft which may be controlled using current control system design technology. Using a typical structure in the 35 to 70 meter size category, a control system design that used actuators that are currently available was designed. The amount of control power required to maintain the vehicle in a stabilized gravity gradient pointing orientation that also damped various structural motions was determined. The moment of inertia and mass properties of this structure were varied to verify that stability and performance were maintained. The study concludes that the structure's size is required to change by at least a factor of two before any stability problems arise. The stability margin that is lost is due to the scaling of the gravity gradient torques (the rigid body control) and as such can easily be corrected by changing the control gains associated with the rigid body control. A secondary conclusion from the study is that the control design that accommodates the structural motions (to damp them) is a little more sensitive than the design that works on attitude control of the rigid body only.

  10. Approximate analytical relationships for linear optimal aeroelastic flight control laws

    NASA Astrophysics Data System (ADS)

    Kassem, Ayman Hamdy

    1998-09-01

    This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.

  11. Highly Maneuverable Aircraft Technology (HiMAT) flight-flutter test program

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.

    1984-01-01

    The highly maneuverable aircraft technology (HiMAT) vehicle was evaluated in a joint NASA and Air Force flight test program. The HiMAT vehicle is a remotely piloted research vehicle. Its design incorporates the use of advanced composite materials in the wings, and canards for aeroelastic tailoring. A flight-flutter test program was conducted to clear a sufficient flight envelope to allow for performance, stability and control, and loads testing. Testing was accomplished with and without flight control-surface dampers. Flutter clearance of the vehicle indicated satisfactory damping and damping trends for the structural modes of the HiMAT vehicle. The data presented include frequency and damping plotted as a function of Mach number.

  12. Actuator with built-in viscous damping for isolation and structural control

    NASA Astrophysics Data System (ADS)

    Hyde, T. Tupper; Anderson, Eric H.

    1994-05-01

    This paper describes the development and experimental application of an actuator with built-in viscous damping. An existing passive damper was modified for use as a novel actuation device for isolation and structural control. The device functions by using the same fluid for viscous damping and as a hydraulic lever for a voice coil actuator. Applications for such an actuator include structural control and active isolation. Lumped parameter models capturing structural and fluid effects are presented. Component tests of free stroke, blocked force, and passive complex stiffness are used to update the assumed model parameters. The structural damping effectiveness of the new actuator is shown to be that of a regular D-strut passively and that of a piezoelectric strut with load cell feedback actively in a complex testbed structure. Open and closed loop results are presented for a force isolation application showing an 8 dB passive and 20 dB active improvement over an undamped mount. An optimized design for a future experimental testbed is developed.

  13. GOES-R active vibration damping controller design, implementation, and on-orbit performance

    NASA Astrophysics Data System (ADS)

    Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.

    2018-01-01

    GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. To meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping for the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.

  14. GOES-R Active Vibration Damping Controller Design, Implementation, and On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.

    2017-01-01

    GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. In order to meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping of the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.

  15. Investigation of Damping Physics and CFD Tool Validation for Simulation of Baffled Tanks at Variable Slosh Amplitude

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeffrey

    2016-01-01

    To meet the flight control damping requirement, baffles of various configurations have been devised to increase the natural viscous damping and decrease the magnitude of the slosh forces and torques. In the design of slosh baffles, the most widely used damping equation is the one derived by Miles, which is based on the experiments of Keulegan and Carpenter. This equation has been used in predicting damping of the baffled tanks in different diameters ranging from 12 to 112 inches. The analytical expression of Miles equation is easy to use, especially in the design of complex baffle system. Previous investigations revealed that some experiments had shown good agreements with the prediction method of Miles, whereas other experiments have shown significant deviations. For example, damping from Miles equation differs from experimental measurements by as much as 100 percent over a range of tank diameters from 12 to 112 inches, oscillation amplitudes from 0.1 to 1.5 baffle widths, and baffle depths of 0.3 to 0.5 tank radius. Previously, much of this difference has been attributed to experimental scatter. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between Miles equation and experimental measurement, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use CFD technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. A well validated CFD solver, developed at NASA MSFC, Loci-STREAM-VOF, is applied to study vorticity field around the baffle and around the fluid interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data are then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (h/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.

  16. An Electromagnetic Tool for Damping and Fatigue Analysis

    DTIC Science & Technology

    2004-03-01

    Serway , Raymond A . Physics For Scientists & Engineers (3rd Edition). Philadelphia: Saunders College Publishing, 1990. 15. Kurtus, Ron...system was initially designed to reduce the time and manpower required to characterize damping treatments. It is based on a digitally controlled...the capability to study fatigue under a free boundary condition. The system consists of a test specimen suspended by a pendulum to closely

  17. A mechanical energy harvested magnetorheological damper with linear-rotary motion converter

    NASA Astrophysics Data System (ADS)

    Chu, Ki Sum; Zou, Li; Liao, Wei-Hsin

    2016-04-01

    Magnetorheological (MR) dampers are promising to substitute traditional oil dampers because of adaptive properties of MR fluids. During vibration, significant energy is wasted due to the energy dissipation in the damper. Meanwhile, for conventional MR damping systems, extra power supply is needed. In this paper, a new energy harvester is designed in an MR damper that integrates controllable damping and energy harvesting functions into one device. The energy harvesting part of this MR damper has a unique mechanism converting linear motion to rotary motion that would be more stable and cost effective when compared to other mechanical transmissions. A Maxon motor is used as a power generator to convert the mechanical energy into electrical energy to supply power for the MR damping system. Compared to conventional approaches, there are several advantages in such an integrated device, including weight reduction, ease in installation with less maintenance. A mechanical energy harvested MR damper with linear-rotary motion converter and motion rectifier is designed, fabricated, and tested. Experimental studies on controllable damping force and harvested energy are performed with different transmissions. This energy harvesting MR damper would be suitable to vehicle suspensions, civil structures, and smart prostheses.

  18. Reduced-impact sliding pressure control valve for pneumatic hammer drill

    DOEpatents

    Polsky, Yarom [Oak Ridge, TN; Grubelich, Mark C [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM

    2012-05-15

    A method and means of minimizing the effect of elastic valve recoil in impact applications, such as percussive drilling, where sliding spool valves used inside the percussive device are subject to poor positioning control due to elastic recoil effects experienced when the valve impacts a stroke limiting surface. The improved valve design reduces the reflected velocity of the valve by using either an energy damping material, or a valve assembly with internal damping built-in, to dissipate the compression stress wave produced during impact.

  19. ARMAX-Based Transfer Function Model Identification Using Wide-Area Measurement for Adaptive and Coordinated Damping Control

    DOE PAGES

    Liu, Hesen; Zhu, Lin; Pan, Zhuohong; ...

    2015-09-14

    One of the main drawbacks of the existing oscillation damping controllers that are designed based on offline dynamic models is adaptivity to the power system operating condition. With the increasing availability of wide-area measurements and the rapid development of system identification techniques, it is possible to identify a measurement-based transfer function model online that can be used to tune the oscillation damping controller. Such a model could capture all dominant oscillation modes for adaptive and coordinated oscillation damping control. our paper describes a comprehensive approach to identify a low-order transfer function model of a power system using a multi-input multi-outputmore » (MIMO) autoregressive moving average exogenous (ARMAX) model. This methodology consists of five steps: 1) input selection; 2) output selection; 3) identification trigger; 4) model estimation; and 5) model validation. The proposed method is validated by using ambient data and ring-down data in the 16-machine 68-bus Northeast Power Coordinating Council system. Our results demonstrate that the measurement-based model using MIMO ARMAX can capture all the dominant oscillation modes. Compared with the MIMO subspace state space model, the MIMO ARMAX model has equivalent accuracy but lower order and improved computational efficiency. The proposed model can be applied for adaptive and coordinated oscillation damping control.« less

  20. Satellite Dynamic Damping via Active Force Control Augmentation

    NASA Astrophysics Data System (ADS)

    Varatharajoo, Renuganth

    2012-07-01

    An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC technique. Keywords: Satellite, Dynamic Damping, Attitude Control, AFC Technique,

  1. Modifying high-order aeroelastic math model of a jet transport using maximum likelihood estimation

    NASA Technical Reports Server (NTRS)

    Anissipour, Amir A.; Benson, Russell A.

    1989-01-01

    The design of control laws to damp flexible structural modes requires accurate math models. Unlike the design of control laws for rigid body motion (e.g., where robust control is used to compensate for modeling inaccuracies), structural mode damping usually employs narrow band notch filters. In order to obtain the required accuracy in the math model, maximum likelihood estimation technique is employed to improve the accuracy of the math model using flight data. Presented here are all phases of this methodology: (1) pre-flight analysis (i.e., optimal input signal design for flight test, sensor location determination, model reduction technique, etc.), (2) data collection and preprocessing, and (3) post-flight analysis (i.e., estimation technique and model verification). In addition, a discussion is presented of the software tools used and the need for future study in this field.

  2. Self-tuning pressure-feedback control by pole placement for vibration reduction of excavator with independent metering fluid power system

    NASA Astrophysics Data System (ADS)

    Ding, Ruqi; Xu, Bing; Zhang, Junhui; Cheng, Min

    2017-08-01

    Independent metering control systems are promising fluid power technologies compared with traditional valve controlled systems. By breaking the mechanical coupling between the inlet and outlet, the meter-out valve can open as large as possible to reduce energy consumptions. However, the lack of damping in outlet causes stronger vibrations. To address the problem, the paper designs a hybrid control method combining dynamic pressure-feedback and active damping control. The innovation resides in the optimization of damping by introducing pressure feedback to make trade-offs between high stability and fast response. To achieve this goal, the dynamic response pertaining to the control parameters consisting of feedback gain and cut-off frequency, are analyzed via pole-zero locations. Accordingly, these parameters are tuned online in terms of guaranteed dominant pole placement such that the optimal damping can be accurately captured under a considerable variation of operating conditions. The experiment is deployed in a mini-excavator. The results pertaining to different control parameters confirm the theoretical expectations via pole-zero locations. By using proposed self-tuning controller, the vibrations are almost eliminated after only one overshoot for different operation conditions. The overshoots are also reduced with less decrease of the response time. In addition, the energy-saving capability of independent metering system is still not affected by the improvement of controllability.

  3. Aeroelastic Stability of a Four-Bladed Semi-Articulated Soft-Inplane Tiltrotor Model

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Corso, Lawrence M.; Brown, Ross K.

    2003-01-01

    A new four-bladed, semi-articulated, soft-inplane rotor system, designed as a candidate for future heavy-lift rotorcraft, was tested at model scale on the Wing and Rotor Aeroelastic Testing System (WRATS), a 1/5-size aeroelastic wind-tunnel model based on the V-22. The experimental investigation included a hover test with the model in helicopter mode subject to ground resonance conditions, and a forward flight test with the model in airplane mode subject to whirl-flutter conditions. An active control system designed to augment system damping was also tested as part of this investigation. Results of this study indicate that the new four-bladed, soft-inplane rotor system in hover has adequate damping characteristics and is stable throughout its rotor-speed envelope. However, in airplane mode it produces very low damping in the key wing beam-bending mode, and has a low whirl-flutter stability boundary with respect to airspeed. The active control system was successful in augmenting the damping of the fundamental system modes, and was found to be robust with respect to changes in rotor speed and airspeed. Finally, conversion-mode dynamic loads were measured on the rotor and these were found to be signi.cantly lower for the new soft-inplane hub than for the previous baseline stiff - inplane hub.

  4. Aeroelastic Stability of a Four-Bladed Semi-Articulated Soft-Inplane Tiltrotor Model

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Corso, Lawrence M.; Brown, Ross

    2003-01-01

    A new four-bladed, semi-articulated, soft-inplane rotor system, designed as a candidate for future heavy-lift rotorcraft, was tested at model scale on the Wing and Rotor Aeroelastic Testing System (WRATS), a 1/5-size aeroelastic wind-tunnel model based on the V-22. The experimental investigation included a hover test with the model in helicopter mode subject to ground resonance conditions, and a forward flight test with the model in airplane mode subject to whirl-flutter conditions. An active control system designed to augment system damping was also tested as part of this investigation. Results of this study indicate that the new four-bladed, soft-inplane rotor system in hover has adequate damping characteristics and is stable throughout its rotor-speed envelope. However, in airplane mode it produces very low damping in the key wing beam-bending mode, and has a low whirl-flutter stability boundary with respect to airspeed. The active control system was successful in augmenting the damping of the fundamental system modes, and was found to be robust with respect to changes in rotor-speed and airspeed. Finally, conversion-mode dynamic loads were measured on the rotor and these were found to be significantly lower for the new soft-inplane hub than for the previous baseline stiff-inplane hub.

  5. An Experimental Design of Bypass Magneto-Rheological (MR) damper

    NASA Astrophysics Data System (ADS)

    Rashid, MM; Aziz, Mohammad Abdul; Raisuddin Khan, Md.

    2017-11-01

    The magnetorheological (MR) fluid bypass damper fluid flow through a bypass by utilizing an external channel which allows the controllability of MR fluid in the channel. The Bypass MR damper (BMRD) contains a rectangular bypass flow channel, current controlled movable piston shaft arrangement and MR fluid. The static piston coil case is winding by a coil which is used inside the piston head arrangement. The current controlled coil case provides a magnetic flux through the BMRD cylinder for controllability. The high strength of alloy steel materials are used for making piston shaft which allows magnetic flux propagation throughout the BMRD cylinder. Using the above design materials, a Bypass MR damper is designed and tested. An excitation of current is applied during the experiment which characterizes the BMRD controllability. It is shown that the BMRD with external flow channel allows a high controllable damping force using an excitation current. The experimental result of damping force-displacement characteristics with current excitation and without current excitation are compared in this research. The BMRD model is validated by the experimental result at various frequencies and applied excitation current.

  6. Aeromechanical stability augmentation using semi-active friction-based lead-lag damper

    NASA Astrophysics Data System (ADS)

    Agarwal, Sandeep

    2005-11-01

    Lead-lag dampers are present in most rotors to provide the required level of damping in all flight conditions. These dampers are a critical component of the rotor system, but they also represent a major source of maintenance cost. In present rotor systems, both hydraulic and elastomeric lead-lag dampers have been used. Hydraulic dampers are complex mechanical components that require hydraulic fluids and have high associated maintenance costs. Elastomeric dampers are conceptually simpler and provide a "dry" rotor, but are rather costly. Furthermore, their damping characteristics can degrade with time without showing external signs of failure. Hence, the dampers must be replaced on a regular basis. A semi-active friction based lead-lag damper is proposed as a replacement for hydraulic and elastomeric dampers. Damping is provided by optimized energy dissipation due to frictional forces in semi-active joints. An actuator in the joint modulates the normal force that controls energy dissipation at the frictional interfaces, resulting in large hysteretic loops. Various selective damping strategies are developed and tested for a simple system containing two different frequency modes in its response, one of which needs to be damped out. The system reflects the situation encountered in rotor response where 1P excitation is present along with the potentially unstable regressive lag motion. Simulation of the system response is obtained to compare their effectiveness. Next, a control law governing the actuation in the lag damper is designed to generate the desired level of damping for performing adaptive selective damping of individual blade lag motion. Further, conceptual design of a piezoelectric friction based lag damper for a full-scale rotor is presented and various factors affecting size, design and maintenance cost, damping capacity, and power requirements of the damper are discussed. The selective semi-active damping strategy is then studied in the context of classical ground resonance problem. In view of the inherent nonlinearity in the system due to friction phenomena, multiblade transformation from rotating frame to nonrotating frame is not useful. Stability analysis of the system is performed in the rotating frame to gain an understanding of the dynamic characteristics of rotor system with attached semi-active friction based lag dampers. This investigation is extended to the ground resonance stability analysis of a comprehensive UH-60 model within the framework of finite element based multibody dynamics formulations. Simulations are conducted to study the performance of several integrated lag dampers ranging from passive to semi-active ones with varying levels of selectivity. Stability analysis is performed for a nominal range of rotor speeds using Prony's method.

  7. Dynamic response analysis of a 24-story damped steel structure

    NASA Astrophysics Data System (ADS)

    Feng, Demin; Miyama, Takafumi

    2017-10-01

    In Japanese and Chinese building codes, a two-stage design philosophy, damage limitation (small earthquake, Level 1) and life safety (extreme large earthquake, Level 2), is adopted. It is very interesting to compare the design method of a damped structure based on the two building codes. In the Chinese code, in order to be consistent with the conventional seismic design method, the damped structure is also designed at the small earthquake level. The effect of damper systems is considered by the additional damping ratio concept. The design force will be obtained from the damped design spectrum considering the reduction due to the additional damping ratio. The additional damping ratio by the damper system is usually calculated by a time history analysis method at the small earthquake level. The velocity dependent type dampers such as viscous dampers can function well even in the small earthquake level. But, if steel damper is used, which usually remains elastic in the small earthquake, there will be no additional damping ratio achieved. On the other hand, a time history analysis is used in Japan both for small earthquake and extreme large earthquake level. The characteristics of damper system and ductility of the structure can be modelled well. An existing 24-story steel frame is modified to demonstrate the design process of the damped structure based on the two building codes. Viscous wall type damper and low yield steel panel dampers are studied as the damper system.

  8. Vibration control in smart coupled beams subjected to pulse excitations

    NASA Astrophysics Data System (ADS)

    Pisarski, Dominik; Bajer, Czesław I.; Dyniewicz, Bartłomiej; Bajkowski, Jacek M.

    2016-10-01

    In this paper, a control method to stabilize the vibration of adjacent structures is presented. The control is realized by changes of the stiffness parameters of the structure's couplers. A pulse excitation applied to the coupled adjacent beams is imposed as the kinematic excitation. For such a representation, the designed control law provides the best rate of energy dissipation. By means of a stability analysis, the performance in different structural settings is studied. The efficiency of the proposed strategy is examined via numerical simulations. In terms of the assumed energy metric, the controlled structure outperforms its passively damped equivalent by over 50 percent. The functionality of the proposed control strategy should attract the attention of practising engineers who seek solutions to upgrade existing damping systems.

  9. Optimal control of the signal-to-noise ratio per unit time of a spin 1/2 particle: The crusher gradient and the radiation damping cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapert, M.; Glaser, S. J.; Assémat, E.

    We show to which extent the signal to noise ratio per unit time of a spin 1/2 particle can be maximized. We consider a cyclic repetition of experiments made of a measurement followed by a radio-frequency magnetic field excitation of the system, in the case of unbounded amplitude. In the periodic regime, the objective of the control problem is to design the initial state of the system and the pulse sequence which leads to the best signal to noise performance. We focus on two specific issues relevant in nuclear magnetic resonance, the crusher gradient and the radiation damping cases. Optimalmore » control techniques are used to solve this non-standard control problem. We discuss the optimality of the Ernst angle solution, which is commonly applied in spectroscopic and medical imaging applications. In the radiation damping situation, we show that in some cases, the optimal solution differs from the Ernst one.« less

  10. Large space structure damping design

    NASA Technical Reports Server (NTRS)

    Pilkey, W. D.; Haviland, J. K.

    1983-01-01

    Several FORTRAN subroutines and programs were developed which compute complex eigenvalues of a damped system using different approaches, and which rescale mode shapes to unit generalized mass and make rigid bodies orthogonal to each other. An analytical proof of a Minimum Constrained Frequency Criterion (MCFC) for a single damper is presented. A method to minimize the effect of control spill-over for large space structures is proposed. The characteristic equation of an undamped system with a generalized control law is derived using reanalysis theory. This equation can be implemented in computer programs for efficient eigenvalue analysis or control quasi synthesis. Methods to control vibrations in large space structure are reviewed and analyzed. The resulting prototype, using electromagnetic actuator, is described.

  11. Modeling, design, and testing of a proof-of-concept prototype damper with friction and eddy current damping effects

    NASA Astrophysics Data System (ADS)

    Amjadian, Mohsen; Agrawal, Anil K.

    2018-01-01

    Friction is considered as one of the most reliable mechanisms of energy dissipation that has been utilized extensively in passive damping devices to mitigate vibration of civil engineering structures subjected to extreme natural hazards such as earthquakes and windstorms. However, passive friction dampers are well-known for having a highly nonlinear hysteretic behavior caused by stick-slip motion at low velocities, a phenomenon that is inherent in friction and increases the acceleration response of the structure under control unfavorably. The authors have recently proposed the theoretical concept of a new type of damping device termed as "Passive Electromagnetic Eddy Current Friction Damper" (PEMECFD) in which an eddy current damping mechanism was utilized not only to decrease the undesirable effects of stick-slip motion, but also to increase the energy dissipation capacity of the damping device as a whole. That study was focused on demonstration of the theoretical performance of the proposed damping device through numerical simulations. This paper further investigates the influence of eddy current damping on energy dissipation due to friction through modeling, design, and testing of a proof-of-concept prototype damper. The design of this damper has been improved over the design in the previous study. The normal force in this damper is produced by the repulsive magnetic force between two cuboidal permanent magnets (PMs) magnetized in the direction normal to the direction of the motion. The eddy current damping force is generated because of the motion of the two PMs and two additional PMs relative to a copper plate in their vicinity. The dynamic models for the force-displacement relationship of the prototype damper are based on LuGre friction model, electromagnetic theory, and inertial effects of the prototype damper. The parameters of the dynamic models have been identified through a series of characterization tests on the prototype damper under harmonic excitations of different frequencies in the laboratory. Finally, the identified dynamic models have been validated by subjecting the prototype damper to two different random excitations. The results indicate that the proposed dynamic models are capable of representing force-displacement behavior of the new type of passive damping device for a wide range of operating conditions.

  12. Application of the Moment Method in the Slip and Transition Regime for Microfluidic Flows

    DTIC Science & Technology

    2011-01-01

    systems ( MEMS ), fluid flow at the micro- and nano-scale has received considerable attention [1]. A basic understanding of the nature of flow and heat ...Couette Flow Many MEMS devices contain oscillating parts where air (viscous) damping plays an important role. To understand the damping mechanisms...transfer in these devices is considered essential for efficient design and control of MEMS . Engineering applications for gas microflows include

  13. The cost of model reference adaptive control - Analysis, experiments, and optimization

    NASA Technical Reports Server (NTRS)

    Messer, R. S.; Haftka, R. T.; Cudney, H. H.

    1993-01-01

    In this paper the performance of Model Reference Adaptive Control (MRAC) is studied in numerical simulations and verified experimentally with the objective of understanding how differences between the plant and the reference model affect the control effort. MRAC is applied analytically and experimentally to a single degree of freedom system and analytically to a MIMO system with controlled differences between the model and the plant. It is shown that the control effort is sensitive to differences between the plant and the reference model. The effects of increased damping in the reference model are considered, and it is shown that requiring the controller to provide increased damping actually decreases the required control effort when differences between the plant and reference model exist. This result is useful because one of the first attempts to counteract the increased control effort due to differences between the plant and reference model might be to require less damping, however, this would actually increase the control effort. Optimization of weighting matrices is shown to help reduce the increase in required control effort. However, it was found that eventually the optimization resulted in a design that required an extremely high sampling rate for successful realization.

  14. Structural dynamics and vibrations of damped, aircraft-type structures

    NASA Technical Reports Server (NTRS)

    Young, Maurice I.

    1992-01-01

    Engineering preliminary design methods for approximating and predicting the effects of viscous or equivalent viscous-type damping treatments on the free and forced vibration of lightly damped aircraft-type structures are developed. Similar developments are presented for dynamic hysteresis viscoelastic-type damping treatments. It is shown by both engineering analysis and numerical illustrations that the intermodal coupling of the undamped modes arising from the introduction of damping may be neglected in applying these preliminary design methods, except when dissimilar modes of these lightly damped, complex aircraft-type structures have identical or nearly identical natural frequencies. In such cases, it is shown that a relatively simple, additional interaction calculation between pairs of modes exhibiting this 'modal response' phenomenon suffices in the prediction of interacting modal damping fractions. The accuracy of the methods is shown to be very good to excellent, depending on the normal natural frequency separation of the system modes, thereby permitting a relatively simple preliminary design approach. This approach is shown to be a natural precursor to elaborate finite element, digital computer design computations in evaluating the type, quantity, and location of damping treatment.

  15. In-Service Performance and Costs of Methods for Control of Urban Rail System Noise : Experimental Design

    DOT National Transportation Integrated Search

    1976-05-01

    This report presents an experimental design for a project to evaluate four techniques for reducing wheel-rail noise on urban rail transit systems: (a) resilient wheels, (b) damped wheels, (c) wheel truing, and (d) rail griding. The design presents th...

  16. Noise Transmission Characteristics of Damped Plexiglas Windows

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Buehrle, Ralph D.; Klos, Jacob; Brown, Sherilyn A.

    2002-01-01

    Most general aviation aircraft utilize single layer plexiglas material for the windshield and side windows. Adding noise control treatments to transparent panels is a challenging problem. In this paper, damped plexiglas windows are evaluated for replacement of conventional windows in general aviation aircraft to reduce the structure-borne and airborne noise transmitted into the interior. In contrast to conventional solid windows, the damped plexiglas window panels are fabricated using two or three layers of plexiglas with transparent viscoelastic damping material sandwiched between the layers. Results from acoustic tests conducted in the NASA Langley Structural Acoustic Loads and Transmission (SALT) facility are used to compare different designs of the damped plexiglas panels with solid windows of the same nominal thickness. Comparisons of the solid and damped plexiglas panels show reductions in the radiated sound power of up to 8 dB at low frequency resonances and as large as 4.5 dB over a 4000 Hz bandwidth. The weight of the viscoelastic treatment was approximately 1% of the panel mass. Preliminary FEM/BEM modeling shows good agreement with experimental results for radiated sound power.

  17. Active Piezoelectric Vibration Control of Subscale Composite Fan Blades

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Min, James B.; Kray, Nicholas

    2012-01-01

    As part of the Fundamental Aeronautics program, researchers at NASA Glenn Research Center (GRC) are investigating new technologies supporting the development of lighter, quieter, and more efficient fans for turbomachinery applications. High performance fan blades designed to achieve such goals will be subjected to higher levels of aerodynamic excitations which could lead to more serious and complex vibration problems. Piezoelectric materials have been proposed as a means of decreasing engine blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. To investigate this idea, spin testing was performed on two General Electric Aviation (GE) subscale composite fan blades in the NASA GRC Dynamic Spin Rig Facility. The first bending mode (1B) was targeted for vibration control. Because these subscale blades are very thin, the piezoelectric material was surface-mounted on the blades. Three thin piezoelectric patches were applied to each blade two actuator patches and one small sensor patch. These flexible macro-fiber-composite patches were placed in a location of high resonant strain for the 1B mode. The blades were tested up to 5000 rpm, with patches used as sensors, as excitation for the blade, and as part of open- and closed-loop vibration control. Results show that with a single actuator patch, active vibration control causes the damping ratio to increase from a baseline of 0.3% critical damping to about 1.0% damping at 0 RPM. As the rotor speed approaches 5000 RPM, the actively controlled blade damping ratio decreases to about 0.5% damping. This occurs primarily because of centrifugal blade stiffening, and can be observed by the decrease in the generalized electromechanical coupling with rotor speed.

  18. Hybrid passive/active damping for robust multivariable acoustic control in composite plates

    NASA Astrophysics Data System (ADS)

    Veeramani, Sudha; Wereley, Norman M.

    1996-05-01

    Noise transmission through a flexible kevlar-epoxy composite trim panel into an acoustic cavity or box is studied with the intent of controlling the interior sound fields. A hybrid noise attenuation technique is proposed which uses viscoelastic damping layers in the composite plate for passive attenuation of high frequency noise transmission, and uses piezo-electric patch actuators for active control in the low frequency range. An adaptive feedforward noise control strategy is applied. The passive structural damping augmentation incorporated in the composite plates is also intended to increase stability robustness of the active noise control strategy. A condenser microphone in the interior of the enclosure functions as the error sensor. Three composite plates were experimentally evaluated: one with no damping layer, the second with a 10 mil damping layer, and the third with a 15 mil damping layer. The damping layer was cocured in the kevlar-epoxy trim panels. Damping in the plates was increased from 1.6% for the plate with no damping layer, to 5.9% for the plate with a 15 mil damping layer. In experimental studies, the improved stability robustness of the controller was demonstrated by improved adaptive feedforward control algorithm convergence. A preliminary analytical model is presented that describes the dynamic behavior of a composite panel actuated by piezoelectric actuators bonded to its surface.

  19. Translational damping on high-frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Parks, Perry A.

    Flapping fliers such as insects and birds depend on passive translational and rotational damping to terminate quick maneuvers and to provide a source of partial stability in an otherwise unstable dynamic system. Additionally, passive translational and rotational damping reduce the amount of active kinematic changes that must be made to terminate maneuvers and maintain stability. The study of flapping-induced damping phenomena also improves the understanding of micro air vehicle (MAV) dynamics needed for the synthesis of effective flight control strategies. Aerodynamic processes which create passive translational and rotational damping as a direct result of symmetric flapping with no active changes in wing kinematics have been previously studied and were termed flapping counter-force (FCF) and flapping counter-torque (FCT), respectively. In this first study of FCF measurement in air, FCF generation is measured using a pendulum system designed to isolate and measure the relationship of translational flapping-induced damping with wingbeat frequency for a 2.86 gram mechanical flapper equipped with real cicada wings. Analysis reveals that FCF generation and wingbeat frequency are directly proportional, as expected from previous work. The quasi-steady FCF model using Blade-Element-Theory is used as an estimate for translational flapping-induced damping. In most cases, the model proves to be accurate in predicting the relationship between flapping-induced damping and wingbeat frequency. "Forward-backward" motion proves to have the strongest flapping-induced damping while "up-down" motion has the weakest.

  20. Optimal design of a shear magnetorheological damper for turning vibration suppression

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Zhang, Y. L.

    2013-09-01

    The intelligent material, so-called magnetorheological (MR) fluid, is utilized to control turning vibration. According to the structure of a common lathe CA6140, a shear MR damper is conceived by designing its structure and magnetic circuit. The vibration suppression effect of the damper is proved with dynamic analysis and simulation. Further, the magnetic circuit of the damper is optimized with the ANSYS parametric design language (APDL). In the optimization course, the area of the magnetic circuit and the damping force are considered. After optimization, the damper’s structure and its efficiency of electrical energy consumption are improved. Additionally, a comparative study on damping forces acquired from the initial and optimal design is conducted. A prototype of the developed MR damper is fabricated and magnetic tests are performed to measure the magnetic flux intensities and the residual magnetism in four damping gaps. Then, the testing results are compared with the simulated results. Finally, the suppressing vibration experimental system is set up and cylindrical turning experiments are performed to investigate the working performance of the MR damper.

  1. Quasi-steady Bingham plastic analysis of an electrorheological flow mode bypass damper with piston bleed

    NASA Astrophysics Data System (ADS)

    Lindler, Jason; Wereley, Norman M.

    2003-06-01

    We present an improved experimental validation of our nonlinear quasi-steady electrorheological (ER) and magnetorheological damper analysis, using an idealized Bingham plastic shear flow mechanism, for the flow mode of damper operation with leakage effect. To validate the model, a double-acting ER valve or bypass damper was designed and fabricated. Both the hydraulic cylinder and the bypass duct have cylindrical geometry, and damping forces are developed in the annular bypass via Poiseuille flow. The ER fluid damper contains a controlled amount of leakage around the piston head. The leakage allows ER fluid to flow from one side of the piston head to the opposite side without passing through the ER bypass. For this flow mode damper, the damping coefficient, defined as the ratio of equivalent viscous damping of the Bingham plastic material, Ceq, to the Newtonian viscous damping, C, is a function of the non-dimensional plug thickness only. The damper was tested for varying conditions of applied electric field and frequency using a mechanical damper dynamometer. In this analysis, the leakage damping coefficient with incorporated leakage effects, predict the amount of energy dissipated for a complete cycle of the piston rod. Measured force verses displacement cycles for multiple frequencies and electric fields validate the ability of the non-dimensional groups and the leakage damping coefficient to predict the damping levels for an ER bypass damper with leakage. Based on the experimental validation of the model using these data, the Bingham plastic analysis is shown to be an effective tool for the analysis-based design of double-acting ER bypass dampers.

  2. Foucault pendulum with eddy-current damping of the elliptical motion

    NASA Astrophysics Data System (ADS)

    Mastner, G.; Vokurka, V.; Maschek, M.; Vogt, E.; Kaufmann, H. P.

    1984-10-01

    A newly designed Foucault pendulum is described in which the mechanical Charron ring, used throughout in previous designs for damping of the elliptical motion of the pendulum, is replaced by an electromagnetic eddy-current brake, consisting of a permanent magnet attached to the bottom of the bob and a metallic ring. This damping device is very efficient, as it is self-aligning, symmetrical in the damping effect, and never wears out. The permanent magnet is also used, together with a coil assembly and an electronic circuitry, for the dipole-torque drive of the pendulum as well as for accurate stabilization of the amplitude of the swing. A latched time display, controlled by Hall probes activated by the magnet, is used to visualize the Foucault rotation. The pendulum system and its associated electronic circuitry are described in detail. The optimizing of the drive mode is discussed. Measurements of deviations from theoretical value of the Foucault rotation velocity made automatically in a continuous run show a reproducible accuracy of ±1% or better in individual 360° rotations during the summer months. The quality factor of the pendulum as mechanical resonator was measured as a function of the amplitude in the presence of the eddy-current damping ring.

  3. Impact of Cross-Tie Properties on the Modal Behavior of Cable Networks on Cable-Stayed Bridges

    PubMed Central

    Ahmad, Javaid; Ghrib, Faouzi

    2015-01-01

    Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control. PMID:26167539

  4. Impact of Cross-Tie Properties on the Modal Behavior of Cable Networks on Cable-Stayed Bridges.

    PubMed

    Ahmad, Javaid; Cheng, Shaohong; Ghrib, Faouzi

    2015-01-01

    Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control.

  5. Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long

    2017-09-01

    This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.

  6. Lateral vibration control of a precise machine using magneto-rheological mounts featuring multiple directional damping effect

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Tae; Jeong, An Mok; Kim, Hyo Young; An, Jong Wook; Kim, Cheol Ho; Jin, Kyung Chan; Choi, Seung-Bok

    2018-03-01

    In a previous work, magneto-rheological (MR) dampers were originally designed and implemented for reducing the vertical low-frequency vibration occurring in precise semi-conductor manufacturing equipment. To reduce the vibrations, an isolator levitated the manufacturing machine from the floor using pneumatic pressure which cut off the external vibration, while the MR damper was used to decrease the transient response of the isolator. However, it has been found that the MR damper also provides a damping effect on the lateral vibration induced by the high-speed plane motions. Therefore, in this work both vertical and lateral vibrations are controlled using the yield and shear stresses of the lateral directions generated from the MR fluids by applying a magnetic field. After deriving a vibration control model, an overall control logic is formulated considering both vertical and lateral vibrations. In this control strategy, a feedback loop associated with the laser sensor is used for vertical vibration control, while a feed-forward loop with the motion information is used for lateral vibration control. The experimental results show that the proposed concept is highly effective for lateral vibration control using the damping effect on multiple directions.

  7. Resilient guaranteed cost control of a power system.

    PubMed

    Soliman, Hisham M; Soliman, Mostafa H; Hassan, Mohammad F

    2014-05-01

    With the development of power system interconnection, the low-frequency oscillation is becoming more and more prominent which may cause system separation and loss of energy to consumers. This paper presents an innovative robust control for power systems in which the operating conditions are changing continuously due to load changes. However, practical implementation of robust control can be fragile due to controller inaccuracies (tolerance of resistors used with operational amplifiers). A new design of resilient (non-fragile) robust control is given that takes into consideration both model and controller uncertainties by an iterative solution of a set of linear matrix inequalities (LMI). Both uncertainties are cast into a norm-bounded structure. A sufficient condition is derived to achieve the desired settling time for damping power system oscillations in face of plant and controller uncertainties. Furthermore, an improved controller design, resilient guaranteed cost controller, is derived to achieve oscillations damping in a guaranteed cost manner. The effectiveness of the algorithm is shown for a single machine infinite bus system, and then, it is extended to multi-area power system.

  8. The Inverse Optimal Control Problem for a Three-Loop Missile Autopilot

    NASA Astrophysics Data System (ADS)

    Hwang, Donghyeok; Tahk, Min-Jea

    2018-04-01

    The performance characteristics of the autopilot must have a fast response to intercept a maneuvering target and reasonable robustness for system stability under the effect of un-modeled dynamics and noise. By the conventional approach, the three-loop autopilot design is handled by time constant, damping factor and open-loop crossover frequency to achieve the desired performance requirements. Note that the general optimal theory can be also used to obtain the same gain as obtained from the conventional approach. The key idea of using optimal control technique for feedback gain design revolves around appropriate selection and interpretation of the performance index for which the control is optimal. This paper derives an explicit expression, which relates the weight parameters appearing in the quadratic performance index to the design parameters such as open-loop crossover frequency, phase margin, damping factor, or time constant, etc. Since all set of selection of design parameters do not guarantee existence of optimal control law, explicit inequalities, which are named the optimality criteria for the three-loop autopilot (OC3L), are derived to find out all set of design parameters for which the control law is optimal. Finally, based on OC3L, an efficient gain selection procedure is developed, where time constant is set to design objective and open-loop crossover frequency and phase margin as design constraints. The effectiveness of the proposed technique is illustrated through numerical simulations.

  9. Experimental study on control performance of tuned liquid column dampers considering different excitation directions

    NASA Astrophysics Data System (ADS)

    Altunişik, Ahmet Can; Yetişken, Ali; Kahya, Volkan

    2018-03-01

    This paper gives experimental tests' results for the control performance of Tuned Liquid Column Dampers (TLCDs) installed on a prototype structure exposed to ground motions with different directions. The prototype structure designed in the laboratory consists of top and bottom plates with four columns. Finite element analyses and ambient vibration tests are first performed to extract the natural frequencies and mode shapes of the structure. Then, the damping ratio of the structure as well as the resonant frequency, head-loss coefficient, damping ratio, and water height-frequency diagram of the designed TLCD are obtained experimentally by the shaking table tests. To investigate the effect of TLCDs on the structural response, the prototype structure-TLCD coupled system is considered later, and its natural frequencies and related mode shapes are obtained numerically. The acceleration and displacement time-histories are obtained by the shaking table tests to evaluate its damping ratio. To consider different excitation directions, the measurements are repeated for the directions between 0° and 90° with 15° increment. It can be concluded from the study that TLCD causes to decrease the resonant frequency of the structure with increasing of the total mass. Damping ratio considerably increases with installing TLCD on the structure. This is more pronounced for the angles of 0°, 15°, 30° and 45°.

  10. Stable propagation of mechanical signals in soft media using stored elastic energy.

    PubMed

    Raney, Jordan R; Nadkarni, Neel; Daraio, Chiara; Kochmann, Dennis M; Lewis, Jennifer A; Bertoldi, Katia

    2016-08-30

    Soft structures with rationally designed architectures capable of large, nonlinear deformation present opportunities for unprecedented, highly tunable devices and machines. However, the highly dissipative nature of soft materials intrinsically limits or prevents certain functions, such as the propagation of mechanical signals. Here we present an architected soft system composed of elastomeric bistable beam elements connected by elastomeric linear springs. The dissipative nature of the polymer readily damps linear waves, preventing propagation of any mechanical signal beyond a short distance, as expected. However, the unique architecture of the system enables propagation of stable, nonlinear solitary transition waves with constant, controllable velocity and pulse geometry over arbitrary distances. Because the high damping of the material removes all other linear, small-amplitude excitations, the desired pulse propagates with high fidelity and controllability. This phenomenon can be used to control signals, as demonstrated by the design of soft mechanical diodes and logic gates.

  11. Stable propagation of mechanical signals in soft media using stored elastic energy

    PubMed Central

    Raney, Jordan R.; Nadkarni, Neel; Daraio, Chiara; Lewis, Jennifer A.; Bertoldi, Katia

    2016-01-01

    Soft structures with rationally designed architectures capable of large, nonlinear deformation present opportunities for unprecedented, highly tunable devices and machines. However, the highly dissipative nature of soft materials intrinsically limits or prevents certain functions, such as the propagation of mechanical signals. Here we present an architected soft system composed of elastomeric bistable beam elements connected by elastomeric linear springs. The dissipative nature of the polymer readily damps linear waves, preventing propagation of any mechanical signal beyond a short distance, as expected. However, the unique architecture of the system enables propagation of stable, nonlinear solitary transition waves with constant, controllable velocity and pulse geometry over arbitrary distances. Because the high damping of the material removes all other linear, small-amplitude excitations, the desired pulse propagates with high fidelity and controllability. This phenomenon can be used to control signals, as demonstrated by the design of soft mechanical diodes and logic gates. PMID:27519797

  12. Predicting the effectiveness of viscoelastic damping pockets in beams

    NASA Astrophysics Data System (ADS)

    Butler, Nigel D.; Oyadiji, S. O.

    2005-05-01

    This paper looks at the use of viscoelastic damping pockets in the suppression of structural vibration. These are in the form of cavities filled with a viscoelastic material. The benefits and uses of these designed-in damping treatments are highlighted. The vibration responses of viscoelastically-damped beams are predicted using the finite element method. A series of cantilevered beams are considered and the damping performance of several configurations of designed-in dampers are predicted and compared to that of a traditional CLD treatment. It is shown that the effectiveness of the damping pockets and sinks depends on their location and size with respect to the highly stressed regions of the beams. Although there is a practical limit on the sizes of the geometrical features that can be designed-in, it is shown that if located correctly the damping pockets and sinks can be more effective at suppressing structural vibration than traditional CLD treatments.

  13. Optical interferometer testbed

    NASA Technical Reports Server (NTRS)

    Blackwood, Gary H.

    1991-01-01

    Viewgraphs on optical interferometer testbed presented at the MIT Space Research Engineering Center 3rd Annual Symposium are included. Topics covered include: space-based optical interferometer; optical metrology; sensors and actuators; real time control hardware; controlled structures technology (CST) design methodology; identification for MIMO control; FEM/ID correlation for the naked truss; disturbance modeling; disturbance source implementation; structure design: passive damping; low authority control; active isolation of lightweight mirrors on flexible structures; open loop transfer function of mirror; and global/high authority control.

  14. NASA/DOD Control/Structures Interaction Technology, 1986

    NASA Technical Reports Server (NTRS)

    Wright, Robert L. (Compiler)

    1986-01-01

    Control/structures interactions, deployment dynamics and system performance of large flexible spacecraft are discussed. Spacecraft active controls, deployable truss structures, deployable antennas, solar power systems for space stations, pointing control systems for space station gimballed payloads, computer-aided design for large space structures, and passive damping for flexible structures are among the topics covered.

  15. Thermoelastic Damping in FGM Nano-Electromechanical System in Axial Vibration Based on Eringen Nonlocal Theory

    NASA Astrophysics Data System (ADS)

    Rahimi, Z.; Rashahmadi, S.

    2017-11-01

    The thermo-elastic damping is a dominant source of internal damping in micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS). The internal damping cannot neither be controlled nor minimized unless either mechanical or geometrical properties are changed. Therefore, a novel FGMNEM system with a controllable thermo-elastic damping of axial vibration based on Eringen nonlocal theory is considered. The effects of different parameter like the gradient index, nonlocal parameter, length of nanobeam and ambient temperature on the thermo-elastic damping quality factor are presented. It is shown that the thermo-elastic damping can be controlled by changing different parameter.

  16. High-stroke silicon-on-insulator MEMS nanopositioner: Control design for non-raster scan atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maroufi, Mohammad, E-mail: Mohammad.Maroufi@uon.edu.au; Fowler, Anthony G., E-mail: Anthony.Fowler@uon.edu.au; Bazaei, Ali, E-mail: Ali.Bazaei@newcastle.edu.au

    A 2-degree of freedom microelectromechanical systems nanopositioner designed for on-chip atomic force microscopy (AFM) is presented. The device is fabricated using a silicon-on-insulator-based process and is designed as a parallel kinematic mechanism. It contains a central scan table and two sets of electrostatic comb actuators along each orthogonal axis, which provides displacement ranges greater than ±10 μm. The first in-plane resonance modes are located at 1274 Hz and 1286 Hz for the X and Y axes, respectively. To measure lateral displacements of the stage, electrothermal position sensors are incorporated in the design. To facilitate high-speed scans, the highly resonant dynamics ofmore » the system are controlled using damping loops in conjunction with internal model controllers that enable accurate tracking of fast sinusoidal set-points. To cancel the effect of sensor drift on controlled displacements, washout controllers are used in the damping loops. The feedback controlled nanopositioner is successfully used to perform several AFM scans in contact mode via a Lissajous scan method with a large scan area of 20 μm × 20 μm. The maximum scan rate demonstrated is 1 kHz.« less

  17. Eigenspace Design of Helicopter Flight Control Systems

    DTIC Science & Technology

    1990-11-01

    Attitude Changes ......... 44 2.6 Yaw Cross Coupling Criteria . ............................................... 45 I 4. i Definition of the Rigid Body...laws. The methodology detailed in this report allows the designer to synthesize control laws which result in desirable response types such as attitude ...it is simple to relate the desired frequency response characteristics to the natural frequencies and damping factors or the time constants of the

  18. Design and application of a test rig for super-critical power transmission shafts

    NASA Technical Reports Server (NTRS)

    Darlow, M.; Smalley, A.

    1979-01-01

    The design, assembly, operational check-out and application of a test facility for testing supercritical power transmission shafts under realistic conditions of size, speed and torque are described. Alternative balancing methods and alternative damping mechanisms are demonstrated and compared. The influence of torque upon the unbalance distribution is studied, and its effect on synchronous vibrations is investigated. The feasibility of operating supercritical power transmission shafting is demonstrated, but the need for careful control, by balancing and damping, of synchronous and nonsynchronous vibrations is made clear. The facility was demonstrated to be valuable for shaft system development programs and studies for both advanced and current-production hardware.

  19. Measurements of Acoustic Properties of Porous and Granular Materials and Application to Vibration Control

    NASA Technical Reports Server (NTRS)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    For application of porous and granular materials to vibro-acoustic controls, a finite dynamic strength of the solid component (frame) is an important design factor. The primary goal of this study was to investigate structural vibration damping through this frame wave propagation for various poroelastic materials. A measurement method to investigate the vibration characteristics of the frame was proposed. The measured properties were found to follow closely the characteristics of the viscoelastic materials - the dynamic modulus increased with frequency and the degree of the frequency dependence was determined by its loss factor. The dynamic stiffness of hollow cylindrical beams containing porous and granular materials as damping treatment was measured also. The data were used to extract the damping materials characteristics using the Rayleigh-Ritz method. The results suggested that the acoustic structure interaction between the frame and the structure enhances the dissipation of the vibration energy significantly.

  20. Vibration Reduction of Helicopter Blade Using Variable Dampers: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Lee, George C.; Liang, Zach; Gan, Quan; Niu, Tiecheng

    2002-01-01

    In the report, the investigation of controlling helicopter-blade lead-lag vibration is described. Current practice of adding passive damping may be improved to handle large dynamic range of the blade with several peaks of vibration resonance. To minimize extra-large damping forces that may damage the control system of blade, passive dampers should have relatively small damping coefficients, which in turn limit the effectiveness. By providing variable damping, a much larger damping coefficient to suppress the vibration can be realized. If the damping force reaches the maximum allowed threshold, the damper will be automatically switched into the mode with smaller damping coefficient to maintain near-constant damping force. Furthermore, the proposed control system will also have a fail-safe feature to guarantee the basic performation of a typical passive damper. The proposed control strategy to avoid resonant regions in the frequency domain is to generate variable damping force in combination with the supporting stiffness to manipulate the restoring force and conservative energy of the controlled blade system. Two control algorithms are developed and verified by a prototype variable damper, a digital controller and corresponding algorithms. Primary experiments show good potentials for the proposed variable damper: about 66% and 82% reductions in displacement at 1/3 length and the root of the blade respectively.

  1. Robust controller designs for second-order dynamic system: A virtual passive approach

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1990-01-01

    A robust controller design is presented for second-order dynamic systems. The controller is model-independent and itself is a virtual second-order dynamic system. Conditions on actuator and sensor placements are identified for controller designs that guarantee overall closed-loop stability. The dynamic controller can be viewed as a virtual passive damping system that serves to stabilize the actual dynamic system. The control gains are interpreted as virtual mass, spring, and dashpot elements that play the same roles as actual physical elements in stability analysis. Position, velocity, and acceleration feedback are considered. Simple examples are provided to illustrate the physical meaning of this controller design.

  2. Effect of oxygen plasma on nanomechanical silicon nitride resonators

    NASA Astrophysics Data System (ADS)

    Luhmann, Niklas; Jachimowicz, Artur; Schalko, Johannes; Sadeghi, Pedram; Sauer, Markus; Foelske-Schmitz, Annette; Schmid, Silvan

    2017-08-01

    Precise control of tensile stress and intrinsic damping is crucial for the optimal design of nanomechanical systems for sensor applications and quantum optomechanics in particular. In this letter, we study the influence of oxygen plasma on the tensile stress and intrinsic damping of nanomechanical silicon nitride resonators. Oxygen plasma treatments are common steps in micro and nanofabrication. We show that oxygen plasma for only a few minutes oxidizes the silicon nitride surface, creating several nanometer thick silicon dioxide layers with a compressive stress of 1.30(16) GPa. Such oxide layers can cause a reduction in the effective tensile stress of a 50 nm thick stoichiometric silicon nitride membrane by almost 50%. Additionally, intrinsic damping linearly increases with the silicon dioxide film thickness. An oxide layer of 1.5 nm grown in just 10 s in a 50 W oxygen plasma almost doubled the intrinsic damping. The oxide surface layer can be efficiently removed in buffered hydrofluoric acid.

  3. Aeroelastic Stability of Modern Bearingless Rotors: A Parametric Investigation

    NASA Technical Reports Server (NTRS)

    Nguyen, Khanh Q.

    1994-01-01

    The University of Maryland Advanced Rotorcraft Code (UMARC) is utilized to study the effects of blade design parameters on the aeroelastic stability of an isolated modern bearingless rotor blade in hover. The McDonnell Douglas Advanced Rotor Technology (MDART) Rotor is the baseline rotor investigated. Results indicate that kinematic pitch-lag coupling introduced through the control system geometry and the damping levels of the shear lag dampers strongly affect the hover inplane damping of the baseline rotor blade. Hub precone, pitchcase chordwise stiffness, and blade fundamental torsion frequency have small to moderate influence on the inplane damping, while blade pre-twist and placements of blade fundamental flapwise and chord-wise frequencies have negligible effects. A damperless configuration with a leading edge pitch-link, 15 deg of pitch-link cant angle, and reduced pitch-link stiffness is shown to be stable with an inplane damping level in excess of 2.7 percent critical at the full hover tip speed.

  4. High-speed wavefront control using MEMS micromirrors

    NASA Astrophysics Data System (ADS)

    Bifano, T. G.; Stewart, J. B.

    2005-08-01

    Over the past decade, a number of electrostatically-actuated MEMS deformable mirror devices have been used for adaptive control in beam-forming and imaging applications. One architecture that has been widely used is the silicon device developed by Boston University, consisting of a continuous or segmented mirror supported by post attachments to an array of parallel plate electrostatic actuators. MEMS deformable mirrors and segmented mirrors with up to 1024 of these actuators have been used in open loop and closed loop control systems to control wavefront errors. Frame rates as high as 11kHz have been demonstrated. Mechanically, the actuators used in this device exhibit a first-mode resonant frequency that is in the range of many tens of kilohertz up to a few hundred kilohertz. Viscous air damping has been found to limit operation at such high frequencies in air at standard pressure. Some applications in high-speed tracking and beam-forming could benefit from increased speed. In this paper, several approaches to achieving critically-damped performance with such MEMS DMs are detailed, and theoretical and experimental results are presented. One approach is to seal the MEMS DM in a full or partial vacuum environment, thereby affecting air damping. After vacuum sealing the device's predicted resonant behavior at tens of kilohertz was observed. In vacuum, the actuator's intrinsic material damping is quite small, resulting in considerable oscillation in step response. To alleviate this problem, a two-step actuation algorithm was employed. Precise control of a single actuator frequencies up to 100kHz without overshoot was demonstrated using this approach. Another approach to increasing actuation speed was to design actuators that reduce air damping effects. This is also demonstrated in the paper.

  5. Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Zhihao; Chen, Zhengqing; Wang, Jianhui

    2012-09-01

    Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-known disadvantages, such as oil leakage and difficult adjustment of damping ratio for an operating TMD. Alternatively, eddy current damping (ECD) that does not require any contact with the main structure is a potential solution. This paper discusses the design, analysis, manufacture and testing of a large-scale horizontal TMD based on ECD. First, the theoretical model of ECD is formulated, then one large-scale horizontal TMD using ECD is constructed, and finally performance tests of the TMD are conducted. The test results show that the proposed TMD has a very low intrinsic damping ratio, while the damping ratio due to ECD is the dominant damping source, which can be as large as 15% in a proper configuration. In addition, the damping ratios estimated with the theoretical model are roughly consistent with those identified from the test results, and the source of this error is investigated. Moreover, it is demonstrated that the damping ratio in the proposed TMD can be easily adjusted by varying the air gap between permanent magnets and conductive plates. In view of practical applications, possible improvements and feasibility considerations for the proposed TMD are then discussed. It is confirmed that the proposed TMD with ECD is reliable and feasible for use in structural vibration control.

  6. An experimental investigation of the flap-lag-torsion aeroelastic stability of a small-scale hingeless helicopter rotor in hover

    NASA Technical Reports Server (NTRS)

    Sharpe, David L.

    1986-01-01

    A small scale, 1.92 m diam, torsionally soft, hingeless helicopter rotor was investigated in hover to determine isolated rotor stability characteristics. The two-bladed, untwisted rotor was tested on a rigid test stand at tip speeds up to 101 m/sec. The rotor mode of interest is the lightly damped lead-lag mode. The dimensionless lead-lag frequency of the mode is approximately 1.5 at the highest tip speed. The hub was designed to allow variation in precone, blade droop, pitch control stiffness, and blade pitch angle. Measurements of modal frequency and damping were obtained for several combinations of these hub parameters at several values of rotor speed. Steady blade bending moments were also measured. The lead-lag damping measurements were found to agree well with theoretical predictions for low values of blade pitch angle. The test data confirmed the predicted effects of precone, droop, and pitch control stiffness parameters on lead-lag damping. The correlation between theory and experiment was found to be poor for the mid-to-high range of pitch angles where the theory substantially overpredicted the experimental lead-lag damping. The poor correlation in the mid-to-high blade pitch angle range is attributed to low Reynolds number nonlinear aerodynamics effects not included in the theory. The experimental results also revealed an asymmetry in lead-lag damping between positive and negative thrust conditions.

  7. Control of rotordynamic instability in a typical gas turbine's power system

    NASA Technical Reports Server (NTRS)

    Veikos, N. M.; Page, R. H.; Tornillo, E. J.

    1984-01-01

    The effect of rotor internal friction on the system's stability was studied when operated above the first critical speed. This internal friction is commonly caused by sliding press fits or sliding splines. Under conditions of high speed and low bearing damping, these systems will occassionally whirl at a frequency less than the shaft's rotational speed. This subsynchronous precession is a self excited phenomenon and stress reversals are created. This phenomenon was observed during engine testing. The reduction of spline friction and/or the inclusion of squeeze film damping have controlled the instability. Case history and the detail design of the squeeze film dampers is discussed.

  8. Practical controller design for ultra-precision positioning of stages with a pneumatic artificial muscle actuator

    NASA Astrophysics Data System (ADS)

    Tang, T. F.; Chong, S. H.

    2017-06-01

    This paper presents a practical controller design method for ultra-precision positioning of pneumatic artificial muscle actuator stages. Pneumatic artificial muscle (PAM) actuators are safe to use and have numerous advantages which have brought these actuators to wide applications. However, PAM exhibits strong non-linear characteristics, and these limitations lead to low controllability and limit its application. In practice, the non-linear characteristics of PAM mechanism are difficult to be precisely modeled, and time consuming to model them accurately. The purpose of the present study is to clarify a practical controller design method that emphasizes a simple design procedure that does not acquire plants parameters modeling, and yet is able to demonstrate ultra-precision positioning performance for a PAM driven stage. The practical control approach adopts continuous motion nominal characteristic trajectory following (CM NCTF) control as the feedback controller. The constructed PAM driven stage is in low damping characteristic and causes severe residual vibration that deteriorates motion accuracy of the system. Therefore, the idea to increase the damping characteristic by having an acceleration feedback compensation to the plant has been proposed. The effectiveness of the proposed controller was verified experimentally and compared with a classical PI controller in point-to-point motion. The experiment results proved that the CM NCTF controller demonstrates better positioning performance in smaller motion error than the PI controller. Overall, the CM NCTF controller has successfully to reduce motion error to 3µm, which is 88.7% smaller than the PI controller.

  9. Sound Power Minimization of Circular Plates Through Damping Layer Placement

    NASA Astrophysics Data System (ADS)

    Wodtke, H.-W.; Lamancusa, J. S.

    1998-09-01

    Damping layers, widely used for noise and vibration control of thin-walled structures, can be designed to provide an optimal trade-off between performance and weight which is of particular importance in the automotive and aircraft industry. The goal of the presented work is the minimization of sound power radiated from plates under broadband excitation by redistribution of unconstrained damping layers. The total radiated sound power is assumed to be represented by the sound power radiated at the structural resonances. Resonance tracking is performed by means of single-degree-of-freedom (SDOF)-approximations based on near-resonance responses and their frequency derivatives. Axisymmetric vibrations of circular plates under several boundary and forcing conditions are considered. Frequency dependent Young's modulus and loss factor of the damping material are taken into account. Vibration analysis is based on the finite element method (FEM) while acoustic radiation is treated by means of Rayleigh's integral formula. It is shown that, starting from a uniform damping layer distribution, substantial reduction in radiated sound power can be achieved through redistribution of the damping layers. Depending on the given situation, these reductions are not only due to amplitude reductions but also to changes in vibration shapes and frequencies.

  10. Sweeping shunted electro-magnetic tuneable vibration absorber: Design and implementation

    NASA Astrophysics Data System (ADS)

    Turco, E.; Gardonio, P.

    2017-10-01

    This paper presents a study on the design and implementation of a time-varying shunted electro-magnetic Tuneable Vibration Absorber for broad-band vibration control of thin structures. A time-varying RL-shunt is used to harmonically vary the stiffness and damping properties of the Tuneable Vibration Absorber so that its mechanical fundamental natural frequency is continuously swept in a given broad frequency band whereas its mechanical damping is continuously adapted to maximize the vibration absorption from the hosting structure where it is mounted. The paper first recalls the tuning and positioning criteria for the case where a classical Tuneable Vibration Absorber is installed on a thin walled cylindrical structure to reduce the response of a resonating flexural mode. It then discusses the design of the time-varying shunt circuit to produce the desired stiffness and damping variations in the electro-magnetic Tuneable Vibration Absorber. Finally, it presents a numerical study on the flexural vibration and interior sound control effects produced when an array of these shunted electro-magnetic Tuneable Vibration Absorbers are mounted on a thin walled cylinder subject to a rain-on-the-roof stochastic excitation. The study shows that the array of proposed systems effectively controls the cylinder flexural response and interior noise over a broad frequency band without need of tuning and thus system identification of the structure. Therefore, the systems can be successfully used also on structures whose physical properties vary in time because of temperature changes or tensioning effects for example.

  11. Experimental vibration damping characteristics of the third-stage rotor of a three-stage transonic axial-flow compressor

    NASA Technical Reports Server (NTRS)

    Newman, Frederick A.

    1988-01-01

    Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynanmic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall performance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.

  12. Experimental Vibration Damping Characteristics of the Third-stage Rotor of a Three-stage Transonic Axial-flow Compressor

    NASA Technical Reports Server (NTRS)

    Newman, Frederick A.

    1988-01-01

    Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynamic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall preformance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.

  13. Design and development of the Macpherson Proton Preve Magneto rheological damper with PID controller

    NASA Astrophysics Data System (ADS)

    Amiruddin, I. M.; Pauziah, M.; Aminudin, A.; Unuh, M. H.

    2017-10-01

    Since the creation of the first petrol-fuelled vehicle by Karl Benz in the late nineteenth century, car industry has grown considerably to meet the industrial demands. Luxurious looks and agreeable rides are the primary needs of drivers. The Magneto-rheological damper balanced their damping trademark progressively by applying the damping coefficient depending on the control system. In this research, the control calculations are assessed by utilizing the MR damper. The capacity and reliably of the target force for the damper speed is investigated from control algorithm. This is imperative to defeat the damper limitation. In this study, the simulation results of the semi-dynamic MR damper with the PID controller shows better performance in sprung mass acceleration, unsprung mass acceleration and suspension dislodging with permitting over the top tyre acceleration. The altered model of the MR damper is specially designed for Proton Preve specifications and semi-active PID control. The procedure for the advancement incorporates the numerical model to graphically recreate and break down the dynamic framework by utilizing Matlab.

  14. Experimental validation of a novel stictionless magnetorheological fluid isolator

    NASA Astrophysics Data System (ADS)

    Kelso, Shawn P.; Denoyer, Keith K.; Blankinship, Ross M.; Potter, Kenneth; Lindler, Jason E.

    2003-07-01

    Magnetorheological (MR) fluid damper design typically constitutes a piston/dashpot configuration. During reciprocation, the fluid is circulated through the device with the generated pressure providing viscous damping. In addition, the damper is also intended to accommodate off-axis loading; i.e., rotation moments and lateral loads orthogonal to the axis of operation. Typically two sets of seals, one where the piston shaft enters and exits the device and one between the piston and the cylinder wall, maintain alignment of the damper and seal the fluid from leaking. With MR fluid, these seals can act as sources of non-linear friction effects (stiction) and oftentimes possess a shorter lifespan due to the abrasive nature of the ferrous particles suspended in the fluid. Intelligently controlling damping forces must also accommodate the non-linear stiction behavior, which degrades performance. A new, unique MR fluid isolator was designed, fabricated and tested that directly addresses these concerns. The goal of this research was the development of a stiction-free MR isolator whose damping force can be predicted and precisely controlled. This paper presents experimental results for a prototype device and compares those results to model predictions.

  15. Why noise-induced hearing loss of industrial workers is dramatic while that of similarly assessed musicians has been described as trivial

    NASA Astrophysics Data System (ADS)

    Bies, David

    2005-09-01

    Criteria for noise exposure considered acceptable for hearing protection are based upon industrial experience, yet these same criteria do not describe the experience of musicians. Investigation of the physics of the human ear reveals a basic design compromise that explains this anomaly. Acoustic stimulation is encoded in the velocity response of the basilar membrane, which makes possible the use of damping control to achieve the dynamic range of the ear. The use of damping control for this purpose without unacceptable distortions is possible if damping is slowly varying. The ear is free running and guided by previous instruction, making it vulnerable to loud impulsive sounds. To protect the ear the aural reflex is provided, but this protection is limited to frequencies below about 1 to 2 kHz. In the natural environment this design compromise is satisfactory, but in the industrial environment loud impulsive sounds are common and the compromise fails. It is to be noted that impulsive sounds of high frequency and level for which the ear has no defense, and which are not characteristic of music, are averaged to zero using standard assessment procedures.

  16. Dual-mode disturbance-accommodating pointing controller for Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Addington, Stewart I.; Johnson, C. D.

    1995-03-01

    Cyclic thermal expansions and mechanical stiction effects in the solar arrays on the Hubble Space Telescope (HST) are triggering repeated occurrences of damped, relaxation-type flex-body vibrations of the solar arrays. Those solar array vibrations are, in turn, causing unwanted deviations of the telescope from its specified pointing direction. In this paper we propose two strategies one can adopt in designing a telescope-pointing controller to cope with the aforementioned disturbances: 1) a total isolation (TI) control strategy whereby the HST controller torques are designed to adaptively counteract and cancel out the persistent disturbing torques that are causing the unwanted telescope motions and 2) an array damping (AD) control strategy whereby the HST controller torques are used to actively augment the natural dampening of the solar array vibrations and the attendant telescope motions, between triggerings of the stiction-related flex-body relaxation oscillations. Using the principles of disturbance accommodation control theory, a dual-mode controller for a generic, planar-motion (single-axis) model of the HST is proposed. This controller incorporates both the TI and AD modes of disturbance accommodation. Simulation studies of the closed-loop system using generic parameter values clearly indicate, qualitatively, the enhanced pointing performance such a controller can achieve.

  17. Controllable outrigger damping system for high rise building with MR dampers

    NASA Astrophysics Data System (ADS)

    Wang, Zhihao; Chang, Chia-Ming; Spencer, Billie F., Jr.; Chen, Zhengqing

    2010-04-01

    A novel energy dissipation system that can achieve the amplified damping ratio for a frame-core tube structures is explored, where vertical dampers are equipped between the outrigger and perimeter columns. The modal characteristics of the structural system with linear viscous dampers are theoretically analyzed from the simplified finite element model by parametric analysis. The result shows that modal damping ratios of the first several modes can increase a lot with this novel damping system. To improve the control performance of system, the semi-active control devices, magnetorheological (MR) dampers, are adopted to develop a controllable outrigger damping system. The clipped optimal control with the linear-quadratic Gaussian (LQG) acceleration feedback is adopted in this paper. The effectiveness of both passive and semi-active control outrigger damping systems is evaluated through the numerical simulation of a representative tall building subjected to two typical earthquake records.

  18. Evaluation of innovative concepts for semi-active and active rotorcraft control

    NASA Astrophysics Data System (ADS)

    Van Weddingen, Yannick

    2011-12-01

    Lead-lag dampers are present in most rotor systems to provide the desired level of damping for all flight conditions. These dampers are critical components of the rotor system, and the performance of semi-active Coulomb friction-based lead-lag dampers is examined for the UH-60 aircraft. The concept of adaptive damping, or "damping on demand," is discussed for both ground resonance and forward flight. The concept of selective damping is also assessed, and shown to face many challenges. In rotorcraft flight dynamics, optimized warping twist change is a potentially enabling technology to improve overall rotorcraft performance. Research efforts in recent years have led to the application of active materials for rotorcraft blade actuation. An innovative concept is proposed wherein the typically closed section blade is cut open to create a torsionally compliant structure that acts as its own amplification device; deformation of the blade is dynamically controlled by out-of-plane warping. Full-blade warping is shown to have the potential for great design flexibility. Recent advances in rotorcraft blade design have also focused on variable-camber airfoils, particularly concepts involving "truss-core" configurations. One promising concept is the use of hexagonal chiral lattice structures in continuously deformable helicopter blades. The static behavior of passive and active chiral networks using piezoelectric actuation strategies is investigated, including under typical aerodynamic load levels. The analysis is then extended to the dynamic response of active chiral networks in unsteady aerodynamic environments.

  19. A design methodology of magentorheological fluid damper using Herschel-Bulkley model

    NASA Astrophysics Data System (ADS)

    Liao, Linqing; Liao, Changrong; Cao, Jianguo; Fu, L. J.

    2003-09-01

    Magnetorheological fluid (MR fluid) is highly concentrated suspension of very small magnetic particle in inorganic oil. The essential behavior of MR fluid is its ability to reversibly change from free-flowing, linear viscous liquids to semi-solids having controllable yield strength in milliseconds when exposed to magnetic field. This feature provides simple, quiet, rapid-response interfaces between electronic controls and mechanical systems. In this paper, a mini-bus MR fluid damper based on plate Poiseuille flow mode is typically analyzed using Herschel-Bulkley model, which can be used to account for post-yield shear thinning or thickening under the quasi-steady flow condition. In the light of various value of flow behavior index, the influences of post-yield shear thinning or thickening on flow velocity profiles of MR fluid in annular damping orifice are examined numerically. Analytical damping coefficient predictions also are compared via the nonlinear Bingham plastic model and Herschel-Bulkley constitutive model. A MR fluid damper, which is designed and fabricated according to design method presented in this paper, has tested by electro-hydraulic servo vibrator and its control system in National Center for Test and Supervision of Coach Quality. The experimental results reveal that the analysis methodology and design theory are reasonable and MR fluid damper can be designed according to the design methodology.

  20. Implementation of Push Recovery Strategy Using Triple Linear Inverted Pendulum Model in “T-FloW” Humanoid Robot

    NASA Astrophysics Data System (ADS)

    Dimas Pristovani, R.; Raden Sanggar, D.; Dadet, Pramadihanto.

    2018-04-01

    Push recovery is one of humanbehaviorwhich is a strategy to defend the body from anexternal force in any environment. This paper describes push recovery strategy which usesMIMO decoupled control system method. The dynamics system uses aquasi-dynamic system based on triple linear inverted pendulum model (TLIPM). The analysis of TLIPMuses zero moment point (ZMP) calculation from ZMP simplification in last research. By using this simplification of dynamics system, the control design can be simplified into 3 serial SISOwith known and uncertain disturbance models in each inverted pendulum. Each pendulum has different plan to damp the external force effect. In this experiment, PID controller (closed- loop)is used to arrange the damp characteristic.The experiment result shows thatwhen using push recovery control strategy (closed-loop control) is about 85.71% whilewithout using push recovery control strategy (open-loop control) it is about 28.57%.

  1. Experimental Determination of Aerodynamic Damping in a Three-Stage Transonic Axial-Flow Compressor. Degree awarded by Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Newman, Frederick A.

    1988-01-01

    Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gauge output power spectra. The combined damping consists of aerodynamic and structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given equivalent speed, equivalent mass flow, and pressure ratio while structural and mechanical damping are assumed to be constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third stage rotor blade aerodynamic damping is presented and discussed for 70, 80, 90, and 100 percent design equivalent speed. The compressor overall performance and experimental Campbell diagrams for the third stage rotor blade row are also presented.

  2. Analysis of Handling Qualities Design Criteria for Active Inceptor Force-Feel Characteristics

    NASA Technical Reports Server (NTRS)

    Malpica, Carlos A.; Lusardi, Jeff A.

    2013-01-01

    The force-feel system characteristics of the cyclic inceptors of most helicopters are set based on the characteristics of the mechanical components in the control system (mass, springs, friction dampers, etc.). For these helicopters, the force-feel characteristics typically remain constant over the entire flight envelope, with perhaps a trim release to minimize control forces while maneuvering. With the advent of fly-by-wire control systems and active inceptors in helicopters, the force-feel characteristics are now determined by the closed-loop response of the active inceptor itself as defined by the inertia, force/displacement gradient, damping, breakout force and detent shape configuration parameters in the inceptor control laws. These systems give the flexibility to dynamically prescribe different feel characteristics for different control modes or flight conditions, and the ability to provide tactile cueing to the pilot through the actively controlled side-stick or center-stick cyclic inceptor. For rotorcraft, a few studies have been conducted to assess the effects of cyclic force-feel characteristics on handling qualities in flight. An early study provided valuable insight into the static force-deflection characteristics (force gradient) and the number of axes controlled by the side-stick controller for the U.S. Army's Advanced Digital/Optical Control System (ADOCS) demonstrator aircraft [1]. The first of a series of studies providing insight on the inceptor dynamic force-feel characteristics was conducted on the NASA/Army CH-47B variable-stability helicopter [2]. This work led to a proposed requirement that set boundaries based on the cyclic natural frequency and inertia, with the stipulation of a lower damping ratio limit of 0.3 [3]. A second study was conducted by the Canadian Institute for Aerospace Research using their variable-stability Bell 205A helicopter [4]. This research suggested boundaries for stick dynamics based on natural frequency and damping ratio. While these two studies produced boundaries for acceptable/unacceptable stick dynamics for rotorcraft, they were not able to provide guidance on how variations of the stick dynamics in the acceptable region impact handling qualities. More recently, a ground based simulation study [5] suggested little benefit was to be obtained from variations of the damping ratio for a side-stick controller exhibiting high natural frequencies (greater than 17 rad/s) and damping ratios (greater than 2.0). A flight test campaign was conducted concurrently on the RASCAL JUH-60A in-flight simulator and the ACT/FHS EC-135 in flight simulator [6]. Upon detailed analysis of the pilot evaluations the study identified a clear preference for a high damping ratio and natural frequency of the center stick inceptors. Side stick controllers were found to be less sensitive to the damping. While these studies have compiled a substantial amount of data, in the form of qualitative and quantitative pilot opinion, a fundamental analysis of the effect of the inceptor force-feel system on flight control is found to be lacking. The study of Ref. [6] specifically concluded that a systematic analysis was necessary, since discrepancies with the assigned handling qualities showed that proposed analytical design metrics, or criteria, were not suitable. The overall goal of the present study is to develop a clearer fundamental understanding of the underlying mechanisms associated with the inceptor dynamics that govern the handling qualities using a manageable analytical methodology.

  3. Active Control of Generalized Complex Modal Structures in a Stochastic Environment

    DTIC Science & Technology

    1992-05-15

    began with the design of a baseline controller. The system of interest was a MIMO, heavily damped structure with complex modes, and the control objective...feed-through term in our system that was due to the use of accelerometers as sensors. This provided an acceptable baseline solution to our I problem...to which we could compare our ideas for improvement. One area in which the baseline design was deficient was robust stability to unstructured

  4. Modelling and Vibration Control of Beams with Partially Debonded Active Constrained Layer Damping Patch

    NASA Astrophysics Data System (ADS)

    SUN, D.; TONG, L.

    2002-05-01

    A detailed model for the beams with partially debonded active constraining damping (ACLD) treatment is presented. In this model, the transverse displacement of the constraining layer is considered to be non-identical to that of the host structure. In the perfect bonding region, the viscoelastic core is modelled to carry both peel and shear stresses, while in the debonding area, it is assumed that no peel and shear stresses be transferred between the host beam and the constraining layer. The adhesive layer between the piezoelectric sensor and the host beam is also considered in this model. In active control, the positive position feedback control is employed to control the first mode of the beam. Based on this model, the incompatibility of the transverse displacements of the active constraining layer and the host beam is investigated. The passive and active damping behaviors of the ACLD patch with different thicknesses, locations and lengths are examined. Moreover, the effects of debonding of the damping layer on both passive and active control are examined via a simulation example. The results show that the incompatibility of the transverse displacements is remarkable in the regions near the ends of the ACLD patch especially for the high order vibration modes. It is found that a thinner damping layer may lead to larger shear strain and consequently results in a larger passive and active damping. In addition to the thickness of the damping layer, its length and location are also key factors to the hybrid control. The numerical results unveil that edge debonding can lead to a reduction of both passive and active damping, and the hybrid damping may be more sensitive to the debonding of the damping layer than the passive damping.

  5. Reliable fuzzy H∞ control for active suspension of in-wheel motor driven electric vehicles with dynamic damping

    NASA Astrophysics Data System (ADS)

    Shao, Xinxin; Naghdy, Fazel; Du, Haiping

    2017-03-01

    A fault-tolerant fuzzy H∞ control design approach for active suspension of in-wheel motor driven electric vehicles in the presence of sprung mass variation, actuator faults and control input constraints is proposed. The controller is designed based on the quarter-car active suspension model with a dynamic-damping-in-wheel-motor-driven-system, in which the suspended motor is operated as a dynamic absorber. The Takagi-Sugeno (T-S) fuzzy model is used to model this suspension with possible sprung mass variation. The parallel-distributed compensation (PDC) scheme is deployed to derive a fault-tolerant fuzzy controller for the T-S fuzzy suspension model. In order to reduce the motor wear caused by the dynamic force transmitted to the in-wheel motor, the dynamic force is taken as an additional controlled output besides the traditional optimization objectives such as sprung mass acceleration, suspension deflection and actuator saturation. The H∞ performance of the proposed controller is derived as linear matrix inequalities (LMIs) comprising three equality constraints which are solved efficiently by means of MATLAB LMI Toolbox. The proposed controller is applied to an electric vehicle suspension and its effectiveness is demonstrated through computer simulation.

  6. Integrated analysis and design of thick composite structures for optimal passive damping characteristics

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.

    1993-01-01

    The development of novel composite mechanics for the analysis of damping in composite laminates and structures and the more significant results of this effort are summarized. Laminate mechanics based on piecewise continuous in-plane displacement fields are described that can represent both intralaminar stresses and interlaminar shear stresses and the associated effects on the stiffness and damping characteristics of a composite laminate. Among other features, the mechanics can accurately model the static and damped dynamic response of either thin or thick composite laminates, as well as, specialty laminates with embedded compliant damping layers. The discrete laminate damping theory is further incorporated into structural analysis methods. In this context, an exact semi-analytical method for the simulation of the damped dynamic response of composite plates was developed. A finite element based method and a specialty four-node plate element were also developed for the analysis of composite structures of variable shape and boundary conditions. Numerous evaluations and applications demonstrate the quality and superiority of the mechanics in predicting the damped dynamic characteristics of composite structures. Finally, additional development was focused on the development of optimal tailoring methods for the design of thick composite structures based on the developed analytical capability. Applications on composite plates illustrated the influence of composite mechanics in the optimal design of composites and the potential for significant deviations in the resultant designs when more simplified (classical) laminate theories are used.

  7. Integrated tuned vibration absorbers: a theoretical study.

    PubMed

    Gardonio, Paolo; Zilletti, Michele

    2013-11-01

    This article presents a simulation study on two integrated tuned vibration absorbers (TVAs) designed to control the global flexural vibration of lightly damped thin structures subject to broad frequency band disturbances. The first one consists of a single axial switching TVA composed by a seismic mass mounted on variable axial spring and damper elements so that the characteristic damping and natural frequency of the absorber can be switched iteratively to control the resonant response of three flexural modes of the hosting structure. The second one consists of a single three-axes TVA composed by a seismic mass mounted on axial and rotational springs and dampers, which are arranged in such a way that the suspended mass is characterized by uncoupled heave and pitch-rolling vibrations. In this case the three damping and natural frequency parameters of the absorber are tuned separately to control three flexural modes of the hosting structure. The simulation study shows that the proposed single-unit absorbers produce, respectively, 5.3 and 8.7 dB reductions of the global flexural vibration of a rectangular plate between 20 and 120 Hz.

  8. Numerical design and test on an assembled structure of a bolted joint with viscoelastic damping

    NASA Astrophysics Data System (ADS)

    Hammami, Chaima; Balmes, Etienne; Guskov, Mikhail

    2016-03-01

    Mechanical assemblies are subjected to many dynamic loads and modifications are often needed to achieve acceptable vibration levels. While modifications on mass and stiffness are well mastered, damping modifications are still considered difficult to design. The paper presents a case study on the design of a bolted connection containing a viscoelastic damping layer. The notion of junction coupling level is introduced to ensure that sufficient energy is present in the joints to allow damping. Static performance is then addressed and it is shown that localization of metallic contact can be used to meet objectives, while allowing the presence of viscoelastic materials. Numerical prediction of damping then illustrates difficulties in optimizing for robustness. Modal test results of three configurations of an assembled structure, inspired by aeronautic fuselages, are then compared to analyze the performance of the design. While validity of the approach is confirmed, the effect of geometric imperfections is shown and stresses the need for robust design.

  9. Development of a Pneumatic Robot for MRI-guided Transperineal Prostate Biopsy and Brachytherapy: New Approaches

    PubMed Central

    Song, Sang-Eun; Cho, Nathan B.; Fischer, Gregory; Hata, Nobuhito; Tempany, Clare; Fichtinger, Gabor; Iordachita, Iulian

    2011-01-01

    Magnetic Resonance Imaging (MRI) guided prostate biopsy and brachytherapy has been introduced in order to enhance the cancer detection and treatment. For the accurate needle positioning, a number of robotic assistants have been developed. However, problems exist due to the strong magnetic field and limited workspace. Pneumatically actuated robots have shown the minimum distraction in the environment but the confined workspace limits optimal robot design and thus controllability is often poor. To overcome the problem, a simple external damping mechanism using timing belts was sought and a 1-DOF mechanism test result indicated sufficient positioning accuracy. Based on the damping mechanism and modular system design approach, a new workspace-optimized 4-DOF parallel robot was developed for the MRI-guided prostate biopsy and brachytherapy. A preliminary evaluation of the robot was conducted using previously developed pneumatic controller and satisfying results were obtained. PMID:21399734

  10. Particle damping applied research on mining dump truck vibration control

    NASA Astrophysics Data System (ADS)

    Song, Liming; Xiao, Wangqiang; Guo, Haiquan; Yang, Zhe; Li, Zeguang

    2018-05-01

    Vehicle vibration characteristics has become an important evaluation indexes of mining dump truck. In this paper, based on particle damping technology, mining dump truck vibration control was studied by combining the theoretical simulation with actual testing, particle damping technology was successfully used in mining dump truck cab vibration control. Through testing results analysis, with a particle damper, cab vibration was reduced obviously, the methods and basis were provided for vehicle vibration control research and particle damping technology application.

  11. Unsymmetric Lanczos model reduction and linear state function observer for flexible structures

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1991-01-01

    This report summarizes part of the research work accomplished during the second year of a two-year grant. The research, entitled 'Application of Lanczos Vectors to Control Design of Flexible Structures' concerns various ways to use Lanczos vectors and Krylov vectors to obtain reduced-order mathematical models for use in the dynamic response analyses and in control design studies. This report presents a one-sided, unsymmetric block Lanczos algorithm for model reduction of structural dynamics systems with unsymmetric damping matrix, and a control design procedure based on the theory of linear state function observers to design low-order controllers for flexible structures.

  12. Seismic Response Control Of Structures Using Semi-Active and Passive Variable Stiffness Devices

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed M. A.

    Controllable devices such as Magneto-Rheological Fluid Dampers, Electro-Rheological Dampers, and controllable friction devices have been studied extensively with limited implementation in real structures. Such devices have shown great potential in reducing seismic demands, either as smart base isolation systems, or as smart devices for multistory structures. Although variable stiffness devices can be used for seismic control of structures, the vast majority of research effort has been given to the control of damping. The primary focus of this dissertation is to evaluate the seismic control of structures using semi-active and passive variable stiffness characteristics. Smart base isolation systems employing variable stiffness devices have been studied, and two semi-active control strategies are proposed. The control algorithms were designed to reduce the superstructure and base accelerations of seismically isolated structures subject to near-fault and far-field ground motions. Computational simulations of the proposed control algorithms on the benchmark structure have shown that excessive base displacements associated with the near-fault ground motions may be better mitigated with the use of variable stiffness devices. However, the device properties must be controllable to produce a wide range of stiffness changes for an effective control of the base displacements. The potential of controllable stiffness devices in limiting the base displacement due to near-fault excitation without compromising the performance of conventionally isolated structures, is illustrated. The application of passive variable stiffness devices for seismic response mitigation of multistory structures is also investigated. A stiffening bracing system (SBS) is proposed to replace the conventional bracing systems of braced frames. An optimization process for the SBS parameters has been developed. The main objective of the design process is to maintain a uniform inter-story drift angle over the building's height, which in turn would evenly distribute the seismic demand over the building. This behavior is particularly essential so that any possible damage is not concentrated in a single story. Furthermore, the proposed design ensures that additional damping devices distributed over the building's height work efficiently with their maximum design capacity, leading to a cost efficient design. An integrated and comprehensive design procedure that can be readily adopted by the current seismic design codes is proposed. An equivalent lateral force distribution is developed that shows a good agreement with the response history analyses in terms of seismic performance and demand prediction. This lateral force pattern explicitly accounts for the higher mode effect, the dynamic characteristics of the structure, the supplemental damping, and the site specific seismic hazard. Therefore, the proposed design procedure is considered as a standalone method for the design of SBS equipped buildings.

  13. An Active Damping at Blade Resonances Using Piezoelectric Transducers

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Morrison, Carlos; Duffy, Kirsten

    2008-01-01

    The NASA Glenn Research Center (GRC) is developing an active damping at blade resonances using piezoelectric structure to reduce excessive vibratory stresses that lead to high cycle fatigue (HCF) failures in aircraft engine turbomachinery. Conventional passive damping work was shown first on a nonrotating beam made by Ti-6A1-4V with a pair of identical piezoelectric patches, and then active feedback control law was derived in terms of inductor, resister, and capacitor to control resonant frequency only. Passive electronic circuit components and adaptive feature could be easily programmable into control algorithm. Experimental active damping was demonstrated on two test specimens achieving significant damping on tip displacement and patch location. Also a multimode control technique was shown to control several modes.

  14. Optimal decentralized feedback control for a truss structure

    NASA Technical Reports Server (NTRS)

    Cagle, A.; Ozguner, U.

    1989-01-01

    One approach to the decentralized control of large flexible space structures involves the design of controllers for the substructures of large systems and their subsequent application to the entire coupled system. This approach is presently developed for the case of active vibration damping on an experimental large struss structure. The isolated boundary loading method is used to define component models by FEM; component controllers are designed using an interlocking control concept which minimizes the motion of the boundary nodes, thereby reducing the exchange of mechanical disturbances among components.

  15. Design and damping force characterization of a new magnetorheological damper activated by permanent magnet flux dispersion

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hoon; Han, Chulhee; Choi, Seung-Bok

    2018-01-01

    This work proposes a novel type of tunable magnetorheological (MR) damper operated based solely on the location of a permanent magnet incorporated into the piston. To create a larger damping force variation in comparison with the previous model, a different design configuration of the permanent-magnet-based MR (PMMR) damper is introduced to provide magnetic flux dispersion in two magnetic circuits by utilizing two materials with different magnetic reluctance. After discussing the design configuration and some advantages of the newly designed mechanism, the magnetic dispersion principle is analyzed through both the formulated analytical model of the magnetic circuit and the computer simulation based on the magnetic finite element method. Sequentially, the principal design parameters of the damper are determined and fabricated. Then, experiments are conducted to evaluate the variation in damping force depending on the location of the magnet. It is demonstrated that the new design and magnetic dispersion concept are valid showing higher damping force than the previous model. In addition, a curved structure of the two materials is further fabricated and tested to realize the linearity of the damping force variation.

  16. A controller design approach for large flexible space structures

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1981-01-01

    A controller design approach for large space structures is presented, which consists of a primary attitude controller and a secondary or damping enhancement controller. The secondary controller, which uses several Annular Momentum Control Device (AMCD's), is shown to make the closed loop system asymptotically stable under relatively simple conditions. The primary controller using torque actuators (or AMCD's) and colocated attitude and rate sensors is shown to be stable. It is shown that the same AMCD's can be used for simultaneous actuation of primary and secondary controllers. Numerical results are obtained for a large, thin, completely free plate model.

  17. Research on damping properties optimization of variable-stiffness plate

    NASA Astrophysics Data System (ADS)

    Wen-kai, QI; Xian-tao, YIN; Cheng, SHEN

    2016-09-01

    This paper investigates damping optimization design of variable-stiffness composite laminated plate, which means fibre paths can be continuously curved and fibre angles are distinct for different regions. First, damping prediction model is developed based on modal dissipative energy principle and verified by comparing with modal testing results. Then, instead of fibre angles, the element stiffness and damping matrixes are translated to be design variables on the basis of novel Discrete Material Optimization (DMO) formulation, thus reducing the computation time greatly. Finally, the modal damping capacity of arbitrary order is optimized using MMA (Method of Moving Asymptotes) method. Meanwhile, mode tracking technique is employed to investigate the variation of modal shape. The convergent performance of interpolation function, first order specific damping capacity (SDC) optimization results and variation of modal shape in different penalty factor are discussed. The results show that the damping properties of the variable-stiffness plate can be increased by 50%-70% after optimization.

  18. Damping Ring R&D at CESR-TA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, David L.

    2015-01-23

    Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams ofmore » electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring, and that an instability associated with residual gas in the beam pipe would limit the intensity of the electron ring. It was also not clear whether the required very small beam size could be achieved. The results of this study are important contributions to the design of both the electron and positron damping rings in which all of those challenges are addressed and overcome. Our findings are documented in the ILC Technical Design Report, a document that represents the work of an international collaboration of scientists. Our contributions include design of the beam magnetic optics for the 3 km circumference damping rings, the vacuum system and surface treatments for electron cloud mitigation, the design of the guide field magnets, design of the superconducting damping wigglers, and new detectors for precision measurement of beam properties. Our study informed the specification of the basic design parameters for the damping rings, including alignment tolerances, magnetic field errors, and instrumentation. We developed electron cloud modelling tools and simulations to aid in the interpretation of the measurements that we carried out in the Cornell Electron-positron Storage Ring (CESR). The simulations provide a means for systematic extrapolation of our measurements at CESR to the proposed ILC damping rings, and ultimately to specify how the beam pipes should be fabricated in order to minimize the effects of the electron cloud. With the conclusion of this study, the design of the essential components of the damping rings is complete, including the development and characterization (with computer simulations) of the beam optics, specification of techniques for minimizing beam size, design of damping ring instrumentation, R&D into electron cloud suppression methods, tests of long term durability of electron cloud coatings, and design of damping ring vacuum system components.« less

  19. Sub-synchronous resonance damping using high penetration PV plant

    NASA Astrophysics Data System (ADS)

    Khayyatzadeh, M.; Kazemzadeh, R.

    2017-02-01

    The growing need to the clean and renewable energy has led to the fast development of transmission voltage-level photovoltaic (PV) plants all over the world. These large scale PV plants are going to be connected to power systems and one of the important subjects that should be investigated is the impact of these plants on the power system stability. Can large scale PV plants help to damp sub-synchronous resonance (SSR) and how? In this paper, this capability of a large scale PV plant is investigated. The IEEE Second Benchmark Model aggregated with a PV plant is utilized as the case study. A Wide Area Measurement System (WAMS) based conventional damping controller is designed and added to the main control loop of PV plant in order to damp the SSR and also investigation of the destructive effect of time delay in remote feedback signal. A new optimization algorithm called teaching-learning-based-optimization (TLBO) algorithm has been used for managing the optimization problems. Fast Furrier Transformer (FFT) analysis and also transient simulations of detailed nonlinear system are considered to investigate the performance of the controller. Robustness of the proposed system has been analyzed by facing the system with disturbances leading to significant changes in generator and power system operating point, fault duration time and PV plant generated power. All the simulations are carried out in MATLAB/SIMULINK environment.

  20. Active member vibration control for a 4 meter primary reflector support structure

    NASA Technical Reports Server (NTRS)

    Umland, J. W.; Chen, G.-S.

    1992-01-01

    The design and testing of a new low voltage piezoelectric active member with integrated load cell and displacement sensor is described. This active member is intended for micron level vibration and structural shape control of the Precision Segmented Reflector test-bed. The test-bed is an erectable 4 meter diameter backup support truss for a 2.4 meter focal length parabolic reflector. Active damping of the test-bed is then demonstrated using the newly developed active members. The control technique used is referred to as bridge feedback. With this technique the internal sensors are used in a local feedback loop to match the active member's input impedance to the structure's load impedance, which then maximizes vibrational energy dissipation. The active damping effectiveness is then evaluated from closed loop frequency responses.

  1. Aerospace Structures Technology Damping Design Guide. Volume 1. Technology Review

    DTIC Science & Technology

    1985-12-01

    AFWAL-TR-84-3089 Volume I AEROSPACE STRUCTURES TECHNOLOGY I DAMPING DESIGN GUIDE VOLUME I - TECHNOLOGY REVIEW J. SOOVERE LOCKHEED CALIFORNIA COMPANY...3089 Volume I AEROSPACE STRUCTURES TECHNOLOGY DAMPING DESIGN GUIDE VOLUME I - TECHNOLOGY REVIEW J. SOOVERE LOCKMD CALIFORNIA COMPANY P.O. BOX 551 BURBANK...PATTERSON AIR FORCE BASE, OHIO 454t33I I ft NOTICE When Government drawings, specifications, or other data are used for any purpose other than in

  2. F-8C digital CCV flight control laws

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Hauge, J. A.; Hendrick, R. C.

    1976-01-01

    A set of digital flight control laws were designed for the NASA F-8C digital fly-by-wire aircraft. The control laws emphasize Control Configured Vehicle (CCV) benefits. Specific pitch axis objectives were improved handling qualities, angle-of-attack limiting, gust alleviation, drag reduction in steady and maneuvering flight, and a capability to fly with reduced static stability. The lateral-directional design objectives were improved Dutch roll damping and turn coordination over a wide range in angle-of-attack. An overall program objective was to explore the use of modern control design methodilogy to achieve these specific CCV benefits. Tests for verifying system integrity, an experimental design for handling qualities evaluation, and recommended flight test investigations were specified.

  3. Concepts and effects of damping in isolators

    NASA Technical Reports Server (NTRS)

    Kerley, J.

    1984-01-01

    A series of innovative designs and inventions which led to the solution of many aerospace vibration and shock problems through damping techniques is presented. The design of damped airborne structures has presented a need for such creative innovation. The primary concern was to discover what concepts were necessary for good structural damping. Once these concepts are determined and converted into basic principles, the design of hardware follows. The following hardware and techniques were developed in support of aerospace program requirements: shipping containers, alignment cables for precision mechanisms, isolation of small components such as relays and flight instruments, isolation for heavy flight equipment, coupling devices, universal joints, use of wire mesh to replace cable, isolation of 16-dB, 5000 lb horn, and compound damping devices to get better isolation from shock and vibration in a high steady environment.

  4. Quadratic partial eigenvalue assignment in large-scale stochastic dynamic systems for resilient and economic design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Sonjoy; Goswami, Kundan; Datta, Biswa N.

    2014-12-10

    Failure of structural systems under dynamic loading can be prevented via active vibration control which shifts the damped natural frequencies of the systems away from the dominant range of loading spectrum. The damped natural frequencies and the dynamic load typically show significant variations in practice. A computationally efficient methodology based on quadratic partial eigenvalue assignment technique and optimization under uncertainty has been formulated in the present work that will rigorously account for these variations and result in an economic and resilient design of structures. A novel scheme based on hierarchical clustering and importance sampling is also developed in this workmore » for accurate and efficient estimation of probability of failure to guarantee the desired resilience level of the designed system. Numerical examples are presented to illustrate the proposed methodology.« less

  5. Handling qualities effects of display latency

    NASA Technical Reports Server (NTRS)

    King, David W.

    1993-01-01

    Display latency is the time delay between aircraft response and the corresponding response of the cockpit displays. Currently, there is no explicit specification for allowable display lags to ensure acceptable aircraft handling qualities in instrument flight conditions. This paper examines the handling qualities effects of display latency between 70 and 400 milliseconds for precision instrument flight tasks of the V-22 Tiltrotor aircraft. Display delay effects on the pilot control loop are analytically predicted through a second order pilot crossover model of the V-22 lateral axis, and handling qualities trends are evaluated through a series of fixed-base piloted simulation tests. The results show that the effects of display latency for flight path tracking tasks are driven by the stability characteristics of the attitude control loop. The data indicate that the loss of control damping due to latency can be simply predicted from knowledge of the aircraft's stability margins, control system lags, and required control bandwidths. Based on the relationship between attitude control damping and handling qualities ratings, latency design guidelines are presented. In addition, this paper presents a design philosophy, supported by simulation data, for using flight director display augmentation to suppress the effects of display latency for delays up to 300 milliseconds.

  6. A dual-mode disturbance-accommodating controller for the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Addington, Stewart; Johnson, C. D.

    Cyclic thermal expansions and mechanical stiction effects in the Solar Arrays on the Hubble Space Telescope (HST) are triggering repeated occurrences of damped, relaxation-type flex-body vibrations of the solar arrays. Those solar array vibrations are, in turn, causing unwanted, oscillating disturbance torques on the HST main body, which cause unwanted deviations of the telescope from its specified pointing direction. In this paper we propose two strategies one can adopt in designing a telescope-pointing controller to cope with the aforementioned disturbances: (1) a `total isolation' (TI) control strategy whereby the HST controller torques are designed to adaptively counteract and cancel-out the persistent disturbing torques that are causing the unwanted telescope motions, and (2) an `array damping' (AD) control strategy whereby the HST controller torques are used to actively augment the natural dampening of the solar array vibrations and the attendant telescope motions, between triggerings of the stiction-related flex-body relaxation oscillations. Using the principles of Disturbance-Accommodating Control (DAC) Theory a dual-mode controller for a generic, planar-motion (single-axis) model of the HST is proposed. This controller incorporates both the TI and AD modes of disturbance-accommodation. Simulation studies of the closed-loop system using generic parameter values clearly indicate, qualitatively, the enhanced pointing-performance such a controller can achieve.

  7. Computerized design of controllers using data models

    NASA Technical Reports Server (NTRS)

    Irwin, Dennis; Mitchell, Jerrel; Medina, Enrique; Allwine, Dan; Frazier, Garth; Duncan, Mark

    1995-01-01

    The major contributions of the grant effort have been the enhancement of the Compensator Improvement Program (CIP), which resulted in the Ohio University CIP (OUCIP) package, and the development of the Model and Data-Oriented Computer Aided Design System (MADCADS). Incorporation of direct z-domain designs into CIP was tested and determined to be numerically ill-conditioned for the type of lightly damped problems for which the development was intended. Therefore, it was decided to pursue the development of z-plane designs in the w-plane, and to make this conversion transparent to the user. The analytical development needed for this feature, as well as that needed for including compensator damping ratios and DC gain specifications, closed loop stability requirements, and closed loop disturbance rejection specifications into OUCIP are all contained in Section 3. OUCIP was successfully tested with several example systems to verify proper operation of existing and new features. The extension of the CIP philosophy and algorithmic approach to handle modern multivariable controller design criteria was implemented and tested. Several new algorithms for implementing the search approach to modern multivariable control system design were developed and tested. This analytical development, most of which was incorporated into the MADCADS software package, is described in Section 4, which also includes results of the application of MADCADS to the MSFC ACES facility and the Hubble Space Telescope.

  8. Experimental investigations on the damping effect due to passengers on flexural vibrations of railway vehicle carbody and basic studies on the mimicry of the effect with simple substitutions

    NASA Astrophysics Data System (ADS)

    Tomioka, T.; Takigami, T.; Aida, K.

    2017-07-01

    The effect of passengers on a railway vehicle is usually considered as additional mass in designing a carbody. However, previous studies by means of stationary excitation tests or running tests using actual vehicles indicate that passengers behave not as mass but as damping. In this paper, the authors examined the passengers' damping effect under controlled excitation conditions on a roller rig through a series of excitation tests using a commuter-type vehicle. Large and multi-modal reductions of flexural vibrations of the carbody were observed when passengers existed. Influences of the number of passengers, distributions and postures of passengers were investigated. The authors also tried to mimic the damping effect by passengers using flexible tanks filled with fluids. Three kinds of fluids which have different viscosities have been tested. As a result of the excitation tests, good vibration reduction effects were observed by applying those tanks, and it has been found that the flexible tanks filled with fluids bring about vibration reduction effect (including multi-modal reduction) which is equal to or rather better than the case of similar mass of passengers in the carbody; the difference of viscosity gave little affect on the damping abilities. From these measurement results, a possibility of realising effective damping devices against flexural vibrations of railway vehicle carbodies representing passengers damping effect, in a simple, economical and environmental friendly way, has been demonstrated.

  9. MISSILE DATCOM User’s Manual - 2011 Revision

    DTIC Science & Technology

    2011-03-01

    out. This control card is effective only for the case in which it appears. The following data will be computed and output: Table 24. Magnus ...SOSE, SUPBOD Dynamic derivatives BDAMP, DAMP2 BDAMP, DAMP2 Magnus derivatives SPIN83, DAMP2 SPIN83, DAMP2 Plume effects BOTCNM, BOTCA, BASPRS... Magnus derivatives calculated with SPIN Control Card .................................................. 59 Table 25. Dictionary listing for the FOR020

  10. Analysis of thermoelastic damping in laminated composite micromechanical beam resonators

    NASA Astrophysics Data System (ADS)

    Vengallatore, Srikar

    2005-12-01

    Minimization of structural damping is an essential requirement in the design of multifunctional composite micromachined resonators used for sensing and communications applications. Here, we study thermoelastic damping in symmetric, three-layered, laminated, micromechanical Euler-Bernoulli beams using an analytical framework developed by Bishop and Kinra in 1997. The frequency dependence of damping in two representative sets of structures—metallized ceramic beams and ceramic/ceramic laminates—is investigated in detail. The effects of material properties and relative volume fractions are numerically evaluated. The results indicate that metallization of Si and SiC beams using Al, Cu, Ag or Au leads to a considerable increase in damping over a broad frequency range. Similarly, coating silicon with SiC leads to a monotonic increase of the peak damping value as a function of the volume fraction of silicon carbide but, remarkably, there exists a range of frequencies at which the damping in the composite is less than that of bare silicon. Implications for the design of metallized ceramic beams, and for the simultaneous optimization of natural frequency and damping, are discussed.

  11. Piloted simulator investigation of helicopter control systems effects on handling qualities during instrument flight

    NASA Technical Reports Server (NTRS)

    Forrest, R. D.; Chen, R. T. N.; Gerdes, R. M.; Alderete, T. S.; Gee, D. R.

    1979-01-01

    An exploratory piloted simulation was conducted to investigate the effects of the characteristics of helicopter flight control systems on instrument flight handling qualities. This joint FAA/NASA study was motivated by the need to improve instrument flight capability. A near-term objective is to assist in updating the airworthiness criteria for helicopter instrument flight. The experiment consisted of variations of single-rotor helicopter types and levels of stability and control augmentation systems (SCAS). These configurations were evaluated during an omnirange approach task under visual and instrument flight conditions. The levels of SCAS design included a simple rate damping system, collective decoupling plus rate damping, and an attitude command system with collective decoupling. A limited evaluation of stick force versus airspeed stability was accomplished. Some problems were experienced with control system mechanization which had a detrimental effect on longitudinal stability. Pilot ratings, pilot commentary, and performance data related to the task are presented.

  12. Design and implementation of active members for precision space structures

    NASA Technical Reports Server (NTRS)

    Webster, M. S.; Fanson, J. L.; Lurie, B. J.; O'Brien, J. F.

    1992-01-01

    This paper describes the development and implementation of an active member in a precision truss structure. The active member utilizes a piezoelectric actuator motor imbedded in a steel case with built-in displacement sensor. This active member is used in structural quieting. Collocated active damping control loops are designed in order to impedance match piezoelectric active members to the structure. Results from application of these controllers and actuators to the JPL Phase B testbed are given.

  13. Optical rotation of levitated spheres in high vacuum

    NASA Astrophysics Data System (ADS)

    Monteiro, Fernando; Ghosh, Sumita; van Assendelft, Elizabeth C.; Moore, David C.

    2018-05-01

    A circularly polarized laser beam is used to levitate and control the rotation of microspheres in high vacuum. At low pressure, rotation frequencies as high as 6 MHz are observed for birefringent vaterite spheres, limited by centrifugal stresses. Due to the extremely low damping in high vacuum, the controlled optical rotation of amorphous SiO2 spheres is also observed at rates above several MHz. At 10-7 mbar, a damping time of 6 ×104 s is measured for a 10 -μ m -diam SiO2 sphere. No additional damping mechanisms are observed above gas damping, indicating that even longer damping times may be possible with operation at lower pressure. The controlled optical rotation of microspheres at MHz frequencies with low damping, including for materials that are not intrinsically birefringent, provides a tool for performing precision measurements using optically levitated systems.

  14. Optimal control theory investigation of proprotor/wing response to vertical gust

    NASA Technical Reports Server (NTRS)

    Frick, J. K. D.; Johnson, W.

    1974-01-01

    Optimal control theory is used to design linear state variable feedback to improve the dynamic characteristics of a rotor and cantilever wing representing the tilting proprotor aircraft in cruise flight. The response to a vertical gust and system damping are used as criteria for the open and closed loop performance. The improvement in the dynamic characteristics achievable is examined for a gimballed rotor and for a hingeless rotor design. Several features of the design process are examined, including: (1) using only the wing or only the rotor dynamics in the control system design; (2) the use of a wing flap as well as the rotor controls for inputs; (3) and the performance of the system designed for one velocity at other forward speeds.

  15. Enhanced damping for bridge cables using a self-sensing MR damper

    NASA Astrophysics Data System (ADS)

    Chen, Z. H.; Lam, K. H.; Ni, Y. Q.

    2016-08-01

    This paper investigates enhanced damping for protecting bridge stay cables from excessive vibration using a newly developed self-sensing magnetorheological (MR) damper. The semi-active control strategy for effectively operating the self-sensing MR damper is formulated based on the linear-quadratic-Gaussian (LQG) control by further considering a collocated control configuration, limited measurements and nonlinear damper dynamics. Due to its attractive feature of sensing-while-damping, the self-sensing MR damper facilitates the collocated control. On the other hand, only the sensor measurements from the self-sensing device are employed in the feedback control. The nonlinear dynamics of the self-sensing MR damper, represented by a validated Bayesian NARX network technique, are further accommodated in the control formulation to compensate for its nonlinearities. Numerical and experimental investigations are conducted on stay cables equipped with the self-sensing MR damper operated in passive and semi-active control modes. The results verify that the collocated self-sensing MR damper facilitates smart damping for inclined cables employing energy-dissipative LQG control with only force and displacement measurements at the damper. It is also demonstrated that the synthesis of nonlinear damper dynamics in the LQG control enhances damping force tracking efficiently, explores the features of the self-sensing MR damper, and achieves better control performance over the passive MR damping control and the Heaviside step function-based LQG control that ignores the damper dynamics.

  16. A comparative work on vibration control of a quarter car suspension system with two different magneto-rheological dampers

    NASA Astrophysics Data System (ADS)

    Park, Jhin Ha; Kim, Wan Ho; Shin, Cheol Soo; Choi, Seung-Bok

    2017-01-01

    This work compares the ride comfort of a passenger vehicle whose suspension system is equipped with two different magneto-rheological (MR) dampers: with and without bypass holes in the piston. In order to achieve this goal, two cylindrical type MR dampers, which otherwise have the same such geometrical dimensions as radius of piston, length of pole and distance between two poles, are designed based on a mathematical model and subsequently manufactured. One of MR dampers is then modified by making bypass holes in the piston bobbin structure to obtain a relatively low slope of damping force in the pre-yield region. The field-dependent damping force characteristics are investigated through both simulation and experiment. After characterizing the field-dependent damping force of the two MR dampers, a quarter car model is established to evaluate the ride comfort. In this work, a simple but very effective sky-hook controller is adopted, and vibration control performance is evaluated under two road profiles: bump and random road excitations. It is demonstrated through simulation and experiment that the MR damper with bypass holes provides better ride comfort to the car so equipped than that without.

  17. A self-sensing magnetorheological damper with power generation

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Liao, Wei-Hsin

    2012-02-01

    Magnetorheological (MR) dampers are promising for semi-active vibration control of various dynamic systems. In the current MR damper systems, a separate power supply and dynamic sensor are required. To enable the MR damper to be self-powered and self-sensing in the future, in this paper we propose and investigate a self-sensing MR damper with power generation, which integrates energy harvesting, dynamic sensing and MR damping technologies into one device. This MR damper has self-contained power generation and velocity sensing capabilities, and is applicable to various dynamic systems. It combines the advantages of energy harvesting—reusing wasted energy, MR damping—controllable damping force, and sensing—providing dynamic information for controlling system dynamics. This multifunctional integration would bring great benefits such as energy saving, size and weight reduction, lower cost, high reliability, and less maintenance for the MR damper systems. In this paper, a prototype of the self-sensing MR damper with power generation was designed, fabricated, and tested. Theoretical analyses and experimental studies on power generation were performed. A velocity-sensing method was proposed and experimentally validated. The magnetic-field interference among three functions was prevented by a combined magnetic-field isolation method. Modeling, analysis, and experimental results on damping forces are also presented.

  18. A numerical study of the acoustic radiation due to eddy current-cryostat interactions.

    PubMed

    Wang, Yaohui; Liu, Feng; Zhou, Xiaorong; Li, Yu; Crozier, Stuart

    2017-06-01

    To investigate the acoustic radiation due to eddy current-cryostat interactions and perform a qualitative analysis on noise reduction methods. In order to evaluate the sound pressure level (SPL) of the eddy current induced warm bore wall vibration, a Finite Element (FE) model was created to simulate the noises from both the warm bore wall vibration and the gradient coil assembly. For the SPL reduction of the warm bore wall vibration, we first improved the active shielding of the gradient coil, thus reducing the eddy current on the warm bore wall. A damping treatment was then applied to the warm bore wall to control the acoustic radiation. Initial simulations show that the SPL of the warm bore wall is higher than that of the gradient assembly with typical design shielding ratios at many frequencies. Subsequent simulation results of eddy current control and damping treatment application show that the average SPL reduction of the warm bore wall can be as high as 9.6 dB, and even higher in some frequency bands. Combining eddy current control and suggested damping scheme, the noise level in a MRI system can be effectively reduced. © 2017 American Association of Physicists in Medicine.

  19. Passive isolation/damping system for the Hubble space telescope reaction wheels

    NASA Technical Reports Server (NTRS)

    Hasha, Martin D.

    1987-01-01

    NASA's Hubble Space Telescope contain large, diffraction limited optics with extraordinary resolution and performance for surpassing existing observatories. The need to reduce structural borne vibration and resultant optical jitter from critical Pointing Control System components, Reaction Wheels, prompted the feasibility investigation and eventual development of a passive isolation system. Alternative design concepts considered were required to meet a host of stringent specifications and pass rigid tests to be successfully verified and integrated into the already built flight vehicle. The final design employs multiple arrays of fluid damped springs that attenuate over a wide spectrum, while confining newly introduced resonances to benign regions of vehicle dynamic response. Overall jitter improvement of roughly a factor of 2 to 3 is attained with this system. The basis, evolution, and performance of the isolation system, specifically discussing design concepts considered, optimization studies, development lessons learned, innovative features, and analytical and ground test verified results are presented.

  20. Damping Estimation from Free Decay Responses of Cables with MR Dampers.

    PubMed

    Weber, Felix; Distl, Hans

    2015-01-01

    This paper discusses the damping measurements on cables with real-time controlled MR dampers that were performed on a laboratory scale single strand cable and on cables of the Sutong Bridge, China. The control approach aims at producing amplitude and frequency independent cable damping which is confirmed by the tests. The experimentally obtained cable damping in comparison to the theoretical value due to optimal linear viscous damping reveals that support conditions of the cable anchors, force tracking errors in the actual MR damper force, energy spillover to higher modes, and excitation and sensor cables hanging on the stay cable must be taken into consideration for the interpretation of the identified cable damping values.

  1. Damping Estimation from Free Decay Responses of Cables with MR Dampers

    PubMed Central

    Weber, Felix; Distl, Hans

    2015-01-01

    This paper discusses the damping measurements on cables with real-time controlled MR dampers that were performed on a laboratory scale single strand cable and on cables of the Sutong Bridge, China. The control approach aims at producing amplitude and frequency independent cable damping which is confirmed by the tests. The experimentally obtained cable damping in comparison to the theoretical value due to optimal linear viscous damping reveals that support conditions of the cable anchors, force tracking errors in the actual MR damper force, energy spillover to higher modes, and excitation and sensor cables hanging on the stay cable must be taken into consideration for the interpretation of the identified cable damping values. PMID:26167537

  2. Frequency Regulation and Oscillation Damping Contributions of Variable-Speed Wind Generators in the U.S. Eastern Interconnection (EI)

    DOE PAGES

    Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; ...

    2014-05-16

    The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluatedmore » the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.« less

  3. Improved helicopter aeromechanical stability analysis using segmented constrained layer damping and hybrid optimization

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Chattopadhyay, Aditi

    2000-06-01

    Aeromechanical stability plays a critical role in helicopter design and lead-lag damping is crucial to this design. In this paper, the use of segmented constrained damping layer (SCL) treatment and composite tailoring is investigated for improved rotor aeromechanical stability using formal optimization technique. The principal load-carrying member in the rotor blade is represented by a composite box beam, of arbitrary thickness, with surface bonded SCLs. A comprehensive theory is used to model the smart box beam. A ground resonance analysis model and an air resonance analysis model are implemented in the rotor blade built around the composite box beam with SCLs. The Pitt-Peters dynamic inflow model is used in air resonance analysis under hover condition. A hybrid optimization technique is used to investigate the optimum design of the composite box beam with surface bonded SCLs for improved damping characteristics. Parameters such as stacking sequence of the composite laminates and placement of SCLs are used as design variables. Detailed numerical studies are presented for aeromechanical stability analysis. It is shown that optimum blade design yields significant increase in rotor lead-lag regressive modal damping compared to the initial system.

  4. Active damping using a control structure interaction approach

    NASA Astrophysics Data System (ADS)

    Umland, Jeffrey W.

    1991-12-01

    The vibration control of flexible structures using electromagnetic actuators is investigated. A model of an electromagnetic voice coil actuator is developed from elementary theory, and the required parameters are measured. Given a constant magnetic field, the force output of the voice coil varies linearly with the current flowing through the coil. The primary damping mechanism of the actuator used is found to be Coulomb friction. It is seen that Coulomb friction inhibits the response of the actuator to low levels of excitation. It is also seen that the actuator displayed a nonlinear relationship between force and current indicating that the applied magnetic field was not constant. This nonlinearity leads to a closed loop instability. Several design improvements are considered. Four different feedback control laws are developed to add active damping to a structure. The actuator is used as both a point force source and as a link in a mechanism that applies bending moments at two places on the structure. The actuator is used as both a point force source and as a link in a mechanism that applies bending moments at two places on the structure. The first control law uses the actuator as a traditional passive vibration absorber. The second control law is direct structural velocity feedback plus direct proof mass position feedback. The third control strategy is also direct structural velocity feedback but using compensated feedback of the proof mass position. The compensator is designed according to an H infinity optimization technique. The fourth control law uses the actuator as an equivalent mechanical viscous damper connected to two points on the structure. The results show that using direct structural velocity feedback provides improved vibration suppression in comparison to a traditional vibration absorber. Furthermore, the tuning criteria is only restricted to maintaining the actuator's single degree of freedom natural frequency below those of the structure to which it is attached.

  5. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.

    2013-11-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption.

  6. Significance of modeling internal damping in the control of structures

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Inman, D. J.

    1992-01-01

    Several simple systems are examined to illustrate the importance of the estimation of damping parameters in closed-loop system performance and stability. The negative effects of unmodeled damping are particularly pronounced in systems that do not use collocated sensors and actuators. An example is considered for which even the actuators (a tip jet nozzle and flexible hose) for a simple beam produce significant damping which, if ignored, results in a model that cannot yield a reasonable time response using physically meaningful parameter values. It is concluded that correct damping modeling is essential in structure control.

  7. Control System Damps Vibrations

    NASA Technical Reports Server (NTRS)

    Kopf, E. H., Jr.; Brown, T. K.; Marsh, E. L.

    1983-01-01

    New control system damps vibrations in rotating equipment with help of phase-locked-loop techniques. Vibrational modes are controlled by applying suitable currents to drive motor. Control signals are derived from sensors mounted on equipment.

  8. Model reference, sliding mode adaptive control for flexible structures

    NASA Technical Reports Server (NTRS)

    Yurkovich, S.; Ozguner, U.; Al-Abbass, F.

    1988-01-01

    A decentralized model reference adaptive approach using a variable-structure sliding model control has been developed for the vibration suppression of large flexible structures. Local models are derived based upon the desired damping and response time in a model-following scheme, and variable structure controllers are then designed which employ colocated angular rate and position feedback. Numerical simulations have been performed using NASA's flexible grid experimental apparatus.

  9. Research on mining truck vibration control based on particle damping

    NASA Astrophysics Data System (ADS)

    Liming, Song; Wangqiang, Xiao; Zeguang, Li; Haiquan, Guo; Zhe, Yang

    2018-03-01

    More and more attentions were got by people about the research on mining truck driving comfort. As the vibration transfer terminal, cab is one of the important part of mining truck vibration control. In this paper, based on particle damping technology and its application characteristics, through the discrete element modeling, DEM & FEM coupling simulation and analysis, lab test verification and actual test in the truck, particle damping technology was successfully used in driver’s seat base of mining truck, cab vibration was reduced obviously, meanwhile applied research and method of particle damping technology in mining truck vibration control were provided.

  10. A Resonant Damping Study Using Piezoelectric Materials

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.

    2008-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.

  11. Low-authority control synthesis for large space structures

    NASA Technical Reports Server (NTRS)

    Aubrun, J. N.; Margulies, G.

    1982-01-01

    The control of vibrations of large space structures by distributed sensors and actuators is studied. A procedure is developed for calculating the feedback loop gains required to achieve specified amounts of damping. For moderate damping (Low Authority Control) the procedure is purely algebraic, but it can be applied iteratively when larger amounts of damping are required and is generalized for arbitrary time invariant systems.

  12. Simultaneous structural and control optimization via linear quadratic regulator eigenstructure assignment

    NASA Technical Reports Server (NTRS)

    Becus, G. A.; Lui, C. Y.; Venkayya, V. B.; Tischler, V. A.

    1987-01-01

    A method for simultaneous structural and control design of large flexible space structures (LFSS) to reduce vibration generated by disturbances is presented. Desired natural frequencies and damping ratios for the closed loop system are achieved by using a combination of linear quadratic regulator (LQR) synthesis and numerical optimization techniques. The state and control weighing matrices (Q and R) are expressed in terms of structural parameters such as mass and stiffness. The design parameters are selected by numerical optimization so as to minimize the weight of the structure and to achieve the desired closed-loop eigenvalues. An illustrative example of the design of a two bar truss is presented.

  13. Precision slew/settle technologies for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Manning, R. A.; Spector, Victor A.

    1993-01-01

    Many spacecraft missions in the next decade will require both a high degree of agility and precision pointing. Agility includes both rotational maneuvering for retargeting and translational motion for orbit adjustment and threat avoidance. The major challenge associated with such missions is the need for control over a wide range of amplitudes and frequencies, ranging from tens of degrees at less than 1 Hz to a few micron radians at hundreds of Hz. TRW's internally funded Precision Control of Agile Spacecraft (PCAS) project is concerned with developing and validating in hardware the tools necessary to successfully complete the combined agile maneuvering/precision pointing missions. Development has been undertaken on a number of fronts for quietly slewing flexible structures. Various methods for designing slew torque profiles have been investigated. Prime candidates for slew/settle scenarios include Inverse Dynamics and Parameterized Function Space. Joint work with Processor Bayo at the University of California, Santa Barbara and Professor Flashner at the University of Southern California has led to promising torque profile design methods. Active and passive vibration suppression techniques also play a key role for rapid slew/settle mission scenarios. Active members with local control loops and passive members with high loss factor viscoelastic material have been selected for hardware verification. Progress in each of these areas produces large gains in the quiet slewing of flexible spacecraft. The main thrust of the effort to date has been the development of a modular testbed for hardware validation of the precision control concepts. The testbed is a slewing eighteen foot long flexible truss. Active and passive members can be interchanged with the baseline aluminum members to augment the inherent damping in the system. For precision control the active members utilize control laws running on a high speed digital structural control processor. Tip and midspan motions of the truss are determined using optical sensors while accelerometers can be used to monitor the motions of other points of interest. Preliminary results indicate that a mix of technologies produces the greatest benefit. For example, shaping the torque profile produces large improvements in slew/settle performance, but without added damping settling times may still be excessive. With the introduction of moderate amounts of damping, slew/settle performance is vastly improved. On the other hand, introducing damping without shaping the torque profile may not yield the desired level of performance.

  14. Study of Damped Set-Back Pins for S and A Mechanisms.

    DTIC Science & Technology

    1976-11-01

    arm device for artillery munitions. This damped set-back pin assembly is one of two safety features on a S and A device used in the M739 PD/XM587 ET...The damped set-back pin study program was for the design, testing, fabrication, and delivery and damped set-back pin assemblies for use in a safe and...fuzes for a rotating projectile. A pin, porous disc, return spring, floating O-ring, and sleeve comprise the selected damped set-back pin assembly

  15. Workshop on Structural Dynamics and Control Interaction of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Davis, L. P.; Wilson, J. F.; Jewell, R. E.

    1987-01-01

    The Hubble Space Telescope features the most exacting line of sight jitter requirement thus far imposed on a spacecraft pointing system. Consideration of the fine pointing requirements prompted an attempt to isolate the telescope from the low level vibration disturbances generated by the attitude control system reaction wheels. The primary goal was to provide isolation from axial component of wheel disturbance without compromising the control system bandwidth. A passive isolation system employing metal springs in parallel with viscous fluid dampers was designed, fabricated, and space qualified. Stiffness and damping characteristics are deterministic, controlled independently, and were demonstrated to remain constant over at least five orders of input disturbance magnitude. The damping remained purely viscous even at the data collection threshold of .16 x .000001 in input displacement, a level much lower than the anticipated Hubble Space Telescope disturbance amplitude. Vibration attenuation goals were obtained and ground test of the vehicle has demonstrated the isolators are transparent to the attitude control system.

  16. Factors Controlling Superelastic Damping Capacity of SMAs

    NASA Astrophysics Data System (ADS)

    Heller, L.; Šittner, P.; Pilch, J.; Landa, M.

    2009-08-01

    In this paper, questions linked to the practical use of superelastic damping exploiting stress-induced martensitic transformation for vibration damping are addressed. Four parameters, particularly vibration amplitude, prestrain, temperature of surroundings, and frequency, are identified as having the most pronounced influence on the superelastic damping. Their influence on superelastic damping of a commercially available superelastic NiTi wire was experimentally investigated using a self-developed dedicated vibrational equipment. Experimental results show how the vibration amplitude, frequency, prestrain, and temperature affect the capacity of a superelastic NiTi wire to dissipate energy of vibrations through the superelastic damping. A special attention is paid to the frequency dependence (i.e., rate dependence) of the superelastic damping. It is shown that this is nearly negligible in case the wire is in the thermal chamber controlling actively the environmental temperature. In case of wire exposed to free environmental temperature in actual damping applications, however, the superelastic damping capacity significantly decreases with increasing frequency. This was explained to be a combined effect of the heat effects affecting the mean wire temperature and material properties with the help of simulations using the heat equation coupled phenomenological SMA model.

  17. Classical Control System Design: A non-Graphical Method for Finding the Exact System Parameters

    NASA Astrophysics Data System (ADS)

    Hussein, Mohammed Tawfik

    2008-06-01

    The Root Locus method of control system design was developed in the 1940's. It is a set of rules that helps in sketching the path traced by the roots of the closed loop characteristic equation of the system, as a parameter such as a controller gain, k, is varied. The procedure provides approximate sketching guidelines. Designs on control systems using the method are therefore not exact. This paper aims at a non-graphical method for finding the exact system parameters to place a pair of complex conjugate poles on a specified damping ratio line. The overall procedure is based on the exact solution of complex equations on the PC using numerical methods.

  18. High pressure flow-rate switch

    NASA Technical Reports Server (NTRS)

    Gale, G. P.

    1970-01-01

    Flow-rate switch adjusts easily over a wide switching range and operates uniformly over many cycles. It adapts easily to control of various fluids and has the possibility of introducing multi-point switching. Novel design features include the tapered spool, balanced porting, capillary-bypass lubrication, and capillary-restriction damping.

  19. Advanced joining concepts for passive vibration control

    NASA Technical Reports Server (NTRS)

    Prucz, Jacky C.; Spyrakos, Constantine

    1987-01-01

    A comprehensive parametric study was carried out to establish design guidelines for favorable tradeoffs between damping benefits and the associated stiffness, strength and weight penalties in a rhombic joint. The results are compared with the corresponding tradeoffs for a double-lap joint made of the same materials.

  20. Modelling and study of active vibration control for off-road vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Junwei; Chen, Sizhong

    2014-05-01

    In view of special working characteristics and structure, engineering machineries do not have conventional suspension system typically. Consequently, operators have to endure severe vibrations which are detrimental both to their health and to the productivity of the loader. Based on displacement control, a kind of active damping method is developed for a skid-steer loader. In this paper, the whole hydraulic system for active damping method is modelled which include swash plate dynamics model, proportional valve model, piston accumulator model, pilot-operated check valve model, relief valve model, pump loss model, and cylinder model. A new road excitation model is developed for the skid-steer loader specially. The response of chassis vibration acceleration to road excitation is verified through simulation. The simulation result of passive accumulator damping is compared with measurements and the comparison shows that they are close. Based on this, parallel PID controller and track PID controller with acceleration feedback are brought into the simulation model, and the simulation results are compared with passive accumulator damping. It shows that the active damping methods with PID controllers are better in reducing chassis vibration acceleration and pitch movement. In the end, the test work for active damping method is proposed for the future work.

  1. Active tower damping and pitch balancing - design, simulation and field test

    NASA Astrophysics Data System (ADS)

    Duckwitz, Daniel; Shan, Martin

    2014-12-01

    The tower is one of the major components in wind turbines with a contribution to the cost of energy of 8 to 12% [1]. In this overview the load situation of the tower will be described in terms of sources of loads, load components and fatigue contribution. Then two load reduction control schemes are described along with simulation and field test results. Pitch Balancing is described as a method to reduce aerodynamic asymmetry and the resulting fatigue loads. Active Tower Damping is reducing the tower oscillations by applying appropiate pitch angle changes. A field test was conducted on an Areva M5000 wind turbine.

  2. Control pole placement relationships

    NASA Technical Reports Server (NTRS)

    Ainsworth, O. R.

    1982-01-01

    Using a simplified Large Space Structure (LSS) model, a technique was developed which gives algebraic relationships for the unconstrained poles. The relationships, which were obtained by this technique, are functions of the structural characteristics and the control gains. Extremely interesting relationships evolve for the case when the structural damping is zero. If the damping is zero, the constrained poles are uncoupled from the structural mode shapes. These relationships, which are derived for structural damping and without structural damping, provide new insight into the migration of the unconstrained poles for the CFPPS.

  3. Proceedings of Damping Volume 1 of 3

    DTIC Science & Technology

    1993-06-01

    paper. This work will present a passive piezoelectric damping implementation on ASTREX, a large space structure. The motivation behind this research is...Presented at Damping 󈨡 San Francisco, CA February 24-26, 1993 Motivation "• Accurate design of precision structures "* Computer modelling - Design...14) (KI f(0)/Fl,.) FRom equations (3) and (6), Young’s modulus of rubber specimen is written as; L Ea-K (15) A E - EJ(I+ PS4 ) (16) NONRESONANT TEST

  4. Method of Obtaining High Resolution Intrinsic Wire Boom Damping Parameters for Multi-Body Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Yew, Alvin G.; Chai, Dean J.; Olney, David J.

    2010-01-01

    The goal of NASA's Magnetospheric MultiScale (MMS) mission is to understand magnetic reconnection with sensor measurements from four spinning satellites flown in a tight tetrahedron formation. Four of the six electric field sensors on each satellite are located at the end of 60- meter wire booms to increase measurement sensitivity in the spin plane and to minimize motion coupling from perturbations on the main body. A propulsion burn however, might induce boom oscillations that could impact science measurements if oscillations do not damp to values on the order of 0.1 degree in a timely fashion. Large damping time constants could also adversely affect flight dynamics and attitude control performance. In this paper, we will discuss the implementation of a high resolution method for calculating the boom's intrinsic damping, which was used in multi-body dynamics simulations. In summary, experimental data was obtained with a scaled-down boom, which was suspended as a pendulum in vacuum. Optical techniques were designed to accurately measure the natural decay of angular position and subsequently, data processing algorithms resulted in excellent spatial and temporal resolutions. This method was repeated in a parametric study for various lengths, root tensions and vacuum levels. For all data sets, regression models for damping were applied, including: nonlinear viscous, frequency-independent hysteretic, coulomb and some combination of them. Our data analysis and dynamics models have shown that the intrinsic damping for the baseline boom is insufficient, thereby forcing project management to explore mitigation strategies.

  5. Method of multi-mode vibration control for the carbody of high-speed electric multiple unit trains

    NASA Astrophysics Data System (ADS)

    Gong, Dao; Zhou, Jinsong; Sun, Wenjing; Sun, Yu; Xia, Zhanghui

    2017-11-01

    A method of multi-mode vibration control for the carbody of high-speed electric multiple unit (EMU) trains by using the onboard and suspended equipments as dynamic vibration absorbers (DVAs) is proposed. The effect of the multi-mode vibration on the ride quality of a high-speed EMU train was studied, and the target modes of vibration control were determined. An equivalent mass identification method was used to determine the equivalent mass for the target modes at the device installation positions. To optimize the vibration acceleration response of the carbody, the natural frequencies and damping ratios of the lateral and vertical vibration were designed based on the theory of dynamic vibration absorption. In order to realize the optimized design values of the natural frequencies for the lateral and vertical vibrations simultaneously, a new type of vibration absorber was designed in which a belleville spring and conventional rubber parts are connected in parallel. This design utilizes the negative stiffness of the belleville spring. Results show that, as compared to rigid equipment connections, the proposed method effectively reduces the multi-mode vibration of a carbody in a high-speed EMU train, thereby achieving the control objectives. The ride quality in terms of the lateral and vertical vibration of the carbody is considerably improved. Moreover, the optimal value of the damping ratio is effective in dissipating the vibration energy, which reduces the vibration of both the carbody and the equipment.

  6. The Control Based on Internal Average Kinetic Energy in Complex Environment for Multi-robot System

    NASA Astrophysics Data System (ADS)

    Yang, Mao; Tian, Yantao; Yin, Xianghua

    In this paper, reference trajectory is designed according to minimum energy consumed for multi-robot system, which nonlinear programming and cubic spline interpolation are adopted. The control strategy is composed of two levels, which lower-level is simple PD control and the upper-level is based on the internal average kinetic energy for multi-robot system in the complex environment with velocity damping. Simulation tests verify the effectiveness of this control strategy.

  7. Third order LPF type compensator for flexible rotor suspension

    NASA Technical Reports Server (NTRS)

    Matsushita, Osami; Takahashi, Naohiko; Takagi, Michiyuki

    1994-01-01

    The tuning job of the compensator for levitating flexible rotors supported by active magnetic bearings (AMB) concerns providing a good damping effect to the critical speed modes while avoiding the spillover problem on the instability of higher bending modes. In this paper, an idea for design of the control law of the compensator based on utilizing a third order low pass filter (LPF) is proposed to essentially enable elimination of the spillover instability. According to the proposed design method, good damping effects for the critical speeds are obtained by the usual phase lead/lag function. Stabilization for all of higher bending modes is completed by the additional function of the 3rd order LPF due to its phase lag approaching about -270 degrees in the high frequency domain. This idea is made clear by experiments and simulations.

  8. REDUCTION IN ASTHMA MORBIDITY IN CHILDREN AS A RESULT OF HOME REMEDIATION AIMED AT MOISTURE SOURCES

    EPA Science Inventory

    Objective: Home dampness, presence of mold and allergens have been associated with asthma morbidity. We examined changes in asthma morbidity in children as a result of home remediation aimed at moisture sources.

    Design: Prospective, randomized controlled trial.

    Part...

  9. An improved output feedback control of flexible large space structures

    NASA Technical Reports Server (NTRS)

    Lin, Y. H.; Lin, J. G.

    1980-01-01

    A special output feedback control design technique for flexible large space structures is proposed. It is shown that the technique will increase both the damping and frequency of selected modes for more effective control. It is also able to effect integrated control of elastic and rigid-body modes and, in particular, closed-loop system stability and robustness to modal truncation and parameter variation. The technique is seen as marking an improvement over previous work concerning large space structures output feedback control.

  10. Study on the influence of design parameters on the damping property of glass fiber reinforced epoxy composite

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, A.; Nanda, B. K.

    2018-04-01

    Fiber reinforced composites are widely used in industrial applications due to their high strength, light weight and ease in manufacturing. In applications such as automotive, aerospace and structural parts, the components are subjected to unwanted vibrations which reduce their service life, accuracy as well as increases noise. Therefore, it is essential to avoid the detrimental effects of vibrations by enhancing their damping characteristics. The current research deals with estimating the damping properties of Glass fiber reinforced epoxy (GFRE) composites. Processing of the GFRE composites is carried out using hand-lay technique. Various design parameters such as number of glass fiber layers, orientation of fibers and weight ratio are varied while manufacturing GFRE composites. The effects of variation of these design parameters on damping property of GFRE composites are studied extensively.

  11. Parameter estimation and statistical analysis on frequency-dependent active control forces

    NASA Astrophysics Data System (ADS)

    Lim, Tau Meng; Cheng, Shanbao

    2007-07-01

    The active control forces of an active magnetic bearing (AMB) system are known to be frequency dependent in nature. This is due to the frequency-dependent nature of the AMB system, i.e. time lags in sensors, digital signal processing, amplifiers, filters, and eddy current and hysteresis losses in the electromagnetic coils. The stiffness and damping coefficients of these control forces can be assumed to be linear for small limit of perturbations within the air gap. Numerous studies have also attempted to estimate these coefficients directly or indirectly without validating the model and verifying the results. This paper seeks to address these issues, by proposing a one-axis electromagnetic suspension system to simplify the measurement requirements and eliminate the possibility of control force cross-coupling capabilities. It also proposes an on-line frequency domain parameter estimation procedure with statistical information to provide a quantitative measure for model validation and results verification purposes. This would lead to a better understanding and a design platform for optimal vibration control scheme for suspended system. This is achieved by injecting Schroeder Phased Harmonic Sequences (SPHS), a multi-frequency test signal, to persistently excite all possible suspended system modes. By treating the system as a black box, the parameter estimation of the "actual" stiffness and damping coefficients in the frequency domain are realised experimentally. The digitally implemented PID controller also facilitated changes on the feedback gains, and this allowed numerous system response measurements with their corresponding estimated stiffness and damping coefficients.

  12. Mechanics of damping for fiber composite laminates including hygro-thermal effects

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.

    1989-01-01

    An integrated mechanics theory has been developed for the modeling of composite damping from the micromechanics to the laminate level. Simplified, design oriented equations based on hysteretic damping are presented for on-axis plies, off-axis plies, and laminates including the effect of temperature, moisture, and interply hysteretic damping. The temperature rise within vibrating composite laminates resulting from strain energy dissipation is also modeled, and their coupled hygro-thermo-mechanical response is predicted. The method correlates well with reported damping measurements. Application examples illustrate the effect of various ply, laminate, and hygro-thermal parameters on the overall damping performance of composite laminates.

  13. Mechanics of damping for fiber composite laminates including hygro-thermal effects

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, Christos C.

    1989-01-01

    An integrated mechanics theory was developed for the modeling of composite damping from the micromechanics to the laminate level. Simplified, design oriented equations based on hysteretic damping are presented for on-axis plies, off-axis plies, and laminates including the effect of temperature, moisture, and interply hysteretic damping. The temperature rise within vibrating composite laminates resulting from strain energy dissipation is also modeled, and their coupled hygro-thermo-mechanical response is predicted. The method correlates well with reported damping measurements. Application examples illustrate the effect of various ply, laminate, and hygro-thermal parameters on the overall damping performance of composite laminates.

  14. Controlled motion in an elastic world. Research project: Manipulation strategies for massive space payloads

    NASA Technical Reports Server (NTRS)

    Book, Wayne J.

    1992-01-01

    The flexibility of the drives and structures of controlled motion systems are presented as an obstacle to be overcome in the design of high performance motion systems, particularly manipulator arms. The task and the measure of performance to be applied determine the technology appropriate to overcome this obstacle. Included in the technologies proposed are control algorithms (feedback and feed forward), passive damping enhancement, operational strategies, and structural design. Modeling of the distributed, nonlinear system is difficult, and alternative approaches are discussed. The author presents personal perspectives on the history, status, and future directions in this area.

  15. Prospects of using a permanent magnetic end effector to despin and detumble an uncooperative target

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoguang; Lu, Yong; Zhou, Yu; Yin, Yuanhao

    2018-04-01

    Space debris, such as defunct satellites and upper stages of rockets, becomes an uncooperative target after losing its attitude control and communication ability. In addition, tumbling motion can occur due to environmental perturbations and residual angular momentum prior to the object's end-of-mission. To minimize the collision risk during docking and capturing of the tumbling target, a non-contact method based on the eddy current effect is put forward to transmit the control torque to the tumbling target. The main idea is to induce a controllable torque on the conducting surface of the tumbling target using a rotational magnetic field generated by a Halbach rotor. The radial and axial Halbach rotors are used to damp the spinning and nutation motions of the target, respectively. The normal and tangential force are evaluated concerning the relative pose between the chaser and the target. A simplified dynamic model of the nutation damping and despinning processes is developed and the influences of the asymmetrical principal moments of inertia and transverse angular velocity are discussed. The numerical simulation results show that the designed Halbach rotor stabilized the target attitude within an acceptable time. The electromagnetic nutation damping and despinning method provides new solutions for the development of on-orbit capture technology.

  16. A robust active control system for shimmy damping in the presence of free play and uncertainties

    NASA Astrophysics Data System (ADS)

    Orlando, Calogero; Alaimo, Andrea

    2017-02-01

    Shimmy vibration is the oscillatory motion of the fork-wheel assembly about the steering axis. It represents one of the major problem of aircraft landing gear because it can lead to excessive wear, discomfort as well as safety concerns. Based on the nonlinear model of the mechanics of a single wheel nose landing gear (NLG), electromechanical actuator and tire elasticity, a robust active controller capable of damping shimmy vibration is designed and investigated in this study. A novel Decline Population Swarm Optimization (PDSO) procedure is introduced and used to select the optimal parameters for the controller. The PDSO procedure is based on a decline demographic model and shows high global search capability with reduced computational costs. The open and closed loop system behavior is analyzed under different case studies of aeronautical interest and the effects of torsional free play on the nose landing gear response are also studied. Plant parameters probabilistic uncertainties are then taken into account to assess the active controller robustness using a stochastic approach.

  17. Prediction of Liquid Slosh Damping Using a High Resolution CFD Tool

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Purandare, Ravi; Peugeot, John; West, Jeff

    2012-01-01

    Propellant slosh is a potential source of disturbance critical to the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. Our previous effort has demonstrated the soundness of a CFD approach in modeling the detailed fluid dynamics of tank slosh and the excellent accuracy in extracting mechanical properties (slosh natural frequency, slosh mass, and slosh mass center coordinates). For a practical partially-filled smooth wall propellant tank with a diameter of 1 meter, the damping ratio is as low as 0.0005 (or 0.05%). To accurately predict this very low damping value is a challenge for any CFD tool, as one must resolve a thin boundary layer near the wall and must minimize numerical damping. This work extends our previous effort to extract this challenging parameter from first principles: slosh damping for smooth wall and for ring baffle. First the experimental data correlated into the industry standard for smooth wall were used as the baseline validation. It is demonstrated that with proper grid resolution, CFD can indeed accurately predict low damping values from smooth walls for different tank sizes. The damping due to ring baffles at different depths from the free surface and for different sizes of tank was then simulated, and fairly good agreement with experimental correlation was observed. The study demonstrates that CFD technology can be applied to the design of future propellant tanks with complex configurations and with smooth walls or multiple baffles, where previous experimental data is not available.

  18. Numerical Experiments in Error Control for Sound Propagation Using a Damping Layer Boundary Treatment

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    2017-01-01

    This paper presents results from numerical experiments for controlling the error caused by a damping layer boundary treatment when simulating the propagation of an acoustic signal from a continuous pressure source. The computations are with the 2D Linearized Euler Equations (LEE) for both a uniform mean flow and a steady parallel jet. The numerical experiments are with algorithms that are third, fifth, seventh and ninth order accurate in space and time. The numerical domain is enclosed in a damping layer boundary treatment. The damping is implemented in a time accurate manner, with simple polynomial damping profiles of second, fourth, sixth and eighth power. At the outer boundaries of the damping layer the propagating solution is uniformly set to zero. The complete boundary treatment is remarkably simple and intrinsically independant from the dimension of the spatial domain. The reported results show the relative effect on the error from the boundary treatment by varying the damping layer width, damping profile power, damping amplitude, propagtion time, grid resolution and algorithm order. The issue that is being addressed is not the accuracy of the numerical solution when compared to a mathematical solution, but the effect of the complete boundary treatment on the numerical solution, and to what degree the error in the numerical solution from the complete boundary treatment can be controlled. We report maximum relative absolute errors from just the boundary treatment that range from O[10-2] to O[10-7].

  19. A multiple functional connector for high-resolution optical satellites

    NASA Astrophysics Data System (ADS)

    She, Fengke; Zheng, Gangtie

    2017-11-01

    For earth observation satellites, perturbations from actuators, such as CMGs and momentum wheels, and thermal loadings from support structures often have significant impact on the image quality of an optical. Therefore, vibration isolators and thermal deformation releasing devices nowadays often become important parts of an image satellite. However, all these devices will weak the connection stiffness between the optical instrument and the satellite bus structure. This will cause concern of the attitude control system design for worrying about possible negative effect on the attitude control. Therefore, a connection design satisfying all three requirements is a challenge of advanced image satellites. Chinese scientists have proposed a large aperture high-resolution satellite for earth observation. To meet all these requirements and ensure image quality, specified multiple function connectors are designed to meet these challenging requirements, which are: isolating vibration, releasing thermal deformation and ensuring whole satellite dynamic properties [1]. In this paper, a parallel spring guide flexure is developed for both vibration isolation and thermal deformation releasing. The stiffness of the flexure is designed to meet the vibration isolation requirement. To attenuate vibration, and more importantly to satisfy the stability requirement of the attitude control system, metal damping, which has many merits for space applications, are applied in this connecter to provide a high damping ratio and nonlinear stiffness. The capability of the connecter for vibration isolation and attenuation is validated through numerical simulation and experiments. Connecter parameter optimization is also conducted to meet both requirements of thermal deformation releasing and attitude control. Analysis results show that the in-orbit attitude control requirement is satisfied while the thermal releasing performance is optimized. The design methods and analysis results are also provided in the present paper.

  20. Force control compensation method with variable load stiffness and damping of the hydraulic drive unit force control system

    NASA Astrophysics Data System (ADS)

    Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong

    2016-05-01

    Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.

  1. Modeling of viscous damping of perforated planar microstructures. Applications in acoustics

    NASA Astrophysics Data System (ADS)

    Homentcovschi, Dorel; Miles, Ronald N.

    2004-11-01

    The paper contains an analysis of the viscous damping in perforated planar microstructures that often serve as backplates or protecting surfaces in capacitive microsensors. The focus of this work is on planar surfaces containing an offset system of periodic oval holes or its limit cases: a system of circular holes or of slits. The viscous damping is calculated as the sum of squeeze film and the holes' resistances. The optimum number of holes is determined which minimizes the total viscous damping for a given percentage of open area. Graphs and formulas are provided for designing these devices. In the case the open area is higher than 15% the numerical results show that the influence of the holes' geometry (circular or oval) has a slight influence on viscous damping. As the planar structures containing oval holes assure a better protection against dust particles and water drops, they should be preferred in designing protective surfaces for microphones working in a natural environment. The obtained results also can be applied in designing other MEMS devices that use capacitive sensing such as accelerometers, micromechanical switches, resonators, and tunable microoptical interferometers. .

  2. Helicopter flight-control design using an H(2) method

    NASA Technical Reports Server (NTRS)

    Takahashi, Marc D.

    1991-01-01

    Rate-command and attitude-command flight-control designs for a UH-60 helicopter in hover are presented and were synthesized using an H(2) method. Using weight functions, this method allows the direct shaping of the singular values of the sensitivity, complementary sensitivity, and control input transfer-function matrices to give acceptable feedback properties. The designs were implemented on the Vertical Motion Simulator, and four low-speed hover tasks were used to evaluate the control system characteristics. The pilot comments from the accel-decel, bob-up, hovering turn, and side-step tasks indicated good decoupling and quick response characteristics. However, an underlying roll PIO tendency was found to exist away from the hover condition, which was caused by a flap regressing mode with insufficient damping.

  3. Practical Methodology for the Inclusion of Nonlinear Slosh Damping in the Stability Analysis of Liquid-Propelled Space Vehicles

    NASA Technical Reports Server (NTRS)

    Ottander, John A.; Hall, Robert A.; Powers, J. F.

    2018-01-01

    A method is presented that allows for the prediction of the magnitude of limit cycles due to adverse control-slosh interaction in liquid propelled space vehicles using non-linear slosh damping. Such a method is an alternative to the industry practice of assuming linear damping and relying on: mechanical slosh baffles to achieve desired stability margins; accepting minimal slosh stability margins; or time domain non-linear analysis to accept time periods of poor stability. Sinusoidal input describing functional analysis is used to develop a relationship between the non-linear slosh damping and an equivalent linear damping at a given slosh amplitude. In addition, a more accurate analytical prediction of the danger zone for slosh mass locations in a vehicle under proportional and derivative attitude control is presented. This method is used in the control-slosh stability analysis of the NASA Space Launch System.

  4. Evaluation of CFD Turbulent Heating Prediction Techniques and Comparison With Hypersonic Experimental Data

    NASA Technical Reports Server (NTRS)

    Dilley, Arthur D.; McClinton, Charles R. (Technical Monitor)

    2001-01-01

    Results from a study to assess the accuracy of turbulent heating and skin friction prediction techniques for hypersonic applications are presented. The study uses the original and a modified Baldwin-Lomax turbulence model with a space marching code. Grid converged turbulent predictions using the wall damping formulation (original model) and local damping formulation (modified model) are compared with experimental data for several flat plates. The wall damping and local damping results are similar for hot wall conditions, but differ significantly for cold walls, i.e., T(sub w) / T(sub t) < 0.3, with the wall damping heating and skin friction 10-30% above the local damping results. Furthermore, the local damping predictions have reasonable or good agreement with the experimental heating data for all cases. The impact of the two formulations on the van Driest damping function and the turbulent eddy viscosity distribution for a cold wall case indicate the importance of including temperature gradient effects. Grid requirements for accurate turbulent heating predictions are also studied. These results indicate that a cell Reynolds number of 1 is required for grid converged heating predictions, but coarser grids with a y(sup +) less than 2 are adequate for design of hypersonic vehicles. Based on the results of this study, it is recommended that the local damping formulation be used with the Baldwin-Lomax and Cebeci-Smith turbulence models in design and analysis of Hyper-X and future hypersonic vehicles.

  5. Polycrystallinity of Lithographically Fabricated Plasmonic Nanostructures Dominates Their Acoustic Vibrational Damping.

    PubMed

    Yi, Chongyue; Su, Man-Nung; Dongare, Pratiksha D; Chakraborty, Debadi; Cai, Yi-Yu; Marolf, David M; Kress, Rachael N; Ostovar, Behnaz; Tauzin, Lawrence J; Wen, Fangfang; Chang, Wei-Shun; Jones, Matthew R; Sader, John E; Halas, Naomi J; Link, Stephan

    2018-06-13

    The study of acoustic vibrations in nanoparticles provides unique and unparalleled insight into their mechanical properties. Electron-beam lithography of nanostructures allows precise manipulation of their acoustic vibration frequencies through control of nanoscale morphology. However, the dissipation of acoustic vibrations in this important class of nanostructures has not yet been examined. Here we report, using single-particle ultrafast transient extinction spectroscopy, the intrinsic damping dynamics in lithographically fabricated plasmonic nanostructures. We find that in stark contrast to chemically synthesized, monocrystalline nanoparticles, acoustic energy dissipation in lithographically fabricated nanostructures is solely dominated by intrinsic damping. A quality factor of Q = 11.3 ± 2.5 is observed for all 147 nanostructures, regardless of size, geometry, frequency, surface adhesion, and mode. This result indicates that the complex Young's modulus of this material is independent of frequency with its imaginary component being approximately 11 times smaller than its real part. Substrate-mediated acoustic vibration damping is strongly suppressed, despite strong binding between the glass substrate and Au nanostructures. We anticipate that these results, characterizing the optomechanical properties of lithographically fabricated metal nanostructures, will help inform their design for applications such as photoacoustic imaging agents, high-frequency resonators, and ultrafast optical switches.

  6. Dynamic characterization of high damping viscoelastic materials from vibration test data

    NASA Astrophysics Data System (ADS)

    Martinez-Agirre, Manex; Elejabarrieta, María Jesús

    2011-08-01

    The numerical analysis and design of structural systems involving viscoelastic damping materials require knowledge of material properties and proper mathematical models. A new inverse method for the dynamic characterization of high damping and strong frequency-dependent viscoelastic materials from vibration test data measured by forced vibration tests with resonance is presented. Classical material parameter extraction methods are reviewed; their accuracy for characterizing high damping materials is discussed; and the bases of the new analysis method are detailed. The proposed inverse method minimizes the residue between the experimental and theoretical dynamic response at certain discrete frequencies selected by the user in order to identify the parameters of the material constitutive model. Thus, the material properties are identified in the whole bandwidth under study and not just at resonances. Moreover, the use of control frequencies makes the method insensitive to experimental noise and the efficiency is notably enhanced. Therefore, the number of tests required is drastically reduced and the overall process is carried out faster and more accurately. The effectiveness of the proposed method is demonstrated with the characterization of a CLD (constrained layer damping) cantilever beam. First, the elastic properties of the constraining layers are identified from the dynamic response of a metallic cantilever beam. Then, the viscoelastic properties of the core, represented by a four-parameter fractional derivative model, are identified from the dynamic response of a CLD cantilever beam.

  7. An innovative and multi-functional smart vibration platform

    NASA Astrophysics Data System (ADS)

    Olmi, C.; Song, G.; Mo, Y. L.

    2007-08-01

    Recently, there has been increasing efforts to incorporate vibration damping or energy dissipation mechanisms into civil structures, particularly by using smart materials technologies. Although papers about structural vibration control using smart materials have been published for more than two decades, there has been little research in developing teaching equipment to introduce smart materials to students via in-classroom demonstration or hands-on experiments. In this paper, an innovative and multi-functional smart vibration platform (SVP) has been developed by the Smart Materials and Structures Laboratory at the University of Houston to demonstrate vibration control techniques using multiple smart materials for educational and research purposes. The vibration is generated by a motor with a mass imbalance mounted on top of the frame. Shape memory alloys (SMA) and magneto-rheological (MR) fluid are used to increase the stiffness and damping ratio, respectively, while a piezoceramic sensor (lead zirconate titanate, or PZT) is used as a vibration sensing device. An electrical circuit has been designed to control the platform in computer-control or manual mode through the use of knobs. The former mode allows for an automated demonstration, while the latter requires the user to manually adjust the stiffness and damping ratio of the frame. In addition, the system accepts network connections and can be used in a remote experiment via the internet. This platform has great potential to become an effective tool for teaching vibration control and smart materials technologies to students in civil, mechanical and electrical engineering for both education and research purposes.

  8. Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.

    2016-01-01

    Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.

  9. Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems

    NASA Astrophysics Data System (ADS)

    Chan, Kwong Wah; Liao, Wei-Hsin

    2006-03-01

    Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.

  10. Aerospace applications of integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  11. Active vibration control of thin-plate structures with partial SCLD treatment

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Wang, Pan; Zhan, Zhenfei

    2017-02-01

    To effectively suppress the low-frequency vibration of a thin-plate, the strategy adopted is to develop a model-based approach to the investigation on the active vibration control of a clamped-clamped plate with partial SCLD treatment. Firstly, a finite element model is developed based on the constitutive equations of elastic, piezoelectric and viscoelastic materials. The characteristics of viscoelastic materials varying with temperature and frequency are described by GHM damping model. A low-dimensional real modal control model which can be used as the basis for active vibration control is then obtained from the combined reduction. The emphasis is placed on the feedback control system to attenuate the vibration of plates with SCLD treatments. A modal controller in conjunction with modal state estimator is designed to solve the problem of full state feedback, making it much more feasible to real-time control. Finally, the theoretical model is verified by modal test, and an active vibration control is validated by hardware-in-the-loop experiment under different external excitations. The numerical and experimental study demonstrate how the piezoelectric actuators actively control the lower modes (first bending and torsional modes) using modal controller, while the higher frequency vibration attenuated by viscoelastic passive damping layer.

  12. High stability design for new centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Kanki, H.; Katayama, K.; Morii, S.; Mouri, Y.; Umemura, S.; Ozawa, U.; Oda, T.

    1989-01-01

    It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions.

  13. Time-varying delays compensation algorithm for powertrain active damping of an electrified vehicle equipped with an axle motor during regenerative braking

    NASA Astrophysics Data System (ADS)

    Zhang, Junzhi; Li, Yutong; Lv, Chen; Gou, Jinfang; Yuan, Ye

    2017-03-01

    The flexibility of the electrified powertrain system elicits a negative effect upon the cooperative control performance between regenerative and hydraulic braking and the active damping control performance. Meanwhile, the connections among sensors, controllers, and actuators are realized via network communication, i.e., controller area network (CAN), that introduces time-varying delays and deteriorates the control performances of the closed-loop control systems. As such, the goal of this paper is to develop a control algorithm to cope with all these challenges. To this end, the models of the stochastic network induced time-varying delays, based on a real in-vehicle network topology and on a flexible electrified powertrain, were firstly built. In order to further enhance the control performances of active damping and cooperative control of regenerative and hydraulic braking, the time-varying delays compensation algorithm for the electrified powertrain active damping during regenerative braking was developed based on a predictive scheme. The augmented system is constructed and the H∞ performance is analyzed. Based on this analysis, the control gains are derived by solving a nonlinear minimization problem. The simulations and hardware-in-loop (HIL) tests were carried out to validate the effectiveness of the developed algorithm. The test results show that the active damping and cooperative control performances are enhanced significantly.

  14. Magnetic Damping For Maglev

    DOE PAGES

    Zhu, S.; Cai, Y.; Rote, D. M.; ...

    1998-01-01

    Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  15. Torsional and axial damping properties of the AZ31B-F magnesium alloy

    NASA Astrophysics Data System (ADS)

    Anes, V.; Lage, Y. E.; Vieira, M.; Maia, N. M. M.; Freitas, M.; Reis, L.

    2016-10-01

    Damping properties for the AZ31B-F magnesium alloy were evaluated for pure axial and pure shear loading conditions at room temperature. Hysteretic damping results were measured through stress-strain controlled tests. Moreover, the magnesium alloy viscous damping was measured with frequency response functions and free vibration decay, both results were obtained by experiments. The axial and shear damping ratio (ASDR) has been identified and described, specifically for free vibration conditions.

  16. Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings

    NASA Technical Reports Server (NTRS)

    Wada, Ben K. (Editor); Fanson, James L. (Editor); Miura, Koryo (Editor)

    1991-01-01

    The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.

  17. Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings

    NASA Astrophysics Data System (ADS)

    Wada, Ben K.; Fanson, James L.; Miura, Koryo

    1991-11-01

    The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.

  18. Design and system integration of the superconducting wiggler magnets for the Compact Linear Collider damping rings

    NASA Astrophysics Data System (ADS)

    Schoerling, Daniel; Antoniou, Fanouria; Bernhard, Axel; Bragin, Alexey; Karppinen, Mikko; Maccaferri, Remo; Mezentsev, Nikolay; Papaphilippou, Yannis; Peiffer, Peter; Rossmanith, Robert; Rumolo, Giovanni; Russenschuck, Stephan; Vobly, Pavel; Zolotarev, Konstantin

    2012-04-01

    To achieve high luminosity at the collision point of the Compact Linear Collider (CLIC), the normalized horizontal and vertical emittances of the electron and positron beams must be reduced to 500 and 4 nm before the beams enter the 1.5 TeV linear accelerators. An effective way to accomplish ultralow emittances with only small effects on the electron polarization is using damping rings operating at 2.86 GeV equipped with superconducting wiggler magnets. This paper describes a technical design concept for the CLIC damping wigglers.

  19. Design of ground test suspension systems for verification of flexible space structures

    NASA Technical Reports Server (NTRS)

    Cooley, V. M.; Juang, J. N.; Ghaemmaghami, P.

    1988-01-01

    A simple model demonstrates the frequency-increasing effects of a simple cable suspension on flexible test article/suspension systems. Two passive suspension designs, namely a negative spring mechanism and a rolling cart mechanism, are presented to alleviate the undesirable frequency-increasing effects. Analysis methods are provided for systems in which the augmentations are applied to both discrete and continuous representations of test articles. The damping analyses are based on friction equivalent viscous damping. Numerical examples are given for comparing the two augmentations with respect to minimizing frequency and damping increases.

  20. Theoretical Study of Gilbert Damping and Spin Dynamics in Spintronic Devices

    NASA Astrophysics Data System (ADS)

    Qu, Tao

    The determination of damping mechanisms is one of the most fundamental problems of magnetism. It represents the elimination of the magnetic energy and thus has broad impact in both science and technology. The dynamic time scale in spintronic devices is controlled by the damping and the consumed power depends on the damping constant squared. In recent years, the interest in high perpendicular anisotropy materials and thin film structures have increased considerably, owing to their stability over a wide temperature range when scaling devices to nanometer length scales. However, the conventional measurement method-Ferromagnetic resonance (FMR) can not produce accurate damping results in the high magnetic crystalline anisotropy materials/structures, and the intrinsic damping reported experimentally diverges among investigators, probably due to the varying fabrication techniques. This thesis describes the application of the Kambersky torque correlation technique, within the tight binding method, to multiple materials with high perpendicular magnetic anisotropy ( 10 7 erg/cm3), in both bulk and thin film structures. The impact of the inevitable experimental defects on the energy dissipation is identified and the experimental damping divergence among investigators due to the material degree of order is explained. It is demonstrated that this corresponds to an enhanced DOS at the Fermi level, owing to the rounding of the DOS with loss of long-range order. The consistency of the predicted damping constant with experimental measurement is demonstrated and the interface contribution to the energy damping constant in potential superlattices and heterostructures for spintronic devices is explored. An optimized structure will be a tradeoff involving both anisotropy and damping. The damping related spin dynamics in spintronic devices for different applications is investigated. One device is current perpendicular to planes(CPP) spin valve. Incoherent scattering matrices are applied to calculate the angle dependent magnetoresistantce and obtain analytic expressions for the spin valve. The non-linearity of magnetoresistance can be quantitatively explained by reflected electrons using only experimental spin polarization as input. The other device is a spin-transfer-torque nano-oscillator. The Landau-Lifshitz-Gilbert equation is applied and the synchronization requirement for experimentally fabricated non-identical multi spintronic oscillators is explored. Power enhancement and noise decrease for the synchronized state is demonstrated in a temperature range. Through introducing combined electric and magnetic coupling effect, a design for an optimized feasible nanopillar structure suitable for thin-film deposition is developed.

  1. Collisionless Electrostatic Shock Modeling and Simulation

    DTIC Science & Technology

    2016-10-21

    unlimited. PA#16490 Dissipation Controls Wave Train Under- and Over-damped Shocks – Under-damped: • Dissipation is weak, ripples persist. • High...Density Position – Over-damped: ● Strong dissipation damps ripples . ● Low Density Position 12 Position Distribution A. Approved for public release...distribution unlimited. PA#16490 Model Verification Comparison with Linearized Solution – Evolution of the First Ripple Wavelength: • Simulated

  2. Wave Amplitude Dependent Engineering Model of Propellant Slosh in Spherical Tanks

    NASA Technical Reports Server (NTRS)

    Brodnick, Jacob; Westra, Douglas G.; Eberhart, Chad J.; Yang, Hong Q.; West, Jeffrey S.

    2016-01-01

    Liquid propellant slosh is often a concern for the controllability of flight vehicles. Anti-slosh devices are traditionally included in propellant tank designs to limit the amount of sloshing allowed during flight. These devices and any necessary supports can be quite heavy to meet various structural requirements. Some of the burden on anti-slosh devices can be relieved by exploiting the nonlinear behavior of slosh waves in bare smooth wall tanks. A nonlinear regime slosh model for bare spherical tanks was developed through a joint analytical and experimental effort by NASA/MSFC. The developed slosh model accounts for the large damping inherent in nonlinear slosh waves which is more accurate and drives conservatism from vehicle stability analyses that use traditional bare tank slosh models. A more accurate slosh model will result in more realistic predicted slosh forces during flight reducing or removing the need for active controls during a maneuver or baffles in the tank design. Lower control gains and smaller or fewer tank baffles can reduce cost and system complexity while increasing vehicle performance. Both Computational Fluid Dynamics (CFD) simulation and slosh testing of three different spherical tank geometries were performed to develop the proposed slosh model. Several important findings were made during this effort in addition to determining the parameters to the nonlinear regime slosh model. The linear regime slosh damping trend for spherical tanks reported in NASA SP-106 was shown to be inaccurate for certain regions of a tank. Additionally, transition to the nonlinear regime for spherical tanks was only found to occur at very large wave amplitudes in the lower hemisphere and was a strong function of the propellant fill level in the upper hemisphere. The nonlinear regime damping trend was also found to be a function of the propellant fill level.

  3. Damping Analysis of Cylindrical Composite Structures with Enhanced Viscoelastic Properties

    NASA Astrophysics Data System (ADS)

    Kliem, Mathias; Høgsberg, Jan; Vanwalleghem, Joachim; Filippatos, Angelos; Hoschützky, Stefan; Fotsing, Edith-Roland; Berggreen, Christian

    2018-04-01

    Constrained layer damping treatments are widely used in mechanical structures to damp acoustic noise and mechanical vibrations. A viscoelastic layer is thereby applied to a structure and covered by a stiff constraining layer. When the structure vibrates in a bending mode, the viscoelastic layer is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the efficiency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass fibre-reinforced plastics. Different cross section geometries with shear webs have been investigated in order to study a beneficial effect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at different locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate the location-dependent efficiency of constrained layer damping treatments. The results of the study provide a thorough understanding of constrained layer damping treatments and an improved damping design of the cylindrical composite structure. The highest damping is achieved when placing the damping layer in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure.

  4. Space shuttle OMS helium regulator design and development

    NASA Technical Reports Server (NTRS)

    Wichmann, H.; Kelly, T. L.; Lynch, R.

    1974-01-01

    Analysis, design, fabrication and design verification testing was conducted on the technological feasiblity of the helium pressurization regulator for the space shuttle orbital maneuvering system application. A prototype regulator was fabricated which was a single-stage design featuring the most reliable and lowest cost concept. A tradeoff study on regulator concepts indicated that a single-stage regulator with a lever arm between the valve and the actuator section would offer significant weight savings. Damping concepts were tested to determine the amount of damping required to restrict actuator travel during vibration. Component design parameters such as spring rates, effective area, contamination cutting, and damping were determined by test prior to regulator final assembly. The unit was subjected to performance testing at widely ranging flow rates, temperatures, inlet pressures, and random vibration levels. A test plan for propellant compatibility and extended life tests is included.

  5. Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3D printing, and testing

    NASA Astrophysics Data System (ADS)

    Zhang, Pu; Heyne, Mary A.; To, Albert C.

    2015-10-01

    We investigate the damping enhancement in a class of biomimetic staggered composites via a combination of design, modeling, and experiment. In total, three kinds of staggered composites are designed by mimicking the structure of bone and nacre. These composite designs are realized by 3D printing a rigid plastic and a viscous elastomer simultaneously. Greatly-enhanced energy dissipation in the designed composites is observed from both the experimental results and theoretical prediction. The designed polymer composites have loss modulus up to ~500 MPa, higher than most of the existing polymers. In addition, their specific loss modulus (up to 0.43 km2/s2) is among the highest of damping materials. The damping enhancement is attributed to the large shear deformation of the viscous soft matrix and the large strengthening effect from the rigid inclusion phase.

  6. Spatial curvilinear path following control of underactuated AUV with multiple uncertainties.

    PubMed

    Miao, Jianming; Wang, Shaoping; Zhao, Zhiping; Li, Yuan; Tomovic, Mileta M

    2017-03-01

    This paper investigates the problem of spatial curvilinear path following control of underactuated autonomous underwater vehicles (AUVs) with multiple uncertainties. Firstly, in order to design the appropriate controller, path following error dynamics model is constructed in a moving Serret-Frenet frame, and the five degrees of freedom (DOFs) dynamic model with multiple uncertainties is established. Secondly, the proposed control law is separated into kinematic controller and dynamic controller via back-stepping technique. In the case of kinematic controller, to overcome the drawback of dependence on the accurate vehicle model that are present in a number of path following control strategies described in the literature, the unknown side-slip angular velocity and attack angular velocity are treated as uncertainties. Whereas in the case of dynamic controller, the model parameters perturbations, unknown external environmental disturbances and the nonlinear hydrodynamic damping terms are treated as lumped uncertainties. Both kinematic and dynamic uncertainties are estimated and compensated by designed reduced-order linear extended state observes (LESOs). Thirdly, feedback linearization (FL) based control law is implemented for the control model using the estimates generated by reduced-order LESOs. For handling the problem of computational complexity inherent in the conventional back-stepping method, nonlinear tracking differentiators (NTDs) are applied to construct derivatives of the virtual control commands. Finally, the closed loop stability for the overall system is established. Simulation and comparative analysis demonstrate that the proposed controller exhibits enhanced performance in the presence of internal parameter variations, external unknown disturbances, unmodeled nonlinear damping terms, and measurement noises. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Design of an unified chassis controller for rollover prevention, manoeuvrability and lateral stability

    NASA Astrophysics Data System (ADS)

    Yoon, Jangyeol; Yim, Seongjin; Cho, Wanki; Koo, Bongyeong; Yi, Kyongsu

    2010-11-01

    This paper describes a unified chassis control (UCC) strategy to prevent vehicle rollover and improve both manoeuvrability and lateral stability. Since previous researches on rollover prevention are only focused on the reduction of lateral acceleration, the manoeuvrability and lateral stability cannot be guaranteed. For this reason, it is necessary to design a UCC controller to prevent rollover and improve lateral stability by integrating electronic stability control, active front steering and continuous damping control. This integration is performed through switching among several control modes and a simulation is performed to validate the proposed method. Simulation results indicate that a significant improvement in rollover prevention, manoeuvrability and lateral stability can be expected from the proposed UCC system.

  8. Optimal integral force feedback for active vibration control

    NASA Astrophysics Data System (ADS)

    Teo, Yik R.; Fleming, Andrew J.

    2015-11-01

    This paper proposes an improvement to Integral Force Feedback (IFF), which is a popular method for active vibration control of structures and mechanical systems. Benefits of IFF include robustness, guaranteed stability and simplicity. However, the maximum damping performance is dependent on the stiffness of the system; hence, some systems cannot be adequately controlled. In this paper, an improvement to the classical force feedback control scheme is proposed. The improved method achieves arbitrary damping for any mechanical system by introducing a feed-through term. The proposed improvement is experimentally demonstrated by actively damping an objective lens assembly for a high-speed confocal microscope.

  9. Determination of eigenvalues of dynamical systems by symbolic computation

    NASA Technical Reports Server (NTRS)

    Howard, J. C.

    1982-01-01

    A symbolic computation technique for determining the eigenvalues of dynamical systems is described wherein algebraic operations, symbolic differentiation, matrix formulation and inversion, etc., can be performed on a digital computer equipped with a formula-manipulation compiler. An example is included that demonstrates the facility with which the system dynamics matrix and the control distribution matrix from the state space formulation of the equations of motion can be processed to obtain eigenvalue loci as a function of a system parameter. The example chosen to demonstrate the technique is a fourth-order system representing the longitudinal response of a DC 8 aircraft to elevator inputs. This simplified system has two dominant modes, one of which is lightly damped and the other well damped. The loci may be used to determine the value of the controlling parameter that satisfied design requirements. The results were obtained using the MACSYMA symbolic manipulation system.

  10. Non-linear modelling and control of semi-active suspensions with variable damping

    NASA Astrophysics Data System (ADS)

    Chen, Huang; Long, Chen; Yuan, Chao-Chun; Jiang, Hao-Bin

    2013-10-01

    Electro-hydraulic dampers can provide variable damping force that is modulated by varying the command current; furthermore, they offer advantages such as lower power, rapid response, lower cost, and simple hardware. However, accurate characterisation of non-linear f-v properties in pre-yield and force saturation in post-yield is still required. Meanwhile, traditional linear or quarter vehicle models contain various non-linearities. The development of a multi-body dynamics model is very complex, and therefore, SIMPACK was used with suitable improvements for model development and numerical simulations. A semi-active suspension was built based on a belief-desire-intention (BDI)-agent model framework. Vehicle handling dynamics were analysed, and a co-simulation analysis was conducted in SIMPACK and MATLAB to evaluate the BDI-agent controller. The design effectively improved ride comfort, handling stability, and driving safety. A rapid control prototype was built based on dSPACE to conduct a real vehicle test. The test and simulation results were consistent, which verified the simulation.

  11. Estimation and Optimization of the Parameters Preserving the Lustre of the Fabrics

    NASA Astrophysics Data System (ADS)

    Prodanova, Krasimira

    2009-11-01

    The paper discusses the optimization of the continuance of the Damp-Heating Process of a steaming iron press machine, and the preserving of the lustre of the fabrics. In order to be obtained high qualitative damp-heating processing, it is necessary to monitor parameters such as temperature, damp, and pressure during the process. The purpose of the present paper is a mathematical model to be constructed that adequately describes the technological process using multivariate data analysis. It was established that the full factorial design of type 23 is not adequate. The research has proceeded with central rotatable design of experiment. The obtained model adequately describes the technological process of damp-heating treatment in the defined factor space. The present investigation is helpful to the technological improvement and modernization in sewing companies.

  12. Wind turbine model and loop shaping controller design

    NASA Astrophysics Data System (ADS)

    Gilev, Bogdan

    2017-12-01

    A model of a wind turbine is evaluated, consisting of: wind speed model, mechanical and electrical model of generator and tower oscillation model. Model of the whole system is linearized around of a nominal point. By using the linear model with uncertainties is synthesized a uncertain model. By using the uncertain model is developed a H∞ controller, which provide mode of stabilizing the rotor frequency and damping the tower oscillations. Finally is simulated work of nonlinear system and H∞ controller.

  13. The control of flexible structure vibrations using a cantilevered adaptive truss

    NASA Technical Reports Server (NTRS)

    Wynn, Robert H., Jr.; Robertshaw, Harry H.

    1991-01-01

    Analytical and experimental procedures and design tools are presented for the control of flexible structure vibrations using a cantilevered adaptive truss. Simulated and experimental data are examined for three types of structures: a slender beam, a single curved beam, and two curved beams. The adaptive truss is shown to produce a 6,000-percent increase in damping, demonstrating its potential in vibration control. Good agreement is obtained between the simulated and experimental data, thus validating the modeling methods.

  14. Viscous damped space structure for reduced jitter

    NASA Technical Reports Server (NTRS)

    Wilson, James F.; Davis, L. Porter

    1987-01-01

    A technique to provide modal vibration damping in high performance space structures was developed which uses less than one once of incompressible fluid. Up to 50 percent damping can be achieved which can reduce the settling times of the lowest structural mode by as much as 50 to 1. This concept allows the designers to reduce the weight of the structure while improving its dynamic performance. Damping by this technique is purely viscous and has been shown by test to be linear over 5 orders of input magnitude. Amplitudes as low as 0.2 microinch were demonstrated. Damping in the system is independent of stiffness and relatively insensitive to temperature.

  15. Parametric system identification of catamaran for improving controller design

    NASA Astrophysics Data System (ADS)

    Timpitak, Surasak; Prempraneerach, Pradya; Pengwang, Eakkachai

    2018-01-01

    This paper presents an estimation of simplified dynamic model for only surge- and yaw- motions of catamaran by using system identification (SI) techniques to determine associated unknown parameters. These methods will enhance the performance of designing processes for the motion control system of Unmanned Surface Vehicle (USV). The simulation results demonstrate an effective way to solve for damping forces and to determine added masses by applying least-square and AutoRegressive Exogenous (ARX) methods. Both methods are then evaluated according to estimated parametric errors from the vehicle’s dynamic model. The ARX method, which yields better estimated accuracy, can then be applied to identify unknown parameters as well as to help improving a controller design of a real unmanned catamaran.

  16. Design of dissipative low-authority controllers using an eigensystem assignment technique

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Gupta, S.; Joshi, S. M.

    1992-01-01

    A novel method for the design of dissipative, low-authority controllers has been developed. The method uses a sequential approach along with eigensystem assignment to compute rate and position gain matrices that assign a number of closed-loop poles of the system to desired locations. Because the feedback gain matrices are symmetric and nonnegative definite, the closed-loop stability is always guaranteed regardless of the model order or parameter inaccuracies. The resulting (nominal) closed-loop system can have specified damping ratios for m modes, which makes the plant amenable to high-authority controller design, using methods such as LQG/LTR or H-infinity. A numerical example is worked out for a flexible structure in order to demonstrate the proposed technique.

  17. Investigation of excitation control for wind-turbine generator stability

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.

    1977-01-01

    High speed horizontal axis wind turbine generators with blades on the downwind side of the support tower require special design considerations to handle disturbances introduced by the flow wake behind the tower. Experiments and analytical analyses were made to determine benefits that might be obtained by using the generator exciter to provide system damping for reducing power fluctuations.

  18. Vibration control of multiferroic fibrous composite plates using active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Kattimani, S. C.; Ray, M. C.

    2018-06-01

    Geometrically nonlinear vibration control of fiber reinforced magneto-electro-elastic or multiferroic fibrous composite plates using active constrained layer damping treatment has been investigated. The piezoelectric (BaTiO3) fibers are embedded in the magnetostrictive (CoFe2O4) matrix forming magneto-electro-elastic or multiferroic smart composite. A three-dimensional finite element model of such fiber reinforced magneto-electro-elastic plates integrated with the active constrained layer damping patches is developed. Influence of electro-elastic, magneto-elastic and electromagnetic coupled fields on the vibration has been studied. The Golla-Hughes-McTavish method in time domain is employed for modeling a constrained viscoelastic layer of the active constrained layer damping treatment. The von Kármán type nonlinear strain-displacement relations are incorporated for developing a three-dimensional finite element model. Effect of fiber volume fraction, fiber orientation and boundary conditions on the control of geometrically nonlinear vibration of the fiber reinforced magneto-electro-elastic plates is investigated. The performance of the active constrained layer damping treatment due to the variation of piezoelectric fiber orientation angle in the 1-3 Piezoelectric constraining layer of the active constrained layer damping treatment has also been emphasized.

  19. Highly-Damped Spectral Acceleration as a Ground Motion Intensity Measure for Estimating Collapse Vulnerability of Buildings

    NASA Astrophysics Data System (ADS)

    Buyco, K.; Heaton, T. H.

    2016-12-01

    Current U.S. seismic code and performance-based design recommendations quantify ground motion intensity using 5%-damped spectral acceleration when estimating the collapse vulnerability of buildings. This intensity measure works well for predicting inter-story drift due to moderate shaking, but other measures have been shown to be better for estimating collapse risk.We propose using highly-damped (>10%) spectral acceleration to assess collapse vulnerability. As damping is increased, the spectral acceleration at a given period T begins to behave like a weighted average of the corresponding lowly-damped (i.e. 5%) spectrum at a range of periods. Weights for periods longer than T increase as damping increases. Using high damping is physically intuitive for two reasons. Firstly, ductile buildings dissipate a large amount of hysteretic energy before collapse and thus behave more like highly-damped systems. Secondly, heavily damaged buildings experience period-lengthening, giving further credence to the weighted-averaging property of highly-damped spectral acceleration.To determine the optimal damping value(s) for this ground motion intensity measure, we conduct incremental dynamic analysis for a suite of ground motions on several different mid-rise steel buildings and select the damping value yielding the lowest dispersion of intensity at the collapse threshold. Spectral acceleration calculated with damping as high as 70% has been shown to be a better indicator of collapse than that with 5% damping.

  20. Target of physiological gait: Realization of speed adaptive control for a prosthetic knee during swing flexion.

    PubMed

    Cao, Wujing; Yu, Hongliu; Zhao, Weiliang; Li, Jin; Wei, Xiaodong

    2018-01-01

    Prosthetic knee is the most important component of lower limb prosthesis. Speed adaptive for prosthetic knee during swing flexion is the key method to realize physiological gait. This study aims to discuss the target of physiological gait, propose a speed adaptive control method during swing flexion and research the damping adjustment law of intelligent hydraulic prosthetic knee. According to the physiological gait trials of healthy people, the control target during swing flexion is defined. A new prosthetic knee with fuzzy logical control during swing flexion is designed to realize the damping adjustment automatically. The function simulation and evaluation system of intelligent knee prosthesis is provided. Speed adaptive control test of the intelligent prosthetic knee in different velocities are researched. The maximum swing flexion of the knee angle is set between sixty degree and seventy degree as the target of physiological gait. Preliminary experimental results demonstrate that the prosthetic knee with fuzzy logical control is able to realize physiological gait under different speeds. The faster the walking, the bigger the valve closure percentage of the hydraulic prosthetic knee. The proposed fuzzy logical control strategy and intelligent hydraulic prosthetic knee are effective for the amputee to achieve physiological gait.

  1. Damping measurements in flowing water

    NASA Astrophysics Data System (ADS)

    Coutu, A.; Seeley, C.; Monette, C.; Nennemann, B.; Marmont, H.

    2012-11-01

    Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.

  2. Passively damped vibration welding system and method

    DOEpatents

    Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao

    2013-04-02

    A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

  3. Ares-I-X Stability and Control Flight Test: Analysis and Plans

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Derry, Stephen D.; Heim, Eugene H.; Hueschen, Richard M.; Bacon, Barton J.

    2008-01-01

    The flight test of the Ares I-X vehicle provides a unique opportunity to reduce risk of the design of the Ares I vehicle and test out design, math modeling, and analysis methods. One of the key features of the Ares I design is the significant static aerodynamic instability coupled with the relatively flexible vehicle - potentially resulting in a challenging controls problem to provide adequate flight path performance while also providing adequate structural mode damping and preventing adverse control coupling to the flexible structural modes. Another challenge is to obtain enough data from the single flight to be able to conduct analysis showing the effectiveness of the controls solutions and have data to inform design decisions for Ares I. This paper will outline the modeling approaches and control system design to conduct this flight test, and also the system identification techniques developed to extract key information such as control system performance (gain/phase margins, for example), structural dynamics responses, and aerodynamic model estimations.

  4. Contact stiffness and damping identification for hardware-in-the-loop contact simulator with measurement delay compensation

    NASA Astrophysics Data System (ADS)

    Qi, Chenkun; Zhao, Xianchao; Gao, Feng; Ren, Anye; Sun, Qiao

    2016-06-01

    The hardware-in-the-loop (HIL) contact simulator is to simulate the contact process of two flying objects in space. The contact stiffness and damping are important parameters used for the process monitoring, compliant contact control and force compensation control. In this study, a contact stiffness and damping identification approach is proposed for the HIL contact simulation with the force measurement delay. The actual relative position of two flying objects can be accurately measured. However, the force measurement delay needs to be compensated because it will lead to incorrect stiffness and damping identification. Here, the phase lead compensation is used to reconstruct the actual contact force from the delayed force measurement. From the force and position data, the contact stiffness and damping are identified in real time using the recursive least squares (RLS) method. The simulations and experiments are used to verify that the proposed stiffness and damping identification approach is effective.

  5. Numerical Study of Particle Damping Mechanism in Piston Vibration System via Particle Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Ming; Shah, Binoy; Keer, Leon; Wang, Jane; Snurr, Randall

    2008-03-01

    Mechanical damping systems with granular particles as the damping media have promising applications in extreme temperature conditions. In particle-based damping systems, the mechanical energy is dissipated through the inelastic collision and friction of particles. In the past, many experiments have been performed to investigate the particle damping problems. However, the detailed energy dissipation mechanism is still unclear due to the complex collision and flow behavior of dense particles. In this work, we use 3-D particle dynamics simulation to investigate the damping mechanism of an oscillating cylinder piston immerged in millimeter-size steel particles. The time evolution of the energy dissipation through the friction and inelastic collision is accurately monitored during the damping process. The contribution from the particle-particle interaction and particle-wall interaction is also separated for investigation. The effects of moisture, surface roughness, and density of particles are carefully investigated in the simulation. The comparison between the numerical simulation and experiment is also performed. The simulation results can help us understand the particle damping mechanism and design the new generation of particle damping devices.

  6. Control design based on a linear state function observer

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1992-01-01

    An approach to the design of low-order controllers for large scale systems is proposed. The method is derived from the theory of linear state function observers. First, the realization of a state feedback control law is interpreted as the observation of a linear function of the state vector. The linear state function to be reconstructed is the given control law. Then, based on the derivation for linear state function observers, the observer design is formulated as a parameter optimization problem. The optimization objective is to generate a matrix that is close to the given feedback gain matrix. Based on that matrix, the form of the observer and a new control law can be determined. A four-disk system and a lightly damped beam are presented as examples to demonstrate the applicability and efficacy of the proposed method.

  7. Control design methods for floating wind turbines for optimal disturbance rejection

    NASA Astrophysics Data System (ADS)

    Lemmer, Frank; Schlipf, David; Cheng, Po Wen

    2016-09-01

    An analysis of the floating wind turbine as a multi-input-multi-output system investigating the effect of the control inputs on the system outputs is shown. These effects are compared to the ones of the disturbances from wind and waves in order to give insights for the selection of the control layout. The frequencies with the largest impact on the outputs due to limited effect of the controlled variables are identified. Finally, an optimal controller is designed as a benchmark and compared to a conventional PI-controller using only the rotor speed as input. Here, the previously found system properties, especially the difficulties to damp responses to wave excitation, are confirmed and verified through a spectral analysis with realistic environmental conditions. This comparison also assesses the quality of the employed simplified linear simulation model compared to the nonlinear model and shows that such an efficient frequency-domain evaluation for control design is feasible.

  8. Robust fast controller design via nonlinear fractional differential equations.

    PubMed

    Zhou, Xi; Wei, Yiheng; Liang, Shu; Wang, Yong

    2017-07-01

    A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Human-in-the-loop evaluation of RMS Active Damping Augmentation

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.; Gilbert, Michael G.; Scott, Michael A.; Lepanto, Janet A.; Bains, Elizabeth M.; Jensen, Mary C.

    1993-01-01

    Active Damping Augmentation is the insertion of Controls-Structures Integration Technology to benefit the on-orbit performance of the Space Shuttle Remote Manipulator System. The goal is to reduce the vibration decay time of the Remote Manipulator System following normal payload maneuvers and operations. Simulation of Active Damping Augmentation was conducted in the realtime human-in-the-loop Systems Engineering Simulator at the NASA Johnson Space Center. The objective of this study was to obtain a qualitative measure of operational performance improvement from astronaut operators and to obtain supporting quantitative performance data. Sensing of vibratory motions was simulated using a three-axis accelerometer mounted at the end of the lower boom of the Remote Manipulator System. The sensed motions were used in a feedback control law to generate commands to the joint servo mechanisms which reduced the unwanted oscillations. Active damping of the Remote Manipulator System with an attached 3990 lb. payload was successfully demonstrated. Six astronaut operators examined the performance of an Active Damping Augmentation control law following single-joint and coordinated six-joint translational and rotational maneuvers. Active Damping Augmentation disturbance rejection of Orbiter thruster firings was also evaluated. Significant reductions in the dynamic response of the 3990 lb. payload were observed. Astronaut operators recommended investigation of Active Damping Augmentation benefits to heavier payloads where oscillations are a bigger problem (e.g. Space Station Freedom assembly operators).

  10. The Temporal Resolution of Flight Attitude Control in Dragonflies and Locusts: Lessons for the Design of Flapping-Wing MAVs

    DTIC Science & Technology

    2007-12-04

    central nevous system , consisting of a self- excited neuronal network. Even in the absence of any sensory inputs this network will 4 produce, in two...is not necessary in smaller systems . Introduction Conventional aircraft can be designed such that steady-state aerodynamics apply. Thus, it is...active damping by visual inputs, whereas the same is not necessary in smaller systems . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17

  11. The Joint Damping Experiment (JDX)

    NASA Technical Reports Server (NTRS)

    Folkman, Steven L.; Bingham, Jeff G.; Crookston, Jess R.; Dutson, Joseph D.; Ferney, Brook D.; Ferney, Greg D.; Rowsell, Edwin A.

    1997-01-01

    The Joint Damping Experiment (JDX), flown on the Shuttle STS-69 Mission, is designed to measure the influence of gravity on the structural damping of a high precision three bay truss. Principal objectives are: (1) Measure vibration damping of a small-scale, pinjointed truss to determine how pin gaps give rise to gravity-dependent damping rates; (2) Evaluate the applicability of ground and low-g aircraft tests for predicting on-orbit behavior; and (3) Evaluate the ability of current nonlinear finite element codes to model the dynamic behavior of the truss. Damping of the truss was inferred from 'Twang' tests that involve plucking the truss structure and recording the decay of the oscillations. Results are summarized as follows. (1) Damping, rates can change by a factor of 3 to 8 through changing the truss orientation; (2) The addition of a few pinned joints to a truss structure can increase the damping by a factor as high as 30; (3) Damping is amplitude dependent; (4) As gravity induced preloads become large (truss long axis perpendicular to gravity vector) the damping is similar to non-pinjointed truss; (5) Impacting in joints drives higher modes in structure; (6) The torsion mode disappears if gravity induced preloads are low.

  12. Material Damping Experiments at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Levine, Marie; White, Christopher

    2003-01-01

    A unique experimental facility has been designed to measure damping of materials at cryogenic temperatures. The test facility pays special attention to removing other sources of damping in the measurement by avoiding frictional interfaces, decoupling the test specimen from the support system, and by using a non-contacting measurement device; Damping data is obtained for materials (AI, GrEp, Be, Fused Quartz), strain amplitudes (less than 10-6 ppm), frequencies (20Hz-330Hz) and temperatures (20K-293K) relevant to future precision optical space missions. The test data shows a significant decrease in viscous damping at cryogenic temperatures and can be as low as 10-4%, but the amount of the damping decrease is a function of frequency and material. Contrary to the other materials whose damping monotonically decreased with temperature, damping of Fused Quartz increased substantially at cryo, after reaching a minimum at around l50 K. The damping is also shown to be insensitive to strain for low strain levels. At room temperatures, the test data correlates well to the analytical predictions of the Zener damping model. Discrepancies at cryogenic temperatures between the model predictions and the test data are observed.

  13. Limiting critical speed response on the SSME Alternate High Pressure Fuel Turbopump (ATD HPFTP) with bearing deadband

    NASA Technical Reports Server (NTRS)

    Goggin, David G.; Darden, J. M.

    1992-01-01

    Yammamoto (1954) described the influence of bearing deadband on the critical speed response of a rotor-bearing system. Practical application of these concepts to limit critical speed response of turbopump rotors is described. Nonlinear rotordynamic analyses are used to define the effect of bearing deadband and rotor unbalance on the Space Shuttle Main Engine Alternate High Pressure Fuel Turbopump. Analysis results are used with hot fire test data to verify the presence of a lightly damped critical speed within the operating speed range. With the proper control of rotor unbalance and bearing deadband, the response of this critical speed is reduced to acceptable levels without major design modifications or additional sources of damping.

  14. Rotor dynamic behaviour of a high-speed oil-free motor compressor with a rigid coupling supported on four radial magnetic bearings

    NASA Technical Reports Server (NTRS)

    Schmied, J.; Pradetto, J. C.

    1994-01-01

    The combination of a high-speed motor, dry gas seals, and magnetic bearings realized in this unit facilitates the elimination of oil. The motor is coupled with a quill shaft to the compressor. This yields higher natural frequencies of the rotor than with the use of a diaphragm coupling and helps to maintain a sufficient margin of the maximum speed to the frequency of the second compressor bending mode. However, the controller of each bearing then has to take the combined modes of both machines into account. The requirements for the controller to ensure stability and sufficient damping of all critical speeds are designed and compared with the implemented controller. The calculated closed loop behavior was confirmed experimentally, except the stability of some higher modes due to slight frequency deviations of the rotor model to the actual rotor. The influence of a mechanical damper as a device to provide additional damping to high models is demonstrated theoretically. After all, it was not necessary to install the damper, since all modes cold be stabilized by the controller.

  15. Analysis of high load dampers

    NASA Technical Reports Server (NTRS)

    Bhat, S. T.; Buono, D. F.; Hibner, D. H.

    1981-01-01

    High load damping requirements for modern jet engines are discussed. The design of damping systems which could satisfy these requirements is also discusseed. In order to evaluate high load damping requirements, engines in three major classes were studied; large transport engines, small general aviation engines, and military engines. Four damper concepts applicable to these engines were evaluated; multi-ring, cartridge, curved beam, and viscous/friction. The most promising damper concept was selected for each engine and performance was assessed relative to conventional dampers and in light of projected damping requirements for advanced jet engines.

  16. Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.

    2010-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.

  17. Optimal Topology and Experimental Evaluation of Piezoelectric Materials for Actively Shunted General Electric Polymer Matrix Fiber Composite Blades

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Duffy, Kirsten; Kauffman, Jeffrey L.; Kray, Nicholas

    2012-01-01

    NASA Glenn Research Center, in collaboration with GE Aviation, has begun the development of a smart adaptive structure system with piezoelectric (PE) transducers to improve composite fan blade damping at resonances. Traditional resonant damping approaches may not be realistic for rotating frame applications such as engine blades. The limited space in which the blades reside in the engine makes it impossible to accommodate the circuit size required to implement passive resonant damping. Thus, a novel digital shunt scheme has been developed to replace the conventional electric passive shunt circuits. The digital shunt dissipates strain energy through the load resistor on a power amplifier. General Electric (GE) designed and fabricated a variety of polymer matrix fiber composite (PMFC) test specimens. Investigating the optimal topology of PE sensors and actuators for each test specimen has revealed the best PE transducer location for each target mode. Also a variety of flexible patches, which can conform to the blade surface, have been tested to identify the best performing PE patch. The active damping control achieved significant performance at target modes. This work has been highlighted by successful spin testing up to 5000 rpm of subscale GEnx composite blades in Glenn s Dynamic Spin Rig.

  18. Vibration attenuation of the NASA Langley evolutionary structure experiment using H(sub infinity) and structured singular value (micron) robust multivariable control techniques

    NASA Technical Reports Server (NTRS)

    Balas, Gary J.

    1992-01-01

    The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.

  19. Dynamics of cochlear nonlinearity: Automatic gain control or instantaneous damping?

    PubMed

    Altoè, Alessandro; Charaziak, Karolina K; Shera, Christopher A

    2017-12-01

    Measurements of basilar-membrane (BM) motion show that the compressive nonlinearity of cochlear mechanical responses is not an instantaneous phenomenon. For this reason, the cochlear amplifier has been thought to incorporate an automatic gain control (AGC) mechanism characterized by a finite reaction time. This paper studies the effect of instantaneous nonlinear damping on the responses of oscillatory systems. The principal results are that (i) instantaneous nonlinear damping produces a noninstantaneous gain control that differs markedly from typical AGC strategies; (ii) the kinetics of compressive nonlinearity implied by the finite reaction time of an AGC system appear inconsistent with the nonlinear dynamics measured on the gerbil basilar membrane; and (iii) conversely, those nonlinear dynamics can be reproduced using an harmonic oscillator with instantaneous nonlinear damping. Furthermore, existing cochlear models that include instantaneous gain-control mechanisms capture the principal kinetics of BM nonlinearity. Thus, an AGC system with finite reaction time appears neither necessary nor sufficient to explain nonlinear gain control in the cochlea.

  20. Double-beam cantilever structure with embedded intelligent damping block: Dynamics and control

    NASA Astrophysics Data System (ADS)

    Szmidt, Tomasz; Pisarski, Dominik; Bajer, Czesław; Dyniewicz, Bartłomiej

    2017-08-01

    In this paper a semi-active method to control the vibrations of twin beams connected at their tips by a smart damping element is investigated. The damping element can be made of a magnetorheological elastomer or a smart material of another type, for instance vacuum packed particles. What is crucial is the ability to modify the storage and loss moduli of the damping block by means of devices attached directly to the vibrating structure. First, a simple dynamical model of the system is proposed. The continuous model is discretized using the Galerkin procedure. Then, a practical state-feedback control law is developed. The control strategy aims at achieving the best instantaneous energy dissipation of the system. Numerical simulations confirm its effectiveness in reducing free vibrations. The proposed control strategy appears to be robust in the sense that its application does not require any knowledge of the initial conditions imposed on the structure, and its performance is better than passive solutions, especially for the system induced in the first mode.

  1. Optimization analysis of a new vane MRF damper

    NASA Astrophysics Data System (ADS)

    Zhang, J. Q.; Feng, Z. Z.; Jing, Q.

    2009-02-01

    The primary purpose of this study was to provide the optimization analysis certain characteristics and benefits of a vane MRF damper. Based on the structure of conventional vane hydraulic damper for heavy vehicle, a narrow arc gap between clapboard and rotary vane axle, which one rotates relative to the other, was designed for MRF valve and the mathematical model of damping was deduced. Subsequently, the finite element analysis of electromagnetic circuit was done by ANSYS to perform the optimization process. Some ways were presented to augment the damping adjustable multiple under the condition of keeping initial damping forces and to increase fluid dwell time through the magnetic field. The results show that the method is useful in the design of MR dampers and the damping adjustable range of vane MRF damper can meet the requirement of heavy vehicle semi-active suspension system.

  2. Insights into the role of protein molecule size and structure on interfacial properties using designed sequences

    PubMed Central

    Dwyer, Mirjana Dimitrijev; He, Lizhong; James, Michael; Nelson, Andrew; Middelberg, Anton P. J.

    2013-01-01

    Mixtures of a large, structured protein with a smaller, unstructured component are inherently complex and hard to characterize at interfaces, leading to difficulties in understanding their interfacial behaviours and, therefore, formulation optimization. Here, we investigated interfacial properties of such a mixed system. Simplicity was achieved using designed sequences in which chemical differences had been eliminated to isolate the effect of molecular size and structure, namely a short unstructured peptide (DAMP1) and its longer structured protein concatamer (DAMP4). Interfacial tension measurements suggested that the size and bulk structuring of the larger molecule led to much slower adsorption kinetics. Neutron reflectometry at equilibrium revealed that both molecules adsorbed as a monolayer to the air–water interface (indicating unfolding of DAMP4 to give a chain of four connected DAMP1 molecules), with a concentration ratio equal to that in the bulk. This suggests the overall free energy of adsorption is equal despite differences in size and bulk structure. At small interfacial extensional strains, only molecule packing influenced the stress response. At larger strains, the effect of size became apparent, with DAMP4 registering a higher stress response and interfacial elasticity. When both components were present at the interface, most stress-dissipating movement was achieved by DAMP1. This work thus provides insights into the role of proteins' molecular size and structure on their interfacial properties, and the designed sequences introduced here can serve as effective tools for interfacial studies of proteins and polymers. PMID:23303222

  3. Aerospace Applications of Integer and Combinatorial Optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  4. Aerospace applications on integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  5. Development of a low-cost, low micro-vibration CMG for small agile satellite applications

    NASA Astrophysics Data System (ADS)

    Kawak, B. J.

    2017-02-01

    The agility of the spacecraft which refers to the spacecraft's ability to execute fast and accurate manoeuvers within a fixed period of time, is a key satellite parameter. The spacecraft' s agility is directly proportional to the spacecraft actuators' output torque. For high torque inertial actuators (>0.5 Nm), Control Moment Gyroscope (CMG) exhibits better performances in terms of mass and electrical power consumption than reaction wheels. However, in addition to the complex steering law required to avoid CMG singularities, one of the reasons why CMGs are not widely used is also due to their high micro-vibration emission which may interfere and disrupt the spacecraft' s sensitive instruments such as optical payloads. In this paper, an innovative two-stage viscoelastic isolation system has been designed and implemented in a new low micro-vibration CMG prototype. The first stage of the damping system acts at bearing level to attenuate the possible shock vibrations while the second stage acts at mechanism level to attenuate the structural resonances and motor noise. The developed CMG enables to combine high actuator output torque with a low micro-vibration signature. The viscoelastic damping system is cost effective as it is a fully passive system which requires no thermal control and no electronics. Furthermore, the attenuation provided by this innovative two stage damping system can reach a slope up to -80 dB/dec which leads to a Mini-CMG micro-vibration signature lower than similar output torque reaction wheels not equipped with a damping system.

  6. Effectiveness and Predictability of Particle Damping

    DTIC Science & Technology

    2000-01-01

    Design Methodology for Extreme Environments,” Contract No. F33615-98-C-3005. The authors gratefully acknowledge the support and guidance of Mr. Robert...Mountain View, CA 94043 b University of Dayton Research Institute, 300 College Park, Dayton, OH 45469 ABSTRACT In this paper, recent results of...has been developed in support of this work. Keywords: Nonlinear, Particle, Granular, Impact, Damping 1. INTRODUCTION Particle damping is a derivative

  7. Improved approximations for control augmented structural synthesis

    NASA Technical Reports Server (NTRS)

    Thomas, H. L.; Schmit, L. A.

    1990-01-01

    A methodology for control-augmented structural synthesis is presented for structure-control systems which can be modeled as an assemblage of beam, truss, and nonstructural mass elements augmented by a noncollocated direct output feedback control system. Truss areas, beam cross sectional dimensions, nonstructural masses and rotary inertias, and controller position and velocity gains are treated simultaneously as design variables. The structural mass and a control-system performance index can be minimized simultaneously, with design constraints placed on static stresses and displacements, dynamic harmonic displacements and forces, structural frequencies, and closed-loop eigenvalues and damping ratios. Intermediate design-variable and response-quantity concepts are used to generate new approximations for displacements and actuator forces under harmonic dynamic loads and for system complex eigenvalues. This improves the overall efficiency of the procedure by reducing the number of complete analyses required for convergence. Numerical results which illustrate the effectiveness of the method are given.

  8. Design of adaptive control systems by means of self-adjusting transversal filters

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.

    1986-01-01

    The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.

  9. Conceptual study of the damping of large space structures using large-stroke adaptive stiffness cables

    NASA Technical Reports Server (NTRS)

    Thorwald, Gregory; Mikulas, Martin M., Jr.

    1992-01-01

    The concept of a large-stroke adaptive stiffness cable-device for damping control of space structures with large mass is introduced. The cable is used to provide damping in several examples, and its performance is shown through numerical simulation results. Displacement and velocity information of how the structure moves is used to determine when to modify the cable's stiffness in order to provide a damping force.

  10. A shuttle and space station manipulator system for assembly, docking, maintenance, cargo handling and spacecraft retrieval (preliminary design). Volume 4: Simulation studies

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Laboratory simulations of three concepts, based on maximum use of available off-the-shelf hardware elements, are described. The concepts are a stereo-foveal-peripheral TV system with symmetric steroscopic split-image registration and 90 deg counter rotation; a computer assisted model control system termed the trajectory following control system; and active manipulator damping. It is concluded that the feasibility of these concepts is established.

  11. Stiffness and Damping in Postural Control Increase with Age

    PubMed Central

    Cenciarini, Massimo; Loughlin, Patrick J.; Sparto, Patrick J.; Redfern, Mark S.

    2011-01-01

    Upright balance is believed to be maintained through active and passive mechanisms, both of which have been shown to be impacted by aging. A compensatory balance response often observed in older adults is increased co-contraction, which is generally assumed to enhance stability by increasing joint stiffness. We investigated the effect of aging on standing balance by fitting body sway data to a previously-developed postural control model that includes active and passive stiffness and damping parameters. Ten young (24 ± 3 y) and seven older (75 ± 5 y) adults were exposed during eyes-closed stance to perturbations consisting of lateral pseudorandom floor tilts. A least-squares fit of the measured body sway data to the postural control model found significantly larger active stiffness and damping model parameters in the older adults. These differences remained significant even after normalizing to account for different body sizes between the young and older adult groups. An age effect was also found for the normalized passive stiffness, but not for the normalized passive damping parameter. This concurrent increase in active stiffness and damping was shown to be more stabilizing than an increase in stiffness alone, as assessed by oscillations in the postural control model impulse response. PMID:19770083

  12. Error Control with Perfectly Matched Layer or Damping Layer Treatments for Computational Aeroacoustics with Jet Flows

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    2009-01-01

    In this paper we show by means of numerical experiments that the error introduced in a numerical domain because of a Perfectly Matched Layer or Damping Layer boundary treatment can be controlled. These experimental demonstrations are for acoustic propagation with the Linearized Euler Equations with both uniform and steady jet flows. The propagating signal is driven by a time harmonic pressure source. Combinations of Perfectly Matched and Damping Layers are used with different damping profiles. These layer and profile combinations allow the relative error introduced by a layer to be kept as small as desired, in principle. Tradeoffs between error and cost are explored.

  13. Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2

    NASA Astrophysics Data System (ADS)

    Lorenzini, E. C.; Arnold, D. A.; Cosmo, M.; Grossi, M. D.

    1986-10-01

    The following topics related to the dynamics of the 4-mass tethered system are addressed: (1) the development of damping algorithms for damping the out-of-plane libration of the system and the interaction of the out-of-plane control with the other degrees of freedom; and (2) the development of environmental models to be added to the dynamics simulation computer code. The environmental models are specifically a new drag routine based on the Jacchia's 1977 model, a J(2) model and an accurate thermal model of the wire. Regarding topic (1) a survey of various out-of-plane libration control laws was carried out. Consequently a yo-yo control law with amplitude of the tether length variation proportional to the amplitude of the out-of-game libration has been selected. This control law provides good damping when applied to a (theoretical) two-dimensional system. In the actual 3-dimensional 4-mass tethered system, however, energy is transferred to the least damped degrees of freedom (the out-of-plane lateral deflections are still undamped in the present simulations) in such a way as to decrease the effectiveness of the algorithm for out-of-plane libration control. The addition of damping algorithms for the out-of-plane lateral deflections is therefore necessary.

  14. Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2

    NASA Technical Reports Server (NTRS)

    Lorenzini, E. C.; Arnold, D. A.; Cosmo, M.; Grossi, M. D.

    1986-01-01

    The following topics related to the dynamics of the 4-mass tethered system are addressed: (1) the development of damping algorithms for damping the out-of-plane libration of the system and the interaction of the out-of-plane control with the other degrees of freedom; and (2) the development of environmental models to be added to the dynamics simulation computer code. The environmental models are specifically a new drag routine based on the Jacchia's 1977 model, a J(2) model and an accurate thermal model of the wire. Regarding topic (1) a survey of various out-of-plane libration control laws was carried out. Consequently a yo-yo control law with amplitude of the tether length variation proportional to the amplitude of the out-of-game libration has been selected. This control law provides good damping when applied to a (theoretical) two-dimensional system. In the actual 3-dimensional 4-mass tethered system, however, energy is transferred to the least damped degrees of freedom (the out-of-plane lateral deflections are still undamped in the present simulations) in such a way as to decrease the effectiveness of the algorithm for out-of-plane libration control. The addition of damping algorithms for the out-of-plane lateral deflections is therefore necessary.

  15. Aircraft ride quality controller design using new robust root clustering theory for linear uncertain systems

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1992-01-01

    The aspect of controller design for improving the ride quality of aircraft in terms of damping ratio and natural frequency specifications on the short period dynamics is addressed. The controller is designed to be robust with respect to uncertainties in the real parameters of the control design model such as uncertainties in the dimensional stability derivatives, imperfections in actuator/sensor locations and possibly variations in flight conditions, etc. The design is based on a new robust root clustering theory developed by the author by extending the nominal root clustering theory of Gutman and Jury to perturbed matrices. The proposed methodology allows to get an explicit relationship between the parameters of the root clustering region and the uncertainty radius of the parameter space. The current literature available for robust stability becomes a special case of this unified theory. The bounds derived on the parameter perturbation for robust root clustering are then used in selecting the robust controller.

  16. A hybrid electromagnetic shock absorber for active vehicle suspension systems

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Babak; Bolandhemmat, Hamidreza; Behrad Khamesee, Mir; Golnaraghi, Farid

    2011-02-01

    The use of electromagnetic dampers (ED) in vehicle active suspension systems has drawn considerable attention in the past few years, attributed to the fact that active suspension systems have shown superior performance in improving ride comfort and road handling of terrain vehicles, compared with their passive and semi-active counterparts. Although demonstrating superb performance, active suspensions still have some shortcomings that must be overcome. They have high energy consumption, weight, and cost and are not fail-safe in case of a power breakdown. The novel hybrid ED, which is proposed in this paper, is a potential solution to the above-mentioned drawbacks of conventional active suspension systems. The proposed hybrid ED is designed to inherit the high-performance characteristics of an active ED with the reliability of a passive damper in a single package. The eddy current damping effect is utilised as a source of the passive damping. First, a prototype ED is designed and fabricated. The prototype ED is then utilised to experimentally establish the design requirements for a real-size active ED. This is accomplished by comparing its vibration isolation performance in a 1-DOF quarter-car test rig with that of a same-class semi-active damper. Then, after a real-size active ED is designed, the concept of hybrid damper is introduced to the damper design to address the drawbacks of the active ED. Finally, the finite-element method is used to accurately model and analyse the designed hybrid damper. It is demonstrated that by introducing the eddy current damping effect to the active part, a passive damping of approximately 1570 Ns/m is achieved. This amount of passive damping guarantees that the damper is fail-safe and reduces the power consumption more than 70%, compared with an active ED in an automotive active suspension system.

  17. An electroviscous damper

    NASA Technical Reports Server (NTRS)

    Nikolajsen, Jorgen L.; Hoque, M. S.

    1989-01-01

    A new type of vibration damper for rotor systems was developed and tested. The damper contains electroviscous fluid which solidifies and provides Coulomb damping when an electric voltage is imposed across the fluid. The damping capacity is controlled by the voltage. The damper was incorporated in a flexible rotor system and found to be able to damp out high levels of unbalanced excitation. Other proven advantages include controllability, simplicity, and no requirement for oil supply. Still unconfirmed are the capabilities to eliminate critical speeds and to suppress rotor instabilities.

  18. Validation of a new modal performance measure for flexible controllers design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simo, J.B.; Tahan, S.A.; Kamwa, I.

    1996-05-01

    A new modal performance measure for power system stabilizer (PSS) optimization is proposed in this paper. The new method is based on modifying the square envelopes of oscillating modes, in order to take into account their damping ratios while minimizing the performance index. This criteria is applied to flexible controllers optimal design, on a multi-input-multi-output (MIMO) reduced-order model of a prototype power system. The multivariable model includes four generators, each having one input and one output. Linear time-response simulation and transient stability analysis with a nonlinear package confirm the superiority of the proposed criteria and illustrate its effectiveness in decentralizedmore » control.« less

  19. Experimental validation of solid rocket motor damping models

    NASA Astrophysics Data System (ADS)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2017-12-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe damping properties of slender launch vehicles in payload/launcher coupled load analysis.

  20. Experimental validation of solid rocket motor damping models

    NASA Astrophysics Data System (ADS)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2018-06-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe damping properties of slender launch vehicles in payload/launcher coupled load analysis.

  1. Active vibration control with model correction on a flexible laboratory grid structure

    NASA Technical Reports Server (NTRS)

    Schamel, George C., II; Haftka, Raphael T.

    1991-01-01

    This paper presents experimental and computational comparisons of three active damping control laws applied to a complex laboratory structure. Two reduced structural models were used with one model being corrected on the basis of measured mode shapes and frequencies. Three control laws were investigated, a time-invariant linear quadratic regulator with state estimation and two direct rate feedback control laws. Experimental results for all designs were obtained with digital implementation. It was found that model correction improved the agreement between analytical and experimental results. The best agreement was obtained with the simplest direct rate feedback control.

  2. Optimum design of a Lanchester damper for a viscously damped single degree of freedom system subjected to inertial excitation

    NASA Astrophysics Data System (ADS)

    Bapat, V. A.; Prabhu, P.

    1980-11-01

    The problem of designing an optimum Lanchester damper for a viscously damped single degree of freedom system subjected to inertial harmonic excitation is investigated. Two criteria are used for optimizing the performance of the damper: (i) minimum motion transmissibility; (ii) minimum force transmissibility. Explicit expressions are developed for determining the absorber parameters.

  3. Optimal vibration control of a rotating plate with self-sensing active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Xie, Zhengchao; Wong, Pak Kin; Lo, Kin Heng

    2012-04-01

    This paper proposes a finite element model for optimally controlled constrained layer damped (CLD) rotating plate with self-sensing technique and frequency-dependent material property in both the time and frequency domain. Constrained layer damping with viscoelastic material can effectively reduce the vibration in rotating structures. However, most existing research models use complex modulus approach to model viscoelastic material, and an additional iterative approach which is only available in frequency domain has to be used to include the material's frequency dependency. It is meaningful to model the viscoelastic damping layer in rotating part by using the anelastic displacement fields (ADF) in order to include the frequency dependency in both the time and frequency domain. Also, unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Thus, in this work, a single layer finite element is adopted to model a three-layer active constrained layer damped rotating plate in which the constraining layer is made of piezoelectric material to work as both the self-sensing sensor and actuator under an linear quadratic regulation (LQR) controller. After being compared with verified data, this newly proposed finite element model is validated and could be used for future research.

  4. Design of an rf quadrupole for Landau damping

    NASA Astrophysics Data System (ADS)

    Papke, K.; Grudiev, A.

    2017-08-01

    The recently proposed superconducting quadrupole resonator for Landau damping in accelerators is subjected to a detailed design study. The optimization process of two different cavity types is presented following the requirements of the High Luminosity Large Hadron Collider (HL-LHC) with the main focus on quadrupolar strength, surface peak fields, and impedance. The lower order and higher order mode (LOM and HOM) spectrum of the optimized cavities is investigated and different approaches for their damping are proposed. On the basis of an example the first two higher order multipole errors are calculated. Likewise on this example the required rf power and optimal external quality factor for the input coupler is derived.

  5. Quiet High Speed Fan (QHSF) Flutter Calculations Using the TURBO Code

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Min, James B.; Mehmed, Oral

    2006-01-01

    A scale model of the NASA/Honeywell Engines Quiet High Speed Fan (QHSF) encountered flutter wind tunnel testing. This report documents aeroelastic calculations done for the QHSF scale model using the blade vibration capability of the TURBO code. Calculations at design speed were used to quantify the effect of numerical parameters on the aerodynamic damping predictions. This numerical study allowed the selection of appropriate values of these parameters, and also allowed an assessment of the variability in the calculated aerodynamic damping. Calculations were also done at 90 percent of design speed. The predicted trends in aerodynamic damping corresponded to those observed during testing.

  6. Passive damping enhancement of a two-degree-of-freedom system through a strongly nonlinear two-degree-of-freedom attachment

    NASA Astrophysics Data System (ADS)

    Wierschem, Nicholas E.; Quinn, D. Dane; Hubbard, Sean A.; Al-Shudeifat, Mohammad A.; McFarland, D. Michael; Luo, Jie; Fahnestock, Larry A.; Spencer, Billie F.; Vakakis, Alexander F.; Bergman, Lawrence A.

    2012-12-01

    This work reports on the first experimental study of the broadband targeted energy transfer properties of a two-degree-of-freedom (two-DOF) essentially nonlinear energy absorber. In particular, proper design of the absorber allows for an extended range of energy over which it serves to significantly enhance the damping observed in the structural system to which it is attached. Comparisons of computational and experimental results validate the proposed design as a means of drastically enhancing the damping properties of a structure by passive broadband targeted energy transfers to a strongly nonlinear, multidegree-of-freedom attachment.

  7. Single-Point Attachment Wind Damper for Launch Vehicle On-Pad Motion

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2009-01-01

    A single-point-attachment wind-damper device is proposed to reduce on-pad motion of a cylindrical launch vehicle. The device is uniquely designed to attach at only one location along the vehicle and capable of damping out wind gusts from any lateral direction. The only source of damping is from two viscous dampers in the device. The effectiveness of the damper design in reducing vehicle displacements is determined from transient analysis results using an Ares I-X launch vehicle. Combinations of different spring stiffnesses and damping are used to show how the vehicle's displacement response is significantly reduced during a wind gust.

  8. DAISY-DAMP: A distributed AI system for the dynamic allocation and management of power

    NASA Technical Reports Server (NTRS)

    Hall, Steven B.; Ohler, Peter C.

    1988-01-01

    One of the critical parameters that must be addressed when designing a loosely coupled Distributed AI SYstem (DAISY) has to do with the degree to which authority is centralized or decentralized. The decision to implement the Dynamic Allocation and Management of Power (DAMP) system as a network of cooperating agents mandated this study. The DAISY-DAMP problem is described; the component agents of the system are characterized; and the communication protocols system elucidated. The motivations and advantages in designing the system with authority decentralized is discussed. Progress in the area of Speech Act theory is proposed as playing a role in constructing decentralized systems.

  9. Five-cell superconducting RF module with a PBG coupler cell: design and cold testing of the copper prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsenyev, Sergey Andreyevich; Simakov, Evgenya Ivanovna; Shchegolkov, Dmitry

    2015-04-29

    We report the design and experimental data for a copper prototype of a superconducting radio-frequency (SRF) accelerator module. The five-cell module has an incorporated photonic band gap (PBG) cell with couplers. The purpose of the PBG cell is to achieve better higher order mode (HOM) damping, which is vital for preserving the quality of high-current electron beams. Better HOM damping raises the current threshold for beam instabilities in novel SRF accelerators. The PBG design also increases the real-estate gradient of the linac because both HOM damping and the fundamental power coupling can be done through the PBG cell instead ofmore » on the beam pipe via complicated end assemblies. First, we will discuss the design and accelerating properties of the structure. The five-cell module was optimized to provide good HOM damping while maintaining the same accelerating properties as conventional elliptical-cell modules. We will then discuss the process of tuning the structure to obtain the desired accelerating gradient profile. Finally, we will list measured quality factors for the accelerating mode and the most dangerous HOMs.« less

  10. Bio-inspired device: a novel smart MR spring featuring tendril structure

    NASA Astrophysics Data System (ADS)

    Kaluvan, Suresh; Park, Chun-Yong; Choi, Seung-Bok

    2016-01-01

    Smart materials such as piezoelectric patches, shape memory alloy, electro and magneto rheological fluid, magnetostrictive materials, etc are involved by far to design intelligent and high performance smart devices like injectors, dental braces, dampers, actuators and sensors. In this paper, an interesting smart device is proposed by inspiring on the structure of the bio climber plant. The key enabling concept of this proposed work is to design the smart spring damper as a helical shaped tendril structure using magneto-rheological (MR) fluid. The proposed smart spring consists of a hollow helical structure filled with MR fluid. The viscosity of the MR fluid decides the damping force of helical shaped smart spring, while the fluid intensity in the vine decides the strength of the tendril in the climber plant. Thus, the proposed smart spring can provide a new concept design of the damper which can be applicable to various damping system industries with tuneable damping force. The proposed smart spring damper has several advantageous such as cost effective, easy implementation compared with the conventional damper. In addition, the proposed spring damper can be easily designed to adapt different damping force levels without any alteration.

  11. Design optimization of a viscoelastic dynamic vibration absorber using a modified fixed-points theory.

    PubMed

    Wong, W O; Fan, R P; Cheng, F

    2018-02-01

    A viscoelastic dynamic vibration absorber (VDVA) is proposed for suppressing infrasonic vibrations of heavy structures because the traditional dynamic vibration absorber equipped with a viscous damper is not effective in suppressing low frequency vibrations. The proposed VDVA has an elastic spring and a viscoelastic damper with frequency dependent modulus and damping properties. The standard fixed-points theory cannot be applied to derive the optimum design parameters of the VDVA because both its stiffness and damping are frequency dependent. A modified fixed-points theory is therefore proposed to solve this problem. H ∞ design optimization of the proposed VDVA have been derived for the minimization of resonant vibration amplitude of a single degree-of-freedom system excited by harmonic forces or due to ground motions. The stiffness and damping of the proposed VDVA can be decoupled such that both of these two properties of the absorber can be tuned independently to their optimal values by following a specified procedure. The proposed VDVA with optimized design is tested numerically using two real commercial viscoelastic damping materials. It is found that the proposed viscoelastic absorber can provide much stronger vibration reduction effect than the conventional VDVA without the elastic spring.

  12. Hard ceramic coatings: an experimental study on a novel damping treatment

    NASA Astrophysics Data System (ADS)

    Patsias, Sophoclis; Tassini, Nicola; Stanway, Roger

    2004-07-01

    This paper describes a novel damping treatment, namely hard ceramic coatings. These materials can be applied on almost any surface (internal or external) of a component. Their effect is the significant reduction of vibration levels and hence the extension of life expectancy of the component. The damping features of air-plasma-sprayed ceramic coatings (for example amplitude dependence, influence of initial amplitude) are discussed and the experimental procedure employed for testing and characterising such materials is also described. This test procedure is based around a custom-developed rig that allows one to measure the damping (internal friction) of specimens at controlled frequencies, strain amplitudes and, if required, various temperatures. A commonly used Thermal Barrier Coating, Yttria Stabilised Zirconia (8%), is used to demonstrate the above mentioned features. The damping effectiveness of this coating is then compared against two established damping treatments: polymer Free Layer Damping (FLD) and Constrained Layer Damping (CLD). The paper discusses the major issues in characterising ceramic damping coatings and their damping effectiveness when compared against the "traditional" approaches. Finally, the paper concludes with suggestions for further research.

  13. Variable speed wind turbine control by discrete-time sliding mode approach.

    PubMed

    Torchani, Borhen; Sellami, Anis; Garcia, Germain

    2016-05-01

    The aim of this paper is to propose a new design variable speed wind turbine control by discrete-time sliding mode approach. This methodology is designed for linear saturated system. The saturation constraint is reported on inputs vector. To this end, the back stepping design procedure is followed to construct a suitable sliding manifold that guarantees the attainment of a stabilization control objective. It is well known that the mechanisms are investigated in term of the most proposed assumptions to deal with the damping, shaft stiffness and inertia effect of the gear. The objectives are to synthesize robust controllers that maximize the energy extracted from wind, while reducing mechanical loads and rotor speed tracking combined with an electromagnetic torque. Simulation results of the proposed scheme are presented. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Damping mechanisms in chemically vapor deposited SiC fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.; Goldsby, Jon C.

    1993-01-01

    Evaluating the damping of reinforcement fibers is important for understanding their microstructures and the vibrational response of their structural composites. In this study the damping capacities of two types of chemically vapor deposited silicon carbide fibers were measured from -200 C to as high as 800 C. Measurements were made at frequencies in the range 50 to 15000 Hz on single cantilevered fibers. At least four sources were identified which contribute to fiber damping, the most significant being thermoelastic damping and grain boundary sliding. The mechanisms controlling all sources and their potential influence on fiber and composite performance are discussed.

  15. Robust linear quadratic designs with respect to parameter uncertainty

    NASA Technical Reports Server (NTRS)

    Douglas, Joel; Athans, Michael

    1992-01-01

    The authors derive a linear quadratic regulator (LQR) which is robust to parametric uncertainty by using the overbounding method of I. R. Petersen and C. V. Hollot (1986). The resulting controller is determined from the solution of a single modified Riccati equation. It is shown that, when applied to a structural system, the controller gains add robustness by minimizing the potential energy of uncertain stiffness elements, and minimizing the rate of dissipation of energy through uncertain damping elements. A worst-case disturbance in the direction of the uncertainty is also considered. It is proved that performance robustness has been increased with the robust LQR when compared to a mismatched LQR design where the controller is designed on the nominal system, but applied to the actual uncertain system.

  16. Damping torque analysis of VSC-based system utilizing power synchronization control

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Du, W. J.; Zheng, K. Y.; Wang, H. F.

    2017-05-01

    Power synchronization control is a new control strategy of VSC-HVDC for connecting a weak power system. Different from the vector control method, this control method utilizes the internal synchronization mechanism in ac systems, in principle, similar to the operation of a synchronous machine. So that the parameters of controllers in power synchronization control will change the electromechanical oscillation modes and make an impact on the transient stability of power system. This paper present a mathematical model for small-signal stability analysis of VSC station used power synchronization control and analyse the impact of the dynamic interactions by calculating the contribution of the damping torque from the power synchronization control, besides, the parameters of controllers which correspond to damping torque and synchronous torque in the power synchronization control is defined respectively. At the end of the paper, an example power system is presented to demonstrate and validate the theoretical analysis and associated conclusions are made.

  17. Decentralized semi-active damping of free structural vibrations by means of structural nodes with an on/off ability to transmit moments

    NASA Astrophysics Data System (ADS)

    Poplawski, Blazej; Mikułowski, Grzegorz; Mróz, Arkadiusz; Jankowski, Łukasz

    2018-02-01

    This paper proposes, tests numerically and verifies experimentally a decentralized control algorithm with local feedback for semi-active mitigation of free vibrations in frame structures. The algorithm aims at transferring the vibration energy of low-order, lightly-damped structural modes into high-frequency modes of vibration, where it is quickly damped by natural mechanisms of material damping. Such an approach to mitigation of vibrations, known as the prestress-accumulation release (PAR) strategy, has been earlier applied only in global control schemes to the fundamental vibration mode of a cantilever beam. In contrast, the decentralization and local feedback allows the approach proposed here to be applied to more complex frame structures and vibration patterns, where the global control ceases to be intuitively obvious. The actuators (truss-frame nodes with controllable ability to transmit moments) are essentially unblockable hinges that become unblocked only for very short time periods in order to trigger local modal transfer of energy. The paper proposes a computationally simple model of the controllable nodes, specifies the control performance measure, yields basic characteristics of the optimum control, proposes the control algorithm and then tests it in numerical and experimental examples.

  18. Extension of Miles Equation for Ring Baffle Damping Predictions to Small Slosh Amplitudes and Large Baffle Widths

    NASA Technical Reports Server (NTRS)

    West, Jeff; Yang, H. Q.; Brodnick, Jacob; Sansone, Marco; Westra, Douglas

    2016-01-01

    The Miles equation has long been used to predict slosh damping in liquid propellant tanks due to ring baffles. The original work by Miles identifies defined limits to its range of application. Recent evaluations of the Space Launch System identified that the Core Stage baffle designs resulted in violating the limits of the application of the Miles equation. This paper describes the work conducted by NASA/MSFC to develop methods to predict slosh damping from ring baffles for conditions for which Miles equation is not applicable. For asymptotically small slosh amplitudes or conversely large baffle widths, an asymptotic expression for slosh damping was developed and calibrated using historical experimental sub-scale slosh damping data. For the parameter space that lies between region of applicability of the asymptotic expression and the Miles equation, Computational Fluid Dynamics simulations of slosh damping were used to develop an expression for slosh damping. The combined multi-regime slosh prediction methodology is shown to be smooth at regime boundaries and consistent with both sub-scale experimental slosh damping data and the results of validated Computational Fluid Dynamics predictions of slosh damping due to ring baffles.

  19. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects

    NASA Technical Reports Server (NTRS)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.

    2011-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  20. Circuit for Driving Piezoelectric Transducers

    NASA Technical Reports Server (NTRS)

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the piezoelectric transducer. This positive AC feedback, in combination with the slow feedback to the voltage-variable resistors, causes the overall loop gain to be just large enough to keep the oscillator running. The positive feedback loop includes two 16-channel multiplexers, which are not shown in the figure. One multiplexer is used to select the desired piezoelectric transducer. The other multiplexer, which is provided for use in the event that there are significant differences among the damping times of the 16 piezoelectric transducers, facilitates changing the value of one of the resistors in the positive-feedback loop to accommodate the damping time of the selected transducer.

  1. Two methods for damping torsional vibrations in DFIG-based wind generators using power converters

    NASA Astrophysics Data System (ADS)

    Zhao, Zuyi; Lu, Yupu; Xie, Da; Yu, Songtao; Wu, Wangping

    2017-01-01

    This paper proposes novel damping control algorithms by using static synchronous compensator (STATCOM) and energy storage system (ESS) to damp torsional vibrations in doubly fed induction generator (DFIG) based wind turbine systems. It first analyses the operating characteristics of STATCOM and ESS for regulating power variations to increase grid voltage stability. Then, new control strategies for STATCOM and ESS are introduced to damp the vibrations. It is followed by illustration of their effectiveness to damp the drive train torsional vibrations of wind turbines, which can be caused by grid disturbances, such as voltage sags and frequency fluctuations. Results suggest that STATCOM is a promising technology to mitigate the torsional vibrations caused by grid voltage sags. By contrast, the ESS connected to the point of common coupling (PCC) of wind turbine systems shows even obvious advantages because of its capability of absorbing/releasing both active and reactive power. It can thus be concluded that STATCOM is useful for stabilizing power system voltage fluctuations, and ESS is more effective both in regulating PCC voltage fluctuations and damping torsional vibrations caused by grid voltage frequency fluctuations.

  2. Experimental demonstration of active vibration control for flexible structures

    NASA Technical Reports Server (NTRS)

    Phillips, Douglas J.; Hyland, David C.; Collins, Emmanuel G., Jr.

    1990-01-01

    Active vibration control of flexible structures for future space missions is addressed. Three experiments that successfully demonstrate control of flexible structures are described. The first is the pendulum experiment. The structure is a 5-m compound pendulum and was designed as an end-to-end test bed for a linear proof mass actuator and its supporting electronics. Experimental results are shown for a maximum-entropy/optimal-projection controller designed to achieve 5 percent damping in the first two pendulum modes. The second experiment was based upon the Harris Multi-Hex prototype experiment (MHPE) apparatus. This is a large optical reflector structure comprising a seven-panel array and supporting truss which typifies a number of generic characteristics of large space systems. The third experiment involved control design and implementation for the ACES structure at NASA Marshall Space Flight Center. The authors conclude with some remarks on the lessons learned from conducting these experiments.

  3. Ultralow Damping in Nanometer-Thick Epitaxial Spinel Ferrite Thin Films.

    PubMed

    Emori, Satoru; Yi, Di; Crossley, Sam; Wisser, Jacob J; Balakrishnan, Purnima P; Khodadadi, Behrouz; Shafer, Padraic; Klewe, Christoph; N'Diaye, Alpha T; Urwin, Brittany T; Mahalingam, Krishnamurthy; Howe, Brandon M; Hwang, Harold Y; Arenholz, Elke; Suzuki, Yuri

    2018-06-08

    Pure spin currents, unaccompanied by dissipative charge flow, are essential for realizing energy-efficient nanomagnetic information and communications devices. Thin-film magnetic insulators have been identified as promising materials for spin-current technology because they are thought to exhibit lower damping compared with their metallic counterparts. However, insulating behavior is not a sufficient requirement for low damping, as evidenced by the very limited options for low-damping insulators. Here, we demonstrate a new class of nanometer-thick ultralow-damping insulating thin films based on design criteria that minimize orbital angular momentum and structural disorder. Specifically, we show ultralow damping in <20 nm thick spinel-structure magnesium aluminum ferrite (MAFO), in which magnetization arises from Fe 3+ ions with zero orbital angular momentum. These epitaxial MAFO thin films exhibit a Gilbert damping parameter of ∼0.0015 and negligible inhomogeneous linewidth broadening, resulting in narrow half width at half-maximum linewidths of ∼0.6 mT around 10 GHz. Our findings offer an attractive thin-film platform for enabling integrated insulating spintronics.

  4. Structural Technology and Analysis Program (STAP) Delivery Order 0004: Durability Patch

    NASA Astrophysics Data System (ADS)

    Ikegami, Roy; Haugse, Eric; Trego, Angela; Rogers, Lynn; Maly, Joe

    2001-06-01

    Structural cracks in secondary structure, resulting from a high cycle fatigue (HCF) environment, are often referred to as nuisance cracks. This type of damage can result in costly inspections and repair. The repairs often do not last long because the repaired structure continues to respond in a resonant fashion to the environment. Although the use of materials for passive damping applications is well understood, there are few applications to high-cycle fatigue problems. This is because design information characterization temperature, resonant response frequency and strain levels are difficult to determine. The Durability Patch and Damage Dosimeter Program addressed these problems by: (1) Developing a damped repair design process which includes a methodology for designing the material and application characteristics required to optimally damp the repair. (2) Designing and developing a rugged, small, and lightweight data acquisition unit called the damage dosimeter. This is a battery operated, single board computer, capable of collecting three channels of strain and one channel of temperature, processing this data by user developed algorithms written in the C programming language, and storing the processed data in resident memory. The dosimeter is used to provide flight data needed to characterize the vibration environment. The vibration environment is then used to design the damping material characteristics and repair. The repair design methodology and dosimeter were demonstrated on B-52, C-130, and F-15 aircraft applications.

  5. Analysis of Smart Composite Structures Including Debonding

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Seeley, Charles E.

    1997-01-01

    Smart composite structures with distributed sensors and actuators have the capability to actively respond to a changing environment while offering significant weight savings and additional passive controllability through ply tailoring. Piezoelectric sensing and actuation of composite laminates is the most promising concept due to the static and dynamic control capabilities. Essential to the implementation of these smart composites are the development of accurate and efficient modeling techniques and experimental validation. This research addresses each of these important topics. A refined higher order theory is developed to model composite structures with surface bonded or embedded piezoelectric transducers. These transducers are used as both sensors and actuators for closed loop control. The theory accurately captures the transverse shear deformation through the thickness of the smart composite laminate while satisfying stress free boundary conditions on the free surfaces. The theory is extended to include the effect of debonding at the actuator-laminate interface. The developed analytical model is implemented using the finite element method utilizing an induced strain approach for computational efficiency. This allows general laminate geometries and boundary conditions to be analyzed. The state space control equations are developed to allow flexibility in the design of the control system. Circuit concepts are also discussed. Static and dynamic results of smart composite structures, obtained using the higher order theory, are correlated with available analytical data. Comparisons, including debonded laminates, are also made with a general purpose finite element code and available experimental data. Overall, very good agreement is observed. Convergence of the finite element implementation of the higher order theory is shown with exact solutions. Additional results demonstrate the utility of the developed theory to study piezoelectric actuation of composite laminates with pre-existing debonding. Significant changes in the modes shapes and reductions in the control authority result due to partially debonded actuators. An experimental investigation addresses practical issues, such as circuit design and implementation, associated with piezoelectric sensing and actuation of composite laminates. Composite specimens with piezoelectric transducers were designed, constructed and tested to validate the higher order theory. These specimens were tested with various stacking sequences, debonding lengths and gains for both open and closed loop cases. Frequency changes of 15% and damping on the order of more than 20% of critical damping, via closed loop control, was achieved. Correlation with the higher order theory is very good. Debonding is shown to adversely affect the open and closed loop frequencies, damping ratios, settling time and control authority.

  6. Damping properties of fiber reinforced composite suitable for stayed cable

    NASA Astrophysics Data System (ADS)

    Li, Jianzhi; Sun, Baochen; Du, Yanliang

    2011-11-01

    Carbon fiber reinforced plastics (CFRP) cables were initially most investigated to replace steel cables. To further explore the advantages of FRP cables, the potential ability of vibration control is studied in this paper emphasizing the designable characteristic of hybrid FRP cables. Fiber reinforced vinyl ester composites and fiber reinforced epoxy composites were prepared by the pultrusion method. Due to the extensive application of fiber reinforced composites, the temperature spectrum and frequency spectrum of loss factor for the composite were tested using dynamic mechanical analysis (DMA) equipment. The damping properties and damping mechanism of the composite were investigated and discussed at different temperatures and frequencies. The result indicates that the loss factor of the composites is increasing with the increase of the frequency from 0.1Hz to 2 Hz and decreasing with the decrease of the temperature from -20°C to 60°C. The loss factor of the carbon fiber composite is higher than that of the glass fiber for the same matrix. The loss factor of the vinyl ester composite is higher than that of the epoxy composite for the same fiber.

  7. Damping properties of fiber reinforced composite suitable for stayed cable

    NASA Astrophysics Data System (ADS)

    Li, Jianzhi; Sun, Baochen; Du, Yanliang

    2012-04-01

    Carbon fiber reinforced plastics (CFRP) cables were initially most investigated to replace steel cables. To further explore the advantages of FRP cables, the potential ability of vibration control is studied in this paper emphasizing the designable characteristic of hybrid FRP cables. Fiber reinforced vinyl ester composites and fiber reinforced epoxy composites were prepared by the pultrusion method. Due to the extensive application of fiber reinforced composites, the temperature spectrum and frequency spectrum of loss factor for the composite were tested using dynamic mechanical analysis (DMA) equipment. The damping properties and damping mechanism of the composite were investigated and discussed at different temperatures and frequencies. The result indicates that the loss factor of the composites is increasing with the increase of the frequency from 0.1Hz to 2 Hz and decreasing with the decrease of the temperature from -20°C to 60°C. The loss factor of the carbon fiber composite is higher than that of the glass fiber for the same matrix. The loss factor of the vinyl ester composite is higher than that of the epoxy composite for the same fiber.

  8. CSI flight experiment projects of the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Fisher, Shalom

    1993-01-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  9. CSI flight experiment projects of the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Fisher, Shalom

    1993-02-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  10. Overview of the DAEDALOS project

    NASA Astrophysics Data System (ADS)

    Bisagni, Chiara

    2015-10-01

    The "Dynamics in Aircraft Engineering Design and Analysis for Light Optimized Structures" (DAEDALOS) project aimed to develop methods and procedures to determine dynamic loads by considering the effects of dynamic buckling, material damping and mechanical hysteresis during aircraft service. Advanced analysis and design principles were assessed with the scope of partly removing the uncertainty and the conservatism of today's design and certification procedures. To reach these objectives a DAEDALOS aircraft model representing a mid-size business jet was developed. Analysis and in-depth investigation of the dynamic response were carried out on full finite element models and on hybrid models. Material damping was experimentally evaluated, and different methods for damping evaluation were developed, implemented in finite element codes and experimentally validated. They include a strain energy method, a quasi-linear viscoelastic material model, and a generalized Maxwell viscous material damping. Panels and shells representative of typical components of the DAEDALOS aircraft model were experimentally tested subjected to static as well as dynamic loads. Composite and metallic components of the aircraft model were investigated to evaluate the benefit in terms of weight saving.

  11. Ultra-light weight undamped tuned dynamic absorber for cryogenically cooled infrared electro-optic payload

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Babitsky, Vladimir

    2017-04-01

    Attenuation of tonal cryocooler induced vibration in infrared electro-optical payloads may be achieved by using of Tuned Dynamic Absorber (TDA) which is, generally speaking, a passive, weakly damped mass-spring system the resonant frequency of which is precisely matched with the driving frequency. Added TDA results in a favorable modification of the frequency response functions of combined structure. In particular, a favorable antiresonant notch appears at the frequency of tonal excitation along with the adjacent secondary resonance, the width and depth of which along with its closeness to the secondary resonance are strongly dependent on the mass and damping ratios. Using heavier TDA favorably results in wider and deeper antiresonant notch along with increased gap between antiresonant and resonant frequencies. Lowering damping in TDA favorably results in deepening the antiresonant notch. The weight of TDA is usually subjected to tight design constrains. Use of lightweight TDA not only diminishes the attainable performance but also complicates the procedure of frequency matching. Along these lines, even minor frequency deviations may negate the TDA performance and even result in TDA failure in case of resonant build up. The authors are presenting theoretical and practical aspects of designing and constructing ultra-light weight TDA in application to vibration attenuation of electro-optical infrared payload relying on Split Stirling linear cryocooler, the driving frequency of which is fixed and may be accurately tuned and maintained using a digital controller over the entire range of working conditions and lifetime; the lack of mass ratio is compensated by minimizing the damping ratio. In one particular case, in excess of 100-fold vibration attenuation has been achieved by adding as little as 5% to the payload weight.

  12. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Ping; Zhang, Yi; Xia, Yu; Jiang, Wei-Bing; Liu, Hui; Liu, Wang; Gao, Yun-Xia; Zhang, Tao; Fang, Qian-Feng

    2017-03-01

    A novel micro-vibration sensitive-type high-damping Al matrix composites reinforced with Li7- x La3Zr2- x Nb x O12 (LLZNO, x = 0.25) was designed and prepared using an advanced spark plasma sintering (SPS) technique. The damping capacity and mechanical properties of LLZNO/Al composites (LLZNO content: 0-40 wt.%) were found to be greatly improved by the LLZNO addition. The maximum damping capacity and the ultimate tensile strength (UTS) of LLZNO/Al composite can be respectively up to 0.033 and 101.2 MPa in the case of 20 wt.% LLZNO addition. The enhancement of damping and mechanical properties of the composites was ascribed to the intrinsic high-damping capacity and strengthening effects of hard LLZNO particulate. This investigation provides a new insight to sensitively suppress micro-vibration of payloads in the aerospace environment.

  13. Determining the effective system damping of highway bridges.

    DOT National Transportation Integrated Search

    2009-06-01

    This project investigates four methods for modeling modal damping ratios of short-span and isolated : concrete bridges subjected to strong ground motion, which can be used for bridge seismic analysis : and design based on the response spectrum method...

  14. A Passive Magnetic Bearing Flywheel

    NASA Technical Reports Server (NTRS)

    Siebert, Mark; Ebihara, Ben; Jansen, Ralph; Fusaro, Robert L.; Morales, Wilfredo; Kascak, Albert; Kenny, Andrew

    2002-01-01

    A 100 percent passive magnetic bearing flywheel rig employing no active control components was designed, constructed, and tested. The suspension clothe rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm, which is 65 percent above the first critical speed of 3336 rpm. Operation was not continued beyond this point because of the excessive noise generated by the air impeller and because of inadequate containment in case of failure. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  15. Active Vibration damping of Smart composite beams based on system identification technique

    NASA Astrophysics Data System (ADS)

    Bendine, Kouider; Satla, Zouaoui; Boukhoulda, Farouk Benallel; Nouari, Mohammed

    2018-03-01

    In the present paper, the active vibration control of a composite beam using piezoelectric actuator is investigated. The space state equation is determined using system identification technique based on the structure input output response provided by ANSYS APDL finite element package. The Linear Quadratic (LQG) control law is designed and integrated into ANSYS APDL to perform closed loop simulations. Numerical examples for different types of excitation loads are presented to test the efficiency and the accuracy of the proposed model.

  16. Modular design attitude control system

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.

    1984-01-01

    A sequence of single axismodels and a series of reduced state linear observers of minimum order are used to reconstruct inaccessible variables pertaining to the modular attitude control of a rigid body flexible suspension model of a flexible spacecraft. The single axis models consist of two, three, four, and five rigid bodies, each interconnected by a flexible shaft passing through the mass centers of the bodies. Modal damping is added to each model. Reduced state linear observers are developed for synthesizing the inaccessible modal state variables for each modal model.

  17. Design, analysis, and control of a large transport aircraft utilizing selective engine thrust as a backup system for the primary flight control. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gerren, Donna S.

    1995-01-01

    A study has been conducted to determine the capability to control a very large transport airplane with engine thrust. This study consisted of the design of an 800-passenger airplane with a range of 5000 nautical miles design and evaluation of a flight control system, and design and piloted simulation evaluation of a thrust-only backup flight control system. Location of the four wing-mounted engines was varied to optimize the propulsive control capability, and the time constant of the engine response was studied. The goal was to provide level 1 flying qualities. The engine location and engine time constant did not have a large effect on the control capability. The airplane design did meet level 1 flying qualities based on frequencies, damping ratios, and time constants in the longitudinal and lateral-directional modes. Project pilots consistently rated the flying qualities as either level 1 or level 2 based on Cooper-Harper ratings. However, because of the limited control forces and moments, the airplane design fell short of meeting the time required to achieve a 30 deg bank and the time required to respond a control input.

  18. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    NASA Technical Reports Server (NTRS)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  19. A Study of Longitudinal Control Problems at Low and Negative Damping and Stability with Emphasis on Effects of Motion Cues

    NASA Technical Reports Server (NTRS)

    Sadoff, Melvin; McFadden, Norman M.; Heinle, Donovan R.

    1961-01-01

    As part of a general investigation to determine the effects of simulator motions on pilot opinion and task performance over a wide range of vehicle longitudinal dynamics, a cooperative NASA-AMAL program was conducted on the centrifuge at Johnsville, Pennsylvania. The test parameters and measurements for this program duplicated those of earlier studies made at Ames Research Center with a variable-stability airplane and with a pitch-roll chair flight simulator. Particular emphasis was placed on the minimum basic damping and stability the pilots would accept and on the minimum dynamics they considered controllable in the event of stability-augmentation system failure. Results of the centrifuge-simulator program indicated that small positive damping was required by the pilots over most of the frequency range covered for configurations rated acceptable for emergency conditions only (e.g., failure of a pitch damper). It was shown that the pilot's tolerance for unstable dynamics was dependent primarily on the value of damping. For configurations rated acceptable for emergency operation only, the allowable instability and damping corresponded to a divergence time to double amplitude of about 1 second. Comparisons were made of centrifuge, pitch-chair and fixed-cockpit simulator tests with flight tests. Pilot ratings indicated that the effects of incomplete or spurious motion cues provided by these three modes of simulation were important only for high-frequency, lightly damped dynamics or unstable, moderately damped dynamics. The pitch- chair simulation, which provided accurate angular-acceleration cues to the pilot, compared most favorably with flight. For the centrifuge simulation, which furnished accurate normal accelerations but spurious pitching and longitudinal accelerations, there was a deterioration of pilots' opinion relative to flight results. Results of simulator studies with an analog pilot replacing the human pilot illustrated the adaptive capability of human pilots in coping with the wide range of vehicle dynamics and the control problems covered in this study. It was shown that pilot-response characteristics, deduced by the analog-pilot method, could be related to pilot opinion. Possible application of these results for predicting flight-control problems was illustrated by means of an example control-problem analysis. The results of a brief evaluation of a pencil-type side-arm controller in the centrifuge showed a considerable improvement in the pilots' ability to cope with high-frequency, low-damping dynamics, compared to results obtained with the center stick. This improvement with the pencil controller was attributed primarily to a marked reduction in the adverse effects of large and exaggerated pitching and longitudinal accelerations on pilot control precision.

  20. Modeling, simulation, and flight characteristics of an aircraft designed to fly at 100,000 feet

    NASA Technical Reports Server (NTRS)

    Sim, Alex G.

    1991-01-01

    A manned real time simulation of a conceptual vehicle, the stratoplane, was developed to study the problems associated with the flight characteristics of a large, lightweight vehicle. Mathematical models of the aerodynamics, mass properties, and propulsion system were developed in support of the simulation and are presented. The simulation was at first conducted without control augmentation to determine the needs for a control system. The unaugmented flying qualities were dominated by lightly damped dutch roll oscillations. Constant pilot workloads were needed at high altitudes. Control augmentation was studied using basic feedbacks. For the longitudinal axis, flight path angle, and pitch rate feedback were sufficient to damp the phugoid mode and to provide good flying qualities. In the lateral directional axis, bank angle, roll rate, and yaw rate feedbacks were sufficient to provide a safe vehicle with acceptable handling qualities. Intentionally stalling the stratoplane to very high angles of attack (deep stall) was studied as a means of enable safe and rapid descent. It was concluded that the deep stall maneuver is viable for this class of vehicle.

  1. Aerospace Structures Technology Damping Design Guide. Volume 2. Design Guide

    DTIC Science & Technology

    1985-12-01

    pickups, and antenna. 6-51 6.2.7.3 Typical response spectra for undamped antenna. 6-51 6.2.7.4 Damping properties of panacrit-BJ with 25 PHR carbon . 6-54...Temperature and dynamic characteristics are the two prime factors which must be reticulously measured to obtain good d&Aping design results. 4-20 WITHOU’T...The material finally chosen was Panacril-BJ with 25 PIUR super abrasive furnace carbon black added for strength. Without the added carbon the material

  2. Inertia-Wheel Vibration-Damping System

    NASA Technical Reports Server (NTRS)

    Fedor, Joseph V.

    1990-01-01

    Proposed electromechanical system would damp vibrations in large, flexible structure. In active vibration-damping system motors and reaction wheels at tips of appendages apply reaction torques in response to signals from accelerometers. Velocity signal for vibrations about one axis processes into control signal to oppose each of n vibrational modes. Various modes suppressed one at a time. Intended primarily for use in spacecraft that has large, flexible solar panels and science-instrument truss assembly, embodies principle of control interesting in its own right and adaptable to terrestrial structures, vehicles, and instrument platforms.

  3. Method and algorithm of automatic estimation of road surface type for variable damping control

    NASA Astrophysics Data System (ADS)

    Dąbrowski, K.; Ślaski, G.

    2016-09-01

    In this paper authors presented an idea of road surface estimation (recognition) on a base of suspension dynamic response signals statistical analysis. For preliminary analysis cumulated distribution function (CDF) was used, and some conclusion that various roads have responses values in a different ranges of limits for the same percentage of samples or for the same limits different percentages of samples are located within the range between limit values. That was the base for developed and presented algorithm which was tested using suspension response signals recorded during road test riding over various surfaces. Proposed algorithm can be essential part of adaptive damping control algorithm for a vehicle suspension or adaptive control strategy for suspension damping control.

  4. A computer package for the design and eigenproblem solution of damped linear multidegree of freedom systems

    NASA Technical Reports Server (NTRS)

    Ahmadian, M.; Inman, D. J.

    1982-01-01

    Systems described by the matrix differental equation are considered. An interactive design routine is presented for positive definite mass, damping, and stiffness matrices. Designing is accomplished by adjusting the mass, damping, and stiffness matrices to obtain a desired oscillation behavior. The algorithm also features interactively modifying the physical structure of the system, obtaining the matrix structure and a number of other system properties. In case of a general system, where the M, C, and K matrices lack any special properties, a routine for the eigenproblem solution of the system is developed. The latent roots are obtained by computing the characteristic polynomial of the system and solving for its roots. The above routines are prepared in FORTRAN IV and prove to be usable for the machines with low core memory.

  5. Integrated low power digital gyro control electronics

    NASA Technical Reports Server (NTRS)

    M'Closkey, Robert (Inventor); Grayver, Eugene (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor)

    2005-01-01

    Embodiments of the invention generally encompass a digital, application specific integrated circuit (ASIC) has been designed to perform excitation of a selected mode within a vibratory rate gyroscope, damping, or force-rebalance, of other modes within the sensor, and signal demodulation of the in-phase and quadrature components of the signal containing the angular rate information. The ASIC filters dedicated to each channel may be individually programmed to accommodate different rate sensor designs/technology or variations within the same class of sensors. The ASIC architecture employs a low-power design, making the ASIC, particularly suitable for use in power-sensitive applications.

  6. Mooring line damping estimation for a floating wind turbine.

    PubMed

    Qiao, Dongsheng; Ou, Jinping

    2014-01-01

    The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT). Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design.

  7. Mooring Line Damping Estimation for a Floating Wind Turbine

    PubMed Central

    Qiao, Dongsheng; Ou, Jinping

    2014-01-01

    The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT). Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design. PMID:25243231

  8. A conformal mapping based fractional order approach for sub-optimal tuning of PID controllers with guaranteed dominant pole placement

    NASA Astrophysics Data System (ADS)

    Saha, Suman; Das, Saptarshi; Das, Shantanu; Gupta, Amitava

    2012-09-01

    A novel conformal mapping based fractional order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PIλDμ) controller have been approximated in this paper vis-à-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PIλDμ controller pushes the open loop zeros of the equivalent PID controller towards greater damping regions which gives a trajectory of the controller zeros and dominant closed loop poles. This trajectory is termed as "M-curve". This phenomena is used to design a two-stage tuning algorithm which reduces the existing PID controller's effort in a significant manner compared to that with a single stage LQR based pole placement method at a desired closed loop damping and frequency.

  9. Damper mechanism for nuclear reactor control elements

    DOEpatents

    Taft, William Elwood

    1976-01-01

    A damper mechanism which provides a nuclear reactor control element decelerating function at the end of the scram stroke. The total damping function is produced by the combination of two assemblies, which operate in sequence. First, a tapered dashram assembly decelerates the control element to a lower velocity, after which a spring hydraulic damper assembly takes over to complete the final damping.

  10. Effect of Seed Quality and Combination Fungicide-Trichoderma spp. Seed Treatments on Pre- and Postemergence Damping-Off in Cotton.

    PubMed

    Howell, Charles R

    2007-01-01

    ABSTRACT Good quality seeds of cotton cultivars often escaped pre-emergence damping-off incited by Pythium spp. and Rhizopus oryzae, and they were resistant to postemergence damping-off incited by Rhizoctonia solani. Poor quality seeds, however, were highly susceptible to both phases of seedling disease and required seed treatment in order to survive. Pre-emergence damping-off incited by Pythium spp. and Rhizopus oryzae could be controlled by seed treatment with biocontrol preparations of a number of Trichoderma spp., but these treatments were much less effective in controlling postemergence disease incited by Rhizoctonia solani. Postemergence seedling disease can be controlled by fungicides, but they were much less effective in controlling the pre-emergence phase of the disease. Combination seed treatments of poor quality cotton seeds with fungicides and Trichoderma spp. preparations, followed by planting in pathogen-infested soil, indicated that this technique will control both phases of seedling disease. Seed treatment with either the fungicides or the biocontrol agents alone did not achieve this goal. The optimum combination treatment for disease control was that of chloroneb plus Trichoderma spp., followed by chloroneb plus metalaxyl (Deltacoat AD) plus T. virens strain G-6.

  11. Study of the damping characteristics of general aviation aircraft panels and development of computer programs to calculate the effectiveness of interior noise control treatment, part 1

    NASA Technical Reports Server (NTRS)

    Navaneethan, R.; Hunt, J.; Quayle, B.

    1982-01-01

    Tests were carried out on 20 inch x 20 inch panels at different test conditions using free-free panels, clamped panels, and panels as installed in the KU-FRL acoustic test facility. Tests with free-free panels verified the basic equipment set-up and test procedure. They also provided a basis for comparison. The results indicate that the effect of installed panels is to increase the damping ratio at the same frequency. However, a direct comparison is not possible, as the fundamental frequency of a free-free panel differs from the resonance frequency of the panel when installed. The damping values of panels installed in the test facility are closer to the damping values obtained with fixed-fixed panels. Effects of damping tape, stiffeners, and bonded and riveted edged conditions were also investigated. Progress in the development of a simple interior noise level control program is reported.

  12. Characterization of hydrofoil damping due to fluid-structure interaction using piezocomposite actuators

    NASA Astrophysics Data System (ADS)

    Seeley, Charles; Coutu, André; Monette, Christine; Nennemann, Bernd; Marmont, Hugues

    2012-03-01

    Hydroelectric power generation is an important non-fossil fuel power source to help meet the world’s energy needs. Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Although the effects of fluid mass loading are well documented, fluid damping is also a critical quantity that may limit vibration amplitudes during service, and therefore help to avoid premature failure of the turbines. However, fluid damping has received less attention in the literature. This paper presents an experimental investigation of damping due to FSI. Three hydrofoils were designed and built to investigate damping due to FSI. Piezoelectric actuation using macrofiber composites (MFCs) provided excitation to the hydrofoil test structure, independent of the flow conditions, to overcome the noisy environment. Natural frequency and damping estimates were experimentally obtained from sine sweep frequency response functions measured with a laser vibrometer through a window in the test section. The results indicate that, although the natural frequencies were not substantially affected by the flow, the damping ratios were observed to increase in a linear manner with respect to flow velocity.

  13. Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications

    NASA Astrophysics Data System (ADS)

    Shunmugasamy, Vasanth Chakravarthy; Mansoor, Bilal; Gupta, Nikhil

    2016-01-01

    The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.

  14. Tower Based Load Measurements for Individual Pitch Control and Tower Damping of Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kumar, A. A.; Hugues-Salas, O.; Savini, B.; Keogh, W.

    2016-09-01

    The cost of IPC has hindered adoption outside of Europe despite significant loading advantages for large wind turbines. In this work we presented a method for applying individual pitch control (including for higher-harmonics) using tower-top strain gauge feedback instead of blade-root strain gauge feedback. Tower-top strain gauges offer hardware savings of approximately 50% in addition to the possibility of easier access for maintenance and installation and requiring a less specialised skill-set than that required for applying strain gauges to composite blade roots. A further advantage is the possibility of using the same tower-top sensor array for tower damping control. This method is made possible by including a second order IPC loop in addition to the tower damping loop to reduce the typically dominating 3P content in tower-top load measurements. High-fidelity Bladed simulations show that the resulting turbine spectral characteristics from tower-top feedback IPC and from the combination of tower-top IPC and damping loops largely match those of blade-root feedback IPC and nacelle- velocity feedback damping. Lifetime weighted fatigue analysis shows that the methods allows load reductions within 2.5% of traditional methods.

  15. Measurement of the Static Stability and Control and the Damping Derivatives of a 0.13-Scale Model of the Convair XFY-1 Airplane, TED No. NACA DE 368

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph L.

    1954-01-01

    An investigation has been conducted to determine the static stability and control and damping in roll and yaw of a 0.13-scale model of the Convair XFY-1 airplane with propellers off from 0 deg to 90 deg angle of attack. The tests showed that a slightly unstable pitch-up tendency occurred simultaneously with a break in the normal-force curve in the angle-of-attack range from about 27 deg to 36 deg. The top vertical tail contributed positive values of static directional stability and effective dihedral up to an angle of attack of about 35 deg. The bottom tail contributed positive values of static directional stability but negative values of effective dihedral throughout the angle-of-attack range. Effectiveness of the control surfaces decreased to very low values at the high angles of attack, The model had positive damping in yaw and damping in roll about the body axes over the angle-of-attack range but the damping in yaw decreased to about zero at 90 deg angle of attack.

  16. Sensitivity of Space Station alpha joint robust controller to structural modal parameter variations

    NASA Technical Reports Server (NTRS)

    Kumar, Renjith R.; Cooper, Paul A.; Lim, Tae W.

    1991-01-01

    The photovoltaic array sun tracking control system of Space Station Freedom is described. A synthesis procedure for determining optimized values of the design variables of the control system is developed using a constrained optimization technique. The synthesis is performed to provide a given level of stability margin, to achieve the most responsive tracking performance, and to meet other design requirements. Performance of the baseline design, which is synthesized using predicted structural characteristics, is discussed and the sensitivity of the stability margin is examined for variations of the frequencies, mode shapes and damping ratios of dominant structural modes. The design provides enough robustness to tolerate a sizeable error in the predicted modal parameters. A study was made of the sensitivity of performance indicators as the modal parameters of the dominant modes vary. The design variables are resynthesized for varying modal parameters in order to achieve the most responsive tracking performance while satisfying the design requirements. This procedure of reoptimization design parameters would be useful in improving the control system performance if accurate model data are provided.

  17. Basic research on design analysis methods for rotorcraft vibrations

    NASA Technical Reports Server (NTRS)

    Hanagud, S.

    1991-01-01

    The objective of the present work was to develop a method for identifying physically plausible finite element system models of airframe structures from test data. The assumed models were based on linear elastic behavior with general (nonproportional) damping. Physical plausibility of the identified system matrices was insured by restricting the identification process to designated physical parameters only and not simply to the elements of the system matrices themselves. For example, in a large finite element model the identified parameters might be restricted to the moduli for each of the different materials used in the structure. In the case of damping, a restricted set of damping values might be assigned to finite elements based on the material type and on the fabrication processes used. In this case, different damping values might be associated with riveted, bolted and bonded elements. The method itself is developed first, and several approaches are outlined for computing the identified parameter values. The method is applied first to a simple structure for which the 'measured' response is actually synthesized from an assumed model. Both stiffness and damping parameter values are accurately identified. The true test, however, is the application to a full-scale airframe structure. In this case, a NASTRAN model and actual measured modal parameters formed the basis for the identification of a restricted set of physically plausible stiffness and damping parameters.

  18. A coupled piezoelectric-electromagnetic energy harvesting technique for achieving increased power output through damping matching

    NASA Astrophysics Data System (ADS)

    Challa, Vinod R.; Prasad, M. G.; Fisher, Frank T.

    2009-09-01

    Vibration energy harvesting is being pursued as a means to power wireless sensors and ultra-low power autonomous devices. From a design standpoint, matching the electrical damping induced by the energy harvesting mechanism to the mechanical damping in the system is necessary for maximum efficiency. In this work two independent energy harvesting techniques are coupled to provide higher electrical damping within the system. Here the coupled energy harvesting device consists of a primary piezoelectric energy harvesting device to which an electromagnetic component is added to better match the total electrical damping to the mechanical damping in the system. The first coupled device has a resonance frequency of 21.6 Hz and generates a peak power output of ~332 µW, compared to 257 and 244 µW obtained from the optimized, stand-alone piezoelectric and electromagnetic energy harvesting devices, respectively, resulting in a 30% increase in power output. A theoretical model has been developed which closely agrees with the experimental results. A second coupled device, which utilizes the d33 piezoelectric mode, shows a 65% increase in power output in comparison to the corresponding stand-alone, single harvesting mode devices. This work illustrates the design considerations and limitations that one must consider to enhance device performance through the coupling of multiple harvesting mechanisms within a single energy harvesting device.

  19. A biomechanical model for actively controlled snow ski bindings.

    PubMed

    Hull, M L; Ramming, J E

    1980-11-01

    Active control of snow ski bindings is a new design concept which potentially offers improved protection from lower extremity injury. Implementation of this concept entails measuring physical variables and calculating loading and/or deformation in injury prone musculoskeletal components. The subject of this paper is definition of a biomechanical model for calculating tibia torsion based on measurements of torsion loading between the boot and ski. Previous control schemes have used leg displacement only to indicate tibia torsion. The contributions of both inertial and velocity-dependent torques to tibia loading are explored and it is shown that both these moments must be included in addition to displacement-dependent moments. A new analog controller design which includes inertia, damping, and stiffness terms in the tibia load calculation is also presented.

  20. An integrated damping and strengthening strategy for performance-based seismic design and retrofit for highway bridges.

    DOT National Transportation Integrated Search

    2009-05-01

    In this study, a damping-enhanced strengthening (DES) strategy was introduced to retrofit bridge structures for multiple : performance objectives. The main objectives of this study are (1) to numerically demonstrate the effectiveness of the anchoring...

  1. Analysis and design of segment control system in segmented primary mirror

    NASA Astrophysics Data System (ADS)

    Yu, Wenhao; Li, Bin; Chen, Mo; Xian, Hao

    2017-10-01

    Segmented primary mirror will be adopted widely in giant telescopes in future, such as TMT, E-ELT and GMT. High-performance control technology of the segmented primary mirror is one of the difficult technologies for telescopes using segmented primary mirror. The control of each segment is the basis of control system in segmented mirror. Correcting the tilt and tip of single segment is the main work of this paper which is divided into two parts. Firstly, harmonic response done in finite element model of single segment matches the Bode diagram of a two-order system whose natural frequency is 45 hertz and damping ratio is 0.005. Secondly, a control system model is established, and speed feedback is introduced in control loop to suppress resonance point gain and increase the open-loop bandwidth, up to 30Hz or even higher. Corresponding controller is designed based on the control system model described above.

  2. Integrated Power and Attitude Control for a Spacecraft with Flywheels and Control Moment Gyroscopes

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Bose, David M.

    2003-01-01

    A law is designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as all integrated set of actuators for attitude control. General. nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as it means of compensating for damping exerted by rotor bearings. Two flywheel 'steering laws' are developed such that torque commanded by all attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude and illustrate the benefits of kinetic energy error feedback.

  3. "Smart" Electromechanical Shock Absorber

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean C.; Carroll, Monty B.

    1989-01-01

    Shock-absorbing apparatus includes electromechanical actuator and digital feedback control circuitry rather than springs and hydraulic damping as in conventional shock absorbers. Device not subject to leakage and requires little or no maintenance. Attenuator parameters adjusted in response to sensory feedback and predictive algorithms to obtain desired damping characteristic. Device programmed to decelerate slowly approaching vehicle or other large object according to prescribed damping characteristic.

  4. Damping Rates of Energetic Particle Modes and Stability With Changing Equilibrium Conditions in the MST Reversed-Field Pinch

    NASA Astrophysics Data System (ADS)

    Sears, S. H.; Almagri, A. F.; Anderson, J. K.; Bonofiglo, P. J.; Capecchi, W.; Kim, J.

    2016-10-01

    The damping of Alfvenic waves is an important process, with implications varying from anomalous ion heating in laboratory and astrophysical plasmas to the stability of fusion alpha-driven modes in a burning plasma. With a 1 MW NBI on the MST, a controllable set of energetic particle modes (EPMs) and Alfvenic eigenmodes can be excited. We investigate the damping of these modes as a function of both magnetic and flow shear. Typical EPM damping rates are -104 s-1 in standard RFP discharges. Magnetic shear in the region of large energetic ion density is -2 cm-1 and can be increased up to -2.5 cm-1 by varying the boundary field. Continuum mode damping rates can be reduced up to 50%. New experiments use a bias probe to control the rotation profile. Accelerating the edge plasma relative to the rapidly rotating NBI-driven core decreases the flow shear, while decelerating the edge plasma increases the flow shear in the region of strong energetic ion population. Mode damping rates measured as a function of the local flow shear are compared to ideal MHD predictions. Work supported by US DOE.

  5. Flexible stator control on the Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    Kopf, E. H.; Brown, T. K.; Marsh, E. L.

    1979-01-01

    Galileo is a dual-spin spacecraft designed to deliver a probe to Jupiter and then orbit the planet. The stator, or despun section, contains four flexible modes below 10 Hz and the despun actuator is separated from the inertial sensors by this flexibility. Control loop separation by bandwidth proved unacceptable due to performance requirements. To obtain the desired performance, a control scheme was devised which consists of three parts. First, flexibility damping and control notch filtering are accomplished by phase locked loop techniques. Second, slewing maneuvers are produced by torque profiles which are nonexcitatory to the structure. Finally, a low bandwidth perturbation controller is supplied to remove spacecraft disturbances.

  6. Viscous damping and spring force calculation of regularly perforated MEMS microstructures in the Stokes' approximation

    PubMed Central

    Homentcovschi, Dorel; Murray, Bruce T.; Miles, Ronald N.

    2013-01-01

    There are a number of applications for microstructure devices consisting of a regular pattern of perforations, and many of these utilize fluid damping. For the analysis of viscous damping and for calculating the spring force in some cases, it is possible to take advantage of the regular hole pattern by assuming periodicity. Here a model is developed to determine these quantities based on the solution of the Stokes' equations for the air flow. Viscous damping is directly related to thermal-mechanical noise. As a result, the design of perforated microstructures with minimal viscous damping is of real practical importance. A method is developed to calculate the damping coefficient in microstructures with periodic perforations. The result can be used to minimize squeeze film damping. Since micromachined devices have finite dimensions, the periodic model for the perforated microstructure has to be associated with the calculation of some frame (edge) corrections. Analysis of the edge corrections has also been performed. Results from analytical formulas and numerical simulations match very well with published measured data. PMID:24058267

  7. Viscous damping and spring force calculation of regularly perforated MEMS microstructures in the Stokes' approximation.

    PubMed

    Homentcovschi, Dorel; Murray, Bruce T; Miles, Ronald N

    2013-10-15

    There are a number of applications for microstructure devices consisting of a regular pattern of perforations, and many of these utilize fluid damping. For the analysis of viscous damping and for calculating the spring force in some cases, it is possible to take advantage of the regular hole pattern by assuming periodicity. Here a model is developed to determine these quantities based on the solution of the Stokes' equations for the air flow. Viscous damping is directly related to thermal-mechanical noise. As a result, the design of perforated microstructures with minimal viscous damping is of real practical importance. A method is developed to calculate the damping coefficient in microstructures with periodic perforations. The result can be used to minimize squeeze film damping. Since micromachined devices have finite dimensions, the periodic model for the perforated microstructure has to be associated with the calculation of some frame (edge) corrections. Analysis of the edge corrections has also been performed. Results from analytical formulas and numerical simulations match very well with published measured data.

  8. Dynamic Control of Facts Devices to Enable Large Scale Penetration of Renewable Energy Resources

    NASA Astrophysics Data System (ADS)

    Chavan, Govind Sahadeo

    This thesis focuses on some of the problems caused by large scale penetration of Renewable Energy Resources within EHV transmission networks, and investigates some approaches in resolving these problems. In chapter 4, a reduced-order model of the 500 kV WECC transmission system is developed by estimating its key parameters from phasor measurement unit (PMU) data. The model was then implemented in RTDS and was investigated for its accuracy with respect to the PMU data. Finally it was tested for observing the effects of various contingencies like transmission line loss, generation loss and large scale penetration of wind farms on EHV transmission systems. Chapter 5 introduces Static Series Synchronous Compensators (SSSC) which are seriesconnected converters that can control real power flow along a transmission line. A new application of SSSCs in mitigating Ferranti effect on unloaded transmission lines was demonstrated on PSCAD. A new control scheme for SSSCs based on the Cascaded H-bridge (CHB) converter configuration was proposed and was demonstrated using PSCAD and RTDS. A new centralized controller was developed for the distributed SSSCs based on some of the concepts used in the CHB-based SSSC. The controller's efficacy was demonstrated using RTDS. Finally chapter 6 introduces the problem of power oscillations induced by renewable sources in a transmission network. A power oscillation damping (POD) controller is designed using distributed SSSCs in NYPA's 345 kV three-bus AC system and its efficacy is demonstrated in PSCAD. A similar POD controller is then designed for the CHB-based SSSC in the IEEE 14 bus system in PSCAD. Both controllers were noted to have significantly damped power oscillations in the transmission networks.

  9. Damping and support in high-temperature superconducting levitation systems

    DOEpatents

    Hull, John R [Sammamish, WA; McIver, Carl R [Everett, WA; Mittleider, John A [Kent, WA

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  10. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie

    A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when themore » orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.« less

  11. Three different methods for the derivation of control laws for multi-degree-of-freedom systems containing electrorheological dampers

    NASA Astrophysics Data System (ADS)

    Moosheimer, Johannes; Waller, Heinz

    1999-06-01

    The minimization of unwanted vibrations is an important technical challenge. Purely passive systems often do not achieve the postulated results. Purely active systems are costly because of the required additional power and the necessary maintenance. Currently it seems that semi-active methods of vibration reduction are as competitive as any other methods. Semi-active damping control can be realized with electro- or magnetorheological fluids. These change their characteristic in the presence of an electric or magnetic field or by bypasses combined with magnetic valves. The methods known in linear control theory cannot be used for the controller design because no explicit external forces can be generated whenever they are needed. Forces can only be generated when relative velocities between the endpoints of the damper exist. It is important to investigate control methods which will reduce vibration with controlled damping. In this paper three different methods for establishing control laws are presented. The first is based on the consideration of power flow in the system. It is discussed in detail. The second method uses Bellmans dynamic optimization. The last transforms a multi degree of freedom system by modal analysis into uncoupled single degree of freedom systems. The control methods developed by these three methods all lead to the same vibration reduction strategy. The control laws are verified with simulation results.

  12. Control of damping-off of organic and conventional cucumber with extracts from a plant-associated bacterium rivals a seed treatment pesticide

    USDA-ARS?s Scientific Manuscript database

    Environmentally friendly control measures are needed for soilborne diseases of crops grown in organic and conventional production systems. We tested ethanol extracts from cultures of Serratia marcescens N4-5 and N2-4, Burkholderia cepacia BC-1 and BC-2, and B. ambifaria BC-F for control of damping-o...

  13. Vibration suppression with approximate finite dimensional compensators for distributed systems: Computational methods and experimental results

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, Ralph C.; Wang, Yun

    1994-01-01

    Based on a distributed parameter model for vibrations, an approximate finite dimensional dynamic compensator is designed to suppress vibrations (multiple modes with a broad band of frequencies) of a circular plate with Kelvin-Voigt damping and clamped boundary conditions. The control is realized via piezoceramic patches bonded to the plate and is calculated from information available from several pointwise observed state variables. Examples from computational studies as well as use in laboratory experiments are presented to demonstrate the effectiveness of this design.

  14. An innovative magnetorheological damper for automotive suspension: from design to experimental characterization

    NASA Astrophysics Data System (ADS)

    Sassi, Sadok; Cherif, Khaled; Mezghani, Lotfi; Thomas, Marc; Kotrane, Asma

    2005-08-01

    The development of a powerful new magnetorheological fluid (MRF), together with recent progress in the understanding of the behavior of such fluids, has convinced researchers and engineers that MRF dampers are among the most promising devices for semi-active automotive suspension vibration control, because of their large force capacity and their inherent ability to provide a simple, fast and robust interface between electronic controls and mechanical components. In this paper, theoretical and experimental studies are performed for the design, development and testing of a completely new MRF damper model that can be used for the semi-active control of automotive suspensions. The MR damper technology presented in this paper is based on a completely new approach where, in contrast to in the conventional solutions where the coil axis is usually superposed on the damper axis and where the inner cylindrical housing is part of the magnetic circuit, the coils are wound in a direction perpendicular to the damper axis. The paper investigates approaches to optimizing the dynamic response and provides experimental verification. Both experimental and theoretical results have shown that, if this particular model is filled with an 'MRF 336AG' MR fluid, it can provide large controllable damping forces that require only a small amount of energy. For a magnetizing system with four coils, the damping coefficient could be increased by up to three times for an excitation current of only 2 A. Such current could be reduced to less than 1 A if the magnetizing system used eight small cores. In this case, the magnetic field will be more powerful and more regularly distributed. In the presence of harmonic excitation, such a design will allow the optimum compromise between comfort and stability to be reached over different intervals of the excitation frequencies.

  15. A semi-active damper in vertical secondary suspension for the comfort increase in passenger trains

    NASA Astrophysics Data System (ADS)

    Ripamonti, Francesco; Chiarabaglio, Andrea; Resta, Ferruccio

    2017-04-01

    Passive oil dampers for railway vehicles present a damping and stiffness characteristics, which depend from excitation history. This behaviour is not acceptable for many high-performance applications. A mechatronic approach, able to continuously adjust the damping coefficient according to the operation requirements, represents a very attractive and smart solution. In this paper, a control strategy for semi-active dampers of train vertical secondary suspensions is presented. The controller aims at assuring the maximum available damping at low frequencies, while at high frequencies minimizes the force transmitted to the carbody that excites the bending modes.

  16. The design and optimization for light-algae bioreactor controller based on Artificial Neural Network-Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Hu, Dawei; Liu, Hong; Yang, Chenliang; Hu, Enzhu

    As a subsystem of the bioregenerative life support system (BLSS), light-algae bioreactor (LABR) has properties of high reaction rate, efficiently synthesizing microalgal biomass, absorbing CO2 and releasing O2, so it is significant for BLSS to provide food and maintain gas balance. In order to manipulate the LABR properly, it has been designed as a closed-loop control system, and technology of Artificial Neural Network-Model Predictive Control (ANN-MPC) is applied to design the controller for LABR in which green microalgae, Spirulina platensis is cultivated continuously. The conclusion is drawn by computer simulation that ANN-MPC controller can intelligently learn the complicated dynamic performances of LABR, and automatically, robustly and self-adaptively regulate the light intensity illuminating on the LABR, hence make the growth of microalgae in the LABR be changed in line with the references, meanwhile provide appropriate damping to improve markedly the transient response performance of LABR.

  17. A tether tension control law for tethered subsatellites deployed along local vertical. [space shuttle orbiters - satellite control/towed bodies

    NASA Technical Reports Server (NTRS)

    Rupp, C. C.

    1975-01-01

    A tethered subsatellite deployed along the local vertical is in stable equilibrium. This applies equally to subsatellites deployed in the direction towards the earth from the main spacecraft or away from the earth. Momentary perturbations from this stable equilibrium will result in a swinging motion, which decays very slowly if passive means are relied upon to provide damping. A control law is described which actively damps the swinging motion by employing a reel, or other mechanism, to apply appropriate tension as a function of tetherline length, rate of change of length, and desired length. The same control law is shown to be useful for deployment and retrieval of tethered subsatellites in addition to damping to steady state.

  18. Active Damping Using Distributed Anisotropic Actuators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.

    2010-01-01

    A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.

  19. The Langley Research Center CSI phase-0 evolutionary model testbed-design and experimental results

    NASA Technical Reports Server (NTRS)

    Belvin, W. K.; Horta, Lucas G.; Elliott, K. B.

    1991-01-01

    A testbed for the development of Controls Structures Interaction (CSI) technology is described. The design philosophy, capabilities, and early experimental results are presented to introduce some of the ongoing CSI research at NASA-Langley. The testbed, referred to as the Phase 0 version of the CSI Evolutionary model (CEM), is the first stage of model complexity designed to show the benefits of CSI technology and to identify weaknesses in current capabilities. Early closed loop test results have shown non-model based controllers can provide an order of magnitude increase in damping in the first few flexible vibration modes. Model based controllers for higher performance will need to be robust to model uncertainty as verified by System ID tests. Data are presented that show finite element model predictions of frequency differ from those obtained from tests. Plans are also presented for evolution of the CEM to study integrated controller and structure design as well as multiple payload dynamics.

  20. Cu-Al-Ni-SMA-Based High-Damping Composites

    NASA Astrophysics Data System (ADS)

    López, Gabriel A.; Barrado, Mariano; San Juan, Jose; Nó, María Luisa

    2009-08-01

    Recently, absorption of vibration energy by mechanical damping has attracted much attention in several fields such as vibration reduction in aircraft and automotive industries, nanoscale vibration isolations in high-precision electronics, building protection in civil engineering, etc. Typically, the most used high-damping materials are based on polymers due to their viscoelastic behavior. However, polymeric materials usually show a low elastic modulus and are not stable at relatively low temperatures (≈323 K). Therefore, alternative materials for damping applications are needed. In particular, shape memory alloys (SMAs), which intrinsically present high-damping capacity thanks to the dissipative hysteretic movement of interfaces under external stresses, are very good candidates for high-damping applications. A completely new approach was applied to produce high-damping composites with relatively high stiffness. Cu-Al-Ni shape memory alloy powders were embedded with metallic matrices of pure In, a In-10wt.%Sn alloy and In-Sn eutectic alloy. The production methodology is described. The composite microstructures and damping properties were characterized. A good particle distribution of the Cu-Al-Ni particles in the matrices was observed. The composites exhibit very high damping capacities in relatively wide temperature ranges. The methodology introduced provides versatility to control the temperature of maximum damping by adjusting the shape memory alloy composition.

  1. Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Montes-Solís, María; Arregui, Iñigo

    2017-09-01

    We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternative mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.

  2. Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montes-Solís, María; Arregui, Iñigo, E-mail: mmsolis@iac.es

    We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternativemore » mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.« less

  3. Validation of Measured Damping Trends for Flight-Like Vehicle Panel/Equipment including a Range of Cable Harness Assemblies

    NASA Technical Reports Server (NTRS)

    Smith, Andrew M.; Davis, R. Benjamin; LaVerde, Bruce T.; Fulcher, Clay W.; Jones, Douglas C.; Waldon, James M.; Craigmyle, Benjamin B.

    2012-01-01

    This validation study examines the effect on vibroacoustic response resulting from the installation of cable bundles on a curved orthogrid panel. Of interest is the level of damping provided by the installation of the cable bundles and whether this damping could be potentially leveraged in launch vehicle design. The results of this test are compared with baseline acoustic response tests without cables. Damping estimates from the measured response data are made using a new software tool that leverages a finite element model of the panel in conjunction with advanced optimization techniques. While the full test series is not yet complete, the first configuration of cable bundles that was assessed effectively increased the viscous critical damping fraction of the system by as much as 0.02 in certain frequency ranges.

  4. Offline software for the DAMPE experiment

    NASA Astrophysics Data System (ADS)

    Wang, Chi; Liu, Dong; Wei, Yifeng; Zhang, Zhiyong; Zhang, Yunlong; Wang, Xiaolian; Xu, Zizong; Huang, Guangshun; Tykhonov, Andrii; Wu, Xin; Zang, Jingjing; Liu, Yang; Jiang, Wei; Wen, Sicheng; Wu, Jian; Chang, Jin

    2017-10-01

    A software system has been developed for the DArk Matter Particle Explorer (DAMPE) mission, a satellite-based experiment. The DAMPE software is mainly written in C++ and steered using a Python script. This article presents an overview of the DAMPE offline software, including the major architecture design and specific implementation for simulation, calibration and reconstruction. The whole system has been successfully applied to DAMPE data analysis. Some results obtained using the system, from simulation and beam test experiments, are presented. Supported by Chinese 973 Program (2010CB833002), the Strategic Priority Research Program on Space Science of the Chinese Academy of Science (CAS) (XDA04040202-4), the Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China (NSFC) and CAS (U1531126) and 100 Talents Program of the Chinese Academy of Science

  5. Theoretical and experimental investigation of architected core materials incorporating negative stiffness elements

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Ming; Keefe, Andrew; Carter, William B.; Henry, Christopher P.; McKnight, Geoff P.

    2014-04-01

    Structural assemblies incorporating negative stiffness elements have been shown to provide both tunable damping properties and simultaneous high stiffness and damping over prescribed displacement regions. In this paper we explore the design space for negative stiffness based assemblies using analytical modeling combined with finite element analysis. A simplified spring model demonstrates the effects of element stiffness, geometry, and preloads on the damping and stiffness performance. Simplified analytical models were validated for realistic structural implementations through finite element analysis. A series of complementary experiments was conducted to compare with modeling and determine the effects of each element on the system response. The measured damping performance follows the theoretical predictions obtained by analytical modeling. We applied these concepts to a novel sandwich core structure that exhibited combined stiffness and damping properties 8 times greater than existing foam core technologies.

  6. Fore-and-aft stiffness and damping characteristics of 30 x 11.5-14.5, Type VIII, bias-ply and radial-belted aircraft tires

    NASA Technical Reports Server (NTRS)

    Lopez, Mercedes C.; Davis, Pamela A.; Yeaton, Robert B.; Vogler, William A.

    1988-01-01

    Measurements of footprint geometrical properties and fore and aft stiffness and damping characteristics were obtained on 30 x 11.5-14.5 bias-ply and radial-belted aircraft tires. Significant differences in stiffness and damping characteristics were found between the two design types. The results show that footprint aspect ratio effects may interfere with the improved hydroplaning potential associated with the radial-belted tire operating at higher inflation pressures.

  7. Damping in Space Constructions

    NASA Astrophysics Data System (ADS)

    de Vreugd, Jan; de Lange, Dorus; Winters, Jasper; Human, Jet; Kamphues, Fred; Tabak, Erik

    2014-06-01

    Monolithic structures are often used in optomechanical designs for space applications to achieve high dimensional stability and to prevent possible backlash and friction phenomena. The capacity of monolithic structures to dissipate mechanical energy is however limited due to the high Q-factor, which might result in high stresses during dynamic launch loads like random vibration, sine sweeps and shock. To reduce the Q-factor in space applications, the effect of constrained layer damping (CLD) is investigated in this work. To predict the damping increase, the CLD effect is implemented locally at the supporting struts in an existing FE model of an optical instrument. Numerical simulations show that the effect of local damping treatment in this instrument could reduce the vibrational stresses with 30-50%. Validation experiments on a simple structure showed good agreement between measured and predicted damping properties. This paper presents material characterization, material modeling, numerical implementation of damping models in finite element code, numerical results on space hardware and the results of validation experiments.

  8. Magnetic Oculomotor Prosthetics for Acquired Nystagmus.

    PubMed

    Nachev, Parashkev; Rose, Geoff E; Verity, David H; Manohar, Sanjay G; MacKenzie, Kelly; Adams, Gill; Theodorou, Maria; Pankhurst, Quentin A; Kennard, Christopher

    2017-10-01

    Acquired nystagmus, a highly symptomatic consequence of damage to the substrates of oculomotor control, often is resistant to pharmacotherapy. Although heterogeneous in its neural cause, its expression is unified at the effector-the eye muscles themselves-where physical damping of the oscillation offers an alternative approach. Because direct surgical fixation would immobilize the globe, action at a distance is required to damp the oscillation at the point of fixation, allowing unhindered gaze shifts at other times. Implementing this idea magnetically, herein we describe the successful implantation of a novel magnetic oculomotor prosthesis in a patient. Case report of a pilot, experimental intervention. A 49-year-old man with longstanding, medication-resistant, upbeat nystagmus resulting from a paraneoplastic syndrome caused by stage 2A, grade I, nodular sclerosing Hodgkin's lymphoma. We designed a 2-part, titanium-encased, rare-earth magnet oculomotor prosthesis, powered to damp nystagmus without interfering with the larger forces involved in saccades. Its damping effects were confirmed when applied externally. We proceeded to implant the device in the patient, comparing visual functions and high-resolution oculography before and after implantation and monitoring the patient for more than 4 years after surgery. We recorded Snellen visual acuity before and after intervention, as well as the amplitude, drift velocity, frequency, and intensity of the nystagmus in each eye. The patient reported a clinically significant improvement of 1 line of Snellen acuity (from 6/9 bilaterally to 6/6 on the left and 6/5-2 on the right), reflecting an objectively measured reduction in the amplitude, drift velocity, frequency, and intensity of the nystagmus. These improvements were maintained throughout a follow-up of 4 years and enabled him to return to paid employment. This work opens a new field of implantable therapeutic devices-oculomotor prosthetics-designed to modify eye movements dynamically by physical means in cases where a purely neural approach is ineffective. Applied to acquired nystagmus refractory to all other interventions, it is shown successfully to damp pathologic eye oscillations while allowing normal saccadic shifts of gaze. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  9. Design and Implementation of a High-Power Resonant DC-DC Converter Module for a Reduced-Scale Prototype Integrated Power System

    DTIC Science & Technology

    2001-09-01

    damping RC network . The filter was designed to have a pole pair (~450 Hz) above the 360 Hz ripple of the six-pulse rectified DC supply but well below the...Circuit With Input Filtering Included. The damping network was designed using the guidance provided in reference [24] and its function is to lower the...converter as a linear network and estimated the spectrum envelope by multiplying the Fourier transform of the current waveform by the transfer

  10. Design and Test of an Attitude Determination and Control System for a 6U CubeSat using AFIT’s CubeSat Testbed

    DTIC Science & Technology

    2015-03-01

    θ2 is 90 o or 270o a singularity occurs. This is the major drawback to implementing Euler angles θ into satellite hardware. To achieve a robust control...thought of as a damping term that reduces overshoot caused by large gain values of Kp and Ki. Derivative control, like the other gains, has drawbacks ...With statically neutral behavior, there is a pendulum motion about the x- and y-axes due to a difference in height of the center of mass and center of

  11. Estimation of the radial force using a disturbance force observer for a magnetically levitated centrifugal blood pump.

    PubMed

    Pai, C N; Shinshi, T; Shimokohbe, A

    2010-01-01

    Evaluation of the hydraulic forces in a magnetically levitated (maglev) centrifugal blood pump is important from the point of view of the magnetic bearing design. Direct measurement is difficult due to the absence of a rotor shaft, and computational fluid dynamic analysis demands considerable computational resource and time. To solve this problem, disturbance force observers were developed, using the radial controlled magnetic bearing of a centrifugal blood pump, to estimate the radial forces on the maglev impeller. In order to design the disturbance observer, the radial dynamic characteristics of a maglev impeller were evaluated under different working conditions. It was observed that the working fluid affects the additional mass and damping, while the rotational speed affects the damping and stiffness of the maglev system. Based on these results, disturbance force observers were designed and implemented. The designed disturbance force observers present a bandwidth of 45 Hz. In non-pulsatile conditions, the magnitude of the estimated radial thrust increases in proportion to the flowrate, and the rotational speed has little effect on the force direction. At 5 l/min against 100 mmHg, the estimated radial thrust is 0.95 N. In pulsatile conditions, this method was capable of estimating the pulsatile radial thrust with good response.

  12. Modeling, Analysis and Mitigation of Sub-Synchronous Interactions between Full- and Partial-Scale Voltage-Source Converters and Power Networks

    NASA Astrophysics Data System (ADS)

    Alawasa, Khaled Mohammad

    Voltage-source converters (VSCs) have gained widespread acceptance in modern power systems. The stability and dynamics of power systems involving these devices have recently become salient issues. In the small-signal sense, the dynamics of VSC-based systems is dictated by its incremental output impedance, which is formed by a combination of 'passive' circuit components and 'active' control elements. Control elements such as control parameters, control loops, and control topologies play a significant role in shaping the impedance profile. Depending on the control schemes and strategies used, VSC-based systems can exhibit different incremental impedance dynamics. As the control elements and dynamics are involved in the impedance structure, the frequency-dependent output impedance might have a negative real-part (i.e., a negative resistance). In the grid-connected mode, the negative resistance degrades the system damping and negatively impacts the stability. In high-voltage networks where high-power VSC-based systems are usually employed and where sub-synchronous dynamics usually exist, integrating large VSC-based systems might reduce the overall damping and results in unstable dynamics. The objectives of this thesis are to (1) investigate and analyze the output impedance properties under different control strategies and control functions, (2) identify and characterize the key contributors to the impedance and sub-synchronous damping profiles, and (3) propose mitigation techniques to minimize and eliminate the negative impact associated with integrating VSC-based systems into power systems. Different VSC configurations are considered in this thesis; in particular, the full-scale and partial-scale topologies (doubly fed-induction generators) are addressed. Additionally, the impedance and system damping profiles are studied under two different control strategies: the standard vector control strategy and the recently-developed power synchronization control strategy. Furthermore, this thesis proposes a simple and robust technique for damping the sub-synchronous resonance in a power system.

  13. Design of controlled elastic and inelastic structures

    NASA Astrophysics Data System (ADS)

    Reinhorn, A. M.; Lavan, O.; Cimellaro, G. P.

    2009-12-01

    One of the founders of structural control theory and its application in civil engineering, Professor Emeritus Tsu T. Soong, envisioned the development of the integral design of structures protected by active control devices. Most of his disciples and colleagues continuously attempted to develop procedures to achieve such integral control. In his recent papers published jointly with some of the authors of this paper, Professor Soong developed design procedures for the entire structure using a design — redesign procedure applied to elastic systems. Such a procedure was developed as an extension of other work by his disciples. This paper summarizes some recent techniques that use traditional active control algorithms to derive the most suitable (optimal, stable) control force, which could then be implemented with a combination of active, passive and semi-active devices through a simple match or more sophisticated optimal procedures. Alternative design can address the behavior of structures using Liapunov stability criteria. This paper shows a unified procedure which can be applied to both elastic and inelastic structures. Although the implementation does not always preserve the optimal criteria, it is shown that the solutions are effective and practical for design of supplemental damping, stiffness enhancement or softening, and strengthening or weakening.

  14. High-damping-performance magnetorheological material for passive or active vibration control

    NASA Astrophysics Data System (ADS)

    Liu, Taixiang; Yang, Ke; Yan, Hongwei; Yuan, Xiaodong; Xu, Yangguang

    2016-10-01

    Optical assembly and alignment system plays a crucial role for the construction of high-power or high-energy laser facility, which attempts to ignite fusion reaction and go further to make fusion energy usable. In the optical assembly and alignment system, the vibration control is a key problem needs to be well handled and a material with higher damping performance is much desirable. Recently, a new kind of smart magneto-sensitive polymeric composite material, named magnetorheological plastomer (MRP), was synthesized and reported as a high-performance magnetorheological material and this material has a magneto-enhanced high-damping performance. The MRP behaves usually in an intermediate state between fluid-like magnetorheological fluid and solid-like magnetorheological elastomer. The state of MRP, as well as the damping performance of MRP, can be tuned by adjusting the ratio of hard segments and soft segments, which are ingredients to synthesize the polymeric matrix. In this work, a series of MRP are prepared by dispersing micron-sized, magneto-sensitive carbonyl iron powders with related additives into polyurethane-based, magnetically insensitive matrix. It is found that the damping performance of MRP depends much on magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. Especially, the damping capacity of MRP can be tuned in a large range by adjusting external magnetic field. It is promising that the MRP will have much application in passive and active vibration control, such as vibration reduction in optical assembly and alignment system, vibration isolation or absorption in vehicle suspension system, etc.

  15. Protein profiles of nasal lavage fluid from individuals with work-related upper airway symptoms associated with moldy and damp buildings.

    PubMed

    Wåhlén, K; Fornander, L; Olausson, P; Ydreborg, K; Flodin, U; Graff, P; Lindahl, M; Ghafouri, B

    2016-10-01

    Upper airway irritation is common among individuals working in moldy and damp buildings. The aim of this study was to investigate effects on the protein composition of the nasal lining fluid. The prevalence of symptoms in relation to work environment was examined in 37 individuals working in two damp buildings. Microbial growth was confirmed in one of the buildings. Nasal lavage fluid was collected from 29 of the exposed subjects and 13 controls, not working in a damp building. Protein profiles were investigated with a proteomic approach and evaluated by multivariate statistical models. Subjects from both workplaces reported upper airway and ocular symptoms. Based on protein profiles, symptomatic subjects in the two workplaces were discriminated from each other and separated from healthy controls. The groups differed in proteins involved in inflammation and host defense. Measurements of innate immunity proteins showed a significant increase in protein S100-A8 and decrease in SPLUNC1 in subjects from one workplace, while alpha-1-antitrypsin was elevated in subjects from the other workplace, compared with healthy controls. The results show that protein profiles in nasal lavage fluid can be used to monitor airway mucosal effects in personnel working in damp buildings and indicate that the profile may be separated when the dampness is associated with the presence of molds. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Ultra-low magnetic damping in metallic and half-metallic systems

    NASA Astrophysics Data System (ADS)

    Shaw, Justin

    The phenomenology of magnetic damping is of critical importance to devices which seek to exploit the electronic spin degree of freedom since damping strongly affects the energy required and speed at which a device can operate. However, theory has struggled to quantitatively predict the damping, even in common ferromagnetic materials. This presents a challenge for a broad range of applications in magnonics, spintronics and spin-orbitronics that depend on the ability to precisely control the damping of a material. I will discuss our recent work to precisely measure the intrinsic damping in several metallic and half-metallic material systems and compare experiment with several theoretical models. This investigation uncovered a metallic material composed of Co and Fe that exhibit ultra-low values of damping that approach values found in thin film YIG. Such ultra-low damping is unexpected in a metal since magnon-electron scattering dominates the damping in conductors. However, this system possesses a distinctive feature in the bandstructure that minimizes the density of states at the Fermi energy n(EF). These findings provide the theoretical framework by which such ultra-low damping can be achieved in metallic ferromagnets and may enable a new class of experiments where ultra-low damping can be combined with a charge current. Half-metallic Heusler compounds by definition have a bandgap in one of the spin channels at the Fermi energy. This feature can also lead to exceptionally low values of the damping parameter. Our results show a strong correlation of the damping with the order parameter in Co2MnGe. Finally, I will provide an overview of the recent advances in achieving low damping in thin film Heusler compounds.

  17. Design of a force reflecting hand controller for space telemanipulation studies

    NASA Technical Reports Server (NTRS)

    Paines, J. D. B.

    1987-01-01

    The potential importance of space telemanipulator systems is reviewed, along with past studies of master-slave manipulation using a generalized force reflecting master arm. Problems concerning their dynamic interaction with the human operator have been revealed in the use of these systems, with marked differences between 1-g and simulated weightless conditions. A study is outlined to investigate the optimization of the man machine dynamics of master-slave manipulation, and a set of specifications is determined for the apparatus necessary to perform this investigation. This apparatus is a one degree of freedom force reflecting hand controller with closed loop servo control which enables it to simulate arbitrary dynamic properties to high bandwidth. Design of the complete system and its performance is discussed. Finally, the experimental adjustment of the hand controller dynamics for smooth manual control performance with good operator force perception is described, resulting in low inertia, viscously damped hand controller dynamics.

  18. Recent Advances In Structural Vibration And Failure Mode Control In Mainland China: Theory, Experiments And Applications

    NASA Astrophysics Data System (ADS)

    Li, Hui; Ou, Jinping

    2008-07-01

    A number of researchers have been focused on structural vibration control in the past three decades over the world and fruit achievements have been made. This paper introduces the recent advances in structural vibration control including passive, active and semiactive control in mainland China. Additionally, the co-author extends the structural vibration control to failure mode control. The research on the failure mode control is also involved in this paper. For passive control, this paper introduces full scale tests of buckling-restrained braces conducted to investigate the performance of the dampers and the second-editor of the Code of Seismic Design for Buildings. For active control, this paper introduces the HMD system for wind-induced vibration control of the Guangzhou TV tower. For semiactive control, the smart damping devices, algorithms for semi-active control, design methods and applications of semi-active control for structures are introduced in this paper. The failure mode control for bridges is also introduced.

  19. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 5 - Structural dynamics and aeroelasticity

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Editor); Venneri, Samuel L. (Editor)

    1993-01-01

    Various papers on flight vehicle materials, structures, and dynamics are presented. Individual topics addressed include: general modeling methods, component modeling techniques, time-domain computational techniques, dynamics of articulated structures, structural dynamics in rotating systems, structural dynamics in rotorcraft, damping in structures, structural acoustics, structural design for control, structural modeling for control, control strategies for structures, system identification, overall assessment of needs and benefits in structural dynamics and controlled structures. Also discussed are: experimental aeroelasticity in wind tunnels, aeroservoelasticity, nonlinear aeroelasticity, aeroelasticity problems in turbomachines, rotary-wing aeroelasticity with application to VTOL vehicles, computational aeroelasticity, structural dynamic testing and instrumentation.

  20. Automation and Robotics for Space-Based Systems, 1991

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II (Editor)

    1992-01-01

    The purpose of this in-house workshop was to assess the state-of-the-art of automation and robotics for space operations from an LaRC perspective and to identify areas of opportunity for future research. Over half of the presentations came from the Automation Technology Branch, covering telerobotic control, extravehicular activity (EVA) and intra-vehicular activity (IVA) robotics, hand controllers for teleoperation, sensors, neural networks, and automated structural assembly, all applied to space missions. Other talks covered the Remote Manipulator System (RMS) active damping augmentation, space crane work, modeling, simulation, and control of large, flexible space manipulators, and virtual passive controller designs for space robots.

  1. High speed, precision motion strategies for lightweight structures

    NASA Technical Reports Server (NTRS)

    Book, Wayne J.

    1989-01-01

    Research on space telerobotics is summarized. Adaptive control experiments on the Robotic Arm, Large and Flexible (RALF) were preformed and are documented, along with a joint controller design for the Small Articulated Manipulator (SAM), which is mounted on the RALF. A control algorithm is described as a robust decentralized adaptive control based on a bounded uncertainty approach. Dynamic interactions between SAM and RALF are examined. Unstability of the manipulator is studied from the perspective that the inertial forces generated could actually be used to more rapidly damp out the flexible manipulator's vibration. Currently being studied is the modeling of the constrained dynamics of flexible arms.

  2. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen; Moan, Torgeir

    2016-09-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT). In this study, the aerodynamic damping of floating VAWTs was studied in a fully coupled manner, and its influential factors and its effects on the motions, especially the pitch motion, were demonstrated. Three straight-bladed floating VAWTs with identical solidity and with a blade number varying from two to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover, the aerodynamic damping is almost independent of the rotor azimuth angle, and is to some extent sensitive to the blade number.

  3. Vibration Control via Stiffness Switching of Magnetostrictive Transducers

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-01-01

    In this paper, a computational study is presented of structural vibration control that is realized by switching a magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magnetostrictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magneto-mechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.13; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping. For the cases considered, optimal resistive shunt damping performed considerably better than both voltage- and shunt-controlled stiffness switching.

  4. Dual-Actuator Active Vibration-Control System

    NASA Technical Reports Server (NTRS)

    Kascak, Albert F.; Kiraly, Louis J.; Montague, Gerald T.; Palazzolo, Alan B.; Manchala, Daniel

    1994-01-01

    Dual-actuator active vibration-control (DAAVC) system is developmental system of type described in "Active Vibration Dampers for Rotating Machinery" (LEW-15427). System features sensors and actuators positioned and oriented at bearings to measure and counteract vibrations of shaft along either of two axes perpendicular to axis of rotation. Effective in damping vibrations of helicopter-engine test stand, making it safer to operate engine at speeds near and above first resonance of engine/test-stand system. Opens new opportunities for engine designers to draw more power from engine, and concept applicable to other rotating machines.

  5. On The Dynamics and Design of a Two-body Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Liang, Changwei; Zuo, Lei

    2016-09-01

    A two-body wave energy converter oscillating in heave is studied in this paper. The energy is extracted through the relative motion between the floating and submerged bodies. A linearized model in the frequency domain is adopted to study the dynamics of such a two-body system with consideration of both the viscous damping and the hydrodynamic damping. The closed form solution of the maximum absorption power and corresponding power take-off parameters are obtained. The suboptimal and optimal designs for a two-body system are proposed based on the closed form solution. The physical insight of the optimal design is to have one of the damped natural frequencies of the two body system the same as, or as close as possible to, the excitation frequency. A case study is conducted to investigate the influence of the submerged body on the absorption power of a two-body system subjected to suboptimal and optimal design under regular and irregular wave excitations. It is found that the absorption power of the two-body system can be significantly higher than that of the single body system with the same floating buoy in both regular and irregular waves. In regular waves, it is found that the mass of the submerged body should be designed with an optimal value in order to achieve the maximum absorption power for the given floating buoy. The viscous damping on the submerged body should be as small as possible for a given mass in both regular and irregular waves.

  6. Dynamic profile of a prototype pivoted proof-mass actuator. [damping the vibration of large space structures

    NASA Technical Reports Server (NTRS)

    Miller, D. W.

    1981-01-01

    A prototype of a linear inertial reaction actuation (damper) device employing a flexure-pivoted reaction (proof) mass is discussed. The mass is driven by an electromechanic motor using a dc electromagnetic field and an ac electromagnetic drive. During the damping process, the actuator dissipates structural kinetic energy as heat through electromagnetic damping. A model of the inertial, stiffness and damping properties is presented along with the characteristic differential equations describing the coupled response of the actuator and structure. The equations, employing the dynamic coefficients, are oriented in the form of a feedback control network in which distributed sensors are used to dictate actuator response leading to a specified amount of structural excitation or damping.

  7. Damping in aerospace composite materials

    NASA Astrophysics Data System (ADS)

    Agneni, A.; Balis Crema, L.; Castellani, A.

    Experimental results are presented on specimens of carbon and Kevlar fibers in epoxy resin, materials used in many aerospace structures (control surfaces and wings in aircraft, large antennas in spacecraft, etc.). Some experimental methods of estimating damping ratios are first reviewed, either in the time domain or in the frequency domain. Some damping factor estimates from experimental tests are then shown; in order to evaluate the effects of the aerospace environment, damping factors have been obtained in a typical range of temperature, namely between +120 C and -120 C, and in the pressure range from room pressure to 10 exp -6 torr. Finally, a theoretical approach for predicting the bounds of the damping coefficients is shown, and prediction data are compared with experimental results.

  8. The Vibration Ring. Phase 1; [Seedling Fund

    NASA Technical Reports Server (NTRS)

    Asnani, Vivake M.; Krantz, Timothy L.; Delap, Damon C.; Stringer, David B.

    2014-01-01

    The vibration ring was conceived as a driveline damping device to prevent structure-borne noise in machines. It has the appearance of a metal ring, and can be installed between any two driveline components like an ordinary mechanical spacer. Damping is achieved using a ring-shaped piezoelectric stack that is poled in the axial direction and connected to an electrical shunt circuit. Surrounding the stack is a metal structure, called the compression cage, which squeezes the stack along its poled axis when excited by radial driveline forces. The stack in turn generates electrical energy, which is either dissipated or harvested using the shunt circuit. Removing energy from the system creates a net damping effect. The vibration ring is much stiffer than traditional damping devices, which allows it to be used in a driveline without disrupting normal operation. In phase 1 of this NASA Seedling Fund project, a combination of design and analysis was used to examine the feasibility of this concept. Several designs were evaluated using solid modeling, finite element analysis, and by creating prototype hardware. Then an analytical model representing the coupled electromechanical response was formulated in closed form. The model was exercised parametrically to examine the stiffness and loss factor spectra of the vibration ring, as well as simulate its damping effect in the context of a simplified driveline model. The results of this work showed that this is a viable mechanism for driveline damping, and provided several lessons for continued development.

  9. Testing of Lagrange multiplier damped least-squares control algorithm for woofer-tweeter adaptive optics

    PubMed Central

    Zou, Weiyao; Burns, Stephen A.

    2012-01-01

    A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. PMID:22441462

  10. Testing of Lagrange multiplier damped least-squares control algorithm for woofer-tweeter adaptive optics.

    PubMed

    Zou, Weiyao; Burns, Stephen A

    2012-03-20

    A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. © 2012 Optical Society of America

  11. Design of isolated buildings with S-FBI system subjected to near-fault earthquakes using NSGA-II algorithm

    NASA Astrophysics Data System (ADS)

    Ozbulut, O. E.; Silwal, B.

    2014-04-01

    This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm and performance-based evaluation approach. The S-FBI system consists of a flat steel- PTFE sliding bearing and a superelastic NiTi shape memory alloy (SMA) device. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA device provides restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm (GA) in order to optimize S-FBI system. Nonlinear time history analyses of the building with S-FBI system are performed. A set of 20 near-field ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.

  12. Real-time control of geometry and stiffness in adaptive structures

    NASA Technical Reports Server (NTRS)

    Ramesh, A. V.; Utku, S.; Wada, B. K.

    1991-01-01

    The basic theory is presented for the geometry, stiffness, and damping control of adaptive structures, with emphasis on adaptive truss structures. Necessary and sufficient conditions are given for stress-free geometry control in statically determinate and indeterminate adaptive discrete structures. Two criteria for selecting the controls are proposed, and their use in real-time control is illustrated by numerical simulation results. It is shown that the stiffness and damping control of adaptive truss structures for vibration suppression is possible by elongation and elongation rate dependent feedback forces from the active elements.

  13. Dynamic characteristics of stay cables with inerter dampers

    NASA Astrophysics Data System (ADS)

    Shi, Xiang; Zhu, Songye

    2018-06-01

    This study systematically investigates the dynamic characteristics of a stay cable with an inerter damper installed close to one end of a cable. The interest in applying inerter dampers to stay cables is partially inspired by the superior damping performance of negative stiffness dampers in the same application. A comprehensive parametric study on two major parameters, namely, inertance and damping coefficients, are conducted using analytical and numerical approaches. An inerter damper can be optimized for one vibration mode of a stay cable by generating identical wave numbers in two adjacent modes. An optimal design approach is proposed for inerter dampers installed on stay cables. The corresponding optimal inertance and damping coefficients are summarized for different damper locations and interested modes. Inerter dampers can offer better damping performance than conventional viscous dampers for the target mode of a stay cable that requires optimization. However, additional damping ratios in other vibration modes through inerter damper are relatively limited.

  14. Coupled oscillators in identification of nonlinear damping of a real parametric pendulum

    NASA Astrophysics Data System (ADS)

    Olejnik, Paweł; Awrejcewicz, Jan

    2018-01-01

    A damped parametric pendulum with friction is identified twice by means of its precise and imprecise mathematical model. A laboratory test stand designed for experimental investigations of nonlinear effects determined by a viscous resistance and the stick-slip phenomenon serves as the model mechanical system. An influence of accurateness of mathematical modeling on the time variability of the nonlinear damping coefficient of the oscillator is proved. A free decay response of a precisely and imprecisely modeled physical pendulum is dependent on two different time-varying coefficients of damping. The coefficients of the analyzed parametric oscillator are identified with the use of a new semi-empirical method based on a coupled oscillators approach, utilizing the fractional order derivative of the discrete measurement series treated as an input to the numerical model. Results of application of the proposed method of identification of the nonlinear coefficients of the damped parametric oscillator have been illustrated and extensively discussed.

  15. Robust design of a 2-DOF GMV controller: a direct self-tuning and fuzzy scheduling approach.

    PubMed

    Silveira, Antonio S; Rodríguez, Jaime E N; Coelho, Antonio A R

    2012-01-01

    This paper presents a study on self-tuning control strategies with generalized minimum variance control in a fixed two degree of freedom structure-or simply GMV2DOF-within two adaptive perspectives. One, from the process model point of view, using a recursive least squares estimator algorithm for direct self-tuning design, and another, using a Mamdani fuzzy GMV2DOF parameters scheduling technique based on analytical and physical interpretations from robustness analysis of the system. Both strategies are assessed by simulation and real plants experimentation environments composed of a damped pendulum and an under development wind tunnel from the Department of Automation and Systems of the Federal University of Santa Catarina. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  16. ISS Contingency Attitude Control Recovery Method for Loss of Automatic Thruster Control

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth; Bhatt, Sagar; Alaniz, Abran; McCants, Edward; Nguyen, Louis; Chamitoff, Greg

    2008-01-01

    In this paper, the attitude control issues associated with International Space Station (ISS) loss of automatic thruster control capability are discussed and methods for attitude control recovery are presented. This scenario was experienced recently during Shuttle mission STS-117 and ISS Stage 13A in June 2007 when the Russian GN&C computers, which command the ISS thrusters, failed. Without automatic propulsive attitude control, the ISS would not be able to regain attitude control after the Orbiter undocked. The core issues associated with recovering long-term attitude control using CMGs are described as well as the systems engineering analysis to identify recovery options. It is shown that the recovery method can be separated into a procedure for rate damping to a safe harbor gravity gradient stable orientation and a capability to maneuver the vehicle to the necessary initial conditions for long term attitude hold. A manual control option using Soyuz and Progress vehicle thrusters is investigated for rate damping and maneuvers. The issues with implementing such an option are presented and the key issue of closed-loop stability is addressed. A new non-propulsive alternative to thruster control, Zero Propellant Maneuver (ZPM) attitude control method is introduced and its rate damping and maneuver performance evaluated. It is shown that ZPM can meet the tight attitude and rate error tolerances needed for long term attitude control. A combination of manual thruster rate damping to a safe harbor attitude followed by a ZPM to Stage long term attitude control orientation was selected by the Anomaly Resolution Team as the alternate attitude control method for such a contingency.

  17. Experimental Methodology for Determining Turbomachinery Blade Damping Using Magnetic Bearing Excitation and Non-Contacting Optical Measurements

    NASA Technical Reports Server (NTRS)

    Provenza, Andrew J.; Duffy, Kirsten P.

    2010-01-01

    Experiments to determine the effects of turbomachinery fan blade damping concepts such as passively shunted piezoelectric materials on blade response are ongoing at the NASA Glenn Research Center. A vertical rotor is suspended and excited with active magnetic bearings (AMBs) usually in a vacuum chamber to eliminate aerodynamic forces. Electromagnetic rotor excitation is superimposed onto rotor PD-controlled support and can be fixed to either a stationary or rotating frame of reference. The rotor speed is controlled with an air turbine system. Blade vibrations are measured using optical probes as part of a Non-Contacting Stress Measurement System (NSMS). Damping is calculated from these measurements. It can be difficult to get accurate damping measurements using this experimental setup and some of the details of how to obtain quality results are seemingly nontrivial. The intent of this paper is to present those details.

  18. Indoor dampness and molds and development of adult-onset asthma: a population-based incident case-control study.

    PubMed Central

    Jaakkola, Maritta S; Nordman, Henrik; Piipari, Ritva; Uitti, Jukka; Laitinen, Jukka; Karjalainen, Antti; Hahtola, Paula; Jaakkola, Jouni J K

    2002-01-01

    Previous cross-sectional and prevalent case-control studies have suggested increased risk of asthma in adults related to dampness problems and molds in homes. We conducted a population-based incident case-control study to assess the effects of indoor dampness problems and molds at work and at home on development of asthma in adults. We recruited systematically all new cases of asthma during a 2.5-year study period (1997-2000) and randomly selected controls from a source population consisting of adults 21-63 years old living in the Pirkanmaa Hospital district, South Finland. The clinically diagnosed case series consisted of 521 adults with newly diagnosed asthma and the control series of 932 controls, after we excluded 76 (7.5%) controls with a history of asthma. In logistic regression analysis adjusting for confounders, the risk of asthma was related to the presence of visible mold and/or mold odor in the workplace (odds ratio, 1.54; 95% confidence interval, 1.01-2.32) but not to water damage or damp stains alone. We estimated the fraction of asthma attributable to workplace mold exposure to be 35.1% (95% confidence interval, 1.0-56.9%) among the exposed. Present results provide new evidence of the relation between workplace exposure to indoor molds and adult-onset asthma. PMID:12003761

  19. Closed-form solutions for linear regulator design of mechanical systems including optimal weighting matrix selection

    NASA Technical Reports Server (NTRS)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.

  20. Design of bearings for rotor systems based on stability

    NASA Technical Reports Server (NTRS)

    Dhar, D.; Barrett, L. E.; Knospe, C. R.

    1992-01-01

    Design of rotor systems incorporating stable behavior is of great importance to manufacturers of high speed centrifugal machinery since destabilizing mechanisms (from bearings, seals, aerodynamic cross coupling, noncolocation effects from magnetic bearings, etc.) increase with machine efficiency and power density. A new method of designing bearing parameters (stiffness and damping coefficients or coefficients of the controller transfer function) is proposed, based on a numerical search in the parameter space. The feedback control law is based on a decentralized low order controller structure, and the various design requirements are specified as constraints in the specification and parameter spaces. An algorithm is proposed for solving the problem as a sequence of constrained 'minimax' problems, with more and more eigenvalues into an acceptable region in the complex plane. The algorithm uses the method of feasible directions to solve the nonlinear constrained minimization problem at each stage. This methodology emphasizes the designer's interaction with the algorithm to generate acceptable designs by relaxing various constraints and changing initial guesses interactively. A design oriented user interface is proposed to facilitate the interaction.

  1. The efficacy and safety of Baoji Tablets for treating common cold with summer-heat and dampness syndrome: study protocol for a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Despite the high incidence and the economic impact of the common cold, there are still no effective therapeutic options available. Although traditional Chinese medicine (TCM) is widely used in China to treat the common cold, there is still a lack of high-quality clinical trials. This article sets forth the protocol for a high-quality trial of a new TCM drug, Baoji Tablets, which is designed to treat the common cold with summer-heat and dampness syndrome (CCSDS). The trial is evaluating both the efficacy and safety of Baoji Tablets. Methods/design This study is designed as a multicenter, phase II, parallel-group, double-blind, double-dummy, randomized and placebo-controlled trial. A total of 288 patients will be recruited from four centers. The new tablets group are administered Baoji Tablets 0.9 g and dummy Baoji Pills 3.7 g. The old pills group are administered dummy Baoji Tablets 0.9 g and Baoji Pills 3.7 g. The placebo control group are administered dummy Baoji Tablets 0.9 g and dummy Baoji Pills 3.7 g. All drugs are taken three times daily for 3 days. The primary outcome is the duration of all symptoms. Secondary outcomes include the duration of primary and secondary symptoms, changes in primary and secondary symptom scores and cumulative symptom score at day 4, as well as an evaluation of treatment efficacy. Discussion This is the first multicenter, double-blind, double-dummy, randomized and placebo-controlled trial designated to treat CCSDS in an adult population from China. It will establish the basis for a scientific and objective assessment of the efficacy and safety of Baoji Tablets for treating CCSDS, and provide evidence for a phase III clinical trial. Trial registration This study is registered with the Chinese Clinical Trial Registry. The registration number is ChiCTR-TRC-13003197. PMID:24359521

  2. Application of small panel damping measurements to larger walls

    NASA Astrophysics Data System (ADS)

    Hastings, Mardi C.; Godfrey, Richard; Babcock, G. Madison

    1996-05-01

    Damping properties of a viscoelastic material were determined using a standard resonant beam technique. The damping material was then applied to 1 by 2 foot gypsum panels in a constrained layer construction. Damping loss factors in panels with and without the constrained layer were determined based on reverberation times after excitation at third-octave band center frequencies. The constrained damping layer had been designed to increase damping by an order of magnitude above that of a single gypsum panel at 2000 Hz; however, relative to a gypsum panel of the same overall thickness as the panel with the constrained layer, loss factors increased only by a factor of three to five. Next modal damping loss factors in 9 by 14 foot gypsum single and double walls were calculated from the experimentally determined quality factor for each modal resonance. Results showed that below 2500 Hz, modes in 1 by 2 foot gypsum panels had nearly the same damping loss factors as modes in a 9 by 14 foot gypsum wall of the same thickness; however, loss factors for the wall were an order of magnitude lower than those of the 1 by 2 foot panels at frequencies above 2500 Hz, the coincidence frequency for 5/8-inch thick gypsum plates. Thus it was inconclusive whether or not damping loss factors measured using small panels could be used to estimate the effect of a constrained damping layer on transmission loss through a 9 by 14 foot wall unless boundary conditions and modal frequencies were the same for each size.

  3. Structural damage identification using damping: a compendium of uses and features

    NASA Astrophysics Data System (ADS)

    Cao, M. S.; Sha, G. G.; Gao, Y. F.; Ostachowicz, W.

    2017-04-01

    The vibration responses of structures under controlled or ambient excitation can be used to detect structural damage by correlating changes in structural dynamic properties extracted from responses with damage. Typical dynamic properties refer to modal parameters: natural frequencies, mode shapes, and damping. Among these parameters, natural frequencies and mode shapes have been investigated extensively for their use in damage characterization by associating damage with reduction in local stiffness of structures. In contrast, the use of damping as a dynamic property to represent structural damage has not been comprehensively elucidated, primarily due to the complexities of damping measurement and analysis. With advances in measurement technologies and analysis tools, the use of damping to identify damage is becoming a focus of increasing attention in the damage detection community. Recently, a number of studies have demonstrated that damping has greater sensitivity for characterizing damage than natural frequencies and mode shapes in various applications, but damping-based damage identification is still a research direction ‘in progress’ and is not yet well resolved. This situation calls for an overall survey of the state-of-the-art and the state-of-the-practice of using damping to detect structural damage. To this end, this study aims to provide a comprehensive survey of uses and features of applying damping in structural damage detection. First, we present various methods for damping estimation in different domains including the time domain, the frequency domain, and the time-frequency domain. Second, we investigate the features and applications of damping-based damage detection methods on the basis of two predominant infrastructure elements, reinforced concrete structures and fiber-reinforced composites. Third, we clarify the influential factors that can impair the capability of damping to characterize damage. Finally, we recommend future research directions for advancing damping-based damage detection. This work holds the promise of (a) helping researchers identify crucial components in damping-based damage detection theories, methods, and technologies, and (b) leading practitioners to better implement damping-based structural damage identification.

  4. Fractional order implementation of Integral Resonant Control - A nanopositioning application.

    PubMed

    San-Millan, Andres; Feliu-Batlle, Vicente; Aphale, Sumeet S

    2017-10-04

    By exploiting the co-located sensor-actuator arrangement in typical flexure-based piezoelectric stack actuated nanopositioners, the polezero interlacing exhibited by their axial frequency response can be transformed to a zero-pole interlacing by adding a constant feed-through term. The Integral Resonant Control (IRC) utilizes this unique property to add substantial damping to the dominant resonant mode by the use of a simple integrator implemented in closed loop. IRC used in conjunction with an integral tracking scheme, effectively reduces positioning errors introduced by modelling inaccuracies or parameter uncertainties. Over the past few years, successful application of the IRC control technique to nanopositioning systems has demonstrated performance robustness, easy tunability and versatility. The main drawback has been the relatively small positioning bandwidth achievable. This paper proposes a fractional order implementation of the classical integral tracking scheme employed in tandem with the IRC scheme to deliver damping and tracking. The fractional order integrator introduces an additional design parameter which allows desired pole-placement, resulting in superior closed loop bandwidth. Simulations and experimental results are presented to validate the theory. A 250% improvement in the achievable positioning bandwidth is observed with proposed fractional order scheme. Copyright © 2017. Published by Elsevier Ltd.

  5. Robust multi-model control of an autonomous wind power system

    NASA Astrophysics Data System (ADS)

    Cutululis, Nicolas Antonio; Ceanga, Emil; Hansen, Anca Daniela; Sørensen, Poul

    2006-09-01

    This article presents a robust multi-model control structure for a wind power system that uses a variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) connected to a local grid. The control problem consists in maximizing the energy captured from the wind for varying wind speeds. The VSWT-PMSG linearized model analysis reveals the resonant nature of its dynamic at points on the optimal regimes characteristic (ORC). The natural frequency of the system and the damping factor are strongly dependent on the operating point on the ORC. Under these circumstances a robust multi-model control structure is designed. The simulation results prove the viability of the proposed control structure. Copyright

  6. Experimental study of adaptive pointing and tracking for large flexible space structures

    NASA Technical Reports Server (NTRS)

    Boussalis, D.; Bayard, D. S.; Ih, C.; Wang, S. J.; Ahmed, A.

    1991-01-01

    This paper describes an experimental study of adaptive pointing and tracking control for flexible spacecraft conducted on a complex ground experiment facility. The algorithm used in this study is based on a multivariable direct model reference adaptive control law. Several experimental validation studies were performed earlier using this algorithm for vibration damping and robust regulation, with excellent results. The current work extends previous studies by addressing the pointing and tracking problem. As is consistent with an adaptive control framework, the plant is assumed to be poorly known to the extent that only system level knowledge of its dynamics is available. Explicit bounds on the steady-state pointing error are derived as functions of the adaptive controller design parameters. It is shown that good tracking performance can be achieved in an experimental setting by adjusting adaptive controller design weightings according to the guidelines indicated by the analytical expressions for the error.

  7. Decentralized control experiments on NASA's flexible grid

    NASA Technical Reports Server (NTRS)

    Ozguner, U.; Yurkowich, S.; Martin, J., III; Al-Abbass, F.

    1986-01-01

    Methods arising from the area of decentralized control are emerging for analysis and control synthesis for large flexible structures. In this paper the control strategy involves a decentralized model reference adaptive approach using a variable structure control. Local models are formulated based on desired damping and response time in a model-following scheme for various modal configurations. Variable structure controllers are then designed employing co-located angular rate and position feedback. In this scheme local control forces the system to move on a local sliding mode in some local error space. An important feature of this approach is that the local subsystem is made insensitive to dynamical interactions with other subsystems once the sliding surface is reached. Experiments based on the above have been performed for NASA's flexible grid experimental apparatus. The grid is designed to admit appreciable low-frequency structural dynamics, and allows for implementation of distributed computing components, inertial sensors, and actuation devices. A finite-element analysis of the grid provides the model for control system design and simulation; results of several simulations are reported on here, and a discussion of application experiments on the apparatus is presented.

  8. Polymeric Materials Models in the Warrior Injury Assessment Manikin (WIAMan) Anthropomorphic Test Device (ATD) Tech Demonstrator

    DTIC Science & Technology

    2017-01-01

    are the shear relaxation moduli and relaxation times , which make up the classical Prony series . A Prony- series expansion is a relaxation function...approximation for modeling time -dependent damping. The scalar parameters 1 and 2 control the nonlinearity of the Prony series . Under the...Velodyne that best fit the experimental stress-strain data. To do so, the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA

  9. Development and application of the modal space self-tuning regulator

    NASA Astrophysics Data System (ADS)

    Schultze, John Francis

    The control and reduction of vibration of flexible structures is currently an area of much research and concern in the aerospace and automotive industries. Often these systems are idealized as discrete systems with a finite number of degrees of freedom. Traditional active control approaches have attempted either to identify the complete system and design an appropriate controller or; use an ad-hoc set of single degree of freedom controllers. Both methods have limitations. The former requires great computational and control design effort. This approach also attempts to reduce the vibration across the complete spectrum as opposed to applying control effort only to the problematic mode(s). The latter method is often limited by its inability to address the structural coupling inherent in these systems. The Modal Space Self Tuning Regulator (MSSTR) method proposed in this research addresses both of these problems as well as changes in the structural properties of a system. The control problem is approached in a two stage effort, decoupling and adaptive control. The structure's motion is decoupled through the Modified Reciprocal Modal Vector method. The control is then implemented in modal space as a new acceleration feedback based, single degree of freedom, form of the Self Tuning Regulator. The range of application of this controller in terms of maximum additive damping, actuator location sensitivity, and discrete and continuous system mass changes are investigated. Also, the behavior of the internal controller parameters are studied for the extension of this method to system monitoring and damage detection. Proof of the numeric stability of the controller in the ideal case is presented as well as its practical implementation issues. This control approach was shown to be effective for the cases of specified damping increases up to 10 dB, several actuator locations, three discrete mass perturbations and several continuous mass change cases. There appears to be little dependence on the actuator position until the additive damping limit is reached. The discrete mass change tests investigate both increases and reductions in the effective moving mass of the system. The controller performed well in all cases investigated achieving a minimum of 7 dB and up to 15 dB of attenuation. The continuous mass change cases, modeling tool-wear, fuel consumption, or other time varying phenomena, show good convergence behavior of the system model and the accompanying regulator law parameters. This validates the controller for its implementation in a rapidly changing system. The MSSTR performed well in several varied test cases, showing both insensitivity to actuator location and resilience to changing system parameters. Extensions to multi-input, multi-mode control appears within ready grasp.

  10. Viscous-to-viscoelastic transition in phononic crystal and metamaterial band structures.

    PubMed

    Frazier, Michael J; Hussein, Mahmoud I

    2015-11-01

    The dispersive behavior of phononic crystals and locally resonant metamaterials is influenced by the type and degree of damping in the unit cell. Dissipation arising from viscoelastic damping is influenced by the past history of motion because the elastic component of the damping mechanism adds a storage capacity. Following a state-space framework, a Bloch eigenvalue problem incorporating general viscoelastic damping based on the Zener model is constructed. In this approach, the conventional Kelvin-Voigt viscous-damping model is recovered as a special case. In a continuous fashion, the influence of the elastic component of the damping mechanism on the band structure of both a phononic crystal and a metamaterial is examined. While viscous damping generally narrows a band gap, the hereditary nature of the viscoelastic conditions reverses this behavior. In the limit of vanishing heredity, the transition between the two regimes is analyzed. The presented theory also allows increases in modal dissipation enhancement (metadamping) to be quantified as the type of damping transitions from viscoelastic to viscous. In conclusion, it is shown that engineering the dissipation allows one to control the dispersion (large versus small band gaps) and, conversely, engineering the dispersion affects the degree of dissipation (high or low metadamping).

  11. Vibration attenuation of rotating machines by application of magnetorheological dampers to minimize energy losses in the rotor support

    NASA Astrophysics Data System (ADS)

    Zapoměl, J.; Ferfecki, P.

    2016-09-01

    A frequently used technological solution for minimization of undesirable effects caused by vibration of rotating machines consists in placing damping devices in the rotor supports. The application of magnetorheological squeeze film dampers enables their optimum performance to be achieved in a wide range of rotating speeds by adapting their damping effect to the current operating conditions. The damping force, which is produced by squeezing the layer of magnetorheological oil, can be controlled by changing magnetic flux passing through the lubricant. The force acting between the rotor and its frame is transmitted through the rolling element bearing, the lubricating layer and the squirrel spring. The loading of the bearing produces a time variable friction moment, energy losses, uneven rotor running, and has an influence on the rotor service life and the current fluctuation in electric circuits. The carried out research consisted in the development of a mathematical model of a magnetorheological squeeze film damper, its implementation into the computational models of rotor systems, and in performing the study on the dependence of the energy losses and variation of the friction moment on the damping force and its control. The new and computationally stable mathematical model of a magnetorheological squeeze film damper, its implementation in the computational models of rigid rotors and learning more on the energy losses generated in the rotor supports in dependence on the damping effect are the principal contributions of this paper. The results of the computational simulations prove that a suitable control of the damping force enables the energy losses to be reduced in a wide velocity range.

  12. Modeling and Control of a Tethered Rotorcraft

    DTIC Science & Technology

    2010-07-30

    viscous damper with damping coefficient Cv. Visco-elastic line force is written in terms of components Δx, Δy, and Δz, of the difference vector formed...tether drag coefficient CS = tether damping coefficient Cv = viscous damping coefficient d = diameter of the tether En = n x n identity matrix FA...matrix consisting of Iyy and Izz k = rotor head stiffness KLAT, KLON = steady state flapping gains Ks, Kv = static and viscous stiffness Lj

  13. Hybrid bearings for LH2 and LO2 turbopumps

    NASA Technical Reports Server (NTRS)

    Butner, M. F.; Lee, F. C.

    1985-01-01

    Hybrid combinations of hydrostatic and ball bearings can improve bearing performance for liquid hydrogen and liquid oxygen turbopumps. Analytic studies were conducted to optimize hybrid bearing designs for the SSME-type turbopump conditions. A method to empirically determine damping coefficients was devised. Four hybrid bearing configurations were designed, and three were fabricated. Six hybrid and hydrostatic-only bearing configurations will be tested for steady-state and transient performance, and quantification of damping coefficients. The initial tests were conducted with the liquid hydrogen bearing.

  14. Mitigation of Subsynchronous Resonance with Fractional-order PI based UPFC controller

    NASA Astrophysics Data System (ADS)

    Raju, D. Koteswara; Umre, Bhimrao S.; Junghare, Anjali S.; Babu, B. Chitti

    2017-02-01

    Due to incorporation of series capacitor compensation in transmission line for stability improvement, subsynchronous oscillations are generated at turbine-generator shaft. These oscillations can damage the shaft system if these are not well suppressed. In order to damp out these oscillations, usually power system network should have sufficient damping and the increase of network damping is obtained by the injection of subsynchronous component of voltage and current into the line, which are extracted from the measured signal of the system. However, the effectiveness of damp out of these subsynchronous oscillations is possibly by incorporating UPFC in the transmission line network is of high interest and it should be further investigated. This research article proposes the mitigation of subsynchronous resonance (SSR) using fractional-order PI (FOPI) based unified power flow controller (UPFC). The robustness of the proposed controller is tested for 25%, 55% and 70% series compensation with a symmetrical fault (L-L-L fault). Further, Eigenvalue analysis and Fast Fourier Transform (FFT) analysis against operating point variations and uncertainties in the system are also examined. The IEEE first benchmark model is adopted for this study and the superiority of the FOPI based UPFC controller over PI based UPFC controller is discussed by comparing the results with various performance indices.

  15. a Method for Preview Vibration Control of Systems Having Forcing Inputs and Rapidly-Switched Dampers

    NASA Astrophysics Data System (ADS)

    ElBeheiry, E. M.

    1998-07-01

    In a variety of applications, especially in large scale dynamic systems, the mechanization of different vibration control elements in different locations would be decided by limitations placed on the modal vibration of the system and the inherent dynamic coupling between its modes. Also, the quality of vibration control to the economy of producing the whole system would be another trade-off leading to a mix of passive, active and semi-active vibration control elements in one system. This termactiveis limited to externally powered vibration control inputs and the termsemi-activeis limited to rapidly switched dampers. In this article, an optimal preview control method is developed for application to dynamic systems having active and semi-active vibration control elements mechanized at different locations in one system. The system is then a piecewise (bilinear) controller in which two independent sets of control inputs appear additively and multiplicatively. Calculus of variations along with the Hamiltonian approach are employed for the derivation of this method. In essence, it requires the active elements to be ideal force generators and the switched dampers to have the property of on-line variation of the damping characteristics to pre-determined limits. As the dampers switch during operation the whole system's structure differs, and then values of the active forcing inputs are adapted to match these rapid changes. Strictly speaking, each rapidly switched damper has pre-known upper and lower damping levels and it can take on any in-between value. This in-between value is to be determined by the method as long as the damper tracks a pre-known fully active control demand. In every damping state of each semi-active damper the method provides the optimal matching values of the active forcing inputs. The method is shown to have the feature of solving simple standard matrix equations to obtain closed form solutions. A comprehensive 9-DOF tractor semi-trailer model is used to demonstrate the effectiveness of the method. Time domain predictions are made to compare performance of ride and tyre-to-road contact in the model for the presented method with those of some other active and semi-active suspension designs.

  16. PDCI Wide-Area Damping Control: PSLF Simulations of the 2016 Open and Closed Loop Test Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilches Bernal, Felipe; Pierre, Brian Joseph; Elliott, Ryan Thomas

    To demonstrate and validate the performance of the wide-are a damping control system, the project plans to conduct closed-loop tests on the PDCI in summer/fall 2016. A test plan details the open and closed loop tests to be conducted on the P DCI using the wide-area damping control system. To ensure the appropriate level of preparedness, simulations were performed in order to predict and evaluate any possible unsafe operations before hardware experiments are attempted. This report contains the result s from these simulations using the power system dynamics software PSLF (Power System Load Flow, trademark of GE). The simulations usemore » the WECC (Western Electricity Coordinating Council) 2016 light summer and heavy summer base cases.« less

  17. Damping parameter study of a perforated plate with bias flow

    NASA Astrophysics Data System (ADS)

    Mazdeh, Alireza

    One of the main impediments to successful operation of combustion systems in industrial and aerospace applications including gas turbines, ramjets, rocket motors, afterburners (augmenters) and even large heaters/boilers is the dynamic instability also known as thermo-acoustic instability. Concerns with this ongoing problem have grown with the introduction of Lean Premixed Combustion (LPC) systems developed to address the environmental concerns associated with the conventional combustion systems. The most common way to mitigate thermo-acoustic instability is adding acoustic damping to the combustor using acoustic liners. Recently damping properties of bias flow initially introduced to liners only for cooling purposes have been recognized and proven to be an asset in enhancing the damping effectiveness of liners. Acoustic liners are currently being designed using empirical design rules followed by build-test-improve steps; basically by trial and error. There is growing concerns on the lack of reliability associated with the experimental evaluation of the acoustic liners with small size apertures. The development of physics-based tools in assisting the design of such liners has become of great interest to practitioners recently. This dissertation focuses primarily on how Large-Eddy Simulations (LES) or similar techniques such as Scaled Adaptive Simulation (SAS) can be used to characterize damping properties of bias flow. The dissertation also reviews assumptions made in the existing analytical, semi-empirical, and numerical models, provides a criteria to rank order the existing models, and identifies the best existing theoretical model. Flow field calculations by LES provide good insight into the mechanisms that led to acoustic damping. Comparison of simulation results with empirical and analytical studies shows that LES simulation is a viable alternative to the empirical and analytical methods and can accurately predict the damping behavior of liners. Currently the role of LES for research studies concerned with damping properties of liners is limited to validation of other empirical or theoretical approaches. This research has shown that LES can go beyond that and can be used for performing parametric studies to characterize the sensitivity of acoustic properties of multi--perforated liners to the changes in the geometry and flow conditions and be used as a tool to design acoustic liners. The conducted research provides an insightful understanding about the contribution of different flow and geometry parameters such as perforated plate thickness, aperture radius, porosity factors and bias flow velocity. While the study agrees with previous observations obtained by analytical or experimental methods, it also quantifies the impact from these parameters on the acoustic impedance of perforated plate, a key parameter to determine the acoustic performance of any system. The conducted study has also explored the limitations and capabilities of commercial tool when are applied for performing simulation studies on damping properties of liners. The overall agreement between LES results and previous studies proves that commercial tools can be effectively used for these applications under certain conditions.

  18. Phonon-tunnelling dissipation in mechanical resonators

    PubMed Central

    Cole, Garrett D.; Wilson-Rae, Ignacio; Werbach, Katharina; Vanner, Michael R.; Aspelmeyer, Markus

    2011-01-01

    Microscale and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example, in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavours. Their performance is in many cases limited by the deleterious effects of mechanical damping. In this study, we report a significant advancement towards understanding and controlling support-induced losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, based on the 'phonon-tunnelling' approach, capable of predicting the design-limited damping of high-quality mechanical resonators. Further, through careful device engineering, we isolate support-induced losses and perform a rigorous experimental test of the strong geometric dependence of this loss mechanism. Our results are in excellent agreement with the theory, demonstrating the predictive power of our approach. In combination with recent progress on complementary dissipation mechanisms, our phonon-tunnelling solver represents a major step towards accurate prediction of the mechanical quality factor. PMID:21407197

  19. Validation of Slosh Model Parameters and Anti-Slosh Baffle Designs of Propellant Tanks by Using Lateral Slosh Testing

    NASA Technical Reports Server (NTRS)

    Perez, Jose G.; Parks, Russel A.; Lazor, Daniel R.

    2012-01-01

    The slosh dynamics of propellant tanks can be represented by an equivalent pendulum-mass mechanical model. The parameters of this equivalent model, identified as slosh model parameters, are slosh mass, slosh mass center of gravity, slosh frequency, and smooth-wall damping. They can be obtained by both analysis and testing for discrete fill heights. Anti-slosh baffles are usually needed in propellant tanks to control the movement of the fluid inside the tank. Lateral slosh testing, involving both random testing and free-decay testing, are performed to validate the slosh model parameters and the damping added to the fluid by the anti-slosh baffles. Traditional modal analysis procedures are used to extract the parameters from the experimental data. Test setup of sub-scale test articles of cylindrical and spherical shapes will be described. A comparison between experimental results and analysis will be presented.

  20. Study to eliminate ground resonance using active controls

    NASA Technical Reports Server (NTRS)

    Straub, F. K.

    1984-01-01

    The effectiveness of active control blade feathering in increasing rotor body damping and the possibility to eliminate ground resonance instabilities were investigated. An analytical model representing rotor flapping and lead-lag degrees of freedom and body pitch, roll, longitudinal and lateral motion is developed. Active control blade feathering is implemented as state variable feedback through a conventional swashplate. The influence of various feedback states, feedback gain, and weighting between the cyclic controls is studied through stability and response analyses. It is shown that blade cyclic inplane motion, roll rate and roll acceleration feedback can add considerable damping to the system and eliminate ground resonance instabilities, which the feedback phase is also a powerful parameter, if chosen properly, it maximizes augmentation of the inherent regressing lag mode damping. It is shown that rotor configuration parameters, like blade root hinge offset, flapping stiffness, and precone considerably influence the control effectiveness. It is found that active control is particularly powerful for hingeless and bearingless rotor systems.

  1. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Conyers, Howard J.; Mavris, Dimitri N.

    2015-01-01

    This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this paper is on tool presentation, verification, and validation. These processes are carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  2. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.

    2015-01-01

    This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  3. Optimization of new magnetorheological fluid mount for vibration control of start/stop engine mode

    NASA Astrophysics Data System (ADS)

    Chung, Jye Ung; Phu, Do Xuan; Choi, Seung-Bok

    2015-04-01

    The technologies related to saving energy/or green vehicles are actively researched. In this tendency, the problem for reducing exhausted gas is in development with various ways. Those efforts are directly related to the operation of engine which emits exhausted gas. The auto start/stop of vehicle engine when a vehicle stop at road is currently as a main stream of vehicle industry resulting in reducing exhausted gas. However, this technology automatically turns on and off engine frequently. This motion induces vehicle engine to transmit vibration of engine which has large displacement, and torsional impact to chassis. These vibrations causing uncomfortable feeling to passengers are transmitted through the steering wheel and the gear knob. In this work, in order to resolve this vibration issue, a new proposed magnetorheological (MR) fluid based engine mount (MR mount in short) is presented. The proposed MR mount is designed to satisfy large damping force in various frequency ranges. It is shown that the proposed mount can have large damping force and large force ratio which is enough to control unwanted vibrations of engine start/stop mode.

  4. On the experimental prediction of the stability threshold speed caused by rotating damping

    NASA Astrophysics Data System (ADS)

    Vervisch, B.; Derammelaere, S.; Stockman, K.; De Baets, P.; Loccufier, M.

    2016-08-01

    An ever increasing demand for lighter rotating machinery and higher operating speeds results in a raised probability of instabilities. Rotating damping is one of the reasons, instability occurs. Rotating damping, or rotor internal damping, is the damping related to all rotating parts while non-rotating damping appearing in the non-rotating parts. The present study describes a rotating setup, designed to investigate rotating damping experimentally. An efficient experimental procedure is presented to predict the stability threshold of a rotating machine. The setup consists of a long thin shaft with a disk in the middle and clamped boundary conditions. The goal is to extract the system poles as a function of the rotating speed. The real parts of these poles are used to construct the decay rate plot, which is an indication for the stability. The efficiency of the experimental procedure relies on the model chosen for the rotating shaft. It is shown that the shaft behavior can be approximated by a single degree of freedom model that incorporates a speed dependent damping. As such low measurement effort and only one randomly chosen measurement location are needed to construct the decay rate plot. As an excitation, an automated impact hammer is used and the response is measured by eddy current probes. The proposed method yields a reliable prediction of the stability threshold speed which is validated through measurements.

  5. A sequential linear optimization approach for controller design

    NASA Technical Reports Server (NTRS)

    Horta, L. G.; Juang, J.-N.; Junkins, J. L.

    1985-01-01

    A linear optimization approach with a simple real arithmetic algorithm is presented for reliable controller design and vibration suppression of flexible structures. Using first order sensitivity of the system eigenvalues with respect to the design parameters in conjunction with a continuation procedure, the method converts a nonlinear optimization problem into a maximization problem with linear inequality constraints. The method of linear programming is then applied to solve the converted linear optimization problem. The general efficiency of the linear programming approach allows the method to handle structural optimization problems with a large number of inequality constraints on the design vector. The method is demonstrated using a truss beam finite element model for the optimal sizing and placement of active/passive-structural members for damping augmentation. Results using both the sequential linear optimization approach and nonlinear optimization are presented and compared. The insensitivity to initial conditions of the linear optimization approach is also demonstrated.

  6. The dynamics and control of large flexible asymmetric spacecraft

    NASA Astrophysics Data System (ADS)

    Humphries, T. T.

    1991-02-01

    This thesis develops the equations of motion for a large flexible asymmetric Earth observation satellite and finds the characteristics of its motion under the influence of control forces. The mathematical model of the structure is produced using analytical methods. The equations of motion are formed using an expanded momentum technique which accounts for translational motion of the spacecraft hub and employs orthogonality relations between appendage and vehicle modes. The controllability and observability conditions of the full spacecraft motions using force and torque actuators are defined. A three axis reaction wheel control system is implemented for both slewing the spacecraft and controlling its resulting motions. From minor slew results it is shown that the lowest frequency elastic mode of the spacecraft is more important than higher frequency modes, when considering the effects of elastic motion on instrument pointing from the hub. Minor slews of the spacecraft configurations considered produce elastic deflections resulting in rotational attitude motions large enough to contravene pointing accuracy requirements of instruments aboard the spacecraft hub. Active vibration damping is required to reduce these hub motions to acceptable bounds in sufficiently small time. A comparison between hub mounted collocated and hub/appendage mounted non-collocated control systems verifies that provided the non-collocated system is stable, it can more effectively damp elastic modes whilst maintaining adequate damping of rigid modes. Analysis undertaken shows that the reaction wheel controller could be replaced by a thruster control system which decouples the modes of the spacecraft motion, enabling them to be individually damped.

  7. Bounce-harmonic Landau Damping of Plasma Waves

    NASA Astrophysics Data System (ADS)

    Anderegg, Francois

    2015-11-01

    We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v

  8. Non-Linear Slosh Damping Model Development and Validation

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can lead to significant savings by reducing the number and size of slosh baffles in liquid propellant tanks.

  9. Optimization of SMA layers in composite structures to enhance damping

    NASA Astrophysics Data System (ADS)

    Haghdoust, P.; Cinquemani, S.; Lecis, N.; Bassani, P.

    2016-04-01

    The performance of lightweight structures can be severely affected by vibration. New design concepts leading to lightweight, slender structural components can increase the vulnerability of the components to failure due to excessive vibration. The intelligent approach to address the problem would be the use of materials which are more capable in dissipating the energy due to their high value of loss factor. Among the different materials available to achieve damping, much attention has been attached to the use of shape memory alloys (SMAs) because of their unique microstructure, leading to good damping capacity. This work describes the design and optimization of a hybrid layered composite structure for the passive suppression of flexural vibrations in slender and light structures. Embedding the SMA layers in composite structure allows to combine different properties: the lightness of the base composite (e.g. fiber glass), the mechanical strength of the insert of metallic material and the relevant damping properties of SMA, in the martensitic phase. In particular, we put our attention on embedding the CuZnAl in the form of thin sheet in a layered composite made by glass fiber reinforced epoxy. By appropriately positioning of the SMA sheets so that they are subjected to the maximum curvature, the damping of the hybrid system can be considerably enhanced. Accordingly analytical method for evaluating the energy dissipation of the thin sheets with different shapes and patterns is developed and is followed by a shape optimization based on genetic algorithm. Eventually different configurations of the hybrid beam structure with different patterns of SMA layer are proposed and compared in the term of damping capacity.

  10. Damping Rotor Nutation Oscillations in a Gyroscope with Magnetic Suspension

    NASA Technical Reports Server (NTRS)

    Komarov, Valentine N.

    1996-01-01

    A possibility of an effective damping of rotor nutations by modulating the field of the moment transducers in synchronism with the nutation frequency is considered. The algorithms for forming the control moments are proposed and their application is discussed.

  11. Controllable magneto-rheological fluid-based dampers for drilling

    DOEpatents

    Raymond, David W [Edgewood, NM; Elsayed, Mostafa Ahmed [Youngsville, LA

    2006-05-02

    A damping apparatus and method for a drillstring comprising a bit comprising providing to the drillstring a damping mechanism comprising magnetorheological fluid and generating an electromagnetic field affecting the magnetorheological fluid in response to changing ambient conditions encountered by the bit.

  12. Methods of and system for swing damping movement of suspended objects

    DOEpatents

    Jones, J.F.; Petterson, B.J.; Strip, D.R.

    1991-03-05

    A payload suspended from a gantry is swing damped in accordance with a control algorithm based on the periodic motion of the suspended mass or by servoing on the forces induced by the suspended mass. 13 figures.

  13. Introduction to the scientific application system of DAMPE (On behalf of DAMPE collaboration)

    NASA Astrophysics Data System (ADS)

    Zang, Jingjing

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) is a high energy particle physics experiment satellite, launched on 17 Dec 2015. The science data processing and payload operation maintenance for DAMPE will be provided by the DAMPE Scientific Application System (SAS) at the Purple Mountain Observatory (PMO) of Chinese Academy of Sciences. SAS is consisted of three subsystems - scientific operation subsystem, science data and user management subsystem and science data processing subsystem. In cooperation with the Ground Support System (Beijing), the scientific operation subsystem is responsible for proposing observation plans, monitoring the health of satellite, generating payload control commands and participating in all activities related to payload operation. Several databases developed by the science data and user management subsystem of DAMPE methodically manage all collected and reconstructed science data, down linked housekeeping data, payload configuration and calibration data. Under the leadership of DAMPE Scientific Committee, this subsystem is also responsible for publication of high level science data and supporting all science activities of the DAMPE collaboration. The science data processing subsystem of DAMPE has already developed a series of physics analysis software to reconstruct basic information about detected cosmic ray particle. This subsystem also maintains the high performance computing system of SAS to processing all down linked science data and automatically monitors the qualities of all produced data. In this talk, we will describe all functionalities of whole DAMPE SAS system and show you main performances of data processing ability.

  14. Flight Flutter Testing of Rotary Wing Aircraft Using a Control System Oscillation Technique

    NASA Technical Reports Server (NTRS)

    Yen, J. G.; Viswanathan, S.; Matthys, C. G.

    1976-01-01

    A flight flutter testing technique is described in which the rotor controls are oscillated by series actuators to excite the rotor and airframe modes of interest, which are then allowed to decay. The moving block technique is then used to determine the damped frequency and damping variation with rotor speed. The method proved useful for tracking the stability of relatively well damped modes. The results of recently completed flight tests of an experimental soft-in-plane rotor are used to illustrate the technique. Included is a discussion of the application of this technique to investigation of the propeller whirl flutter stability characteristics of the NASA/Army XV-15 VTOL tilt rotor research aircraft.

  15. Synthesis of the adaptive continuous system for the multi-axle wheeled vehicle body oscillation damping

    NASA Astrophysics Data System (ADS)

    Zhileykin, M. M.; Kotiev, G. O.; Nagatsev, M. V.

    2018-02-01

    In order to meet the growing mobility requirements for the wheeled vehicles on all types of terrain the engineers have to develop a large number of specialized control algorithms for the multi-axle wheeled vehicle (MWV) suspension improving such qualities as ride comfort, handling and stability. The authors have developed an adaptive algorithm of the dynamic damping of the MVW body oscillations. The algorithm provides high ride comfort and high mobility of the vehicle. The article discloses a method for synthesis of an adaptive dynamic continuous algorithm of the MVW body oscillation damping and provides simulation results proving high efficiency of the developed control algorithm.

  16. Optimal design of damping layers in SMA/GFRP laminated hybrid composites

    NASA Astrophysics Data System (ADS)

    Haghdoust, P.; Cinquemani, S.; Lo Conte, A.; Lecis, N.

    2017-10-01

    This work describes the optimization of the shape profiles for shape memory alloys (SMA) sheets in hybrid layered composite structures, i.e. slender beams or thinner plates, designed for the passive attenuation of flexural vibrations. The paper starts with the description of the material and architecture of the investigated hybrid layered composite. An analytical method, for evaluating the energy dissipation inside a vibrating cantilever beam is developed. The analytical solution is then followed by a shape profile optimization of the inserts, using a genetic algorithm to minimize the SMA material layer usage, while maintaining target level of structural damping. Delamination problem at SMA/glass fiber reinforced polymer interface is discussed. At the end, the proposed methodology has been applied to study the hybridization of a wind turbine layered structure blade with SMA material, in order to increase its passive damping.

  17. Design and analysis of a magneto-rheological damper for an all terrain vehicle

    NASA Astrophysics Data System (ADS)

    Krishnan Unni, R.; Tamilarasan, N.

    2018-02-01

    A shock absorber design intended to replace the existing conventional shock absorber with a controllable system using a Magneto-rheological damper is introduced for an All Terrain Vehicle (ATV) that was designed for Baja SAE competitions. Suspensions are a vital part of an All Terrain Vehicles as it endures various surfaces and requires utmost attention while designing. COMSOL multi-physics software is used for applications that have coupled physics problems and is a unique tool that is used for the designing and analysis phase of the Magneto-rheological damper for the considered application and the model is optimized based on Taguchi using DOE software. The magneto-rheological damper is designed to maximize the damping force with the measured geometric constraints for the All Terrain Vehicle.

  18. Designs and test results for three new rotational sensors

    USGS Publications Warehouse

    Jedlicka, P.; Kozak, J.T.; Evans, J.R.; Hutt, C.R.

    2012-01-01

    We discuss the designs and testing of three rotational seismometer prototypes developed at the Institute of Geophysics, Academy of Sciences (Prague, Czech Republic). Two of these designs consist of a liquid-filled toroidal tube with the liquid as the proof mass and providing damping; we tested the piezoelectric and pressure transduction versions of this torus. The third design is a wheel-shaped solid metal inertial sensor with capacitive sensing and magnetic damping. Our results from testing in Prague and at the Albuquerque Seismological Laboratory of the US Geological Survey of transfer function and cross-axis sensitivities are good enough to justify the refinement and subsequent testing of advanced prototypes. These refinements and new testing are well along.

  19. Designs and test results for three new rotational sensors

    NASA Astrophysics Data System (ADS)

    Jedlička, P.; Kozák, J. T.; Evans, J. R.; Hutt, C. R.

    2012-10-01

    We discuss the designs and testing of three rotational seismometer prototypes developed at the Institute of Geophysics, Academy of Sciences (Prague, Czech Republic). Two of these designs consist of a liquid-filled toroidal tube with the liquid as the proof mass and providing damping; we tested the piezoelectric and pressure transduction versions of this torus. The third design is a wheel-shaped solid metal inertial sensor with capacitive sensing and magnetic damping. Our results from testing in Prague and at the Albuquerque Seismological Laboratory of the US Geological Survey of transfer function and cross-axis sensitivities are good enough to justify the refinement and subsequent testing of advanced prototypes. These refinements and new testing are well along.

  20. The plastic scintillator detector calibration circuit for DAMPE

    NASA Astrophysics Data System (ADS)

    Yang, Haibo; Kong, Jie; Zhao, Hongyun; Su, Hong

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) is being constructed as a scientific satellite to observe high energy cosmic rays in space. Plastic scintillator detector array (PSD), developed by Institute of Modern Physics, Chinese Academy of Sciences (IMPCAS), is one of the most important parts in the payload of DAMPE which is mainly used for the study of dark matter. As an anti-coincidence detector, and a charged-particle identification detector, the PSD has a total of 360 electronic readout channels, which are distributed at four sides of PSD using four identical front end electronics (FEE). Each FEE reads out 90 charge signals output by the detector. A special calibration circuit is designed in FEE. FPGA is used for on-line control, enabling the calibration circuit to generate the pulse signal with known charge. The generated signal is then sent to the FEE for calibration and self-test. This circuit mainly consists of DAC, operation amplifier, analog switch, capacitance and resistance. By using controllable step pulse, the charge can be coupled to the charge measuring chip using the small capacitance. In order to fulfill the system's objective of large dynamic range, the FEE is required to have good linearity. Thus, the charge-controllable signal is needed to do sweep test on all channels in order to obtain the non-linear parameters for off-line correction. On the other hand, the FEE will run on the satellite for three years. The changes of the operational environment and the aging of devices will lead to parameter variation of the FEE, highlighting the need for regular calibration. The calibration signal generation circuit also has a compact structure and the ability to work normally, with the PSD system's voltage resolution being higher than 0.6%.

  1. A passivity criterion for sampled-data bilateral teleoperation systems.

    PubMed

    Jazayeri, Ali; Tavakoli, Mahdi

    2013-01-01

    A teleoperation system consists of a teleoperator, a human operator, and a remote environment. Conditions involving system and controller parameters that ensure the teleoperator passivity can serve as control design guidelines to attain maximum teleoperation transparency while maintaining system stability. In this paper, sufficient conditions for teleoperator passivity are derived for when position error-based controllers are implemented in discrete-time. This new analysis is necessary because discretization causes energy leaks and does not necessarily preserve the passivity of the system. The proposed criterion for sampled-data teleoperator passivity imposes lower bounds on the teleoperator's robots dampings, an upper bound on the sampling time, and bounds on the control gains. The criterion is verified through simulations and experiments.

  2. Experimental studies of tuned particle damper: Design and characterization

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Xi, Yanhui; Chen, Tianning; Ma, Zhihao

    2018-01-01

    To better suppress the structural vibration in the micro vibration and harsh environment, a new type of damper, tuned particle damper (TPD), was designed by combining the advantage of classical dynamic vibration absorber (DVA) and particle damper (PD). An equivalent theoretical model was established to describe the dynamic behavior of a cantilever system treated with TPD. By means of a series of sine sweep tests, the dynamic characteristic of TPD under different excitation intensity was explored and the damping performance of TPD was investigated by comparing with classical DVA and PD with the same mass ratio. Experimental results show that with the increasing of excitation intensity TPD shows two different dynamic characteristics successively, i.e., PD-like and DVA-like. TPD shows a wider suppression frequency band than classical DVA and better practicability than PD in the micro vibration environment. Moreover, to characterize the dynamic characteristic of TPD, a simple evaluation of the equivalent dynamic mass and equivalent dynamic damping of the cantilever system treated with TPD was performed by fitting the experimental data to the presented theoretical model. Finally, based on the rheology behaviors of damping particles reported by the previous research results, an approximate phase diagram which shows the motion states of damping particles in TPD was employed to analyze the dynamic characteristic of TPD and several motion states of damping particles in TPD were presented via a high-speed camera.

  3. Control model design to limit DC-link voltage during grid fault in a dfig variable speed wind turbine

    NASA Astrophysics Data System (ADS)

    Nwosu, Cajethan M.; Ogbuka, Cosmas U.; Oti, Stephen E.

    2017-08-01

    This paper presents a control model design capable of inhibiting the phenomenal rise in the DC-link voltage during grid- fault condition in a variable speed wind turbine. Against the use of power circuit protection strategies with inherent limitations in fault ride-through capability, a control circuit algorithm capable of limiting the DC-link voltage rise which in turn bears dynamics that has direct influence on the characteristics of the rotor voltage especially during grid faults is here proposed. The model results so obtained compare favorably with the simulation results as obtained in a MATLAB/SIMULINK environment. The generated model may therefore be used to predict near accurately the nature of DC-link voltage variations during fault given some factors which include speed and speed mode of operation, the value of damping resistor relative to half the product of inner loop current control bandwidth and the filter inductance.

  4. A movable-mass attitude stabilization system for cable-connected artificial-g space stations

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Hardison, T. L.

    1974-01-01

    The development of an active, momentum-exchange system to be used for attitude stabilization of a class of cable-connected artificial-g space stations is studied. A system which employs a single movable control mass is examined for the control of a space station which has the physical appearance of two cylinders connected axially by cables. The dynamic model for the space station includes its aggregate rigid body rotation and relative torsional rotation between the bodies. A zero torsional stiffness design (one cable) and a maximum torsional stiffness design (eight cables) are examined in various stages of deployment, for selected spin velocities ranging from 4 rpm upwards. A linear, time-invariant, feed-back control system is employed, with gains calculated via a root-specification procedure. The movable mass controller provides critical wobble-damping capability for the crew quarters for all configurations and spin velocity.

  5. Design and modeling of new suspension system using direct drive servo-valve system actuated by piezostack actuator

    NASA Astrophysics Data System (ADS)

    Han, Chulhee; Kim, Wan Ho; Choi, Seung-Bok

    2016-04-01

    This paper proposes a new type of a direct-drive valve (DDV) suspension system for vehicle controlled by the piezostack actuator associated with displacement amplifier. In order to achieve this goal, a new type of controllable piezostack DDV damper is designed and its performance evaluation of damping force is undertaken. Next, a full vehicle suspension system consisting of sprung mass, spring, tire and the piezostack DDV damper is constructed. After deriving the governing equations of the motion for the proposed the piezostack DDV suspension system, the skyhook controller is implemented for the realization of the full vehicle. Analytical model of the whole suspension system is then derived and performance characteristics are analyzed through numerical simulation. Finally, vibration control responses of the vehicle suspension system such as vertical acceleration are evaluated under both bump and sine road conditions.

  6. Vibration Damping Workshop Proceedings Held at Long Beach, California on 27-29 February 1984.

    DTIC Science & Technology

    1984-11-11

    control system with a sensing accelerometer plus a differentiating network is an extremely effective damping system, if - the magnitude of the... devopment /operating cost by 340M UU -2 p 0 i -L . ..’ - . , ,.. . ,, _,_ ... . .-; .. :: -- _. . , .:... : . -.. .*. - - -.- 2 -,-i-. . i

  7. Using the centre of percussion to design a steering controller for an autonomous race car

    NASA Astrophysics Data System (ADS)

    Kritayakirana, Krisada; Gerdes, J. Christian

    2012-01-01

    Understanding how a race car driver controls a vehicle at its friction limits can provide insights into the development of vehicle safety systems. In this paper, a race car driver's behaviour inspires the design of an autonomous racing controller. The resulting controller uses the vehicle's centre of percussion (COP) to design feedforward and feedback steering. At the COP, the effects of rotation and translation from the rear tire force cancel each other out; consequently, the feedforward steering command is robust to the disturbances from the rear tire force. Using the COP also simplifies the equations of motion, as the vehicle's lateral motion is decoupled from the vehicle's yaw motion and highlights the challenge of controlling a vehicle when the rear tires are highly saturated. The resulting dynamics can be controlled with a linear state feedback based on a lane-keeping system with additional yaw damping. Utilising Lyapunov theory, the closed-loop system is shown to remain stable even when the rear tires are highly saturated. The experimental results demonstrate that an autonomous vehicle can operate at its limits while maintaining a minimal lateral error.

  8. Influence of de qi on the immediate analgesic effect of SP6 acupuncture in patients with primary dysmenorrhoea and cold and dampness stagnation: a multicentre randomised controlled trial.

    PubMed

    Zhao, Min-Yi; Zhang, Peng; Li, Jing; Wang, Lin-Peng; Zhou, Wei; Wang, Yan-Xia; She, Yan-Fen; Ma, Liang-Xiao; Wang, Pei; Hu, Ni-Juan; Lin, Chi; Hu, Shang-Qin; Wu, Gui-Wen; Wang, Ya-Feng; Sun, Jun-Jun; Jiang, Si-Zhu; Zhu, Jiang

    2017-10-01

    The aim of this multicentre randomised controlled trial was to investigate the contribution of de qi to the immediate analgesic effect of acupuncture in patients with primary dysmenorrhoea and the specific traditional Chinese medicine diagnosis cold and dampness stagnation . Eighty-eight patients with primary dysmenorrhoea and cold and dampness stagnation were randomly assigned to de qi (n=43) or no de qi (n=45) groups and underwent 30 min of SP6 acupuncture. The de qi group received deep needling at SP6 with manipulation using thick needles; the no de qi group received shallow needling with no manipulation using thin needles. In both groups the pain scores and actual de qi sensation were evaluated using a visual analogue scale for pain (VAS-P) and the acupuncture de qi clinical assessment scale (ADCAS), respectively. Both groups showed reductions in VAS-P, with no signficant differences between groups. ADCAS scores showed 43/43 and 25/45 patients in de qi and no de qi groups, respectively, actually experienced de qi sensation. Independent of original group allocation, VAS-P reductions associated with actual de qi (n=68) were greater than those without (28.4±18.19 mm vs 14.6±12.28 mm, p=0.008). This study showed no significant difference in VAS-P scores in patients with primary dysmenorrhoea and cold and dampness stagnation immediately after SP6 acupuncture designed to induce or avoid de qi sensation. Both treatments significantly reduced VAS-P relative to baseline. Irrespective of group allocation, patients experiencing actual de qi sensation demonstrated larger reductions in pain score relative to those without, suggesting greater analgesic effects. Chinese Clinical Trial Registry (ChiCTR-TRC-13003086); Results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Further Flight Tests on the Effectiveness of Handley Page Automatic Control Slots

    NASA Technical Reports Server (NTRS)

    Pleines, Wilhelm

    1932-01-01

    Investigation of damping in roll within range of maximum lift with the Albatross L 75, with and without Handley Page automatic control slots, revealed the following: Without control slots, any attempt to go beyond a certain angle of attack near c(sub a max) in glide and climb, is followed by sudden sideslip. The conduct of the airplane throughout the motions in roll, moreover, confirmed that all attempts to higher angles of attack are accompanied by sudden loss of damping in roll.

  10. Optimal control theory (OWEM) applied to a helicopter in the hover and approach phase

    NASA Technical Reports Server (NTRS)

    Born, G. J.; Kai, T.

    1975-01-01

    A major difficulty in the practical application of linear-quadratic regulator theory is how to choose the weighting matrices in quadratic cost functions. The control system design with optimal weighting matrices was applied to a helicopter in the hover and approach phase. The weighting matrices were calculated to extremize the closed loop total system damping subject to constraints on the determinants. The extremization is really a minimization of the effects of disturbances, and interpreted as a compromise between the generalized system accuracy and the generalized system response speed. The trade-off between the accuracy and the response speed is adjusted by a single parameter, the ratio of determinants. By this approach an objective measure can be obtained for the design of a control system. The measure is to be determined by the system requirements.

  11. Two-phase damping and interface surface area in tubes with vertical internal flow

    NASA Astrophysics Data System (ADS)

    Béguin, C.; Anscutter, F.; Ross, A.; Pettigrew, M. J.; Mureithi, N. W.

    2009-01-01

    Two-phase flow is common in the nuclear industry. It is a potential source of vibration in piping systems. In this paper, two-phase damping in the bubbly flow regime is related to the interface surface area and, therefore, to flow configuration. Experiments were performed with a vertical tube clamped at both ends. First, gas bubbles of controlled geometry were simulated with glass spheres let to settle in stagnant water. Second, air was injected in stagnant alcohol to generate a uniform and measurable bubble flow. In both cases, the two-phase damping ratio is correlated to the number of bubbles (or spheres). Two-phase damping is directly related to the interface surface area, based on a spherical bubble model. Further experiments were carried out on tubes with internal two-phase air-water flows. A strong dependence of two-phase damping on flow parameters in the bubbly flow regime is observed. A series of photographs attests to the fact that two-phase damping in bubbly flow increases for a larger number of bubbles, and for smaller bubbles. It is highest immediately prior to the transition from bubbly flow to slug or churn flow regimes. Beyond the transition, damping decreases. It is also shown that two-phase damping increases with the tube diameter.

  12. Modeling and control design of a wind tunnel model support

    NASA Technical Reports Server (NTRS)

    Howe, David A.

    1990-01-01

    The 12-Foot Pressure Wind Tunnel at Ames Research Center is being restored. A major part of the restoration is the complete redesign of the aircraft model supports and their associated control systems. An accurate trajectory control servo system capable of positioning a model (with no measurable overshoot) is needed. Extremely small errors in scaled-model pitch angle can increase airline fuel costs for the final aircraft configuration by millions of dollars. In order to make a mechanism sufficiently accurate in pitch, a detailed structural and control-system model must be created and then simulated on a digital computer. The model must contain linear representations of the mechanical system, including masses, springs, and damping in order to determine system modes. Electrical components, both analog and digital, linear and nonlinear must also be simulated. The model of the entire closed-loop system must then be tuned to control the modes of the flexible model-support structure. The development of a system model, the control modal analysis, and the control-system design are discussed.

  13. Segmented media and medium damping in microwave assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Bai, Xiaoyu; Zhu, Jian-Gang

    2018-05-01

    In this paper, we present a methodology of segmented media stack design for microwave assisted magnetic recording. Through micro-magnetic modeling, it is demonstrated that an optimized media segmentation is able to yield high signal-to-noise ratio even with limited ac field power. With proper segmentation, the ac field power could be utilized more efficiently and this can alleviate the requirement for medium damping which has been previously considered a critical limitation. The micro-magnetic modeling also shows that with segmentation optimization, recording signal-to-noise ratio can have very little dependence on damping for different recording linear densities.

  14. Damping treatment for an aircraft hard-mounted antenna system in a vibroacoustic environment

    NASA Astrophysics Data System (ADS)

    Tate, Ralph E.; Rupert, Carl L.

    1990-10-01

    This paper discusses the design, analysis, and testing of 'add-on' damping treatments for the Band 6, 7, 8 radar antenna packages that are hard-mounted on the B-1B Aft Equipment Bay (AEB) where equipment failures are routinely occurring during take-off maneuvers at maximum throttle settings. This damage results from the intense vibroacoustical environment generated by the three-stage afterburning engines. Failure rates have been sufficiently high to warrant a 'quick fix' involving damping treatments that can be installed in a short time with minimal modification to the existing structure.

  15. Characterization of viscoelastic response and damping of composite materials used in flywheel rotors

    NASA Astrophysics Data System (ADS)

    Chen, Jianmin

    The long-term goal for spacecraft flywheel systems with higher energy density at the system level requires new and innovative composite material concepts. Multi-Direction Composite (MDC) offers significant advantages over traditional filament-wound and multi-ring press-fit filament-wound wheels in providing higher energy density (i.e., less mass), better crack resistance, and enhanced safety. However there is a lack of systematic characterization for dynamic properties of MDC composite materials. In order to improve the flywheel materials reliability, durability and life time, it is very important to evaluate the time dependent aging effects and damping properties of MDC material, which are significant dynamic parameter for vibration and sound control, fatigue endurance, and impact resistance. The physical aging effects are quantified based on a set of creep curves measured at different aging time or different aging temperature. One parameter (tau) curve fit was proposed to represent the relationship of aging time and aging temperature between different master curves. The long term mechanical behavior was predicted by obtained master curves. The time and temperature shift factors of matrix were obtained from creep curves and the aging time shift rate were calculated. The aging effects on composite are obtained from experiments and compared with prediction. The mechanical quasi-behavior of MDC composite was analyzed. The correspondence principle was used to relate quasi-static elastic properties of composite materials to time-dependent properties of its constituent materials (i.e., fiber and matrix). The Prony series combined with the multi-data fitting method was applied to inverse Laplace transform and to calculate the time dependent stiffness matrix effectively. Accelerated time-dependent deformation of two flywheel rim designs were studied for a period equivalent to 31 years and are compared with hoop reinforcement only composite. Damping of pure resin and T700/epoxy composite lamina and laminate in longitudinal and transverse directions were investigated experimentally and analytically. The effect of aging on damping was also studied by placing samples at 60°C in an oven for extended periods. Damping master curves versus frequency were constructed from individual curves at different temperatures based on the Arrhenius equation. The damping response of the composite lamina was used to predict the response of laminate composites. Analytical results give close numerical values to experimental results from damping of cantilever beam laminated composite samples.

  16. An enhanced nonlinear damping approach accounting for system constraints in active mass dampers

    NASA Astrophysics Data System (ADS)

    Venanzi, Ilaria; Ierimonti, Laura; Ubertini, Filippo

    2015-11-01

    Active mass dampers are a viable solution for mitigating wind-induced vibrations in high-rise buildings and improve occupants' comfort. Such devices suffer particularly when they reach force saturation of the actuators and maximum extension of their stroke, which may occur in case of severe loading conditions (e.g. wind gust and earthquake). Exceeding actuators' physical limits can impair the control performance of the system or even lead to devices damage, with consequent need for repair or substitution of part of the control system. Controllers for active mass dampers should account for their technological limits. Prior work of the authors was devoted to stroke issues and led to the definition of a nonlinear damping approach, very easy to implement in practice. It consisted of a modified skyhook algorithm complemented with a nonlinear braking force to reverse the direction of the mass before reaching the stroke limit. This paper presents an enhanced version of this approach, also accounting for force saturation of the actuator and keeping the simplicity of implementation. This is achieved by modulating the control force by a nonlinear smooth function depending on the ratio between actuator's force and saturation limit. Results of a numerical investigation show that the proposed approach provides similar results to the method of the State Dependent Riccati Equation, a well-established technique for designing optimal controllers for constrained systems, yet very difficult to apply in practice.

  17. Greenhouse evaluation of Bacillus subtilis AP-01 and Trichoderma harzianum AP-001 in controlling tobacco diseases.

    PubMed

    Maketon, Monchan; Apisitsantikul, Jirasak; Siriraweekul, Chatchai

    2008-04-01

    Two biological control agents, Bacillus subtilis AP-01 (Larminar(™)) and Trichoderma harzianum AP-001 (Trisan(™)) alone or/in combination were investigated in controlling three tobacco diseases, including bacterial wilt (Ralstonia solanacearum), damping-off (Pythium aphanidermatum), and frogeye leaf spot (Cercospora nicotiana). Tests were performed in greenhouse by soil sterilization prior to inoculation of the pathogens. Bacterial-wilt and damping off pathogens were drenched first and followed with the biological control agents and for comparison purposes, two chemical fungicides. But for frogeye leaf spot, which is an airborne fungus, a spraying procedure for every treatment including a chemical fungicide was applied instead of drenching. Results showed that neither B. subtilis AP-01 nor T harzianum AP-001 alone could control the bacterial wilt, but when combined, their controlling capabilities were as effective as a chemical treatment. These results were also similar for damping-off disease when used in combination. In addition, the combined B. subtilis AP-01 and T. harzianum AP-001 resulted in a good frogeye leaf spot control, which was not significantly different from the chemical treatment.

  18. [Study on the distribution of Chinese medical constitutions of hypertension complicated diabetes patients].

    PubMed

    Han, Shu-Hui; Li, Kang-Zeng; Zheng, Jian-Ming; Zheng, Zhi-Xiong; Lin, Miao-Chun; Xu, Ming-Yuan; Yue, Zeng-Chang

    2013-02-01

    To investigate the distribution features of Chinese medical constitutions in hypertension complicated diabetes patients. Recruited were 251 primary hypertension inpatients at the Department of Neurology and the Department of Cardiology, Mindong Hospital of Ningde City from October 2010 to March 2011. They were assigned to two groups according to whether they were complicated with diabetes, i.e., the primary hypertension complicated diabetes (as the case group, 78 cases) and the primary hypertension without complicated diabetes (as the control group, 173 cases). The constitution types were investigated by questionnaire. The constitution type distribution was compared between the two groups. The data including gender, age, and the distribution of the constitution type were compared between the two groups. The levels of TG, TC, LDL-C, Hb, FPG, and ALB were detected on the 2nd day after admission. The levels of TG, TC, LDL-C, Hb, and ALB were compared be- tween the two groups in patients of yin deficiency constitution, phlegm dampness constitution, and qi deficiency constitution. There was no statistical difference in the hypertension grading, the disease course, and chronic disease complications between the two groups (P > 0.05). The main constitution types were yin deficiency (accounting for 26.0%), phlegm dampness (accounting for 19.1%), and qi deficiency (accounting for 19.1%) in the control group. The main constitution types were yin deficiency (accounting for 32.1%), phlegm dampness (accounting for 30.8%), and qi deficiency (accounting for 17.9%) in the case group. The ratio of phlegm dampness type in the case group was higher than that in the control group with statistical difference (P = 0.041). There was no statistical difference in the constitution distribution in the same gender between the two groups (P > 0.05). There was no statistical difference in the constitution distribution in those younger than 80 years between the two groups (P > 0.05). Compared with those older than 80 years in the control group, the ratio of phlegm dampness was higher, and the ratios of yang deficiency, yin deficiency, qi deficiency, and dampness heat were lower in the case group with statistical difference (P = 0.020). There was no statistical difference in the constitution distribution among different age stages in the case group (P > 0. 05). But there was statistical difference in the constitution distribution among different age stages in the control group (P < 0.05). The yin deficiency and qi deficiency constitutions were dominated in thinner patients of the control group, while yin deficiency constitution was dominated in thinner patients of the case group, showing no statistical difference between the two groups (P > 0.05). There was no statistical difference in the distribution of constitution type in overweight patients between the two groups (P = 0.458). Compared with those of gentle type constitution in the same group, the levels of TC and LDL-C increased in those of phlegm dampness constitution in the two groups (P < 0.05). The level of TC increased in those of qi deficiency constitution in the case group. The level of Hb decreased in those of qi deficiency constitution in the control group (P < 0.05). Compared with those of qi deficiency constitution in the same group, the levels of TC and Hb obviously increased in those of phlegm dampness constitution in the control group (P < 0.05). The level of ALB increased in those of yin deficiency constitution in the case group (P < 0. 05). Compared with the control group, the level of FPG of those of each constitution increased in the case group (P < 0.05) ,.and the level of TC increased in those of qi deficiency constitution (P = 0.007). The main constitution types of hypertension complicated diabetes patients were yin deficiency, phlegm dampness, and qi deficiency. The ratio of phlegm dampness was higher in hypertension complicated diabetes patients than hypertension without complicated diabetes patients. The levels of TC and LDL-C were higher in those of phlegm dampness constitution type. The level of TC was higher in hypertension complicated diabetes patients of qi deficiency constitution.

  19. Design of an oil squeeze film damper bearing for a multimass flexible-rotor bearing system

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.; Gunter, E. J., Jr.; Fleming, D. P.

    1975-01-01

    A single-mass flexible-rotor analysis was used to optimize the stiffness and damping of a flexible support for a symmetric five-mass rotor. The flexible, damped support attenuates the amplitudes of motions and forces transmitted to the support bearings when the rotor operates through and above its first bending critical speed. An oil squeeze film damper was designed based on short bearing lubrication theory. The damper design was verified by an unbalance response computer program. Rotor amplitudes were reduced by a factor of 16 and loads reduced by a factor of 36 compared with the same rotor with rigid bearing supports.

  20. An experimental and theoretical study of structural damping in compliant foil bearings

    NASA Technical Reports Server (NTRS)

    Ku, C.-P. Roger

    1994-01-01

    This paper describes an experimental investigation into the dynamic characteristics of corrugated foil (bump foil) strips used in compliant surface foil bearings. This study provided and opportunity to quantify the structural damping of bump foil strips. The experimental data were compared to results obtained by a theoretical model developed earlier. The effects of bearing design parameters, such as static loads, dynamic displacement amplitudes, bump configurations, pivot locations, surface coatings, and lubricant were also evaluated. An understanding of the dynamic characteristics of bump foil strips resulting from this work offers designers a means for enhancing the design of high-performance compliant foil bearings.

  1. Piezoelectric Shunt Vibration Damping of F-15 Panel under High Acoustic Excitation

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Yau; Turner, Travis L.; Rizzi, Stephen A.

    2000-01-01

    At last year's SPIE symposium, we reported results of an experiment on structural vibration damping of an F-15 underbelly panel using piezoelectric shunting with five bonded PZT transducers. The panel vibration was induced with an acoustic speaker at an overall sound pressure level (OASPL) of about 90 dB. Amplitude reductions of 13.45 and 10.72 dB were achieved for the first and second modes, respectively, using single- and multiple-mode shunting. It is the purpose of this investigation to extend the passive piezoelectric shunt-damping technique to control structural vibration induced at higher acoustic excitation levels, and to examine the controllability and survivability of the bonded PZT transducers at these high levels. The shunting experiment was performed with the Thermal Acoustic Fatigue Apparatus (TAFA) at the NASA Langley Research Center using the same F-15 underbelly panel. The TAFA is a progressive wave tube facility. The panel was mounted in one wall of the TAFA test section using a specially designed mounting fixture such that the panel was subjected to grazing-incidence acoustic excitation. Five PZT transducers were used with two shunt circuits designed to control the first and second modes of the structure between 200 and 400 Hz. We first determined the values of the shunt inductance and resistance at an OASPL of 130 dB. These values were maintained while we gradually increased the OASPL from 130 to 154 dB in 6-dB steps. During each increment, the frequency response function between accelerometers on the panel and the acoustic excitation measured by microphones, before and after shunting, were recorded. Good response reduction was observed up to the 148dB level. The experiment was stopped at 154 dB due to wire breakage from vibration at a transducer wire joint. The PZT transducers, however, were still bonded well on the panel and survived at this high dB level. We also observed shifting of the frequency peaks toward lower frequency when the OASPL was increased. Detailed experimental results will be presented.

  2. Robust Feedback Control of Flow Induced Structural Radiation of Sound

    NASA Technical Reports Server (NTRS)

    Heatwole, Craig M.; Bernhard, Robert J.; Franchek, Matthew A.

    1997-01-01

    A significant component of the interior noise of aircraft and automobiles is a result of turbulent boundary layer excitation of the vehicular structure. In this work, active robust feedback control of the noise due to this non-predictable excitation is investigated. Both an analytical model and experimental investigations are used to determine the characteristics of the flow induced structural sound radiation problem. The problem is shown to be broadband in nature with large system uncertainties associated with the various operating conditions. Furthermore the delay associated with sound propagation is shown to restrict the use of microphone feedback. The state of the art control methodologies, IL synthesis and adaptive feedback control, are evaluated and shown to have limited success for solving this problem. A robust frequency domain controller design methodology is developed for the problem of sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain sequential loop shaping techniques. System uncertainty, sound pressure level reduction performance, and actuator constraints are included in the design process. Using this design method, phase lag was added using non-minimum phase zeros such that the beneficial plant dynamics could be used. This general control approach has application to lightly damped vibration and sound radiation problems where there are high bandwidth control objectives requiring a low controller DC gain and controller order.

  3. A four-axis hand controller for helicopter flight control

    NASA Technical Reports Server (NTRS)

    Demaio, Joe

    1993-01-01

    A proof-of-concept hand controller for controlling lateral and longitudinal cyclic pitch, collective pitch and tail rotor thrust was developed. The purpose of the work was to address problems of operator fatigue, poor proprioceptive feedback and cross-coupling of axes associated with many four-axis controller designs. The present design is an attempt to reduce cross-coupling to a level that can be controlled with breakout force, rather than to eliminate it entirely. The cascaded design placed lateral and longitudinal cyclic in their normal configuration. Tail rotor thrust was placed atop the cyclic controller. A left/right twisting motion with the wrist made the control input. The axis of rotation was canted outboard (clockwise) to minimize cross-coupling with the cyclic pitch axis. The collective control was a twist grip, like a motorcycle throttle. Measurement of the amount of cross-coupling involved in pure, single-axis inputs showed cross coupling under 10 percent of full deflection for all axes. This small amount of cross-coupling could be further reduced with better damping and force gradient control. Fatigue was not found to be a problem, and proprioceptive feedback was adequate for all flight tasks executed.

  4. Vibrating Systems with Singular Mass-Inertia Matrices

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1996-01-01

    Vibrating systems with singular mass-inertia matrices arise in recent continuum models of Smart Structures (beams with PZT strips) in assessing the damping attainable with rate feedback. While they do not quite yield 'distributed' controls, we show that they can provide a fixed nonzero lower bound for the damping coefficient at all mode frequencies. The mathematical machinery for modelling the motion involves the theory of Semigroups of Operators. We consider a Timoshenko model for torsion only, a 'smart string,' where the damping coefficient turns out to be a constant at all frequencies. We also observe that the damping increases initially with the feedback gain but decreases to zero eventually as the gain increases without limit.

  5. Generalization of the subsonic kernel function in the s-plane, with applications to flutter analysis

    NASA Technical Reports Server (NTRS)

    Cunningham, H. J.; Desmarais, R. N.

    1984-01-01

    A generalized subsonic unsteady aerodynamic kernel function, valid for both growing and decaying oscillatory motions, is developed and applied in a modified flutter analysis computer program to solve the boundaries of constant damping ratio as well as the flutter boundary. Rates of change of damping ratios with respect to dynamic pressure near flutter are substantially lower from the generalized-kernel-function calculations than from the conventional velocity-damping (V-g) calculation. A rational function approximation for aerodynamic forces used in control theory for s-plane analysis gave rather good agreement with kernel-function results, except for strongly damped motion at combinations of high (subsonic) Mach number and reduced frequency.

  6. Validity of Miles Equation in Predicting Propellant Slosh Damping in Baffled Tanks at Variable Slosh Amplitude

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2018-01-01

    Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involves the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations were mainly carried out by extensive experiments. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between the empirical Miles equation and experimental measurements, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use Computational Fluid Dynamics (CFD) technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. Loci-STREAM-VOF, a well validated CFD solver developed at NASA MSFC, is applied to study the vorticity field around a baffle and around the fluid-gas interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data is then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (d/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.

  7. Investigation of Damping Physics and CFD Tool Validation for Simulation of Baffled Tanks at Variable Slosh Amplitude

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2016-01-01

    Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involves the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations were mainly carried out by extensive experiments. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between the empirical Miles equation and experimental measurements, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use Computational Fluid Dynamics (CFD) technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. Loci-STREAM-VOF, a well validated CFD solver developed at NASA MSFC, is applied to study the vorticity field around a baffle and around the fluid-gas interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data is then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (d/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.

  8. Development of procedures for calculating stiffness and damping properties of elastomers in engineering applications. Part 1: Verification of basic methods

    NASA Technical Reports Server (NTRS)

    Chiang, T.; Tessarzik, J. M.; Badgley, R. H.

    1972-01-01

    The primary aim of this investigation was verification of basic methods which are to be used in cataloging elastomer dynamic properties (stiffness and damping) in terms of viscoelastic model constants. These constants may then be used to predict dynamic properties for general elastomer shapes and operating conditions, thereby permitting optimum application of elastomers as energy absorption and/or energy storage devices in the control of vibrations in a broad variety of applications. The efforts reported involved: (1) literature search; (2) the design, fabrication and use of a test rig for obtaining elastomer dynamic test data over a wide range of frequencies, amplitudes, and preloads; and (3) the reduction of the test data, by means of a selected three-element elastomer model and specialized curve fitting techniques, to material properties. Material constants thus obtained have been used to calculate stiffness and damping for comparison with measured test data. These comparisons are excellent for a number of test conditions and only fair to poor for others. The results confirm the validity of the basic approach of the overall program and the mechanics of the cataloging procedure, and at the same time suggest areas in which refinements should be made.

  9. Improved Simplified Methods for Effective Seismic Analysis and Design of Isolated and Damped Bridges in Western and Eastern North America

    NASA Astrophysics Data System (ADS)

    Koval, Viacheslav

    The seismic design provisions of the CSA-S6 Canadian Highway Bridge Design Code and the AASHTO LRFD Seismic Bridge Design Specifications have been developed primarily based on historical earthquake events that have occurred along the west coast of North America. For the design of seismic isolation systems, these codes include simplified analysis and design methods. The appropriateness and range of application of these methods are investigated through extensive parametric nonlinear time history analyses in this thesis. It was found that there is a need to adjust existing design guidelines to better capture the expected nonlinear response of isolated bridges. For isolated bridges located in eastern North America, new damping coefficients are proposed. The applicability limits of the code-based simplified methods have been redefined to ensure that the modified method will lead to conservative results and that a wider range of seismically isolated bridges can be covered by this method. The possibility of further improving current simplified code methods was also examined. By transforming the quantity of allocated energy into a displacement contribution, an idealized analytical solution is proposed as a new simplified design method. This method realistically reflects the effects of ground-motion and system design parameters, including the effects of a drifted oscillation center. The proposed method is therefore more appropriate than current existing simplified methods and can be applicable to isolation systems exhibiting a wider range of properties. A multi-level-hazard performance matrix has been adopted by different seismic provisions worldwide and will be incorporated into the new edition of the Canadian CSA-S6-14 Bridge Design code. However, the combined effect and optimal use of isolation and supplemental damping devices in bridges have not been fully exploited yet to achieve enhanced performance under different levels of seismic hazard. A novel Dual-Level Seismic Protection (DLSP) concept is proposed and developed in this thesis which permits to achieve optimum seismic performance with combined isolation and supplemental damping devices in bridges. This concept is shown to represent an attractive design approach for both the upgrade of existing seismically deficient bridges and the design of new isolated bridges.

  10. Bryan's effect and anisotropic nonlinear damping

    NASA Astrophysics Data System (ADS)

    Joubert, Stephan V.; Shatalov, Michael Y.; Fay, Temple H.; Manzhirov, Alexander V.

    2018-03-01

    In 1890, G. H. Bryan discovered the following: "The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell." We call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG. Consequently, in this paper, we assume that all such imperfections are either minimised or eliminated by some known control method and that only damping is present within the VG. If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced into the equations of motion. Using a mixture of numeric and symbolic analysis on the ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to an approximate average), that Bryan's law is affected by any form of such damping, causing pattern drift, compromising the accuracy of the VG.

  11. Flexible structure control experiments using a real-time workstation for computer-aided control engineering

    NASA Technical Reports Server (NTRS)

    Stieber, Michael E.

    1989-01-01

    A Real-Time Workstation for Computer-Aided Control Engineering has been developed jointly by the Communications Research Centre (CRC) and Ruhr-Universitaet Bochum (RUB), West Germany. The system is presently used for the development and experimental verification of control techniques for large space systems with significant structural flexibility. The Real-Time Workstation essentially is an implementation of RUB's extensive Computer-Aided Control Engineering package KEDDC on an INTEL micro-computer running under the RMS real-time operating system. The portable system supports system identification, analysis, control design and simulation, as well as the immediate implementation and test of control systems. The Real-Time Workstation is currently being used by CRC to study control/structure interaction on a ground-based structure called DAISY, whose design was inspired by a reflector antenna. DAISY emulates the dynamics of a large flexible spacecraft with the following characteristics: rigid body modes, many clustered vibration modes with low frequencies and extremely low damping. The Real-Time Workstation was found to be a very powerful tool for experimental studies, supporting control design and simulation, and conducting and evaluating tests withn one integrated environment.

  12. Design considerations of Miller oscillators for high-sensitivity QCM sensors in damping media.

    PubMed

    Rodriguez-Pardo, Loreto; Fariña, Jose; Gabrielli, Claude; Perrot, Hubert; Brendel, Remi

    2007-10-01

    In this paper, a new contribution to the design of quartz crystal oscillators for high-sensitivity microbalance sensors used in liquid media is presented. The oscillation condition for a Miller configuration was studied to work in a wide dynamic range of the resonator losses. The equations relating the values of the active and passive components with the maximum supported damping and mass were obtained. Also, the conditions to obtain a stable frequency according to the resonator damping (R(Q)), the static capacity (Cp) and the filter frequency (f(F)) were found. Under these conditions, the circuit oscillation frequency will be proportional to the resonant series frequency and does not depend on the previous parameters (R(Q), f(F), and Cp). If these conditions cannot be satisfied, the expression of the oscillation frequency is given and the discrimination of these effects is obtained through resonator frequency measurements.

  13. Nondestructive Characterization Techniques Used for Ceramic Matrix Composite Life Determination

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Koenig, John; Ellingson, Bill; Spohnholtz, Todd

    2000-01-01

    Recent results indicate that the specific damping capacity and resonant frequency measurements taken periodically during a component's lifetime is able to quantify the mechanical fatigue of CMCS. This gives hope for the potential of determining the actual and residual life of CMC materials using a combination of nondestructive techniques. If successful, then this new paradigm for life prediction of CMCs could revolutionize the approach for designing and servicing CMC components, thereby significantly reducing costs for design, development, health monitoring, and maintenance of CMC components and systems. The Nondestructive Characterization (NDC) life prediction approach would complement life prediction using micromechanics and continuum finite element models. This paper reports on the initial concept of NDC life prediction, a review of the C/SiC blisk damping data, and how changes in the specific damping capacity & ultrasonic elastic modulus data have established the concept as a possibility.

  14. Concept for Determining the Life of Ceramic Matrix Composites Using Nondestructive Characterization Techniques

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Ellingson, Bill; Spohnholtz, Todd; Koenig, John

    2000-01-01

    Damping measurements have been taken on ceramic matrix composite (CMC) turbopump blisks in the as fabricated, post proof testing, and post turbopump testing conditions. These results indicate that damping is able to quantify fatigue of the CMC blisk. This gives hope for the potential of determining the actual and residual life of CMC materials using a combination of nondestructive techniques. If successful, then this new paradigm for life prediction of CMCs could revolutionize the approach for designing and servicing CMC components, thereby significantly reducing costs for design, development, health monitoring, and maintenance of CMC components and systems. The Nondestructive Characterization (NDC) life prediction approach would complement life prediction using micromechanics and continuum finite element models. This paper reports on the initial concept of NDC life prediction and how changes in damping and ultrasonic elastic modulus data have established the concept as a possibility.

  15. A 17 degree of freedom anthropomorphic manipulator

    NASA Technical Reports Server (NTRS)

    Vold, Havard I.; Karlen, James P.; Thompson, Jack M., Jr.; Farrell, James D.; Eismann, Paul H.

    1989-01-01

    A 17 axis anthropomorphic manipulator, providing coordinated control of two seven degree of freedom arms mounted on a three degree of freedom torso-waist assembly, is presented. This massively redundant telerobot, designated the Robotics Research K/B-2017 Dexterous Manipulator, employs a modular mechanism design with joint-mounted actuators based on brushless motors and harmonic drive gear reducers. Direct joint torque control at the servo level causes these high-output joint drives to behave like direct-drive actuators, facilitating the implementation of an effective impedance control scheme. The redundant, but conservative motion control system models the manipulator as a spring-loaded linkage with viscous damping and rotary inertia at each joint. This approach allows for real time, sensor-driven control of manipulator pose using a hierarchy of competing rules, or objective functions, to avoid unplanned collisions with objects in the workplace, to produce energy-efficient, graceful motion, to increase leverage, to control effective impedance at the tool or to favor overloaded joints.

  16. Cancellation control law for lateral-directional dynamics of a supermaneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Snell, Antony

    1993-01-01

    Cancellation control laws are designed which reduce the high levels of lateral acceleration encountered during aggressive rolling maneuvers executed at high angle of attack. Two independent problem are examined. One is to reduce lateral acceleration at the mass center, while the other focuses on lateral acceleration at the pilot's station, located 7.0 m forward of the mass center. Both of these problems are challenging and somewhat different in their limitations. In each case the design is based on a linearization of the lateral-directional dynamics about a high angle of attack condition. The controllers incorporate dynamic inversion inner loops to provide control of stability-axis roll- and yaw-rates and then employ cancellation filters in both feed-forward and feed-back signal paths. The relative simplicity of the control laws should allow nonlinear generalizations to be devised. Although it is shown that lateral acceleration can be reduced substantially by such control laws, this is at the cost of slowed roll response, poor dutch-roll damping or a combination of the two.

  17. Sampled-Data Techniques Applied to a Digital Controller for an Altitude Autopilot

    NASA Technical Reports Server (NTRS)

    Schmidt, Stanley F.; Harper, Eleanor V.

    1959-01-01

    Sampled-data theory, using the Z transformation, is applied to the design of a digital controller for an aircraft-altitude autopilot. Particular attention is focused on the sensitivity of the design to parameter variations and the abruptness of the response, that is, the normal acceleration required to carry out a transient maneuver. Consideration of these two characteristics of the system has shown that the finite settling time design method produces an unacceptable system, primarily because of the high sensitivity of the response to parameter variations, although abruptness can be controlled by increasing the sampling period. Also demonstrated is the importance of having well-damped poles or zeros if cancellation is attempted in the design methods. A different method of smoothing the response and obtaining a design which is not excessively sensitive is proposed, and examples are carried through to demonstrate the validity of the procedure. This method is based on design concepts of continuous systems, and it is shown that if no pole-zero cancellations are allowed in the design, one can obtain a response which is not too abrupt, is relatively insensitive to parameter variations, and is not sensitive to practical limits on control-surface rate. This particular design also has the simplest possible pulse transfer function for the digital controller. Simulation techniques and root loci are used for the verification of the design philosophy.

  18. Comparison of weighting techniques for acoustic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Jeong, Gangwon; Hwang, Jongha; Min, Dong-Joo

    2017-12-01

    To reconstruct long-wavelength structures in full waveform inversion (FWI), the wavefield-damping and weighting techniques have been used to synthesize and emphasize low-frequency data components in frequency-domain FWI. However, these methods have some weak points. The application of wavefield-damping method on filtered data fails to synthesize reliable low-frequency data; the optimization formula obtained introducing the weighting technique is not theoretically complete, because it is not directly derived from the objective function. In this study, we address these weak points and present how to overcome them. We demonstrate that the source estimation in FWI using damped wavefields fails when the data used in the FWI process does not satisfy the causality condition. This phenomenon occurs when a non-causal filter is applied to data. We overcome this limitation by designing a causal filter. Also we modify the conventional weighting technique so that its optimization formula is directly derived from the objective function, retaining its original characteristic of emphasizing the low-frequency data components. Numerical results show that the newly designed causal filter enables to recover long-wavelength structures using low-frequency data components synthesized by damping wavefields in frequency-domain FWI, and the proposed weighting technique enhances the inversion results.

  19. Applications of flight control system methods to an advanced combat rotorcraft

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Fletcher, Jay W.; Morris, Patrick M.; Tucker, George T.

    1989-01-01

    Advanced flight control system design, analysis, and testing methodologies developed at the Ames Research Center are applied in an analytical and flight test evaluation of the Advanced Digital Optical Control System (ADOCS) demonstrator. The primary objectives are to describe the knowledge gained about the implications of digital flight control system design for rotorcraft, and to illustrate the analysis of the resulting handling-qualities in the context of the proposed new handling-qualities specification for rotorcraft. Topics covered in-depth are digital flight control design and analysis methods, flight testing techniques, ADOCS handling-qualities evaluation results, and correlation of flight test results with analytical models and the proposed handling-qualities specification. The evaluation of the ADOCS demonstrator indicates desirable response characteristics based on equivalent damping and frequency, but undersirably large effective time-delays (exceeding 240 m sec in all axes). Piloted handling-qualities are found to be desirable or adequate for all low, medium, and high pilot gain tasks; but handling-qualities are inadequate for ultra-high gain tasks such as slope and running landings.

  20. Determination of decay coefficients for combustors with acoustic absorbers

    NASA Technical Reports Server (NTRS)

    Mitchell, C. E.; Espander, W. R.; Baer, M. R.

    1972-01-01

    An analytical technique for the calculation of linear decay coefficients in combustors with acoustic absorbers is presented. Tuned circumferential slot acoustic absorbers were designed for the first three transverse modes of oscillation, and decay coefficients for these absorbers were found as a function of backing distance for seven different chamber configurations. The effectiveness of the absorbers for off-design values of the combustion response and acoustic mode is also investigated. Results indicate that for tuned absorbers the decay coefficient increases approximately as the cube of the backing distance. For most off-design situations the absorber still provides a damping effect. However, if an absorber designed for some higher mode of oscillation is used to damp lower mode oscillations, a driving effect is frequently found.

Top