Science.gov

Sample records for dams pacific salmon

  1. Elevated streamflows increase dam passage by juvenile coho salmon during winter: Implications of climate change in the Pacific Northwest

    USGS Publications Warehouse

    Kock, Tobias J.; Liedtke, Theresa L.; Rondorf, Dennis W.; Serl, John D.; Kohn, Mike; Bumbaco, Karin A.

    2012-01-01

    A 4-year evaluation was conducted to determine the proportion of juvenile coho salmon Oncorhynchus kisutch passing Cowlitz Falls Dam, on the Cowlitz River, Washington, during winter. River and reservoir populations of coho salmon parr were monitored using radiotelemetry to determine if streamflow increases resulted in increased downstream movement and dam passage. This was of interest because fish that pass downstream of Cowlitz Falls Dam become landlocked in Riffe Lake and are lost to the anadromous population. Higher proportions of reservoir-released fish (0.391-0.480) passed Cowlitz Falls Dam than did river-released fish (0.037-0.119). Event-time analyses demonstrated that streamflow increases were important predictors of dam passage rates during the study. The estimated effect of increasing streamflows on the risk of dam passage varied annually and ranged from 9% to 75% for every 28.3 m3/s increase in streamflow. These results have current management implications because they demonstrate the significance of dam passage by juvenile coho salmon during winter months when juvenile fish collection facilities are typically not operating. The results also have future management implications because climate change predictions suggest that peak streamflow timing for many watersheds in the Pacific Northwest will shift from late spring and early summer to winter. Increased occurrence of intense winter flood events is also expected. Our results demonstrate that juvenile coho salmon respond readily to streamflow increases and initiate downstream movements during winter months, which could result in increased passage at dams during these periods if climate change predictions are realized in the coming decades.

  2. 2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, headworks overflow weir to center left, view to east - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  3. 1. Salmon Creek Diversion Dam, weir (to left), sand and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Salmon Creek Diversion Dam, weir (to left), sand and silt sluice gate (center), main canal headworks (to right), view to northwest - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  4. The Sensor Fish - Making Dams More Salmon-Friendly

    SciTech Connect

    Carlson, Thomas J.; Duncan, Joanne P.; Gilbride, Theresa L.; Keilman, Geogre

    2004-07-31

    This article describes the Sensor Fish, an instrument package that travels through hydroelectric dams collecting data on the hazardous conditions that migrating salmon smolt encounter. The Sensor Fish was developed by Pacific Northwest National Laboratory with funding from DOE and the US Army Corps of Engineers and has been used at several federal and utility-run hydroelectric projects on the Snake and Columbia Rivers of the US Pacific Northwest. The article describes the evolution of the Sensor Fish design and provides examples of its use at McNary and Ice Harbor dams.

  5. Sustainable Fisheries Management: Pacific Salmon

    USGS Publications Warehouse

    Knudsen, E. Eric; Steward, C.R.; MacDonald, Donald; Williams, J.E.

    2000-01-01

    What has happened to the salmon resource in the Pacific Northwest? Who is responsible and what can be done to reverse the decline in salmon populations? The responsibly falls on everyone involved - fishermen, resource managers and concerned citizens alike - to take the steps necessary to ensure that salmon populations make a full recovery. This collection of papers examines the state of the salmon fisheries in the Pacific Northwest. They cover existing methods and supply model approaches for alternative solutions. The editors stress the importance of input from and cooperation with all parties involved to create a viable solution. Grass roots education and participation is the key to public support - and ultimately the success - of whatever management solutions are developed. A unique and valuable scientific publication, Sustainable Fisheries Management: Pacific Salmon clearly articulates the current state of the Pacific salmon resource, describes the key features of its management, and provides important guidance on how we can make the transition towards sustainable fisheries. The solutions presented in this book provide the basis of a strategy for sustainable fisheries, requiring society and governmental agencies to establish a shared vision, common policies, and a process for collaborative management.

  6. PACIFIC SALMON: LESSONS LEARNED FOR RECOVERING ATLANTIC SALMON

    EPA Science Inventory

    n evaluation of the history of efforts to reverse the long-term decline of Pacific Salmon provides instructive policy lessons for recovering Atlantic Salmon. From California to southern British Columbia, wild runs of Pacific salmon have universally declined and many have disappe...

  7. Dams and Salmon: A Northwest Choice

    ERIC Educational Resources Information Center

    Tucker, Michael; Tromley, Cheryl L.

    2005-01-01

    This article describes an experiential exercise in which participants assume the roles of various stakeholder groups in the controversy surrounding possible dam removal to revive northwestern U. S. salmon populations. The role-play (a) increases environmental awareness in the context of the competing interests various stakeholders have in our…

  8. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2004-2005 Annual Report.

    SciTech Connect

    van der Naald, Wayne; Duff, Cameron; Friesen, Thomas A.

    2006-02-01

    Pacific salmon Oncorhynchus spp. populations have declined over the last century due to a variety of human impacts. Chum salmon O. keta populations in the Columbia River have remained severely depressed for the past several decades, while upriver bright (URB) fall Chinook salmon O. tschawytscha populations have maintained relatively healthy levels. For the past seven years we have collected data on adult spawning and juvenile emergence and outmigration of URB fall Chinook and chum salmon populations in the Ives and Pierce islands complex below Bonneville Dam. In 2004, we estimated 1,733 fall Chinook salmon and 336 chum salmon spawned in our study area. Fall Chinook salmon spawning peaked 19 November with 337 redds and chum salmon spawning peaked 3 December with 148 redds. Biological characteristics continue to suggest chum salmon in our study area are similar to nearby stocks in Hardy and Hamilton creeks, and Chinook salmon we observe are similar to upriver bright stocks. Temperature data indicated that 2004 brood URB fall Chinook salmon emergence began on 6 January and ended 27 May 2005, with peak emergence occurring 12 March. Chum salmon emergence began 4 February and continued through 2 May 2005, with peak emergence occurring on 21 March. Between 13 January and 28 June, we sampled 28,984 juvenile Chinook salmon and 1,909 juvenile chum salmon. We also released 32,642 fin-marked and coded-wire tagged juvenile fall Chinook salmon to assess survival. The peak catch of juvenile fall Chinook salmon occurred on 18 April. Our results suggested that the majority of fall Chinook salmon outmigrate during late May and early June, at 70-80 mm fork length (FL). The peak catch of juvenile chum salmon occurred 25 March. Juvenile chum salmon appeared to outmigrate at 40-55 mm FL. Outmigration of chum salmon peaked in March but extended into April and May.

  9. THE FUTURE OF PACIFIC NORTHWEST SALMON: ANATOMY OF A CRISIS

    EPA Science Inventory

    Salmon are categorized biologically into two groups: Pacific salmon or Atlantic salmon. All seven species of Pacific salmon on both sides of the North Pacific Ocean have declined substantially from historic levels, but large runs still occur in northern British Columbia, Yukon,...

  10. 29. At Willard, Little Salmon Creek. Site of former dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. At Willard, Little Salmon Creek. Site of former dam and water supply pond for Broughton flume. View from downstream of intake, dam wind wall to right, lower wall of overflow chute in left foreground (contains pipes and small dam, possibly for water pumping). West 320 degrees. - Broughton Flume, Hood River Junction on Columbia River at Washington/Oregon border, Hood, Skamania County, WA

  11. Relative resistance of Pacific salmon to infectious salmon anaemia virus

    USGS Publications Warehouse

    Rolland, J.B.; Winton, J.R.

    2003-01-01

    Infectious salmon anaemia (ISA) is a major disease of Atlantic salmon, Salmo salar, caused by an orthomyxovirus (ISAV). Increases in global aqua culture and the international movement of fish made it important to determine if Pacific salmon are at risk. Steelhead trout, Oncorhynchus mykiss, and chum, O. keta, Chinook, O. tshawytscha, coho, O. kisutch, and Atlantic salmon were injected intraperitoneally with a high, medium, or low dose of a Norwegian strain of ISAV. In a second challenge, the same species, except chum salmon, were injected with a high dose of either a Canadian or the Norwegian strain. Average cumulative mortality of Atlantic salmon in trial 1 was 12% in the high dose group, 20% in the medium dose group and 16% in the low dose group. The average cumulative mortality of Atlantic salmon in trial 2 was 98%. No signs typical of ISA and no ISAV-related mortality occurred among any of the groups of Oncorhynchus spp. in either experiment, although ISAV was reisolated from some fish sampled at intervals post-challenge. The results indicate that while Oncorhynchus spp. are quite resistant to ISAV relative to Atlantic salmon, the potential for ISAV to adapt to Oncorhynchus spp. should not be ignored.

  12. Survival of migrating salmon smolts in large rivers with and without dams.

    PubMed

    Welch, David W; Rechisky, Erin L; Melnychuk, Michael C; Porter, Aswea D; Walters, Carl J; Clements, Shaun; Clemens, Benjamin J; McKinley, R Scott; Schreck, Carl

    2008-10-28

    The mortality of salmon smolts during their migration out of freshwater and into the ocean has been difficult to measure. In the Columbia River, which has an extensive network of hydroelectric dams, the decline in abundance of adult salmon returning from the ocean since the late 1970s has been ascribed in large measure to the presence of the dams, although the completion of the hydropower system occurred at the same time as large-scale shifts in ocean climate, as measured by climate indices such as the Pacific Decadal Oscillation. We measured the survival of salmon smolts during their migration to sea using elements of the large-scale acoustic telemetry system, the Pacific Ocean Shelf Tracking (POST) array. Survival measurements using acoustic tags were comparable to those obtained independently using the Passive Integrated Transponder (PIT) tag system, which is operational at Columbia and Snake River dams. Because the technology underlying the POST array works in both freshwater and the ocean, it is therefore possible to extend the measurement of survival to large rivers lacking dams, such as the Fraser, and to also extend the measurement of survival to the lower Columbia River and estuary, where there are no dams. Of particular note, survival during the downstream migration of at least some endangered Columbia and Snake River Chinook and steelhead stocks appears to be as high or higher than that of the same species migrating out of the Fraser River in Canada, which lacks dams. Equally surprising, smolt survival during migration through the hydrosystem, when scaled by either the time or distance migrated, is higher than in the lower Columbia River and estuary where dams are absent. Our results raise important questions regarding the factors that are preventing the recovery of salmon stocks in the Columbia and the future health of stocks in the Fraser River.

  13. Multivariate Models of Adult Pacific Salmon Returns

    PubMed Central

    Burke, Brian J.; Peterson, William T.; Beckman, Brian R.; Morgan, Cheryl; Daly, Elizabeth A.; Litz, Marisa

    2013-01-01

    Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. PMID:23326586

  14. Monitoring of Juvenile Subyearling Chinook Salmon Survival and Passage at John Day Dam, Summer 2010

    SciTech Connect

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Skalski, J. R.; Townsend, Richard L.

    2012-11-15

    The purpose of this study was to evaluate dam passage survival of subyearling Chinook salmon (Oncorhynchus tshawytscha; CH0) at John Day Dam (JDA) during summer 2010. This study was conducted by researchers from the Pacific Northwest National Laboratory (PNNL) in collaboration with the Pacific States Marine Fisheries Commission (PSMFC) and the University of Washington (UW). The study was designed to estimate the effects of 30% and 40% spill treatment levels on single release survival rates of CH0 passing through two reaches: (1) the dam, and 40 km of tailwater, (2) the forebay, dam, and 40 km of tailwater. The study also estimated additional passage performance measures which are stipulated in the Columbia Basin Fish Accords.

  15. Infectious diseases of Pacific salmon

    USGS Publications Warehouse

    1954-01-01

    A variety of bacteria has been found responsible for outbreaks of disease in salmon in sea water. The most important of these is a species of Vibrio. Tuberculosis has been found in adult chinook salmon and the evidence indicates that the disease was contracted at sea.

  16. SCIENCE, POLITICS, AND PACIFIC NORTHWEST SALMON RECOVERY

    EPA Science Inventory

    Throughout the Pacific Northwest, since 1850, all wild salmon runs have declined and some have disappeared. Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline. Each year, hundreds of millions of dollars continue to be spent in variou...

  17. SCIENCE, POLICY, AND PACIFIC NORTHWEST SALMON RECOVERY

    EPA Science Inventory

    Throughout the Pacific Northwest, since 1850, all wild salmon runs have declined and some have disappeared. Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline. Each year, hundreds of millions of dollars continue to be spent in variou...

  18. Survival of Juvenile Chinook Salmon Passing the Bonneville Dam Spillway in 2007

    SciTech Connect

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Zimmerman, Shon A.; Durham, Robin E.; Fischer, Eric S.; Kim, Jina; Townsend, R. L.; Skalski, J. R.; Buchanan, Rebecca A.; McComas, Roy L.

    2008-12-01

    The U.S. Army Corps of Engineers Portland District (CENWP) funds numerous evaluations of fish passage and survival on the Columbia River. In 2007, the CENWP asked Pacific Northwest National Laboratory to conduct an acoustic telemetry study to estimate the survival of juvenile Chinook salmon passing the spillway at Bonneville Dam. This report documents the study results which are intended to be used to improve the conditions juvenile anadromous fish experience when passing through the dams that the Corps operates on the river.

  19. Survival and Passage of Yearling and Subyearling Chinook Salmon and Steelhead at The Dalles Dam, 2010

    SciTech Connect

    Johnson, Gary E.; Skalski, J. R.; Carlson, Thomas J.; Ploskey, Gene R.; Weiland, Mark A.; Deng, Zhiqun; Fischer, Eric S.; Hughes, James S.; Khan, Fenton; Kim, Jin A.; Townsend, Richard L.

    2011-12-01

    The acoustic telemetry study reported here was conducted by researchers at Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) for the U.S. Army Corps of Engineers, Portland District (USACE). The purpose of the study was to estimate dam passage survival and other performance measures for yearling and subyearling Chinook salmon and steelhead at The Dalles Dam as stipulated by the 2008 Biological Opinion on operation of the Federal Columbia River Power System (FCRPS) and 2008 Columbia Basin Fish Accords.

  20. POLICY CONUNDRUM: RESTORING WILD SALMON TO THE PACIFIC NORTHWEST

    EPA Science Inventory

    Restoring wild salmon runs to the Pacific Northwest is technically challenging, politically nasty, and socially divisive. Past restoration efforts have been largely unsuccessful. Society's failure to reverse the continuing decline of wild salmon has the characteristics of a pol...

  1. Evaluation of Salmon Spawning Below Bonneville Dam, 2005-2006 Annual Report.

    SciTech Connect

    Arntzen, Evan; Mueller, Robert; Murray, Christopher

    2007-03-01

    Since FY 2000, scientists at Pacific Northwest National Laboratory (PNNL) have conducted research to assess the extent of spawning by chum salmon (Oncorhynchus keta) and fall Chinook salmon (O. tshawytscha) in the lower mainstem Columbia River. Their work supports a larger project funded by the Bonneville Power Administration (BPA) aimed at characterizing the physical habitat used by mainstem fall Chinook and chum salmon populations. Multiple collaborators in addition to PNNL are involved in the BPA project--counterparts include the Washington Department of Fish and Wildlife (WDFW), U.S. Fish and Wildlife Service (USFWS), Pacific States Marine Fisheries Commission (PSMFC), U.S. Geological Survey (USGS), and Oregon Department of Fish and Wildlife (ODFW). Data resulting from the individual tasks each agency conducts are providing a sound scientific basis for developing strategies to operate the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance the chum and tule fall Chinook salmon populations--both listed as threatened under the Endangered Species Act (ESA). Fall Chinook salmon, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by WDFW biologists in 1993. Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and near Ives Island. Limited surveys of spawning ground were conducted in the area around Ives and Pierce islands from 1994 through 1997. Based on those surveys, it is believed that fall Chinook salmon are spawning successfully in this area. The size of this population from 1994 to 1996 was estimated at 1800 to 5200 fish. Chum salmon also have been documented spawning downstream of Bonneville Dam. Chum salmon were listed as threatened under the ESA in March 1999. At present there is a need to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their spawning

  2. Evaluation of Salmon Spawning Below Bonneville Dam, Annual Report October 2005 - September 2006.

    SciTech Connect

    Arntzen, Evan V.; Mueller, Robert P.; Murray, Christopher J.

    2007-09-21

    Since FY 2000, scientists at Pacific Northwest National Laboratory (PNNL) have conducted research to assess the extent of spawning by chum salmon (Oncorhynchus keta) and fall Chinook salmon (O. tshawytscha) in the lower mainstem Columbia River. Their work supports a larger project funded by the Bonneville Power Administration (BPA) aimed at characterizing the physical habitat used by mainstem fall Chinook and chum salmon populations. Multiple collaborators in addition to PNNL are involved in the BPA project--counterparts include the Washington Department of Fish and Wildlife (WDFW), U.S. Fish and Wildlife Service (USFWS), Pacific States Marine Fisheries Commission (PSMFC), U.S. Geological Survey (USGS), and Oregon Department of Fish and Wildlife (ODFW). Data resulting from the individual tasks each agency conducts are providing a sound scientific basis for developing strategies to operate the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance the chum and tule fall Chinook salmon populations--both listed as threatened under the Endangered Species Act (ESA). Fall Chinook salmon, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by WDFW biologists in 1993. Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and near Ives Island. Limited surveys of spawning ground were conducted in the area around Ives and Pierce islands from 1994 through 1997. Based on those surveys, it is believed that fall Chinook salmon are spawning successfully in this area. The size of this population from 1994 to 1996 was estimated at 1800 to 5200 fish. Chum salmon also have been documented spawning downstream of Bonneville Dam. Chum salmon were listed as threatened under the ESA in March 1999. At present there is a need to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their spawning

  3. Evaluation of Salmon Spawning Below Bonneville Dam Annual Report October 2006 - September 2007.

    SciTech Connect

    Arntzen, Evan V.; Mueller, Robert P.; Murray, Katherine J.; Bott, Yi-Ju

    2008-08-08

    From 1999 through 2007, the Fish and Wildlife Program of the Bonneville Power Administration funded a project to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their spawning areas, and the flows necessary to ensure their long-term survival. Data were collected to ensure that established flow guidelines are appropriate and provide adequate protection for the species of concern. The projects objectives are consistent with the high priority placed by the Northwest Power and Conservation Council Independent Scientific Advisory Board and the salmon managers on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin. Because of the influence of mainstem habitat on salmon production, there is a continued need to better understand the physical habitat variables used by mainstem fall Chinook and chum salmon populations and the effects of hydropower project operations on spawning and incubation. During FY 2007, Pacific Northwest National Laboratory focused on (1) locating and mapping deep-water fall Chinook salmon and chum salmon spawning areas, (2) investigating the interaction between groundwater and surface water near fall Chinook and chum salmon spawning areas, and (3) providing in-season hyporheic temperature and water surface elevation data to assist state agencies with emergence timing and redd dewatering estimates. This report documents the studies and tasks performed by PNNL during FY 2007. Chapter 1 provides a description of the searches conducted for deepwater redds-adjacent to Pierce and Ives islands for fall Chinook salmon and near the Interstate 205 bridge for chum salmon. The chapter also provides data on redd location, information about habitat associations, and estimates of total spawning populations. Chapter 2 documents the collection of data on riverbed and river temperatures and water surface elevations, from the onset of spawning to the

  4. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing through Bonneville Dam, 2011

    SciTech Connect

    Ploskey, Gene R.; Batten, G.; Cushing, Aaron W.; Kim, Jin A.; Johnson, Gary E.; Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Weiland, Mark A.; Woodley, Christa M.; Hughes, James S.; Carlson, Thomas J.; Carpenter, Scott M.; Deng, Zhiqun; Etherington, D. J.; Fischer, Eric S.; Fu, Tao; Greiner, Michael J.; Hennen, Matthew J.; Martinez, Jayson J.; Mitchell, T. D.; Rayamajhi, Bishes; Zimmerman, Shon A.

    2013-02-15

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2011. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a virtual/paired-release model. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon using a virtual release, paired reference release survival model. This study supports the U.S. Army Corps of Engineers’ continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  5. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing Through Bonneville Dam, 2010

    SciTech Connect

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Kim, Jin A.; Royer, Ida M.; Batten, George W.; Cushing, Aaron W.; Carpenter, Scott M.; Etherington, D. J.; Faber, Derrek M.; Fischer, Eric S.; Fu, Tao; Hennen, Matthew J.; Mitchell, T. D.; Monter, Tyrell J.; Skalski, J. R.; Townsend, Richard L.; Zimmerman, Shon A.

    2012-09-01

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  6. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing through Bonneville Dam, 2010

    SciTech Connect

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Kim, Jin A.; Royer, Ida M.; Batten, George W.; Cushing, Aaron W.; Carpenter, Scott M.; Etherington, D. J.; Faber, Derrek M.; Fischer, Eric S.; Fu, Tao; Hennen, Matthew J.; Mitchell, Tyler; Monter, Tyrell J.; Skalski, John R.; Townsend, Richard L.; Zimmerman, Shon A.

    2011-12-01

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  7. Potential effects of dams on migratory fish in the Mekong River: lessons from salmon in the Fraser and Columbia Rivers.

    PubMed

    Ferguson, John W; Healey, Michael; Dugan, Patrick; Barlow, Chris

    2011-01-01

    We compared the effects of water resource development on migratory fish in two North American rivers using a descriptive approach based on four high-level indicators: (1) trends in abundance of Pacific salmon, (2) reliance on artificial production to maintain fisheries, (3) proportion of adult salmon that are wild- versus hatchery-origin, and (4) number of salmon populations needing federal protection to avoid extinction. The two rivers had similar biological and physical features but radically different levels of water resource development: the Fraser River has few dams and all are located in tributaries, whereas the Columbia River has more than 130 large mainstem and tributary dams. Not surprisingly, we found substantial effects of development on salmon in the Columbia River. We related the results to potential effects on migratory fish in the Mekong River where nearly 200 mainstem and tributary dams are installed, under construction, or planned and could have profound effects on its 135 migratory fish species. Impacts will vary with dam location due to differential fish production within the basin, with overall effects likely being greatest from 11 proposed mainstem dams. Minimizing impacts will require decades to design specialized fish passage facilities, dam operations, and artificial production, and is complicated by the Mekong's high diversity and productivity. Prompt action is needed by governments and fisheries managers to plan Mekong water resource development wisely to prevent impacts to the world's most productive inland fisheries, and food security and employment opportunities for millions of people in the region.

  8. 75 FR 14135 - Pacific Coastal Salmon Recovery Fund

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... National Oceanic and Atmospheric Administration RIN 0648-ZC16 Pacific Coastal Salmon Recovery Fund AGENCY... Salmon Recovery Funding (PCSRF), as authorized in the Northern Boundary and Transboundary Rivers... development of Federal-state-tribal-local partnerships in salmon recovery and conservation by providing...

  9. POLICY OPTIONS TO REVERSE THE DECLINE OF WILD PACIFIC SALMON

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project was to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in the Pacific Northwest and California. Wild salmon recovery efforts in western North Americ...

  10. POLICY CONUNDRUM: RESTORING WILD SALMON TO THE PACIFIC NORTHWEST

    EPA Science Inventory

    Across the Pacific Northwest region of North America, many runs of wild (in contrast to hatchery-bred) salmon have declined and some have been extirpated. Restoring wild salmon runs to the Pacific Northwest is technically challenging, politically nasty, socially divisive, and ...

  11. PACIFIC SALMON FISHERIES OF THE WORLD: STATUS, PROSPECTS, AND CHALLENGES

    EPA Science Inventory

    All seven species of Pacific salmon on both sides of the North Pacific have declined significantly from historic levels, but not as dramatically as have Atlantic salmon. Hatchery production has been used to maintain some runs in the southern region of the range (e.g., Japan, Kor...

  12. Reconstruction of Pacific salmon abundance from riparian tree-ring growth.

    PubMed

    Drake, D C; Naiman, Robert J

    2007-07-01

    We use relationships between modern Pacific salmon (Oncorhynchus spp.) escapement (migrating adults counted at weirs or dams) and riparian tree-ring growth to reconstruct the abundance of stream-spawning salmon over 150-350 years. After examining nine sites, we produced reconstructions for five mid-order rivers and four salmon species over a large geographic range in the Pacific Northwest: chinook (O. tschwatcha) in the Umpqua River, Oregon, USA; sockeye (O. nerka) in Drinkwater Creek, British Columbia, Canada; pink (O. gorbuscha) in Sashin Creek, southeastern Alaska, USA; chum (O. keta) in Disappearance Creek, southeastern Alaska, USA; and pink and chum in the Kadashan River, southeastern Alaska, USA. We first derived stand-level, non-climatic growth chronologies from riparian trees using standard dendroecology methods and differencing. When the chronologies were compared to 18-55 years of adult salmon escapement we detected positive, significant correlations at five of the nine sites. Regression models relating escapement to tree-ring growth at the five sites were applied to the differenced chronologies to reconstruct salmon abundance. Each reconstruction contains unique patterns characteristic of the site and salmon species. Reconstructions were validated by comparison to local histories (e.g., construction of dams and salmon canneries) and regional fisheries data such as salmon landings and aerial surveys and the Pacific Decadal Oscillation climate index. The reconstructions capture lower-frequency cycles better than extremes and are most useful for determination and comparison of relative abundance, cycles, and the effects of interventions. Reconstructions show lower population cycle maxima in both Umpqua River chinook and Sashin Creek pink salmon in recent decades. The Drinkwater Creek reconstruction suggests that sockeye abundance since the mid-1990s has been 15-25% higher than at any time since 1850, while no long-term deviations from natural cycles are

  13. Diphyllobothriasis Associated with Eating Raw Pacific Salmon

    PubMed Central

    Yamada, Minoru; Nakamura-Uchiyama, Fukumi; Ohnishi, Kenji

    2009-01-01

    The incidence of human infection with the broad tapeworm Diphyllobothrium nihonkaiense has been increasing in urban areas of Japan and in European countries. D. nihonkaiense is morphologically similar to but genetically distinct from D. latum and exploits anadromous wild Pacific salmon as its second intermediate host. Clinical signs in humans include diarrhea and discharge of the strobila, which can be as long as 12 m. The natural life history and the geographic range of the tapeworm remain to be elucidated, but recent studies have indicated that the brown bear in the northern territories of the Pacific coast region is its natural final host. A recent surge of clinical cases highlights a change in the epidemiologic trend of this tapeworm disease from one of rural populations to a disease of urban populations worldwide who eat seafood as part of a healthy diet. PMID:19523283

  14. Diphyllobothriasis associated with eating raw pacific salmon.

    PubMed

    Arizono, Naoki; Yamada, Minoru; Nakamura-Uchiyama, Fukumi; Ohnishi, Kenji

    2009-06-01

    The incidence of human infection with the broad tapeworm Diphyllobothrium nihonkaiense has been increasing in urban areas of Japan and in European countries. D. nihonkaiense is morphologically similar to but genetically distinct from D. latum and exploits anadromous wild Pacific salmon as its second intermediate host. Clinical signs in humans include diarrhea and discharge of the strobila, which can be as long as 12 m. The natural life history and the geographic range of the tapeworm remain to be elucidated, but recent studies have indicated that the brown bear in the northern territories of the Pacific coast region is its natural final host. A recent surge of clinical cases highlights a change in the epidemiologic trend of this tapeworm disease from one of rural populations to a disease of urban populations worldwide who eat seafood as part of a healthy diet.

  15. Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam

    SciTech Connect

    Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.; Dawley, Earl

    2007-01-30

    At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previous work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the monitoring at

  16. RESTORING SALMON TO THE PACIFIC NORTHWEST: LEGACIES, CHOICES, AND TRAJECTORIES

    EPA Science Inventory

    The general policy goal of protecting and restoring runs of wild Pacific salmon enjoys wide public support. Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline of wild salmon in the western contiguous United States. Of the Earth's fou...

  17. PACIFIC NORTHWEST SALMON: IN SEARCH OF A SUSTAINABLE FUTURE

    EPA Science Inventory

    Throughout the Pacific Northwest, all wild salmon runs have declined since 1850 and some have disappeared. A sustainable future for wild salmon remains elusive. Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline. Each year, hundreds...

  18. PACIFIC NORTHWEST SALMON: THE MOST LIKELY FUTURE AND SOME ALTERNATIVES

    EPA Science Inventory

    Throughout the Pacific Northwest, all wild salmon runs have declined since 1850 and some have disappeared. A sustainable future for wild salmon remains elusive. Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline. Each year, hundreds of...

  19. Recovery of sockeye salmon in the Elwha River, Washington, after dam removal: Dependence of smolt production on the resumption of anadromy by landlocked kokanee

    USGS Publications Warehouse

    Hansen, Adam G.; Gardner, Jennifer R.; Beauchamp, David A.; Paradis, Rebecca; Quinn, Thomas P

    2016-01-01

    Pacific salmon Oncorhynchus spp. are adept at colonizing habitat that has been reopened to anadromous passage. Sockeye Salmon O. nerka are unique in that most populations require lakes to fulfill their life history. Thus, for Sockeye Salmon to colonize a system, projects like dam removals must provide access to lakes. However, if the lakes contain landlocked kokanee (lacustrine Sockeye Salmon), the recovery of Sockeye Salmon could be mediated by interactions between the two life history forms and the processes associated with the resumption of anadromy. Our objective was to evaluate the extent to which estimates of Sockeye Salmon smolt production and recovery are sensitive to the resumption of anadromy by kokanee after dam removal. We informed the analysis based on the abiotic and biotic features of Lake Sutherland, which was recently opened to passage after dam removal on the Elwha River, Washington. We first developed maximum expectations for the smolt-producing capacity of Lake Sutherland by using two predictive models developed from Sockeye Salmon populations in Alaska and British Columbia: one model was based on the mean seasonal biomass of macrozooplankton, and the other was based on the euphotic zone volume of the lake. We then constructed a bioenergetics-based simulation model to evaluate how the capacity of Lake Sutherland to rear yearling smolts could change with varying degrees of anadromy among O. nerka fry. We demonstrated that (1) the smolt-producing capacity of a nursery lake for juvenile Sockeye Salmon changes in nonlinear ways with changes in smolt growth, mortality, and the extent to which kokanee resume anadromy after dam removal; (2) kokanee populations may be robust to changes in abundance after dam removal, particularly if lakes are located higher in the watershed on tributaries separate from where dams were removed; and (3) the productivity of newly establishing Sockeye Salmon can vary considerably depending on whether the population becomes

  20. PACIFIC NORTHWEST SALMON: FORECASTING THEIR STATUS IN 2100

    EPA Science Inventory

    Throughout the Pacific Northwest (northern California, Oregon, Idaho, Washington, and the Columbia Basin portion of British Columbia), many wild salmon stocks (a group of interbreeding individuals that is roughly equivalent to a "population") have declined and some have disappear...

  1. RESTORING WILD SALMON TO THE PACIFIC NORTHWEST: CHASING AN ILLUSION?

    EPA Science Inventory

    Throughout the Pacific Northwest (northern California, Oregon, Idaho, Washington, and the Columbia Basin portion of British Columbia), many wild salmon "stocks" (a group of interbreeding individuals that is roughly equivalent to a "population) have declined and some have been e...

  2. FUTURE OF PACIFIC NORTHWEST SALMON: SCIENCE AND POLICY IN ACTION

    EPA Science Inventory

    Throughout the Pacific Northwest (northern California, Oregon, Idaho, Washington, and the Columbia Basin portion of British Columbia), many wild salmon stocks (a group of interbreeding individuals that is roughly equivalent to a "population") have declined and some have disappear...

  3. Evaluation of Salmon Spawning below the Four Lowermost Columbia River Dams, 2004-2005 Annual Report.

    SciTech Connect

    Geist, David; Currie, Andrea

    2006-02-01

    Since FY 2000, scientists at Pacific Northwest National Laboratory (PNNL) have conducted research to assess the extent of spawning by chum (Oncorhynchus keta) and fall Chinook (O. tshawytscha) salmon in the lower mainstem Columbia River. Their work supports a larger Bonneville Power Administration (BPA) project aimed at characterizing the physical habitat used by mainstem fall Chinook and chum salmon populations. Multiple collaborators in addition to PNNL are involved in the BPA project--counterparts include the Washington Department of Fish and Wildlife (WDFW), U.S. Fish and Wildlife Service (USFWS), Pacific States Marine Fisheries Commission (PSMFC), U.S. Geological Survey (USGS), and Oregon Department of Fish and Wildlife (ODFW). Data resulting from the individual tasks each agency conducts are providing a sound scientific basis for developing strategies to operate the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance the chum and fall Chinook salmon populations--both listed as threatened under the Endangered Species Act. Fall Chinook salmon, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by biologists from the WDFW in 1993. Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and Ives Island. Limited spawning ground surveys were conducted in the area around Ives and Pierce islands during 1994 through 1997. Based on these surveys, fall Chinook salmon were believed to be spawning successfully in this area. In addition, chum salmon have been documented spawning downstream of Bonneville Dam. In FY 1999, BPA Project No. 1999-003 was initiated by the WDFW, ODFW, and the USFWS to characterize the variables associated with physical habitat used by mainstem fall Chinook and chum salmon populations and to better understand the effects of hydropower project operations on spawning and incubation. Pacific Northwest National

  4. Predation by fallfish (Semotilus corporalis) on Pacific salmon eggs in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, J.H.; Nack, C.C.; Chalupnicki, M.A.

    2009-01-01

    Fallfish (Semotilus corporalis) are the largest native cyprinid in the northeastern United States and are the most abundant native species in the Salmon River, New York. The Salmon River is a high-quality spawning and nursery river for Pacific salmon (Oncorhynchus spp.) migrating from Lake Ontario. Because of the large number of Pacific salmon spawning in the river in the fall extensive redd superimposition occurs resulting in salmonid eggs being available on the substrate. We examined the fall diet of 647 fallfish in 2007 and 2008 to determine the extent of predation on Pacific salmon eggs. The contribution of eggs in the diet significantly increased once fallfish attained a size of 100 mm total length. The largest size category of fallfish examined (≥150 mm) had the highest proportion (86.1%) of salmon eggs in their diet. The contribution of Zooplankton and chironomids in the diet of fallfish decreased with fish size. Except for the two largest groups of fallfish examined (i.e., 100–149 mm and ≥150 mm) diet overlap among size groups was low. The high contribution in the diet during the fall and high caloric value of Pacific salmon eggs could increase growth and survival of this species in the Salmon River.

  5. Concentrations of trace elements in Pacific and Atlantic salmon

    NASA Astrophysics Data System (ADS)

    Khristoforova, N. K.; Tsygankov, V. Yu.; Boyarova, M. D.; Lukyanova, O. N.

    2015-09-01

    Concentrations of Hg, As, Cd, Pb, Zn, and Cu were analyzed in the two most abundant species of Pacific salmon, chum and pink salmon, caught in the Kuril Islands at the end of July, 2013. The concentrations of toxic elements (Hg, As, Pb, Cd) in males and females of these species are below the maximum permissible concentrations for seafood. It was found that farmed filleted Atlantic salmon are dominated by Zn and Cu, while muscles of wild salmon are dominated by Pb. Observed differences are obviously related to peculiar environmental geochemical conditions: anthropogenic impact for Atlantic salmon grown in coastal waters and the influence of the natural factors volcanism and upwelling for wild salmon from the Kuril waters.

  6. Influence of multiple dam passage on survival of juvenile Chinook salmon in the Columbia River estuary and coastal ocean

    PubMed Central

    Rechisky, Erin L.; Welch, David W.; Porter, Aswea D.; Jacobs-Scott, Melinda C.; Winchell, Paul M.

    2013-01-01

    Multiple dam passage during seaward migration is thought to reduce the subsequent survival of Snake River Chinook salmon. This hypothesis developed because juvenile Chinook salmon from the Snake River, the Columbia River’s largest tributary, migrate >700 km through eight hydropower dams and have lower adult return rates than downstream populations that migrate through only 3 or 4 dams. Using a large-scale telemetry array, we tested whether survival of hatchery-reared juvenile Snake River spring Chinook salmon is reduced in the estuary and coastal ocean relative to a downstream, hatchery-reared population from the Yakima River. During the initial 750-km, 1-mo-long migration through the estuary and coastal ocean, we found no evidence of differential survival; therefore, poorer adult returns of Snake River Chinook may develop far from the Columbia River. Thus, hydrosystem mitigation efforts may be ineffective if differential mortality rates develop in the North Pacific Ocean for reasons unrelated to dam passage. PMID:23576733

  7. Evaluation of Juvenile Salmon Behavior at Bonneville Dam, Columbia River, Using a Multibeam Technique

    SciTech Connect

    Johnson, Robert L. ); Moursund, Russell A. )

    1999-11-01

    In recent years, with increased effort to bypass and guide fragile stocks of juvenile salmon in the Columbia Basin past hydroelectric projects, it has been increasingly important to obtain fine-scale fish behavior data in a non-intrusive manner. The Dual-Head Multibeam Sonar is an emerging technology for fisheries applications that addresses that requirement. It has two principal advantages over traditional hydroacoustic techniques: (1) it allows for simultaneous large-volume coverage of a region of interest, and (2) it affords 3-D tracking capability. The use of Dual-Head Multibeam Sonar in this study resulted in unprecedented insight into fine-scale smolt behavior upstream of a prototype surface collector at Bonneville Dam first powerhouse in 1998. Our results indicated that outmigrant juvenile salmon had an increased likelihood of milling or holding. This discovery will lead to better design criteria for future bypass and collector systems. Future fisheries multibeam sonar systems will likely be fully integrated systems with built-in real time tracking capability. These systems may be used to track targets relative to physical guidance structures or other behavior modifying stimuli such as light, turbulent flow, electrical/magnetic fields, or low-frequency sound and vibration. The combination of fine-scale fish behavior data and environmental parameters will yield better design criteria for the safe passage of listed or endangered species of Pacific salmon.

  8. 76 FR 54216 - Pacific Fishery Management Council (Council); Work Session To Review Proposed Salmon Methodology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... National Oceanic and Atmospheric Administration RIN 0648-XA671 Pacific Fishery Management Council (Council); Work Session To Review Proposed Salmon Methodology Changes AGENCY: National Marine Fisheries Service... meeting. SUMMARY: The Pacific Fishery Management Council's Salmon Technical Team (STT), Scientific...

  9. A TWO CENTURY HISTORY OF PACIFIC NORTHWEST SALMON: LESSONS LEARNED FOR ACHIEVING A SUSTAINABLE FUTURE

    EPA Science Inventory

    Achieving ecological sustainability is a daunting challenge. In the Pacific Northwest one of the most highly visible public policy debates concerns the future of salmon populations. Throughout the Pacific Northwest, many wild salmon stocks have declined and some have disappeare...

  10. SALMON 2100: THE FUTURE OF WILD PACIFIC SALMON

    EPA Science Inventory

    Many experts have concluded that wild salmon recovery efforts in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as they currently are, do not appear likely to sustain biologic...

  11. 75 FR 383 - Canned Pacific Salmon Deviating From Identity Standard; Extension of Temporary Permit for Market...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ...-2008-N-0119] Canned Pacific Salmon Deviating From Identity Standard; Extension of Temporary Permit for.... standard of identity for canned Pacific salmon. The extension will allow the permit holder to continue to... the standard of identity for canned Pacific salmon that was submitted by Yardarm Knot Fisheries,...

  12. Total Dissolved Gas Effects on Incubating Chum Salmon Below Bonneville Dam

    SciTech Connect

    Arntzen, Evan V.; Hand, Kristine D.; Carter, Kathleen M.; Geist, David R.; Murray, Katherine J.; Dawley, Earl M.; Cullinan, Valerie I.; Elston, Ralph A.; Vavrinec, John

    2009-01-29

    At the request of the U.S. Army Corps of Engineers (USACE; Portland District), Pacific Northwest National Laboratory (PNNL) undertook a project in 2006 to look further into issues of total dissolved gas (TDG) supersaturation in the lower Columbia River downstream of Bonneville Dam. In FY 2008, the third year of the project, PNNL conducted field monitoring and laboratory toxicity testing to both verify results from 2007 and answer some additional questions about how salmonid sac fry respond to elevated TDG in the field and the laboratory. For FY 2008, three objectives were 1) to repeat the 2006-2007 field effort to collect empirical data on TDG from the Ives Island and Multnomah Falls study sites; 2) to repeat the static laboratory toxicity tests on hatchery chum salmon fry to verify 2007 results and to expose wild chum salmon fry to incremental increases in TDG, above those of the static test, until external symptoms of gas bubble disease were clearly present; and 3) to assess physiological responses to TDG levels in wild chum salmon sac fry incubating below Bonneville Dam during spill operations. This report summarizes the tasks conducted and results obtained in pursuit of the three objectives. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the monitoring methodology and results are provided in Appendices A and B included on the compact disc bound inside the back cover of the printed version of this report.

  13. Compliance Monitoring of Subyearling Chinook Salmon Smolt Survival and Passage at Bonneville Dam, Summer 2012

    SciTech Connect

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon at Bonneville Dam during summer 2012, as required by the 2008 Federal Columbia River Power System Biological Opinion. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 1 km below the dam, as well as forebay residence time, tailrace egress, and spill passage efficiency, as required in the 2008 Columbia Basin Fish Accords.

  14. Effects of dam removal on Tule Fall Chinook salmon spawning habitat in the White Salmon River, Washington

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.; Skalicky, Joseph J.; Engle, Rod; Barton, Gary J.; Fosness, Ryan L.; Warren, Joe

    2016-01-01

    Condit Dam is one of the largest hydroelectric dams ever removed in the USA. Breached in a single explosive event in October 2011, hundreds-of-thousands of cubic metres of sediment washed down the White Salmon River onto spawning grounds of a threatened species, Columbia River tule fall Chinook salmon Oncorhynchus tshawytscha. We investigated over a 3-year period (2010–2012) how dam breaching affected channel morphology, river hydraulics, sediment composition and tule fall Chinook salmon (hereafter ‘tule salmon’) spawning habitat in the lower 1.7 km of the White Salmon River (project area). As expected, dam breaching dramatically affected channel morphology and spawning habitat due to a large load of sediment released from Northwestern Lake. Forty-two per cent of the project area that was previously covered in water was converted into islands or new shoreline, while a large pool near the mouth filled with sediments and a delta formed at the mouth. A two-dimensional hydrodynamic model revealed that pool area decreased 68.7% in the project area, while glides and riffles increased 659% and 530%, respectively. A spatially explicit habitat model found the mean probability of spawning habitat increased 46.2% after dam breaching due to an increase in glides and riffles. Shifting channels and bank instability continue to negatively affect some spawning habitat as sediments continue to wash downstream from former Northwestern Lake, but 300 m of new spawning habitat (river kilometre 0.6 to 0.9) that formed immediately post-breach has persisted into 2015. Less than 10% of tule salmon have spawned upstream of the former dam site to date, but the run sizes appear healthy and stable. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  15. Compliance Monitoring of Juvenile Subyearling Chinook Salmon Survival and Passage at The Dalles Dam, Summer 2010

    SciTech Connect

    Johnson, Gary E.; Carlson, Thomas J.; Skalski, John R.

    2010-12-21

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon smolts at The Dalles Dam during summer 2010. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.93 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 2 km below the dam The forebay-to-tailrace survival estimate satisfies the “BRZ-to-BRZ” survival estimate called for in the Fish Accords. , as well as the forebay residence time, tailrace egress time, and spill passage efficiency, as required in the Columbia Basin Fish Accords. The estimate of dam survival for subyearling Chinook salmon at The Dalles in 2010 was 0.9404 with an associated standard error of 0.0091.

  16. Compliance Monitoring of Subyearling Chinook Salmon Survival and Passage at The Dalles Dam, Summer 2012

    SciTech Connect

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Johnson, Gary E.

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon at The Dalles Dam during summer 2012. Under the 2008 Federal Columbia River Power System Biological Opinion, dam passage survival is required to be greater than or equal to 0.93 and estimated with a standard error (SE) less than or equal to 0.015. The study also estimated survival from the forebay 2 km upstream of the dam and through the tailrace to 2 km downstream of the dam, forebay residence time, tailrace egress time, spill passage efficiency (SPE), and fish passage efficiency (FPE), as required by the 2008 Columbia Basin Fish Accords.

  17. Analysis of dam-passage survival of yearling and subyearling Chinook salmon and juvenile steelhead at The Dalles Dam, Oregon, 2010

    USGS Publications Warehouse

    Beeman, John W.; Kock, Tobias J.; Perry, Russell W.; Smith, Steven G.

    2011-01-01

    We performed a series of analyses of mark-recapture data from a study at The Dalles Dam during 2010 to determine if model assumptions for estimation of juvenile salmonid dam-passage survival were met and if results were similar to those using the University of Washington's newly developed ATLAS software. The study was conducted by the Pacific Northwest National Laboratory and used acoustic telemetry of yearling Chinook salmon, juvenile steelhead, and subyearling Chinook salmon released at three sites according to the new virtual/paired-release statistical model. This was the first field application of the new model, and the results were used to measure compliance with minimum survival standards set forth in a recent Biological Opinion. Our analyses indicated that most model assumptions were met. The fish groups mixed in time and space, and no euthanized tagged fish were detected. Estimates of reach-specific survival were similar in fish tagged by each of the six taggers during the spring, but not in the summer. Tagger effort was unevenly allocated temporally during tagging of subyearling Chinook salmon in the summer; the difference in survival estimates among taggers was more likely a result of a temporal trend in actual survival than of tagger effects. The reach-specific survival of fish released at the three sites was not equal in the reaches they had in common for juvenile steelhead or subyearling Chinook salmon, violating one model assumption. This violation did not affect the estimate of dam-passage survival, because data from the common reaches were not used in its calculation. Contrary to expectation, precision of survival estimates was not improved by using the most parsimonious model of recapture probabilities instead of the fully parameterized model. Adjusting survival estimates for differences in fish travel times and tag lives increased the dam-passage survival estimate for yearling Chinook salmon by 0.0001 and for juvenile steelhead by 0.0004. The

  18. Establishing spatial trends in water chemistry and stable isotopes (δ15N and δ13C) in the Elwha River prior to dam removal and salmon recolonization

    USGS Publications Warehouse

    Duda, J.J.; Coe, H.J.; Morley, S.A.; Kloehn, K.K.

    2011-01-01

    Two high-head dams on the Elwha River in Washington State (USA) have changed the migratory patterns of resident and anadromous fish, limiting Pacific salmon to the lower 7.9 km of a river that historically supported large Pacific salmon runs. To document the effects of the dams prior to their removal, we measured carbon and nitrogen stable isotope ratios of primary producers, benthic macroinvertebrates, and fish, and water chemistry above, between and below the dams. We found that δ15N was significantly higher in fish, stoneflies, black flies, periphyton and macroalgae where salmon still have access. Fish and chloroperlid stoneflies were enriched in δ13C, but the values were more variable than in δ15N. For some taxa, there were also differences between the two river sections that lack salmon, suggesting that factors other than marine-derived nutrients are structuring longitudinal isotopic profiles. Consistent with trophic theory, macroalgae had the lowest δ15N, followed by periphyton, macroinvertebrates and fish, with a range of 6.9, 6.2 and 7.7‰ below, between, and above the dams, respectively. Water chemistry analyses confirmed earlier reports that the river is oligotrophic. Phosphorous levels in the Elwha were lower than those found in other regional rivers, with significant differences among regulated, unregulated and reference sections. The removal of these dams, among the largest of such projects ever attempted, is expected to facilitate the return of salmon and their marine-derived nutrients (MDN) throughout the watershed, possibly altering the food web structure, nutrient levels and stable isotope values that we documented.

  19. Dam operations affect route-specific passage and survival of juvenile Chinook salmon at a main-stem diversion dam

    USGS Publications Warehouse

    Perry, Russell W.; Kock, Tobias J.; Couter, Ian I; Garrison, Thomas M; Hubble, Joel D; Child, David B

    2016-01-01

    Diversion dams can negatively affect emigrating juvenile salmon populations because fish must pass through the impounded river created by the dam, negotiate a passage route at the dam and then emigrate through a riverine reach that has been affected by reduced river discharge. To quantify the effects of a main-stem diversion dam on juvenile Chinook salmon in the Yakima River, Washington, USA, we used radio telemetry to understand how dam operations and river discharge in the 18-km reach downstream of the dam affected route-specific passage and survival. We found evidence of direct mortality associated with dam passage and indirect mortality associated with migration through the reach below the dam. Survival of fish passing over a surface spill gate (the west gate) was positively related to river discharge, and survival was similar for fish released below the dam, suggesting that passage via this route caused little additional mortality. However, survival of fish that passed under a sub-surface spill gate (the east gate) was considerably lower than survival of fish released downstream of the dam, with the difference in survival decreasing as river discharge increased. The probability of fish passing the dam via three available routes was strongly influenced by dam operations, with passage through the juvenile fish bypass and the east gate increasing with discharge through those routes. By simulating daily passage and route-specific survival, we show that variation in total survival is driven by river discharge and moderated by the proportion of fish passing through low-survival or high-survival passage routes.

  20. Stream flow, salmon and beaver dams: roles in the structuring of stream fish communities within an anadromous salmon dominated stream.

    PubMed

    Mitchell, Sean C; Cunjak, Richard A

    2007-11-01

    The current paradigm of fish community distribution is one of a downstream increase in species richness by addition, but this concept is based on a small number of streams from the mid-west and southern United States, which are dominated by cyprinids. Further, the measure of species richness traditionally used, without including evenness, may not be providing an accurate reflection of the fish community. We hypothesize that in streams dominated by anadromous salmonids, fish community diversity will be affected by the presence of the anadromous species, and therefore be influenced by those factors affecting the salmonid population. Catamaran Brook, New Brunswick, Canada, provides a long-term data set to evaluate fish community diversity upstream and downstream of an obstruction (North American beaver Castor canadensis dam complex), which affects distribution of Atlantic salmon Salmo salar. The Shannon Weiner diversity index and community evenness were calculated for sample sites distributed throughout the brook and over 15 years. Fish community diversity was greatest upstream of the beaver dams and in the absence of Atlantic salmon. The salmon appear to depress the evenness of the community but do not affect species richness. The community upstream of the beaver dams changes due to replacement of slimy sculpin Cottus cognatus by salmon, rather than addition, when access is provided. Within Catamaran Brook, location of beaver dams and autumn streamflow interact to govern adult Atlantic salmon spawner distribution, which then dictates juvenile production and effects on fish community. These communities in an anadromous Atlantic salmon dominated stream do not follow the species richness gradient pattern shown in cyprinid-dominated streams and an alternative model for stream fish community distribution in streams dominated by anadromous salmonids is presented. This alternative model suggests that community distribution may be a function of semipermeable obstructions

  1. Setting the stage for a sustainable Pacific salmon fisheries strategy

    USGS Publications Warehouse

    MacDonald, Donald D.; Steward, Cleveland R.; Knudsen, E. Eric; Knudsen, E. Eric; Steward, Cleveland R.; MacDonald, Donald D.; Williams, Jack E.; Reiser, Dudley W.

    1999-01-01

    Salmon and steelhead Oncorhynchus spp., have been keystone species for ecosystems and human cultures of the North American Pacific coast for cons. Yet, in the past century, many populations have been greatly diminished and some are now extinct-the result of a combination of factors, including habitat loss and degradation, overfishing, natural variability in salmon production, negative effects of artificial propagation, and weaknesses in institutional and regulatory structures. We argue that a major shift is required, from the egocentric environmental approach (wherein each part of the ecosystem is managed as a unit) to the ecocentric ecosystem approach (wherein all parts are integrated for management). A management framework is proposed that contains-for each management unit such as a watershed-four elements: management goals; management objectives, ecosystem indicators; and a coordinated action plan. We also describe the Sustainable Fisheries Strategy, a consultative process for developing an ecosystem-based approach toward achieving sustainable Pacific salmon and steelhead populations and fisheries. This book is one of three important underpinnings of the Strategy; the other two are the Strategy itself and a manual being developed to guide community-based programs embracing the principles of sustainable fisheries. This book contains important historical perspectives as well as numerous innovative ideas for moving toward ecosystem-oriented, sustainable management of Pacific salmon and steelhead.

  2. Adaptive potential of a Pacific salmon challenged by climate change

    NASA Astrophysics Data System (ADS)

    Muñoz, Nicolas J.; Farrell, Anthony P.; Heath, John W.; Neff, Bryan D.

    2015-02-01

    Pacific salmon provide critical sustenance for millions of people worldwide and have far-reaching impacts on the productivity of ecosystems. Rising temperatures now threaten the persistence of these important fishes, yet it remains unknown whether populations can adapt. Here, we provide the first evidence that a Pacific salmon has both physiological and genetic capacities to increase its thermal tolerance in response to rising temperatures. In juvenile chinook salmon (Oncorhynchus tshawytscha), a 4 °C increase in developmental temperature was associated with a 2 °C increase in key measures of the thermal performance of cardiac function. Moreover, additive genetic effects significantly influenced several measures of cardiac capacity, indicative of heritable variation on which selection can act. However, a lack of both plasticity and genetic variation was found for the arrhythmic temperature of the heart, constraining this upper thermal limit to a maximum of 24.5 +/- 2.2 °C. Linking this constraint on thermal tolerance with present-day river temperatures and projected warming scenarios, we predict a 17% chance of catastrophic loss in the population by 2100 based on the average warming projection, with this chance increasing to 98% in the maximum warming scenario. Climate change mitigation is thus necessary to ensure the future viability of Pacific salmon populations.

  3. Evolutionary responses by native species to major anthropogenic changes to their ecosystems: Pacific salmon in the Columbia River hydropower system.

    PubMed

    Waples, Robin S; Zabel, Richard W; Scheuerell, Mark D; Sanderson, Beth L

    2008-01-01

    The human footprint is now large in all the Earth's ecosystems, and construction of large dams in major river basins is among the anthropogenic changes that have had the most profound ecological consequences, particularly for migratory fishes. In the Columbia River basin of the western USA, considerable effort has been directed toward evaluating demographic effects of dams, yet little attention has been paid to evolutionary responses of migratory salmon to altered selective regimes. Here we make a first attempt to address this information gap. Transformation of the free-flowing Columbia River into a series of slack-water reservoirs has relaxed selection for adults capable of migrating long distances upstream against strong flows; conditions now favour fish capable of migrating through lakes and finding and navigating fish ladders. Juveniles must now be capable of surviving passage through multiple dams or collection and transportation around the dams. River flow patterns deliver some groups of juvenile salmon to the estuary later than is optimal for ocean survival, but countervailing selective pressures might constrain an evolutionary response toward earlier migration timing. Dams have increased the cost of migration, which reduces energy available for sexual selection and favours a nonmigratory life history. Reservoirs are a benign environment for many non-native species that are competitors with or predators on salmon, and evolutionary responses are likely (but undocumented). More research is needed to tease apart the relative importance of evolutionary vs. plastic responses of salmon to these environmental changes; this research is logistically challenging for species with life histories like Pacific salmon, but results should substantially improve our understanding of key processes. If the Columbia River is ever returned to a quasinatural, free-flowing state, remaining populations might face a Darwinian debt (and temporarily reduced fitness) as they struggle to

  4. Juvenile Pacific Salmon in Puget Sound

    DTIC Science & Technology

    2006-06-01

    of assessment used to implement the ESA. The loss or endangerment of an ESU is considered significant to the evolutionary persistence of a species ...Sound Species Assessment1 1992 2002 Chinook salmon Total 29 27 Critical 4 5 Depressed 8 14 Healthy 10 4 Unknown 7 3 Not Rated 0 1 Extinct 0...Critical 1 1 Depressed 14 19 Healthy 16 8 Unknown 29 31 Not Rated 0 1 Extinct 0 0 Species Assessment1 1992 2002 Table 2 continued/ Within Puget

  5. Evolutionary history of Pacific salmon in dynamic environments

    PubMed Central

    Waples, Robin S; Pess, George R; Beechie, Tim

    2008-01-01

    Contemporary evolution of Pacific salmon (Oncorhynchus spp.) is best viewed in the context of the evolutionary history of the species and the dynamic ecosystems they inhabit. Speciation was complete by the late Miocene, leaving c. six million years for intraspecific diversification. Following the most recent glacial maximum, large areas became available for recolonization. Current intraspecific diversity is thus the product of recent evolution overlaid onto divergent historical lineages forged during recurrent episodes of Pleistocene glaciation. In northwestern North America, dominant habitat features have been relatively stable for the past 5000 years, but salmon ecosystems remain dynamic because of disturbance regimes (volcanic eruptions, landslides, wildfires, floods, variations in marine and freshwater productivity) that occur on a variety of temporal and spatial scales. These disturbances both create selective pressures for adaptive responses by salmon and inhibit long-term divergence by periodically extirpating local populations and creating episodic dispersal events that erode emerging differences. Recent anthropogenic changes are replicated pervasively across the landscape and interrupt processes that allow natural habitat recovery. If anthropogenic changes can be shaped to produce disturbance regimes that more closely mimic (in both space and time) those under which the species evolved, Pacific salmon should be well-equipped to deal with future challenges, just as they have throughout their evolutionary history. PMID:25567626

  6. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at Bonneville Dam, Spring 2010

    SciTech Connect

    Ploskey, Gene R.; Faber, Derrek M.; Weiland, Mark A.; Carlson, Thomas J.

    2011-02-01

    The purpose of this study was to estimate the survival for yearling Chinook salmon and steelhead smolts during spring 2010 in a portion of the Columbia River that includes Bonneville Dam. The study estimated smolt survival from a virtual release at Bonneville Dam to a survival array 81 km downstream of Bonneville Dam. We also estimated median forebay residence time, median tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A single release design was used to estimate survival from Bonneville Dam to a primary array located 81 km downstream of Bonneville. The approach did not include a reference tailrace release. Releases of acoustic-tagged smolts above John Day Dam to Hood River contributed to the formation of virtual releases at a Bonneville Dam forebay entrance array and at the face of the dam. A total of 3,880 yearling Chinook salmon and 3,885 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation.

  7. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at Bonneville Dam, Spring 2010

    SciTech Connect

    Ploskey, Gene R.; Faber, Derrek M.; Weiland, Mark A.; Carlson, Thomas J.

    2012-09-01

    The purpose of this study was to estimate the survival for yearling Chinook salmon and steelhead smolts during spring 2010 in a portion of the Columbia River that includes Bonneville Dam. The study estimated smolt survival from a virtual release at Bonneville Dam to a survival array 81 km downstream of Bonneville Dam. We also estimated median forebay residence time, median tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A single release design was used to estimate survival from Bonneville Dam to a primary array located 81 km downstream of Bonneville. The approach did not include a reference tailrace release. Releases of acoustic-tagged smolts above John Day Dam to Hood River contributed to the formation of virtual releases at a Bonneville Dam forebay entrance array and at the face of the dam. A total of 3,880 yearling Chinook salmon and 3,885 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation.

  8. Compendium of Low-Cost Pacific Salmon and Steelhead Trout Production Facilities and Practices in the Pacific Northwest.

    SciTech Connect

    Senn, Harry G.

    1984-09-01

    The purpose was to research low capital cost salmon and steelhead trout production facilities and identify those that conform with management goals for the Columbia Basin. The species considered were chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and steelhead trout (Salmo gairdneri). This report provides a comprehensive listing of the facilities, techniques, and equipment used in artificial production in the Pacific Northwest. (ACR)

  9. Big dams and salmon evolution: changes in thermal regimes and their potential evolutionary consequences

    PubMed Central

    Angilletta, Michael J; Ashley Steel, E; Bartz, Krista K; Kingsolver, Joel G; Scheuerell, Mark D; Beckman, Brian R; Crozier, Lisa G

    2008-01-01

    Dams designed for hydropower and other purposes alter the environments of many economically important fishes, including Chinook salmon (Oncorhynchus tshawytscha). We estimated that dams on the Rogue River, the Willamette River, the Cowlitz River, and Fall Creek decreased water temperatures during summer and increased water temperatures during fall and winter. These thermal changes undoubtedly impact the behavior, physiology, and life histories of Chinook salmon. For example, relatively high temperatures during the fall and winter should speed growth and development, leading to early emergence of fry. Evolutionary theory provides tools to predict selective pressures and genetic responses caused by this environmental warming. Here, we illustrate this point by conducting a sensitivity analysis of the fitness consequences of thermal changes caused by dams, mediated by the thermal sensitivity of embryonic development. Based on our model, we predict Chinook salmon likely suffered a decrease in mean fitness after the construction of a dam in the Rogue River. Nevertheless, these demographic impacts might have resulted in strong selection for compensatory strategies, such as delayed spawning by adults or slowed development by embryos. Because the thermal effects of dams vary throughout the year, we predict dams impacted late spawners more than early spawners. Similar analyses could shed light on the evolutionary consequences of other environmental perturbations and their interactions. PMID:25567632

  10. The Lummi Indians and the Canadian/American Pacific Salmon Treaty.

    ERIC Educational Resources Information Center

    Boxberger, Daniel L.

    1988-01-01

    Explores the probable impact of the 1985 international Pacific Salmon Treaty on the Lummi tribe's catch of Fraser River salmon and economic well-being. Discusses the 1974 Boldt Decision, which allocated half of Washington State's salmon catch to treaty tribes, and contradictions in the federal government's conception of international treaties. (SV)

  11. REALITY, DELUSIONS, AND OTHER ASSORTED TRUTHS: THE FUTURE OF SALMON IN THE PACIFIC NORTHWEST

    EPA Science Inventory

    Are professional fisheries scientists collectively guilty of encouraging delusions about the possibilities for restoring wild salmon to the Pacific Northwest? Do they perpetuate the fantasy that the Pacific Northwest will (or could, absent pervasive life-style changes) support w...

  12. Managing Pacific salmon escapements: The gaps between theory and reality

    USGS Publications Warehouse

    Knudsen, E. Eric; Knudsen, E. Eric; Steward, Cleveland R.; MacDonald, Donald D.; Williams, Jack E.; Reiser, Dudley W.

    1999-01-01

    There are myriad challenges to estimating intrinsic production capacity for Pacific salmon populations that are heavily exploited and/or suffering from habitat alteration. Likewise, it is difficult to determine whether perceived decreases in production are due to harvest, habitat, or hatchery influences, natural variation, or some combination of all four. There are dramatic gaps between the true nature of the salmon spawner/recruit relationship and the theoretical basis for describing and understanding the relationship. Importantly, there are also extensive practical difficulties associated with gathering and interpreting accurate escapement and run-size information and applying it to population management. Paradoxically, certain aspects of salmon management may well be contributing to losses in abundance and biodiversity, including harvesting salmon in mixed population fisheries, grouping populations into management units subject to a common harvest rate, and fully exploiting all available hatchery fish at the expense of wild fish escapements. Information on U.S. Pacific salmon escapement goal-setting methods, escapement data collection methods and estimation types, and the degree to which stocks are subjected to mixed stock fisheries was summarized and categorized for 1,025 known management units consisting of 9,430 known populations. Using criteria developed in this study, only 1% of U.S. escapement goals are by methods rated as excellent. Escapement goals for 16% of management units were rated as good. Over 60% of escapement goals have been set by methods rated as either fair or poor and 22% of management units have no escapement goals at all. Of the 9,430 populations for which any information was available, 6,614 (70%) had sufficient information to categorize the method by which escapement data are collected. Of those, data collection methods were rated as excellent for 1%, good for 1%, fair for 2%, and poor for 52%. Escapement estimates are not made for 44

  13. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    SciTech Connect

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V.

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat

  14. Geomorphic and Salmon Habitat Response to Dam Removal with Minimal Constraints to Channel Evolution, Wa'atch Creek, Western Washington, U.S.A

    NASA Astrophysics Data System (ADS)

    Ritchie, A. C.; Shellberg, J. G.

    2010-12-01

    Dam removal has become an important component of aquatic ecosystem restoration, but studies documenting the physical and ecological response to dam removal across a range of human modified hydroclimatic and physiographic settings are still lacking. This research documents channel geomorphic response and fine sediment storage in salmon spawning gravels after removing two derelict dams (largest 6m) from Wa’atch Creek, located in the temperate coastal-marine zone of the Pacific Northwest, USA. After removing dam sheet pile and earthen fill, natural river processes including sediment flushing were allowed occur. Technical engineering solutions were avoided, unlike comparably sized dam removals in western Washington that over-engineered channel stability. However, two-hundred large-logs (LWD) were placed unanchored below the dam sites and throughout the reservoir before drawdown to sort and store sediment and provide future habitat complexity. Initial sedimentation impacts were severe following dam removal, temporarily smothering the bed of the creek with a fine sediment slurry (fluid mud) from dam to delta, killing aquatic biota, and covering spawning gravels with inhospitable levels of fine sediment. Subsequently, several large floods within the first year (max 10-yr recurrence interval) flushed the channel sediment slurry and over half (11,000 m^3) of the fine sediment stored in the reservoir out to sea. Coarse sediment aggraded immediately below the dam where wood was placed in the channel, while channel incision occurred through the reservoir and into tributaries, both diminishing away from the disturbance center. Channel changes were greatest immediately following removal due to high stream power, steep energy slope and saturated unconsolidated alluvium. The rate of change in sediment volume diminished over time (2003 to 2008) due to sediment consolidation, vegetation colonization, and a reduction in energy slope. After reservoir and channel flushing, fine

  15. Competition between Asian pink salmon (Oncorhynchus gorbuscha) and Alaskan sockeye salmon (O. nerka) in the North Pacific Ocean

    USGS Publications Warehouse

    Ruggerone, G.T.; Zimmermann, M.; Myers, K.W.; Nielsen, J.L.; Rogers, D.E.

    2003-01-01

    The importance of interspecific competition as a mechanism regulating population abundance in offshore marine communities is largely unknown. We evaluated offshore competition between Asian pink salmon and Bristol Bay (Alaska) sockeye salmon, which intermingle in the North Pacific Ocean and Bering Sea, using the unique biennial abundance cycle of Asian pink salmon from 1955 to 2000. Sockeye salmon growth during the second and third growing seasons at sea, as determined by scale measurements, declined significantly in odd-numbered years, corresponding to years when Asian pink salmon are most abundant. Bristol Bay sockeye salmon do not interact with Asian pink salmon during their first summer and fall seasons and no difference in first year scale growth was detected. The interaction with odd-year pink salmon led to significantly smaller size at age of adult sockeye salmon, especially among younger female salmon. Examination of sockeye salmon smolt to adult survival rates during 1977-97 indicated that smolts entering the ocean during even-numbered years and interacting with abundant odd-year pink salmon during the following year experienced 26% (age-2 smolt) to 45% (age-1 smolt) lower survival compared with smolts migrating during odd-numbered years. Adult sockeye salmon returning to Bristol Bay from even-year smolt migrations were 22% less abundant (reduced by 5.9 million fish per year) compared with returns from odd-year migrations. The greatest reduction in adult returns occurred among adults spending 2 compared with 3 years at sea. Our new evidence for interspecific competition highlights the need for multispecies, international management of salmon production, including salmon released from hatcheries into the ocean.

  16. Monitoring of Subyearling Chinook Salmon Survival and Passage at Bonneville Dam, Summer 2010

    SciTech Connect

    Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.

    2012-09-01

    The purpose of this study was to estimate dam passage and route specific survival rates for subyearling Chinook salmon smolts to a primary survival-detection array located 81 km downstream of the dam, evaluate a BGS located in the B2 forebay, and evaluate effects of two spill treatments. The 2010 study also provided estimates of forebay residence time, tailrace egress time, spill passage efficiency (SPE), and spill + B2 Corner Collector (B2CC) efficiency, as required in the Columbia Basin Fish Accords. In addition, the study estimated forebay passage survival and survival of fish traveling from the forebay entrance array, through the dam and downstream through 81 km of tailwater.

  17. Monitoring of Subyearling Chinook Salmon Survival and Passage at Bonneville Dam, Summer 2010

    SciTech Connect

    Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.

    2011-02-01

    The purpose of this study was to estimate dam passage and route specific survival rates for subyearling Chinook salmon smolts to a primary survival-detection array located 81 km downstream of the dam, evaluate a BGS located in the B2 forebay, and evaluate effects of two spill treatments. The 2010 study also provided estimates of forebay residence time, tailrace egress time, spill passage efficiency (SPE), and spill + B2 Corner Collector (B2CC) efficiency, as required in the Columbia Basin Fish Accords. In addition, the study estimated forebay passage survival and survival of fish traveling from the forebay entrance array, through the dam and downstream through 81 km of tailwater.

  18. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... WA Upper Skagit Chinook, coho, and pink salmon Gorge Lake Dam 17110006 WA Sauk River Chinook, coho... Snohomish River Chinook, coho, and pink salmon n/a 17110012 WA Lake Washington Chinook and coho salmon Cedar... Mid. Columbia - Lake Wallula Chinook and coho salmon n/a 17070102 OR/WA Walla Walla River...

  19. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... WA Upper Skagit Chinook, coho, and pink salmon Gorge Lake Dam 17110006 WA Sauk River Chinook, coho... Snohomish River Chinook, coho, and pink salmon n/a 17110012 WA Lake Washington Chinook and coho salmon Cedar... Mid. Columbia - Lake Wallula Chinook and coho salmon n/a 17070102 OR/WA Walla Walla River...

  20. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... WA Upper Skagit Chinook, coho, and pink salmon Gorge Lake Dam 17110006 WA Sauk River Chinook, coho... Snohomish River Chinook, coho, and pink salmon n/a 17110012 WA Lake Washington Chinook and coho salmon Cedar... Mid. Columbia - Lake Wallula Chinook and coho salmon n/a 17070102 OR/WA Walla Walla River...

  1. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... WA Upper Skagit Chinook, coho, and pink salmon Gorge Lake Dam 17110006 WA Sauk River Chinook, coho... Snohomish River Chinook, coho, and pink salmon n/a 17110012 WA Lake Washington Chinook and coho salmon Cedar... Mid. Columbia - Lake Wallula Chinook and coho salmon n/a 17070102 OR/WA Walla Walla River...

  2. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... WA Upper Skagit Chinook, coho, and pink salmon Gorge Lake Dam 17110006 WA Sauk River Chinook, coho... Snohomish River Chinook, coho, and pink salmon n/a 17110012 WA Lake Washington Chinook and coho salmon Cedar... Mid. Columbia - Lake Wallula Chinook and coho salmon n/a 17070102 OR/WA Walla Walla River...

  3. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest), Chum Salmon

    DTIC Science & Technology

    1988-03-01

    harvests in Washington State during (Figure 3). The total commercial the 1930’s and 1940’s (J. Ames, pers. salmon catch north of Bristol Bay , comm...white tips on pelvic and and Korea (Bakkala 1970; Hart 1973). anal fins, which distinguish them from The major rivers of the Pacific sockeye salmon ...Figure 3. Average percentages of the streams. Pacific Coast State and Province commercial harvest of chum salmon , THE FISHERY 1920-79 (modification

  4. Adult chinook salmon passage at Little Goose Dam in relation to spill operations

    USGS Publications Warehouse

    Jepson, M.A.; Caudill , C.C.; Clabough, T.S.; Peery, C.A.; Beeman, J.W.; Fielding, S.

    2009-01-01

    Spill patterns at Little Goose Dam in 2007 were modified in anticipation of a spillway weir installation intended to improve downstream passage of juvenile salmonids. However, in spill pattern was associated with reduced daily counts of adult salmon passing the dam. Consequently, the behaviors and upstream passage times of radio-tagged adult spring–summer Chinook salmon were evaluated in response to three spillway discharge patterns at Little Goose Dam during 2008. Simultaneously, tailrace conditions were characterized by monitoring the downstream paths of GPS-equipped drogues. Two of the spill treatments (i.e., Bulk and Alternate) were variations of patterns thought to mimic those produced if a spillway weir was installed. The third treatment (Uniform) was characterized by spilling similar volumes of water through most spillbays.

  5. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    PubMed Central

    Kuzishchin, Kirill V.; Stanford, Jack A.

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3–12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99–1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically

  6. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    PubMed

    Malison, Rachel L; Kuzishchin, Kirill V; Stanford, Jack A

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3-12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99-1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically

  7. Modeling Shasta Dam operations to regulate temperatures for Chinook salmon under extreme climate and climate change

    NASA Astrophysics Data System (ADS)

    Dai, A.; Saito, L.; Sapin, J. R.; Rajagopalan, B.; Hanna, R. B.; Kauneckis, D. L.

    2014-12-01

    Chinook salmon populations have declined significantly after the construction of Shasta Dam on the Sacramento River in 1945 prevented them from spawning in the cold waters upstream. In 1994, the winter-run Chinook were listed under the Endangered Species Act and 3 years later the US Bureau of Reclamation began operating a temperature control device (TCD) on the dam that allows for selective withdrawal for downstream temperature control to promote salmon spawning while also maximizing power generation. However, dam operators are responsible to other interests that depend on the reservoir for water such as agriculture, municipalities, industry, and recreation. An increase in temperatures due to climate change may place additional strain on the ability of dam operations to maintain spawning habitat for salmon downstream of the dam. We examined the capability of Shasta Dam to regulate downstream temperatures under extreme climates and climate change by using stochastically generated streamflow, stream temperature, and weather inputs with a two-dimensional CE-QUAL-W2 model under several operational options. Operation performance was evaluated using degree days and cold pool volume (volume of water below a temperature threshold). Model results indicated that a generalized operations release schedule, in which release elevations varied over the year to match downstream temperature targets, performed best overall in meeting temperature targets while preserving cold pool volume. Releasing all water out the bottom throughout the year tended to meet temperature targets at the expense of depleting the cold pool, and releasing all water out uppermost gates preserved the cold pool, but released water that was too warm during the critical spawning period. With higher air temperatures due to climate change, both degree day and cold pool volume metrics were worse than baseline conditions, which suggests that Chinook salmon may be more negatively affected under climate change.

  8. Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dalles Dam, Spring 2010

    SciTech Connect

    Carlson, Thomas J.; Skalski, John R.

    2010-10-01

    The purpose of this compliance study was to estimate dam passage survival of yearling Chinook salmon and steelhead smolts at The Dalles Dam during spring 2010. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated smolt passage survival from the forebay boat-restricted zone (BRZ) to the tailrace BRZ at The Dalles Dam, as well as the forebay residence time, tailrace egress, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A virtual/paired-release design was used to estimate dam passage survival at The Dalles Dam. The approach included releases of acoustic-tagged smolts above John Day Dam that contributed to the formation of a virtual release at the face of The Dalles Dam. A survival estimate from this release was adjusted by a paired release below The Dalles Dam. A total of 4,298 yearling Chinook salmon and 4,309 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation. The dam passage survival results are summarized as follows: Yearling Chinook Salmon 0.9641 (SE = 0.0096) and Steelhead 0.9535 (SE = 0.0097).

  9. Behavior and dam passage of juvenile Chinook salmon at Cougar Reservoir and Dam, Oregon, March 2011 - February 2012

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Haner, Philip V.; Sprando, Jamie M.; Smith, Collin D.; Evans, Scott D.; Hatton, Tyson W.

    2013-01-01

    The movements and dam passage of juvenile Chinook salmon implanted with acoustic transmitters and passive integrated transponder tags were studied at Cougar Reservoir and Dam, near Springfield, Oregon. The purpose of the study was to provide information to aid with decisions about potential alternatives for improving downstream passage conditions for juvenile salmonids in this flood-control reservoir. In 2011, a total of 411 hatchery fish and 26 wild fish were tagged and released during a 3-month period in the spring, and another 356 hatchery fish and 117 wild fish were released during a 3-month period in the fall. A series of 16 autonomous hydrophones throughout the reservoir and 12 hydrophones in a collective system near the dam outlet were used to determine general movements and dam passage of the fish over the life of the acoustic transmitter, which was expected to be about 3 months. Movements within the reservoir were directional, and it was common for fish to migrate repeatedly from the head of the reservoir downstream to the dam outlet and back to the head of the reservoir. Most fish were detected near the temperature control tower at least once. The median time from release near the head of the reservoir to detection within about 100 meters of the dam outlet at the temperature control tower was between 5.7 and 10.8 days, depending on season and fish origin. Dam passage events occurred over a wider range of dates in the spring and summer than in the fall and winter, but dam passage numbers were greatest during the fall and winter. A total of 10.5 percent (43 of 411) of the hatchery fish and 15.4 percent (4 of 26) of the wild fish released in the spring are assumed to have passed the dam, whereas a total of 25.3 percent (90 of 356) of the hatchery fish and 16.9 percent (30 of 117) of the wild fish released in the fall are assumed to have passed the dam. A small number of fish passed the dam after their transmitters had stopped working and were detected at

  10. Changing central Pacific El Niños reduce stability of North American salmon survival rates.

    PubMed

    Kilduff, D Patrick; Di Lorenzo, Emanuele; Botsford, Louis W; Teo, Steven L H

    2015-09-01

    Pacific salmon are a dominant component of the northeast Pacific ecosystem. Their status is of concern because salmon abundance is highly variable--including protected stocks, a recently closed fishery, and actively managed fisheries that provide substantial ecosystem services. Variable ocean conditions, such as the Pacific Decadal Oscillation (PDO), have influenced these fisheries, while diminished diversity of freshwater habitats have increased variability via the portfolio effect. We address the question of how recent changes in ocean conditions will affect populations of two salmon species. Since the 1980s, El Niño Southern Oscillation (ENSO) events have been more frequently associated with central tropical Pacific warming (CPW) rather than the canonical eastern Pacific warming ENSO (EPW). CPW is linked to the North Pacific Gyre Oscillation (NPGO), whereas EPW is linked to the PDO, different indicators of northeast Pacific Ocean ecosystem productivity. Here we show that both coho and Chinook salmon survival rates along western North America indicate that the NPGO, rather than the PDO, explains salmon survival since the 1980s. The observed increase in NPGO variance in recent decades was accompanied by an increase in coherence of local survival rates of these two species, increasing salmon variability via the portfolio effect. Such increases in coherence among salmon stocks are usually attributed to controllable freshwater influences such as hatcheries and habitat degradation, but the unknown mechanism underlying the ocean climate effect identified here is not directly subject to management actions.

  11. Changing central Pacific El Niños reduce stability of North American salmon survival rates

    PubMed Central

    Kilduff, D. Patrick; Di Lorenzo, Emanuele; Botsford, Louis W.; Teo, Steven L. H.

    2015-01-01

    Pacific salmon are a dominant component of the northeast Pacific ecosystem. Their status is of concern because salmon abundance is highly variable—including protected stocks, a recently closed fishery, and actively managed fisheries that provide substantial ecosystem services. Variable ocean conditions, such as the Pacific Decadal Oscillation (PDO), have influenced these fisheries, while diminished diversity of freshwater habitats have increased variability via the portfolio effect. We address the question of how recent changes in ocean conditions will affect populations of two salmon species. Since the 1980s, El Niño Southern Oscillation (ENSO) events have been more frequently associated with central tropical Pacific warming (CPW) rather than the canonical eastern Pacific warming ENSO (EPW). CPW is linked to the North Pacific Gyre Oscillation (NPGO), whereas EPW is linked to the PDO, different indicators of northeast Pacific Ocean ecosystem productivity. Here we show that both coho and Chinook salmon survival rates along western North America indicate that the NPGO, rather than the PDO, explains salmon survival since the 1980s. The observed increase in NPGO variance in recent decades was accompanied by an increase in coherence of local survival rates of these two species, increasing salmon variability via the portfolio effect. Such increases in coherence among salmon stocks are usually attributed to controllable freshwater influences such as hatcheries and habitat degradation, but the unknown mechanism underlying the ocean climate effect identified here is not directly subject to management actions. PMID:26240365

  12. Migration delays caused by anthropogenic barriers: modeling dams, temperature, and success on migrating salmon smolts

    USGS Publications Warehouse

    Marschall, Elizabeth A.; Mather, Martha E.; Parrish, Donna; Allison, Gary W.; McMenemy, James R.

    2011-01-01

    Disruption to migration is a growing problem for conservation and restoration of animal populations. Anthropogenic barriers along migration paths can delay or prolong migrations, which may result in a mismatch with migration-timing adaptations. To understand the interaction of dams (as barriers along a migration path), seasonally changing environmental conditions, timing of Atlantic salmon (Salmo salar) downstream migration, and ultimate migration success, we used 10 years of river temperature and discharge data as a template upon which we simulated downstream movement of salmon. Atlantic salmon is a cool-water species whose downstream migrating smolts must complete migration before river temperatures become too warm. We found that dams had a local effect on survival as well as a survival effect that was spatially and temporally removed from the encounter with the dam. While smolts are delayed by dams, temperatures downstream can reach lethal or near-lethal temperatures; as a result, the match between completion of migration and the window of appropriate migration conditions can be disrupted. The strength of this spatially and temporally removed effect is at least comparable to the local effects of dams in determining smolt migration success in the presence of dams. We also considered smolts from different tributaries, varying in distance from the river mouth, to assess the potential importance of locally adapted migration timing on the effect of barriers. Migration-initiation temperature affected modeled smolt survival differentially across tributaries, with the success of smolts from upstream tributaries being much more variable across years than that of smolts with a shorter distance to travel. As a whole, these results point to the importance of broadening our spatial and temporal view when managing migrating populations. We must consider not only how many individuals never make it across migration barriers, but also the spatially and temporally removed

  13. Migration delays caused by anthropogenic barriers: Modeling dams, temperature, and success of migrating salmon smolts

    USGS Publications Warehouse

    Marschall, E.A.; Mather, M. E.; Parrish, D.L.; Allison, G.W.; McMenemy, J.R.

    2011-01-01

    Disruption to migration is a growing problem for conservation and restoration of animal populations. Anthropogenic barriers along migration paths can delay or prolong migrations, which may result in a mismatch with migration-timing adaptations. To understand the interaction of dams (as barriers along a migration path), seasonally changing environmental conditions, timing of Atlantic salmon (Salmo salar) downstream migration, and ultimate migration success, we used 10 years of river temperature and discharge data as a template upon which we simulated downstream movement of salmon. Atlantic salmon is a cool-water species whose downstream migrating smolts must complete migration before river temperatures become too warm. We found that dams had a local effect on survival as well as a survival effect that was spatially and temporally removed from the encounter with the dam. While smolts are delayed by dams, temperatures downstream can reach lethal or near-lethal temperatures;as a result, the match between completion of migration and the window of appropriate migration conditions can be disrupted. The strength of this spatially and temporally removed effect is at least comparable to the local effects of dams in determining smolt migration success in the presence of dams. We also considered smolts from different tributaries, varying in distance from the river mouth, to assess the potential importance of locally adapted migration timing on the effect of barriers. Migration-initiation temperature affected modeled smolt survival differentially across tributaries, with the success of smolts from upstream tributaries being much more variable across years than that of smolts with a shorter distance to travel. As a whole, these results point to the importance of broadening our spatial and temporal view when managing migrating populations. We must consider not only how many individuals never make it across migration barriers, but also the spatially and temporally removed

  14. Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dalles Dam, Spring 2011

    SciTech Connect

    Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Johnson, Gary E.; Ploskey, Gene R.; Carlson, Thomas J.

    2012-06-12

    The study estimated dam passage survival at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and provided additional performance measures as stipulated in the Columbia Basin Fish Accords. This summary report focuses on spring run stocks, yearling Chinook salmon and steelhead.

  15. Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dales Dam, Spring 2011

    SciTech Connect

    Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Johnson, Gary E.; Ploskey, Gene R.; Carlson, Thomas J.

    2012-02-01

    The study estimated dam passage survival at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and provided additional performance measures as stipulated in the Columbia Basin Fish Accords. This summary report focuses on spring run stocks, yearling Chinook salmon and steelhead.

  16. Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, Appendix, 1989 Final Report.

    SciTech Connect

    Vreeland, Robert R.

    1989-10-01

    This document contains 43 appendices for the Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries'' report. This study was initiated to determine the distribution, contribution, and value of artificially propagated fall Chinook Salmon from the Columbia River.

  17. Behavior and dam passage of juvenile Chinook salmon at Cougar Reservoir and Dam, Oregon, March 2012 - February 2013

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Evans, Scott D.; Haner, Philip V.; Hatton, Tyson; Kofoot, Eric E.; Sprando, Jamie M.; Smith, Collin

    2014-01-01

    The movements and dam passage of individual juvenile Chinook salmon (Oncorhynchus tshawytscha) were studied at Cougar Reservoir and Dam, near Springfield, Oregon, during 2012 and 2013. Cougar Dam is a high-head flood-control reservoir with a temperature control tower as its outlet enabling selective withdrawals of water at various depths to control the temperature of water passed downstream. This report describes the second year of a 2-year study with the goal of providing information to inform decisions about future downstream passage alternatives. Inferences were based on the behavior of yearling-size juvenile Chinook salmon implanted with acoustic transmitters. The fish were released near the head of the reservoir during the spring (March, April, and May) and fall (September, October, and November) of 2012. Most tagged fish were of hatchery origin (468 spring, 449 fall) because of the low number of wild fish captured from within the reservoir (0 spring, 65 fall). Detections at hydrophones placed in several lines across the reservoir and within a collective system used to estimate three-dimensional positions near the temperature control tower were used to determine fish behavior and factors affecting dam passage rates. Most tagged fish made repeated non-random migrations from one end of the reservoir to the other and took a median of 3.7–11.7 days to travel about 7 kilometers from the release site to within about 100 meters of the temperature control tower, depending on season and origin. Reservoir passage efficiency (percentage of tagged fish detected at the head of the forebay) was 97.8 percent for hatchery fish and 74.2 percent for wild fish. Tagged fish commonly were within about 100 meters of the temperature control tower, and often spent considerable time near the entrance to the tower; however, the dam passage efficiency (percentage of dam passage of fish detected at the head of the forebay) was low for fish released during the spring (11.1 percent) and

  18. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest). Coho Salmon.

    DTIC Science & Technology

    1986-04-01

    Effects of loqqinq on the habitat behavioral ecology of juvenile coho of coho salmon and cutthroat trout salmon in stream channels. J. Fish. in coastal...SEnvironmental Requirements of Coastal Fishes and UT! CW Invertebrates (Pacific Northwest) EET SCOHO SALMON E CE 2Y -N o SCoastal Ecology Group SFish and...organisms, principally fish, of sport, commercial, or ecological importance. The profiles are designed to provide coastal managers, engineers, and

  19. RESTORING WILD SALMON TO THE PACIFIC NORTHWEST: FRAMING THE RISK QUESTION

    EPA Science Inventory

    In the Pacific Northwest of the United States, it is urgent to assess accurately the various options proposed to restore wild salmon. For the past 125 years, a variety of analytic approaches have been employed to assess the ecological consequences of salmon management options. ...

  20. 77 FR 58526 - Pacific Fishery Management Council; Public Meeting; Work Session To Review Proposed Salmon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... discuss and review proposed changes to analytical methods used in salmon management. Potential topics for... National Oceanic and Atmospheric Administration RIN 0648-XC233 Pacific Fishery Management Council; Public Meeting; Work Session To Review Proposed Salmon Methodology Changes AGENCY: National Marine...

  1. Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at the Dalles Dam, Spring 2010

    DTIC Science & Technology

    2010-10-01

    DE-AC05-76RL01830 Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dalles Dam , Spring 2010...Passage At The Dalles Dam , Spring 2010 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...survival at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and provide additional

  2. Compliance Monitoring of Yearling and Subyearling Chinook Salmon and Juvenile Steelhead Survival and Passage at John Day Dam, 2012

    SciTech Connect

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Weiland, Mark A.; Woodley, Christa M.; Hughes, James S.; Ploskey, Gene R.; Deng, Zhiqun; Carlson, Thomas J.

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of yearling and subyearling Chinook salmon and steelhead smolts at John Day Dam during the spring and summer outmigrations in 2012. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 for spring migrants and greater than or equal to 0.93 for summer migrants, estimated with a standard error (SE) less than or equal to 0.015. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 3 km downstream of the dam, as well as the forebay residence time, tailrace egress time, spill passage efficiency (SPE), and fish passage efficiency (FPE), as required in the Columbia Basin Fish Accords (Fish Accords). A virtual/paired-release design was used to estimate dam passage survival at John Day Dam. The approach included releases of smolts, tagged with acoustic micro-transmitters, above John Day Dam that contributed to the formation of a virtual release at the face of John Day Dam. A survival estimate from this release was adjusted by a paired release below John Day Dam. A total of 3376 yearling Chinook salmon, 5726 subyearling Chinook salmon, and 3239 steelhead smolts were used in the virtual releases. Sample sizes for the below-dam paired releases (R2 and R3, respectively) were 997 and 995 for yearling Chinook salmon smolts, 986 and 983 for subyearling Chinook salmon smolts, and 1000 and 1000 for steelhead smolts. The Juvenile Salmon Acoustic Telemetry System (JSATS) tags were manufactured by Advanced Telemetry Systems. Model SS300 tags, weighing 0.304 g in air, were surgically implanted in yearling and subyearling Chinook salmon, and Model SS130 tag, weighing 0.438 g in air, were surgically implanted in juvenile steelhead for this investigation. The intent of the spring study was to estimate dam passage survival during both 30% and 40% spill conditions. The two

  3. Modeling Juvenile Salmon Egress Conditions in The Dalles Dam Tailrace using Computational Fluid Dynamics

    SciTech Connect

    Richmond, Marshall C.; Rakowski, Cynthia L.; Perkins, William A.; Serkowski, John A.; Ebner, Laurie L.; Schlenker, Stephen J.

    2009-07-27

    At The Dalles Dam, located between Oregon and Washington on the Columbia River, juvenile salmon passing over the spillway have a survival rate that is below acceptable levels. An important factor affecting survival is the egress route fish take through the immediate tailrace of the dam. Passage through the high-energy spillway and stilling basin environment can leave fish disoriented and vulnerable to predators. Egress conditions can be improved through structural and operational modifications that provide flow paths that move fish more rapidly into the thalweg of the river hence reducing their exposure to predators. We used the results from free-surface computational fluid dynamics (CFD) modeling combined with Lagrangian particle tracking to evaluate the tailrace egress conditions at The Dalles Dam for different alignments of a proposed guidance wall and for different spillway discharge scenarios.

  4. Effects of introduced fishes on wild juvenile coho salmon in three shallow pacific northwest lakes

    USGS Publications Warehouse

    Bonar, Scott A.; Bolding, B.D.; Divens, M.; Meyer, W.

    2005-01-01

    Declines in Pacific salmon Oncorhynchus spp. have been blamed on hydropower, overfishing, ocean conditions, and land use practices; however, less is known about the impacts of introduced fish. Most of the hundreds of lakes and ponds in the Pacific Northwest contain introduced fishes, and many of these water bodies are also important for salmon production, especially of coho salmon O. kisutch. Over 2 years, we examined the predation impacts of 10 common introduced fishes (brown bullhead Ameiurus nebulosus, black crappie Pomoxis nigro-maculatus, bluegill Lepomis macrochirus, golden shiner Notemigonus crysoleucas, green sunfish L. cyanellus, largemouth bass Micropterus salmoides, pumpkinseed L. gibbosus, rainbow trout O. mykiss, warmouth L. gulosus, and yellow perch Perca flavescens) and two native fishes (cutthroat trout O. clarkii and prickly sculpin Cottus asper) on wild juvenile coho salmon in three shallow Pacific Northwest lakes, all located in different watersheds. Of these species, largemouth bass were responsible for an average of 98% of the predation on coho salmon in all lakes, but the total impact to each run varied among lakes and years. Very few coho salmon were eaten by black crappies, brown bullheads, cutthroat trout, prickly sculpin, or yellow perch, whereas other species were not observed to eat coho salmon. Juvenile coho salmon growth in all lakes was higher than in nearby streams. Therefore, food competition between coho salmon and introduced fishes in lakes was probably not limiting coho salmon populations. Largemouth bass are widespread and are present in 85% of lowland warmwater public-access lakes in Washington (n = 421), 84% of those in Oregon (n = 179), and 74% of those in the eight northwesternmost counties in California (n = 19). Future research would help to identify the impact of largemouth bass predation across the region and prioritize lakes where impacts are most severe. Nevertheless, attempts to transplant or increase largemouth bass

  5. Impacts of Climatic Change and Fishing on Pacific Salmon Abundance Over the Past 300 Years

    NASA Astrophysics Data System (ADS)

    Finney, Bruce P.; Gregory-Eaves, Irene; Sweetman, Jon; Douglas, Marianne S. V.; Smol, John P.

    2000-10-01

    The effects of climate variability on Pacific salmon abundance are uncertain because historical records are short and are complicated by commercial harvesting and habitat alteration. We use lake sediment records of δ15N and biological indicators to reconstruct sockeye salmon abundance in the Bristol Bay and Kodiak Island regions of Alaska over the past 300 years. Marked shifts in populations occurred over decades during this period, and some pronounced changes appear to be related to climatic change. Variations in salmon returns due to climate or harvesting can have strong impacts on sockeye nursery lake productivity in systems where adult salmon carcasses are important nutrient sources.

  6. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (Pacific Northwest): Pink salmon

    SciTech Connect

    Bonar, S.A.; Pauley, G.B.; Thomas, G.L.

    1989-01-01

    Species profiles are literature summaries of the taxonomy, morphology, range, life history, and environmental requirements of coastal aquatic species. They are designed to assist in environmental impact assessment. The pink salmon, often called humpback salmon or humpy, is easily identified by its extremely small scales (150 to 205) on the lateral line. They are the most abundant of the Pacific salmon species and spawn in North American and Asian streams bordering the Pacific and Arctic Oceans. They have a very simple two-year life cycle, which is so invariable that fish running in odd-numbered years are isolated from fish running in even-numbered years so that no gene flow occurs between them. Adults spawn in the fall and the young fry emerge in the spring. The pink salmon is less desirable in commercial and sport catches than most other salmon because of its small size and its soft pale flesh. The Puget Sound region of Washington State is the southern geographic limit of streams supporting major pink salmon runs in the eastern North Pacific. Pink salmon runs are presently only in odd-numbered years in this region. Optimum water temperatures for spawning range from 7.2 to 12.8/degree/C. Productive pink salmon streams have less than 5.0% by volume of fine sediments (less than or equal to0.8 mm). 87 refs., 5 figs., 1 tab.

  7. Upstream movements of Atlantic Salmon in the Lower Penobscot River, Maine following two dam removals and fish passage modifications

    USGS Publications Warehouse

    Izzo, Lisa K.; Maynard, George A.; Zydlewski, Joseph

    2016-01-01

    The Penobscot River Restoration Project (PRRP), to be completed in 2016, involved an extensive plan of dam removal, increases in hydroelectric capacity, and fish passage modifications to increase habitat access for diadromous species. As part of the PRRP, Great Works and Veazie dams were removed, making Milford Dam the first impediment to federally endangered Atlantic Salmon Salmo salar. Upstream habitat access for Atlantic Salmon is dependent upon successful and timely passage at Milford Dam because nearly all suitable spawning habitat is located upstream. In 2014 and 2015, a total of 73 adult salmon were radio-tagged to track their upstream movements through the Penobscot River to assess potential delays at (1) the dam remnants, (2) the confluence of the Stillwater Branch and the main stem of the Penobscot River below the impassable Orono Dam, and (3) the Milford Dam fish lift (installed in 2014). Movement rates through the dam remnants and the Stillwater confluence were comparable to open river reaches. Passage efficiency of the fish lift was high in both years (95% and 100%). However, fish experienced long delays at Milford Dam, with approximately one-third of fish taking more than a week to pass in each year, well below the Federal Energy Regulatory Commission passage standard of 95% within 48 h. Telemetry indicates most fish locate the fishway entrance within 5 h of arrival and were observed at the entrance at all hours of the day. These data indicate that overall transit times through the lower river were comparable to reported movement rates prior to changes to the Penobscot River due to the substantial delays seen at Milford Dam. The results of this study show that while adult Atlantic Salmon locate the new fish lift entrance quickly, passage of these fish was significantly delayed under 2014–2015 operations.

  8. Quantifying the Behavioral Response of Spawning Chum Salmon to Elevated Discharges from Bonneville Dam, Columbia River : Annual Report 2005-2006.

    SciTech Connect

    Tiffan, Kenneth F.; Haskell, Craig A.; Kock, Tobias J.

    2008-12-01

    In unimpounded rivers, Pacific salmon (Oncorhynchus spp.) typically spawn under relatively stable stream flows, with exceptions occurring during periodic precipitation events. In contrast, hydroelectric development has often resulted in an artificial hydrograph characterized by rapid changes in discharge and tailwater elevation that occur on a daily, or even an hourly basis, due to power generation (Cushman 1985; Moog 1993). Consequently, populations of Pacific salmon that are known to spawn in main-stem habitats below hydroelectric dams face the risks of changing habitat suitability, potential redd dewatering, and uncertain spawning success (Hamilton and Buell 1976; Chapman et al. 1986; Dauble et al. 1999; Garland et al. 2003; Connor and Pflug 2004; McMichael et al. 2005). Although the direct effects of a variable hydrograph, such as redd dewatering are apparent, specific effects on spawning behavior remain largely unexplored. Chum salmon (O. keta) that spawn below Bonneville Dam on the Columbia River are particularly vulnerable to the effects of water level fluctuations. Although chum salmon generally spawn in smaller tributaries (Johnson et al. 1997), many fish spawn in main-stem habitats below Bonneville Dam near Ives Island (Tomaro et al. 2007; Figure 1). The primary spawning area near Ives Island is shallow and sensitive to changes in water level caused by hydroelectric power generation at Bonneville Dam. In the past, fluctuating water levels have dewatered redds and changed the amount of available spawning habitat (Garland et al. 2003). To minimize these effects, fishery managers attempt to maintain a stable tailwater elevation at Bonneville Dam of 3.5 m (above mean sea level) during spawning, which ensures adequate water is provided to the primary chum salmon spawning area below the mouth of Hamilton Creek (Figure 1). Given the uncertainty of winter precipitation and water supply, this strategy has been effective at restricting spawning to a specific

  9. Genetic analysis of paramyxovirus isolates from pacific salmon reveals two independently co-circulating lineages

    USGS Publications Warehouse

    Batts, W.N.; Falk, K.; Winton, J.R.

    2008-01-01

    Viruses with the morphological and biochemical characteristics of the family Paramyxoviridae (paramyxoviruses) have been isolated from adult salmon returning to rivers along the Pacific coast of North America since 1982. These Pacific salmon paramyxoviruses (PSPV), which have mainly been isolated from Chinook salmon Oncorhynchus tshawytscha, grow slowly in established fish cell lines and have not been associated with disease. Genetic analysis of a 505-base-pair region of the polymerase gene from 47 PsPV isolates produced 17 nucleotide sequence types that could be grouped into two major sublineages, designated A and B. The two independently co-circulating sublineages differed by 12.1-13.9% at the nucleotide level but by only 1.2% at the amino acid level. Isolates of PSPV from adult Pacific salmon returning to rivers from Alaska to California over a 25-year period showed little evidence of geographic or temporal grouping. Phylogenetic analyses revealed that these paramyxoviruses of Pacific salmon were most closely related to the Atlantic salmon paramyxovirus (ASPV) from Norway, having a maximum nucleotide diversity of 26.1 % and an amino acid diversity of 19.0%. When compared with homologous sequences of other paramyxoviruses, PSPV and ASPV were sufficiently distinct to suggest that they are not clearly members of any of the established genera in the family Paramyxoviridae. in the course of this study, a polymerase chain reaction assay was developed that can be used for confirmatory identification of PSPV. ?? Copyright by the American Fisheries Society 2008.

  10. Bypass system modification at Bonneville Dam on the Columbia River improved the survival of juvenile salmon

    USGS Publications Warehouse

    Ferguson, J.W.; Sandford, B.P.; Reagan, R.E.; Gilbreath, L.G.; Meyer, E.B.; Ledgerwood, R.D.; Adams, N.S.

    2007-01-01

    From 1987 to 1992, we evaluated a fish bypass system at Bonneville Dam Powerhouse 2 on the Columbia River. The survival of subyearling Chinook salmon Oncorhynchus tshawytscha released into the system ranged from 0.774 to 0.911 and was significantly lower than the survival of test fish released into turbines and the area immediately below the powerhouse where bypass system flow reentered the river. Yearling and subyearling Chinook salmon and yearling coho salmon O. kisutch released into the bypass system were injured or descaled. Also, levels of blood plasma cortisol and lactate were significantly higher in yearling and subyearling Chinook salmon that passed through the bypass system than in fish released directly into a net located over the bypass exit. This original system was then extensively modified using updated design criteria, and the site where juvenile fish reentered the river was relocated 2.8 km further downstream to reduce predation on bypassed fish by northern pikeminnow Ptychocheilus oregonensis. Based on studies conducted from 1999 to 2001, the new bypass system resulted in high fish survival, virtually no injuries to fish, fish passage times that were generally similar to water travel times, and mild stress responses from which fish recovered quickly. The mean estimated survival of subyearling Chinook salmon passing through the new bypass system was 0.946 in 2001, which was an usually low-flow year. Survival, physical condition, passage timing, and blood physiological indicators of stress were all useful metrics for assessing the performance of both bypass systems and are discussed. The engineering and hydraulic criteria used to design the new bypass system that resulted in improved fish passage conditions are described.

  11. An Assessment of the Status of Captive Broodstock Technology of Pacific Salmon, 1995 Final Report.

    SciTech Connect

    Flagg, Thomas A.; Mahnaken, Conrad V.W.; Hard, Jeffrey J.

    1995-06-01

    This report provides guidance for the refinement and use of captive broodstock technology for Pacific salmon (Oncorhynchus spp.) by bringing together information on the husbandry techniques, genetic risks, physiology, nutrition, and pathology affecting captive broodstocks. Captive broodstock rearing of Pacific salmon is an evolving technology, as yet without well defined standards. At present, we regard captive rearing of Pacific salmon as problematic: high mortality rates and low egg viability were common in the programs we reviewed for this report. One of the most important elements in fish husbandry is the culture environment itself. Many captive broodstock programs for Pacific salmon have reared fish from smolt-to-adult in seawater net-pens, and most have shown success in providing gametes for recovery efforts. However, some programs have lost entire brood years to diseases that transmitted rapidly in this medium. Current programs for endangered species of Pacific salmon rear most fish full-term to maturity in fresh well-water, since ground water is low in pathogens and thus helps ensure survival to adulthood. Our review suggested that captive rearing of fish in either freshwater, well-water, or filtered and sterilized seawater supplied to land-based tanks should produce higher survival than culture in seawater net-pens.

  12. Survival and Passage of Yearling and Subyearling Chinook Salmon and Juvenile Steelhead at McNary Dam, 2012

    SciTech Connect

    Hughes, James S.; Weiland, Mark A.; Woodley, Christa M.; Ploskey, Gene R.; Carpenter, Scott M.; Hennen, Matthew J.; Fischer, Eric S.; Batton, George; Carlson, Thomas J.; Cushing, Aaron W.; Deng, Zhiqun; Etherington, D. J.; Fu, Tao; Greiner, Michael J.; Ingraham, John M.; Kim, Jin A.; Li, Xi; Martinez, Jayson J.; Mitchell, T. D.; Rayamajhi, Bishes; Seaburg, Adam; Skalski, J. R.; Townsend, Richard L.; Wagner, Katie A.; Zimmerman, Shon A.

    2013-12-23

    The study was designed to evaluate the passage and survival of yearling and subyearling Chinook salmon and juvenile steelhead at McNary Dam as stipulated by the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a virtual/paired-release model. This study supports the USACE’s continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  13. Ecological risk assessment for Pacific salmon exposed to dimethoate in California.

    PubMed

    Whitfield Aslund, Melissa; Breton, Roger L; Padilla, Lauren; Winchell, Michael; Wooding, Katie L; Moore, Dwayne R J; Teed, R Scott; Reiss, Rick; Whatling, Paul

    2017-02-01

    A probabilistic risk assessment of the potential direct and indirect effects of acute dimethoate exposure to salmon populations of concern was conducted for 3 evolutionarily significant units (ESUs) of Pacific salmon in California. These ESUs were the Sacramento River winter-run chinook, the California Central Valley spring-run chinook, and the California Central Valley steelhead. Refined acute exposures were estimated using the Soil and Water Assessment Tool, a river basin-scale model developed to quantify the impact of land-management practices in large, complex watersheds. Both direct effects (i.e., inhibition of brain acetylcholinesterase activity) and indirect effects (i.e., altered availability of aquatic invertebrate prey) were assessed. Risk to salmon and their aquatic invertebrate prey items was determined to be de minimis. Therefore, dimethoate is not expected to have direct or indirect adverse effects on Pacific salmon in these 3 ESUs. Environ Toxicol Chem 2017;36:532-543. © 2016 SETAC.

  14. Use of electromyogram telemetry to assess swimming activity of adult spring Chinook salmon migrating past a Columbia River dam

    USGS Publications Warehouse

    Brown, R.S.; Geist, D.R.; Mesa, M.G.

    2006-01-01

    Electromyogram (EMG) radiotelemetry was used to estimate the swim speeds of spring Chinook salmon Oncorhynchus tshawytscha migrating upstream past a Columbia River dam. Electrodes from EMG transmitters were surgically implanted in the red muscle of fish captured at Bonneville Dam, and output from the tags was calibrated to defined swim speeds for each fish in a tunnel respirometer. The fish were then released below Bonneville Dam and radio-tracked as they migrated through the tailraces, fishways, and forebays of the dam. On average, swim speed was significantly higher when tagged salmon were moving through tailraces than when they were moving through other parts of the dam. Specifically, swim speeds for fish in tailraces (106.4 cm/s) were 23% higher than those of fish in fishways (84.9 cm/s) and 32% higher than those of fish in forebays (80.2 cm/s). Swim speeds were higher in fishways during the day than during the night, but there were no diel differences in swim speeds in tailraces and forebays. During dam passage, Chinook salmon spent the most time in tailraces, followed by fishways and forebays. ?? Copyright by the American Fisheries Society 2006.

  15. Journey of the Oncorhynchus: A Story of the Pacific Northwest Salmon.

    SciTech Connect

    United States. Bonneville Power Administration.

    1994-06-01

    This report tells the story of the Pacific Northwest salmon in words that children can understand. The life cycle of chinook salmon is depicted through pictures and elementary language from the egg to juvenile fish in fresh water, to maturing fish in the ocean, and the adults migrating back up to spawning grounds in the Columbia River. This can be very useful in the education of children.

  16. Behavior and dam passage of juvenile Chinook salmon and juvenile steelhead at Detroit Reservoir and Dam, Oregon, March 2012-February 2013

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Evans, Scott D.; Haner, Philip V.; Hatton, Tyson W.; Kofoot, Eric E.; Sprando, Jamie M.; Smith, Collin D.

    2014-01-01

    The in-reservoir movements and dam passage of individual juvenile Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) were studied at Detroit Reservoir and Dam, near Detroit, Oregon, during 2012 and 2013. The goal of the study was to provide data to inform decisions about future downstream passage alternatives and factors affecting downstream passage rates with the existing dam configuration. In 2012, 468 juvenile Chinook salmon and 200 juvenile steelhead were tagged and released during a 3-month period in the spring, and another 514 juvenile Chinook salmon were tagged and released during a 3-month period in the fall. The fish were surgically implanted with a small acoustic transmitter with an expected life of about 3 months and a passive integrated transponder tag with an indefinite life, and were released into the two main tributaries several kilometers upstream of the reservoir. Juvenile Chinook salmon migrated from the release sites to the reservoir in a greater proportion than juvenile steelhead, but once in the reservoir, juvenile steelhead migrated to the forebay faster and had a higher dam passage rate than juvenile Chinook salmon. The routes available for passing water and fish varied throughout the year, with low reservoir elevations in winter and high reservoir elevations in summer in accordance with the flood-control purpose of the dam. Most dam passage was through the spillway during the spring and summer, when the reservoir elevation was high and the spillway and powerhouse were the most common routes in operation, and via the powerhouse during the fall and winter period, when the reservoir elevation was low and the regulating outlet and powerhouse were the most common routes in operation. Few tagged fish passed when the powerhouse was the only route in operation. Dam passage rates during the spring and summer were greatest at night, increased with dam discharge, and were greater when water was passed freely over the

  17. Pesticides in urban streams and prespawn mortality of Pacific coho salmon.

    PubMed

    King, Kerensa A; Grue, Christian E; Grassley, James M; Hearsey, James W

    2013-10-01

    The listing of several runs of Pacific salmon as threatened or endangered and associated federal, state, and local efforts to restore/enhance salmon habitat in the Pacific Northwest make it imperative that the factors associated with these population declines are understood. Prespawn mortality (PSM) has been documented in coho salmon (Oncorhynchus kisutch) within urban streams in western Washington since the late 1990s and is characterized by a suite of neurological and respiratory symptoms with mortality occurring shortly thereafter. Mortality rates in returning adults have ranged between 17 and 100%. The cause of PSM is not known, but the presence of pesticide residues within urban streams led to a hypothesis that PSM in coho salmon and pesticides in urban streams were linked. We exposed pairs of "green" (unripe) prespawn male and female coho salmon to a pesticide mixture ("cocktail") reported in urban streams in western Washington State, USA. Longevity, ripening in female salmon, and brain acetylcholinesterase were not significantly affected by continuous exposure to the maximum reported concentrations of the pesticides. Fertilization, hatching success, and growth of fry were also not affected when green adults were exposed to these concentrations for 96 h. The absence of effects suggests it is unlikely that pesticides within stormwater are singularly responsible for PSM in coho salmon or that they impair the reproductive capability of exposed adults.

  18. Research on Captive Broodstock Technology for Pacific Salmon, 1995 Annual Report.

    SciTech Connect

    Swanson, Penny; Pascho, Ronald; Hershberger, William K.

    1996-01-01

    This report summarizes research on captive broodstock technologies conducted during 1995 under Bonneville Power Administration Project 93-56. Investigations were conducted by the National Marine Fisheries Service (NMFS) in cooperation with the US Fish and Wildlife Service, University of Washington, and Northwest Biological Science Center (US Geological Survey). Studies encompassed several categories of research, including fish husbandry, reproductive physiology, immunology, pathology, nutrition, and genetics. Captive broodstock programs are being developed and implemented to aid recovery of endangered Pacific salmon stocks. Like salmon hatchery programs, however, captive broodstock programs are not without problems and risks to natural salmon populations. The research projects described in this report were developed in part based on a literature review, Assessment of the Status of Captive Broodstock Technology for Pacific Salmon. The work was divided into three major research areas: (1) research on sockeye salmon; (2) research on spring chinook salmon; and (3) research on quantitative genetic problems associated with captive broodstock programs. Investigations of nutrition, reproductive physiology, fish husbandry, and fish health were integrated into the research on sockeye and spring chinook salmon. A description of each investigation and its major findings and conclusions is presented.

  19. Survival of juvenile chinook salmon and coho salmon in the Roza Dam fish bypass and in downstream reaches of the Yakima River, Washington, 2016

    USGS Publications Warehouse

    Kock, Tobias J.; Perry, Russell W.; Hansen, Amy C.

    2016-12-22

    Estimates of juvenile salmon survival are important data for fishery managers in the Yakima River Basin. Radiotelemetry studies during 2012–14 showed that tagged juvenile Chinook salmon (Oncorhynchus tshawytscha) that passed through the fish bypass at Roza Dam had lower survival than fish that passed through other routes at the dam. That study also identified flow-survival relationships in the reaches between the Roza Dam tailrace and Sunnyside Dam. During 2012–14, survival also was estimated through reaches downstream of Sunnyside Dam, but generally, sample sizes were low and the estimates were imprecise. In 2016, we conducted an evaluation using acoustic cameras and acoustic telemetry to build on information collected during the previous study. The goal of the 2016 research was to identify areas where mortality occurs in the fish bypass at Roza Dam, and to estimate reach-specific survival in reaches downstream of the dam. The 2016 study included juvenile Chinook salmon and coho salmon (O. kisutch).Three acoustic cameras were used to observe fish behavior (1) near the entrances to the fish bypass, (2) at a midway point in the fish bypass (convergence vault), and (3) at the bypass outfall. In total, 504 hours of acoustic camera footage was collected at these locations. We determined that smolt-sized fish (95–170 millimeters [mm]) were present in the highest proportions at each location, but predator-sized fish (greater than 250 mm) also were present at each site. Fish presence generally peaked during nighttime hours and crepuscular periods, and was low during daytime hours. In the convergence vault, smolt-sized fish exhibited holding behavior patterns, which may explain why some fish delayed while passing through the bypass.Some of the acoustic-tagged fish were delayed in the fish bypass following release, but there was no evidence to suggest that they experienced higher mortality than fish that were released at the bypass outfall or downstream of the dam

  20. Early marine life history of juvenile Pacific salmon in two regions of Puget Sound

    NASA Astrophysics Data System (ADS)

    Duffy, Elisabeth J.; Beauchamp, David A.; Buckley, Raymond M.

    2005-07-01

    Puget Sound could differentially represent either a simple migration corridor or an important rearing environment during the potentially critical early marine residence period for different species of Pacific salmon. Recent declines in various stocks of Puget Sound salmon could reflect degraded rearing conditions or changes in temporal-spatial utilization patterns by juvenile salmon in Puget Sound, and these patterns could vary between habitats and regions of Puget Sound in response to different environmental conditions or hatchery practices. In April-September 2001 and 2002, we evaluated spatial and temporal differences in distribution and size structure among juvenile chum, pink, coho, and chinook salmon at delta and nearshore habitats in a northern and southern region of Puget Sound, Washington. Water was consistently warmer (8-18.8 °C) and less saline (0.0-27.7) in the northern (N) than in the southern region (S: 9.5-14.6 °C, 13.0-30.4). Salinities were lower and water temperatures more variable in delta sites than exposed nearshore marine sites. Peak densities of juvenile salmon coincided at delta and nearshore sites within sampling regions but differed between regions. Nearshore densities were highest during April-June with pink and chum salmon generally preceding chinook and coho salmon, and peak catch rates of most species occurred in May. A second, late pulse of chinook salmon also occurred during July at northern sites. Juvenile chinook salmon were predominantly of hatchery origin in the southern region (98%), and of mixed origin in the northern region (44% marked hatchery fish) during 2002. The lengths of chinook and chum salmon in nearshore regions increased steadily through time, whereas pink and coho salmon varied inconsistently. Mean sizes of juvenile salmon were slightly but consistently smaller at delta than nearshore sites and at northern versus southern sites. Hatchery chinook salmon were slightly larger than their unmarked counterparts

  1. Early marine life history of juvenile Pacific salmon in two regions of Puget Sound

    USGS Publications Warehouse

    Duffy, E.J.; Beauchamp, D.A.; Buckley, R.M.

    2005-01-01

    Puget Sound could differentially represent either a simple migration corridor or an important rearing environment during the potentially critical early marine residence period for different species of Pacific salmon. Recent declines in various stocks of Puget Sound salmon could reflect degraded rearing conditions or changes in temporal-spatial utilization patterns by juvenile salmon in Puget Sound, and these patterns could vary between habitats and regions of Puget Sound in response to different environmental conditions or hatchery practices. In April-September 2001 and 2002, we evaluated spatial and temporal differences in distribution and size structure among juvenile chum, pink, coho, and chinook salmon at delta and nearshore habitats in a northern and southern region of Puget Sound, Washington. Water was consistently warmer (8-18.8??C) and less saline (0.0-27.7) in the northern (N) than in the southern region (S: 9.5-14.6??C, 13.0-30.4). Salinities were lower and water temperatures more variable in delta sites than exposed nearshore marine sites. Peak densities of juvenile salmon coincided at delta and nearshore sites within sampling regions but differed between regions. Nearshore densities were highest during April-June with pink and chum salmon generally preceding chinook and coho salmon, and peak catch rates of most species occurred in May. A second, late pulse of chinook salmon also occurred during July at northern sites. Juvenile chinook salmon were predominantly of hatchery origin in the southern region (98%), and of mixed origin in the northern region (44% marked hatchery fish) during 2002. The lengths of chinook and chum salmon in nearshore regions increased steadily through time, whereas pink and coho salmon varied inconsistently. Mean sizes of juvenile salmon were slightly but consistently smaller at delta than nearshore sites and at northern versus southern sites. Hatchery chinook salmon were slightly larger than their unmarked counterparts. Extended

  2. Passage and survival probabilities of juvenile Chinook salmon at Cougar Dam, Oregon, 2012

    USGS Publications Warehouse

    Beeman, John W.; Evans, Scott D.; Haner, Philip V.; Hansel, Hal C.; Hansen, Amy C.; Smith, Collin D.; Sprando, Jamie M.

    2014-01-01

    This report describes studies of juvenile-salmon dam passage and apparent survival at Cougar Dam, Oregon, during two operating conditions in 2012. Cougar Dam is a 158-meter tall rock-fill dam used primarily for flood control, and passes water through a temperature control tower to either a powerhouse penstock or to a regulating outlet (RO). The temperature control tower has moveable weir gates to enable water of different elevations and temperatures to be drawn through the dam to control water temperatures downstream. A series of studies of downstream dam passage of juvenile salmonids were begun after the National Oceanic and Atmospheric Administration determined that Cougar Dam was impacting the viability of anadromous fish stocks. The primary objectives of the studies described in this report were to estimate the route-specific fish passage probabilities at the dam and to estimate the survival probabilities of fish passing through the RO. The first set of dam operating conditions, studied in November, consisted of (1) a mean reservoir elevation of 1,589 feet, (2) water entering the temperature control tower through the weir gates, (3) most water routed through the turbines during the day and through the RO during the night, and (4) mean RO gate openings of 1.2 feet during the day and 3.2 feet during the night. The second set of dam operating conditions, studied in December, consisted of (1) a mean reservoir elevation of 1,507 ft, (2) water entering the temperature control tower through the RO bypass, (3) all water passing through the RO, and (4) mean RO gate openings of 7.3 feet during the day and 7.5 feet during the night. The studies were based on juvenile Chinook salmon (Oncorhynchus tshawytscha) surgically implanted with radio transmitters and passive integrated transponder (PIT) tags. Inferences about general dam passage percentage and timing of volitional migrants were based on surface-acclimated fish released in the reservoir. Dam passage and apparent

  3. Hydroacoustic Monitoring of Downstream Migrant Salmon and Steelhead at Wells Dam in Spring 1984.

    SciTech Connect

    Raemhild, Gary A.

    1984-10-31

    The downstream migration of salmon and steelhead in spring 1984 at Wells Dam on the mid-Columbia River was monitored using hydroacoustics. The primary objective of this research was to document run timing and describe the distribution of smolts at the dam. The study occurred from April 2 to June 15, 1984. Four transducers were deployed at the bases of pier noses at Turbines 3, 5, 7, and 9 and aimed up 24/sup 0/ into the forebay. They were sampled once every hour, 24 hours per day, for 75 days. An index of fish passage was reported daily to the Water Budget Center in Portland, Oregon. This index was computed as follows. For each 24-h period, separate fish passage rates (number/time) at each of the four sampling locations were estimated by dividing the sum of the ''weighted'' fish detections by total sample time. These four values then were averaged to produced the daily index (number/day/location). The first substantial increase in fish passage occurred on April 25, 1984 due to the chinook released from the Winthrop hatchery on April 23. During May, run timing was fairly uniform except for peaks on May 2, 14, 18, and 22. The unexpected peak in run size that occurred from May 29 to June 2 could have been caused by juvenile mountain whitefish. Although the proportion of each species varied, chinook passage probably peaked in late April, and steelhead in the first two weeks of May; sockeye passage was variable throughout the study. The data indicated that most downstream migrants were distributed high in the water column and toward the western end of the dam. Average hourly passage rates for day and night were similar, but more fish passed the dam during the longer period of daylight than the shorter period of darkness. 7 refs., 13 figs.

  4. What`s at stake in the Pacific Northwest salmon debate? Jobs, hydropower, agriculture, fish harvests...species survival

    SciTech Connect

    Gillis, A.M.

    1995-03-01

    This article highlights the debate about the pacific salmon in the Pacific Northwest. The population levels of all salmonid species are down precipitously, with some listed as endangered, but no one has come up with a salmon restoration plan that is perceived to be both effective and painless to all the human parties with a vested interest. The Salmon issue touches everyone in the region directly or indirectly. Discussed are the following general topics: devising a plan for the salmon and the politics of planning and the problem of how the four fundamental areas, hydropower, habitat, hatcheries, and harvest, need to be prioritized.

  5. Are inland wolf-ungulate systems influenced by marine subsidies of Pacific salmon?

    USGS Publications Warehouse

    Adams, L.G.; Farley, Sean D.; Stricker, C.A.; Demma, D.J.; Roffler, G.H.; Miller, D.C.; Rye, R.O.

    2010-01-01

    Wolves (Canis lupus) in North America are considered obligate predators of ungulates with other food resources playing little role in wolf population dynamics or wolf-prey relations. However, spawning Pacific salmon (Oncorhyncus spp.) are common throughout wolf range in northwestern North America and may provide a marine subsidy affecting inland wolf-ungulate food webs far from the coast. We conducted stable-isotope analyses for nitrogen and carbon to evaluate the contribution of salmon to diets of wolves in Denali National Park and Preserve, 1200 river-km from tidewater in interior Alaska, USA. We analyzed bone collagen from 73 wolves equipped with radio collars during 1986-2002 and evaluated estimates of salmon in their diets relative to the availability of salmon and ungulates within their home ranges. We compared wolf densities and ungulate : wolf ratios among regions with differing salmon and ungulate availability to assess subsidizing effects of salmon on these wolf-ungulate systems. Wolves in the northwestern flats of the study area had access to spawning salmon but low ungulate availability and consumed more salmon (17% ?? 7% [mean ?? SD]) than in upland regions, where ungulates were sixfold more abundant and wolves did or did not have salmon spawning areas within their home ranges (8% ?? 6% and 3% ?? 3%, respectively). Wolves were only 17% less abundant on the northwestern flats compared to the remainder of the study area, even though ungulate densities were 78% lower. We estimated that biomass from fall runs of chum (O. keta) and coho (O. kisutch) salmon on the northwestern flats was comparable to the ungulate biomass there, and the contribution of salmon to wolf diets was similar to estimates reported for coastal wolves in southeast Alaska. Given the ubiquitous consumption of salmon by wolves on the northwestern flats and the abundance of salmon there, we conclude that wolf numbers in this region were enhanced by the allochthonous subsidy provided by

  6. Use of Electromyogram Telemetry to Assess Swimmng Activity of Adult Spring Chinook Salmon Migrating Past a Columbia River Dam

    SciTech Connect

    Brown, Richard S.; Geist, David R.; Mesa, Matthew G.

    2006-02-28

    Electromyogram (EMG) radiotelemetry was used to examine the amount of energy expended by spring Chinook salmon Oncorhynchus tshawytscha migrating upstream past a Columbia River dam. Electrodes from EMG transmitters were surgically implanted in the red muscle of fish captured at Bonneville Dam and output from the tags was calibrated to defined swim speeds for each fish in a tunnel respirometer. The fish were then released below Bonneville Dam and radio-tracked as they migrated through the tailraces, fishways, and forebays of the dam. On average, the rate of aerobic energy used by spring Chinook salmon was significantly higher when they were moving through tailraces (1.27 kcal•kg-1•h-1) than when they were moving through other parts of the dam. Specifically, the rate of aerobic energy use for fish in tailraces was 14% higher than that used by fish in fishways (1.11 kcal•kg-1•h-1) and 27% higher than the rate used by fish in forebays (1.00 kcal•kg-1•h-1). Most (80%) of the aerobic energy used by fish to pass this dam was expended in the tailrace (25.5 kcal/kg), while only 18% (5.6 kcal/kg) and 2% (0.6 kcal/kg) were used in the fishways and forebays.

  7. SALMON IN CRISIS: IN SEARCH OF A SOLUTION FOR THE PACIFIC NORTHWEST

    EPA Science Inventory

    Throughout the Pacific Northwest, since 1850, all wild salmon runs have declined and some have disappeared. Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline. Each year, hundreds of millions of dollars continue to be spent in variou...

  8. 77 FR 21716 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Salmon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Economic Zone Off Alaska; Pacific Salmon AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... exclusive economic zone (EEZ) off Alaska. The FMP establishes two management areas: the East Area is the EEZ... economic and social benefits to the Nation over time, (5) protect wild stocks and fully utilize...

  9. Techno-Arrogance and Halfway Technologies: Salmon Hatcheries on the Pacific Coast of North America.

    ERIC Educational Resources Information Center

    Meffe, Gary K.

    1993-01-01

    Discusses an attempt to recover Pacific salmonid fisheries with hatcheries as an example of a human attitude toward nature that places technological mastery over nature at the forefront of our approach to many environmental problems. Points out how this approach addresses the symptoms but not the causes of the salmon population decline. Suggests…

  10. 50 CFR 660.412 - EFH identifications and descriptions for Pacific salmon.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false EFH identifications and descriptions for Pacific salmon. 660.412 Section 660.412 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF...

  11. Early life history attributes and run composition of PIT-tagged wild subyearling Chinook salmon recaptured after migrating downstream past Lower Granite Dam

    USGS Publications Warehouse

    Connor, W.P.; Bjornn, T.C.; Burge, H.L.; Marshall, A.R.; Blankenship, H.L.; Steinhorst, R.K.; Tiffan, K.F.

    2001-01-01

    Seaward migration timing of Snake River fall chinook salmon (Oncorhynchus tshawytscha) smolts is indexed using subyearling chinook salmon passage data collected at Lower Granite Dam. However, not all of the subyearlings are fall chinook salmon. For six years, we recaptured wild subyearling chinook salmon smolts, which had been previously PIT tagged in the Snake River, to genetically determine if the fish were offspring of spring and summer (hereafter, spring/summer), or fall chinook salmon. Springfall chinook salmon comprised over 10% of the samples of recaptured smolts in five of six years. For these five years, we used discriminant analysis to determine run membership of PIT-tagged smolts that were not recaptured (i.e., not sampled for genetic identification). Accuracy of the discriminant analysis models, based on genetically identified smolts, varied between 75 and 85%. After using discriminant analysis to classify run membership for each PIT-tagged smolt that was not genetically identified, we compared early life history attributes between fall and spring/summer chinook salmon and calculated annual run composition. The life history attributes we studied overlapped, but spring/summer chinook salmon reared along the shoreline of the free-flowing Snake River earlier, were larger, and began seaward migration earlier than fall chinook salmon. Spring/summer chinook salmon made up from 15.1 to 44.4% of the tagged subyearling smolts that were detected passing Lower Granite Dam. As a result, the presence of spring/summer chinook salmon makes migration timing for the fall chinook salmon seem earlier and more protracted than is the case. If wild subyearling spring/summer chinook salmon smolts are not considered, fall chinook salmon abundance at Lower Granite Dam will be overestimated.

  12. Mortality of Yearling Chinook Salmon Prior to Arrival at Lower Granite Dam, on the Snake River : Progress Report.

    SciTech Connect

    Giorgi, Albert E.

    1991-10-01

    Efforts have been initiated to develop a research plan that will provide insight into causes of, and ultimately solutions to, the apparent excessive mortality of juvenile chinook upstream from Lower Granite Dam on the Snake River. In the context of the proposed salmon stock listings under the Endangered Species Act, issues that potentially affect wild stocks of spring chinook salmon probably warrant immediate consideration and resolution. Mark-recapture data at Lower Granite Dam indicate that few yearling chinook salmon (Oncorhynchus tshawytscha) smolts survive to that site after release from various hatcheries. Upriver stocks of yearling spring and summer chinook exhibit pronounced losses en route to the dam. In 1989 and 1990, only about 8 to 18% of PIT-tagged representatives from McCall or Sawtooth hatchery were detected at the dam. General survival indices for these stocks indicate that perhaps only 15 to 35% of the yearlings survived to that site. This suggests these stocks may sustain as much mortality traversing this unobstructed reach of river as the general population would passing through the entire hydroelectric complex.

  13. Detection of PIT-tagged subyearling Chinook salmon at a Snake River dam: Implications for summer flow augmentation

    USGS Publications Warehouse

    Connor, W.P.; Burge, H.L.; Bennett, D.H.

    1998-01-01

    Rearing subyearling chinook salmon Oncorhynchus tshawytscha (≥60 mm in fork length) were captured in the Snake River and tagged with passive integrated transponders to provide an index of their survival to Lower Granite Dam, the first of eight dams encountered by seaward migrants. Water was released from reservoirs upstream of Lower Granite Dam to augment summer flows and thereby increase subyearling chinook salmon survival. Mean summer flow and maximum summer water temperature in Lower Granite Reservoir were highly correlated (N = 4; r = −0.999). Acknowledging this correlation, we conducted two separate least-squares regressions using detection rate as the dependent variable. Detection rate at Lower Granite Dam was positively related to mean summer flow (N = 4; r 2 = 0.993; P = 0.003) and negatively related to maximum summer water temperature (N = 4; r 2 = 0.984; P = 0.008). Summer flow augmentation increased flow and decreased water temperature in Lower Granite Reservoir especially in low-flow years. Our results support summer flow augmentation as a beneficial interim recovery measure for enhancing survival of subyearling chinook salmon in the Snake River. Additional research should include replicate within-year releases of PIT-tagged subyearlings as well as studies of fish guidance efficiency.

  14. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at John Day Dam, Spring 2010

    SciTech Connect

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Skalski, J. R.; Townsend, Richard L.

    2012-11-15

    The purpose of this study was to compare dam passage survival, at two spill treatment levels, of yearling Chinook salmon and steelhead smolts at John Day Dam during spring 2010. The two treatments were 30% and 40% spill out of total project discharge. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated forebay residence time, tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. However, by agreement among the stakeholders, this study was not an official BiOp compliance test because the long-term passage measures at John Day Dam have yet to be finalized and another year of spill-treatment testing was desired.

  15. Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydroelectric dam

    USGS Publications Warehouse

    Daniel Nyqvist,; Greenberg, L.; Goerig, E.; Calles, O.; Bergman, E.; William Ardren,; Castro-Santos, Theodore R.

    2016-01-01

    Passage of fish through hydropower dams is associated with mortality, delay, increased energy expenditure and migratory failure for migrating fish and the need for remedial measures for both upstream and downstream migration is widely recognised. A functional fish passage must ensure safe and timely passage routes that a substantial portion of migrating fish will use. Passage solutions must address not only the number or percentage of fish that successfully pass a barrier, but also the time it takes to pass. Here, we used radiotelemetry to study the functionality of a fish bypass for downstream-migrating wild-caught and hatchery-released Atlantic salmon smolts. We used time-to-event analysis to model the influence of fish characteristics and environmental variables on the rates of a series of events associated with dam passage. Among the modelled events were approach rate to the bypass entry zone, retention rates in both the forebay and the entry zone and passage rates. Despite repeated attempts, only 65% of the tagged fish present in the forebay passed the dam. Fish passed via the bypass (33%), via spill (18%) and via turbines (15%). Discharge was positively related to approach, passage and retention rates. We did not detect any differences between wild and hatchery fish. Even though individual fish visited the forebay and the entry zone on multiple occasions, most fish passed during the first exposures to these zones. This study underscores the importance of timeliness to passage success and the usefulness of time-to-event analysis for understanding factors governing passage performance.

  16. The importance of genetic verification for determination of Atlantic salmon in north Pacific waters

    USGS Publications Warehouse

    Nielsen, J.L.; Williams, I.; Sage, G.K.; Zimmerman, C.E.

    2003-01-01

    Genetic analyses of two unknown but putative Atlantic salmon Salmo salar captured in the Copper River drainage, Alaska, demonstrated the need for validation of morphologically unusual fishes. Mitochondrial DNA sequences (control region and cytochrome b) and data from two nuclear genes [first internal transcribed spacer (ITS-1) sequence and growth hormone (GH1) amplification product] indicated that the fish caught in fresh water on the Martin River was a coho salmon Oncorhynchus kisutch, while the other fish caught in the intertidal zone of the Copper River delta near Grass Island was an Atlantic salmon. Determination of unusual or cryptic fish based on limited physical characteristics and expected seasonal spawning run timing will add to the controversy over farmed Atlantic salmon and their potential effects on native Pacific species. It is clear that determination of all putative collections of Atlantic salmon found in Pacific waters requires validation. Due to uncertainty of fish identification in the field using plastic morphometric characters, it is recommended that genetic analyses be part of the validation process. ?? 2003 The Fisheries Society of the British Isles.

  17. Freshwater ecosystems and resilience of Pacific salmon: Habitat Management based on natural variability

    USGS Publications Warehouse

    Bisson, P.A.; Dunham, J.B.; Reeves, G.H.

    2009-01-01

    In spite of numerous habitat restoration programs in fresh waters with an aggregate annual funding of millions of dollars, many populations of Pacific salmon remain significantly imperiled. Habitat restoration strategies that address limited environmental attributes and partial salmon life-history requirements or approaches that attempt to force aquatic habitat to conform to idealized but ecologically unsustainable conditions may partly explain this lack of response. Natural watershed processes generate highly variable environmental conditions and population responses, i.e., multiple life histories, that are often not considered in restoration. Examples from several locations underscore the importance of natural variability to the resilience of Pacific salmon. The implication is that habitat restoration efforts will be more likely to foster salmon resilience if they consider processes that generate and maintain natural variability in fresh water. We identify three specific criteria for management based on natural variability: the capacity of aquatic habitat to recover from disturbance, a range of habitats distributed across stream networks through time sufficient to fulfill the requirements of diverse salmon life histories, and ecological connectivity. In light of these considerations, we discuss current threats to habitat resilience and describe how regulatory and restoration approaches can be modified to better incorporate natural variability. ?? 2009 by the author(s).

  18. Detection and identification of Diphyllobothrium nihonkaiense plerocercoids from wild Pacific salmon (Oncorhynchus spp.) in Japan.

    PubMed

    Suzuki, J; Murata, R; Sadamasu, K; Araki, J

    2010-12-01

    We investigated the risk of diphyllobothriasis from ingestion of wild Pacific salmon in Japan by surveying Diphyllobothrium plerocercoids in 182 salmon samples obtained from Japan. The plerocercoids were not detected in chum salmon (Oncorhynchus keta) (0/26), called Akizake in Japan, caught between September and November. However, the detection rate of plerocercoids in chum salmon, called Tokishirazu in Japan, caught between early April and June, was 51.1% (24/47) with an average of two plerocercoid larvae per fish. The detection rates of cherry salmon (Oncorhynchus masou) and pink salmon (Oncorhynchus gorbuscha) were 12.2% (10/82) and 18.5% (5/27), respectively, and the average number of plerocercoids per fish was 0.45 (37 larvae/82 fishes) and 0.22 larvae (6 larvae/27 fishes), respectively. Plerocercoids isolated from O. keta and O. masou were identified as Diphyllobothrium nihonkaiense on the basis of molecular analysis of the cox1 and nad3 genes. Moreover, four tapeworms (three from O. keta and one from O. masou) were obtained by infecting golden hamsters with plerocercoids. The morphological features of these tapeworms were similar to those of D. nihonkaiense isolated from humans. Therefore, we think that O. keta and not O. masou is the most important source of plerocercoid infections in Japan.

  19. Variation in responses to spawning Pacific salmon among three south-eastern Alaska streams

    USGS Publications Warehouse

    Chaloner, D.T.; Lamberti, G.A.; Merritt, R.W.; Mitchell, N.L.; Ostrom, P.H.; Wipfli, M.S.

    2004-01-01

    1. Pacific salmon are thought to stimulate the productivity of the fresh waters in which they spawn by fertilising them with marine-derived nutrients (MDN). We compared the influence of salmon spawners on surface streamwater chemistry and benthic biota among three southeastern Alaska streams. Within each stream, reaches up- and downstream of barriers to salmon migration were sampled during or soon after spawners entered the streams. 2. Within streams, concentrations of dissolved ammonium and soluble reactive phosphorus (SRP), abundance of epilithon (chlorophyll a and ash-free dry mass) and biomass of chironomids were significantly higher in reaches with salmon spawners. In contrast, biomass of the mayflies Epeorus spp. and Rhithrogena spp. was significantly higher in reaches lacking spawners. 3. Among streams, significant differences were found in concentrations of dissolved ammonium, dissolved organic carbon, nitrate and SRP, abundance of epilithon, and the biomass of chironomids and Rhithrogena. These differences did not appear to reflect differences among streams in spawner density, nor the changes in water chemistry resulting from salmon spawners. 4. Our results suggest that the 'enrichment' effect of salmon spawners (e.g. increased streamwater nutrient concentrations) was balanced by other concurrent effects of spawners on streams (e.g. sediment disturbance). Furthermore, the collective effect of spawners on lotic ecosystems is likely to be constrained by conditions unique to individual streams, such as temperature, background water chemistry and light attenuation.

  20. Fall Chinook Salmon Spawning Activity Versus Daylight and Flow in the Tailrace of a Large Hydroelectric Dam

    SciTech Connect

    McMichael, Geoffrey A.; McKinstry, Craig A.; Vucelick, Jessica A.; Lukas, Joe

    2005-05-01

    We deployed an acoustic system during the fall Chinook salmon (Oncorhynchus tshawytscha) spawning season in 2001 to determine whether fall Chinook salmon spawning activity in a hydroelectric dam tailrace area was affected by daylight or river flow dynamics. The system was deployed following a randomized study design to record fall Chinook salmon spawning activity during day and night periods in two index areas downstream of Wanapum Dam on the Columbia River in Washington, USA. One index area was a deepwater spawning area located (river kilometer (rkm) 663) in 9 to 11 m of water. The other index site was a moderate depth mid-channel bar, where water depths ranged from 2.5 to 6 m. The acoustic system was used to collect spawning activity data during free-drifts in a boat through the index areas. Spawning activity was defined as digs per minute from underwater sound recordings. Fall Chinook salmon spawning activity in the Wanapum Dam tailrace was influenced by daylight and river discharge. Results showed there was a substantial amount of spawning activity occurring during both daylight and darkness. However, there was significantly more spawning activity during daylight than at night in both index areas. Spawning activity was also affected by flow. Project discharge had a pronounced non-linear effect on spawning activity. Spawning activity was generally highest at project discharges between 1,700 and 2266 m3 sec-1 in both spawning areas, with reduced activity as discharge increased to between 3,400 and 4,250 m3 sec-1. We concluded that fall Chinook salmon spawning activity in highly variable environments was affected more by flow (and velocity) than by daylight.

  1. ECOLOGICAL AND WATER QUALITY CONSEQUENCES OF NUTRIENT ADDITION FOR SALMON RESTORATION IN THE PACIFIC NORTHWEST OF NORTH AMERICA

    EPA Science Inventory

    Salmon runs have declined over the past two centuries in the Pacific Northwest region of North America. Reduced inputs of salmon-derived organic matter and nutrients (SDN) may limit freshwater production and thus establish a negative feedback loop affecting future generations of...

  2. Pacific salmon (Oncorhynchus spp.) runs and consumer fitness: growth and energy storage in stream-dwelling salmonids increase with salmon spawner density

    USGS Publications Warehouse

    Rinella, D.J.; Wipfli, M.S.; Stricker, C.A.; Heintz, R.A.; Rinella, M.J.

    2012-01-01

    We examined how marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and δ15N of stream-dwelling fishes. We sampled juvenile coho salmon (Oncorhynchus kisutch) and Dolly Varden (Salvelinus malma) during spring and fall from 11 south-central Alaskan streams that ranged widely in spawning salmon biomass (0.1–4.7 kg·m–2). Growth rate (as indexed by RNA–DNA ratios), energy density, and δ15N enrichment in spring-sampled fishes increased with spawner biomass, indicating the persistence of spawner effects more than 6 months after salmon spawning. Point estimates suggest that spawner effects on nutrition were substantially greater for coho salmon than Dolly Varden (268% and 175% greater for growth and energy, respectively), indicating that both species benefitted physiologically, but that juvenile coho salmon accrued more benefits than Dolly Varden. Although the data were less conclusive for fall- than spring-sampled fish, they do suggest spawner effects were also generally positive during fall, soon after salmon spawned. In a follow-up analysis where growth rate and energy density were modeled as a function of δ15N enrichment, results suggested that both increased with MDN assimilation, especially in juvenile coho salmon. Our results support the importance of salmon runs to the nutritional ecology of stream-dwelling fishes.

  3. Pacific salmon (Oncorhynchus spp.) runs and consumer fitness: growth and energy storage in stream-dwelling salmonids increase with salmon spawner density

    USGS Publications Warehouse

    Rinella, Daniel J.; Wipfli, Mark S.; Stricker, Craig A.; Heintz, Ron A.; Rinella, Matthew J.

    2012-01-01

    We examined how marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and δ15N of stream-dwelling fishes. We sampled juvenile coho salmon (Oncorhynchus kisutch) and Dolly Varden (Salvelinus malma) during spring and fall from 11 south-central Alaskan streams that ranged widely in spawning salmon biomass (0.1–4.7 kg·m–2). Growth rate (as indexed by RNA–DNA ratios), energy density, and δ15N enrichment in spring-sampled fishes increased with spawner biomass, indicating the persistence of spawner effects more than 6 months after salmon spawning. Point estimates suggest that spawner effects on nutrition were substantially greater for coho salmon than Dolly Varden (268% and 175% greater for growth and energy, respectively), indicating that both species benefitted physiologically, but that juvenile coho salmon accrued more benefits than Dolly Varden. Although the data were less conclusive for fall- than spring-sampled fish, they do suggest spawner effects were also generally positive during fall, soon after salmon spawned. In a follow-up analysis where growth rate and energy density were modeled as a function of δ15N enrichment, results suggested that both increased with MDN assimilation, especially in juvenile coho salmon. Our results support the importance of salmon runs to the nutritional ecology of stream-dwelling fishes.

  4. Monitoring and Evaluation of Yearling Fall Chinook Salmon Released from Acclimation Facilities Upstream of Lower Granite Dam; 1998 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.

    2004-01-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery (Snake River stock) yearling fall chinook salmon that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1998. The three fall chinook acclimation facilities are operated by the Nez Perce Tribe and located at Pittsburg Landing and Captain John Rapids on the Snake River and at Big Canyon Creek on the Clearwater River. Yearlings at the Big Canyon facility consisted of two size classes that are referred to in this report as 9.5 fish per pound (fpp) and 30 fpp. The Big Canyon 9.5 fpp were comparable to the yearlings at Pittsburg Landing, Captain John Rapids and Lyons Ferry Hatchery. A total of 9,942 yearlings were PIT tagged and released at Pittsburg Landing. PIT tagged yearlings had a mean fork length of 159.9 mm and mean condition factor of 1.19. Of the 9,942 PIT tagged fish released, a total of 6,836 unique tags were detected at mainstem Snake and Columbia River dams (Lower Granite, Little Goose, Lower Monumental and McNary). A total of 4,926 9.5 fpp and 2,532 30 fpp yearlings were PIT tagged and released at Big Canyon. PIT tagged 9.5 fpp yearlings had a mean fork length of 156.9 mm and mean condition factor of 1.13. PIT tagged 30 fpp yearlings had a mean fork length of 113.1 mm and mean condition factor of 1.18. Of the 4,926 PIT tagged 9.5 fpp yearlings released, a total of 3,042 unique tags were detected at mainstem Snake and Columbia River dams. Of the 2,532 PIT tagged 30 fpp yearlings released, a total of 1,130 unique tags were detected at mainstem Snake and Columbia River dams. A total of 1,253 yearlings were PIT tagged and released at Captain John Rapids. PIT tagged yearlings had a mean fork length of 147.5 mm and mean condition factor of 1.09. Of

  5. Linking oceanic food webs to coastal production and growth rates of Pacific salmon ( Oncorhynchus spp.), using models on three scales

    NASA Astrophysics Data System (ADS)

    Aydin, Kerim Y.; McFarlane, Gordon A.; King, Jacquelynne R.; Megrey, Bernard A.; Myers, Katherine W.

    2005-03-01

    Three independent modeling methods—a nutrient-phytoplankton-zooplankton (NPZ) model (NEMURO), a food web model (Ecopath/Ecosim), and a bioenergetics model for pink salmon ( Oncorhynchus gorbuscha)—were linked to examine the relationship between seasonal zooplankton dynamics and annual food web productive potential for Pacific salmon feeding and growing in the Alaskan subarctic gyre ecosystem. The linked approach shows the importance of seasonal and ontogenetic prey switching for zooplanktivorous pink salmon, and illustrates the critical role played by lipid-rich forage species, especially the gonatid squid Berryteuthis anonychus, in connecting zooplankton to upper trophic level production in the subarctic North Pacific. The results highlight the need to uncover natural mechanisms responsible for accelerated late winter and early spring growth of salmon, especially with respect to climate change and zooplankton bloom timing. Our results indicate that the best match between modeled and observed high-seas pink salmon growth requires the inclusion of two factors into bioenergetics models: (1) decreasing energetic foraging costs for salmon as zooplankton are concentrated by the spring shallowing of pelagic mixed-layer depth and (2) the ontogenetic switch of salmon diets from zooplankton to squid. Finally, we varied the timing and input levels of coastal salmon production to examine effects of density-dependent coastal processes on ocean feeding; coastal processes that place relatively minor limitations on salmon growth may delay the seasonal timing of ontogenetic diet shifts and thus have a magnified effect on overall salmon growth rates.

  6. FACTS, FANTASIES, AND FORECASTS: THE FUTURE OF WILD PACIFIC SALMON

    EPA Science Inventory

    Throughout the far western contiguous United States (California, Oregon, Washington, and Idaho), many wild salmon stocks have declined and some have disappeared. The decline has taken place over the past 150 years, but there have been decades when the numbers increased. Overall...

  7. Nonnative Pacific salmon alter hot spots of sediment nitrification in Great Lakes tributaries

    NASA Astrophysics Data System (ADS)

    Levi, Peter S.; Tank, Jennifer L.

    2013-06-01

    Biogeochemical transformations may represent an important pathway influencing the fate of nutrient subsidies in stream ecosystems. Pacific salmon (Oncorhynchus spp.) provide an ammonium (NH4+) subsidy to streams during their annual spawning runs, which may be transformed to nitrate (NO3-) via sediment nitrification. Increases in either forms of dissolved inorganic nitrogen may have ecosystem effects both at the reach and watershed scales, including the fertilization of algal biofilms and elevated export of nutrients to downstream ecosystems. In the nonnative range of salmon, where spawning runs are a relatively new phenomenon, few studies have explored the effect of introduced salmon on ecosystem processes. To assess the effect of nonnative salmon on dissolved inorganic nitrogen dynamics in Great Lakes tributaries, we quantified sediment nitrification in five streams before, during, and after the spawning run in 2009. Overall, sediment nitrification rates were higher in the channel thalweg (mean ± SE = 1.9 ± 0.1 mg N/gAFDM/d) compared to channel margins (mean ± SE = 0.9 ± 0.1 mg N/gAFDM/d). In the two streams with the largest salmon runs, nitrification was highest in the channel thalweg prior to salmon, but margin sediments had higher nitrification during the run. Among all streams, variation in nitrification rates was habitat specific, predicted by exchangeable NH4+ in sediments from the thalweg and predicted by salmon biomass for sediments in the channel margin. Nonnative salmon provide a pulsed source of inorganic nitrogen to Great Lakes tributaries, yet dissimilatory biogeochemical transformations such as nitrification may alter the form of the NH4+ subsidy and potentially influence downstream lakes via export of both NH4+ and NO3-.

  8. Research on Captive Broodstock Programs for Pacific Salmon, 2001-2002 Annual Report.

    SciTech Connect

    Berejikian, Barry; Tezak, E.; Endicott, Rick

    2002-08-01

    The efficacy of captive broodstock programs depends on high in-culture survival and the fitness of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. The following summarizes some of the work performed and results from the FY 2001 performance period: (1) The incidence of male maturation of age-1 chinook salmon was significantly reduced by reducing growth in the first year of rearing. (2) Experimentally manipulated growth rates of captively-reared coho salmon had significant effects on female maturation rate, egg size, and fecundity, and the effects were stage-specific (i.e., pre-smolt vs. post-smolt). (3) A combination of Renogen and MT239 vaccination of yearling chinook salmon given an acute R. salmoninarum challenge had a significantly longer survival time than the mock-vaccinated group. The survival time was marginally higher than was seen in acutely challenged fish vaccinated with either Renogen or MT239 alone and suggests that a combination vaccine of Renogen and MT239 may be useful as both a prophylactic and therapeutic agent against BKD. (4) Full-sib (inbred) groups of chinook salmon have thus far exhibited lower ocean survival than half-sib and non-related groups. Effects of inbreeding on fluctuating asymmetry did not follow expected patterns. (5) Sockeye salmon were exposed to specific odorants at either the alevin/emergent fry stage or the smolt stage to determine the relative importance of odorant exposure during key developmental periods and the importance of exposure duration. (6) Experimental studies to determine the effects of exercise conditioning on steelhead reproductive behavior and the effects of male body size on chinook salmon fertilization success during natural spawning were completed.

  9. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    SciTech Connect

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.

  10. Renibacterium salmoninarum in spring-summer chinook salmon smolts at dams on the Columbia and Snake Rivers

    USGS Publications Warehouse

    Elliott, D.G.; Pascho, R.J.; Jackson, L.M.; Matthews, G.M.; Harmon, J.R.

    1997-01-01

    We evaluated Renibacterium salmoninarum infection in smolts of hatchery and wild spring-summer chinook salmon Oncorhynchus tshawytscha sampled during most of the out-migration at Little Goose (1988) and Lower Granite dams (1988-1991) on the Snake River and at Priest Rapids and McNary dams on the Columbia River (1988-1990). We sampled 860-2,178 fish per dam each year. Homogenates of kidney-spleen tissue from all fish were tested for the presence of R. salmoninarum antigens by the enzyme-linked immunosorbent assay (ELISA), and homogenates from 10% of the fish were examined by the fluorescent antibody technique (FAT). Although only 1-11% of fish sampled at a given dam during any 1 year exhibited lesions characteristic of bacterial kidney disease, 86-100% of the fish tested positive for R. salmoninarum antigen by ELISA, whereas 4-17% of the fish tested positive by the FAT. During most years, a majority (68-87%) of fish testing positive by the ELISA had low R. salmoninarum antigen levels, but in 1989, 53% of positive fish from Lower Granite Dam and 52% from McNary Dam showed medium-to-high antigen levels. For most years, the highest mean antigen levels were measured in fish sampled after 75% of the total out-migrants had passed a given dam. When the largest numbers of fish were being collected for bypass or downriver transportation, mean antigen levels were relatively low.

  11. Analyzing variations in life-history traits of Pacific salmon in the context of Dynamic Energy Budget (DEB) theory

    NASA Astrophysics Data System (ADS)

    Pecquerie, Laure; Johnson, Leah R.; Kooijman, Sebastiaan A. L. M.; Nisbet, Roger M.

    2011-11-01

    To determine the response of Pacific salmon ( Oncorhynchus spp.) populations to environmental change, we need to understand impacts on all life stages. However, an integrative and mechanistic approach is particularly challenging for Pacific salmon as they use multiple habitats (river, estuarine and marine) during their life cycle. Here we develop a bioenergetic model that predicts development, growth and reproduction of a Pacific salmon in a dynamic environment, from an egg to a reproducing female, and that links female state to egg traits. This model uses Dynamic Energy Budget (DEB) theory to predict how life history traits vary among five species of Pacific salmon: Pink, Sockeye, Coho, Chum and Chinook. Supplemented with a limited number of assumptions on anadromy and semelparity and external signals for migrations, the model reproduces the qualitative patterns in egg size, fry size and fecundity both at the inter- and intra-species levels. Our results highlight how modeling all life stages within a single framework enables us to better understand complex life-history patterns. Additionally we show that body size scaling relationships implied by DEB theory provide a simple way to transfer model parameters among Pacific salmon species, thus providing a generic approach to study the impact of environmental conditions on the life cycle of Pacific salmon.

  12. Research on Captive Broodstock Programs for Pacific Salmon, 2004-2005 Annual Report.

    SciTech Connect

    Berejikian, Barry A.

    2005-11-01

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Accomplishments detailed in this report and those since the last project review period (FY 2003) are listed below by major objective. Objective 1: (i) Developed tools for monitoring the spawning success of captively reared Chinook salmon that can now be used for evaluating the reintroduction success of ESA-listed captive broodstocks in their natal habitats. (ii) Developed an automated temperature controlled rearing system to test the effects of seawater rearing temperature on reproductive success of Chinook salmon. Objective 2: (i) Determined that Columbia River sockeye salmon imprint at multiple developmental stages and the length of exposure to home water is important for successful imprinting. These results can be utilized for developing successful reintroduction strategies to minimize straying by ESA-listed sockeye salmon. (ii) Developed behavioral and physiological assays for imprinting in sockeye salmon. Objective 3: (i) Developed growth regime to reduce age-two male maturation in spring Chinook salmon, (ii) described reproductive cycle of returning hatchery Snake River spring Chinook salmon relative to captive broodstock, and (iii) found delays in egg development in captive broodstock prior to entry to fresh water. (iv) Determined that loss of Redfish Lake sockeye embryos prior to hatch is largely due to lack of egg fertilization rather than embryonic mortality. Objective 4 : (i) Demonstrated safety and efficacy limits against bacterial kidney disease (BKD) in fall Chinook of attenuated R. salmoninarum vaccine and commercial vaccine Renogen, (ii) improved prophylactic and therapeutic

  13. Pesticides and PCBs in Pacific salmon (Oncorhynchus tshawytscha and O. kisutch) from Puget Sound, Washington

    SciTech Connect

    O`Neill, S.M.; West, J.E.

    1995-12-31

    The Washington Department of Fish and Wildlife initiated a long-term study to monitor levels of contaminants in two species of Pacific salmon (Oncorhynchus tshawytscha and O. kisutch) and other marine fishes of Puget Sound. The study is one component of the Puget Sound Ambient Monitoring Program (PSAMP), a multi-agency effort to assess the environmental health of Puget Sound. Here the authors summarize results from their ongoing study of O. tshawytscha and O. kisutch. Samples of muscle tissue were collected for chemical analyses from adult salmon that were purchased from licensed fish buyers or treaty tribal fisherman. From 1992 through 1994, both salmon species were sampled at seven fishing areas in marine waters and river mouths of Puget Sound. 4,4-DDE and 4,4-DDD, metabolites of the pesticide DDT, and polychlorinated biphenyls (PCBS) were consistently detected in both species and were consistently higher in O. tshawytscha. Low to moderate concentrations of DDT metabolites (3 to 59 ug/kg wet weight) were detected in the salmon samples but were seldom detected in other fish species sampled by PSAMP. Total PCBs concentrations (Arochlor 1254 + 1260) ranged from 10 to 211 ug/kg wet weight in 0. tshawytscha, with many samples containing PCBs concentrations similar to those detected in benthic flatfish, (Pleuronectes vetulus), sampled from urbanized embayments. A stepwise linear regression model was used to identify parameters correlated with accumulation of PCBs and DDT metabolites in salmon. In addition to species differences, factors such as fish age, percent lipids and sampling location may affect the accumulation of these contaminants. Results of this study are contrasted with contaminant levels previously reported for Canadian and Alaskan Pacific salmon. Possible sources of contaminants are outlined.

  14. Quantifying the behavioral response of spawning chum salmon to elevated discharges from Bonneville Dam, Columbia River, USA

    USGS Publications Warehouse

    Tiffan, K.F.; Haskell, C.A.; Kock, T.J.

    2010-01-01

    Chum salmon Oncorhynchus keta that spawn in main-stem habitats below Bonneville Dam on the Columbia River, USA, are periodically subjected to elevated discharges that may alter spawning behaviour. We investigated behavioural responses of spawning chum salmon to increased water velocities associated with experimental increases in tailwater elevation using acoustic telemetry and a dual-frequency identification sonar. Chum salmon primarily remained near their redds at base tailwater elevations (3.5 m above mean sea level), but displayed different movement and behavioural responses as elevations were increased to either 4.1 or 4.7m for 8-h periods. When velocities remained suitable (<0.8m s-1) during elevated-tailwater tests, female chum salmon remained near their redds but exhibited reduced digging activity as water velocities increased. However, when velocities exceeded 0.8m s-1, the females that remained on their redds exhibited increased swimming activity and digging virtually ceased. Female and male chum salmon that left their redds when velocities became unsuitable moved mean distances ranging from 32 to 58 m to occupy suitable velocities, but returned to their redds after tailwaters returned to base levels. Spawning events (i.e. egg deposition) were observed for five of nine pairs of chum salmon following tests indicating any disruptions to normal behaviour caused by elevated tailwaters were likely temporary. We believe a chum salmon's decision to either remain on, or leave, its redd during periods of unsuitably high water velocities reflects time invested in the redd and the associated energetic costs it is willing to incur. ?? 2009 John Wiley & Sons, Ltd.

  15. A riverscape perspective of Pacific salmonids and aquatic habitats prior to large-scale dam removal in the Elwha River, Washington, USA

    USGS Publications Warehouse

    Brenkman, S.J.; Duda, J.J.; Torgersen, C.E.; Welty, E.; Pess, G.R.; Peters, R.; McHenry, M.L.

    2012-01-01

     Dam removal has been increasingly proposed as a river restoration technique. In 2011, two large hydroelectric dams will be removed from Washington State’s Elwha River. Ten anadromous fish populations are expected to recolonise historical habitats after dam removal. A key to understanding watershed recolonisation is the collection of spatially continuous information on fish and aquatic habitats. A riverscape approach with an emphasis on biological data has rarely been applied in mid-sized, wilderness rivers, particularly in consecutive years prior to dam removal. Concurrent snorkel and habitat surveys were conducted from the headwaters to the mouth (rkm 65–0) of the Elwha River in 2007 and 2008. This riverscape approach characterised the spatial extent, assemblage structure and patterns of relative density of Pacific salmonids. The presence of dams influenced the longitudinal patterns of fish assemblages, and species richness was the highest downstream of the dams, where anadromous salmonids still have access. The percent composition of salmonids was similar in both years for rainbow trout, Oncorhynchus mykiss (Walbaum), coastal cutthroat trout, Oncorhynchus clarkii clarkii (Richardson) (89%; 88%), Chinook salmon, Oncorhynchus tshawytscha (Walbaum) (8%; 9%), and bull trout, Salvelinus confluentus (Suckley) (3% in both years). Spatial patterns of abundance for rainbow and cutthroat trout (r = 0.76) and bull trout (r = 0.70) were also consistent between years. Multivariate and univariate methods detected differences in habitat structure along the river profile caused by natural and anthropogenic factors. The riverscape view highlighted species-specific biological hotspots and revealed that 60–69% of federally threatened bull trout occurred near or below the dams. Spatially continuous surveys will be vital in evaluating the effectiveness of upcoming dam removal projects at restoring anadromous salmonids.

  16. Nutrient additions to mitigate for loss of Pacific salmon: consequences for stream biofilm and nutrient dynamics

    USGS Publications Warehouse

    Marcarelli, Amy M.; Baxter, Colden V.; Wipfli, Mark S.

    2014-01-01

    Mitigation activities designed to supplement nutrient and organic matter inputs to streams experiencing decline or loss of Pacific salmon typically presuppose that an important pathway by which salmon nutrients are moved to fish (anadromous and/or resident) is via nutrient incorporation by biofilms and subsequent bottom-up stimulation of biofilm production, which is nutrient-limited in many ecosystems where salmon returns have declined. Our objective was to quantify the magnitude of nutrient incorporation and biofilm dynamics that underpin this indirect pathway in response to experimental additions of salmon carcasses and pelletized fish meal (a.k.a., salmon carcass analogs) to 500-m reaches of central Idaho streams over three years. Biofilm standing crops increased 2–8-fold and incorporated marine-derived nutrients (measured using 15N and 13C) in the month following treatment, but these responses did not persist year-to-year. Biofilms were nitrogen (N) limited before treatments, and remained N limited in analog, but not carcass-treated reaches. Despite these biofilm responses, in the month following treatment total N load was equal to 33–47% of the N added to the treated reaches, and N spiraling measurements suggested that as much as 20%, but more likely 2–3% of added N was taken up by microbes. Design of biologically and cost-effective strategies for nutrient addition will require understanding the rates at which stream microbes take up nutrients and the downstream distance traveled by exported nutrients.

  17. Evidence for competitive dominance of Pink salmon (Oncorhynchus gorbuscha) over other Salmonids in the North Pacific Ocean

    USGS Publications Warehouse

    Ruggerone, G.T.; Nielsen, J.L.

    2004-01-01

    Relatively little is known about fish species interactions in offshore areas of the world's oceans because adequate experimental controls are typically unavailable in such vast areas. However, pink salmon (Oncorhynchus gorbuscha) are numerous and have an alternating-year pattern of abundance that provides a natural experimental control to test for interspecific competition in the North Pacific Ocean and Bering Sea. Since a number of studies have recently examined pink salmon interactions with other salmon, we reviewed them in an effort to describe patterns of interaction over broad regions of the ocean. Research consistently indicated that pink salmon significantly altered prey abundance of other salmon species (e.g., zooplankton, squid), leading to altered diet, reduced total prey consumption and growth, delayed maturation, and reduced survival, depending on species and locale. Reduced survival was observed in chum salmon (O. keta) and Chinook salmon (O. tshawytscha) originating from Puget Sound and in Bristol Bay sockeye salmon (O. nerka). Growth of pink salmon was not measurably affected by other salmon species, but their growth was sometimes inversely related to their own abundance. In all marine studies, pink salmon affected other species through exploitation of prey resources rather than interference. Interspecific competition was observed in nearshore and offshore waters of the North Pacific Ocean and Bering Sea, and one study documented competition between species originating from different continents. Climate change had variable effects on competition. In the North Pacific Ocean, competition was observed before and after the ocean regime shift in 1977 that significantly altered abundances of many marine species, whereas a study in the Pacific Northwest reported a shift from predation- to competition-based mortality in response to the 1982/1983 El Nino. Key traits of pink salmon that influenced competition with other salmonids included great abundance, high

  18. A Modeled Comparison of Direct and Food Web-Mediated Impacts of Common Pesticides on Pacific Salmon

    PubMed Central

    Macneale, Kate H.; Spromberg, Julann A.; Baldwin, David H.; Scholz, Nathaniel L.

    2014-01-01

    In the western United States, pesticides used in agricultural and urban areas are often detected in streams and rivers that support threatened and endangered Pacific salmon. Although concentrations are rarely high enough to cause direct salmon mortality, they can reach levels sufficient to impair juvenile feeding behavior and limit macroinvertebrate prey abundance. This raises the possibility of direct adverse effects on juvenile salmon health in tandem with indirect effects on salmon growth as a consequence of reduced prey abundance. We modeled the growth of ocean-type Chinook salmon (Oncorhynchus tshawytscha) at the individual and population scales, investigating insecticides that differ in how long they impair salmon feeding behavior and in how toxic they are to salmon compared to macroinvertebrates. The relative importance of these direct vs. indirect effects depends both on how quickly salmon can recover and on the relative toxicity of an insecticide to salmon and their prey. Model simulations indicate that when exposed to a long-acting organophosphate insecticide that is highly toxic to salmon and invertebrates (e.g., chlorpyrifos), the long-lasting effect on salmon feeding behavior drives the reduction in salmon population growth with reductions in prey abundance having little additional impact. When exposed to short-acting carbamate insecticides at concentrations that salmon recover from quickly but are lethal to invertebrates (e.g., carbaryl), the impacts on salmon populations are due primarily to reductions in their prey. For pesticides like carbaryl, prey sensitivity and how quickly the prey community can recover are particularly important in determining the magnitude of impact on their predators. In considering both indirect and direct effects, we develop a better understanding of potential impacts of a chemical stressor on an endangered species and identify data gaps (e.g., prey recovery rates) that contribute uncertainty to these assessments. PMID

  19. Diphyllobothriasis nihonkaiense: possibly acquired in Switzerland from imported Pacific salmon.

    PubMed

    Shimizu, Hiroyuki; Kawakatsu, Hidekazu; Shimizu, Tsunehiro; Yamada, Minoru; Tegoshi, Tatsuya; Uchikawa, Ryuichi; Arizono, Naoki

    2008-01-01

    A 5-year-old Japanese boy passed tapeworm strobila while he was living in Switzerland. During a short visit to Japan, he was successfully treated with a single dose of praziquantel. DNA sequences of ITS1, cox1 and nd3 genes from the tapeworm were compatible with those of Diphyllobothrium nihonkaiense rather than Diphyllobothrium latum, which is prevalent in Europe. The patient consumed imported salmon in Switzerland. This case highlights the globalization of D. nihonkaiense, which was once restricted to the Far East, and reflects the worldwide demand for seafood.

  20. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville, The Dalles, John Day and McNary Dams; 1999-2000 Annual Report.

    SciTech Connect

    van der Naald, Wayne; Spellman, Bryant; Clark, Roy

    2001-10-01

    This report describes work conducted by the Oregon Department of Fish and Wildlife (ODFW) and the Washington Department of Fish and Wildlife (WDFW) from 1 October 1999 to 30 September 2000. The work is part of studies to evaluate spawning of fall chinook salmon (Oncorhynchus tshawytscha) and chum salmon (O. keta) below the four lowermost Columbia River dams under the Bonneville Power Administration's Project 99-003. The purpose of this project is twofold: (1) Document the existence of fall chinook and chum populations spawning below Bonneville Dam (river mile (RM) 145), The Dalles Dam (RM 192), John Day Dam (RM 216), and McNary Dam (RM 292) (Figure 1) and estimate the size of these populations; and (2) Profile stocks for important population characteristics; including spawning time, genetic make-up, emergence timing, migration size and timing, and juvenile to adult survival rates.

  1. Putative Diphyllobothrium nihonkaiense acquired from a Pacific salmon (Oncorhynchus keta) eaten in France; genomic identification and case report.

    PubMed

    Yera, Hélène; Estran, Christelle; Delaunay, Pascal; Gari-Toussaint, Martine; Dupouy-Camet, Jean; Marty, Pierre

    2006-03-01

    We report here a likely case of Diphyllobothrium nihonkaiense contracted in France through the consumption of a Pacific salmon imported from Canada. The species diagnosis was made by molecular analysis of two mitochondrial genes (COI & ND3). This case is rather unusual in that D. nihonkaiense has never been reported along the Pacific coast of North America.

  2. Experiments in dam removal, sediment pulses and channel evolution on the Clark Fork River, MT and White Salmon River, WA

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.

    2012-12-01

    Two recent dam removals on tributaries to the Columbia River in the northwestern United States present contrasting examples of how dam removal methods, reservoir contents, and geomorphic settings influence system responses. The 2008 removal of Milltown Dam, from the Clark Fork River (CFR), Montana, and the 2011 removal of Condit Dam from the White Salmon River (WSR), Washington (Table 1), represent two of the largest dam removals to date. The Milltown Dam removal was notable because the dam stored millions of cubic meters of contaminated mine tailings, a portion of which were excavated as part of Superfund remediation but a portion of which flowed downstream after the removal. On the CFR, post-breach high flows in 2008 produced reservoir erosion and downstream deposition in bed interstices, along bars, and on the floodplain, but above-average (3-15 year recurrence interval) floods since then have remobilized this material and have, to a large extent, erased signs of downstream sedimentation. The Condit Dam removal entailed dynamiting of a 4m by 5.5m hole at the base of the dam, which produced rapid and dramatic draining of fine reservoir sediments within hours of the blast. Downstream of Condit Dam, the initial hyperconcentrated flows and sediment pulse draped the WSR with fine sediment, filled pools, and, in an unconfined reach influenced by the Columbia River's backwater, caused meters of aggradation and new bar formation. In the confined, bedrock-dominated reach downstream of the Condit site, pool-riffle structure has started to reemerge as of summer 2012 and the finest bed materials have been evacuated from the main channel, although sediment storage in pools and eddies persists. Whereas post-breach geomorphic responses on the CFR have been largely driven by hydrology, the post-breach evolution of the WSR has been predominantly influenced by antecedent geomorphic conditions (slope, confinement, and Columbia River backwater). On both the CFR and WSR, the pace of

  3. Research Plan to Determine Timing, Location, Magnitude and Cause of Mortality for Wild and Hatchery Spring/Summer Chinook Salmon Smolts Above Lower Granite Dam. Final Report.

    SciTech Connect

    Lower Granite Migration Study Steering Committee

    1993-10-01

    From 1966 to 1968, Raymond estimated an average survival rate of 89% for yearling chinook salmon (Oncorhynchus tshawytscha) migrating from trap sites on the Salmon River to Ice Harbor Dam, which was then the uppermost dam on the Snake River. During the 1970s, the estimated survival rate declined as the proportion of hatchery fish increased and additional dams were constructed. Recent survival indices for yearling chinook salmon smolts in the Snake River Basin indicate that substantial mortalities are occurring en route to Lower Granite Dam, now the uppermost dam on the Snake River. Detection rates for wild and hatchery PIT-tagged smolts at Lower Granite Dam have been much lower than expected. However, for wild fish, there is considerable uncertainty whether overwinter mortality or smolt loss during migration is the primary cause for low survival. Efforts to rebuild these populations will have a better chance of success after the causes of mortality are identified and addressed. Information on the migrational characteristics and survival of wild fish are especially needed. The goal of this initial planning phase is to develop a research plan to outline potential investigations that will determine the timing, location, magnitude, and cause of smolt mortality above Lower Granite Dam.

  4. [On the infecstation of musculature in the Pacific salmons from Okhotsk Sea at early sea stage of their life].

    PubMed

    Nomokonova, L A

    2009-01-01

    Data on the infection of the musculature of juvenile salmons Oncorhynchus gorbuscha (Walbaum, 1792) and O. keta (Walbaum, 1792) with the nematode Anisakis sp. l. and cestode Diphyllobothriidae gen. sp. l. in Okhotsk Sea and adjacent Pacific waters are given. Probable regions where the infestation of juvenile salmons may take place are established. Interspecific differences in the levels of infestation, as well as differences in the invasion of fishes during their migration to ocean are revealed.

  5. Anthropogenic Factors Affecting the Status of Salmon Stocks in Pacific Northwest Watersheds

    DTIC Science & Technology

    2006-01-01

    census.gov/cgi-bin/gazetter. (June 1997). US Department of Agriculture - Forest Service - Pacific Northwest Region. 1988. National forests of the...land and lack of forest area correctly classified 71% of fall Chinook stocks. Indian tribal land, human population and number of dams correctly...by categorizing watersheds as to their relative amount of urban population and subdivision development, agricultural and forest type land

  6. Composition and Relative Abundance of Fish Species in the Lower White Salmon River, Washington, Prior to the Removal of Condit Dam

    USGS Publications Warehouse

    Allen, M. Brady; Connolly, Patrick J.

    2011-01-01

    Information about the composition and relative abundance of fish species was collected by a rotary screw trap and backpack electrofishing in the lower White Salmon River, Washington. The information was collected downstream of Condit Dam, which is at river kilometer (rkm) 5.2, and is proposed for removal in October 2011. A rotary screw trap was installed in the White Salmon River at rkm 1.5 and operated from March through June during 2006-09. All captured fish were identified to species and enumerated. Daily subsets of fish were weighed, measured, and fin clipped for a genetic analysis by the U.S. Fish and Wildlife Service. *Fall Chinook salmon (Oncorhynchus tshawytscha) were captured in the highest numbers (n=18, 640), and were composed of two stocks: tule and upriver bright. Almost all captured fall Chinook salmon were age-0, with only 16 (0.09 percent) being age-1 or older. *Tule fall Chinook salmon, the native stock, generally out-migrated from mid-March through early April. The tule stock was the more abundant fall Chinook salmon subspecies, comprising 85 percent of those captured in the trap. *Upriver bright fall Chinook salmon comprised 15 percent of the Chinook salmon catch and generally out-migrated from late May to early June. *Coho salmon (O. kisutch) and steelhead trout (O. mykiss) were captured by the rotary screw trap in all years. Coho salmon were caught in low numbers (n=661) and 69 percent were age-0 fish. Steelhead were slightly more abundant (n=679) than coho salmon and 84 percent were age-1 or older fish. Trap efficiency estimates varied widely (range, 0-10 percent) by species, fish size, and time of year. However, if we use only the estimates from efficiency tests where more than 300 wild age-0 Chinook salmon were released, there was a mean trapping efficiency of 1.4 percent (n=4, median, 1.3 percent, range, 0.3-2.4 percent) during the tule out-migration period, and a mean trapping efficiency of 0.8 percent (n=2, range, 0.3-1.2 percent) during

  7. Passage probabilities of juvenile Chinook salmon through the powerhouse and regulating outlet at Cougar Dam, Oregon, 2011

    USGS Publications Warehouse

    Beeman, John W.; Hansen, Amy C.; Evans, Scott D.; Haner, Philip V.; Hansel, Hal C.; Smith, Collin D.

    2012-01-01

    Cougar Dam near Springfield, Oregon, is one of several federally owned and operated flood-control projects within the Willamette Valley of western Oregon that were determined by the National Oceanic and Atmospheric Administration’s National Marine Fisheries Service in 2008 to impact the long-term viability of several salmonid stocks. In response to this ruling, the U.S. Army Corps of Engineers is looking for means to reduce impacts to salmonids, including improving downstream passage of juvenile salmonids at Cougar Dam. This study of juvenile Chinook salmon (Oncorhynchus tshawytscha) passage at Cougar Dam was conducted to inform decisions about potential improvements for downstream fish passage. The primary objective of the study was to estimate route-specific passage probabilities of yearling Chinook salmon at Cougar Dam. The study was conducted using fish from a nearby hatchery surgically implanted with radio transmitters and passive integrated transponder (PIT) tags and released near the entrance of a temperature control tower through which all water going through the dam must pass. Water passing through the temperature control tower may be routed through a penstock to a powerhouse with two Francis turbines, or to a spillway-like structure called the regulating outlet. Secondary objectives of the study were to estimate the probability that fish enter a bypass at a non-federal facility downstream, and to estimate dam-passage and in-river fish survival. Dam operating conditions during the study included an average forebay elevation of 1,580 feet (National Geodetic Vertical Datum of 1929) and an average of 48.2 percent of the total dam discharge of 1,106 cubic feet per second passing through a regulating outlet opening of 1.25 feet. Dam passage probability was greatest at night (0.8741 standard error [SE] 0.0265) and primarily through the regulating outlet (0.8896 SE 0.0617 day; 0.9417 SE 0.0175 night). The joint probability of entering the bypass at Leaburg Dam

  8. Clock polymorphism in Pacific salmon: evidence for variable selection along a latitudinal gradient.

    PubMed

    O'Malley, Kathleen G; Ford, Michael J; Hard, Jeffrey J

    2010-12-22

    Seasonal timing of life-history events is often under strong natural selection. The Clock gene is a central component of an endogenous circadian clock that senses changes in photoperiod (day length) and mediates seasonal behaviours. Among Pacific salmonids (Oncorhynchus spp.), seasonal timing of migration and breeding is influenced by photoperiod. To expand a study of 42 North American Chinook salmon (Oncorhynchus tshawytscha) populations, we tested whether duplicated Clock genes contribute to population differences in reproductive timing. Specifically, we examined geographical variation along a similar latitudinal gradient in the polyglutamine domain (PolyQ) of OtsClock1a and OtsClock1b among 53 populations of three species: chum (Oncorhynchus keta), coho (Oncorhynchus kisutch) and pink salmon (Oncorhynchus gorbuscha). We found evidence for variable selection on OtsClock1b that corresponds to latitudinal variation in reproductive timing among these species. We evaluated the contribution of day length and a freshwater migration index to OtsClock1b PolyQ domain variation using regression trees and found that day length at spawning explains much of the variation in OtsClock1b allele frequency among chum and Chinook, but not coho and pink salmon populations. Our findings suggest that OtsClock1b mediates seasonal adaptation and influences geographical variation in reproductive timing in some of these highly migratory species.

  9. Clock polymorphism in Pacific salmon: evidence for variable selection along a latitudinal gradient

    PubMed Central

    O'Malley, Kathleen G.; Ford, Michael J.; Hard, Jeffrey J.

    2010-01-01

    Seasonal timing of life-history events is often under strong natural selection. The Clock gene is a central component of an endogenous circadian clock that senses changes in photoperiod (day length) and mediates seasonal behaviours. Among Pacific salmonids (Oncorhynchus spp.), seasonal timing of migration and breeding is influenced by photoperiod. To expand a study of 42 North American Chinook salmon (Oncorhynchus tshawytscha) populations, we tested whether duplicated Clock genes contribute to population differences in reproductive timing. Specifically, we examined geographical variation along a similar latitudinal gradient in the polyglutamine domain (PolyQ) of OtsClock1a and OtsClock1b among 53 populations of three species: chum (Oncorhynchus keta), coho (Oncorhynchus kisutch) and pink salmon (Oncorhynchus gorbuscha). We found evidence for variable selection on OtsClock1b that corresponds to latitudinal variation in reproductive timing among these species. We evaluated the contribution of day length and a freshwater migration index to OtsClock1b PolyQ domain variation using regression trees and found that day length at spawning explains much of the variation in OtsClock1b allele frequency among chum and Chinook, but not coho and pink salmon populations. Our findings suggest that OtsClock1b mediates seasonal adaptation and influences geographical variation in reproductive timing in some of these highly migratory species. PMID:20610428

  10. Research on Captive Broodstock Programs for Pacific Salmon, 2001-2002 Annual Report.

    SciTech Connect

    Berejikian, Barry A.; Tezak, E.P.; Endicott, Rick

    2002-08-01

    In the 2000 Federal Columbia River Power System (FCRPS) Biological Opinion, NMFS identified six populations of steelhead and several salmon populations that had dropped to critically low levels and continue to decline. Following thorough risk-benefit analyses, captive propagation programs for some or all of the steelhead (Oncorhynchus mykiss) populations may be required to reduce the risk of extinction, and more programs may be required in the future. Thus, captive propagation programs designed to maintain or rebuild steelhead populations require intensive and rigorous scientific evaluation, much like the other objectives of BPA Project 1993-056-00 currently underway for chinook (O. tshawytscha) and sockeye salmon (O. nerka). Pacific salmon reared to the adult stage in captivity exhibit poor reproductive performance when released to spawn naturally. Poor fin quality and swimming performance, incomplete development of secondary sex characteristics, changes in maturation timing, and other factors may contribute to reduced spawning success. Improving natural reproductive performance is critical for the success of captive broodstock programs in which adult-release is a primary reintroduction strategy for maintaining ESA-listed populations.

  11. Predation on Pacific salmonid eggs and carcass's by subyearling Atlantic salmon in a tributary of Lake Ontario

    USGS Publications Warehouse

    Johnson, James H.; Chalupnicki, Marc A.; Abbett, Ross; Verdoliva, Francis

    2016-01-01

    A binational effort to reintroduce Atlantic salmon (Salmo salar) that were extirpated in the Lake Ontario ecosystem for over a century is currently being undertaken by the New York State Department of Environmental Conservation and the Ontario Ministry of Natural Resources. Reintroduction actions include the release of several life stages including fry, fall fingerlings, and yearling smolts. In this study we describe the diet of recently released fall fingerling Atlantic salmon in a tributary of the Salmon River, New York. A specific objective of the study was to determine if juvenile Atlantic salmon would utilize the high caloric food source provided by introduced Pacific salmonids (Oncorhynchus spp.) that includes eggs and carcass flesh. Salmon eggs and carcass flesh comprised 20.5% of the October to January diet in 2013–14 and 23.9% in 2014–15. The consumption of steelhead (O. mykiss) eggs was a major part of the diet in April in both 2014 (54.1%) and 2015 (33.2%). This study documented that recently released Atlantic salmon will consume the high caloric food material provided by Pacific salmonids and that the consumption of this material extends for several months.

  12. Life history and evolutionary adaptation of Pacific salmon and its application in management

    SciTech Connect

    Wevers, M.J.

    1993-01-01

    An approach to understanding and managing anadromous salmon, steelhead, and sea-run cutthroat trout (Oncorhynchus spp.) based on life history and evolutionary adaptive capacities of species and stocks is presented. Species, stocks, and local populations are viewed as systems that are continuously adapting to changing environmental conditions. They have the potential capacity to evolve in different ways in different environments through both life history and evolutionary adaptation. Habitat organization forms a template for genus, species, stock, and local population life history organization. Harvesting, habitat alteration resulting from land use practices and other human activities can alter the organization and adaptive capacities of species and stocks, and thus their long term persistence. The adaptive capacity of Oncorhynchus relative to its habitat and management environment is examined at the species, stock, and local population levels. Life history characteristics of representative stocks and local populations are analyzed using Detrended Correspondence Analysis (DECORANA). Fresh water migration distance and latitude are used to [open quotes]explain[close quotes] ordination patterns of Oncorhynchus species in the North Pacific Basin. Fresh water migration difficulty and mean annual runoff as used to interpret life history patterns of Columbia Basin chinook salmon stocks. Upstream migration difficulty and fall water temperatures are used to explain the ordination patterns of local populations of Willamette spring chinook salmon. Fishery management practices are examined in terms of their impacts on the organization and adaptive capacity of species, stocks, and local populations of Oncorhynchus. Management generalizations and guidelines derived from the life history theory are applied to management of Willamette spring chinook salmon.

  13. Stream Physical Characteristics Impact Habitat Quality for Pacific Salmon in Two Temperate Coastal Watersheds

    PubMed Central

    Fellman, Jason B.; Hood, Eran; Dryer, William; Pyare, Sanjay

    2015-01-01

    Climate warming is likely to cause both indirect and direct impacts on the biophysical properties of stream ecosystems especially in regions that support societally important fish species such as Pacific salmon. We studied the seasonal variability and interaction between stream temperature and DO in a low-gradient, forested stream and a glacial-fed stream in coastal southeast Alaska to assess how these key physical parameters impact freshwater habitat quality for salmon. We also use multiple regression analysis to evaluate how discharge and air temperature influence the seasonal patterns in stream temperature and DO. Mean daily stream temperature ranged from 1.1 to 16.4°C in non-glacial Peterson Creek but only 1.0 to 8.8°C in glacial-fed Cowee Creek, reflecting the strong moderating influence glacier meltwater had on stream temperature. Peterson Creek had mean daily DO concentrations ranging from 3.8 to 14.1 mg L−1 suggesting future climate changes could result in an even greater depletion in DO. Mean daily stream temperature strongly controlled mean daily DO in both Peterson (R2=0.82, P<0.01) and Cowee Creek (R2=0.93, P<0.01). However, DO in Peterson Creek was mildly related to stream temperature (R2=0.15, P<0.01) and strongly influenced by discharge (R2=0.46, P<0.01) on days when stream temperature exceeded 10°C. Moreover, Peterson Creek had DO values that were particularly low (<5.0 mg L−1) on days when discharge was low but also when spawning salmon were abundant. Our results demonstrate the complexity of stream temperature and DO regimes in coastal temperate watersheds and highlight the need for watershed managers to move towards multi-factor risk assessment of potential habitat quality for salmon rather than single factor assessments alone. PMID:26222506

  14. Evaluating signals of oil spill impacts, climate, and species interactions in Pacific herring and Pacific salmon populations in Prince William Sound and Copper River, Alaska.

    PubMed

    Ward, Eric J; Adkison, Milo; Couture, Jessica; Dressel, Sherri C; Litzow, Michael A; Moffitt, Steve; Hoem Neher, Tammy; Trochta, John; Brenner, Rich

    2017-01-01

    The Exxon Valdez oil spill occurred in March 1989 in Prince William Sound, Alaska, and was one of the worst environmental disasters on record in the United States. Despite long-term data collection over the nearly three decades since the spill, tremendous uncertainty remains as to how significantly the spill affected fishery resources. Pacific herring (Clupea pallasii) and some wild Pacific salmon populations (Oncorhynchus spp.) in Prince William Sound declined in the early 1990s, and have not returned to the population sizes observed in the 1980s. Discerning if, or how much of, this decline resulted from the oil spill has been difficult because a number of other physical and ecological drivers are confounded temporally with the spill; some of these drivers include environmental variability or changing climate regimes, increased production of hatchery salmon in the region, and increases in populations of potential predators. Using data pre- and post-spill, we applied time-series methods to evaluate support for whether and how herring and salmon productivity has been affected by each of five drivers: (1) density dependence, (2) the EVOS event, (3) changing environmental conditions, (4) interspecific competition on juvenile fish, and (5) predation and competition from adult fish or, in the case of herring, humpback whales. Our results showed support for intraspecific density-dependent effects in herring, sockeye, and Chinook salmon, with little overall support for an oil spill effect. Of the salmon species, the largest driver was the negative impact of adult pink salmon returns on sockeye salmon productivity. Herring productivity was most strongly affected by changing environmental conditions; specifically, freshwater discharge into the Gulf of Alaska was linked to a series of recruitment failures-before, during, and after EVOS. These results highlight the need to better understand long terms impacts of pink salmon on food webs, as well as the interactions between

  15. Evaluating signals of oil spill impacts, climate, and species interactions in Pacific herring and Pacific salmon populations in Prince William Sound and Copper River, Alaska

    PubMed Central

    Adkison, Milo; Couture, Jessica; Dressel, Sherri C.; Litzow, Michael A.; Moffitt, Steve; Hoem Neher, Tammy; Trochta, John

    2017-01-01

    The Exxon Valdez oil spill occurred in March 1989 in Prince William Sound, Alaska, and was one of the worst environmental disasters on record in the United States. Despite long-term data collection over the nearly three decades since the spill, tremendous uncertainty remains as to how significantly the spill affected fishery resources. Pacific herring (Clupea pallasii) and some wild Pacific salmon populations (Oncorhynchus spp.) in Prince William Sound declined in the early 1990s, and have not returned to the population sizes observed in the 1980s. Discerning if, or how much of, this decline resulted from the oil spill has been difficult because a number of other physical and ecological drivers are confounded temporally with the spill; some of these drivers include environmental variability or changing climate regimes, increased production of hatchery salmon in the region, and increases in populations of potential predators. Using data pre- and post-spill, we applied time-series methods to evaluate support for whether and how herring and salmon productivity has been affected by each of five drivers: (1) density dependence, (2) the EVOS event, (3) changing environmental conditions, (4) interspecific competition on juvenile fish, and (5) predation and competition from adult fish or, in the case of herring, humpback whales. Our results showed support for intraspecific density-dependent effects in herring, sockeye, and Chinook salmon, with little overall support for an oil spill effect. Of the salmon species, the largest driver was the negative impact of adult pink salmon returns on sockeye salmon productivity. Herring productivity was most strongly affected by changing environmental conditions; specifically, freshwater discharge into the Gulf of Alaska was linked to a series of recruitment failures—before, during, and after EVOS. These results highlight the need to better understand long terms impacts of pink salmon on food webs, as well as the interactions between

  16. Investigating passage of ESA-listed juvenile fall Chinook salmon at Lower Granite Dam during winter when the fish bypass system is not operated

    USGS Publications Warehouse

    Kock, Tobias J.; Tiffan, Kenneth F.; Connor, William P.

    2007-01-01

    During the winter of 2006-07, we radio and passive integrated transponder (PIT) tagged, and released 99 juvenile fall Chinook salmon to evaluate over-wintering behavior and dam passage in the lower Snake River, Washington. All fish were released 10 km upstream of Lower Granite Dam at Granite Point in early November, 2006. Fixed radio telemetry detection sites located in the forebay and tailrace areas of Lower Granite, Little Goose, Lower Monumental, Ice Harbor, Bonneville dams, and at Lyle, Washington were used to monitor fish movements and dam passage through early-May 2007. Of the 99 fish released during our study, 80 passed Lower Granite Dam and were detected at downstream detection sites, 37 passed Little Goose Dam, 41 passed Lower Monumental Dam, 31 passed Ice Harbor Dam, 18 passed Lyle, WA, and 13 passed Bonneville Dam. Of the fish that passed Lower Granite Dam in the fall, 63 fish did so during the extended bypass period from November 1 through December 16. Of these fish, 53 were also detected by the PIT-tag interrogation system. Fifteen of the fish that passed Lower Granite Dam in the fall continued to pass lower Snake River dams and exit the system by the end of January. The remaining fish either died, their tags failed, or they resided in Little Goose Reservoir until spring when relatively few continued their seaward migration. Passage of tagged fish past lower Snake River dams generally declined during the winter as temperatures decreased, but increased again in the spring as temperatures and flows increased. Fish residence times in reservoirs and forebays was lengthy during the winter (up to 160 d), and varied by reservoir and time of year. We observed no diel trends in fish passage. Very few fish were detected at PIT-tag interrogation sites in the spring compared to detection by radio telemetry detection sites indicating that fish may have passed via spill. We believe that passage of overwintering juvenile fall Chinook salmon during winter is due more

  17. Research on Captive Broodstock Programs for Pacific Salmon, 2002-2003 Annual Report.

    SciTech Connect

    Berejikian, Barry A.

    2004-01-01

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Current velocity in rearing vessels had little if any effect on reproductive behavior of captively reared steelhead. However, males and females reared in high velocity vessels participated a greater number of spawning events than siblings reared in low velocity tanks. Observations of nesting females and associated males in a natural stream (Hamma Hamma River) were consistent with those observed in a controlled spawning channel. DNA pedigree analyses did not reveal significant differences in the numbers of fry produced by steelhead reared in high and low velocity vessels. To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon are being exposed to known odorants at key developmental stages. Subsequently they will be tested for development of long-term memories of these odorants. In 2002-2003, the efficacy of EOG analysis for assessing imprinting was demonstrated and will be applied in these and other behavioral and molecular tools in the current work plan. Results of these experiments will be important to determine the critical periods for imprinting for the offspring of captively-reared fish destined for release into natal rivers or lakes. By early August, the oocytes of all of Rapid River Hatchery chinook salmon females returning from the ocean had advanced to the tertiary yolk globule stage; whereas, only some of the captively reared Lemhi River females sampled had advanced to this stage, and the degree of advancement was not dependent on rearing temperature. The mean spawning time of captive Lemhi River females was 3-4 weeks after that of the Rapid River fish

  18. Investigating passage of ESA-listed juvenile fall Chinook salmon at Lower Granite Dam during winter when the fish bypass system is not operated. 2006 Annual Report

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.

    2007-01-01

    During the winter of 2005-06, we radio and PIT tagged and released 48 juvenile fall Chinook salmon to evaluate over-wintering behavior and dam passage in the lower Snake River, Washington. Fish were released at the upstream end of the Lower Granite Dam forebay in November and December 2005. Fixed radio telemetry detection sites located in forebay and tailrace areas of Lower Granite, Little Goose, Lower Monumental and Ice Harbor dams were used to monitor fish movements and dam passage through early-May 2006. Of the 48 fish released during our study, 39 (81 %) passed Lower Granite Dam and were detected at downstream detection sites, 29 (60%) passed Little Goose Dam, 25 (52%) passed Lower Monumental Dam, and 15 (31%) passed Ice Harbor Dam. Thirty-seven (95%), 23 (79%), 16 (64%), and 9 (60%) of the fish that passed Lower Granite, Little Goose, Lower Monumental, and Ice Harbor dams respectively, did so when the fish bypass system was not operated. Passage of tagged fish past lower Snake River dams generally declined during the winter, but increased again after bypass began in April. Fish residence times in reservoirs and forebays was lengthy during the winter (up to 118 d), and varied by reservoir and time of year. We observed no diel passage trends. Only 15 of the 48 fish were subsequently detected at a PIT-tag interrogation site the following spring. We believe that passage of overwintering juvenile fall Chinook salmon during winter is due more to chance than directed downstream movement. Since the primary route of passage during the winter is through powerhouse turbines, the potential exists for increased mortality for over-wintering juvenile fall Chinook salmon in the Snake River. Our findings also have implications for transportation studies of subyearling fall Chinook salmon in the Snake River. Specifically, the finding that some fish can pass undetected during the winter may bias smolt-to-adult return rate calculations that are typically used to measure the

  19. The effects of turbine passage on C-start behavior of salmon at the Wanapum Dam, Washington

    SciTech Connect

    Cada, Glenn F.; Ryon, Michael G.; Smith, John G.; Luckett, Cloe A.

    2006-06-01

    In 2005, Grant County Public Utility District No. 2 (GCPUD) replaced one of the 10 Kaplan turbines at Wanapum Dam with an advanced turbine that was developed with support from the U.S. Department of Energy’s Advanced Hydropower Turbine System Program. Compared to a conventional Kaplan turbine, the advanced minimum gap runner (MGR) turbine is predicted to have lower values for several potential fish injury mechanisms, and therefore was expected to improve turbine-passage fish survival. Fish survival tests of the new turbine were carried out by GCPUD between February and April 2005. A total of 8,960 tagged juvenile summer Chinook salmon were used to quantify the differences in direct mortality associated with turbine passage for the new and old turbines. There were few test conditions in which the study was noted a distinct difference between the old Kaplan turbine and the new MGR turbine on the basis of changes in the escape behavior of uninjured fish.

  20. 50 CFR 660.412 - EFH identifications and descriptions for Pacific salmon.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Conception. (c) Pink salmon (Oncorhynchus gorbuscha) EFH includes all streams, estuaries, marine waters, and other water bodies occupied or historically accessible to pink salmon within Washington State,...

  1. 50 CFR 660.412 - EFH identifications and descriptions for Pacific salmon.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Conception. (c) Pink salmon (Oncorhynchus gorbuscha) EFH includes all streams, estuaries, marine waters, and other water bodies occupied or historically accessible to pink salmon within Washington State,...

  2. 50 CFR 660.412 - EFH identifications and descriptions for Pacific salmon.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Conception. (c) Pink salmon (Oncorhynchus gorbuscha) EFH includes all streams, estuaries, marine waters, and other water bodies occupied or historically accessible to pink salmon within Washington State,...

  3. 50 CFR 660.412 - EFH identifications and descriptions for Pacific salmon.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Conception. (c) Pink salmon (Oncorhynchus gorbuscha) EFH includes all streams, estuaries, marine waters, and other water bodies occupied or historically accessible to pink salmon within Washington State,...

  4. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2007 Annual Report.

    SciTech Connect

    Garcia, A.P.; Bradbury, S.; Arnsberg, B.D.; Groves, P.A.

    2008-11-25

    Redd counts are routinely used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2007; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches counted upstream of Lower Granite Dam into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2007 was funded by the Bonneville Power Administration and Idaho Power Company.

  5. Influence of river level on temperature and hydraulic gradients in chum and fall Chinook salmon spawning areas downstream of Bonneville Dam, Columbia River

    SciTech Connect

    Geist, David R.; Arntzen, Evan V.; Murray, Christopher J.; McGrath, Kathy; Bott, Yi-Ju; Hanrahan, Timothy P.

    2008-02-01

    Chum (Oncorhynchus keta) and fall Chinook (O. tshawytscha) salmon segregate spatially during spawning in the Ives Island side channel of the lower Columbia River downstream from Bonneville Dam. Previous research during one spawning season (2000) suggested that these species selected spawning habitats based on differences in hyporheic temperature and vertical hydraulic gradient (VHG) with the river. In this study, we confirmed the spatial segregation of spawning based on hyporheic characteristics over four years (2001–2004) and examined the effects of load-following operations (power generation to meet short-term electrical demand) at Bonneville Dam on hyporheic function and characteristics. We found that during the study period, hyporheic temperature and VHG in chum salmon spawning areas were highly variable during periods of load-following operation when river levels fluctuated. In contrast, hyporheic water temperature and VHG within chum spawning areas fluctuated less when river levels were not changing due to load-following operation. Variable temperature and VHG could affect chum and fall Chinook salmon spawning segregation and incubation success by altering the cues each species uses to select redd sites. Alterations in site selection would result in a breakdown in the spatial segregation of spawning between chum and fall Chinook salmon, which would expose earlier spawning fall Chinook eggs to a greater risk of dislodgement from later spawning chum salmon. Additional research will be required to fully assess the effects of load-following operations on the hyporheic environment and spawning and incubation success of chum and fall Chinook salmon downstream from Bonneville Dam.

  6. Modeling the Potential Impacts of Climate Change on Pacific Salmon Culture Programs: An Example at Winthrop National Fish Hatchery

    NASA Astrophysics Data System (ADS)

    Hanson, Kyle C.; Peterson, Douglas P.

    2014-09-01

    Hatcheries have long been used in an attempt to mitigate for declines in wild stocks of Pacific salmon ( Oncorhynchus spp.), though the conservation benefit of hatcheries is a topic of ongoing debate. Irrespective of conservation benefits, a fundamental question is whether hatcheries will be able to function as they have in the past given anticipated future climate conditions. To begin to answer this question, we developed a deterministic modeling framework to evaluate how climate change may affect hatcheries that rear Pacific salmon. The framework considers the physiological tolerances for each species, incorporates a temperature-driven growth model, and uses two metrics commonly monitored by hatchery managers to determine the impacts of changes in water temperature and availability on hatchery rearing conditions. As a case study, we applied the model to the US Fish and Wildlife Service's Winthrop National Fish Hatchery. We projected that hatchery environmental conditions remained within the general physiological tolerances for Chinook salmon in the 2040s (assuming A1B greenhouse gas emissions scenario), but that warmer water temperatures in summer accelerated juvenile salmon growth. Increased growth during summer coincided with periods when water availability should also be lower, thus increasing the likelihood of physiological stress in juvenile salmon. The identification of these climate sensitivities led to a consideration of potential mitigation strategies such as chilling water, altering rations, or modifying rearing cycles. The framework can be refined with new information, but in its present form, it provides a consistent, repeatable method to assess the vulnerability of hatcheries to predicted climate change.

  7. Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, 1989 Final Report.

    SciTech Connect

    Vreeland, Robert R.

    1989-10-01

    In 1979 this study was initiated to determine the distribution, contribution, and value of artificially propagated fall chinook salmon from the Columbia River. Coded wire tagging (CWT) of hatchery fall chinook salmon began in 1979 with the 1978 brood and was completed in 1982 with the 1981 brood of fish at rearing facilities on the Columbia River system. From 18 to 20 rearing facilities were involved in the study each brood year. Nearly 14 million tagged fish, about 4% of the production, were released as part of this study over the four years, 1979 through 1982. Sampling for recoveries of these tagged fish occurred from 1980 through 1986 in the sport and commercial marine fisheries from Alaska through California, Columbia River fisheries, and returns to hatcheries and adjacent streams. The National Marine Fisheries Service coordinated this study among three fishery agencies: US Fish and Wildfire Service, Oregon Department of Fish and Wildlife, and Washington Department of Fisheries. The objectives of this study were to determine the distribution, fishery contribution, survival, and value of the production of fall chinook salmon from each rearing facility on the Columbia River system to Pacific coast salmon fisheries. To achieve these objectives fish from each hatchery were given a distinctive CWT. 81 refs., 20 figs., 68 tabs.

  8. Research on Captive Broodstock Programs for Pacific Salmon, 2003-2004 Annual Report.

    SciTech Connect

    Berejikian, Barry A.; Athos, Jaime I.; Dittman, Andrew H.

    2004-07-01

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. We were able to develop an analytical method for optimizing the detection of spawning events in Chinook salmon using EMG signals. The method developed essentially captured the consistently greater frequency of higher EMG values associated with females cover digging immediately following spawning. However, females implanted with EMG tags retained the majority of their eggs, which significantly reduced their reproductive success compared to non-tagged females. Future work will include increased sample sizes, and modified tagging methods to reduce negative effects on reproductive success. Upper Columbia River sockeye salmon exposed to the odorants PEA, L-threonine, Larginine and L-glutamate were able to learn and remember these odorants as maturing adults up to 2.5 years after exposure. These results suggest that the alevin and smolt stages are both important developmental periods for successful olfactory imprinting. Furthermore, the period of time that fish are exposed to imprinting odors may be important for successful imprinting. Experimental fish exposed to imprinting odors as smolts for six or one weeks successfully imprinted to these odors but imprinting could not be demonstrated in smolts exposed to odors for only one day. A 2-3 C reduction in seawater rearing temperature during the fall and winter prior to final maturation had little effect on reproductive development of spring Chinook salmon. Body size at spawning and total ovary mass were similar between temperature treatments. The percentage of fertilized eggs was significantly higher for females exposed to the ambient temperature compared

  9. Evaluations of alternative methods for monitoring and estimating responses of salmon productivity in the North Pacific to future climatic change and other processes: A simulation study

    EPA Science Inventory

    Estimation of the relative influence of climate change, compared to other human activities, on dynamics of Pacific salmon (Oncorhynchus spp.) populations can help management agencies take appropriate management actions. We used empirically based simulation modelling of 48 sockeye...

  10. Supplementing long-chain n-3 polyunsaturated fatty acids in canned wild Pacific pink salmon with Alaska salmon oil.

    PubMed

    Lapis, Trina J; Oliveira, Alexandra C M; Crapo, Charles A; Himelbloom, Brian; Bechtel, Peter J; Long, Kristy A

    2013-01-01

    Establishing n-3 polyunsaturated fatty acid contents in canned wild Alaska pink salmon products is challenging due to ample natural variation found in lipid content of pink salmon muscle. This study investigated the effect of adding salmon oil (SO) to canned pink salmon produced from fish exhibiting two opposite degrees of skin watermarking, bright (B) and dark (D). Specific goals of the study were to evaluate the benefits of adding SO to canned pink salmon with regard to nutritional value of the product, sensory characteristics, and the oxidative and hydrolytic stability of the lipids over thermal processing. Six groups of canned pink salmon were produced with variable levels of SO, either using bright (with 0, 1, or 2% SO) or dark (with 0, 2, or 4% SO) pink salmon. Compositional analysis revealed highest (P < 0.05) lipid content in sample B2 (8.7%) and lowest (P < 0.05) lipid content in sample D0 (3.5%). Lipid content of samples B0, B1, D2, and D4 was not significantly different (P > 0.05) ranging from 5.7% to 6.8%. Consequently, addition of SO to canned pink salmon allowed for consistent lipid content between bright and dark fish. Addition of 1% or 2% SO to canned bright pink salmon was not detrimental to the sensory properties of the product. It is recommended that canned bright pink salmon be supplemented with at least 1% SO, while supplementation with 2% SO would guarantee a minimum quantity of 1.9 g of n-3 fatty acids per 100 g of product. Addition of 4% SO to canned dark pink salmon was detrimental to product texture and taste, while supplementation with 2% SO did not negatively affect sensorial properties of the product. Accordingly, canned dark pink salmon should be supplemented with 2% SO so that a minimum n-3 fatty acids content of 1.5 g per 100 g of product.

  11. Optimization of Concurrent Deployments of the Juvenile Salmon Acoustic Telemetry System and Other Hydroacoustic Equipment at John Day Dam

    SciTech Connect

    Ploskey, Gene R.; Hughes, James S.; Khan, Fenton; Kim, Jina; Lamarche, Brian L.; Johnson, Gary E.; Choi, Eric Y.; Faber, Derrek M.; Wilberding, Matthew C.; Deng, Zhiqun; Weiland, Mark A.; Zimmerman, Shon A.; Fischer, Eric S.; Cushing, Aaron W.

    2008-09-01

    The purpose of this report is to document the results of the acoustic optimization study conducted at John Day Dam during January and February 2008. The goal of the study was to optimize performance of the Juvenile Salmon Acoustic Telemetry System (JSATS) by determining deployment and data acquisition methods to minimize electrical and acoustic interference from various other acoustic sampling devices. Thereby, this would allow concurrent sampling by active and passive acoustic methods during the formal evaluations of the prototype surface flow outlets at the dam during spring and summer outmigration seasons for juvenile salmonids. The objectives for the optimization study at John Day Dam were to: 1. Design and test prototypes and provide a total needs list of pipes and trolleys to deploy JSATS hydrophones on the forebay face of the powerhouse and spillway. 2. Assess the effect on mean percentage decoded of JSATS transmissions from tags arrayed in the forebay and detected on the hydrophones by comparing: turbine unit OFF vs. ON; spill bay OPEN vs. CLOSED; dual frequency identification sonar (DIDSON) and acoustic Doppler current profiler (ADCP) both OFF vs. ON at a spill bay; and, fixed-aspect hydroacoustic system OFF vs. ON at a turbine unit and a spill bay. 3. Determine the relationship between fixed-aspect hydroacoustic transmit level and mean percentage of JSATS transmissions decoded. The general approach was to use hydrophones to listen for transmissions from JSATS tags deployed in vertical arrays in a series perpendicular to the face of the dam. We used acoustic telemetry equipment manufactured by Technologic and Sonic Concepts. In addition, we assessed old and new JSATS signal detectors and decoders and two different types of hydrophone baffling. The optimization study consisted of a suite of off/on tests. The primary response variable was mean percentage of tag transmissions decoded. We found that there was no appreciable adverse effect on mean percentage

  12. Predation on juvenile pacific salmon oncorhynchus spp. in downstream migrant traps in prairie creek, california

    USGS Publications Warehouse

    Duffy, W.G.; Bjorkstedt, E.P.; Ellings, C.S.

    2011-01-01

    Downstream migrant traps are a widely applied fishery management tool for sampling anadromous Pacific salmon Oncorhynchus spp. and steelhead O. mykiss smolts along theWest Coast of North America and elsewhere, yet predation on juvenile salmonids in traps has not been studied quantitatively.We assessed the frequency of occurrence and abundance of juvenile salmonids in the stomachs of coastal cutthroat trout O. clarkii clarkii, coho salmon O. kisutch, steelhead, and prickly sculpin Cottus asper (>70 mm fork length) captured in traps and in nearby stream habitats. All four predator species took juvenile salmonids with much greater frequency in traps than in stream habitats. Among free-swimming predators, only coastal cutthroat trout were observed with salmonid fry in their stomachs, but they took fewer salmonid prey and appeared to rely more heavily on insect prey than did coastal cutthroat trout captured in traps. Predators consumed up to 25% of the available prey over a broad range of prey abundances. Over the course of the study, predators consumed 2.5% of all salmonid fry captured in traps, but this fraction ranged from less than 1% to more than 10% in any given year. The number of prey taken in traps increased with predator length and with prey abundance in traps, and predation in traps peaked during the period of most intense downstream migration by salmon fry. In contrast, live-box design and trap location had little or no effect on the total number of prey taken by individual predators.We estimated that the predation mortality of juvenile salmon increased by 0.5-1.0% due to in-trap predation (i.e., a 9-10% relative increase over natural predation rates). We found no evidence that predators selected for prey on the basis of species. These results should motivate additional research on methods that reduce or eliminate predation in trap live-boxes and protocols for efficiently measuring predation associated with the trapping of downstream migrants. ?? American

  13. Pacific Lamprey Research and Restoration : Annual Report 1997.

    SciTech Connect

    Jackson, Aaron D.; Hatch, Douglas R.; Close, David A.

    1998-08-05

    The once abundant stocks of Pacific lamprey (Lampetra tridentata) above Bonneville Dam are currently depressed (Close et al. 1995). It is likely that many of the same factors that led to the decline of wild stocks of Columbia River Pacific salmon and steelhead have impacted Pacific lamprey populations as well. The Pacific Lamprey Research and Restoration Project, funded by Bonneville Power Administration, is a cooperative effort between the Confederated Tribes of the Umatilla Indian Reservation, the Columbia River Inter-Tribal Fish Commission, and Oregon State University with the goal to increase Pacific lamprey stocks above Bonneville Dam.

  14. The response of stream periphyton to Pacific salmon: using a model to understand the role of environmental context

    USGS Publications Warehouse

    Bellmore, J. Ryan; Fremier, Alexander K.; Mejia, Francine; Newsom, Michael

    2014-01-01

    1. In stream ecosystems, Pacific salmon deliver subsidies of marine-derived nutrients and disturb the stream bed during spawning. The net effect of this nutrient subsidy and physical disturbance on biological communities can be hard to predict and is likely to be mediated by environmental conditions. For periphyton, empirical studies have revealed that the magnitude and direction of the response to salmon varies from one location to the next. Salmon appear to increase periphyton biomass and/or production in some contexts (a positive response), but decrease them in others (a negative response). 2. To reconcile these seemingly conflicting results, we constructed a system dynamics model that links periphyton biomass and production to salmon spawning. We used this model to explore how environmental conditions influence the periphyton response to salmon. 3. Our simulations suggest that the periphyton response to salmon is strongly mediated by both background nutrient concentrations and the proportion of the stream bed suitable for spawning. Positive periphyton responses occurred when both background nutrient concentrations were low (nutrient limiting conditions) and when little of the stream bed was suitable for spawning (because the substratum is too coarse). In contrast, negative responses occurred when nutrient concentrations were higher or a larger proportion of the bed was suitable for spawning. 4. Although periphyton biomass generally remained above or below background conditions for several months following spawning, periphyton production returned quickly to background values shortly afterwards. As a result, based upon our simulations, salmon did not greatly increase or decrease overall annual periphyton production. This suggests that any increase in production by fish or invertebrates in response to returning salmon is more likely to occur via direct consumption of salmon carcasses and/or eggs, rather than the indirect effects of greater periphyton production. 5

  15. Relationships between metabolic rate, muscle electromyograms, and swim performance of adult chinook salmon

    SciTech Connect

    Geist, David R. ); Brown, Richard S. ); Cullinan, Valerie I. ); Mesa, Matthew G.; VanderKooi, S P.; McKinstry, Craig A. )

    2003-10-01

    We measured oxygen consumption rates of adult spring Chinook salmon and compared these values to other species of Pacific salmon. Our results indicated that adult salmon achieve their maximum level of oxygen consumption at about their upper critical swim speed. It is also at this speed that the majority of the energy supplied to the swimming fish switches from red muscle (powered by aerobic metabolism) to white muscle (powered by anaerobic metabolism). Determining the swimming performance of adult salmon will assist managers in developing fishways and other means to safely pass fish over hydroelectric dams and other man-made structures.

  16. Human influence on the spatial structure of threatened Pacific salmon metapopulations.

    PubMed

    Fullerton, Aimee H; Lindley, Steven T; Pess, George R; Feist, Blake E; Steel, E Ashley; McElhany, Paul

    2011-10-01

    To remain viable, populations must be resilient to both natural and human-caused environmental changes. We evaluated anthropogenic effects on spatial connections among populations of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) (designated as threatened under the U.S. Endangered Species Act) in the lower Columbia and Willamette rivers. For several anthropogenic-effects scenarios, we used graph theory to characterize the spatial relation among populations. We plotted variance in population size against connectivity among populations. In our scenarios, reduced habitat quality decreased the size of populations and hydropower dams on rivers led to the extirpation of several populations, both of which decreased connectivity. Operation of fish hatcheries increased connectivity among populations and led to patchy or panmictic populations. On the basis of our results, we believe recolonization of the upper Cowlitz River by fall and spring Chinook and winter steelhead would best restore metapopulation structure to near-historical conditions. Extant populations that would best conserve connectivity would be those inhabiting the Molalla (spring Chinook), lower Cowlitz, or Clackamas (fall Chinook) rivers and the south Santiam (winter steelhead) and north fork Lewis rivers (summer steelhead). Populations in these rivers were putative sources; however, they were not always the most abundant or centrally located populations. This result would not have been obvious if we had not considered relations among populations in a metapopulation context. Our results suggest that dispersal rate strongly controls interactions among the populations that comprise salmon metapopulations. Thus, monitoring efforts could lead to understanding of the true rates at which wild and hatchery fish disperse. Our application of graph theory allowed us to visualize how metapopulation structure might respond to human activity. The method could be easily extended to evaluations of

  17. In-reservoir behavior, dam passage, and downstream migration of juvenile Chinook salmon and juvenile steelhead from Detroit Reservoir and Dam to Portland, Oregon, February 2013-February 2014

    USGS Publications Warehouse

    Beeman, John W.; Adams, Noah S.

    2015-01-01

    As part of the evaluations conducted at Detroit Dam, we continued to refine and improve methods for monitoring fish movements in the Willamette River. The goal was to develop stable, cost-effective, long-term monitoring arrays suitable for detection of any Juvenile Salmon Acoustic Telemetry System (JSATS)-tagged fish in the Willamette River. These data then could be used to estimate timing, migration rates, and survival of JSATS-tagged fish from various studies in the Willamette River Basin. The challenge, however, is that acoustic telemetry generally performs poorly in shallow, turbulent water, like that found in the Willamette River. We successfully designed, deployed, and maintained a series of monitoring sites near the Oregon cities of Salem, Wilsonville, and Portland. In the spring, detection probabilities at these sites ranged from 0.900 to 1.000. In the fall, the detection probabilities decreased and ranged from 0.526 to 1.000. The lower detection probabilities, particularly at the Salem site (0.526), were owing to loss of data caused by abnormally high flows as well as the 2013 Federal government shutdown, which prevented us from servicing the equipment. The monitoring sites that we installed seem to be robust and enable the efficient use of acoustic-tagged fish for studies of migration or survival in the Willamette River and similar environments.

  18. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2003-2004 Annual Report.

    SciTech Connect

    van der Naald, Wayne; Duff, Cameron; Brooks, Robert

    2005-01-01

    In 2003 a total of 253 adult fall chinook and 113 chum were sampled for biological data in the Ives and Pierce islands area below Bonneville Dam. Vital statistics were developed from 221 fall chinook and 109 chum samples. The peak redd count for fall chinook was 190. The peak redd count for chum was 262. Peak spawning time for fall chinook was set at approximately 24 November. Peak spawning time for chum occurred approximately 24 November. There were estimated to be a total of 1,533 fall chinook spawning below Bonneville Dam in 2003. The study area's 2003 chum population was estimated to be 688 spawning fish. Temperature unit data suggests that below Bonneville Dam 2003 brood bright stock, fall chinook emergence began on January 6, 2004 and ended 28 April 2004, with peak emergence occurring 13 April. 2003 brood juvenile chum emergence below Bonneville Dam began 22 February and continued through 15 April 2004. Peak chum emergence took place 25 March. A total of 25,433 juvenile chinook and 4,864 juvenile chum were sampled between the dates of 20 January and 28 June 2004 below Bonneville Dam. Juvenile chum migrated from the study area in the 40-55 mm fork length range. Migration of chum occurred during the months of March, April and May. Sampling results suggest fall chinook migration from rearing areas took place during the month of June 2004 when juvenile fall chinook were in the 65 to 80 mm fork length size range. Adult and juvenile sampling below Bonneville Dam provided information to assist in determining the stock of fall chinook and chum spawning and rearing below Bonneville Dam. Based on observed spawning times, adult age and sex composition, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration, it appears that in 2003 all of the fall chinook using the area below Bonneville Dam were of a late-spawning, bright stock. Observed spawning times, adult age and sex composition, GSI and DNA analysis, juvenile emergence timing

  19. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2002-2003 Annual Report.

    SciTech Connect

    van der Naald, Wayne; Clark, Roy; Brooks, Robert

    2004-01-01

    In 2002 a total of 364 adult fall chinook and 472 chum were sampled for biological data in the Ives and Pierce islands area below Bonneville Dam. Vital statistics were developed from 290 fall chinook and 403 chum samples. The peak redd count for fall chinook was 214. The peak redd count for chum was 776. Peak spawning time for fall chinook was set at approximately 15 November. Peak spawning time for chum occurred approximately 6 December. There were estimated to be a total of 1,881 fall chinook spawning below Bonneville Dam in 2002. The study area's 2002 chum population was estimated to be 4,232 spawning fish. Temperature unit data suggests that below Bonneville Dam 2002 brood bright stock, fall chinook emergence began on February 3 2003 and ended 7 May 2003, with peak emergence occurring 20 April. 2002 brood juvenile chum emergence below Bonneville Dam began 27 January and continued through 6 April 2003. Peak chum emergence took place 1 March. A total of 10,925 juvenile chinook and 1,577 juvenile chum were sampled between the dates of 24 January and 21 July 2003 below Bonneville Dam. Juvenile chum migrated from the study area in the 40-55 mm fork length range. Migration of chum occurred during the months of March, April and May. Sampling results suggest fall chinook migration from rearing areas took place during the month of June 2003 when juvenile fall chinook were in the 65 to 80 mm fork length size range. Adult and juvenile sampling below Bonneville Dam provided information to assist in determining the stock of fall chinook and chum spawning and rearing below Bonneville Dam. Based on observed spawning times, adult age and sex composition, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration, it appears that in 2002 and 2003 the majority of fall chinook using the area below Bonneville Dam were of a late-spawning, bright stock of fall chinook. Observed spawning times, adult age and sex composition, GSI and DNA analysis

  20. Survival and Passage of Yearling Chinook Salmon and Steelhead at The Dalles Dam, Spring 2011 - FINAL REPORT

    SciTech Connect

    Johnson, Gary E.; Hennen, Matthew J.; Zimmerman, Shon A.; Batten, G.; Carpenter, Scott M.; Deng, Zhiqun; Fu, Tao; Hughes, James S.; Martinez, Jayson J.; Ploskey, Gene R.; Royer, Ida M.; Townsend, Richard L.; Woodley, Christa M.; Kim, Jeongkwon; Etherington, D. J.; Skalski, J. R.; Carlson, Thomas J.; Cushing, Aaron W.; Fisher, Erik J.; Greiner, Michael J.; Khan, Fenton; Mitchell, T. D.; Rayamajhi, Bishes; Seaburg, Adam; Weiland, Mark A.

    2012-10-01

    The study reported herein was conducted by the Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) for the U.S. Army Corps of Engineers, Portland District (USACE). The PNNL and UW project managers were Drs. Thomas J. Carlson and John R. Skalski, respectively. The USACE technical lead was Mr. Brad Eppard. The study was designed to estimate dam passage survival and other performance measures at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System Biological Opinion (BiOp) and the 2008 Columbia Basin Fish Accords. The study is being documented in two types of reports: compliance and technical. A compliance report is delivered within 6 months of the completion of the field season and focuses on results of the performance metrics outlined in the 2008 BiOp and Fish Accords. A technical report is produced within the 18 months after field work, providing comprehensive documentation of a given study and results on route-specific survival estimates and fish passage distributions, which are not included in compliance reports. This technical report concerns the 2011 acoustic telemetry study at The Dalles Dam.

  1. Evaluation of two juvenile salmon collection devices at Cowlitz Falls Dam, Washington, 2014

    USGS Publications Warehouse

    Kock, Tobias J.; Liedtke, Theresa L.; Ekstrom, Brian K.; Hurst, William

    2015-01-01

    In an attempt to improve overall collection efficiency, Tacoma Power developed and tested a new device in 2014, called the Upper Riffe Lake Collector (URLC). The URLC was a floating device designed to collect fish as they moved downstream after passing through turbines at Cowlitz Falls Dam. The design of the URLC included a pontoon barge that supported a large net structure designed to funnel fish into a live box where they could be removed and transported downstream of dams on the Cowlitz River.

  2. Prevalence and levels of Renibacterium salmoninarum in spring-summer Chinook salmon (Oncorhynchus tshawytscha) smolts at dams on the Columbia and Snake Rivers.

    USGS Publications Warehouse

    Elliott, D.G.; Pascho, R.J.; Jackson, L.M.; Mathews, G.M.; Harmon, J.R.

    1997-01-01

    We evaluated Renibaeterium salmoninarum infection in smolts of hatchery and wild spring-summer Chinook salmon Oncorhynchus tshawytscha sampled during most of the outmigration at Little Goose (1988) and Lower Granite dams (1988–1991) on the Snake River and at Priest Rapids and McNary dams on the Columbia River (1988–1990). We sampled 860–2,178 fish per dam each year. Homogenates of kidney–spleen tissue from all fish were tested for the presence of R. salmoninarum antigens by the enzyme-linked immunosorbent assay (ELISA), and homogenates from 10% of the fish were examined by the fluorescent antibody technique (FAT). Although only 1–11% of fish sampled at a given dam during any l year exhibited lesions characteristic of bacterial kidney disease, 86–100% of the fish tested positive for R. salmoninarum antigen by ELISA, whereas 4–17% of the fish tested positive by the FAT. During most years, a majority (68–87%) of fish testing positive by the ELISA had low R. salmoninarum antigen levels, but in 1989, 53% of positive fish from Lower Granite Dam and 52% from McNary Dam showed medium-to-high antigen levels. For most years, the highest mean antigen levels were measured in fish sampled after 75% of the total out-migrants had passed a given dam. When the largest numbers of fish were being collected for bypass or downriver transportation, mean antigen levels were relatively low.

  3. Salmon habitat assessment for conservation planning in the lower White Salmon River, Washington

    USGS Publications Warehouse

    Hardiman, Jill M.; Allen, M. Brady

    2015-01-01

    In 2011, Condit Dam was removed from the White Salmon River, Washington. Since dam removal, there has been interest among scientists (State and Federal), Tribes, non-profit organizations, and the general public in assessing Pacific salmon habitat and use in the White Salmon River for conservation planning and potential fishery management actions. The study area extended from the lower 6 miles of the White Salmon River to the confluence with the Columbia River, including the former reservoir area. The Mid-Columbia Fisheries Enhancement Group received a grant to initiate efforts to plan for salmon habitat protection in the lower 6 river miles of the White Salmon River. As part of efforts by the Mid-Columbia Fisheries Enhancement Group to conduct conservation planning, the U.S. Geological Survey (USGS) used current and historical habitat information to assist in the planning process. The USGS compiled existing georeferenced habitat data into a Geographic Information System to identify areas of high quality habitat for salmon, potential areas for restoration/improvement, and areas that could be threatened. The primary sources of georeferenced data for this project include a lidar flight contracted by PacifiCorp, bathymetry from USGS, and fall Chinook salmon redd surveys from the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife. Redd observations provided support that the study area is a migratory corridor for salmon and steelhead and that the lowest 2–3 miles had the highest concentration of documented fall Chinook salmon redds. The study area has potential for restoration/conservation areas to improve/conserve salmon habitat.

  4. Transcriptomic responses to emamectin benzoate in Pacific and Atlantic Canada salmon lice Lepeophtheirus salmonis with differing levels of drug resistance

    PubMed Central

    Sutherland, Ben J G; Poley, Jordan D; Igboeli, Okechukwu O; Jantzen, Johanna R; Fast, Mark D; Koop, Ben F; Jones, Simon R M

    2015-01-01

    Salmon lice Lepeophtheirus salmonis are an ecologically and economically important parasite of wild and farmed salmon. In Scotland, Norway, and Eastern Canada, L. salmonis have developed resistance to emamectin benzoate (EMB), one of the few parasiticides available for salmon lice. Drug resistance mechanisms can be complex, potentially differing among populations and involving multiple genes with additive effects (i.e., polygenic resistance). Indicators of resistance development may enable early detection and countermeasures to avoid the spread of resistance. Here, we collect sensitive Pacific L. salmonis and sensitive and resistant Atlantic L. salmonis from salmon farms, propagate in laboratory (F1), expose to EMB in bioassays, and evaluate either baseline (Atlantic only) or induced transcriptomic differences between populations. In all populations, induced responses were minor and a cellular stress response was not identified. Pacific lice did not upregulate any genes in response to EMB, but downregulated degradative enzymes and transport proteins at 50 ppb EMB. Baseline differences between sensitive and now resistant Atlantic lice were much greater than responses to exposures. All resistant lice overexpressed degradative enzymes, and resistant males, the most resistant group, overexpressed collagenases to the greatest extent. These results indicate an accumulation of baseline expression differences related to resistance. PMID:25685190

  5. Long-term Records of Pacific Salmon Abundance From Sediment Core Analysis: Relationships to Past Climatic Change, and Implications for the Future

    NASA Astrophysics Data System (ADS)

    Finney, B.

    2002-12-01

    The response of Pacific salmon to future climatic change is uncertain, but will have large impacts on the economy, culture and ecology of the North Pacific Rim. Relationships between sockeye salmon populations and climatic change can be determined by analyzing sediment cores from lakes where sockeye return to spawn. Sockeye salmon return to their natal lake system to spawn and subsequently die following 2 - 3 years of feeding in the North Pacific Ocean. Sockeye salmon abundance can be reconstructed from stable nitrogen isotope analysis of lake sediment cores as returning sockeye transport significant quantities of N, relatively enriched in N-15, from the ocean to freshwater systems. Temporal changes in the input of salmon-derived N, and hence salmon abundance, can be quantified through downcore analysis of N isotopes. Reconstructions of sockeye salmon abundance from lakes in several regions of Alaska show similar temporal patterns, with variability occurring on decadal to millennial timescales. Over the past 2000 years, shifts in sockeye salmon abundance far exceed the historical decadal-scale variability. A decline occurred from about 100 BC - 800 AD, but salmon were consistently more abundant 1200 - 1900 AD. Declines since 1900 AD coincide with the period of extensive commercial fishing. Correspondence between these records and paleoclimatic data suggest that changes in salmon abundance are related to large scale climatic changes over the North Pacific. For example, the increase in salmon abundance c.a. 1200 AD corresponds to a period of glacial advance in southern Alaska, and a shift to drier conditions in western North America. Although the regionally coherent patterns in reconstructed salmon abundance are consistent with the hypothesis that climate is an important driver, the relationships do not always follow patterns observed in the 20th century. A main feature of recorded climate variability in this region is the alternation between multi-decade periods of

  6. Positive Darwinian Selection in the Piston That Powers Proton Pumps in Complex I of the Mitochondria of Pacific Salmon

    PubMed Central

    Garvin, Michael R.; Bielawski, Joseph P.; Gharrett, Anthony J.

    2011-01-01

    The mechanism of oxidative phosphorylation is well understood, but evolution of the proteins involved is not. We combined phylogenetic, genomic, and structural biology analyses to examine the evolution of twelve mitochondrial encoded proteins of closely related, yet phenotypically diverse, Pacific salmon. Two separate analyses identified the same seven positively selected sites in ND5. A strong signal was also detected at three sites of ND2. An energetic coupling analysis revealed several structures in the ND5 protein that may have co-evolved with the selected sites. These data implicate Complex I, specifically the piston arm of ND5 where it connects the proton pumps, as important in the evolution of Pacific salmon. Lastly, the lineage to Chinook experienced rapid evolution at the piston arm. PMID:21969854

  7. Evaluation of Fall Chinook and Chum Salmon below Bonneville, The Dalles, John Day and McNary Dams; 1998-1999 Annual Report.

    SciTech Connect

    van der Naald, Wayne; Clark, Roy; Spellman, Bryant

    1999-12-01

    This report describes work conducted by the Oregon Department of Fish and Wildlife (ODFW) and the Washington Department of Fish and Wildlife (WDFW) from 1 October 1998 to 30 September 1999. The work is part of studies to evaluate spawning of fall chinook salmon (Oncorhynchus tshawytscha) and chum salmon (O. keta) below the four lowermost Columbia River dams under the Bonneville Power Administration's Project 99-003. The purpose of this project is twofold: (1) Document the existence of fall chinook and chum populations spawning below Bonneville Dam (river mile (RM) 145), The Dalles Dam (RM 192), John Day Dam (RM 216), and McNary Dam (RM 292) (Figure 1) and estimate the size of these populations; and (2) Profile stocks for important population characteristics; including spawning time, genetic make-up, emergence timing, migration size and timing, and juvenile to adult survival rates. Specific tasks conducted by ODFW and WDFW during this period were: (1) Documentation of fall chinook and chum spawning below Bonneville, The Dalles, John Day and McNary dams using on-water observations; (2) Collection of biological data to profile stocks in areas described in Task 1; (3) Determination of spawning population estimates and age composition, average size at return, and sex ratios in order to profile stocks in areas described in Task 1; (4) Collection of data to determine stock origin of adult salmon found in areas described in Task 1; (5) Determination of possible stock origins of adult salmon found in areas described in Task 1 using tag rates based on coded-wire tag recoveries and genetic baseline analysis; (6) Determination of emergence timing and hatching rate of juvenile fall chinook and chum below Bonneville Dam; (7) Determination of migration time and size for juvenile fall chinook and chum rearing in the area described in Task 6; (8) Investigation of feasibility of determining stock composition of juvenile fall chinook and chum rearing in the area described in Task 6

  8. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville, The Dalles, John Day, and McNary Dams; 2000-2001 Annual Report.

    SciTech Connect

    van der Naald, Wayne; Clark, Roy; Spellman, Bryant

    2002-09-17

    This report describes work conducted by the Oregon Department of Fish and Wildlife (ODFW) and the Washington Department of Fish and Wildlife (WDFW) from 1 October 2000 to 30 September 2001. The work is part of studies to evaluate spawning of fall chinook salmon (Oncorhynchus tshawytscha) and chum salmon (O. keta) below the four lowermost Columbia River dams under the Bonneville Power Administration's Project 99-003. The purpose of this project is twofold: (1) Document the existence of fall chinook and chum populations spawning below Bonneville Dam (river mile (RM) 145), The Dalles Dam (RM 192), John Day Dam (RM 216), and McNary Dam (RM 292) (Figure 1) and estimate the size of these populations. (2) Profile stocks for important population characteristics; including spawning time, genetic make-up, emergence timing, migration size and timing, and juvenile to adult survival rates. Specific tasks conducted by ODFW and WDFW during this period were: (1) Documentation of fall chinook and chum spawning below Bonneville, The Dalles, John Day and McNary dams using on-water observations; (2) Collection of biological data to profile stocks in areas described in Task 1; (3) Determination of spawning population estimates and age composition, average size at return, and sex ratios in order to profile stocks in areas described in Task 1; (4) Collection of data to determine stock origin of adult salmon found in areas described in Task 1; (5) Determination of possible stock origins of adult salmon found in areas described in Task 1 using tag rates based on coded-wire tag recoveries and genetic baseline analysis; (6) Determination of emergence timing and hatching rate of juvenile fall chinook and chum below Bonneville Dam; (7) Determination of migration time and size for juvenile fall chinook and chum rearing in the area described in Task 6; (8) Investigation of feasibility of determining stock composition of juvenile fall chinook and chum rearing in the area described in Task 6; (9

  9. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2005 Annual Report.

    SciTech Connect

    Garcia, A.P.; Bradbury, S.; Arnsberg, B.D.; Rocklage, S.J.; Groves, P.A.

    2006-10-01

    Redd counts are routinely used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2005; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U.S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2005 was funded by the Bonneville Power Administration and Idaho Power Company.

  10. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2004 Annual Report.

    SciTech Connect

    Garcia, A.P.; Bradbury, S.; Arnsberg, B.D.; Rocklage, S.J.; Groves, P.A.

    2005-10-01

    Redd counts were used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U.S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2004; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2004 was funded by the Bonneville Power Administration, Idaho Power Company, and Bureau of Land Management.

  11. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, Annual Report 2003.

    SciTech Connect

    Garcia, A.P.; Bradbury, S.M.; Arnsberg, B.D.

    2004-08-01

    Redd counts were used to document the spawning distribution of fall chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2003; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992) and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2003 was funded by the Bonneville Power Administration (Projects 199801003, 199801004, 199403400, 198335003), Idaho Power Company, and Bureau of Land Management.

  12. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, Annual Report 2002.

    SciTech Connect

    Garcia, Aaron P.; Bradbury, S.M.; Arnsberg, Billy D.

    2003-09-01

    Redd counts were used to document the spawning distribution of fall chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2001; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992) and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2002 was funded by the Bonneville Power Administration (Projects 1998-01-003 and 1994-03-400) and the Idaho Power Company.

  13. Genetic stock identification of chum salmon in the Bering Sea and North Pacific Ocean using mitochondrial DNA microarray.

    PubMed

    Moriya, Shogo; Sato, Shunpei; Azumaya, Tomonori; Suzuki, Osamu; Urawa, Shigehiko; Urano, Akihisa; Abe, Syuiti

    2007-01-01

    A newly developed DNA microarray was applied to identify mitochondrial (mt) DNA haplotypes of more than 2200 chum salmon in the Bering Sea and North Pacific Ocean in September 2002 and also 2003, when the majority of maturing fish were migrating toward their natal river. The distribution of haplotypes occurring in Asian and North American fish in the surveyed area was similar in the 2 years. A conditional maximum likelihood method for estimation of stock compositions indicated that the Japanese stocks were distributed mainly in the north central Bering Sea, whereas the Russian stocks were mainly in the western Bering Sea. The North American stocks were abundant in the North Pacific Ocean around the Aleutian Islands. These results indicate that the Asian and North American stocks of chum salmon are nonrandomly distributed in the Bering Sea and the North Pacific Ocean, and further the oligonuleotide DNA microarray developed by us has a high potential for identification of stocks among mixed ocean aggregates of high-seas chum salmon.

  14. History of salmon in the Great Lakes, 1850-1970

    USGS Publications Warehouse

    Parsons, John W.

    1973-01-01

    This history of the salmon in the Great Lakes describes the decline and extinction of the Atlantic salmon (Salmo salar) in Lake Ontario in the 1800's; the failure to establish, by salmon culture, permanent or sizable populations of Atlantic or Pacific salmon in any of the Great Lakes in 1867-1965; and the success of the plantings of coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytsha) in the Great Lakes, in 1966-70 -- particularly in Lake Michigan. Despite plantings of 5 million fry and fingerlings from Lake Ontario stocks in 1866-84, the native Atlantic salmon in Lake Ontario became extinct in the late 1800's primarily because tributaries in which they spawned were blocked by mill dams. Plantings of 13 million chinook salmon and landlocked and anadromous forms of Atlantic salmon in Lake Ontario and the other Great Lakes in 1873-1947 failed completely. The first species to develop a self-sustaining population was the pink salmon (O. gorbuscha), which was planted in Lake Superior in 1956; however, it has not become abundant. A salmon fishery finally was established when 15 million coho salmon and 6 million chinook salmon were planted as smolt in the Great Lakes in 1966-70. In 1970, for example, 576,000 coho salmon (12% of those planted in 1969) were caught by anglers in Lake Michigan. Most weighed 5 to 10 pounds (2.3-4.5 kg). Sport fishing for salmon was fair in Lakes Superior and Huron, and poor in Lakes Erie and Ontario. By 1970, natural reproduction of coho, chinook, pink, and kokanee (O. nerka) salmon had occurred in some tributaries of one or more of the upper three Great Lakes. It is expected, however, that the sport fishery will continue to be supported almost entirely by planted fish.

  15. THE PACIFIC NORTHWEST IN 2100: AN ALTERNATIVE FUTURES PERSPECTIVE ON SALMON RECOVERY

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project does not ...

  16. Indirect effects of impoundment on migrating fish: temperature gradients in fish ladders slow dam passage by adult Chinook salmon and steelhead.

    PubMed

    Caudill, Christopher C; Keefer, Matthew L; Clabough, Tami S; Naughton, George P; Burke, Brian J; Peery, Christopher A

    2013-01-01

    Thermal layering in reservoirs upstream from hydroelectric dams can create temperature gradients in fishways used by upstream migrating adults. In the Snake River, Washington, federally-protected adult salmonids (Oncorhynchus spp.) often encounter relatively cool water in dam tailraces and lower ladder sections and warmer water in the upstream portions of ladders. Using radiotelemetry, we examined relationships between fish passage behavior and the temperature difference between the top and bottom of ladders (∆T) at four dams over four years. Some spring Chinook salmon (O. tshawytscha) experienced ∆T ≥ 0.5 °C. Many summer and fall Chinook salmon and summer steelhead (O. mykiss) experienced ∆T ≥ 1.0 °C, and some individuals encountered ΔT > 4.0°C. As ΔT increased, migrants were consistently more likely to move down fish ladders and exit into dam tailraces, resulting in upstream passage delays that ranged from hours to days. Fish body temperatures equilibrated to ladder temperatures and often exceeded 20°C, indicating potential negative physiological and fitness effects. Collectively, the results suggest that gradients in fishway water temperatures present a migration obstacle to many anadromous migrants. Unfavorable temperature gradients may be common at reservoir-fed fish passage facilities, especially those with seasonal thermal layering or stratification. Understanding and managing thermal heterogeneity at such sites may be important for ensuring efficient upstream passage and minimizing stress for migratory, temperature-sensitive species.

  17. Indirect Effects of Impoundment on Migrating Fish: Temperature Gradients in Fish Ladders Slow Dam Passage by Adult Chinook Salmon and Steelhead

    PubMed Central

    Caudill, Christopher C.; Keefer, Matthew L.; Clabough, Tami S.; Naughton, George P.; Burke, Brian J.; Peery, Christopher A.

    2013-01-01

    Thermal layering in reservoirs upstream from hydroelectric dams can create temperature gradients in fishways used by upstream migrating adults. In the Snake River, Washington, federally-protected adult salmonids (Oncorhynchus spp.) often encounter relatively cool water in dam tailraces and lower ladder sections and warmer water in the upstream portions of ladders. Using radiotelemetry, we examined relationships between fish passage behavior and the temperature difference between the top and bottom of ladders (∆T) at four dams over four years. Some spring Chinook salmon (O. tshawytscha) experienced ∆T ≥ 0.5 °C. Many summer and fall Chinook salmon and summer steelhead (O. mykiss) experienced ∆T ≥ 1.0 °C, and some individuals encountered ΔT > 4.0°C. As ΔT increased, migrants were consistently more likely to move down fish ladders and exit into dam tailraces, resulting in upstream passage delays that ranged from hours to days. Fish body temperatures equilibrated to ladder temperatures and often exceeded 20°C, indicating potential negative physiological and fitness effects. Collectively, the results suggest that gradients in fishway water temperatures present a migration obstacle to many anadromous migrants. Unfavorable temperature gradients may be common at reservoir-fed fish passage facilities, especially those with seasonal thermal layering or stratification. Understanding and managing thermal heterogeneity at such sites may be important for ensuring efficient upstream passage and minimizing stress for migratory, temperature-sensitive species. PMID:24392020

  18. Species and life-history affects the utility of otolith chemical composition to determine natal stream-of-origin in Pacific salmon

    USGS Publications Warehouse

    Zimmerman, Christian E.; Swanson, Heidi K.; Volk, Eric C.; Kent, Adam J.R.

    2013-01-01

    To test the utility of otolith chemical composition as a tool for determining the natal stream of origin for salmon, we examined water chemistry and otoliths of juvenile and adult Chum Salmon Oncorhynchus keta and Coho Salmon O. kisutch from three watersheds (five rivers) in the Norton Sound region of Alaska. The two species are characterized by different life histories: Coho Salmon rear in freshwater for up to 3 years, whereas Chum Salmon emigrate from freshwater shortly after emergence. We used laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) to quantify element: Ca ratios for Mg, Mn, Zn, Sr, and Ba, and we used multicollector LA-ICP-MS to determine 87Sr:86Sr ratios in otolith regions corresponding to the period of freshwater residence. Significant differences existed in both water and otolith elemental composition, suggesting that otolith composition could be used to discriminate the natal origin of Coho Salmon and Chum Salmon but only when 87Sr:86Sr ratios were included in the discriminant function analyses. The best discriminant model included 87Sr:86Sr ratios, and without 87Sr:86Sr ratios it was difficult to discriminate among watersheds and rivers. Classification accuracy was 80% for Coho Salmon and 68% for Chum Salmon, indicating that this method does not provide sufficient sensitivity to estimate straying rates of Pacific salmon at the scale we studied.

  19. Evaluation of a Prototype Surface Flow Bypass for Juvenile Salmon and Steelhead at the Powerhouse of Lower Granite Dam, Snake River, Washington, 1996-2000

    SciTech Connect

    Johnson, Gary E.; Anglea, Steven M.; Adams, Noah S.; Wik, Timothy O.

    2005-02-28

    A surface flow bypass provides a route in the upper water column for naturally, surface-oriented juvenile salmonids to safely migrate through a hydroelectric dam. Surface flow bypasses were recommended in several regional salmon recovery plans as a means to increase passage survival of juvenile salmonids at Columbia and Snake River dams. A prototype surface flow bypass, called the SBC, was retrofit on Lower Granite Dam and evaluated from 1996 to 2000 using biotelemetry and hydroacoustic techniques. In terms of passage efficiency, the best SBC configurations were a surface skimmer (99 m3/s [3,500 cfs], three entrances 5 m wide, 5 m deep and one entrance 5 m wide, 15 m deep) and a single chute (99 m3/s, one entrance 5 m wide, 8.5 m deep). They each passed 62 ? 3% (95% confidence interval) of the total juvenile fish population that entered the section of the dam with the SBC entrances (Turbine Units 4-5). Smooth entrance shape and concentrated surface flow characteristics of these configurations are worth pursuing in designs for future surface flow bypasses. In addition, a guidance wall in the Lower Granite Dam forebay diverted the following percentages of juvenile salmonids away from Turbine Units 1-3 toward other passage routes, including the SBC: run-at-large 79 ? 18%; hatchery steelhead 86%; wild steelhead 65%; and yearling chinook salmon 66%. When used in combination with spill or turbine intake screens, a surface flow bypass with a guidance wall can produce a high level (> 90% of total project passage) of non-turbine passage and provide operational flexibility to fisheries managers and dam operators responsible for enhancing juvenile salmonid survival.

  20. Using Phylogenetic Analysis to Detect Market Substitution of Atlantic Salmon for Pacific Salmon: An Introductory Biology Laboratory Experiment

    ERIC Educational Resources Information Center

    Cline, Erica; Gogarten, Jennifer

    2012-01-01

    We describe a laboratory exercise developed for the cell and molecular biology quarter of a year-long majors' undergraduate introductory biology sequence. In an analysis of salmon samples collected by students in their local stores and restaurants, DNA sequencing and phylogenetic analysis were used to detect market substitution of Atlantic salmon…

  1. The Use of Electromyogram (EMG) Telemetry to Assess Swimming Activity and Energy Use of Adult Spring Chinook Salmon Migrating through the Tailraces, Fishways, and Forebays of Bonneville Dam, 2000 and 2001

    SciTech Connect

    Brown, Richard S.; Geist, David R.; Mesa, Matthew G.

    2002-10-16

    In 2000, PNNL conducted a two-year study for the U.S. Army Corps of Engineers to investigate energy use and swimming performance of adult spring chinook salmon (Oncorhynchus tshawystcha) migrating upstream through a large hydropower dam on the Columbia River. The investigation involved one year of laboratory study and one year of field study at Bonneville Dam. The objectives of the laboratory study were to 1) measure active rates of oxygen consumption of adult spring chinook salmon at three water temperatures over a range of swimming speeds; 2) estimate the upper critical swimming speed (Ucrit) of adult spring chinook salmon; and 3) monitor electromyograms (EMGs) of red and white muscle in the salmon over a range of swimming speeds. Laboratory results showed rate of oxygen consumption and red and white muscle activity in adult spring chinook salmon were strongly correlated with swimming speed over a range of fish sizes and at three different temperatures. In the field studies at Bonneville Dam, EMG radiotelemetry was used to examine the amount of energy spring chinook salmon expend while migrating upstream past the dam?s tailraces, fishways, and forebays. Aerobic and anaerobic energy use rates were determined. Energy use was estimated for different specific sections of each fishway also. The rates of energy used (kcal/kg/h) by spring chinook salmon were significantly higher in the tailraces (2.80 kcal/kg/h) than in other parts of the dam. Among all fishway areas, Cascade Island fishway appears to be more energetically costly than other fishways. Also, section 12 of the Washington shore fishway appears costly. Energy used during fallouts was substantial (11.5% to 18.8% of the amount of energy used for successful fishway passages).

  2. Evaluate Status of Pacific Lamprey in the Clearwater River and Salmon River Drainages, Idaho, 2009 Technical Report.

    SciTech Connect

    Cochnauer, Tim; Claire, Christopher

    2009-05-07

    Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based on potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.

  3. Passage behavior of radio-tagged subyearling Chinook salmon at Bonneville Dam, 2004

    USGS Publications Warehouse

    Reagan, R.E.; Evans, S.D.; Wright, L.S; Farley, M.J.; Adams, N.S.; Rondorf, D.W.

    2005-01-01

    Flow augmentation, spill, surface collection, and improved turbine guidance systems have been identified as potential management actions to improve passage efficiency and survival of outmigrating juvenile salmonids. The U.S. Army Corps of Engineers (USACE), along with regional, state, and federal resource agencies, has designed and implemented studies to determine which management actions would provide significant biological benefits to juvenile salmonids. From 1994 to 2004, the USACE has contracted the U.S. Geological Survey to evaluate juvenile salmonid behavior in relation to passage improvement tests at Lower Granite, John Day, The Dalles, and Bonneville Dams

  4. Elwha River dam removal: A major opportunity for salmon and steelhead recolonization

    USGS Publications Warehouse

    Pess, George R.; Brenkman, Samuel J.; Winans, Gary A.; McHenry, Michael L.; Duda, Jeffrey J.; Beechie, Timothy J.

    2010-01-01

    In this in-depth paper, authors George R. Pess, Gary A. Winans and Timothy J. Beechie of the NOAA Fisheries, Northwest Fisheries Science Center in Seattle, Samuel J. Brenkman of the National Park Service, Olympic National Park, Michael L. McHenry of the Lower Elwha Klallam Tribe and Jeffrey J. Duda of the U.S. Geological Survey, Western Fisheries Research Center in Seattle, provide an historical overview of the Elwha River system, and its native anadromous fish runs and the prospect of their recolonization after the Elwha and Glines Canyon dams are removed.

  5. A microassay for gill sodium, potassium-activated ATPase in juvenile Pacific salmon

    USGS Publications Warehouse

    Schrock, Robin M.; Beeman, John W.; Rondorf, Dennis W.; Haner, Philip V.

    1994-01-01

    A microassay well-plate method is described for determining Na+,K+-ATPase activities of small gill sections from juvenile Pacific salmon Oncorhynchus spp. The method differs from the established macromethod by detecting inorganic phosphate in nanomole rather than micromole concentrations. This permits the use of much smaller tissue samples, which makes it possible to release fish after sampling. Use of sonication during enzyme extraction and elimination of the need to deproteinize samples before ATPase analysis further simplify the assay. Application of the microwell-plate technique for both Na+,K+-ATPase activity and protein analysis permits rapid processing of many samples. It also produces results equivalent to those of the macroassay; no significant differences occurred between sample duplicates run by the two methods with the same enzyme extract (P > 0.05). The coefficient of variation (100·SD/mean) for microassay samples containing enzyme activities of at least 10 umol inorganic phosphate per milligram protein per hour was 12% or less for between-plate comparisons and 5% or less for same-plate comparisons. Monitoring of gill-clipped fish during migration indicated that small gill clips did not cause mortality or alter migration behavior of juvenile salmonids tagged with passive integrated transponders. These are important considerations in programs for monitoring species listed under the U.S. Endangered Species Act.

  6. Stable isotope analysis of Pacific salmon: insight into trophic status and oceanographic conditions over the last 30 years

    NASA Astrophysics Data System (ADS)

    Satterfield, Franklin R.; Finney, Bruce P.

    Food web interactions and the response of Pacific salmon to physical processes in the North Pacific Ocean over interannual and interdecadal timescales are explored using naturally occurring stable isotope ratios of carbon ( 13C/ 12C) and nitrogen ( 15N/ 14N). Stable isotope analyses of five species of sexually mature North Pacific salmon from Alaska ( Oncorhynchus spp.) cluster into three groups: chinook salmon ( O. tshawytscha) have the highest values, followed by coho ( O. kisutch), with chum ( O. keta), sockeye ( O. nerka), and pink ( O. gorbuscha) together having the lowest values. Although detailed isotopic data on salmon prey are lacking, there are limited data on relevant prey items from areas in which they are found in high abundance. These data suggest that the characteristics of the sockeye, pink and chum we have analyzed are compatible with their diets including open ocean squid and zooplankton, which are in general agreement with stomach content analyses. Isotope relationships between muscle and scale show consistent relationships for both δ13C ( R2=0.98) and δ 15N ( R2=0.90). Thus, scales, which have been routinely archived for many systems, can be used for retrospective analyses. Archived sockeye salmon scales spanning 1966-1999 from Red Lake, Kodiak Island, Alaska were analyzed for their stable isotope ratios of carbon and nitrogen. The δ15N record displays a decreasing trend of ~3‰ from 1969-1982 and an increasing trend of ~3‰ from 1982-1992, while the variations in δ13C are relatively minor. These trends may result from factors such as shifts in trophic level of feeding and/or feeding location, or may originate at the base of the food web via changes in processes such as nutrient cycling or primary productivity. Detailed studies on prey isotopic variability and its controls are needed to distinguish between these factors, and thus to improve the use of stable isotope analysis as a tool to learn more about present and past ecosystem change

  7. Interim results from a study of the behavior of juvenile Chinook salmon at Cougar Reservoir and Dam, Oregon, March--August 2011

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Haner, Philip V.; Sprando, Jamie M.; Smith, Collin D.; Evans, Scott D.

    2012-01-01

    The movements and dam passage of yearling juvenile Chinook salmon implanted with acoustic transmitters and passive integrated transponder tags were studied at Cougar Reservoir and Dam, near Springfield, Oregon. A total of 411 hatchery fish and 26 wild fish were tagged and released between March 7 and May 21, 2011. A series of 16 autonomous hydrophones placed throughout the reservoir were used to determine general fish movements over the life of the acoustic transmitter, which was expected to be 91 days. Movements within the reservoir were directional, and it was common for fish to migrate repeatedly from the head of the reservoir downstream to the dam outlet and back. The dam passage rate was 11.2 percent (95-percent confidence interval 7.8–14.6 percent) for hatchery fish and 15.4 percent (95-percent confidence interval -1.0–31.8 percent) for wild fish within 91 days from release. Most fish passage occurred at night. The median time from release to dam passage was 34.5 days for hatchery fish and 34.2 days for wild fish. A system of hydrophones near the dam outlet, a temperature control tower, was used to estimate positions of fish in three dimensions to enable detailed analyses of fish behavior near the tower. Analyses of these data indicate that hourly averaged depths of fish within a distance of 74 m from the upstream face of the tower ranged from 0.6 to 9.6 meters, with a median depth of 3.6 meters for hatchery fish and 3.4 meters for wild fish. Dam discharge rates and the diurnal period affected the rates of dam passage. Rates of dam passage were similar when the dam discharge rate was less than 1,200 cubic feet per second, but increased sharply at higher discharges. The rate of dam passage at night was 4.4–7.8 times greater than during the day, depending on the distance of fish from the dam. This report is an interim summary of data collected as of August 3, 2011, for planning purposes.

  8. Climate change, pink salmon, and the nexus between bottom-up and top-down forcing in the subarctic Pacific Ocean and Bering Sea.

    PubMed

    Springer, Alan M; van Vliet, Gus B

    2014-05-06

    Climate change in the last century was associated with spectacular growth of many wild Pacific salmon stocks in the North Pacific Ocean and Bering Sea, apparently through bottom-up forcing linking meteorology to ocean physics, water temperature, and plankton production. One species in particular, pink salmon, became so numerous by the 1990s that they began to dominate other species of salmon for prey resources and to exert top-down control in the open ocean ecosystem. Information from long-term monitoring of seabirds in the Aleutian Islands and Bering Sea reveals that the sphere of influence of pink salmon is much larger than previously known. Seabirds, pink salmon, other species of salmon, and by extension other higher-order predators, are tightly linked ecologically and must be included in international management and conservation policies for sustaining all species that compete for common, finite resource pools. These data further emphasize that the unique 2-y cycle in abundance of pink salmon drives interannual shifts between two alternate states of a complex marine ecosystem.

  9. Climate change, pink salmon, and the nexus between bottom-up and top-down forcing in the subarctic Pacific Ocean and Bering Sea

    PubMed Central

    Springer, Alan M.; van Vliet, Gus B.

    2014-01-01

    Climate change in the last century was associated with spectacular growth of many wild Pacific salmon stocks in the North Pacific Ocean and Bering Sea, apparently through bottom-up forcing linking meteorology to ocean physics, water temperature, and plankton production. One species in particular, pink salmon, became so numerous by the 1990s that they began to dominate other species of salmon for prey resources and to exert top-down control in the open ocean ecosystem. Information from long-term monitoring of seabirds in the Aleutian Islands and Bering Sea reveals that the sphere of influence of pink salmon is much larger than previously known. Seabirds, pink salmon, other species of salmon, and by extension other higher-order predators, are tightly linked ecologically and must be included in international management and conservation policies for sustaining all species that compete for common, finite resource pools. These data further emphasize that the unique 2-y cycle in abundance of pink salmon drives interannual shifts between two alternate states of a complex marine ecosystem. PMID:24706809

  10. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2002 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam in 2002. This was the seventh year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 479,358 yearlings released from the Fall Chinook Acclimation Project facilities exceeded the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,545 PIT tagged yearlings from Pittsburg Landing, 7,482 from Big Canyon and 2,487 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium to high with 43-62% of fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 146.7 mm (146.2-147.2 mm) at Captain John Rapids to 164.8 mm (163.5-166.1 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.14 at Pittsburg Landing and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 88.6% (86.0-91.1%) for Pittsburg Landing to 97.0% (92.4-101.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 54.3% (50.2-58.3%) for Big Canyon to 70.5% (65.4-75.5%) for Pittsburg Landing. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 8.1 river kilometers per

  11. The Riverscape Analysis Project: Using Remote Sensing to Leverage Salmon Science and Management Applications Around the Pacific Rim

    NASA Astrophysics Data System (ADS)

    Chilcote, S.; Maumenee, N.; Lucotch, J.; Whited, D.; Bansack, T.; Kimball, J. S.; Stanford, J.

    2009-12-01

    The Salmonid Rivers Observatory Network (SaRON) is an intensive field research project which aims to describe the relation between salmon productivion and diversity in relation to environmental drivers and physical complexity of riverine shifting habitat mosaics. The Riverscape Analysis Project (RAP) is a spatially explicit remote sensing database which quantifies and ranks different combinations of physical landscape metrics around the Pacific Rim, displaying results through a publically accessible web based decision support framework designed to empower regional management and conservation efforts for wild salmon. The objective of our research is to explicitly describe and relate different habitat types and their potential fish production at a variety of scales and throughout the range of Pacific salmon, leveraging our field research through available satellite remote sensing and geospatial analysis. We find that rivers exhibit a range of physical, chemical, and biotic conditions consistent with the shifting habitat mosaic (SHM) concept. Landscape physical variables derived from global Landsat imagery and SRTM-DEM information explain 93.2% of observed variability in over 1500 watersheds across the Pacific Rim. We expect that it is these coarse scale differences in river typologies which are responsible for the fine scale differences in habitat conditions and juvenile salmon production. Therefore, we ranked rivers using landscape scale physical variables to prioritize them for management actions based on potential productivity. For example, the Kvichak River of Bristol Bay is highly ranked, 8th, based on its physical landscape structure as well as current human impacts. Currently, the Bristol Bay fishery is extremely productive. Habitat structure can be used not only to define reference conditions and management targets for how many fish we would expect a river to produce based on its potential habitat capacity, but it also provides new analytical tools to

  12. Interannual variability in stock abundance and body size of Pacific salmon in the central Bering Sea

    NASA Astrophysics Data System (ADS)

    Ishida, Y.; Azumaya, T.; Fukuwaka, M.; Davis, N.

    2002-10-01

    Variability in catch-per-unit-effort (CPUE) and mean body size was examined for pink, chum and sockeye salmon collected with research gillnets in the central Bering Sea in July from 1972 to 2000. The CPUEs for all three species showed significant increasing trends, but with large interannual variability. The CPUE of pink salmon was higher in odd years than in even years, and abruptly increased in the odd years post-1989. Chum salmon also showed odd/even year fluctuations, which were out-of-phase with those of pink salmon. Sockeye salmon showed no biennial such fluctuations. The CPUEs of chum and sockeye salmon were higher during 1979-1984 and 1992-1998, but lower during 1985-1991, especially for younger age group such as ocean age 2 and 3. Data for sea surface temperature (SST) and abundances of chum and sockeye salmon during four periods (1972-1976, 1977-1984, 1985-1990, and 1991-2000) indicated a portion of chum and sockeye salmon were distributed in the northern Gulf of Alaska in 1985-1990, when SST in the Gulf of Alaska was low. However, the fish were more abundant in the Bering Sea in 1977-1984 and 1991-2000 when SST was relatively high in the Gulf of Alaska. Body size of pink salmon showed a significant decreasing trend. Chum and sockeye salmon also showed significant decreasing trends in body size at ocean age 3 and older ages, but not at ocean age 2. Significant negative relationships between CPUE and body size were found within species. No significant correlations were found between an Aleutian low pressure index (ALPI) with CPUE and body size, but the increases in CPUE around the late 1970s and early 1990s may be partly be the result of shifts in the distributions of chum and sockeye salmon caused by SST changes related to the regime shift in 1977 and 1989 identified by the ALPI.

  13. RESTORING WILD SALMON TO THE PACIFIC NORTHWEST: FRAMING THE RISK QUESTION

    EPA Science Inventory

    In western North America, it is urgent to assess accurately the various options proposed to protect or restore wild salmon. For the past 125 years, a variety of analytic approaches have been employed to assess the ecological consequences of salmon management options. Each appro...

  14. DETECTING PERSISTENT CHANGE IN THE HABITAT OF SALMON-BEARING STREAMS IN THE PACIFIC NORTHWEST

    EPA Science Inventory

    In the northwestern United States, there is considerable interest in the recovery of salmon populations listed as threatened or endangered under the Endangered Species Act. A critical component of any salmon recovery effort is the improvement of stream habitat that supports vario...

  15. THe Pacific Northwest in 2010: An alternative futures perspective on salmon recovery

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and British Columbia. The Project does not support o...

  16. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 1999 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1999. This was the fourth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 453,117 yearlings released from the Fall Chinook Acclimation Project facilities not only slightly exceeded the 450,000 fish quota, but a second release of 76,386 yearlings (hereafter called Surplus) were acclimated at the Big Canyon facility and released about two weeks after the primary releases. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 9,941 PIT tagged yearlings from Pittsburg Landing, 9,583 from Big Canyon, 2,511 Big Canyon Surplus and 2,494 from Captain John Rapids. The Washington Department of Fish and Wildlife released 983 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low and did not appear to increase after transport to the acclimation facilities. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Pittsburg Landing and Lyons Ferry Hatchery and relatively high at Big Canyon and Captain John Rapids. Mean fork lengths (95% confidence interval) of the release groups ranged from 147.4 mm (146.7-148.1 mm) at Captain John Rapids to 163.7 mm (163.3-164.1 mm) at Pittsburg Landing. Mean condition factors ranged from 1.04 at

  17. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2000 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2000. This was the fifth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 397,339 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,477 PIT tagged yearlings from Pittsburg Landing, 7,421 from Big Canyon and 2,488 from Captain John Rapids. The Washington Department of Fish and Wildlife released 980 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 157.7 mm (157.3-158.1 mm) at Big Canyon to 172.9 mm (172.2-173.6 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Captain John Rapids and Lyons Ferry Hatchery to 1.12 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 87.0% (84.7-89.4%) for Pittsburg Landing to 95.2% (91.5-98.9%) for Captain John Rapids. Estimated survival from release to

  18. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2001 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2001. This was the sixth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 318,932 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,503 PIT tagged yearlings from Pittsburg Landing, 7,499 from Big Canyon and 2,518 from Captain John Rapids. The Washington Department of Fish and Wildlife released 991 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 155.4 mm (154.7-156.1 mm) at Captain John Rapids to 171.6 mm (170.7-172.5 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.02 at Lyons Ferry Hatchery to 1.16 at Big Canyon and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.4% (73.2-75.5%) for Big Canyon to 85.2% (83.5-87.0%) for Captain John Rapids. Estimated survival from release

  19. A Markov chain analysis of the movements of juvenile salmonids, including sockeye salmon, in the forebay of McNary Dam, Washington and Oregon, 2006-09

    USGS Publications Warehouse

    Adams, Noah S.; Hatton, Tyson W.

    2012-01-01

    Passage and survival data were collected at McNary Dam between 2006 and 2009. These data have provided critical information for resource managers to implement structural and operational changes designed to improve the survival of juvenile salmonids as they migrate past the dam. Much of the valuable information collected at McNary Dam was in the form of three-dimensional (hereafter referred to as 3-D) tracks of fish movements in the forebay. These data depicted the behavior of multiple species (in three dimensions) during different diel periods, spill conditions, powerhouse operations, and testing of the surface bypass structures (temporary spillway weirs; TSWs). One of the challenges in reporting 3-D results is presenting the information in a manner that allows interested parties to summarize the behavior of many fish over many different conditions across multiple years. To accomplish this, we used a Markov chain analysis to characterize fish movement patterns in the forebay of McNary Dam. The Markov chain analysis allowed us to numerically summarize the behavior of fish in the forebay. This report is the second report published in 2012 that uses this analytical method. The first report included only fish released as part of the annual studies conducted at McNary Dam. This second report includes sockeye salmon that were released as part of studies conducted by the Chelan and Grant County Public Utility Districts at mid-Columbia River dams. The studies conducted in the mid-Columbia used the same transmitters as were used for McNary Dam studies, but transmitter pulse width was different between studies. Additionally, no passive integrated transponder tags were implanted in sockeye salmon. Differences in transmitter pulse width resulted in lower detection probabilities for sockeye salmon at McNary Dam. The absence of passive integrated transponder tags prevented us from determining if fish passed the powerhouse through the juvenile bypass system (JBS) or turbines. To

  20. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XV : Evaluation of the 2007 Predictions of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead Smolts to Rock Island, Lower Granite, McNary, John Day, and Bonneville Dams using Program RealTime.

    SciTech Connect

    Griswold, Jim; Townsend, Richard L.; Skalski, John R.

    2008-12-01

    Program RealTime provided monitoring and forecasting of the 2007 inseason outmigrations via the internet for 26 PIT-tagged stocks of wild ESU Chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, one PIT-tagged wild stock of sockeye salmon to McNary Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville dams. Nineteen stocks are of wild yearling Chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2007 and have at least one year's historical migration data previous to the 2007 migration. These stocks originate in 19 tributaries of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through tag identification and monitored at Lower Granite Dam. Seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling Chinook salmon and the steelhead runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling Chinook, coho, and sockeye salmon, and steelhead forecasted to Rock Island, McNary, John Day, and Bonneville dams.

  1. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2004 Annual Report.

    SciTech Connect

    Rocklage, Stephen J. Nez Perce Tribe, Department of Fisheries Resource Management, Lapawi, ID)

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2004. This was the ninth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 414,452 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 4,983 PIT tagged yearlings from Pittsburg Landing, 4,984 from Big Canyon and 4,982 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered low with 53-94% rating not detected to low. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 154.6 mm (154.0-155.2 mm) at Pittsburg Landing to 163.0 mm (162.6-163.4 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.16 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.7% (72.9-76.5%) for Big Canyon to 88.1% (85.7-90.6%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 45.3% (39.2-51.5%) for Pittsburg Landing to 52.1% (42.9-61.2%) for Big Canyon. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.5 river kilometers per day (rkm/d) for Captain John Rapids to 12.8 rkm/d for Pittsburg Landing. Median migration

  2. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2003 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2003. This was the eighth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 437,633 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,492 PIT tagged yearlings from Pittsburg Landing, 7,494 from Big Canyon and 2,497 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium with 37-83% of the fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 153.7 mm (153.2-154.2 mm) at Captain John Rapids to 164.2 mm (163.9-164.5 mm) at Pittsburg Landing. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.22 at Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 83.1% (80.7-85.5%) for Big Canyon to 91.7% (87.7-95.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 59.9% (54.6-65.2%) for Big Canyon to 69.4% (60.5-78.4%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.8 river kilometers per day (rkm/d) for Captain

  3. 77 FR 19605 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Salmon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ..., fishing communities affected by the FMP, and safety of human life at sea. The fishery impact statement..., stream, or watershed. Given salmon's particular life history attributes, the Council's preferred...

  4. Rapid reservoir erosion, hyperconcentrated flow, and downstream deposition triggered by breaching of 38 m tall Condit Dam, White Salmon River, Washington

    USGS Publications Warehouse

    Wilcox, Andrew C.; O'Connor, James E.; Major, Jon J.

    2014-01-01

    Condit Dam on the White Salmon River, Washington, a 38 m high dam impounding a large volume (1.8 million m3) of fine-grained sediment (60% sand, 35% silt and clay, and 5% gravel), was rapidly breached in October 2011. This unique dam decommissioning produced dramatic upstream and downstream geomorphic responses in the hours and weeks following breaching. Blasting a 5 m wide hole into the base of the dam resulted in rapid reservoir drawdown, abruptly releasing ~1.6 million m3 of reservoir water, exposing reservoir sediment to erosion, and triggering mass failures of the thickly accumulated reservoir sediment. Within 90 min of breaching, the reservoir's water and ~10% of its sediment had evacuated. At a gauging station 2.3 km downstream, flow increased briefly by 400 m3 s−1during passage of the initial pulse of released reservoir water, followed by a highly concentrated flow phase—up to 32% sediment by volume—as landslide-generated slurries from the reservoir moved downstream. This hyperconcentrated flow, analogous to those following volcanic eruptions or large landslides, draped the downstream river with predominantly fine sand. During the ensuing weeks, suspended-sediment concentration declined and sand and gravel bed load derived from continued reservoir erosion aggraded the channel by >1 m at the gauging station, after which the river incised back to near its initial elevation at this site. Within 15 weeks after breaching, over 1 million m3 of suspended load is estimated to have passed the gauging station, consistent with estimates that >60% of the reservoir's sediment had eroded. This dam removal highlights the influence of interactions among reservoir erosion processes, sediment composition, and style of decommissioning on rate of reservoir erosion and consequent downstream behavior of released sediment.

  5. Elwha River dam removal-Rebirth of a river

    USGS Publications Warehouse

    Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    After years of planning for the largest project of its kind, the Department of the Interior will begin removal of two dams on the Elwha River, Washington, in September 2011. For nearly 100 years, the Elwha and Glines Canyon Dams have disrupted natural processes, trapping sediment in the reservoirs and blocking fish migrations, which changed the ecology of the river downstream of the dams. All five Pacific salmon species and steelhead-historically present in large numbers-are locally extirpated or persist in critically low numbers. Upstream of the dams, more than 145 kilometers of pristine habitat, protected inside Olympic National Park, awaits the return of salmon populations. As the dams are removed during a 2-3 year project, some of the 19 million cubic meters of entrapped sediment will be carried downstream by the river in the largest controlled release of sediment into a river and marine waters in history. Understanding the changes to the river and coastal habitats, the fate of sediments, and the salmon recolonization of the Elwha River wilderness will provide useful information for society as future dam removals are considered.

  6. Research on Captive Broodstock Programs for Pacific Salmon; Assessment of Captive Broodstock Technologies, Annual Report 2002-2003.

    SciTech Connect

    Berejikian, Barry

    2004-01-01

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Current velocity in rearing vessels had little if any effect on reproductive behavior of captively reared steelhead. However, males and females reared in high velocity vessels participated a greater number of spawning events than siblings reared in low velocity tanks. Observations of nesting females and associated males in a natural stream (Hamma Hamma River) were consistent with those observed in a controlled spawning channel. DNA pedigree analyses did not reveal significant differences in the numbers of fry produced by steelhead reared in high and low velocity vessels. To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon are being exposed to known odorants at key developmental stages. Subsequently they will be tested for development of long-term memories of these odorants. In 2002-2003, the efficacy of EOG analysis for assessing imprinting was demonstrated and will be applied in these and other behavioral and molecular tools in the current work plan. Results of these experiments will be important to determine the critical periods for imprinting for the offspring of captively-reared fish destined for release into natal rivers or lakes. By early August, the oocytes of all of Rapid River Hatchery chinook salmon females returning from the ocean had advanced to the tertiary yolk globule stage; whereas, only some of the captively reared Lemhi River females sampled had advanced to this stage, and the degree of advancement was not dependent on rearing temperature. The mean spawning time of captive Lemhi River females was 3-4 weeks after that of the Rapid River fish

  7. Evaluation of the Contribution of Chinook Salmon reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, 1984 Annual Report.

    SciTech Connect

    Vreeland, Robert R.

    1984-12-01

    The distribution, contribution, and value of artificially propagated fall chinook on the Columbia River was determined. Total returns of fall chinook to Columbia River facilities in 1984 were 74,401. This was the second smallest return over the past five years. Returns to Bonneville, Spring Creek, Little White Salmon, Klickitat and Klaskanine hatcheries were smaller than any previous year during this study. However, returns to Priest Rapids and Sea Resources hatcheries were greater than in previous years. Final estimated catch values are available through 1982 for British Columbia, Washington, Oregon and Columbia River fisheries. Fall chinook from the Columbia River hatcheries are predominately recovered in these fisheries. The percentages of the 1978-brood fish caught in these fisheries was 40.3, 35.0, 7.5 and 17.2 respectively. Contributions to the fisheries per 1000 fish released for all hatcheries combined were 2.6 and 3.0 for the 1978 and 1979 broods respectively. Three years (1980 to 1982) were included in the contribution values for the 1978 brood and two years (1981 and 1982) for the 1979 brood. Spring Creek Hatchery had the greatest contribution to the fisheries of 8.2 and 12.7 fish per 1000 fish released for the 1978 and 1979-broods respectively. The Spring Creek contribution was followed by Stayton Pond, Abernathy, Bonneville and Big Creek at 6.3, 4.1, 2.9 and 2.6 respectively for the 1978 brood and Big Creek, Stayton Pond and Abernathy at 7.4, 6.2 and 3.9 respectively for the 1979 brood. Other facilities had contributions per 1000 releases of less than 2. These contributions are minimums since all possible catch years are not included. 2 figs., 36 tabs.

  8. Pesticides in urban streams and early life stages of Pacific coho salmon.

    PubMed

    King, Kerensa A; Grue, Christian E; Grassley, James M; Fisk, Robert J

    2013-04-01

    Pesticides are frequently detected in urban streams and are believed to be primarily the result of homeowner use. Although concentrations in most cases are low (<1 µg/L), there is concern that pesticide inputs threaten efforts to restore and enhance salmon habitat. The authors exposed early life stages of coho salmon (Oncorhynchus kisutch) to a pesticide mixture ("cocktail") representative of those pesticides most frequently reported in urban streams in western Washington State, USA. Life stages were continuously exposed to pulses of the cocktail simulating those in urban streams in fall and winter when coho salmon eggs and sac fry are present. Nominal concentrations of eight herbicides, two insecticides, a fungicide, and a breakdown product were the maximum detected. Fertilization, hatching success, survival, deformities, and growth of fry were not significantly affected. A reduction in fertilization success (19-25%) was not reproducible even when gametes were exposed to 100 times the maximum concentrations detected. Based on the end points examined in the present study, the results suggest that direct exposure to the pesticides most frequently detected in urban streams in western Washington does not impair early life stages of coho salmon and is not a major factor governing the recovery of salmon populations. The extent to which pesticide exposure would affect smoltification, outmigration, and ocean survival needs to be determined.

  9. Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration.

    PubMed

    Cooke, Steven J; Hinch, Scott G; Donaldson, Michael R; Clark, Timothy D; Eliason, Erika J; Crossin, Glenn T; Raby, Graham D; Jeffries, Ken M; Lapointe, Mike; Miller, Kristi; Patterson, David A; Farrell, Anthony P

    2012-06-19

    Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon.

  10. Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration

    PubMed Central

    Cooke, Steven J.; Hinch, Scott G.; Donaldson, Michael R.; Clark, Timothy D.; Eliason, Erika J.; Crossin, Glenn T.; Raby, Graham D.; Jeffries, Ken M.; Lapointe, Mike; Miller, Kristi; Patterson, David A.; Farrell, Anthony P.

    2012-01-01

    Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon. PMID:22566681

  11. Monitoring and Evaluation of Smolt Migration in the Columbia Basin, Volume XIV; Evaluation of 2006 Prediction of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead at Rock Island, Lower Granite, McNary, John Day and Bonneville Dams using Program Real Time, Technical Report 2006.

    SciTech Connect

    Griswold, Jim

    2007-01-01

    Program RealTime provided monitoring and forecasting of the 2006 inseason outmigrations via the internet for 32 PIT-tagged stocks of wild ESU chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville Dams. Twenty-four stocks are of wild yearling chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2006, and have at least one year's historical migration data previous to the 2006 migration. These stocks originate in drainages of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through the tag identification and monitored at Lower Granite Dam. In addition, seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling chinook salmon and the steelhead trout runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout forecasted to Rock Island, McNary, John Day, and Bonneville Dams.

  12. Compliance Monitoring of Yearling Chinook Salmon and Juvenile Steelhead Survival and Passage at Bonneville Dam, Spring 2011

    SciTech Connect

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Carlson, Thomas J.

    2012-03-01

    The study was designed to estimate dam passage survival at Bonneville Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and to provide additional fish passage performance measures at that site as stipulated in the Columbia Basin Fish Accords.

  13. Compliance Monitoring of Yearling Chinook Salmon and Juvenile Steelhead Survival and Passage at Bonneville Dam, Spring 2011

    SciTech Connect

    Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Carlson, Thomas J.

    2012-06-07

    The study was designed to estimate dam passage survival at Bonneville Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and to provide additional fish passage performance measures at that site as stipulated in the Columbia Basin Fish Accords.

  14. Compliance Monitoring of Yearling Chinook Salmon and Juvenile Steelhead Survival and Passage at John Day Dam, Spring 2011

    SciTech Connect

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Weiland, Mark A.; Woodley, Christa M.; Hughes, James S.; Carlson, Thomas J.

    2012-06-01

    The study was designed to estimate dam passage survival at John Day Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and to provide additional fish passage performance measures at that site as stipulated in the Columbia Basin Fish Accords.

  15. Compliance Monitoring of Yearling Chinook Salmon and Juvenile Steelhead Survival and Passage at John Day Dam, Spring 2011

    SciTech Connect

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Weiland, Mark A.; Woodley, Christa M.; Hughes, James S.; Carlson, Thomas J.

    2012-02-01

    The study was designed to estimate dam passage survival at John Day Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and to provide additional fish passage performance measures at that site as stipulated in the Columbia Basin Fish Accords.

  16. A SALMON-CENTRIC VIEW OF THE 21ST CENTURY IN THE PACIFIC NORTHWEST

    EPA Science Inventory

    Throughout the far western contiguous United States (California, Oregon, Washington, and Idaho), many wild salmon stocks have declined and some have disappeared. The decline has taken place over the past 150 years and, although there have been decades when the numbers increased,...

  17. Development of a Method to Produce Freeze-Dried Cubes from 3 Pacific Salmon Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Freeze-dried boneless skinless cubes of pink (Oncorhynchus gorbuscha), sockeye (Oncorhynchus nerka), and chum (Oncorhynchus keta) salmon were prepared and physical properties evaluated. To minimize freeze-drying time, the kinetics of dehydration and processing yields were investigated. The physical ...

  18. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest) Pink Salmon

    DTIC Science & Technology

    1989-01-01

    velocity, water depth, can be adversely affected when exposed and densities of fish can influence to some high intertidal salinities. substrate ...Dissolved Oxygen. .. ..... ....... ....... ......... 11 Substrate . .. .. ....... ....... ....... ......... 11 Water Depth...to force water down on the gravel in freshwater close to the sea or in to remove fine sediments (Wickett the intertidal zones. Pink salmon are 1959a

  19. 77 FR 75570 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Salmon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... escapement-based management. Escapement-based management takes into consideration the unique life history of... sockeye, which utilize lakes as part of their life cycle. Every over-escapement event results in (1) lost.... The biology of salmon is such that escapement is the point in the species life history best suited...

  20. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Southwest). Coho Salmon.

    DTIC Science & Technology

    1987-08-01

    rivers represent irnPdssdble bdrriers. 2 %- .. •ny that enter the Sacramento River chum salmon (0. ketd) and sockeye should be regdrded as strays...1986. Effects of logging on McGill University, Montreal , Quebec. winter habitat of juvenile salmonids 101 pp. in Alaska streams. N. Am. J. Fish. Manaqe

  1. Effects of Jet Entry at High Flow Outfalls on Juvenile Pacific Salmon

    SciTech Connect

    Johnson, G. E.; Ebberts, Blaine D.; Dauble, Dennis D.; Giorgi, Albert E.; Heisey, Paul G.; Mueller, Robert P.; Neitzel, Duane A.

    2003-05-01

    We conducted field studies and laboratory experiments to document relationships between injury/mortality rates of juvenile salmon and jet entry velocities characteristic of high flow (> 28.3 m3/s) outfalls. During field tests the range of calculated mean entry velocities was 9.3-13.7 m/s for two high flow outfall discharges (28.3 and ~70.2 m3/s) and two tailwater elevations. Mortality of balloon-tagged hatchery spring chinook salmon (Oncorhynchus tshawytscha) juveniles in the field tests was <1% at entry velocities of 9.3 m/s and 13.7 m/s. Injury rates during both field tests were also less than 1%. At a high velocity flume in a laboratory, small (87-100 mm FL) and large (135-150 mm FL) hatchery fall chinook salmon were exposed to velocities ranging from 0.0 to 24.4 m/s in a fast-fish-to-slow-water scenario. Jet entry velocities up to 15.2 m/s provided benign passage conditions for all sizes of juvenile salmonids tested. Based on our results, we concluded that a jet entry velocity up to 15.2 m/s should safely pass juvenile salmon at high flow outfalls, contingent upon site-specific, post-construction verification studies.

  2. Juvenile and adult fall Chinook and chum salmon habitat studies below Bonneville Dam on the Columbia River. Annual report 2002-2003

    USGS Publications Warehouse

    Tiffan, K.F.; Garland, R.; Rondorf, D.; Skalicky, J.

    2004-01-01

    We investigated spatial and temporal changes in subyearling fall Chinook salmon rearing habitat and areas dewatered below Bonneville Dam on the Columbia River. We used two-dimensional hydrodynamic modeling to predict water velocity and depth data. By combining two-dimensional hydrodynamic modeling with a predictive model of subyearling rearing presence, we were able to illustrate spatiotemporal changes in subyearling rearing areas, areas dewatered by flow reductions, and percentage of dewatered locations that were initially subyearling rearing areas. By using a geographic information system, we located areas of persistent subyearling rearing and areas frequently dewatered at 1-h change intervals from 1 April through 31 May, 2003. We validated predicted water velocities and surface elevations using empirically collected water velocities and surface elevations. We beach seined to collect subyearlings at random locations within the study area to validate predictions of subyearling presence.

  3. The persistence and characteristics of Chinook salmon migrations to the Upper Klamath River prior to exclusion by dams

    USGS Publications Warehouse

    Hamilton, John B; Rondorf, Dennis W.; Tinniswood, William; Leary, Ryan J; Mayer, Tim; Gavette, Charleen; Casal, Lynne A.

    2016-01-01

    In this research article, John Hamilton and his co-authors present extensive new research and information gathered since a 2005 publication on the historical evidence of anadromomous fish distribution in the Upper Klamath River watershed. Using historical accounts from early explorers and ethnographers to early-twentieth-century photographs, newspaper accounts, and government reports, the authors provide a more complete record of past salmon migrations. The updated record “substantiate[s] the historical persistence of salmon, their migration characteristics, and the broad population baseline that will be key to future commercial, recreational, and Tribal fisheries in the Klamath River and beyond.” During a time when salmon restoration plans are being considered in the region, the historical record can serve as guidance to once again establish diverse and thriving populations.

  4. Temperature and Water Depth Monitoring Within Chum Salmon Spawning Habitat Below Bonneville Dam : Annual Report October 2007-September 2008

    SciTech Connect

    Arntzen, E.V.

    2009-07-14

    The overall goal of the project described in this report is to provide a sound scientific basis for operation of the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance chum salmon populations - a species listed in March 1999 as threatened under the Endangered Species Act of 1973 (ESA). The study objective during fiscal year 2008 was to provide real-time data on Ives Island area water temperature and water surface elevations from the onset of chum salmon spawning through the end of chum salmon emergence. Sampling locations included areas where riverbed temperatures were elevated, potentially influencing alevin development and emergence timing. In these locations, hydrosystem operation caused large, frequent changes in river discharge that affected salmon habitat by dewatering redds and altering egg pocket temperatures. The 2008 objective was accomplished using temperature and water-level sensors deployed inside piezometers. Sensors were integrated with a radio telemetry system such that real-time data could be downloaded remotely and posted hourly on the Internet. During our overall monitoring period (October 2007 through June 2008), mean temperature in chum spawning areas was nearly 2 C warmer within the riverbed than in the overlying river. During chum salmon spawning (mid-November 2007 through December2007), mean riverbed temperature in the Ives Island area was 14.5 C, more than 5 C higher than in the river, where mean temperature was 9.4 C. During the incubation period (January 2008 through mid-May 2008), riverbed temperature was approximately 3 C greater than in the overlying river (10.5 C and 7.2 C, respectively). Chum salmon preferentially select spawning locations where riverbed temperatures are elevated; consequently the incubation time of alevin is shortened before they emerge in the spring.

  5. Geophysical analysis of the Salmon Peak Formation near Amistad Reservoir Dam, Val Verde County, Texas, and Coahuila, Mexico, March 2006, to aid in piezometer placement

    USGS Publications Warehouse

    Stanton, Gregory P.; Kress, Wade H.; Teeple, Andrew; Greenslate, Michael L.; Clark, Allan K.

    2007-01-01

    Since 1992, numerous sinkholes have developed northwest of the Amistad Reservoir dam on the Rio Grande. Increases in the discharge of springs south of the dam, on the western side of the Rio Grande, in Coahuila, Mexico, have been documented. In 1995 the Mexico Section of the International Boundary and Water Commission (IBWC) completed a study of the western embankment (Coahuila, Mexico) of the dam that included surface geophysics, borehole geophysics, and installation of piezometers to learn more about subsurface conditions. As part of a 5-year safety inspection in 2005, technical advisors recommended that one line of similarly constructed piezometers be installed on the eastern embankment (Val Verde County, Texas) of the dam for comparison of water levels (potentiometric head) on both the western and eastern embankments of Amistad Reservoir dam. To provide technical assistance for the horizontal and vertical placement of piezometers on the eastern embankment of Amistad Reservoir dam, the U.S. Geological Survey, in cooperation with the U.S. Section of the IBWC, conducted a study along both the western and eastern embankments of Amistad Reservoir dam. The study involved an integrated approach using surface and borehole geophysical methods. In the western embankment investigation, geological and geophysical characteristics that indicate relatively large water-yielding properties of the Salmon Peak Formation were identified. The direct-current (DC) resistivity method was selected as the surface geophysical reconnaissance technique to correlate relatively large water-yielding properties of the Salmon Peak Formation, identified from analysis of borehole geophysical logs, with variations in subsurface resistivity. The dipole-dipole array and the reciprocal Schlumberger array were selected as the most applicable DC resistivity arrays. Two resistivity units were identified in both the dipole-dipole array data and the reciprocal Schlumberger array data along DC resistivity

  6. Pacific Lamprey Research and Restoration : Annual Report 1996.

    SciTech Connect

    Jackson, Aaron D.

    1997-01-01

    The once abundant stocks of Pacific lamprey (Lampetra tridentata) above Bonneville Dam are currently depressed (Close et al. 1995). It is likely that many of the same factors that led to the decline of wild stocks of Columbia River Pacific salmon and steelhead have impacted Pacific lamprey populations. The Pacific lamprey is an important part of the food web of North Pacific ecosystems, both as predator and prey. Lamprey (a.k.a. eels) are also a valuable food and culture resource for American Indian Tribes of the Pacific Northwest. Depressed Pacific lamprey runs have impacted treaty secured fishing opportunities by forcing tribal members to gather this traditional food in lower Columbia River locations. The Pacific Lamprey Research and Restoration Project, funded by Bonneville Power Administration, is a cooperative effort between the Confederated Tribes of The Umatilla Indian Reservation, the Columbia River Intertribal Fish Commission, and Oregon State University with the goal to increase Pacific lamprey stocks above Bonneville Dam. The initial objectives of the project are to determine the past and current abundance of Pacific lamprey stocks in major mid Columbia tributaries and at various hydroelectric facilities, and to determine factors limiting Pacific lamprey abundance and distribution. Ultimately, Pacific lamprey restoration plans will be developed and implemented. Part (A)-CTUIR: (1) determine past and present abundance and distribution in NE Oregon and SE Washington tributaries; and (2) determine limiting habitat factors. Part (B)-CRITFC: (1) adult abundance monitoring at Columbia and Snake River dams; (2) juvenile abundance monitoring at Columbia and Snake River dams; and (3) juvenile passage impediments and needed improvements at Columbia and Snake River dams. Part (C)- OSU: (1) adult passage impediments and needed improvements at Columbia and Snake River dams; and (2) juvenile passage impediments and needed improvements at Columbia and Snake River dams.

  7. Temperature and Water Depth Monitoring Within Chum Salmon Spawning Habitat Below Bonneville Dam -- Annual Report -- October 2007-September 2008

    SciTech Connect

    Arntzen, Evan V.

    2009-07-14

    The overall goal of the project described in this report is to provide a sound scientific basis for operation of the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance chum salmon populations----a species listed in March 1999 as threatened under the Endangered Species Act of 1973 (ESA). The study objective during fiscal year 2008 was to provide real-time data on Ives Island area water temperature and water surface elevations from the onset of chum salmon spawning through the end of chum salmon emergence. Sampling locations included areas where riverbed temperatures were elevated, potentially influencing alevin development and emergence timing. In these locations, hydrosystem operation caused large, frequent changes in river discharge that affected salmon habitat by dewatering redds and altering egg pocket temperatures. The 2008 objective was accomplished using temperature and water-level sensors deployed inside piezo¬meters. Sensors were integrated with a radio telemetry system such that real-time data could be downloaded remotely and posted hourly on the Internet.

  8. Strontium isotopes delineate fine-scale natal origins and migration histories of Pacific salmon

    USGS Publications Warehouse

    Brennan, Sean R.; Zimmerman, Christian E.; Fernandez, Diego P.; Cerling, Thure E.; McPhee, Megan V.; Wooller, Matthew J.

    2015-01-01

    Highly migratory organisms present major challenges to conservation efforts. This is especially true for exploited anadromous fish species, which exhibit long-range dispersals from natal sites, complex population structures, and extensive mixing of distinct populations during exploitation. By tracing the migratory histories of individual Chinook salmon caught in fisheries using strontium isotopes, we determined the relative production of natal habitats at fine spatial scales and different life histories. Although strontium isotopes have been widely used in provenance research, we present a new robust framework to simultaneously assess natal sources and migrations of individuals within fishery harvests through time. Our results pave the way for investigating how fine-scale habitat production and life histories of salmon respond to perturbations—providing crucial insights for conservation.

  9. Strontium isotopes delineate fine-scale natal origins and migration histories of Pacific salmon

    PubMed Central

    Brennan, Sean R.; Zimmerman, Christian E.; Fernandez, Diego P.; Cerling, Thure E.; McPhee, Megan V.; Wooller, Matthew J.

    2015-01-01

    Highly migratory organisms present major challenges to conservation efforts. This is especially true for exploited anadromous fish species, which exhibit long-range dispersals from natal sites, complex population structures, and extensive mixing of distinct populations during exploitation. By tracing the migratory histories of individual Chinook salmon caught in fisheries using strontium isotopes, we determined the relative production of natal habitats at fine spatial scales and different life histories. Although strontium isotopes have been widely used in provenance research, we present a new robust framework to simultaneously assess natal sources and migrations of individuals within fishery harvests through time. Our results pave the way for investigating how fine-scale habitat production and life histories of salmon respond to perturbations—providing crucial insights for conservation. PMID:26601173

  10. Incidence of Clostridium botulinum Type E in Salmon and Other Marine Fish in the Pacific Northwest

    PubMed Central

    Craig, James M.; Hayes, Sidney; Pilcher, K. S.

    1968-01-01

    Salmon, sole, cod, oysters, clams, and crabs from ocean waters along the coast of Oregon and Washington were examined for the presence of Clostridium botulinum type E. The organism was detected by identification of the type E toxin in enrichment cultures of the viscera of individual fish. Of 369 salmon specimens, 48 yielded cultures containing toxin lethal to mice, and almost half of the toxic cultures were shown to contain botulinal toxin, chiefly type E. Eighteen of 113 sole and cod specimens, 4 of 22 Dungeness crab specimens, 5 of 16 oyster specimens, and 27 of 115 clam specimens gave rise to cultures containing botulinal toxin which was usually type E, although types A and B were occasionally encountered. PMID:4869616

  11. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest). Sockeye Salmon

    DTIC Science & Technology

    1989-12-01

    Bristol Bay sockeye spawning in them at Pick Creek and found egg concentrations 6-9 inches below the gravel surface. Spawning occurs between August...nursery lakes approach 4 to 7 ’C in sockeye fishery, and non- Bristol Bay stocks were found 6 to have a similar distribution in areas of the...will lead to method for Bristol Bay , Alaska, salmon and the nonlinear increases in both marine survival and an earlier age of method is recommended

  12. First-year dam removal activities in the Elwha River - dam removal, sediment dispersal, and fish relocations

    NASA Astrophysics Data System (ADS)

    Duda, J. J.; McMillan, J. R.; Moses, R.; McHenry, M.; Pess, G. R.; Brenkman, S.; Peters, R.; Zimmerman, M.; Warrick, J. A.; Curran, C. A.; Magirl, C. S.; Beirne, M.; Rubin, S.

    2012-12-01

    After years of anticipation, volumes of Environmental Impact Statements, unprecedented mitigation projects, and the multifaceted collection of pre-dam removal data, the deconstruction phase of the Elwha River restoration project officially began on September 17th, 2011. With their simultaneous decommissioning, the removal of the 64 m tall Glines Canyon Dam and 33 m tall Elwha Dam represents one of the largest such projects of its kind in North America. The nearly 19 million m3 of sediment residing in the dammed reservoirs is being eroded by the river in one of the largest controlled releases of sediment into a river and marine waters in recorded history. The release of sediment and the halting of deconstruction and reservoir draw down activities during "fish windows" are largely determining a deconstruction schedule expected to last about 2 years. High suspended sediment concentrations, modeled to exceed 10,000 mg/L during the highest flows and to exceed 500 mg/L for 39% of the time in year 4 of the project (15% is the recorded background level entering the upper reservoir), could last for up to 3-5 years following dam removal depending on hydrological conditions. Anadromous fish, including three federally listed species (Puget Sound Chinook salmon, steelhead, and bull trout), reside in the river downstream of the Elwha dam for part of their life cycle. All five species of Pacific salmon and steelhead, either locally extirpated (sockeye) or persisting below the impassable Elwha Dam in degraded spawning and rearing habitat, are expected to recolonize the watershed to degrees that will vary spatially and temporally due to life history characteristics and levels of human intervention. During the first year of dam removal, adult coho salmon and steelhead were relocated from areas of high turbidity downstream of the Elwha Dam site to two tributaries upstream, where some of them successfully spawned. Additionally, steelhead were observed to naturally migrate past the

  13. Baseline studies in the Elwha River ecosystem prior to dam removal: Introduction to the special issue

    USGS Publications Warehouse

    Duda, Jeffrey J.; Freilich, Jerry; Schreiner, Edward G.

    2008-01-01

    The planned removal of two dams that have been in place for over 95 years on the Elwha River provides a unique opportunity to study dam removal effects. Among the largest dams ever considered for removal, this project is compelling because 83% of the watershed lies undisturbed in Olympic National Park. Eighteen million cubic meters of sediment have accumulated in and will be released from the reservoirs, and there is potential for rehabilitating depressed Pacific salmon runs. Researchers from academia, non-profit organizations, federal and state governments, and the Lower Elwha Klallam Tribe are currently assessing baseline ecological conditions of the Elwha River as part of dam removal studies. We introduce dam removal topics, provide a brief history of the dams, and summarize the ecology of the Elwha River basin as an introduction to a special issue devoted to research in the watershed.

  14. Evaluation of a prototype surface flow bypass for juvenile salmon and steelhead at the powerhouse of Lower Granite Dam, Snake River, Washington, 1996-2000

    USGS Publications Warehouse

    Johnson, G.E.; Anglea, S.M.; Adams, N.S.; Wik, T.O.

    2005-01-01

    A surface flow bypass takes advantage of the natural surface orientation of most juvenile salmon Oncorhynchus spp. and steelhead O. mykiss by providing a route in the upper water column that downstream migrant fishes can use to pass a hydroelectric dam safely. A prototype structure, called the surface bypass and collector (SBC), was retrofitted on the powerhouse of Lower Granite Dam and was evaluated annually with biotelemetry and hydroacoustic techniques during the 5-year life span of the structure (1996-2000) to determine the entrance configuration that maximized passage efficiency and minimized forebay residence time. The best tested entrance configuration had maximum inflow (99 m 3/s) concentrated in a single surface entrance (5 m wide, 8.5 m deep). We identified five important considerations for future surface flow bypass development in the lower Snake River and elsewhere: (1) an extensive flow net should be formed in the forebay by use of relatively high surface flow bypass discharge (>7% of total project discharge); (2) a gradual increase in water velocity with increasing proximity to the surface flow bypass (ideally, acceleration 3 m/s) to entrain the subject juvenile fishes; (4) the shape and orientation of the surface entrance(s) should be adapted to fit site-specific features; and (5) construction of a forebay wall to increase fish availability to the surface flow bypass should be considered. The efficiency of the SBC was not high enough (maximum of 62% relative to passage at turbine units 4-5) for the SBC to operate as a stand-alone bypass. Anywhere that surface-oriented anadromous fish must negotiate hydroelectric dams, surface flow bypass systems can provide cost-effective use of typically limited water supplies to increase the nonturbine passage, and presumably survival, of downstream migrants. ??Copyright by the American Fisheries Society 2005.

  15. [Ultrastructure of chloride cell of gill epithelium and body ionic composition of the fry of two species of Pacific salmon during migration to the sea].

    PubMed

    Maksimovich, A A

    2010-01-01

    Pacific salmon fry were collected in 2001-2002 in the rivers of Southern Sakhalin on the way of their migration to the sea. The comparison of the data on ionic content of chum salmon fry carcass, received in 2002, with those obtained in 2001, has shown that the dispersion of ion concentration values in 2002 samples was significantly smaller than in 2001. Similar results were obtained when the mass of smolts was compared. The significant decrease of Na+ concentration in chum salmon fry during migration to the sea supports the idea on an imperative stimulus formation by means of change of Na+ concentration in migrating fish. The analysis of gill chloride cell (CC) structure in chum salmon and masu salmon fry in fresh and salty water has shown, that in fishes from fresh water CC were located mainly in primary lamellae, at the basis of secondary lamellae. As a rule, CC are large, have a large nucleus with an active chromatin and a light cytoplasm with numerous elongated mitochondria containing dense matrix. Secondary lamellae are short, 1-3 cells thick and practically contain no CC. In some fishes secondary lamellae were more numerous and longer. Some part of secondary lamellae contained large CC; in this place their width was approximately 2 times greater. As a whole, CC number in these fishes was increased. Analyzing all the material received during 2 years, with respect to CC cell structure and functions, a conclusion was drawn that freshwater fry of two salmon species, both chum salmon and masu salmon, caught at the same time and practically in the same reservoirs, could be divided into 3 groups. Masu salmon underyearlings are characterized, as a rule, by a thickened secondary lamellae epithelium, which, however contained few CC. In the chum salmon smolts, on the contrary, epithelium was thin, but contained numerous CC, which demonstrate active structure in the beginning of migration to the sea. But as they approached the sea (and migration duration increased), CC

  16. Changes in fish communities following recolonization of the Cedar river, Wa, USA by Pacific salmon after 103 years of local extirpation

    USGS Publications Warehouse

    Kiffney, P.M.; Pess, G.R.; Anderson, J.H.; Faulds, P.; Burton, K.; Riley, S.C.

    2009-01-01

    Migration barriers are a major reason for species loss and population decline of freshwater organisms. Significant efforts have been made to remove or provide passage around these barriers; however, our understanding of the ecological effects of these efforts is minimal. Installation of a fish passage facility at the Landsburg Dam, WA, USA provided migratory fish access to habitat from which they had been excluded for over 100 years. Relying on voluntary recruitment, we examined the effectiveness of this facility in restoring coho (Oncorhynchus kisutch) salmon populations above the diversion, and whether reintroduction of native anadromous species affected the distribution and abundance of resident trout (O. mykiss and O. clarki). Before the ladder, late summer total salmonid (trout only) density increased with distance from the dam. This pattern was reversed after the ladder was opened, as total salmonid density (salmon {thorn} trout) approximately doubled in the three reaches closest to the dam. These changes were primarily due to the addition of coho, but small trout density also increased in lower reaches and decreased in upper reaches. A nearby source population, dispersal by adults and juveniles, low density of resident trout and high quality habitat above the barrier likely promoted rapid colonization of targeted species. Our results suggest that barrier removal creates an opportunity for migratory species to re-establish populations leading to range expansion and potentially to increased population size. ?? 2008 John Wiley & Sons, Ltd.

  17. Modeling (137)Cs bioaccumulation in the salmon-resident killer whale food web of the Northeastern Pacific following the Fukushima Nuclear Accident.

    PubMed

    Alava, Juan José; Gobas, Frank A P C

    2016-02-15

    To track the long term bioaccumulation of (137)Cs in marine organisms off the Pacific Northwest coast of Canada, we developed a time dependent bioaccumulation model for (137)Cs in a marine mammalian food web that included fish-eating resident killer whales. The model outcomes show that (137)Cs can be expected to gradually bioaccumulate in the food web over time as demonstrated by the increase of the apparent trophic magnification factor of (137)Cs, ranging from 0.76 after 1 month of exposure to 2.0 following 30 years of exposure. (137)Cs bioaccumulation is driven by relatively rapid dietary uptake rates, moderate depuration rates in lower trophic level organisms and slow elimination rates in high trophic level organisms. Model estimates of the (137)Cs activity in species of the food web, based on current measurements and forecasts of (137)Cs activities in oceanic waters and sediments off the Canadian Pacific Northwest, indicate that the long term (137)Cs activities in fish species including Pacific herring, wild Pacific salmon, sablefish and halibut will remain well below the current (137)Cs-Canada Action Level for consumption (1000 Bq/kg) following a nuclear emergency. Killer whales and Pacific salmon are expected to exhibit the largest long term (137)Cs activities and may be good sentinels for monitoring (137)Cs in the region. Assessment of the long term consequences of (137)Cs releases from the Fukushima aftermath should consider the extent of ecological magnification in addition to ocean dilution.

  18. Effects of Iron Gate Dam discharge and other factors on the survival and migration of juvenile coho salmon in the lower Klamath River, northern California, 2006-09

    USGS Publications Warehouse

    Beeman, John; Juhnke, Steven; Stutzer, Greg; Wright, Katrina

    2012-01-01

    Current management of the Klamath River includes prescribed minimum discharges intended partly to increase survival of juvenile coho salmon during their seaward migration in the spring. To determine if fish survival was related to river discharge, we estimated apparent survival and migration rates of yearling coho salmon in the Klamath River downstream of Iron Gate Dam. The primary goals were to determine if discharge at Iron Gate Dam affected coho salmon survival and if results from hatchery fish could be used as a surrogate for the limited supply of wild fish. Fish from hatchery and wild origins that had been surgically implanted with radio transmitters were released into the Klamath River slightly downstream of Iron Gate Dam at river kilometer 309. Tagged fish were used to estimate apparent survival between, and passage rates at, a series of detection sites as far downstream as river kilometer 33. Conclusions were based primarily on data from hatchery fish, because wild fish were only available in 2 of the 4 years of study. Based on an information-theoretic approach, apparent survival of hatchery and wild fish was similar, despite differences in passage rates and timing, and was lowest in the 54 kilometer (km) reach between release and the Scott River. Models representing the hypothesis that a short-term tagging- or handling-related mortality occurred following release were moderately supported by data from wild fish and weakly supported by data from hatchery fish. Estimates of apparent survival of hatchery fish through the 276 km study area ranged from 0.412 (standard error [SE] 0.048) to 0.648 (SE 0.070), depending on the year, and represented an average of 0.790 per 100 km traveled. Estimates of apparent survival of wild fish through the study area were 0.645 (SE 0.058) in 2006 and 0.630 (SE 0.059) in 2009 and were nearly identical to the results from hatchery fish released on the same dates. The data and models examined supported positive effects of water

  19. An inherited magnetic map guides ocean navigation in juvenile Pacific salmon.

    PubMed

    Putman, Nathan F; Scanlan, Michelle M; Billman, Eric J; O'Neil, Joseph P; Couture, Ryan B; Quinn, Thomas P; Lohmann, Kenneth J; Noakes, David L G

    2014-02-17

    Migratory marine animals exploit resources in different oceanic regions at different life stages, but how they navigate to specific oceanic areas is poorly understood. A particular challenge is explaining how juvenile animals with no prior migratory experience are able to locate specific oceanic feeding habitats that are hundreds or thousands of kilometers from their natal sites. Although adults reproducing in the vicinity of favorable ocean currents can facilitate transport of their offspring to these habitats, variation in ocean circulation makes passive transport unreliable, and young animals probably take an active role in controlling their migratory trajectories. Here we experimentally demonstrate that juvenile Chinook salmon (Oncorhynchus tshawytscha) respond to magnetic fields like those at the latitudinal extremes of their ocean range by orienting in directions that would, in each case, lead toward their marine feeding grounds. We further show that fish use the combination of magnetic intensity and inclination angle to assess their geographic location. The "magnetic map" of salmon appears to be inherited, as the fish had no prior migratory experience. These results, paired with findings in sea turtles, imply that magnetic maps are phylogenetically widespread and likely explain the extraordinary navigational abilities evident in many long-distance underwater migrants.

  20. WILD SALMON RESTORATION: IS IT WORTH IT?

    EPA Science Inventory

    Salmon are categorized biologically into two groups: Pacific salmon and Atlantic salmon. Atlantic salmon are found on both sides of the North Atlantic Ocean, but have declined precipitously compared to the size of runs prior to the 1700s. The largest (though small by historic ...

  1. Survival and migration behavior of juvenile Coho Salmon in the Klamath River relative to discharge at Iron Gate Dam, Northern California, 2007

    USGS Publications Warehouse

    Beeman, John W.; Juhnke, Steve; Stutzer, Greg; Hetrick, Nicholas

    2008-01-01

    This report describes a study of survival and migration behavior of radio-tagged juvenile coho salmon (Oncorhynchus kisutch) in the Klamath River, northern California, in 2007. This was the third year of a multi-year study with the goal of determining the effects of discharge at Iron Gate Dam (IGD) on survival of juvenile coho salmon downstream. Survival and factors affecting survival were estimated in 2006 and 2007 after work in 2005 showed radio telemetry could be used effectively. The study has included collaborative efforts among U.S. Geological Survey (USGS), U.S. Fish and Wildlife Service (USFWS), the Karuk and Yurok Tribal Fisheries Departments, and the U.S. Bureau of Reclamation. The objectives of the study included: (1) estimating the survival of wild and hatchery juvenile coho salmon in the Klamath River downstream of Iron Gate Dam, determining the effects of discharge and other covariates on juvenile coho salmon survival (2) and migration (3), and (4) determining if fish from Iron Gate Hatchery (IGH) could be used as surrogates for the limited source of wild fish. We have been able to meet the first objective by estimating the survivals of hatchery and wild fish (when available) downstream of IGD. We have not yet met the second or third objectives, because we have been unable to separate effects of discharge from other environmental variables as they pertain to the survival or migration of juvenile coho salmon. This was foreseen when the study began, as it was known there would likely be no experimental discharges. A multi-year analysis will be conducted after the data for the third planned year are available. The fourth objective was initiated in 2006, but wild fish were not available in 2007. The next year wild fish may be available is in 2009, based on their 3-year cycle of abundance. River discharges during the 2007 study period (April 10 through July 28, 2007) were below average compared to the period of record beginning in 1962. Average daily

  2. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest). Chinook Salmon.

    DTIC Science & Technology

    1983-10-01

    GRAY#A~ii~ HARDA %,PUGETSOUNDGre R W. IA-I L~ MILES 0 50 too 0 so 100 KILOME TE RS SMaJor ocean distributionWI PACIFIC OCEAN HUMBOLDT CALIFORNIA...ECOLOGICAL ROLE ring, rockfish, other fish, crab mega- lops, and squid . Euphausids and squid , Juvenile chinook are characterized and later, herring

  3. Spatial Heterogeneity in Shallow Streambed Water Temperatures, Copper River Delta, Alaska: Implications for Understanding Landscape-Scale Climate Change Impacts to Pacific Salmon Egg Incubation Rates

    NASA Astrophysics Data System (ADS)

    Adelfio, L. A.; Wondzell, S. M.; Reeves, G. H.; Mantua, N. J.

    2015-12-01

    Shallow streambed water temperature is a driving factor for Pacific salmon egg incubation. Small (1 to 2 oC) increases in incubation period water temperature may accelerate embryo development. We collected year-round water temperature data at 14 salmon spawning areas on the Copper River Delta (CRD), a 100 km wide coastal foreland in Southcentral Alaska. Our data show considerable temporal and spatial heterogeneity in shallow streambed water temperatures. Different water sources (precipitation vs. groundwater) and a spectrum of hydraulic conductivity and pressure head conditions were also observed. Landscape-scale patterns were not adequately characterized by typical watershed metrics including elevation, area, and slope. We found that catchment- and reach- scale geomorphology and surficial geology govern the surface-groundwater interactions that determine shallow streambed water temperature. The observed differences indicate that, across the CRD landscape, shallow streambed water temperature will not respond equally to projected climatic changes. Water temperature sensitivity to atmospheric conditions also varied by season, suggesting that year-round water temperature data are valuable for assessing potential climate change impacts to Pacific salmon in catchments where incubation period air temperatures are projected to exceed the freezing point with increasing frequency.

  4. Physicochemical Characteristics of the Hyporheic Zone Affect Redd Site Selection of Chum and Fall Chinook Salmon, Columbia River.

    SciTech Connect

    Geist, David R.

    2001-10-01

    Chum salmon (Oncorhynchus keta) may historically have been the most abundant species of Columbia River salmon, contributing as much as 50% of the total biomass of all salmon in the Pacific Ocean prior to the 1940's (Neave 1961). By the 1950's, however, run sizes to the Columbia River dropped dramatically and in 1999 the National Marine Fisheries Service (NMFS) listed Columbia River chum salmon as threatened under the Endangered Species Act (ESA; NMFS 1999). Habitat degradation, water diversions, harvest, and artificial propagation are the major human-induced factors that have contributed to the species decline (NMFS 1998). Columbia River chum salmon spawn exclusively in the lower river below Bonneville Dam, including an area near Ives Island. The Ives Island chum salmon are part of the Columbia River evolutionary significant unit (ESU) for this species, and are included in the ESA listing. In addition to chum salmon, fall chinook salmon (O. tshawytscha) also spawn at Ives Island. Spawning surveys conducted at Ives Island over the last several years show that chum and fall chinook salmon spawned in clusters in different locations (US Fish and Wildlife Service and Washington Department of Fish and Wildlife, unpublished data). The presence of redd clusters suggested that fish were selecting specific habitat features within the study area (Geist and Dauble 1998). Understanding the specific features of these spawning areas is needed to quantify the amount of habitat available to each species so that minimum flows can be set to protect fish and maintain high quality habitat.

  5. Assessment of Natural Stream Sites for Hydroelectric Dams in the Pacific Northwest Region

    SciTech Connect

    Douglas G. Hall; Kristin L. Verdin; Randy D. Lee

    2012-03-01

    This pilot study presents a methodology for modeling project characteristics using a development model of a stream obstructing dam. The model is applied to all individual stream reaches in hydrologic region 17, which encompasses nearly all of Idaho, Oregon, and Washington. Project site characteristics produced by the modeling technique include: capacity potential, principal dam dimensions, number of required auxiliary dams, total extent of the constructed impoundment boundary, and the surface area of the resulting reservoir. Aggregated capacity potential values for the region are presented in capacity categories including total, that at existing dams, within federal and environmentally sensitive exclusion zones, and the balance which is consider available for greenfield development within the limits of the study. Distributions of site characteristics for small hydropower sites are presented and discussed. These sites are screened to identify candidate small hydropower sites and distributions of the site characteristics of this site population are presented and discussed. Recommendations are made for upgrading the methodology and extensions to make the results more accessible and available on a larger scale.

  6. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Southwest). Chinook Salmon.

    DTIC Science & Technology

    1986-04-01

    N Environmental Requirements of Coastal FishesN and Invertebrates (Pacific Southwest) N4 Coastal Ecology Group A, Fish and Wildlife Service Waterways...For Coastal Ecology Group Waterways Experiment Station U.S. Army Corps of Engineers Vicksburg, MS 39180 and Accesion For National Coastal Ecosystems...pI~i~ PREFACE This species profile is one of a series on coastal aquatic organisms, principally fish, of sport, commercial, or ecological importance

  7. Survival of Subyearling Fall Chinook Salmon in the Free-flowing Snake River and Lower Snake River Reservoirs in 2003 and from McNary Dam Tailrace to John Day Dam Tailrace in the Columbia River from 1999 to 2002, 1999-2003 Technical Report.

    SciTech Connect

    Muir, William D.; Axel, Gordon A.; Smith, Steven G.

    2004-12-01

    We report results from an ongoing study of survival and travel time of subyearling fall Chinook salmon in the Snake River during 2003 and in the Columbia River during 1999-2002. Earlier years of the study included serial releases of PIT-tagged hatchery subyearling Chinook salmon upstream from Lower Granite Dam, but these were discontinued in 2003. Instead, we estimated survival from a large number of PIT-tagged fish released upstream from Lower Granite Dam to evaluate transportation from Snake River Dams. During late May and early June 2003, 68,572 hatchery-reared subyearling fall Chinook salmon were PIT tagged at Lyons Ferry Hatchery, trucked upstream, acclimated, and released at Couse Creek and Pittsburg Landing in the free-flowing Snake River. We estimated survival for these fish from release to Lower Granite Dam tailrace. In comparison to wild subyearling fall Chinook salmon PIT tagged and released in the free-flowing Snake River, the hatchery fish we released traveled faster and had higher survival to Lower Granite Dam, likely because of their larger size at release. For fish left in the river to migrate we estimated survival from Lower Granite Dam tailrace to McNary Dam tailrace. Each year, a small proportion of fish released are not detected until the following spring. However, the number of fish released in 2003 that overwintered in the river and were detected as they migrated seaward as yearlings in 2004 was small (<1.0%) and had minimal effect on survival estimates. We evaluated a prototype floating PIT-tag detector deployed upstream from Lower Granite reservoir to collect data for use in partitioning travel time and survival between free-flowing and reservoir habitats. The floating detector performed poorly, detecting only 27 PIT tags in 340 h of operation from a targeted release of 68,572; far too few to partition travel time and survival between habitats. We collected river-run subyearling Chinook salmon (mostly wild fish from the Hanford Reach) at Mc

  8. The utilization of a Pacific salmon Oncorhynchus nerka subsidy by three populations of charr Salvelinus spp.

    PubMed

    Denton, K P; Rich, H B; Moore, J W; Quinn, T P

    2010-09-01

    The L(F) -at-age trajectories differentiated two populations of Dolly Varden charr Salvelinus malma and a population of Arctic charr Salvelinus alpinus from the eastern end of Iliamna Lake, Alaska. Salvelinus malma from the Pedro Bay ponds were the smallest for a given age, followed by Salvelinus alpinus from the lake, and S. malma from the Iliamna River were much larger. The utilization of a large sockeye salmon Oncorhynchus nerka subsidy by the three Salvelinus spp. populations was then investigated by comparing diet data and mixing model (MixSIR) outputs based on carbon and nitrogen stable isotopes. Stomach contents indicated that both S. malma populations fed on O. nerka products, especially eggs and larval Diptera that had scavenged O. nerka carcasses, whereas S. alpinus fed on a variety of prey items such as three-spined sticklebacks Gasterosteus aculeatus and snails. Stable-isotope analysis corroborated the diet data; the two S. malma populations incorporated more O. nerka-derived nutrients into their tissues than did S. alpinus from the lake, although all populations showed substantial utilization of O. nerka-derived resources. Salvelinus alpinus also seemed to be much more omnivorous, as shown by stable-isotope mixing models, than the S. malma populations. The dramatic differences in growth rate between the two S. malma populations, despite similar trophic patterns, indicate that other important genetic or environmental factors affect their life history, including proximate temperature controls and ultimate predation pressures.

  9. Maternal and environmental influences on egg size and juvenile life-history traits in Pacific salmon

    PubMed Central

    Braun, Douglas C; Patterson, David A; Reynolds, John D

    2013-01-01

    Life-history traits such as fecundity and offspring size are shaped by investment trade-offs faced by mothers and mediated by environmental conditions. We use a 21-year time series for three populations of wild sockeye salmon (Oncorhynchus nerka) to test predictions for such trade-offs and responses to conditions faced by females during migration, and offspring during incubation. In years when their 1100 km upstream migration was challenged by high water discharges, females that reached spawning streams had invested less in gonads by producing smaller but not fewer eggs. These smaller eggs produced lighter juveniles, and this effect was further amplified in years when the incubation water was warm. This latter result suggests that there should be selection for larger eggs to compensate in populations that consistently experience warm incubation temperatures. A comparison among 16 populations, with matching migration and rearing environments but different incubation environments (i.e., separate spawning streams), confirmed this prediction; smaller females produced larger eggs for their size in warmer creeks. Taken together, these results reveal how maternal phenotype and environmental conditions can shape patterns of reproductive investment and consequently juvenile fitness-related traits within and among populations. PMID:23789081

  10. Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay

    SciTech Connect

    Johnson, Robert L.; Simmons, Mary Ann; McKinstry, Craig A.; Simmons, Carver S.; Cook, Chris B.; Brown, Richard S.; Tano, Daniel K.; Thorsten, Susan L.; Faber, Derrek M.; Lecaire, Richard; Francis, Stephen

    2005-02-25

    This report documents the fourth year of a four-year study to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee salmon (Oncorhynchus nerka) and rainbow trout (O. mykiss) in the forebay to the third powerplant at Grand Coulee Dam. This work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes).

  11. Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay

    SciTech Connect

    Simmons, Mary Ann; Johnson, Robert L.; McKinstry, Craig A.; Simmons, Carver S.; Cook, Chris B.; Brown, Richard S.; Tano, Daniel K.; Thorsten, Susan L.; Faber, Derrek M.; Lecaire, Richard; Francis, Stephen

    2004-01-01

    This report documents the third year of a four-year study to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee salmon (Oncorhynchus nerka) and rainbow trout (O. mykiss) in the forebay to the third powerplant at Grand Coulee Dam. This work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes).

  12. Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program; Preliminary Environmental Assessment

    SciTech Connect

    United States. Bonneville Power Administration.

    1998-02-01

    As part of its responsibilities under the Northwest Power Act (Pacific Northwest Electric Power Planning and Conservation Act of 1980), Bonneville Power Administration (BPA) must mitigate the loss of fish, wildlife, and related spawning grounds and habitat attributable to power production at federal hydroelectric dams on the Columbia River and its tributaries. The federal dams have been identified as a major source of mortality for the listed Snake River salmon stocks. BPA also has responsibilities under the Endangered Species Act (ESA) of 1973 to operate in a way that does not jeopardize the continued existence of listed species and to use its agency resources to conserve listed species.

  13. Monitoring and Evaluation of Smolt Migration in the Columbia River Basin : Volume VI : Evaluation of the 2000 Predictions of the Run-Timing of Wild Migrant Chinook Salmon and Steelhead Trout, and Hatchery Sockeye Salmon in the Snake River Basin, and Combined Wild Hatchery Salminids Migrating to Rock Island and McNary Dams using Program RealTime.

    SciTech Connect

    Burgess, Caitlin

    1998-07-01

    Program RealTime provided tracking and forecasting of the 2000 in season outmigration via the internet for stocks of wild PIT-tagged spring/summer chinook salmon. These stocks were ESUs from nineteen release sites above Lower Granite dam, including Bear Valley Creek, Big Creek, Camas Creek (new), Cape Horn Creek, Catherine Creek, Elk Creek, Herd Creek, Imnaha River, Johnson Creek (new), Lake Creek, Loon Creek, Lostine River, Marsh Creek, Minam River, East Fork Salmon River (new), South Fork Salmon River, Secesh River, Sulfur Creek and Valley Creek. Forecasts were also provided for two stocks of hatchery-reared PIT-tagged summer-run sockeye salmon, from Redfish Lake and Alturas Lake (new); for a subpopulation of the PIT-tagged wild Snake River fall subyearling chinook salmon; for all wild Snake River PIT-tagged spring/summer yearling chinook salmon (new) and steelhead trout (new)detected at Lower Granite Dam during the 2000 outmigration. The 2000 RealTime project began making forecasts for combined wild- and hatchery-reared runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout migrating to Rock Island and McNary Dams on the mid-Columbia River and the mainstem Columbia River. Due to the new (in 1999-2000) Snake River basin hatchery protocol of releasing unmarked hatchery-reared fish, the RealTime forecasting project no longer makes run-timing forecasts for wild Snake River runs-at-large using FPC passage indices, as it has done for the previous three years (1997-1999). The season-wide measure of Program RealTime performance, the mean absolute difference (MAD) between in-season predictions and true (observed) passage percentiles, improved relative to previous years for nearly all stocks. The average season-wide MAD of all (nineteen) spring/summer yearling chinook salmon ESUs dropped from 5.7% in 1999 to 4.5% in 2000. The 2000 MAD for the hatchery-reared Redfish Lake sockeye salmon ESU was the lowest recorded, at 6.0%, down

  14. Coastal and lower Elwha River, Washington, prior to dam removal--history, status, and defining characteristics: Chapter 1 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    Characterizing the physical and biological characteristics of the lower Elwha River, its estuary, and adjacent nearshore habitats prior to dam removal is essential to monitor changes to these areas during and following the historic dam-removal project set to begin in September 2011. Based on the size of the two hydroelectric projects and the amount of sediment that will be released, the Elwha River in Washington State will be home to the largest river restoration through dam removal attempted in the United States. Built in 1912 and 1927, respectively, the Elwha and Glines Canyon Dams have altered key physical and biological characteristics of the Elwha River. Once abundant salmon populations, consisting of all five species of Pacific salmon, are restricted to the lower 7.8 river kilometers downstream of Elwha Dam and are currently in low numbers. Dam removal will reopen access to more than 140 km of mainstem, flood plain, and tributary habitat, most of which is protected within Olympic National Park. The high capture rate of river-borne sediments by the two reservoirs has changed the geomorphology of the riverbed downstream of the dams. Mobilization and downstream transport of these accumulated reservoir sediments during and following dam removal will significantly change downstream river reaches, the estuary complex, and the nearshore environment. To introduce the more detailed studies that follow in this report, we summarize many of the key aspects of the Elwha River ecosystem including a regional and historical context for this unprecedented project.

  15. The impact of temperature stress and pesticide exposure on mortality and disease susceptibility of endangered Pacific salmon.

    PubMed

    Dietrich, Joseph P; Van Gaest, Ahna L; Strickland, Stacy A; Arkoosh, Mary R

    2014-08-01

    Anthropogenic stressors, including chemical contamination and temperature stress, may contribute to increased disease susceptibility in aquatic animals. Specifically, the organophosphate pesticide malathion has been detected in surface waters inhabited by threatened and endangered salmon. In the presence of increasing water temperatures, malathion may increase susceptibility to disease and ultimately threaten salmon survival. This work examines the effect of acute and sublethal exposures to malathion on ocean-type subyearling Chinook salmon held under two temperature regimes. Chinook salmon were exposed to malathion at optimal (11 °C) or elevated (19 and 20 °C) temperatures. The influence of temperature on the acute toxicity of malathion was determined by generating 96-h lethal concentration (LC) curves. A disease challenge assay was also used to assess the effects of sublethal malathion exposure. The malathion concentration that resulted in 50% mortality (LC50; 274.1 μg L(-1)) of the Chinook salmon at 19 °C was significantly less than the LC50 at 11 °C (364.2 μg L(-1)). Mortality increased 11.2% in Chinook salmon exposed to malathion at the elevated temperature and challenged with Aeromonas salmonicida compared to fish held at the optimal temperature and exposed to malathion or the carrier control. No difference in disease challenge mortality was observed among malathion-exposed and unexposed fish at the optimal temperature. The interaction of co-occurring stressors may have a greater impact on salmon than if they occur in isolation. Ecological risk assessments considering the effects of an individual stressor on threatened and endangered salmon may underestimate risk when additional stressors are present in the environment.

  16. Evaluation of a Behavioral Guidance Structure at Bonneville Dam Second Powerhouse including Passage Survival of Juvenile Salmon and Steelhead using Acoustic Telemetry, 2008

    SciTech Connect

    Faber, Derrek M.; Ploskey, Gene R.; Weiland, Mark A.; Deng, Zhiqun; Hughes, James S.; McComas, Roy L.; Kim, Jina; Townsend, R. L.; Fu, Tao; Skalski, J. R.; Fischer, Eric S.

    2010-02-12

    Summarizes research conducted at Bonneville Dam in 2008 to evaluate a prototype Behavioral Guidance Structure, that was deployed by the US Army Corps of Engineers in an effort to increase survival of outmigrating smolts at Bonneville Dam.

  17. Performance of salmon fishery portfolios across western North America.

    PubMed

    Griffiths, Jennifer R; Schindler, Daniel E; Armstrong, Jonathan B; Scheuerell, Mark D; Whited, Diane C; Clark, Robert A; Hilborn, Ray; Holt, Carrie A; Lindley, Steven T; Stanford, Jack A; Volk, Eric C

    2014-12-01

    Quantifying the variability in the delivery of ecosystem services across the landscape can be used to set appropriate management targets, evaluate resilience and target conservation efforts. Ecosystem functions and services may exhibit portfolio-type dynamics, whereby diversity within lower levels promotes stability at more aggregated levels. Portfolio theory provides a framework to characterize the relative performance among ecosystems and the processes that drive differences in performance. We assessed Pacific salmon Oncorhynchus spp. portfolio performance across their native latitudinal range focusing on the reliability of salmon returns as a metric with which to assess the function of salmon ecosystems and their services to humans. We used the Sharpe ratio (e.g. the size of the total salmon return to the portfolio relative to its variability (risk)) to evaluate the performance of Chinook and sockeye salmon portfolios across the west coast of North America. We evaluated the effects on portfolio performance from the variance of and covariance among salmon returns within each portfolio, and the association between portfolio performance and watershed attributes. We found a positive latitudinal trend in the risk-adjusted performance of Chinook and sockeye salmon portfolios that also correlated negatively with anthropogenic impact on watersheds (e.g. dams and land-use change). High-latitude Chinook salmon portfolios were on average 2·5 times more reliable, and their portfolio risk was mainly due to low variance in the individual assets. Sockeye salmon portfolios were also more reliable at higher latitudes, but sources of risk varied among the highest performing portfolios. Synthesis and applications. Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally

  18. Performance of salmon fishery portfolios across western North America

    PubMed Central

    Griffiths, Jennifer R; Schindler, Daniel E; Armstrong, Jonathan B; Scheuerell, Mark D; Whited, Diane C; Clark, Robert A; Hilborn, Ray; Holt, Carrie A; Lindley, Steven T; Stanford, Jack A; Volk, Eric C

    2014-01-01

    Quantifying the variability in the delivery of ecosystem services across the landscape can be used to set appropriate management targets, evaluate resilience and target conservation efforts. Ecosystem functions and services may exhibit portfolio-type dynamics, whereby diversity within lower levels promotes stability at more aggregated levels. Portfolio theory provides a framework to characterize the relative performance among ecosystems and the processes that drive differences in performance. We assessed Pacific salmon Oncorhynchus spp. portfolio performance across their native latitudinal range focusing on the reliability of salmon returns as a metric with which to assess the function of salmon ecosystems and their services to humans. We used the Sharpe ratio (e.g. the size of the total salmon return to the portfolio relative to its variability (risk)) to evaluate the performance of Chinook and sockeye salmon portfolios across the west coast of North America. We evaluated the effects on portfolio performance from the variance of and covariance among salmon returns within each portfolio, and the association between portfolio performance and watershed attributes. We found a positive latitudinal trend in the risk-adjusted performance of Chinook and sockeye salmon portfolios that also correlated negatively with anthropogenic impact on watersheds (e.g. dams and land-use change). High-latitude Chinook salmon portfolios were on average 2·5 times more reliable, and their portfolio risk was mainly due to low variance in the individual assets. Sockeye salmon portfolios were also more reliable at higher latitudes, but sources of risk varied among the highest performing portfolios. Synthesis and applications. Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally

  19. Radio-Tracking Studies of Adult Chinook Salmon and Steelhead to Determine the Effect of ''Zero'' River Flow During Water Storage at Little Goose Dam on the Lower Snake River, Final Report of Research.

    SciTech Connect

    Liscom, Kenneth

    1985-09-01

    Allowable instantaneous minimum river flows are established in the Columbia and Snake Rivers to ensure safe passage of anadromous fish during their migration to the spawning grounds. However, water storage during periods of low power demands (at night and on weekends) would be beneficial to the power producers. This storage procedure is called ''zero'' river flow and is now permitted on a limited basis when there are few if any actively migrating anadromous fish present in the river system. Requests were made to extend ''zero'' river flow into periods when anadromous fish were actively migrating and a study was initiated. Radio-tracking studies were conducted on the Snake River between Lower Monumental and Little Goose Dams to determine the effect of ''zero'' river flow on the migration of adult chinook salmon, Oncorhynchus tshawytscha, and steelhead, Salmo gairdneri. From July through September, 1981, a total of 258 steelhead and 32 chinook salmon were radio-tagged. The rate of migration was used to determine differences between test and control fish and a gamma distribution model was used to describe the migration rate for radio-tagged fish. Estimates of the parameters of the model were used to statistically compare ''zero'' flow and normal river flow conditions for the radio-tagged fish. The results show that the ''zero'' flow condition delays the migration of adult chinook salmon and steelhead; therefore, extended periods of ''zero'' flow to store water are not recommended when fish are actively migrating in the river system. 16 refs., 5 figs., 9 tabs.

  20. Protectiveness of water quality criteria for copper in western United States waters relative to predicted olfactory responses in juvenile Pacific salmon.

    PubMed

    DeForest, David K; Gensemer, Robert W; Van Genderen, Eric J; Gorsuch, Joseph W

    2011-07-01

    Copper (Cu) can impair olfaction in juvenile Pacific salmon (as well as other fishes), thus potentially inhibiting the ability of juveniles to avoid predators or to find food. Because Cu is commonly elevated in stormwater runoff in urban environments, storm events may result in elevated Cu concentrations in salmon-bearing streams. Accordingly, there is concern that existing Cu criteria, which were not derived using data for olfactory-related endpoints, may not be adequately protective of juvenile salmon. However, a modification of the US Environmental Protection Agency (USEPA) biotic ligand model (BLM) for deriving site-specific Cu criteria was recently proposed, which accounted for the sensitivity of olfactory endpoints. The modification was based on olfactory inhibition in juvenile coho salmon (Oncorhynchus kisutch) exposed to Cu in various combinations of pH, hardness, alkalinity, and dissolved organic carbon (DOC) concentrations. We used that olfactory-based BLM to derive 20% inhibition concentrations (IC20) values for Cu for 133 stream locations in the western United States. The olfactory BLM-based IC20 values were compared to the existing hardness-based Cu criteria and the USEPA's BLM-based Cu criteria for these representative natural waters of the western United States. Of the 133 sampling locations, mean hardness-dependent acute and chronic Cu criteria were below the mean olfactory-based BLM IC20 value in 122 (92%) and 129 (97%) of the waters, respectively (i.e., <20% olfactory impairment would have been predicted at the mean hardness-based Cu criteria concentrations). Waters characterized by a combination of high hardness and very low DOC were most likely to have hardness-based Cu criteria that were higher than the olfactory-based BLM IC20 values, because DOC strongly influences Cu bioavailability in the BLM. In all waters, the USEPA's current BLM-based criteria were below the mean olfactory-based BLM IC20 values, indicating that the USEPA's BLM

  1. Immunization of pacific salmon: comparison of intraperitoneal injection and hyperosmotic infiltration of Vibrio anguillarum and Aeromonas salmonicida bacterins

    USGS Publications Warehouse

    Antipa, Ross; Amend, Donald F.

    1977-01-01

    Two methods of immunizing fish, intraperitoneal (i.p.) injection and hyperosmotic infiltration, were compared for control of vibriosis and furunculosis in pen-reared coho salmon (Oncorhynchus kisutch) and chinook salmon (O. tshawytscha). Both methods provided significant protection against vibriosis under field test conditions. In coho salmon, hyperosmotic infiltration provided the best protection and fastest rise in antibody titer of seven treatments tested. In chinook salmon, hyperosmotic infiltration of Vibrio anguillarum and Aeromonas salmonicida vaccines resulted in 83.3% survival in comparison with 28.7% survival in controls. Both i.p. injection and hyperosmotic infiltration of V. anguillarum and A. salmonicida bacterins resulted in production of serum antibodies specific for each respective pathogen. Vaccination with bivalent V. anguillarum–A.salmonicida vaccines produced antibodies to both pathogens, and provided protection against vibriosis. Growth rates of vaccinated coho salmon were not significantly different from controls.

  2. Oil spill impact on Pacific salmon (g. Oncorhynchus) of northwestern Sakhalin (Tengi River Basin as a pattern)

    NASA Astrophysics Data System (ADS)

    Ivanov, Alexander N.; Tarasov, Nikolay N.; Pusankov, Konstantin L.; Ivanova, Lubov V.; Pusankova, Ekaterina N.

    2001-01-01

    Northern Sakhalin is a region of the intensive oil and gas transportation by oil-pipe lines. In July 2, 1997, the oil spill has happened at the oil-pipe line 'Okha-Komsomolsk-on- Amur.' Oil pollution spread over the basin of Tengi Rive (Amur estuary). The Tengi River is a spawning area for endemic and important commercial fish. There is a reserve on the river. Genus Oncorhynchus (pink and chum salmon) prevail in ichthyofauna. A satellite data analysis (NOAA-12, NOAA-14) was a success to accurate the oil distribution over the Amur estuary. As a result of the accident, more than 120 t of oil have been spilled. 26.3 km of the river area, more than 60 km of the Amur estuary coast and about 850 km2 of its water area were polluted. In the basin of Tengi River about 58000 m2 of spawning area were lost. The main damage (89%) was caused to the fry feeding near the coast. The loss of fish production has constituted about 1800 t. By species the damage was as follows: 53% -- pink salmon, 29% -- chum salmon, 11% -- masu salmon and 7% -- coho salmon.

  3. Seasonal variation exceeds effects of salmon carcass additions on benthic food webs in the Elwha River

    USGS Publications Warehouse

    Morley, S.A.; Coe, H.J.; Duda, J.J.; Dunphy, L.S.; McHenry, M.L.; Beckman, B.R.; Elofson, M.; Sampson, E. M.; Ward, L.

    2016-01-01

    Dam removal and other fish barrier removal projects in western North America are assumed to boost freshwater productivity via the transport of marine-derived nutrients from recolonizing Pacific salmon (Oncorhynchus spp.). In anticipation of the removal of two hydroelectric dams on the Elwha River in Washington State, we tested this hypothesis with a salmon carcass addition experiment. Our study was designed to examine how background nutrient dynamics and benthic food webs vary seasonally, and how these features respond to salmon subsidies. We conducted our experiment in six side channels of the Elwha River, each with a spatially paired reference and treatment reach. Each reach was sampled on multiple occasions from October 2007 to August 2008, before and after carcass placement. We evaluated nutrient limitation status; measured water chemistry, periphyton, benthic invertebrates, and juvenile rainbow trout (O. mykiss) response; and traced salmon-derived nutrient uptake using stable isotopes. Outside of winter, algal accrual was limited by both nitrogen and phosphorous and remained so even in the presence of salmon carcasses. One month after salmon addition, dissolved inorganic nitrogen levels doubled in treatment reaches. Two months after addition, benthic algal accrual was significantly elevated. We detected no changes in invertebrate or fish metrics, with the exception of 15N enrichment. Natural seasonal variability was greater than salmon effects for the majority of our response metrics. Yet seasonality and synchronicity of nutrient supply and demand are often overlooked in nutrient enhancement studies. Timing and magnitude of salmon-derived nitrogen utilization suggest that uptake of dissolved nutrients was favored over direct consumption of carcasses. The highest proportion of salmon-derived nitrogen was incorporated by herbivores (18–30%) and peaked 1–2 months after carcass addition. Peak nitrogen enrichment in predators (11–16%) occurred 2–3

  4. Ecosystem Response During the Removal of the Elwha River Dams

    NASA Astrophysics Data System (ADS)

    Pess, G. R.; McHenry, M.; Liermann, M. C.; Moses, R.; Denton, K.; McMillan, J.; Brenkman, S.; Duda, J.; Peters, R.; Anderson, J.; Quinn, T.

    2015-12-01

    Over the last century, the two dams blocked the upstream movement of anadromous fish to over 90% of the Elwha River watershed on the Olympic Peninsula of Washington State. These dams also restricted the downstream movement of sediment, wood, and other organic materials to the lower river and estuary. Populations of all Pacific salmon species and steelhead in the Elwha became critically low, habitat complexity decreased below the dams, and downstream coastal habitats became sediment starved. Simultaneous deconstruction of the two dams began in September 2011 was completed in September of 2014. The recent removal of the dams has been an opportunity to explore linkages among changes in sediment supply, salmonid populations, and ecosystem attributes. Preliminary findings focus on the delivery of millions of metric tonnes of sediment to the main river, its floodplain, and nearshore, the re-establishment of a natural wood delivery regime, the re-colonization of the upper watershed by anadromous fish, insights into functional relationships among salmonid populations and life history strategies, and the associated effects of all these elements on the aquatic and terrestrial foodwebs. This talk will provide an overview of the Elwha restoration project, and highlight recent changes observed during dam removal.

  5. Measuring nighttime spawning behavior of chum salmon using a dual-frequency identification sonar (DIDSON)

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.

    2005-01-01

    The striking body coloration and morphology that Pacific salmon display during spawning coupled with elaborate courtship behaviors suggest that visual cues are important during their reproductive period. To date, virtually all existing information on chum salmon (Oncorhynchus keta) spawning behavior has been derived from studies conducted during the daytime, and has contributed to the assumption that salmon do not spawn at night. We tested this assumption using a new technology - a dual-frequency identification sonar (DIDSON) - to describe and measure nighttime spawning behavior of wild chum salmon in the Columbia River. The DIDSON produces detailed, video-like images using sound, which enabled us to collect behavioral information at night in complete darkness. The display of DIDSON images enabled fish movements and behaviors to be spatially quantified. We collected continuous observational data on 14 pairs of chum salmon in a natural spawning channel during the daytime and nighttime. Spawners of both genders were observed chasing intruders during nighttime and daytime as nests were constructed. Regardless of diel period, females were engaged in digging to both construct nests and cover eggs, and courting males exhibited the pre-spawning behavior of tail crossing. We observed a total of 13 spawning events, of which nine occurred at night and four occurred during the day. The behaviors we observed at night suggest the assumption that chum salmon do not spawn at night is false. Once chum salmon begin nest construction, visual cues are apparently not required for courtship, nest defense, and spawning. We speculate that non-visual cues (e.g. tactile and auditory) enable chum salmon to carry out most spawning behaviors at night. Our findings have implications for how nighttime flows from hydroelectric dams on the Columbia River are managed for power production and protection of imperiled salmon stocks.

  6. 76 FR 81851 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery Management Plan AGENCY: National... Conservation and Management Act (MSA) to implement Amendment 16 to the Pacific Coast Salmon Fishery Management... available on the Pacific Fishery Management Council's Web site ( http://www.pcouncil.org/ ). FOR...

  7. Occupancy patterns of mammals and lentic amphibians in the Elwha River riparian zone before dam removal

    USGS Publications Warehouse

    Jenkins, Kurt J.; Chelgren, Nathan; Sager-Fradkin, K.A.; Happe, P.J.; Adams, Michael J.

    2015-01-01

    The downstream transport of sediments and organics and upstream migration of anadromous fishes are key ecological processes in unregulated riverine ecosystems of the North Pacific coast, but their influence on wildlife habitats and populations is poorly documented. Removal of two large hydroelectric dams in Washington’s Elwha Valley provides an unprecedented opportunity to study long-term responses of wildlife populations to dam removal and restoration of these key ecological processes. We compared pre-dam removal patterns in the relative abundance and occupancy of mesocarnivores, small mammals and lentic amphibians of the Elwha River riparian zone above, between and below the dams. Occupancy of riparian habitats by three mesocarnivore species diminished upriver but did not appear to be closely linked with the absence of salmon in the upper river. Although the importance of salmon in the lower river cannot be discounted, other gradients in food resources also likely contributed to observed distribution patterns of mesocarnivores. Abundance and occupancy patterns within congeneric pairs of new world mice (Peromyscus spp.) and shrews (Sorex spp.) indicated that closely related species were negatively associated with each other and responded to habitat gradients in the riparian zone. The availability of lentic habitats of amphibians was highly variable, and occupancy was low as a result of rapidly changing flows during the larval development period. We speculate that long-term changes in habitat conditions and salmon availability following dam removal will elicit long-term changes in distribution of mesocarnivores, small mammals and amphibians. Long-term monitoring will enhance understanding of the role of fish and restored ecosystem processes on wildlife communities along salmon-bearing rivers in the region.

  8. Recreational anglers' attitudes, beliefs, and behaviors related to catch-and-release practices of Pacific salmon in British Columbia.

    PubMed

    Nguyen, Vivian M; Rudd, Murray A; Hinch, Scott G; Cooke, Steven J

    2013-10-15

    The fate of captured and released fish in recreational fisheries depends in large part on fisher handling and behavior. As such, there is a need for promoting adoption of responsible fishing practices. We interviewed recreational sockeye salmon anglers in the lower Fraser River, British Columbia, to assess their awareness of responsible fishing practices and identify gaps where improved education could promote conservation-oriented behaviors. Based on our interview data, we developed three latent class models of salmon angler typologies based on: 1) anglers' fishing behaviors and preferences, 2) anglers' perceived risks to salmon survival due to post-capture live release, and 3) anglers' level of support for education programs. In the first model, we identified salmon-only anglers (33% of sample), lake-species specialists (46%), and all-around anglers (21%). These classes were differentiated primarily by non-salmon fishing activities (e.g., other target species). In the second model, we found four classes of anglers who differed with regards to key factors they thought affected post-release survival: air exposure (39% of sample); water temperature (24%); hook location (22%); and revival effort (15%). In the third model, we found anglers were either supporters (73%) or non-supporters (27%) of angler education programs. Heterogeneity existed among anglers but we found no correlations in angler classes across models, nor any significant demographic or experiential predictors of class membership. Respondents generally had high awareness and application of catch-and-release best practices, with lake-species specialists rating a higher awareness and usage of recommended catch-and-release technique, and were significantly more likely to cut the line on deeply hooked fish than other groups. Our findings provide resource managers with important insight into the attitudes and behaviors of sockeye salmon anglers in the important lower Fraser River recreational fishery. Our

  9. Methods to determine pumped irrigation-water withdrawals from the Snake River between Upper Salmon Falls and Swan Falls Dams, Idaho, using electrical power data, 1990-95

    USGS Publications Warehouse

    Maupin, Molly A.

    1999-01-01

    Pumped withdrawals compose most of the irrigation-water diversions from the Snake River between Upper Salmon Falls and Swan Falls Dams in southwestern Idaho. Pumps at 32 sites along the reach lift water as high as 745 feet to irrigate croplands on plateaus north and south of the river. The number of pump sites at which withdrawals are being continuously measured has been steadily decreasing, from 32 in 1990 to 7 in 1998. A cost-effective and accurate means of estimating annual irrigation-water withdrawals at pump sites that are no longer continuously measured was needed. Therefore, the U.S. Geological Survey began a study in 1998, as part of its Water-Use Program, to determine power-consumption coeffi- cients (PCCs) for each pump site so that withdrawals could be estimated by using electrical powerconsumption and total head data. PCC values for each pump site were determined by using withdrawal data that were measured by the U.S. Geological Survey during 1990–92 and 1994–95, energy data reported by Idaho Power Company during the same period, and total head data collected at each site during a field inventory in 1998. Individual average annual withdrawals for the 32 pump sites ranged from 1,120 to 44,480 acre-feet; average PCC values ranged from 103 to 1,248 kilowatthours per acre-foot. During the 1998 field season, power demand, total head, and withdrawal at 18 sites were measured to determine 1998 PCC values. Most of the 1998 PCC values were within 10 percent of the 5-year average, which demonstrates that withdrawals for a site that is no longer continuously measured can be calculated with reasonable accuracy by using the PCC value determined from this study and annual power-consumption data. K-factors, coefficients that describe the amount of energy necessary to lift water, were determined for each pump site by using values of PCC and total head and ranged from 1.11 to 1.89 kilowatthours per acre-foot per foot. Statistical methods were used to define the

  10. Evaluation of Behavioral Guidance Structure on Juvenile Salmonid Passage and Survival at Bonneville Dam in 2009

    SciTech Connect

    Faber, Derrek M.; Ploskey, Gene R.; Weiland, Mark A.; Deng, Zhiqun; Hughes, James S.; Kim, Jin A.; Fu, Tao; Fischer, Eric S.; Monter, Tyrell J.; Skalski, J. R.

    2011-03-01

    Pacific Northwest National Laboratory (PNNL) conducted an acoustic-telemetry study at Bonneville Dam in 2009 to evaluate the effects of a behavioral guidance structure (BGS) in the Bonneville Dam second powerhouse forebay on fish passage and survival through the second powerhouse (B2), the dam as a whole, and through the first powerhouse and spillway combined. The BGS was deployed to increase the survival of fish passing through B2 by increasing the percentage of outmigrating smolts entering the B2 Corner Collector (B2CC)—a surface flow outlet known to be a relatively benign route for downstream passage at this dam. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. Study results indicated that having turbine 11 in service is important for providing flow conditions that are comparable to those observed in pre-BGS years (2004 and 2005) and in 2008. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  11. Hydrologic Alterations from Climate Change Inform Assessment of Ecological Risk to Pacific Salmon in Bristol Bay, Alaska

    PubMed Central

    Wobus, Cameron; Prucha, Robert; Albert, David; Woll, Christine; Loinaz, Maria; Jones, Russell

    2015-01-01

    We developed an integrated hydrologic model of the upper Nushagak and Kvichak watersheds in the Bristol Bay region of southwestern Alaska, a region under substantial development pressure from large-scale copper mining. We incorporated climate change scenarios into this model to evaluate how hydrologic regimes and stream temperatures might change in a future climate, and to summarize indicators of hydrologic alteration that are relevant to salmon habitat ecology and life history. Model simulations project substantial changes in mean winter flow, peak flow dates, and water temperature by 2100. In particular, we find that annual hydrographs will no longer be dominated by a single spring thaw event, but will instead be characterized by numerous high flow events throughout the winter. Stream temperatures increase in all future scenarios, although these temperature increases are moderated relative to air temperatures by cool baseflow inputs during the summer months. Projected changes to flow and stream temperature could influence salmon through alterations in the suitability of spawning gravels, changes in the duration of incubation, increased growth during juvenile stages, and increased exposure to chronic and acute temperature stress. These climate-modulated changes represent a shifting baseline in salmon habitat quality and quantity in the future, and an important consideration to adequately assess the types and magnitude of risks associated with proposed large-scale mining in the region. PMID:26645380

  12. Hydrologic Alterations from Climate Change Inform Assessment of Ecological Risk to Pacific Salmon in Bristol Bay, Alaska.

    PubMed

    Wobus, Cameron; Prucha, Robert; Albert, David; Woll, Christine; Loinaz, Maria; Jones, Russell; Travers, Constance

    2015-01-01

    We developed an integrated hydrologic model of the upper Nushagak and Kvichak watersheds in the Bristol Bay region of southwestern Alaska, a region under substantial development pressure from large-scale copper mining. We incorporated climate change scenarios into this model to evaluate how hydrologic regimes and stream temperatures might change in a future climate, and to summarize indicators of hydrologic alteration that are relevant to salmon habitat ecology and life history. Model simulations project substantial changes in mean winter flow, peak flow dates, and water temperature by 2100. In particular, we find that annual hydrographs will no longer be dominated by a single spring thaw event, but will instead be characterized by numerous high flow events throughout the winter. Stream temperatures increase in all future scenarios, although these temperature increases are moderated relative to air temperatures by cool baseflow inputs during the summer months. Projected changes to flow and stream temperature could influence salmon through alterations in the suitability of spawning gravels, changes in the duration of incubation, increased growth during juvenile stages, and increased exposure to chronic and acute temperature stress. These climate-modulated changes represent a shifting baseline in salmon habitat quality and quantity in the future, and an important consideration to adequately assess the types and magnitude of risks associated with proposed large-scale mining in the region.

  13. Centennial-scale fluctuations and regional complexity characterize Pacific salmon population dynamics over the past five centuries

    PubMed Central

    Rogers, Lauren A.; Schindler, Daniel E.; Lisi, Peter J.; Holtgrieve, Gordon W.; Leavitt, Peter R.; Bunting, Lynda; Finney, Bruce P.; Selbie, Daniel T.; Chen, Guangjie; Gregory-Eaves, Irene; Lisac, Mark J.; Walsh, Patrick B.

    2013-01-01

    Observational data from the past century have highlighted the importance of interdecadal modes of variability in fish population dynamics, but how these patterns of variation fit into a broader temporal and spatial context remains largely unknown. We analyzed time series of stable nitrogen isotopes from the sediments of 20 sockeye salmon nursery lakes across western Alaska to characterize temporal and spatial patterns in salmon abundance over the past ∼500 y. Although some stocks varied on interdecadal time scales (30- to 80-y cycles), centennial-scale variation, undetectable in modern-day catch records and survey data, has dominated salmon population dynamics over the past 500 y. Before 1900, variation in abundance was clearly not synchronous among stocks, and the only temporal signal common to lake sediment records from this region was the onset of commercial fishing in the late 1800s. Thus, historical changes in climate did not synchronize stock dynamics over centennial time scales, emphasizing that ecosystem complexity can produce a diversity of ecological responses to regional climate forcing. Our results show that marine fish populations may alternate between naturally driven periods of high and low abundance over time scales of decades to centuries and suggest that management models that assume time-invariant productivity or carrying capacity parameters may be poor representations of the biological reality in these systems. PMID:23322737

  14. Centennial-scale fluctuations and regional complexity characterize Pacific salmon population dynamics over the past five centuries.

    PubMed

    Rogers, Lauren A; Schindler, Daniel E; Lisi, Peter J; Holtgrieve, Gordon W; Leavitt, Peter R; Bunting, Lynda; Finney, Bruce P; Selbie, Daniel T; Chen, Guangjie; Gregory-Eaves, Irene; Lisac, Mark J; Walsh, Patrick B

    2013-01-29

    Observational data from the past century have highlighted the importance of interdecadal modes of variability in fish population dynamics, but how these patterns of variation fit into a broader temporal and spatial context remains largely unknown. We analyzed time series of stable nitrogen isotopes from the sediments of 20 sockeye salmon nursery lakes across western Alaska to characterize temporal and spatial patterns in salmon abundance over the past ∼500 y. Although some stocks varied on interdecadal time scales (30- to 80-y cycles), centennial-scale variation, undetectable in modern-day catch records and survey data, has dominated salmon population dynamics over the past 500 y. Before 1900, variation in abundance was clearly not synchronous among stocks, and the only temporal signal common to lake sediment records from this region was the onset of commercial fishing in the late 1800s. Thus, historical changes in climate did not synchronize stock dynamics over centennial time scales, emphasizing that ecosystem complexity can produce a diversity of ecological responses to regional climate forcing. Our results show that marine fish populations may alternate between naturally driven periods of high and low abundance over time scales of decades to centuries and suggest that management models that assume time-invariant productivity or carrying capacity parameters may be poor representations of the biological reality in these systems.

  15. Survival of Juvenile Chinook Salmon during Barge Transport

    SciTech Connect

    McMichael, Geoffrey A.; Skalski, J. R.; Deters, Katherine A.

    2011-12-01

    To mitigate for fish losses related to passage through the Federal Columbia River Power System, an extensive fish transportation program using barges and trucks to move fish around and downstream of dams and reservoirs was implemented in 1981. Population modeling and other analyses to support Pacific salmon recovery efforts have assumed that the survival of juvenile salmonids during the transportation experience was 98%. To estimate survival during barge transport from Lower Granite Dam on the Snake River to a release area downstream of Bonneville Dam, a distance of 470 km, we used a novel adaptation of a release-recapture model with acoustic-tagged yearling Chinook salmon (Oncorhynchus tshawytscha) smolts. A total of 1,494 yearling Chinook salmon were surgically implanted with Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic transmitters and passive integrated transponders (PIT) and divided into three groups. The three tagged groups consisted of; (1) a group which was released into the raceway with the population of fish which were later loaded into transportation barges (R{sub B}), (2) a group which was held in a net-pen suspended within the general barge population until 5-6 h prior to barge evacuation, at which time they were confirmed to be alive and then released into the general barge population (R{sub A}), and (3) to validate a model assumption, a group which was euthanized and released into the barge population 2-8 h prior to barge evacuation (R{sub D}). Six replicates of these groups were loaded onto fish transport barges that departed Lower Granite Dam on the Snake River between 29 April and 13 May, 2010. Acoustic receiver arrays between 70 and 220 km downstream of the barge evacuation site were used to detect tagged fish and served as the basis for estimation of survival within the barge. Tag-life-corrected estimates of reach survival were calculated for barged and control fish in each of the six replicate trials. The ratio of survival from

  16. Fishing for Effective Conservation: Context and Biotic Variation are Keys to Understanding the Survival of Pacific Salmon after Catch-and-Release.

    PubMed

    Raby, Graham D; Donaldson, Michael R; Hinch, Scott G; Clark, Timothy D; Eliason, Erika J; Jeffries, Kenneth M; Cook, Katrina V; Teffer, Amy; Bass, Arthur L; Miller, Kristina M; Patterson, David A; Farrell, Anthony P; Cooke, Steven J

    2015-10-01

    Acute stressors are commonly experienced by wild animals but their effects on fitness rarely are studied in the natural environment. Billions of fish are captured and released annually around the globe across all fishing sectors (e.g., recreational, commercial, subsistence). Whatever the motivation, release often occurs under the assumption of post-release survival. Yet, capture by fisheries (hereafter "fisheries-capture") is likely the most severe acute stressor experienced in the animal's lifetime, which makes the problem of physiological recovery and survival of relevance to biology and conservation. Indeed, fisheries managers require accurate estimates of mortality to better account for total mortality from fishing, while fishers desire guidance on strategies for reducing mortality and maintaining the welfare of released fish, to maximize current and future opportunities for fishing. In partnership with stakeholders, our team has extensively studied the effects of catch-and-release on Pacific salmon in both marine and freshwater environments, using biotelemetry and physiological assessments in a combined laboratory-based and field-based approach. The emergent theme is that post-release rates of mortality are consistently context-specific and can be affected by a suite of interacting biotic and abiotic factors. The fishing gear used, location of a fishery, water temperature, and handling techniques employed by fishers each can dramatically affect survival of the salmon they release. Variation among individuals, co-migrating populations, and between sexes all seem to play a role in the response of fish to capture and in their subsequent survival, potentially driven by pre-capture pathogen-load, maturation states, and inter-individual variation in responsiveness to stress. Although some of these findings are fascinating from a biological perspective, they all create unresolved challenges for managers. We summarize our findings by highlighting the patterns that

  17. Identification of the sex chromosome pair in chum salmon (Oncorhynchus keta) and pink salmon (Oncorhynchus gorbuscha).

    PubMed

    Phillips, R B; DeKoning, J; Morasch, M R; Park, L K; Devlin, R H

    2007-01-01

    Fluorescence in situ hybridization (FISH) using a probe to the male-specific GH-Y (growth hormone pseudogene) was used to identify the Y chromosome in the karyotypes of chum salmon (Oncorhynchus keta) and pink salmon (Oncorhynchus gorbuscha). The sex chromosome pair is a small acrocentric chromosome pair in chum salmon and the smallest metacentric chromosome pair in pink salmon. Both of these chromosome pairs are morphologically different from the sex chromosome pairs in chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch). The 5S rRNA genes are on multiple chromosome pairs including the sex chromosome pair in chum salmon, but at the centromeres of two autosomal metacentric pairs in pink salmon. The sex chromosome pairs and the chromosomal locations of the 5S rDNA appear to be different in all five of the North American Pacific salmon species and rainbow trout. The implications of these results for evolution of sex chromosomes in salmonids are discussed.

  18. A multiobjective optimization model for dam removal: an example trading off salmon passage with hydropower and water storage in the Willamette basin

    NASA Astrophysics Data System (ADS)

    Kuby, Michael J.; Fagan, William F.; ReVelle, Charles S.; Graf, William L.

    2005-08-01

    We introduce the use of systematic, combinatorial, multiobjective optimization models to analyse ecological-economic tradeoffs and to support complex decision-making associated with dam removal in a river system. The model's ecological objective enhances salmonid migration and spawning by maximizing drainage area reconnected to the sea. The economic objective minimizes loss of hydropower and storage capacity. We present a proof-of-concept demonstration for the Willamette River watershed (Oregon, USA). The case study shows a dramatic tradeoff in which removing twelve dams reconnects 52% of the basin while sacrificing only 1.6% of hydropower and water-storage capacity. Additional ecological gains, however, come with increasingly steeper economic costs. A second model incorporates existing fish-passage systems. Because of data limitations and model simplifications, these results are intended solely for the purpose of illustrating a novel application of multiobjective programming to dam-removal issues. Far more work would be needed to make policy-relevant recommendations. Nevertheless, this research suggests that the current practice of analysing dam-removal decisions on a dam-by-dam basis be supplemented by evaluation on a river-system basis, trading off economic and ecological goals.

  19. Fish vs. power: Remaking salmon, science and society on the Fraser River, 1900--1960

    NASA Astrophysics Data System (ADS)

    Evenden, Matthew Dominic

    Overlapping resource demands made the Fraser River a contested site of development politics in twentieth century British Columbia. Since the turn of the century, power interests surveyed the river's flow, sited dams and promoted development schemes. Fisheries interests, on the other hand, sought to maintain the river as salmon spawning habitat. They questioned the necessity of dams, supported fisheries research and rehabilitation and organized anti-development coalitions. Before the mid-1950s a number of dam projects proceeded on Fraser tributaries and major landslides at Hells Gate modeled the dangers of main stem development. Because of the concerted political lobbying of fisheries groups, the skeptical appraisal of fisheries scientists to development proposals and the legal and political authority of the federal Department of Fisheries and the International Pacific Salmon Fisheries Commission, major dam projects were defeated on the Fraser in the late 1950s. Delayed development on the Fraser helped to spur hydroelectric projects on other rivers in the province; the fish-power problem on the Fraser altered the province's spatial economy of power. Once development began on the Columbia and Peace Rivers, the Fraser was protected by implication. The study combines approaches from environmental history, the history of science and political economy to demonstrate the intersections and interactions between nature, knowledge and society. Research was conducted at eleven archives in Canada and the United States in the papers of organizations, corporations, government departments, politicians, scientists and individuals.

  20. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville, The Dalles, John Day, and McNary Dams; 2001-2002 Annual Report.

    SciTech Connect

    van der Naald, Wayne; Clark, Roy; Spellman, Bryant

    2003-04-01

    In 2001 a total of 309 adult fall chinook and 264 chum were sampled in the Ives and Pierce islands area below Bonneville Dam. The peak redd count for fall chinook was 48. The peak redd count for chum was 181. Peak spawning time for fall chinook was set at approximately 16 November. Peak spawning time for chum occurred approximately 26 November. There were estimated to be a total of 721 fall chinook spawning below Bonneville Dam in 2001. The 2001 chum population below Bonneville Dam was estimated to be 532 spawning fish. Temperature unit data suggests that below Bonneville Dam 2001 brood chinook emergence began on 11 March 2002 and ended 18 May 2002, with peak emergence occurring 26 April. 2001 brood juvenile chum emergence below Bonneville Dam began 29 January and continued through 31 March 2002. Peak chum emergence took place 25 February. A total of 5,487 juvenile chinook and 678 juvenile chum were sampled between the dates of 22 January and 30 July 2002 below Bonneville Dam. Juvenile chum migrated from the study area in the 40-55 mm fork length range. Migration of chum occurred during the months of March, April and May. Sampling results suggest fall chinook migration from rearing areas took place from mid June through early July 2002 when juvenile fall chinook were in the 65 to 80 mm fork length size range. Adult and juvenile sampling below Bonneville Dam provided information to assist in determining the stock of fall chinook and chum spawning and rearing below Bonneville Dam. Based on observed spawning times, adult age and sex composition, GSI analysis, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration, it appears that in 2001 and 2002 the majority of fall chinook using the area below Bonneville Dam were of a late-spawning bright stock of fall chinook. Observed spawning times, adult age and sex composition, GSI analysis, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration

  1. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawytscha) Near Ives and Pierce Island of the Columbia River, 2000.

    SciTech Connect

    Mueller, Robert P.

    2001-10-01

    Fall chinook salmon (Oncorhynchus tshawytscha), thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by Washington Department of Fisheries and Wildlife (WDFW) biologists in 1993 (Hymer 1997). Known spawning areas included gravel beds on the Washington side of the river near Hamilton Creek and Ives Island. The size of this population from 1994 to 1996 was estimated at 1,800 to 5,200 fish (Hymer 1997), and 554 fish in 1998 (Van der Naald et al. 1999). These estimates were based on carcass surveys and visual observation of redds by boat near the shoreline. Pacific Northwest National Laboratory (PNNL) conducted underwater video surveys in the fall of 1999 and 2000 to determine the extent of the fall chinook salmon spawning and to estimate the number of redds occurring in deeper water. Estimates of redds occurring in water depths exceeding 2.2 m at 143,000 cubic feet per second (kcfs) were 499 in 1999 (Mueller and Dauble 1999) and 567 redds >2.2 m at 127 kcfs in 2000 (this study). The majority of the redds found were confined near the main river channel adjacent to Pierce Island. Chum salmon (O. keta) also have been documented using the mouth of Hamilton Creek and portions of Hamilton Slough for spawning. The majority of chum salmon were found to spawn in shallow water at the mouth of Hamilton Creek adjacent to Ives Island. Estimates of the natural chum salmon spawning population for 1998 were 226 (Van der Naald et al. 1999). Chum salmon spawning near Ives Island are part of the Columbia River evolutionary significant unit (ESU), and are included in the Endangered Species Act of 1973 (ESA) listing in March 1999. Our main objective of this study was to locate deep water spawning locations of fall chinook salmon in the main Columbia River channel and to collect additional data on physical habitat parameters at spawning sites. The secondary objective was to map any chum salmon redds located in the deep sections of

  2. Asymmetric hybridization and introgression between pink salmon and chinook salmon in the Laurentian Great Lakes

    USGS Publications Warehouse

    Rosenfield, Jonathan A.; Todd, Thomas; Greil, Roger

    2000-01-01

    Among Pacific salmon collected in the St. Marys River, five natural hybrids of pink salmon Oncorhynchus gorbuscha and chinook salmon Oncorhynchus tshawytscha and one suspected backcross have been detected using morphologic, meristic, and color evidence. One allozyme (LDH, l-lactate dehydrogenase from muscle) and one nuclear DNA locus (growth hormone) for which species-specific fixed differences exist were analyzed to detect additional hybrids and to determine if introgression had occurred. Restriction fragment length polymorphism of mitochondrial DNA (mtDNA) was used to identify the maternal parent of each hybrid. Evidence of introgression was found among the five previously identified hybrids. All hybrid specimens had chinook salmon mtDNA, indicating that hybridization between chinook salmon and pink salmon in the St. Marys River is asymmetric and perhaps unidirectional. Ecological, physiological, and sexual selection forces may contribute to this asymmetric hybridization. Introgression between these highly differentiated species has implications for management, systematics, and conservation of Pacific salmon.

  3. Evaluation of Factors Affecting Collection Efficiency Estimates of Chinook Salmon and Steelhead Smolts at McNary Dam. 1988 Annual Report.

    SciTech Connect

    Stuehrenberg, Lowell; Johnson, Orlay W.

    1990-03-01

    During 1988, the National Marine Fisheries Service (NMFS) began a 2-year study to address possible sources of error in determining collection efficiency at McNary Dam. We addressed four objectives: determine whether fish from Columbia and Snake Rivers mix as they migrate to McNary Dam, determine whether Columbia and Snake River stocks are collected at the same rates assess whether the time of day fish are released influences their recovery rate, and determine whether guided fish used in collection efficiency estimates ten to bias results. 7 refs., 12 figs., 4 tabs.

  4. Global Assessment of Extinction Risk to Populations of Sockeye Salmon Oncorhynchus nerka

    PubMed Central

    Rand, Peter S.; Goslin, Matthew; Gross, Mart R.; Irvine, James R.; Augerot, Xanthippe; McHugh, Peter A.; Bugaev, Victor F.

    2012-01-01

    Background Concern about the decline of wild salmon has attracted the attention of the International Union for the Conservation of Nature (IUCN). The IUCN applies quantitative criteria to assess risk of extinction and publishes its results on the Red List of Threatened Species. However, the focus is on the species level and thus may fail to show the risk to populations. The IUCN has adapted their criteria to apply to populations but there exist few examples of this type of assessment. We assessed the status of sockeye salmon Oncorhynchus nerka as a model for application of the IUCN population-level assessments and to provide the first global assessment of the status of an anadromous Pacific salmon. Methods/Principal Findings We found from demographic data that the sockeye salmon species is not presently at risk of extinction. We identified 98 independent populations with varying levels of risk within the species' range. Of these, 5 (5%) are already extinct. We analyzed the risk for 62 out of 93 extant populations (67%) and found that 17 of these (27%) are at risk of extinction. The greatest number and concentration of extinct and threatened populations is in the southern part of the North American range, primarily due to overfishing, freshwater habitat loss, dams, hatcheries, and changing ocean conditions. Conclusions/Significance Although sockeye salmon are not at risk at the species-level, about one-third of the populations that we analyzed are at risk or already extinct. Without an understanding of risk to biodiversity at the level of populations, the biodiversity loss in salmon would be greatly underrepresented on the Red List. We urge government, conservation organizations, scientists and the public to recognize this limitation of the Red List. We also urge recognition that about one-third of sockeye salmon global population diversity is at risk of extinction or already extinct. PMID:22511930

  5. Survival Rates of Juvenile Salmonids Passing Through the Bonneville Dam and Spillway in 2008

    SciTech Connect

    Ploskey, Gene R.; Weiland, Mark A.; Faber, Derrek M.; Deng, Zhiqun; Johnson, Gary E.; Hughes, James S.; Zimmerman, Shon A.; Monter, Tyrell J.; Cushing, Aaron W.; Wilberding, Matthew C.; Durham, Robin E.; Townsend, R. L.; Skalski, J. R.; Buchanan, Rebecca A.; Kim, Jina; Fischer, Eric S.; Meyer, Matthew M.; McComas, Roy L.; Everett, Jason

    2009-12-28

    This report describes a 2008 acoustic telemetry survival study conducted by the Pacific Northwest National Laboratory for the Portland District of the U.S. Army Corps of Engineers. The study estimated the survival of juvenile Chinook salmon and steelhead passing Bonneville Dam (BON) and its spillway. Of particular interest was the relative survival of smolts detected passing through end spill bays 1-3 and 16-18, which had deep flow deflectors immediately downstream of spill gates, versus survival of smolts passing middle spill bays 4-15, which had shallow flow deflectors.

  6. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawtscha) Near Ives and Pierce Island of the Columbia River, 2002-2003 Annual Report.

    SciTech Connect

    Mueller, Robert

    2003-09-01

    Pacific Northwest National Laboratory conducted video-based boat surveys to identify fall chinook salmon (Oncorhynchus tshawytscha) spawning areas located in deep water (>1 m) downstream of Bonneville Dam in the fall of 2002. This report documents the number and extent of chinook salmon spawning near Ives and Pierce Islands of the Columbia River, and is the fourth in a series of reports prepared since 1999. The main objective of this study was to find deepwater spawning locations of fall chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the surveyed area. The secondary objective was to document the occurrence of any chum salmon (O. keta) redds located in the deeper sections near below Hamilton Creek. There was a significant increase in the number of fall chinook salmon redds found in the locations surveyed during the 2002 surveys when compared to previous surveys by Pacific Northwest National Laboratory. A total of 192 redds were found in two general locations adjacent to Pierce Island (river km 228.5) encompassing an area of approximately 9.31 ha. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 15, 2002. An estimated 1,768 fall chinook salmon redds at water depths exceeding {approx}1.m ({approx} 125 kcfs) were documented in 2002. This estimate is the expanded number based on the number of redds found within the pre-defined survey area. Fall chinook salmon redds were found at water depths from 0.9 to 8.5 m and were constructed in gravel to large cobble ranging in size from 4.83 to 13.4 cm in diameter. No chum salmon redds were found in areas surveyed during 2002, although several carcasses were found at the mouth of Woodward Creek and in the deeper sections below Hamilton Creek.

  7. Performance Assessment of Suture Type in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters

    SciTech Connect

    Deters, Katherine A.; Brown, Richard S.; Carter, Kathleen M.; Boyd, James W.

    2009-02-27

    The objective of this study was to determine the best overall suture material to close incisions from the surgical implantation of Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic microtransmitters in subyearling Chinook salmon Oncorhynchus tshawytscha. The effects of seven suture materials, four surgeons, and two water temperatures on suture retention, incision openness, tag retention, tissue inflammation, and tissue ulceration were quantified. The laboratory study, conducted by researchers at the Pacific Northwest National Laboratory, supports a larger effort under way for the U.S. Army Corps of Engineers, Portland District, aimed at determining the suitability of acoustic telemetry for estimating short- and longer-term (30-60 days) juvenile-salmonid survival at Columbia and Snake River dams and through the lower Columbia River.

  8. SALMON RECOVERY: DEFENDING REALITY, DELUSIONS, AND OTHER ASSORTED TRUTHS

    EPA Science Inventory

    Are professional fisheries scientists collectively guilty of encouraging delusions about the possibilities for restoring wild salmon to the Pacific Northwest? Do they perpetuate the fantasy that the Pacific Northwest will (or could, absent pervasive life-style changes) support w...

  9. 76 FR 65673 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... National Oceanic and Atmospheric Administration 50 CFR Part 660 RIN 0648-BA55 Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery Management Plan AGENCY: National...: NMFS proposes regulations to implement Amendment 16 to the Pacific Coast Salmon Fishery Management...

  10. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Pacific Northwest). Coho salmon. [Oncorhynchus kisutch

    SciTech Connect

    Laufle, J.C.; Pauley, G.B.; Shepard, M.F.

    1986-04-01

    The coho is anadromous, swimming upstream from the ocean in fall to spawn. The fry hatch in the spring and outmigrate 1 to 2 years later. They usually spend two growing seasons at sea. They require clear, cold, well-oxygenated (<4 mg/l) stream water (1 m/sec) for spawning and rearing, with a gravel substrate, adequate cover, and a food supply of insects, crustaceans, and fishes for the young. All populations of coho salmon are limited by the amount of suitable rearing area available. They are sought after in both sport and commercial fisheries, and are very sensitive, especially the early life stages in streams, to such human-made impacts as siltation, pollution, removal of cover, and barriers to migration. Current management objectives of the State of Washington are toward MSH (maximum susstained harvest), with the treaty Indian tribes under the Boldt Decision (United States vs State of Washington) having a legal right to 50% of the catchable allocation.

  11. 150 YEARS OF SALMON RESTORATION: ASSORTED TRUTHS

    EPA Science Inventory

    Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline of wild Pacific salmon. Of the Earth's four regions (i.e., Asian Far East, Atlantic Europe, eastern North America, and western North America) where salmon runs originally occurred, it...

  12. Relationships Between Metabolic Rate, Muscle Electromyograms and Swim Performance of Adult Chinook Salmon

    SciTech Connect

    Geist, David R.; Brown, Richard S.; Cullinan, Valerie I.; Mesa, Matthew G.; VanderKooi, S P.; McKinstry, Craig A.

    2003-10-01

    In 2000 Pacific Northwest National Laboratory initiated a two-year study to investigate the metabolic rate and swimming performance and to estimate the total energy used (i.e., aerobic and anaerobic) by adult spring Chinook salmon migrating upstream through a large hydropower dam on the Columbia River. The investigation involved one year of laboratory study and one year of field study at Bonneville Dam. The objectives of the laboratory study, reported here, were to (1) measure active rates of oxygen consumption of adult spring chinook salmon at three water temperatures over a range of swimming speeds; (2) estimate the Ucrit of adult spring chinook salmon; and (3) monitor EMGs of red and white muscle in the salmon over a range of swimming speeds. Future papers will report on the results of the field study. Our results indicated that the rate of oxygen consumption and red and white muscle activity in adult spring chinook salmon were strongly correlated with swimming speed over a range of fish sizes and at three different temperatures. Active oxygen consumption increased linearly with swim speed before leveling off at speeds at or above Ucrit. This pattern was similar at each water temperature and indicated that fish were approaching their maximal aerobic oxygen consumption at higher swim speeds. Modeling showed that temperature, but not size or sex, influenced the relation between V02 and swim speed, thus a V02-swim speed model based on temperature (but independent of sex and size) should be a biologically relevant way of estimating the energy use of fish in the wild.

  13. Effects of Total Dissolved Gas on Chum Salmon Fry Incubating in the Lower Columbia River

    SciTech Connect

    Arntzen, Evan V.; Hand, Kristine D.; Geist, David R.; Murray, Katherine J.; Panther, Jenny; Cullinan, Valerie I.; Dawley, Earl M.; Elston, Ralph A.

    2008-01-30

    This report describes research conducted by Pacific Northwest National Laboratory in FY 2007 for the U.S. Army Corps of Engineers, Portland District, to characterize the effects of total dissolved gas (TDG) on the incubating fry of chum salmon (Onchorhynchus keta) in the lower Columbia River. The tasks conducted and results obtained in pursuit of three objectives are summarized: * to conduct a field monitoring program at the Ives Island and Multnomah Falls study sites, collecting empirical data on TDG to obtain a more thorough understanding of TDG levels during different river stage scenarios (i.e., high-water year versus low-water year) * to conduct laboratory toxicity tests on hatchery chum salmon fry at gas levels likely to occur downstream from Bonneville Dam * to sample chum salmon sac fry during Bonneville Dam spill operations to determine if there is a physiological response to TDG levels. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the study methdology and results are provided in Appendixes A through D.

  14. Large-scale spatial variability of riverbed temperature gradients in Snake River fall Chinook salmon spawning areas

    SciTech Connect

    Hanrahan, Timothy P.

    2007-02-01

    In the Snake River basin of the Pacific northwestern United States, hydroelectric dam operations are often based on the predicted emergence timing of salmon fry from the riverbed. The spatial variability and complexity of surface water and riverbed temperature gradients results in emergence timing predictions that are likely to have large errors. The objectives of this study were to quantify the thermal heterogeneity between the river and riverbed in fall Chinook salmon spawning areas and to determine the effects of thermal heterogeneity on fall Chinook salmon emergence timing. This study quantified river and riverbed temperatures at 15 fall Chinook salmon spawning sites distributed in two reaches throughout 160 km of the Snake River in Hells Canyon, Idaho, USA, during three different water years. Temperatures were measured during the fall Chinook salmon incubation period with self-contained data loggers placed in the river and at three different depths below the riverbed surface. At all sites temperature increased with depth into the riverbed, including significant differences (p<0.05) in mean water temperature of up to 3.8°C between the river and the riverbed among all the sites. During each of the three water years studied, river and riverbed temperatures varied significantly among all the study sites, among the study sites within each reach, and between sites located in the two reaches. Considerable variability in riverbed temperatures among the sites resulted in fall Chinook salmon emergence timing estimates that varied by as much as 55 days, depending on the source of temperature data used for the estimate. Monitoring of riverbed temperature gradients at a range of spatial scales throughout the Snake River would provide better information for managing hydroelectric dam operations, and would aid in the design and interpretation of future empirical research into the ecological significance of physical riverine processes.

  15. Effects of hyporheic exchange flows on egg pocket water temperature in Snake River fall Chinook salmon spawning areas

    SciTech Connect

    Hanrahan, T. P.; Geist, D. R.; Arntzen, E. V.; Abernethy, C. S.

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002–2003 water year.

  16. Analyzing large-scale conservation interventions with Bayesian hierarchical models: a case study of supplementing threatened Pacific salmon

    PubMed Central

    Scheuerell, Mark D; Buhle, Eric R; Semmens, Brice X; Ford, Michael J; Cooney, Tom; Carmichael, Richard W

    2015-01-01

    Myriad human activities increasingly threaten the existence of many species. A variety of conservation interventions such as habitat restoration, protected areas, and captive breeding have been used to prevent extinctions. Evaluating the effectiveness of these interventions requires appropriate statistical methods, given the quantity and quality of available data. Historically, analysis of variance has been used with some form of predetermined before-after control-impact design to estimate the effects of large-scale experiments or conservation interventions. However, ad hoc retrospective study designs or the presence of random effects at multiple scales may preclude the use of these tools. We evaluated the effects of a large-scale supplementation program on the density of adult Chinook salmon Oncorhynchus tshawytscha from the Snake River basin in the northwestern United States currently listed under the U.S. Endangered Species Act. We analyzed 43 years of data from 22 populations, accounting for random effects across time and space using a form of Bayesian hierarchical time-series model common in analyses of financial markets. We found that varying degrees of supplementation over a period of 25 years increased the density of natural-origin adults, on average, by 0–8% relative to nonsupplementation years. Thirty-nine of the 43 year effects were at least two times larger in magnitude than the mean supplementation effect, suggesting common environmental variables play a more important role in driving interannual variability in adult density. Additional residual variation in density varied considerably across the region, but there was no systematic difference between supplemented and reference populations. Our results demonstrate the power of hierarchical Bayesian models to detect the diffuse effects of management interventions and to quantitatively describe the variability of intervention success. Nevertheless, our study could not address whether ecological

  17. Evidence for competition at sea between Norton Sound chum salmon and Asian hatchery chum salmon

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Agler, B.A.; Nielsen, Jennifer L.

    2012-01-01

    Increasing production of hatchery salmon over the past four decades has led to concerns about possible density-dependent effects on wild Pacific salmon populations in the North Pacific Ocean. The concern arises because salmon from distant regions overlap in the ocean, and wild salmon populations having low productivity may compete for food with abundant hatchery populations. We tested the hypothesis that adult length-at-age, age-at-maturation, productivity, and abundance of a Norton Sound, Alaska, chum salmon population were influenced by Asian hatchery chum salmon, which have become exceptionally abundant and surpassed the abundance of wild chum salmon in the North Pacific beginning in the early 1980s. We found that smaller adult length-at-age, delayed age-at-maturation, and reduced productivity and abundance of the Norton Sound salmon population were associated with greater production of Asian hatchery chum salmon since 1965. Modeling of the density-dependent relationship, while controlling for other influential variables, indicated that an increase in adult hatchery chum salmon abundance from 10 million to 80 million adult fish led to a 72% reduction in the abundance of the wild chum salmon population. These findings indicate that competition with hatchery chum salmon contributed to the low productivity and abundance of Norton Sound chum salmon, which includes several stocks that are classified as Stocks of Concern by the State of Alaska. This study provides new evidence indicating that large-scale hatchery production may influence body size, age-at-maturation, productivity and abundance of a distant wild salmon population.

  18. Passage behavior of radio-tagged yearling Chinook salmon and steelhead at Bonneville Dam, 2004: Revised for corrected spill annual report

    USGS Publications Warehouse

    Reagan, R.E.; Evans, S.D.; Wright, L.S; Farley, M.J.; Adams, N.S.; Rondorf, D.W.

    2005-01-01

    Flow augmentation, spill, surface collection, and improved turbine guidance systems have been identified as potential management actions to improve passage efficiency and survival of outmigrating juvenile salmonids. The U.S. Army Corps of Engineers (USACE), along with regional, state, and federal resource agencies, has designed and implemented studies to determine which management actions would provide significant biological benefits to juvenile salmonids. From 1994 to 2004, the USACE has contracted the U.S. Geological Survey to evaluate juvenile salmonid behavior in relation to passage improvement tests at Lower Granite, John Day, The Dalles, and Bonneville Dams.

  19. Seasonal and decadal-scale channel evolution on the dammed Elwha River, Washington

    USGS Publications Warehouse

    Draut, Amy E.; Logan, Joshua B.; Mastin, Mark C.; McCoy, Randall E.

    2010-01-01

    More than 75,000 dams exist in the continental United States to provide water storage, flood control, and hydropower generation (Graf, 1999). Many of these were built during the early twentieth century and are due for relicensing consideration now and in the near future. The cost of repairing aging dams, together with growing understanding of the ecologic effects of river regulation (Williams and Wolman, 1984; Dynesius and Nilsson, 1994; Graf, 1999, 2003; Yang et al., 2007), in some places have prompted dam removal, facilitating restoration of riparian habitat to a more natural state. In the Pacific Northwest region of the U.S., river-restoration efforts are commonly targeted to improve habitat quality for native salmonid fish species, many runs of which have declined precipitiously from their historical conditions (owing, in part, to overfishing and habitat loss and degradation) and are now endangered (e.g., Nehlsen, 1997; Larsen et al., 2004; Pess et al., 2008). Removal of dams that block the upstream migration of anadromous fish is considered an important step toward any potential recovery of Pacific Northwest salmon and steelhead populations.

  20. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    SciTech Connect

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and

  1. Sushi Lovers, Beware: Tapeworm Now Found in U.S. Salmon

    MedlinePlus

    ... confirmed that the tapeworm is present in wild pink salmon from the Alaskan Pacific. The findings are ... species, caught off the Alaskan coast. Samples of pink salmon were found to harbor Japanese broad tapeworm ...

  2. Design and Analysis of Salmonid Tagging Studies in the Columbia Basin, Volume XV; Appraisal of the Relationship between Tag Detection Efficiency at Bonneville Dam and the Precision of In-River Survival Estimates of Returning PIT-Tagged Chinook Salmon, 2000 Technical Report.

    SciTech Connect

    Perez-Comas, Joes A.; Skalski, John R.

    2000-07-01

    In the advent of the installation of a PIT-tag interrogation system in the Cascades Island fish ladder at Bonneville Dam, this report provides guidance on the anticipated precision of in-river survival estimates for returning adult salmonids, between Bonneville and Lower Granite dams, for various levels of system-wide adult detection probability at Bonneville Dam. Precision was characterized by the standard error of the survival estimates and the coefficient of variation of the survival estimates. The anticipated precision of in-river survival estimates for returning adult salmonids was directly proportional to the number of PIT-tagged smolts released and to the system-wide adult detection efficiency at Bonneville Dam, as well as to the in-river juvenile survival above Lower Granite Dam. Moreover, for a given release size and system-wide adult detection efficiency at Bonneville Dam, higher estuarine and marine survival rates also produced more precise survival estimates. With a system-wide detection probability of P{sub BA} = 1 at Bonneville Dam, the anticipated CVs for in-river survival estimate ranged between 9.4 and 20% with release sizes of 10,000 smolts. Moreover, if the system-wide adult detection efficiency at Bonneville Dam is less than maximum (i.e., P{sub BA} < 1), precision of CV {le} 20% could still be attained. For example, for releases of 10,000 PIT-tagged fish a CV of 20% in the estimates of in-river survival for returning adult salmon could be reach with system-wide detection probabilities of 0.2 {le} P{sub BA} {le} 0.6, depending on the tagging scenario.

  3. Use of an autonomous sensor to evaluate the biological performance of the advanced turbine at Wanapum Dam

    DOE PAGES

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; ...

    2010-10-13

    Hydropower is the largest renewable energy resource in the United States and the world. However, hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydroturbines. In the Columbia and Snake River basins, dam operators and engineers are required to make those hydroelectric facilities more fish-friendly through changes in hydroturbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon under the Endangered Species Act of 1973. Public Utility District No. 2 of Grant County, Washington, requested authorization from the Federal Energy Regulatory Commission tomore » replace the ten turbines at Wanapum Dam with advanced hydropower turbines designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. As an additional measure to the primary metric of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device - the Sensor Fish - to provide insight into the specific hydraulic conditions and physical stresses experienced by the fish as well as the specific causes of fish biological response. We found that the new hydroturbine blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective in meeting the objectives of improving fish survival while enhancing operational efficiency of the dam. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by the balloon tag-recapture methodology. In addition, the new turbine provided a better pressure and rate of pressure change environment for fish passage. Altogether, the Sensor Fish data indicated that the advanced hydroturbine design improved passage of juvenile salmon at Wanapum Dam.« less

  4. Use of an autonomous sensor to evaluate the biological performance of the advanced turbine at Wanapum Dam

    SciTech Connect

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

    2010-10-13

    Hydropower is the largest renewable energy resource in the United States and the world. However, hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydroturbines. In the Columbia and Snake River basins, dam operators and engineers are required to make those hydroelectric facilities more fish-friendly through changes in hydroturbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon under the Endangered Species Act of 1973. Public Utility District No. 2 of Grant County, Washington, requested authorization from the Federal Energy Regulatory Commission to replace the ten turbines at Wanapum Dam with advanced hydropower turbines designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. As an additional measure to the primary metric of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device - the Sensor Fish - to provide insight into the specific hydraulic conditions and physical stresses experienced by the fish as well as the specific causes of fish biological response. We found that the new hydroturbine blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective in meeting the objectives of improving fish survival while enhancing operational efficiency of the dam. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by the balloon tag-recapture methodology. In addition, the new turbine provided a better pressure and rate of pressure change environment for fish passage. Altogether, the Sensor Fish data indicated that the advanced hydroturbine design improved passage of juvenile salmon at Wanapum Dam.

  5. Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho: Annual Report 2001.

    SciTech Connect

    Cochnauer, Tim; Claire, Christopher

    2002-12-01

    Recent decline of Pacific lamprey Lampetra tridentata adult migrants to the Snake River drainage has focused attention on the species. Adult Pacific lamprey counted passing Ice Harbor Dam fishway averaged 18,158 during 1962-69 and 361 during 1993-2000. Human resource manipulations in the Snake River and Clearwater River drainages have altered ecosystem habitat in the last 120 years, likely impacting the productive potential of Pacific lamprey habitat. Timber harvest, stream impoundment, road construction, grazing, mining, and community development have dominated habitat alteration in the Clearwater River system and Snake River corridor. Hydroelectric projects in the Snake River corridor impact juvenile/larval Pacific lamprey outmigrants and returning adults. Juvenile and larval lamprey outmigrants potentially pass through turbines, turbine bypass/collection systems, and over spillway structures at the four lower Snake River hydroelectric dams. Clearwater River drainage hydroelectric facilities have impacted Pacific lamprey populations to an unknown degree. The Pacific Power and Light Dam on the Clearwater River in Lewiston, Idaho, restricted chinook salmon Oncorhynchus tshawytscha passage in the 1927-1940 period, altering the migration route of outmigrating Pacific lamprey juveniles/larvae and upstream adult migrants (1927-1972). Dworshak Dam, completed in 1972, eliminated Pacific lamprey spawning and rearing in the North Fork Clearwater River drainage. Construction of the Harpster hydroelectric dam on the South Fork of the Clearwater River resulted in obstructed fish passage 1949-1963. Through Bonneville Power Administration support, the Idaho Department of Fish and Game continued investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage in 2001. Trapping, electrofishing, and spawning ground redd surveys were used to determine Pacific lamprey distribution, life history strategies, and habitat requirements in the South Fork

  6. Hydroacoustic Evaluation of Fish Passage through Bonneville Dam in 2004

    SciTech Connect

    Ploskey, Gene R.; Weiland, Mark A.; Schilt, Carl R.; Kim, Jina; Johnson, Peter N.; Hanks, Michael E.; Patterson, Deborah S.; Skalski, John R.; Hedgepeth, J

    2005-12-22

    The Portland District of the U.S. Army Corps of Engineers requested that the Pacific Northwest National Laboratory (PNNL) conduct fish-passage studies at Bonneville Dam in 2004. These studies support the Portland District's goal of maximizing fish-passage efficiency (FPE) and obtaining 95% survival for juvenile salmon passing Bonneville Dam. Major passage routes include 10 turbines and a sluiceway at Powerhouse 1 (B1), an 18-bay spillway, and eight turbines and a sluiceway at Powerhouse 2 (B2). In this report, we present results of four studies related to juvenile salmonid passage at Bonneville Dam. The studies were conducted between April 15 and July 15, 2004, encompassing most of the spring and summer migrations. Studies included evaluations of (1) Project fish passage efficiency and other major passage metrics, (2) B2 fish guidance efficiency and gap loss, (3) smolt approach and fate at the B2 Corner Collector (B2CC), and (4) B2 vertical barrier screen head differential.

  7. 77 FR 12814 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ...; Status of Salmon Chum Bycatch, review of actions on Bering Sea (BS) Chinook, review of actions on GOA Chinook, review of pending actions on BS chum salmon bycatch; Status of GOA Pacific cod (discussion...

  8. Salmon-Eating Grizzly Bears Exposed to Elevated Levels of Marine Derived Persistent Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Christensen, J. R.; Ross, P. S.; Whiticar, M. J.

    2004-12-01

    The coastal grizzly bears of British Columbia (BC, Canada) rely heavily on salmon returning from the Pacific Ocean, whereas interior bears do not have access to or readily utilize this marine-derived food source. Since salmon have been shown to accumulate persistent organic pollutants (POPs) from the North Pacific Ocean, we hypothesized that salmon consumption by grizzly bears would be reflected by an increase in the POP burden. To test this hypothesis we collected hair and fat tissue from grizzlies at various locations around BC to compare salmon-eating (coastal) grizzlies to non-salmon-eating (interior) grizzlies. We characterized the feeding habits for each bear sampled by measuring the stable carbon and nitrogen isotope signature of their hair. The positive relationship between 13C/12C and 15N/14N isotopic ratios suggests that the majority of the meat portion of the diet of coastal grizzlies is coming from salmon, rather than from terrestrial or freshwater sources. By contrast, stable isotope ratios revealed that interior bears have an almost exclusive vegetarian diet with no marine influence. As hypothesized, the coastal grizzly bears have significantly greater OC pesticide and lower-brominated PBDE congener body burden than the interior grizzlies. We also found a positive relationship between C and N isotope ratios and these same POP contaminants in bear tissue. Overall, these results demonstrate that Pacific salmon represents a significant vector delivering both OC pesticides and PBDEs to BC coastal grizzly bears.

  9. Teratological hermaphroditism in the chum salmon Oncorhynchus keta (Walbaum)

    USGS Publications Warehouse

    Uzmann, J.R.; Hesselholt, M.N.

    1957-01-01

    The anomalous condition of hermaphroditism appears to be no less rare in fish than in other normally dioecious animals. Previous records of bisexuality' in the Pacific salmons, Oncorhynchus spp., are few in number despite the intensive study accorded this group. Rutter (1902) reported the condition in two king salmon (O. tshawytscha); Crawford (1927) reported the condition in a silver salmon (O. kisutch); and Gibbs (1956) described a bisexual steelhead trout (Salmo gairdneri) and briefly noted another instance of hermaphroditism in the king salmon. We wish to record an example of this anomaly in the chum salmon (O. keta).

  10. [The variation in chum salmon Oncorhynchus keta (Walbaum) mitochondrial DNA and its connection with the paleogeographic events in the Northwest Pacific].

    PubMed

    Poliakova, N E; Semina, A V; Brykov, V A

    2006-10-01

    The results of examining mtDNA variation in populations of chum salmon Oncorhynchus keta from the rivers of the basins of the seas of Japan and Okhotsk and in the chum salmon seasonal races of the Amur River are presented. A significant level of polymorphism between the majority of the populations studied was detected. The groups of chum salmon from the Japan and Okhotsk Seas displayed the most pronounced differences. Analysis of genetic variation demonstrated that periodic paleontologic and climatic changes in the past of this region were the most probable factor that caused the divergence of these populations. The advances and retreats of glaciers and the accompanying regressions and transgressions of the ocean level caused isolation of chum salmon in the refugia belonging hypothetically to the paleo-Suifun and paleo-Amur regions. These population groups diverged presumably 350-450 thousand years ago. Differences between the seasonal races of the Amur chum salmon are insignificant, and their emergence dates back to the period of the last Wisconsin glaciation. Probably, the main isolation factor now is the genetically determined time of spawning.

  11. 32. AERIAL VIEW OF BOISE DIVERSION DAM. VIEW TO NORTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. AERIAL VIEW OF BOISE DIVERSION DAM. VIEW TO NORTH. Photocopy of photograph by Glade Walker, U.S. Bureau of Reclamation, Pacific Northwest Region, May 1981. - Boise Project, Boise River Diversion Dam, Across Boise River, Boise, Ada County, ID

  12. 59. AERIAL VIEW OF OWYHEE DAM SHOWING RINGGATE SPILLWAY. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. AERIAL VIEW OF OWYHEE DAM SHOWING RING-GATE SPILLWAY. VIEW TO NORTHEAST. Aerial photo by Glade Walker, U.S. Bureau of Reclamation, Pacific Northwest Region, September 29, 1989. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR

  13. Morphological changes in the retina in Pacific ocean salmon Oncorhynchus masou fry in response to neutralization of the geomagnetic field in conditions of normal illumination.

    PubMed

    Maksimovich, A A; Kondrashev, S L; Gnyubkina, V P

    2008-10-01

    The studies reported here provide the first demonstration that retinal responses in both the fry of the migratory salmon trout Oncorhynchus masou and the dwarf form of this species changed in conditions of experimental neutralization of the geomagnetic field (GMF); migratory salmon trout fry and dwarves showed different changes. The responses of different types of retinal photoreceptor in migratory salmon trout fry to neutralization of the GMF differed: while rods and double cones perceived neutralization of the GMF as the onset of darkness (the scotopic reaction), single (generally blue-sensitive) cones responded to neutralization of the GMF both as presentation of blue light or (very rarely) ultraviolet irradiation. The retina of dwarf male salmon trout responded to neutralization of the GMF with a double response: rods showed a light (photopic) response, while double (red/green-sensitive) cones produced dark (scotopic) responses. Single (blue-sensitive) cones responded to neutralization of the GMF as bright blue light. Thus, the morphological picture of the retina in dwarf male salmon trout in these experimental conditions corresponds to the perception of blue light. The initial conditions were different--normal diffuse daylight with a brightness of about 7.5 Lx. It is likely that neutralization of the magnetic field had no effect on rods, while double, red-green, cones responded as to darkness, i.e., the fish did not perceive red or green light in the visible spectrum, but perceived only blue and, possibly, ultraviolet light by means of central blue-sensitive and accessory cones. Thus, these experiments demonstrated that in conditions of normal daylight illumination, retinal photoreceptors in salmon fry respond to changes in the earth's magnetic field, i.e., objectively function as magnetoreceptors.

  14. Salmon Mapper

    EPA Pesticide Factsheets

    Information about the web application to assist pesticide users' with an understanding of the spatial extent of certain pesticide use limitations to protect endangered or threatened salmon and steelhead in California, Oregon and Washington.

  15. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus Tshawytscha) : Spawning Near Ives and Pierce Island of the Columbia River, 2001 Annual Report.

    SciTech Connect

    Mueller, Robert P.

    2002-10-01

    Pacific Northwest National Laboratory initiated studies to identify potential fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat and assess the extent of spawning in deep water (>1 m) downstream of Bonneville Dam in the fall of 1999. This report provides results from 2001, the third year of our effort. The main objective of this study was to find deepwater spawning locations of fall chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the area. The secondary objective was to map any chum salmon redds located in the deeper sections near Hamilton Slough. River flows during the spawning surveys in 2001 were lower than in 1999 and 2000. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 9, 2001. The location of the spawning area was similar to that of 1999 and 2000. One difference was the majority of redds were found in deeper water (>1.5 m) and closer to the shoreline adjacent to Pierce Island. Because of the low river flows during the fall of 2001, only a handful of redds were found using the boat-deployed video system within Hamilton Slough. No chum salmon (O. keta) redds were found in areas surveyed during 2000. (Note: surveys were limited to deeper sections of Hamilton Slough and near the main river channel.) An estimated 717 fall chinook salmon redds at water depths exceeding 1.5 m ({approx} 125 kcfs) were documented in 2001. These estimates are expanded from the number of redds found within a predefined survey area. Fall chinook salmon redds were found at water depths from 1.5-4.6 m and were located in a general area of {approx} 4.9 ha. Fall chinook salmon redds were constructed in gravels ranging from 3.2-13.4 cm in diameter and water velocities of 0.29-0.70 m/s.

  16. [Patterns of genetic diversity in population complexes of Pacific chum salmon Oncorhynchus keta Walbaum, from Asia and Northern America, inferred from allozyme polymorphism data].

    PubMed

    Savin, V A; Varnavskaia, N V; Shaporev, R A

    2009-06-01

    Based on the data of Russian and foreign researchers, a database, consisting of 100 allozyme-coding loci examined in 288 chum salmon populations from Asia and Northern America, was constructed. Using G-test, genetic heterogeneity of Asian population samples of chum salmon was evaluated. Correlations between the frequencies of major alleles and geographic latitude of the mouths of native rivers were estimated. Using the methods of Nei and Cavalli-Sforza and Edwards, for different local chum salmon stock groups the genetic distances at the number of polymorphic enzyme loci were determined. Analysis of these distances made it possible to evaluate the patterns of genetic diversity in regional population groups from the Russian Far East, Japan, and North America. The proportions of genetic variation at each hierarchical level, identified in accordance with the geographical positions of the populations, were estimated through partitioning of variation in Asian populations into within and between-population components. It was demonstrated that intraspecific genetic structure of chum salmon corresponded geographic subdivision into regional population groups.

  17. Application of Diversity Indices to Quantify Early Life-History Diversity for Chinook Salmon

    SciTech Connect

    Johnson, Gary E.; Sather, Nichole K.; Skalski, John R.; Teel, David

    2014-03-01

    We developed an index of early life history diversity (ELHD) for Pacific salmon (Oncorhynchus spp.) Early life history diversity is the variation in morphological and behavioral traits expressed within and among populations by individual juvenile salmon during their downstream migration. A standard quantitative method does not exist for this prominent concept in salmon biology.

  18. 77 FR 25915 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2012 Management Measures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Administration 50 CFR Part 660 [Docket No. 120424023-1023-01] RIN 0648-XA921 Fisheries Off West Coast States; West Coast Salmon Fisheries; 2012 Management Measures AGENCY: National Marine Fisheries Service (NMFS...'' fishery management plan entitled the Pacific Coast Salmon Fishery Management Plan (Salmon...

  19. 78 FR 25865 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2013 Management Measures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... National Oceanic and Atmospheric Administration 50 CFR Part 660 RIN 0648-XC438 Fisheries Off West Coast States; West Coast Salmon Fisheries; 2013 Management Measures AGENCY: National Marine Fisheries Service... ``framework'' fishery management plan entitled the Pacific Coast Salmon Fishery Management Plan (Salmon...

  20. Effects of multiple acute stressors on the predator avoidance ability and physiology of juvenile Chinook salmon

    USGS Publications Warehouse

    Mesa, Matthew G.

    1994-01-01

    Northern squaw fish Ptychocheilus oregonensis are the predominant predators of juvenile Pacific salmonids Oncorhynchus spp. in the Columbia River, and their predation rates are greatest just below dams. Because juvenile salmonids are commonly subjected to multiple stressors at dams in the course of their seaward migration, high predation rates below dams may be due in part to an increase in the vulnerability of stressed fish. I conducted laboratory experiments to examine the predator avoidance ability and physiological stress responses of juvenile chinook salmon O. tshawytscha subjected to treatments (stressors) designed to simulate routine hatchery practices (multiple handlings) or dam passage (multiple agitations). Both stressors resulted in lethargic behavior in the fish, and agitation also caused disorieniation and occasional injury. When equal numbers of stressed and unstressed fish were exposed to northern squawfish for up to 1 h, significantly more stressed fish were eaten, but this effect was not evident during longer exposures. The lack of differential predation in trials lasting up to 24 h can be explained by the rapid development of schooling behavior in the prey, but other possibilities exist, such as changing ratios of stressed and unstressed prey over time. Concentrations of plasma cortisol, glucose, and lactate in fish subjected to multiple stressors were similar and sometimes cumulative, returned to prestress levels within 6-24 h, and correlated poorly with predator avoidance ability. My results suggest that juvenile salmonids are capable of avoiding predators within 1 h after being subjected to multiple acute stressors even though physiological homeostasis may be altered for up to 24 h. Therefore, because juvenile salmonids typically reside in lailrace areas for only a short time after dam passage, measures aimed at reducing physical stress or protecting them as they migrate through dam tailraces may help alleviate the relatively intense predation

  1. Habitat Suitability Index Models: Coho salmon

    USGS Publications Warehouse

    McMahon, Thomas E.

    1983-01-01

    The coho salmon (Oncorhynchus kisutch) is native to the northern Pacific Ocean, spawning and rearing in streams from Monterey Bay, California, to Point Hope, Alaska, and southward along the Asiatic coast to Japan. Its center of abundance in North America is from Oregon to Alaska (Briggs 1953; Godfrey 1965; Hart 1973; Scott and Crossman 1973). Coho salmon have been successfully introduced into the Great Lakes and reservoirs and lakes throughout the United States to provide put-and-grow sport fishing (Scott and Crossman 1973; Wigglesworth and Rawson 1974). No subspecies of coho salmon have been described (Godfrey 1965).

  2. Recovery and management options for spring/summer chinook salmon in the Columbia River basin.

    PubMed

    Kareiva, P; Marvier, M; McClure, M

    2000-11-03

    Construction of four dams on the lower Snake River (in northwestern United States) between 1961 and 1975 altered salmon spawning habitat, elevated smolt and adult migration mortality, and contributed to severe declines of Snake River salmon populations. By applying a matrix model to long-term population data, we found that (i) dam passage improvements have dramatically mitigated direct mortality associated with dams; (ii) even if main stem survival were elevated to 100%, Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) would probably continue to decline toward extinction; and (iii) modest reductions in first-year mortality or estuarine mortality would reverse current population declines.

  3. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest). Pacific Herring

    DTIC Science & Technology

    1989-12-01

    these times are salmon, seals, abnormalities developed in the lower jaws of sea lions, killer whales, dogfish , and birds larvae from eggs incubated at 4.0...offshore, important predators include Optimal temperatures for juvenile and adult hake, sablefish, dogfish , Pacific cod, and salmon. Pacific herring

  4. Diphyllobothrium nihonkaiense Tapeworm Larvae in Salmon from North America.

    PubMed

    Kuchta, Roman; Oros, Mikuláš; Ferguson, Jayde; Scholz, Tomáš

    2017-02-01

    Diphyllobothriosis is reemerging because of global importation and increased popularity of eating raw fish. We detected Diphyllobothrium nihonkaiense plerocercoids in the musculature of wild pink salmon (Oncorhynchus gorbuscha) from Alaska, USA. Therefore, salmon from the American and Asian Pacific coasts and elsewhere pose potential dangers for persons who eat these fish raw.

  5. SALMON AND THE ENDANGERED SPECIES ACT: TROUBLESOME QUESTIONS

    EPA Science Inventory

    Throughout the Pacific Northwest and California, all wild salmon runs have declined since 1850 and some have disappeared. A sustainable future for wild salmon remains elusive. In response to requirements of the U.S. Endangered Species Act, the Canadian Species at Risk Act, and ...

  6. Diphyllobothrium nihonkaiense Tapeworm Larvae in Salmon from North America

    PubMed Central

    Oros, Mikuláš; Ferguson, Jayde; Scholz, Tomáš

    2017-01-01

    Diphyllobothriosis is reemerging because of global importation and increased popularity of eating raw fish. We detected Diphyllobothrium nihonkaiense plerocercoids in the musculature of wild pink salmon (Oncorhynchus gorbuscha) from Alaska, USA. Therefore, salmon from the American and Asian Pacific coasts and elsewhere pose potential dangers for persons who eat these fish raw. PMID:28098540

  7. Nonnative salmon alter nitrification in Great Lakes tributaries

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-05-01

    Nonnative species can affect the biogeochemistry of an ecosystem. For instance, Pacific salmon have been introduced for sport fishing in many streams and lakes beyond their native range, and their introduction may be altering nitrogen cycling in those ecosystems.

  8. Salmon returns and consumer fitness: growth and energy storage in stream-dwelling salmonids increases with spawning salmon abundance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined how biomass of marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and nitrogen stable isotope ratios (d15N) of stream-dwelling fishes. We sampled coho salmon (Oncorhynchus kisutch) parr and juvenile Dolly Varden (Salvelinus malma) d...

  9. Effects of river discharge on hyporheic exchange flows in salmon spawning areas of a large gravel-bed river

    SciTech Connect

    Hanrahan, Timothy P.

    2008-01-01

    The flow magnitude and timing from hydroelectric dams in the Snake River basin of the Pacific northwestern United States is managed in part for the benefit of salmon. The objective of this research was to evaluate the effects of current Hells Canyon Dam discharge operations on hydrologic exchange flows between the river and riverbed in Snake River fall Chinook salmon spawning areas. Interactions between river water and pore water within the upper 1 m of the riverbed were quantified through the use of self-contained temperature and water level data loggers suspended inside of piezometers. The data were recorded at 20 min intervals over a period of 200 days when the mean daily discharge was 218–605 m3 s–1, with hourly stage changes as large as 1.9 m. Differences in head pressure between the river and riverbed were small, often within ±2 cm. Measured temperature gradients in the riverbed indicated significant interactions between the surface and subsurface water. Neither hydraulic nor temperature gradients at most sites were significantly affected by either short- or long-term changes in discharge operations from Hells Canyon Dam. Only 2 out of 14 study sites exhibited acute flux reversals between the river and riverbed resulting from short-term, large magnitude changes in discharge. The findings suggest small-scale piezometric head differences play a minor role in the hydrologic exchange between the river and riverbed at the study sites. The processes controlling hydrologic exchange at the study sites are likely to be bedform-induced advective pumping, turbulence at the riverbed surface, and large-scale hydraulic gradients along the longitudinal profile of the riverbed. By incorporating the knowledge of hydrologic exchange processes into water management planning, regional agencies will be better prepared to manage the limited water resources among competing priorities that include salmon recovery, flood control, irrigation supply, hydropower production, and

  10. Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho : Annual Report 2000.

    SciTech Connect

    Cochnauer, Tim; Claire, Christopher

    2000-01-01

    Recent decline of Pacific lamprey Lampetra tridentata adult migrants to the Snake River drainage has focused attention on the species. Adult returns in 1995-1999 were more than ten magnitudes less than returns in the early 1960's. Human activities in the Snake River and Clearwater River drainages have altered ecosystem habitat in the last 100 years and likely the productive potential of Pacific lamprey habitat. Logging, stream impoundment, road construction, grazing, mining, and community development have dominated habitat alteration in the Clearwater River system and Snake River corridor. Hydroelectric projects in the Snake River corridor impact juvenile Pacific lamprey outmigrants and returning adults. Juvenile lamprey outmigrants potentially pass through turbines, turbine bypass and collection systems, and spillway structures at lower Snake River hydroelectric dams. Clearwater River drainage hydroelectric facilities including the Pacific Power and Light Dam on the Clearwater River in Lewiston, Idaho, impacted Pacific lamprey populations, however, the degree of impact is unknown (1920's-early 1970's). Hydroelectric dam construction (Harpster Dam) on the South Fork of the Clearwater River resulted in obstructed salmonid passage in the mid-1900's. Habitat alterations in the Snake River basin and Clearwater River drainage have had numerous negative effects on salmon Oncorhynchus spp. and steelhead trout O. mykiss populations (wild fish), but the magnitude of impacts on lamprey productivity and survival is unknown. Thorough understanding of Pacific lamprey habitat use and life history processes is needed to facilitate management and restoration of the species. Through Bonneville Power Administration support, the Idaho Department of Fish and Game began investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage in 2000. Trapping, electrofishing, and spawning ground redd surveys were used to determine where Pacific lamprey persist

  11. A Literature Review, Bibliographic Listing, and Organization of Selected References Relative to Pacific salmon (Oncorhynchus spp.) and Abiotic and Biotic Attributes of the Columbia River Estuary and Adjacent Marine and Riverine Environs for Various Historical Periods : Measure 7.1A of the Northwest Power Planning Council`s 1994 Fish and Wildlife Program : Report 4 of 4, Final Report.

    SciTech Connect

    Costello, Ronald J.

    1996-05-01

    This report contains the results of a literature review on the carrying capacity of Pacific salmon in the Columbia River Basin. The objective of the review was to find the information gaps relative to the determinants of salmon carrying capacity in the Columbia River Basin. The review was one activity designed to answer questions asked in Measure 7.1A of the Councils Fish and Wildlife Program. Based, in part, on the information learned during the literature review and the other work accomplished during this study the Pacific Northwest National Laboratory (PNNL) state concluded that the approach inherent in 7.1A will not increase understanding of ecology, carrying capacity, or limiting factors that influence salmon under current conditions. To increase understanding of ecology, carring capacity, and limiting factors, it is necessary to deal with the complexity of the sustained performance of salmon in the Columbia River Basin. The PNNL team suggests that the regions evaluated carrying capacity from more than one view point. The PNNL team recommends that the region use the contextualistic view for evaluating capacity.

  12. 2005 Evaluation of Chum, Chinook and Coho Salmon Entrapment near Ives Island in the Columbia River; 2004-2005 Annual Report.

    SciTech Connect

    Wilson, Jeremy; Duston, Reed A.

    2006-01-01

    During mid-1990s, Pacific States Marine Fisheries Commission (PSMFC) and Washington Department of Fish and Wildlife (WDFW) identified several populations of salmon spawning approximately three miles downstream of Bonneville Dam on the Columbia River. These populations are exposed to rapidly changing flow regimes associated with Bonneville Dam's operation. This study investigated the relationship between changing water levels and stranding or entrapment of juvenile salmon in the Ives Island area. Walking surveys of the Ives Island and Pierce Island shorelines were conducted every one to three days throughout the juvenile emigration period. The nearby shorelines of the Washington and Oregon mainland were also surveyed. Between January and June of 2005, surveyors examined 21 substantial entrapments and 20 stranding sites. A total of 14,337 salmonids, made up of three species, were found either entrapped or stranded. Nearly 92% of the salmonids were chinook salmon (Oncorhynchus tshawytscha), 4.5% were federally listed chum salmon (Oncorhynchus keta), and 3.8% were coho salmon (Oncorhynchus kisutch). When compared to the 2004 study year, 2005 showed an 83% increase in the overall number of observed entrapped or stranded juvenile salmon. Much of this increase can be attributed to one entrapment found along the north shore of Pierce Island (identified as E501). E501 has historically been known to contain relatively large numbers of entrapped salmon. Even so, the number of entrapped salmon observed during 2005 was a 732% increase (5926) over any prior study years. Over 83% of all chum, 63.1% of all chinook, and 63.2% of all coho sampled during 2005 were retrieved from entrapments that were likely to have formed when Bonneville Dam tailwater levels dropped to elevations between 11.5 and 12.9 feet. Peak numbers of chum and chinook were sampled in mid-April when tailwater levels ranged between 11.6ft and 15.6ft. Peak numbers of coho were sampled during the last week of

  13. Time-Delayed Subsidies: Interspecies Population Effects in Salmon

    PubMed Central

    Nelson, Michelle C.; Reynolds, John D.

    2014-01-01

    Cross-boundary nutrient inputs can enhance and sustain populations of organisms in nutrient-poor recipient ecosystems. For example, Pacific salmon (Oncorhynchus spp.) can deliver large amounts of marine-derived nutrients to freshwater ecosystems through their eggs, excretion, or carcasses. This has led to the question of whether nutrients from one generation of salmon can benefit juvenile salmon from subsequent generations. In a study of 12 streams on the central coast of British Columbia, we found that the abundance of juvenile coho salmon was most closely correlated with the abundance of adult pink salmon from previous years. There was a secondary role for adult chum salmon and watershed size, followed by other physical characteristics of streams. Most of the coho sampled emerged in the spring, and had little to no direct contact with spawning salmon nutrients at the time of sampling in the summer and fall. A combination of techniques suggest that subsidies from spawning salmon can have a strong, positive, time-delayed influence on the productivity of salmon-bearing streams through indirect effects from previous spawning events. This is the first study on the impacts of nutrients from naturally-occurring spawning salmon on juvenile population abundance of other salmon species. PMID:24911974

  14. Salmon's Laws.

    ERIC Educational Resources Information Center

    Shannon, Thomas A.

    1994-01-01

    Presents Paul Salmon's old-fashioned, common-sense guidelines for success in practical school administration. The maxims advise on problem ownership; the value of selective neglect; the importance of empowerment, enthusiasm, and effective communication; and the need for positive reinforcement, cultivation of support, and good relations with media,…

  15. Piscine reovirus, but not Jaundice Syndrome, was transmissible to Chinook Salmon, Oncorhynchus tshawytscha (Walbaum), Sockeye Salmon, Oncorhynchus nerka (Walbaum), and Atlantic Salmon, Salmo salar L.

    USGS Publications Warehouse

    Garver, Kyle A.; Marty, Gary D.; Cockburn, Sarah N.; Richard, Jon; Hawley, Laura M.; Müller, Anita; Thompson, Rachel L.; Purcell, Maureen K.; Saksida, Sonja M.

    2015-01-01

    A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely <48 h; renal tubular epithelial cell necrosis is the most consistent lesion. In an infectivity trial, Chinook Salmon, Sockeye Salmon and Atlantic Salmon, intraperitoneally inoculated with a PRV-positive organ homogenate from jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon.

  16. Interspecific competition in tributaries: Prospectus for restoring Atlantic salmon in Lake Ontario

    USGS Publications Warehouse

    Johnson, James H.; Wedge, Leslie R.

    1999-01-01

    Historically, Lake Ontario may have supported the world's largest freshwater population of Atlantic salmon (Salmo salar). However, by the late 1800's, salmon were virtually extinct in the lake due to the damming of tributaries, overharvest, deforestation, and pollution. Of these factors, the building of dams on tributaries, which precluded access by the salmon to natal spawning streams, was probably the most detrimental. Since the extirpation of Atlantic salmon in the Lake Ontario watershed over a century ago, considerable change has occurred throughout the lake and tributary ecosystem. The changes within the ecosystem that may have the most profound effect on Atlantic salmon restoration include the presence of exotic species, including other salmonines, and reduced habitat quality, especially in tributaries. These changes must be taken into account when considering Atlantic salmon restoration.

  17. Post-release behavior and movement patterns of Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) after capture using alternative commercial fish gear, lower Columbia River, Washington and Oregon, 2013

    USGS Publications Warehouse

    Liedtke, Theresa L.; Kock, Tobias J.; Evans, Scott D.; Hansen, Gabriel S.; Rondorf, Dennis W.

    2014-01-01

    In 2011 and 2012, WDFW conducted post-release mortality studies of steelhead (Oncorhynchus mykiss), Chinook salmon (Oncorhynchus tshawytscha), and coho salmon (Oncorhynchus kisutch) that were captured using beach or purse seines. These studies were comprised of two groups of fish tagged with passive integrated transponder tags (PIT tags): (1) treatment fish that were captured by one of the gear types 9–25 river kilometers (rkm) downstream of Bonneville Dam (rkm 234); and (2) control fish that were captured at the Adult Fish Facility near the Washington shore fish ladder at Bonneville Dam, and then transported and released 8 rkm downstream of the Bonneville Dam. Fish were confirmed to have survived if they moved upstream and were detected on PIT-tag antennas at or upstream of Bonneville Dam, were recovered at hatcheries or at the dam, or were captured by commercial or sport fishers. Post-release survival estimates were higher for steelhead (89–98 percent) than for Chinook salmon and coho salmon (50–90 percent; Washington Department of Fish and Wildlife, unpub. data, 2014). However, some Chinook salmon and coho salmon return to hatcheries, or spawn in the mainstem Columbia River and in tributaries downstream of Bonneville Dam. The proportion of Chinook salmon and coho salmon in the treatment group that were destined for areas downstream of Bonneville Dam likely was higher than in the control group because the control fish were collected as they were attempting to pass the dam. If this assertion was true, mortality would have been overestimated in these studies, so WDFW developed a study plan to determine the post-release movements and intended location of Chinook salmon and coho salmon collected with beach and purse seines in the lower Columbia River.

  18. The effects of total dissolved gas on chum salmon fry survival, growth, gas bubble disease, and seawater tolerance

    SciTech Connect

    Geist, David R.; Linley, Timothy J.; Cullinan, Valerie I.; Deng, Zhiqun

    2013-02-01

    Chum salmon Oncorhynchus keta alevin developing in gravel habitats downstream of Bonneville Dam on the Columbia River are exposed to elevated levels of total dissolved gas (TDG) when water is spilled at the dam to move migrating salmon smolts downstream to the Pacific Ocean. Current water quality criteria for the management of dissolved gas in dam tailwaters were developed primarily to protect salmonid smolts and are assumed to be protective of alevin if adequate depth compensation is provided. We studied whether chum salmon alevin exposed to six levels of dissolved gas ranging from 100% to 130% TDG at three development periods between hatch and emergence (hereafter early, middle, and late stage) suffered differential mortality, growth, gas bubble disease, or seawater tolerance. Each life stage was exposed for 50 d (early stage), 29 d (middle stage), or 16 d (late stage) beginning at 13, 34, and 37 d post-hatch, respectively, through 50% emergence. The mortality for all stages from exposure to emergence was estimated to be 8% (95% confidence interval (CI) of 4% to 12%) when dissolved gas levels were between 100% and 117% TDG. Mortality significantly increased as dissolved gas levels rose above 117% TDG,; with the lethal concentration that produced 50% mortality (LC50 ) was estimated to be 128.7% TDG (95% CI of 127.2% to 130.2% TDG) in the early and middle stages. By contrast, there was no evidence that dissolved gas level significantly affected growth in any life stage except that the mean wet weight at emergence of early stage fish exposed to 130% TDG was significantly less than the modeled growth of unexposed fish. The proportion of fish afflicted with gas bubble disease increased with increasing gas concentrations and occurred most commonly in the nares and gastrointestinal tract. Early stage fish exhibited higher ratios of filament to lamellar gill chloride cells than late stage fish, and these ratios increased and decreased for early and late stage fish

  19. Effects of Marine Mammals on Columbia River Salmon Listed under the Endangered Species Act : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 3 of 11.

    SciTech Connect

    Park, Donn L.

    1993-06-01

    Most research on the Columbia and Snake Rivers in recent years has been directed to downstream migrant salmon (Oncorhynchus spp.) losses at dams. Comparatively little attentions has been given to adult losses. Recently an estimated 378,4000 adult salmon and steelhead (O. mykiss) were unaccounted-for from Bonneville Dam to terminal areas upstream. It is now apparent that some of this loss was due to delayed mortality from wounded by marine mammals. This report reviews the recent literature to define predatory effects of marine mammals on Columbia River salmon.

  20. Neurotoxic behavioral effects of Lake Ontario salmon diets in rats

    SciTech Connect

    Hertzler, D.R. )

    1990-03-01

    Six experiments were conducted to examine possible neurotoxic effects of the exposure to contaminants in Lake Ontario salmon administered through the diets of rats. Rats were fed different concentrations of fish (8%, 15% or 30%) in one of three diet conditions: Lake Ontario salmon, Pacific Ocean salmon, or laboratory rat chow only. Following 20 days on the diets, rats were tested for five minutes per day in a modified open field for one or three days. Lake Ontario salmon diets consistently produced significantly lower activity, rearing, and nosepoke behaviors in comparison with ocean salmon or rat chow diet conditions. A dose-response effect for concentration of lake salmon was obtained, and the attenuation effect occurred in males, females, adult or young animals, and postweaning females, with fish sampled over a five-year period. While only two of several potential contaminants were tested, both fish and brain analyses of mirex and PCBs relate to the behavioral effects.

  1. Salmon recovery planning using the VELMA model

    EPA Science Inventory

    We developed a set of tools to provide decision support for community-based salmon recovery planning in Pacific Northwest watersheds. This seminar describes how these tools are being integrated and applied in collaboration with Puget Sound tribes and community stakeholders to add...

  2. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawtscha) Near Ives and Pierce Island of the Columbia River, 2003-2004 Annual Report.

    SciTech Connect

    Mueller, Robert

    2004-10-01

    Pacific Northwest National Laboratory conducted video-based boat surveys in fall 2003 to identify spawning areas for fall Chinook salmon (Oncorhynchus tshawytscha) in deep water (>1 m) downstream of Bonneville Dam. This report documents the number and extent of Chinook salmon spawning near Ives and Pierce islands of the Columbia River, and is the fifth in a series of reports prepared since 1999. The primary objective of this study was to find deepwater spawning locations of fall Chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the surveyed area. The secondary objective was to document the occurrence of any chum salmon (O. keta) redds in the deeper sections near below Hamilton Creek. Results from the 2003 study show a continuing trend upward in the number of fall Chinook salmon redds found within the survey zones. The number of fall Chinook redds found in the Ives Pierce Island complex (river km 228.5) has increased by a factor of five since the surveys began in 1999. The total number of redds found during 2003 was 336, which compares to 192 in 2002, 43 in 2001, 76 in 2000, and 64 in 1999. The redds encompassed an area of 13.7 ha occurring adjacent to the lower part of Ives Island and Pierce Island. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 24, 2003. An expanded redd count based on percentage of video coverage in the primary and secondary search zones was 3,218 fall Chinook salmon redds in water exceeding 1 m deep and flowing at about 125 kcfs. Fall Chinook salmon redds were found at water depths from 1.07 to 7.6 m and were constructed predominantly of medium cobbles ranging from 7.6 to 15.2 cm in diameter. Two chum salmon redds were found in a small location downstream from Hamilton Creek in water depths of approximately 1 m. No salmon redds were found in other areas searched, including near

  3. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawytscha) near Ives and Pierce Island of the Columbia River, 2004-2005 Annual Report.

    SciTech Connect

    Mueller, Robert

    2005-10-01

    Pacific Northwest National Laboratory conducted video-based boat surveys to identify fall Chinook salmon (Oncorhynchus tshawytscha) spawning areas located in deep water (greater than 1 m) downstream of Bonneville Dam in fall 2004. This report documents the number and extent of Chinook salmon spawning near Ives and Pierce Islands of the Columbia River and is the sixth in a series of reports prepared since 1999. The main objectives of this study were to find deepwater spawning locations of fall Chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawners in the surveyed area. The primary search area was adjacent to the upper portion of Pierce Island, and the secondary search zone was downstream of this area near the lower portion of Pierce Island. A secondary objective was to document the occurrence of any chum salmon (O. keta) redds in the deeper sections downstream of Hamilton Creek (slough zone search area). Fall Chinook salmon redd numbers were down slightly from the record number found during 2003. The number of fall Chinook redds found in the Ives-Pierce Island complex (river km 228.5) during 2004 was 293, which does not include the number of shallow water redds found by visual observation by boat by the Oregon Department of Fish and Wildlife. The redds encompassed an area of 14.6 ha occurring adjacent to the lower part of Ives Island and Pierce Island. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 16, 2004. An expanded redd count based on percentage video coverage in the primary and secondary search zones was 3,198 fall Chinook salmon redds at water depths exceeding approximately 1.0 m (approximately 125 kcfs) with an estimated spawning population of 10,800. Fall Chinook salmon redds were found at water depths from 1.07 to 7.6 m and were constructed predominantly of medium cobbles ranging in size from 7

  4. Hydroacoustic Evaluation of Fish Passage Through Bonneville Dam in 2005

    SciTech Connect

    Ploskey, Gene R.; Weiland, Mark A.; Zimmerman, Shon A.; Hughes, James S.; Bouchard, Kyle E.; Fischer, Eric S.; Schilt, Carl R.; Hanks, Michael E.; Kim, Jina; Skalski, John R.; Hedgepeth, J.; Nagy, William T.

    2006-12-04

    The Portland District of the U.S. Army Corps of Engineers requested that the Pacific Northwest National Laboratory (PNNL) conduct fish-passage studies at Bonneville Dam in 2005. These studies support the Portland District's goal of maximizing fish-passage efficiency (FPE) and obtaining 95% survival for juvenile salmon passing Bonneville Dam. Major passage routes include 10 turbines and a sluiceway at Powerhouse 1 (B1), an 18-bay spillway, and eight turbines and a sluiceway at Powerhouse 2 (B2). In this report, we present results of two studies related to juvenile salmonid passage at Bonneville Dam. The studies were conducted between April 16 and July 15, 2005, encompassing most of the spring and summer migrations. Studies included evaluations of (1) Project fish passage efficiency and other major passage metrics, and (2) smolt approach and fate at B1 Sluiceway Outlet 3C from the B1 forebay. Some of the large appendices are only presented on the compact disk (CD) that accompanies the final report. Examples include six large comma-separated-variable (.CSV) files of hourly fish passage, hourly variances, and Project operations for spring and summer from Appendix E, and large Audio Video Interleave (AVI) files with DIDSON-movie clips of the area upstream of B1 Sluiceway Outlet 3C (Appendix H). Those video clips show smolts approaching the outlet, predators feeding on smolts, and vortices that sometimes entrained approaching smolts into turbines. The CD also includes Adobe Acrobat Portable Document Files (PDF) of the entire report and appendices.

  5. Why aren't there more Atlantic salmon (Salmo salar)?

    USGS Publications Warehouse

    Parrish, D.L.; Behnke, R.J.; Gephard, S.R.; McCormick, S.D.; Reeves, G.H.

    1998-01-01

    Numbers of wild anadromous Atlantic salmon (Salmo salar) have declined demonstrably throughout their native range. The current status of runs on rivers historically supporting salmon indicate widespread declines and extirpations in Europe and North America primarily in southern portions of the range. Many of these declines or extirpations can be attributed to the construction of mainstem dams, pollution (including acid rain), and total dewatering of streams. Purported effects on declines during the 1960s through the 1990s include overfishing, and more recently, changing ocean conditions, and intensive aquaculture. Most factors affecting salmon numbers do not act singly, but rather in concert, which masks the relative contribution of each factor. Salmon researchers and managers should not look for a single culprit in declining numbers of salmon, but rather, seek solutions through rigorous data gathering and testing of multiple effects integrated across space and time.

  6. 106. DAM EARTH DIKE SUBMERSIBLE DAMS & DIKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    106. DAM - EARTH DIKE - SUBMERSIBLE DAMS & DIKE CONN. AT MOVABLE DAM (ML-8-52/2-FS) March 1940 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 8, On Mississippi River near Houston County, MN, Genoa, Vernon County, WI

  7. Impact of Beaver Dams on Abundance and Distribution of Anadromous Salmonids in Two Lowland Streams in Lithuania

    PubMed Central

    Virbickas, Tomas; Stakėnas, Saulius; Steponėnas, Andrius

    2015-01-01

    European beaver dams impeded movements of anadromous salmonids as it was established by fishing survey, fish tagging and redd counts in two lowland streams in Lithuania. Significant differences in abundancies of other litophilic fish species and evenness of representation by species in the community were detected upstream and downstream of the beaver dams. Sea trout parr marked with RFID tags passed through several successive beaver dams in upstream direction, but no tagged fish were detected above the uppermost dam. Increase in abundances of salmonid parr in the stream between the beaver dams and decrease below the dams were recorded in November, at the time of spawning of Atlantic salmon and sea trout, but no significant changes were detected in the sections upstream of the dams. After construction of several additional beaver dams in the downstream sections of the studied streams, abundance of Atlantic salmon parr downstream of the dams decreased considerably in comparison with that estimated before construction. PMID:25856377

  8. Impact of beaver dams on abundance and distribution of anadromous salmonids in two lowland streams in Lithuania.

    PubMed

    Virbickas, Tomas; Stakėnas, Saulius; Steponėnas, Andrius

    2015-01-01

    European beaver dams impeded movements of anadromous salmonids as it was established by fishing survey, fish tagging and redd counts in two lowland streams in Lithuania. Significant differences in abundancies of other litophilic fish species and evenness of representation by species in the community were detected upstream and downstream of the beaver dams. Sea trout parr marked with RFID tags passed through several successive beaver dams in upstream direction, but no tagged fish were detected above the uppermost dam. Increase in abundances of salmonid parr in the stream between the beaver dams and decrease below the dams were recorded in November, at the time of spawning of Atlantic salmon and sea trout, but no significant changes were detected in the sections upstream of the dams. After construction of several additional beaver dams in the downstream sections of the studied streams, abundance of Atlantic salmon parr downstream of the dams decreased considerably in comparison with that estimated before construction.

  9. Use of an Autonomous Sensor to Evaluate the Biological Performance of the Advanced Turbine at Wanapum Dam

    SciTech Connect

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

    2010-10-13

    Hydropower is the largest renewable energy resource in the world and the United States. However, Hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydro turbines. In the Columbia and Snake River basins, dam operators and engineers are required to make these hydroelectric facilities more fish-friendly through changes in hydro-turbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon in the Endangered Species Act of 1973. Grant County Public Utility District (Grant PUD) requested authorization from the Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that are designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. The U.S. Department of Energy Office of Energy Efficiency and Renewable Energy provided co-funding to Grant PUD for aspects of performance testing that supported the application. As an additional measure to the primary evaluation measure of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device to provide insight into the specific hydraulic conditions or physical stresses that the fish experienced or the specific causes of the biological response. We found that the new blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by balloon tag-recapture tests. In addition, the new turbine provided a better pressure and rate of change environment for fish passage. Overall, the Sensor Fish data indicated that the advanced hydro turbine design met the desired fish passage goals for Wanapum Dam.

  10. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2002-2003 Annual Report.

    SciTech Connect

    Achord, Stephen; McNatt, Regan A.; Hockersmith, Eric E.

    2004-04-01

    Prior to 1992, decisions on dam operations and use of stored water relied on recoveries of branded hatchery fish, index counts at traps and dams, and flow patterns at the dams. The advent of PIT-tag technology provided the opportunity to precisely track the smolt migrations of many wild stocks as they pass through the hydroelectric complex and other monitoring sites on their way to the ocean. With the availability of the PIT tag, a more complete approach to these decisions was undertaken starting in 1992 with the addition of PIT-tag detections of several wild spring and summer chinook salmon stocks at Lower Granite Dam. Using data from these detections, we initiated development of a database on wild fish, addressing several goals of the Columbia River Basin Fish and Wildlife Program of the Pacific Northwest Electric Power Planning Council and Conservation Act (NPPC 1980). Section 304(d) of the program states, ''The monitoring program will provide information on the migrational characteristics of the various stocks of salmon and steelhead within the Columbia Basin.'' Further, Section 201(b) urges conservation of genetic diversity, which will be possible only if wild stocks are preserved. Section 5.9A.1 of the 1994 Fish and Wildlife Program states that field monitoring of smolt movement will be used to determine the best timing for water storage releases and Section 5.8A.8 states that continued research is needed on survival of juvenile wild fish before they reach the first dam with special attention to water quantity, quality, and several other factors. The goals of this ongoing study are as follows (1) Characterize the migration timing and estimate parr-to-smolt survival of different stocks of wild Snake River spring/summer chinook salmon smolts at Lower Granite Dam. (2) Determine whether consistent migration patterns are apparent. (3) Determine what environmental factors influence these patterns. (4) Characterize the migrational behavior and estimate survival of

  11. An injectable acoustic transmitter for juvenile salmon

    SciTech Connect

    Deng, Zhiqun; Carlson, Thomas J.; Li, Huidong; Xiao, Jie; Myjak, Mitchell J.; Lu, Jun; Martinez, Jayson J.; Woodley, Christa M.; Weiland, Mark A.; Eppard, Matthew B.

    2015-01-29

    Salmon recovery, and the potential detrimental effects of dams on fish, has been attracting national attention in due to great environmental and economic implications. Acoustic Telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter offers improved performance and 30% weight reduction. Because the new transmitter costs significantly less to use, substantially reduces adverse effects of implantation, and provides additional biological benefits for tagged fish, it will become the enabling technology for studying migration behavior and survival of species and sizes of fish that have never been studied before. This will lead to critical information for salmon recovery and the development of fish-friendly hydroelectric systems.

  12. An injectable acoustic transmitter for juvenile salmon

    DOE PAGES

    Deng, Zhiqun; Carlson, Thomas J.; Li, Huidong; ...

    2015-01-29

    Salmon recovery, and the potential detrimental effects of dams on fish, has been attracting national attention in due to great environmental and economic implications. Acoustic Telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter offers improved performance and 30% weight reduction. Because the new transmitter costs significantly less to use, substantially reduces adverse effects of implantation,more » and provides additional biological benefits for tagged fish, it will become the enabling technology for studying migration behavior and survival of species and sizes of fish that have never been studied before. This will lead to critical information for salmon recovery and the development of fish-friendly hydroelectric systems.« less

  13. An injectable acoustic transmitter for juvenile salmon

    NASA Astrophysics Data System (ADS)

    Deng, Z. D.; Carlson, T. J.; Li, H.; Xiao, J.; Myjak, M. J.; Lu, J.; Martinez, J. J.; Woodley, C. M.; Weiland, M. A.; Eppard, M. B.

    2015-01-01

    Salmon recovery and the potential detrimental effects of dams on fish have been attracting national attention due to the environmental and economic implications. In recent years acoustic telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing a bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter lasts four times longer and weighs 30% less than other transmitters. Because the new transmitter costs significantly less to use and may substantially reduce adverse effects of implantation and tag burden, it will allow for study of migration behavior and survival of species and sizes of fish that have never been studied before. The new technology will lead to critical information needed for salmon recovery and the development of fish-friendly hydroelectric systems.

  14. An injectable acoustic transmitter for juvenile salmon

    PubMed Central

    Deng, Z. D.; Carlson, T. J.; Li, H.; Xiao, J.; Myjak, M. J.; Lu, J.; Martinez, J. J.; Woodley, C. M.; Weiland, M. A.; Eppard, M. B.

    2015-01-01

    Salmon recovery and the potential detrimental effects of dams on fish have been attracting national attention due to the environmental and economic implications. In recent years acoustic telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing a bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter lasts four times longer and weighs 30% less than other transmitters. Because the new transmitter costs significantly less to use and may substantially reduce adverse effects of implantation and tag burden, it will allow for study of migration behavior and survival of species and sizes of fish that have never been studied before. The new technology will lead to critical information needed for salmon recovery and the development of fish-friendly hydroelectric systems. PMID:25630763

  15. An injectable acoustic transmitter for juvenile salmon.

    PubMed

    Deng, Z D; Carlson, T J; Li, H; Xiao, J; Myjak, M J; Lu, J; Martinez, J J; Woodley, C M; Weiland, M A; Eppard, M B

    2015-01-29

    Salmon recovery and the potential detrimental effects of dams on fish have been attracting national attention due to the environmental and economic implications. In recent years acoustic telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing a bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter lasts four times longer and weighs 30% less than other transmitters. Because the new transmitter costs significantly less to use and may substantially reduce adverse effects of implantation and tag burden, it will allow for study of migration behavior and survival of species and sizes of fish that have never been studied before. The new technology will lead to critical information needed for salmon recovery and the development of fish-friendly hydroelectric systems.

  16. Discovering Alaska's Salmon: A Children's Activity Book.

    ERIC Educational Resources Information Center

    Devaney, Laurel

    This children's activity book helps students discover Alaska's salmon. Information is provided about salmon and where they live. The salmon life cycle and food chains are also discussed. Different kinds of salmon such as Chum Salmon, Chinook Salmon, Coho Salmon, Sockeye Salmon, and Pink Salmon are introduced, and various activities on salmon are…

  17. Project Planning for Cougar Dam during 2010

    USGS Publications Warehouse

    Haskell, Craig A.; Tiffan, Kenneth F.

    2011-01-01

    Cougar Dam is a 158 m-tall, rock fill dam located about 63 km east of Springfield, Oregon. Completed in 1963, the dam is owned and operated by the U.S. Army Corps of Engineers (USACE). It impounds Cougar Reservoir, which is 9.7 km long, has a surface area of 518 ha, and is predominately used for flood control. The pool elevation typically ranges from a maximum conservation pool of 515 m (1,690 ft) National Geodetic Vertical Datum (NGVD) in summer to a minimum flood control elevation of 467 m (1,532 ft NGVD) in winter. The reservoir thermally stratifies in the summer, has an average depth of 37 m, and holds 153,500 acre-feet when full. Cougar Dam is located on the South Fork of the McKenzie River 7 km upstream from the mainstem McKenzie River, a tributary of the Willamette River. The McKenzie River Basin basin supports the largest remaining population of wild spawning spring Chinook salmon in the Willamette River Basin (National Oceanic and Atmospheric Administration; NOAA, 2008). Cougar Dam and others were collectively deemed to cause jeopardy to the sustainability of anadromous fish stocks in the Willamette River Basin (NOAA, 2008). Prior to dam construction, as many as 805 redds were observed in the South Fork of the McKenzie River (Willis and others, 1960) and it is estimated that 40 km of spawning habitat were lost when access was blocked after dam construction. The 2008 Willamette Biological Opinion (BIOP) requires improvements to operations and structures to reduce impacts on Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR steelhead (O. mykiss; NOAA, 2008). In 2010, an adult fish collection facility was completed below Cougar Dam to collect returning adult salmon for transport to spawning habitats above the dam. Before that time, returning adult spring Chinook salmon were transported to upstream spawning areas as part of a trap-and-haul program with adults passed ranging annually from 0 to 1,038 (Taylor, 2000). The progeny of

  18. 2004 Evaluation of Chum, Chinook and Coho Salmon Entrapment near Ives Island in the Columbia River; 2004 Annual Report.

    SciTech Connect

    Duston, Reed A.; Wilson, Jeremy

    2005-08-01

    From January to July of 2004, 33 entrapments and 56 stranding sites were examined on the Columbia River near Ives Island, downstream of Bonneville Dam. A total of 7,834 salmonids, made up of three species, were collected (Table 1). The fish sampled during this time were chinook salmon (85%), chum salmon (8%), and coho salmon (7%). The following analysis of the relationship between environmental factors and salmon placed at risk by river level fluctuations focuses on each of these three species of salmon.

  19. 2003 Evaluation of Chum, Chinook and Coho Salmon Entrapment near Ives Island in the Columbia River; 2003 Annual Report.

    SciTech Connect

    Duston, Reed A.; Wilson, Jeremy

    2004-09-01

    From January to July of 2003, 42 entrapments and 25 stranding sites were examined on the Columbia River near Ives Island, downstream of Bonneville Dam. A total of 6,122 salmonids, consisting of three different species, were collected at these sites (Table 1). The fish sampled during this time were chinook salmon (69%), chum salmon (7%), and coho salmon (24%). The following analysis of the relationship between environmental factors and salmon placed at risk by river level fluctuations focuses on each of these three salmon species.

  20. 2002 Evaluation of Chum, Chinook and Coho Salmon Entrapment near Ives Island in the Columbia River; 2002 Annual Report.

    SciTech Connect

    Duston, Reed A.; Wilson, Jeremy

    2003-10-01

    From January to July of 2002, 79 entrapments and 22 stranding sites were examined on the Columbia River near Ives Island, downstream of Bonneville Dam. A total of 2,272 salmonids, consisting of three different species, were collected at these sites (Table 1). The fish sampled during this time were chinook salmon (49%), chum salmon (29%), and coho salmon (22%). The following analysis of the relationship between environmental factors and salmon placed at risk by river level fluctuations focuses on each of these three salmon species.

  1. Geomorphology and the Restoration Ecology of Salmon

    NASA Astrophysics Data System (ADS)

    Montgomery, D. R.

    2005-05-01

    Natural and anthropogenic influences on watershed processes affect the distribution and abundance of salmon across a wide range of spatial and temporal scales, from differences in species use and density between individual pools and riffles to regional patterns of threatened, endangered, and extinct runs. The specific impacts of human activities (e.g., mining, logging, and urbanization) vary among regions and watersheds, as well as between different channel reaches in the same watershed. Understanding of both disturbance history and key biophysical processes are important for diagnosing the nature and causes of differences between historical and contemporary fluvial and watershed conditions based on evaluation of both historical and spatial contexts. In order to be most effective, the contribution of geomorphologic insight to salmon recovery efforts requires both assessment protocols commensurate with providing adequate knowledge of historical and spatial context, and experienced practitioners well versed in adapting general theory to local settings. The historical record of salmon management in Europe, New England and the Pacific Northwest indicates that there is substantial need to incorporate geomorphic insights on the effects of changes in watershed processes on salmon habitat and salmon abundance into salmon recovery efforts.

  2. Physicochemical characteristics of the hyporheic zone affect redd site selection of chum salmon and fall chinook salmon in the Columbia River

    SciTech Connect

    Geist, David R. ); Hanrahan, Timothy P. ); Arntzen, Evan V. ); McMichael, Geoffrey A. ); Murray, Christopher J. ); Chien, Yi-Ju )

    2002-11-01

    Chum salmon Oncorhynchus keta and fall chinook salmon O. tshawytscha spawned at different locations in the vicinity of Ives Island, Washington, a side channel to the Columbia River downstream of Bonneville Dam. We hypothesized that measurements of water depth, substrate size, and water velocity alone would not explain the separation in spawning areas and began a 2-year investigation of physicochemical characteristics of the hyporheic zone. We found that chum salmon spawned in upwelling water that was significantly warmer than the surrounding river water. In contrast, fall chinook salmon constructed redds at downwelling sites where there was no difference in temperature between the river and its bed. Understanding the specific features that are important for chum salmon and fall chinook salmon redd site selection at Ives Island will be useful to resource managers attempting to maximize available spawning habitat for these species within the constraints imposed by other water resource needs.

  3. Summary and anticipated responses to Elwha River dam removal: Chapter 9 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Gelfenbaum, Guy; Duda, Jeffrey J.; Warrick, Jonathan A.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    and after the removal of these dams, the Elwha River and its ecosystems will be altered by a renewal of sediment discharge downstream of the dams and a reintroduction of salmon spawning upstream of the dams. This chapter summarizes the pre-dam and current state of the river and its coastal ecosystems, and describes the likely outcomes of river restoration on the Elwha River ecosystems.

  4. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    SciTech Connect

    Hanrahan, T.P.

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physical characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Escapement

  5. Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.

    2013-01-01

    In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.

  6. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams.

    PubMed

    Holtgrieve, Gordon W; Schindler, Daniel E

    2011-02-01

    In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP < ER) in response to bioturbation of benthic habitats by salmon. Following the seasonal arrival of salmon, GPP declined to <12% of pre-salmon rates, while ER increased by over threefold. Metabolism by live salmon could not account for the observed increase in ER early in the salmon run, suggesting salmon nutrients and disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest

  7. Pilot Study of the Effects of Simulated Turbine Passage Pressure on Juvenile Chinook Salmon Acclimated with Access to Air at Absolute Pressures Greater than Atmospheric

    SciTech Connect

    Carlson, Thomas J.; Abernethy, Cary S.

    2005-04-28

    The impacts of pressure on juvenile salmon who pass through the turbines of hydroelectric dams while migrating downstream on the Columbia and Snake rivers has not been well understood, especially as these impacts relate to injury to the fish's swim bladder. The laboratory studies described here were conducted by Pacific Northwest National Laboratory for the US Army Corps of Engineers Portland District at PNNL's fisheries research laboratories in 2004 to investigate the impacts of simulated turbine passage pressure on fish permitted to achieve neutral buoyancy at pressures corresponding to depths at which they are typically observed during downstream migration. Two sizes of juvenile Chinook salmon were tested, 80-100mm and 125-145mm total length. Test fish were acclimated for 22 to 24 hours in hyperbaric chambers at pressures simulating depths of 15, 30, or 60 ft, with access to a large air bubble. High rates of deflated swim bladders and mortality were observed. Our results while in conclusive show that juvenile salmon are capable of drawing additional air into their swimbladder to compensate for the excess mass of implanted telemetry devices. However they may pay a price in terms of increased susceptibility to injury, predation, and death for this additional air.

  8. Salmon and steelhead in the White Salmon River after the removal of Condit Dam–Planning efforts and recolonization results

    USGS Publications Warehouse

    Allen, Brady; Engle, Rod O; Zendt, Joseph S; Shrier, Frank C; Wilson, Jeremy T; Connolly, Patrick J.

    2016-01-01

    Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and completely removed in 2012. This action opened habitat to migratory fish for the first time in 100 years. The White Salmon Working Group was formed to create plans for fish salvage in preparation for fish recolonization and to prescribe the actions necessary to restore anadromous salmonid populations in the White Salmon River after Condit Dam removal. Studies conducted by work group members and others served to inform management decisions. Management options for individual species were considered, including natural recolonization, introduction of a neighboring stock, hatchery supplementation, and monitoring natural recolonization for some time period to assess the need for hatchery supplementation. Monitoring to date indicates that multiple species and stocks of anadromous salmonids are finding and spawning in the now accessible and recovering habitat.

  9. After Celilo Falls: The Dalles Dam, Indian fishing rights, and federal energy policy on the mid-Columbia River

    NASA Astrophysics Data System (ADS)

    Barber, Katrine Elise

    The Dalles Dam drowned Celilo Falls, the most significant Indian fishing site on the Columbia River, in 1957. Before 1957, the site seasonally drew thousands of Indian to its basalt outcroppings to dipnet for salmon. The Yakima, Umatilla, Warm Springs, and Nez Perce confederated tribes, and unaffiliated river Indians negotiated with the federal government for compensation for their lost fishing stations as well as for homes at Celilo Village located in the path of the dam's reservoir. This paper traces the course of negotiations between the federal government and Indian people, and the impact of negotiations on treaty fishing rights on the Columbia River. It puts negotiations in a larger context that includes Indian resistance to encroachment of their treaty rights at Celilo, non-native resistance to the proposed Dalles Dam, and federal Indian policy of the 1930s--1960s. Drawing from the files of the Bureau of Indian Affairs and the Amy Corps of Engineers, newspaper articles, and government reports, I conclude that the Army Corps did not incorporate native or non-native opposition into their plans but only recorded it "for the record" and proceeded with development. Even so, the persistence of Indians who struggled to retain control of their fisheries and community during a period of tremendous social and economic upheaval is an important part of the history of the Pacific Northwest.

  10. 107. DAM EARTH DIKE SUBMERSIBLE DAMS PLANS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    107. DAM - EARTH DIKE - SUBMERSIBLE DAMS - PLANS & SECTIONS (ML-8-52/3-FS) March 1940 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 8, On Mississippi River near Houston County, MN, Genoa, Vernon County, WI

  11. Calcitonin Salmon Injection

    MedlinePlus

    Calcitonin salmon injection is used to treat osteoporosis in postmenopausal women. Osteoporosis is a disease that causes bones to weaken and break more easily. Calcitonin salmon injection is also used to ...

  12. Survival estimates of migrant juvenile salmonids through Bonneville Dam using radio telemetry, 2005

    USGS Publications Warehouse

    Counihan, Timothy D.; Hardiman, Jill M.; Walker, Chris; Puls, Amy; Holmberg , Glen

    2006-01-01

    During 2005, we evaluated the survival of radio-tagged yearling and subyearling Chinook salmon and steelhead trout through the Bonneville Dam spillway, powerhouses 1 and 2, the corner collector and juvenile bypass system (JBS) at powerhouse 2, and through all routes collectively using the route-specific survival model. Radio-tagged fish were released at The Dalles Dam and in the tailrace of Bonneville Dam and were interrogated at Bonneville Dam and three radio-telemetry arrays below Bonneville Dam. We also evaluated the survival of radio-tagged yearling and subyearling Chinook salmon and steelhead trout using paired releases through the ice and trash sluiceway at Bonneville Dam’s powerhouse 1. Site-specific releases were made directly into the ice and trash sluiceway and in the tailrace of Bonneville Dam below the outfall of powerhouse 2 juvenile bypass system.

  13. Performance of a surface bypass structure to enhance juvenile steelhead passage and survival at Lower Granite Dam, Washington

    USGS Publications Warehouse

    Adams, Noah S.; Plumb, John M.; Perry, Russell W.; Rondorf, Dennis W.

    2014-01-01

    An integral part of efforts to recover stocks of Pacific salmon Oncorhynchus spp. and steelhead O. mykiss in Pacific Northwest rivers is to increase passage efficacy and survival of juveniles past hydroelectric dams. As part of this effort, we evaluated the efficacy of a prototype surface bypass structure, the removable spillway weir (RSW), installed in a spillbay at Lower Granite Dam, Washington, on the Snake River during 2002, 2003, 2005, and 2006. Radio-tagged juvenile steelhead were released upstream from the dam and their route of passage through the turbines, juvenile bypass, spillway, or RSW was recorded. The RSW was operated in an on-or-off condition and passed 3–13% of the total discharge at the dam when it was on. Poisson rate models were fit to the passage counts of hatchery- and natural-origin juvenile steelhead to predict the probability of fish passing the dam. Main-effect predictor variables were RSW operation, diel period, day of the year, proportion of flow passed by the spillway, and total discharge at the dam. The combined fish passage through the RSW and spillway was 55–85% during the day and 37–61% during the night. The proportion of steelhead passing through nonturbine routes was <88% when the RSW was off during the day and increased to >95% when the RSW was on during the day. The ratio of the proportion of steelhead passed to the proportion of water passing the RSW was from 6.3:1 to 10.0:1 during the day and from 2.7:1 to 5.2:1 during the night. Steelhead passing through the RSW exited the tailrace about 15 min faster than fish passing through the spillway. Mark–recapture single-release survival estimates for steelhead passing the RSW ranged from 0.95 to 1.00. The RSW appeared to be an effective bypass structure compared with other routes of fish passage at the dam.

  14. Evaluation of Dual Frequency Identification Sonar (DIDSON) for Monitoring Pacific Lamprey Passage at Fishways of Bonneville and John Day Dams, 2012

    DTIC Science & Technology

    2013-01-01

    stations, and in the serpentine weir sections of fish ladders (Moser et al. 2002; Keefer et al. 2011; Johnson et al. 2012a). Radiotelemetry...first ladder weir, and a downstream view (Down) to view fish approaching the transition pool/first weir. See Appendix B (Figures B3-B6) for photographs...Eder, K., D. Thompson, C. Caudill, and F. Loge. 2011. Video Monitoring of Adult Fish Ladder Modifications to Improve Pacific Lamprey Passage at the

  15. Can reduced predation offset negative effects of sea louse parasites on chum salmon?

    PubMed Central

    Peacock, Stephanie J.; Connors, Brendan M.; Krkošek, Martin; Irvine, James R.; Lewis, Mark A.

    2014-01-01

    The impact of parasites on hosts is invariably negative when considered in isolation, but may be complex and unexpected in nature. For example, if parasites make hosts less desirable to predators then gains from reduced predation may offset direct costs of being parasitized. We explore these ideas in the context of sea louse infestations on salmon. In Pacific Canada, sea lice can spread from farmed salmon to migrating juvenile wild salmon. Low numbers of sea lice can cause mortality of juvenile pink and chum salmon. For pink salmon, this has resulted in reduced productivity of river populations exposed to salmon farming. However, for chum salmon, we did not find an effect of sea louse infestations on productivity, despite high statistical power. Motivated by this unexpected result, we used a mathematical model to show how a parasite-induced shift in predation pressure from chum salmon to pink salmon could offset negative direct impacts of sea lice on chum salmon. This shift in predation is proposed to occur because predators show an innate preference for pink salmon prey. This preference may be more easily expressed when sea lice compromise juvenile salmon hosts, making them easier to catch. Our results indicate how the ecological context of host–parasite interactions may dampen, or even reverse, the expected impact of parasites on host populations. PMID:24352951

  16. Can reduced predation offset negative effects of sea louse parasites on chum salmon?

    PubMed

    Peacock, Stephanie J; Connors, Brendan M; Krkosek, Martin; Irvine, James R; Lewis, Mark A

    2014-02-07

    The impact of parasites on hosts is invariably negative when considered in isolation, but may be complex and unexpected in nature. For example, if parasites make hosts less desirable to predators then gains from reduced predation may offset direct costs of being parasitized. We explore these ideas in the context of sea louse infestations on salmon. In Pacific Canada, sea lice can spread from farmed salmon to migrating juvenile wild salmon. Low numbers of sea lice can cause mortality of juvenile pink and chum salmon. For pink salmon, this has resulted in reduced productivity of river populations exposed to salmon farming. However, for chum salmon, we did not find an effect of sea louse infestations on productivity, despite high statistical power. Motivated by this unexpected result, we used a mathematical model to show how a parasite-induced shift in predation pressure from chum salmon to pink salmon could offset negative direct impacts of sea lice on chum salmon. This shift in predation is proposed to occur because predators show an innate preference for pink salmon prey. This preference may be more easily expressed when sea lice compromise juvenile salmon hosts, making them easier to catch. Our results indicate how the ecological context of host-parasite interactions may dampen, or even reverse, the expected impact of parasites on host populations.

  17. Factors affecting route selection and survival of steelhead kelts at Snake River dams in 2012 and 2013

    SciTech Connect

    Harnish, Ryan A.; Colotelo, Alison H. A.; Li, Xinya; Fu, Tao; Ham, Kenneth D.; Deng, Zhiqun; Green, Ethan D.

    2015-03-31

    In 2012 and 2013, Pacific Northwest National Laboratory (PNNL) conducted a study that summarized the passage route proportions and route-specific survival rates of steelhead kelts that passed through Federal Columbia River Power System (FCRPS) dams. To accomplish this, a total of 811 steelhead kelts were tagged with Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters. Acoustic receivers, both autonomous and cabled, were deployed throughout the FCRPS to monitor the downstream movements of tagged kelts. Kelts were also tagged with passive integrated transponder tags to monitor passage through juvenile bypass systems (JBS) and detect returning fish. The current study evaluated data collected in 2012 and 2013 to identify environmental, temporal, operational, individual, and behavioral variables that were related to forebay residence time, route of passage, and survival of steelhead kelts at FCRPS dams on the Snake River. Multiple approaches, including 3-D tracking, bivariate and multivariable regression modeling, and decision tree analyses were used to identify the environmental, temporal, operational, individual, and behavioral variables that had the greatest effect on forebay residence time, route of passage, and route-specific and overall dam passage survival probabilities for tagged kelts at Lower Granite (LGR), Little Goose (LGS), and Lower Monumental (LMN) dams. In general, kelt behavior and discharge appeared to work independently to affect forebay residence times. Kelt behavior, primarily approach location, migration depth, and “searching” activities in the forebay, was found to have the greatest influence on their route of passage. The condition of kelts was the single most important factor affecting their survival. The information gathered in this study may be used by dam operators and fisheries managers to identify potential management actions to improve in-river survival of kelts or collection methods for kelt reconditioning programs to aid

  18. Early human use of anadromous salmon in North America at 11,500 y ago

    PubMed Central

    Halffman, Carrin M.; Potter, Ben A.; McKinney, Holly J.; Finney, Bruce P.; Rodrigues, Antonia T.; Yang, Dongya Y.; Kemp, Brian M.

    2015-01-01

    Salmon represented a critical resource for prehistoric foragers along the North Pacific Rim, and continue to be economically and culturally important; however, the origins of salmon exploitation remain unresolved. Here we report 11,500-y-old salmon associated with a cooking hearth and human burials from the Upward Sun River Site, near the modern extreme edge of salmon habitat in central Alaska. This represents the earliest known human use of salmon in North America. Ancient DNA analyses establish the species as Oncorhynchus keta (chum salmon), and stable isotope analyses indicate anadromy, suggesting that salmon runs were established by at least the terminal Pleistocene. The early use of this resource has important implications for Paleoindian land use, economy, and expansions into northwest North America. PMID:26392548

  19. Early human use of anadromous salmon in North America at 11,500 y ago.

    PubMed

    Halffman, Carrin M; Potter, Ben A; McKinney, Holly J; Finney, Bruce P; Rodrigues, Antonia T; Yang, Dongya Y; Kemp, Brian M

    2015-10-06

    Salmon represented a critical resource for prehistoric foragers along the North Pacific Rim, and continue to be economically and culturally important; however, the origins of salmon exploitation remain unresolved. Here we report 11,500-y-old salmon associated with a cooking hearth and human burials from the Upward Sun River Site, near the modern extreme edge of salmon habitat in central Alaska. This represents the earliest known human use of salmon in North America. Ancient DNA analyses establish the species as Oncorhynchus keta (chum salmon), and stable isotope analyses indicate anadromy, suggesting that salmon runs were established by at least the terminal Pleistocene. The early use of this resource has important implications for Paleoindian land use, economy, and expansions into northwest North America.

  20. It's a Salmon's Life!

    ERIC Educational Resources Information Center

    French, M. Jenice; Skochdopole, Laura Downey

    1998-01-01

    Describes an integrated science unit to help preservice teachers gain confidence in their abilities to learn and teach science. The teachers role played being salmon as they learned about the salmon's life cycle and the difficulties salmon encounter. The unit introduced the use of investigative activities that begin with questions and end with…

  1. SALMON RECOVERY IN THE TWENTY-FIRST CENTURY: BREACHING THE BASIC BARRIERS

    EPA Science Inventory

    Protecting and restoring runs of wild Pacific salmon enjoys wide public support. Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline of wild salmon in the western contiguous United States. Of the Earth's four regions (i.e., Asian Far ...

  2. 76 FR 25246 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2011 Management Measures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... National Oceanic and Atmospheric Administration 50 CFR Part 660 RIN 0648-XA184 Fisheries Off West Coast States; West Coast Salmon Fisheries; 2011 Management Measures AGENCY: National Marine Fisheries Service... managed under a ``framework'' fishery management plan entitled the Pacific Coast Salmon Fishery...

  3. 75 FR 24482 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2010 Management Measures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... National Oceanic and Atmospheric Administration 50 CFR Part 660 RIN 0648-AY60 Fisheries Off West Coast States; West Coast Salmon Fisheries; 2010 Management Measures AGENCY: National Marine Fisheries Service... managed under a ``framework'' fishery management plan entitled the Pacific Coast Salmon Fishery...

  4. NUTRIENT ADDITION TO RESTORE SALMON RUNS: CONSIDERATIONS FOR DEVELOPING ENVIRONMENTAL PROTECTION POLICIES AND REGULATIONS

    EPA Science Inventory

    One scheme to help restore salmon to the Pacific Northwest is the addition of nutrients (i.e., raw or processed salmon carcasses, and commercially produced organic or inorganic fertilizers) to headwaters (e.g., watersheds, lakes, or streams) that are now nutrient deficient becau...

  5. ADDING NUTRIENTS TO ENHANCE SALMON RUNS: DEVELOPING A COHERENT PUBLIC POLICY

    EPA Science Inventory

    One scheme to help restore salmon to the Pacific Northwest is the addition of nutrients (i.e., raw or processed salmon carcasses, and commercially produced organic or inorganic fertilizers) to headwaters (i.e., watersheds, lakes, or streams) that are now nutrient deficient becau...

  6. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2015-12-01

    Salmon are a valuable cultural and economic resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  7. Chinook salmon foraging patterns in a changing Lake Michigan

    USGS Publications Warehouse

    Jacobs, Gregory R.; Madenjian, Charles P.; Bunnell, David B.; Warner, David M.; Claramunt, Randall M.

    2013-01-01

    Since Pacific salmon stocking began in Lake Michigan, managers have attempted to maintain salmon abundance at high levels within what can be sustained by available prey fishes, primarily Alewife Alosa pseudoharengus. Chinook Salmon Oncorhynchus tshawytscha are the primary apex predators in pelagic Lake Michigan and patterns in their prey selection (by species and size) may strongly influence pelagic prey fish communities in any given year. In 1994–1996, there were larger Alewives, relatively more abundant alternative prey species, fewer Chinook Salmon, and fewer invasive species in Lake Michigan than in 2009–2010. The years 2009–2010 were instead characterized by smaller, leaner Alewives, fewer alternative prey species, higher abundance of Chinook Salmon, a firmly established nonnative benthic community, and reduced abundance of Diporeia, an important food of Lake Michigan prey fish. We characterized Chinook Salmon diets, prey species selectivity, and prey size selectivity between 1994–1996 and 2009–2010 time periods. In 1994–1996, Alewife as prey represented a smaller percentage of Chinook Salmon diets than in 2009–2010, when alewife comprised over 90% of Chinook Salmon diets, possibly due to declines in alternative prey fish populations. The size of Alewives eaten by Chinook Salmon also decreased between these two time periods. For the largest Chinook Salmon in 2009–2010, the average size of Alewife prey was nearly 50 mm total length shorter than in 1994–1996. We suggest that changes in the Lake Michigan food web, such as the decline in Diporeia, may have contributed to the relatively low abundance of large Alewives during the late 2000s by heightening the effect of predation from top predators like Chinook Salmon, which have retained a preference for Alewife and now forage with greater frequency on smaller Alewives.

  8. Yakima River Radio-Telemetry Study: Spring Chinook Salmon, 1991-1992 Annual Report.

    SciTech Connect

    Hockersmith, Eric

    1994-09-01

    As part of the presupplementation planning, baseline data on the productivity of spring chinook salmon (Oncorhynchus tshawytscha) in the Yakima River have been collected. However, for adult salmonids, data on habitat use, delays in passage at irrigation diversions, migration rates, and substock separation had not been previously collected. In 1991, the National Marine Fisheries Service began a 2-year radio-telemetry study of adult spring chinook salmon in the Yakima River Basin. Specific objectives addressed in this study were: to determine spawning populations` run timing, passage patterns at irrigation diversion dams, and morphometric characteristics to determine where and when substocks become separated; to evaluate fish passage at Yakima River Basin diversion dams including Prosser, Sunnyside, Wapato, Roza, Town Diversion, Easton, Cowiche, and Wapatox Dams; to determine spring chinook salmon migration rates between Yakima River Basin dams, prespawning behavior, temporal distribution, and habitat utilization; to identify spawning distribution and timing of spring chinook salmon; to determine the amount and cause of prespawning mortality of spring chinook salmon; and to evaluate adult fish-handling procedures for the right-bank, adult-trapping facility at Prosser Dam.

  9. River turbidity and sediment loads during dam removal

    USGS Publications Warehouse

    Warrick, Jonathan A.; Duda, Jeffrey J.; Magirl, Christopher S.; Curran, Chris A.

    2012-01-01

    Dam decommissioning has become an important means for removing unsafe or obsolete dams and for restoring natural fluvial processes, including discharge regimes, sediment transport, and ecosystem connectivity [Doyle et al., 2003]. The largest dam-removal project in history began in September 2011 on the Elwha River of Washington State (Figure 1a). The project, which aims to restore the river ecosystem and increase imperiled salmon populations that once thrived there, provides a unique opportunity to better understand the implications of large-scale river restoration.

  10. Searching for a life history approach to salmon escapement management

    USGS Publications Warehouse

    Knudsen, E.E.; Symmes, E.W.; Margraf, F.J.

    2003-01-01

    A number of Pacific salmon populations have already been lost and many others throughout the range are in various states of decline. Recent research has documented that Pacific salmon carcasses serve as a key delivery vector of marine-derived nutrients into the freshwater portions of their ecosystems. This nutrient supply plays a critical biological feedback role in salmon sustainability by supporting juvenile salmon production. We first demonstrate how nutrient feedback potential to juvenile production may be unaccounted for in spawner-recruit models of populations under long-term exploitation. We then present a heuristic, life history-based, spreadsheet survival model that incorporates salmon carcass-driven nutrient feedback to the freshwater components of the salmon ecosystem. The productivity of a hypothetical coho salmon population was simulated using rates from the literature for survival from spawner to egg, egg to fry, fry to smolt, and smolt to adult. The effects of climate variation and nutrient feedback on survival were incorporated, as were density-dependent effects of the numbers of spawners and fry on freshwater survival of eggs and juveniles. The unexploited equilibrium population was subjected to 100 years of 20, 40, 60, and 80% harvest. Each harvest scenario greater than 20% brought the population to a reduced steady state, regardless of generous compensatory survival at low population sizes. Increasing harvest reduced the positive effects of nutrient contributions to population growth. Salmon researchers should further explore this modeling approach for establishing escapement goals. Given the importance of nutrient feedback, managers should strive for generous escapements that support nutrient rebuilding, as well as egg deposition, to ensure strong future salmon production.

  11. Preliminary examination of oxidative stress in juvenile spring Chinook salmon (Oncorhynchus tshawytscha) of wild origin sampled from transport barges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Migrating juvenile wild Chinook salmon (Oncorhynchus tshawytscha), collected and loaded onto transport barges at Lower Granite Dam on the Snake River, were sampled from barges at John Day Dam, 348 km downstream, at five-day intervals beginning late April and ending late May. An increase in lipid per...

  12. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River : Annual Report 1999.

    SciTech Connect

    Tiffan, Kenneth F.; Rondorf, Dennis W.

    2001-01-01

    This report summarizes results of research activities conducted in 1999 and years previous. In an effort to provide this information to a wider audience, the individual chapters in this report have been submitted as manuscripts to peer-reviewed journals. These chapters communicate significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin. Abundance and timing of seaward migration of Snake River fall chinook salmon was indexed using passage data collected at Lower Granite Dam for five years. We used genetic analyses to determine the lineage of fish recaptured at Lower Granite Dam that had been previously PIT tagged. We then used discriminant analysis to determine run membership of PIT-tagged smolts that were not recaptured to enable us to calculate annual run composition and to compared early life history attributes of wild subyearling fall and spring chinook salmon. Because spring chinook salmon made up from 15.1 to 44.4% of the tagged subyearling smolts that were detected passing Lower Granite Dam, subyearling passage data at Lower Granite Dam can only be used to index fall chinook salmon smolt abundance and passage timing if genetic samples are taken to identify run membership of smolts. Otherwise, fall chinook salmon smolt abundance would be overestimated and timing of fall chinook salmon smolt passage would appear to be earlier and more protracted than is the case.

  13. Performance Assessment of Bi-Directional Knotless Tissue-Closure Device in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters, 2010 - Final Report

    SciTech Connect

    Woodley, Christa M.; Bryson, Amanda J.; Carpenter, Scott M.; Knox, Kasey M.; Gay, Marybeth E.; Wagner, Katie A.

    2012-09-10

    In 2010, researchers at Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) conducted a compliance monitoring study—the Lower Columbia River Acoustic Transmitter Investigations of Dam Passage Survival and Associated Metrics 2010 (Carlson et al. in preparation)—for the U.S. Army Corps of Engineers (USACE), Portland District. The purpose of the compliance study was to evaluate juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) passage routes and survival through the lower three Columbia River hydroelectric facilities as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp; NOAA Fisheries 2008) and the Columbia Basin Fish Accords (Fish Accords; 3 Treaty Tribes and Action Agencies 2008).

  14. Response of ecosystem metabolism to low densities of spawning Chinook salmon

    USGS Publications Warehouse

    Benjamin, Joseph R.; Bellmore, J. Ryan; Watson, Grace A.

    2016-01-01

    Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to <10% of their historical abundance, with subsequent declines of marine derived nutrients once provided by large salmon runs. We explored whether low densities (<0.001 spawners/m2) of naturally spawning Chinook Salmon (Oncorhynchus tshawytscha) can affect ecosystem metabolism. We measured gross primary production (GPP) and ecosystem respiration (ER) continuously before, during, and after salmon spawning. We compared downstream reaches with low densities of spawning salmon to upstream reaches with fewer or no spawners in 3 mid-sized (4th-order) rivers in northern Washington. In addition, we measured chemical, physical, and biological factors that may be important in controlling rates of GPP and ER. We observed that low densities of spawning salmon can increase GPP by 46% during spawning, but values quickly return to those observed before spawning. No difference in ER was observed between up- and downstream reaches. Based on our results, salmon density, temperature, and the proximity to salmon redds were the most important factors controlling rates of GPP, whereas temperature was most important for ER. These results suggest that even at low spawning densities, salmon can stimulate basal resources that may propagate up the food web. Understanding how recipient ecosystems respond to low levels of marine derived nutrients may inform nutrient augmentation studies aimed at enhancing fish populations.

  15. Assessment of Fluctuating Reservoir Elevations Using Hydraulic Models and Impacts to Larval Pacific Lamprey Rearing Habitat in the Bonneville Pool

    SciTech Connect

    Mueller, Robert P.; Rakowski, Cynthia L.; Perkins, William A.; Richmond, Marshall C.

    2015-02-24

    This report presents the results of a modeling assessment of likely lamprey larval habitat that may be impacted by dewatering of the major tributary delta regions in the Bonneville Pool of the Columbia River. This assessment was conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers Portland District (CENWP). The goal of the study was to provide baseline data about how the regions of interest would potentially be impacted at three river flows (10, 50, and 90 percent exceedance flow) for four different forebay elevations at Bonneville Dam. Impacts of unsteady flows at The Dalles Dam and changing forebay elevation at Bonneville Dam for a 2-week period were also assessed. The area of dewatered regions was calculated by importing modeled data outputs into a GIS and then calculating the change in inundated area near tributary deltas for the four Bonneville forebay surface elevations. From the modeled output we determined that the overall change in area is less sensitive to elevations changes during higher river discharges. Changing the forebay elevation at Bonneville and the resulting impact to total dewatered regions was greater at the lowest modeled river flow (97 kcfs) and showed the greatest variation at the White Salmon/Hood River delta regions followed by the Wind, Klickitat and the Little White Salmon rivers. To understand how inundation might change on a daily and hourly basis. Unsteady flow models were run for a 2-week period in 2002 and compared to 2014. The water surface elevation in the upstream pool closely follows that of the Bonneville Dam forebay with rapid changes of 1 to 2-ft possible. The data shows that 2.5-ft variation in water surface elevation occurred during this period in 2002 and a 3.7-ft change occurred in 2014. The duration of these changes were highly variable and generally did not stay constant for more than a 5-hr period.

  16. Evidence of Olfactory Imprinting at an Early Life Stage in Pink Salmon (Oncorhynchus gorbuscha).

    PubMed

    Bett, Nolan N; Hinch, Scott G; Dittman, Andrew H; Yun, Sang-Seon

    2016-11-09

    Pacific salmon (Oncorhynchus spp.) navigate towards spawning grounds using olfactory cues they imprinted on as juveniles. The timing at which imprinting occurs has been studied extensively, and there is strong evidence that salmon imprint on their natal water during the parr-smolt transformation (PST). Researchers have noted, however, that the life histories of some species of Pacific salmon could necessitate imprinting prior to the PST. Juvenile pink salmon (O. gorbuscha) spend less time in fresh water than any other species of Pacific salmon, and presumably must imprint on their natal water at a very young age. The time at which imprinting occurs in this species, however, has not been experimentally tested. We exposed juvenile pink salmon as alevins to phenethyl alcohol (PEA) or control water, reared these fish to adulthood, and then tested their behavioural responses to PEA to determine whether the fish successfully imprinted. We found that pink salmon exposed to PEA as alevins were attracted to the chemical as adults, suggesting that imprinting can occur during this stage. Our finding provides some of the first evidence to support the long-standing belief that imprinting can occur in pink salmon prior to the PST.

  17. Evidence of Olfactory Imprinting at an Early Life Stage in Pink Salmon (Oncorhynchus gorbuscha)

    PubMed Central

    Bett, Nolan N.; Hinch, Scott G.; Dittman, Andrew H.; Yun, Sang-Seon

    2016-01-01

    Pacific salmon (Oncorhynchus spp.) navigate towards spawning grounds using olfactory cues they imprinted on as juveniles. The timing at which imprinting occurs has been studied extensively, and there is strong evidence that salmon imprint on their natal water during the parr-smolt transformation (PST). Researchers have noted, however, that the life histories of some species of Pacific salmon could necessitate imprinting prior to the PST. Juvenile pink salmon (O. gorbuscha) spend less time in fresh water than any other species of Pacific salmon, and presumably must imprint on their natal water at a very young age. The time at which imprinting occurs in this species, however, has not been experimentally tested. We exposed juvenile pink salmon as alevins to phenethyl alcohol (PEA) or control water, reared these fish to adulthood, and then tested their behavioural responses to PEA to determine whether the fish successfully imprinted. We found that pink salmon exposed to PEA as alevins were attracted to the chemical as adults, suggesting that imprinting can occur during this stage. Our finding provides some of the first evidence to support the long-standing belief that imprinting can occur in pink salmon prior to the PST. PMID:27827382

  18. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1994 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Brimmer, Arnold F.

    1994-10-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1994 spring outmigration at migrant traps on the Snake River, Clearwater River, and Salmon River. The 1994 snowpack was among the lowest since the beginning of the present drought, and the subsequent runoff was very poor. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1994. Total annual (hatchery + wild) chinook salmon catch at the Snake River trap was 1.5 times greater than in 1993. Hatchery and wild steelhead trout catches were similar to 1993. The Snake River trap collected 30 age 0 chinook salmon. Hatchery chinook salmon catch at the Clearwater River trap was 3.5 times higher than in 1993, and wild chinook salmon catch was 4.2 times higher. Hatchery steelhead trout trap catch was less than half of 1993 numbers because the trap was fishing near the north shore during the majority of the hatchery steelhead movement due to flow augmentations from Dworshak. Wild steelhead trout trap catch was 2 times higher than in 1993. The Salmon River trap was operated for about a month longer in 1994 than in 1993 due to extremely low flows. Hatchery chinook salmon catch was 1.4 times greater in 1994 than the previous year. Wild chinook salmon catch was slightly less in 1994. The 1994 hatchery steelhead trout collection did not change significantly from 1993 numbers. Wild steelhead trout collection in 1994 was 59% of the 1993 catch. Fish tagged with Passive Integrated Transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992).

  19. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    SciTech Connect

    Not Available

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

  20. Costs of climate change: Economic value of Yakima River salmon

    SciTech Connect

    Anderson, D.M.; Shankle, S.A.; Scott, M.J.; Neitzel, D.A.; Chatters, J.C.

    1992-07-01

    This work resulted from a continuing multidisciplinary analysis of species preservation and global change. The paper explores the economic cost of a potential regional warming as it affects one Pacific Northwest natural resource, the spring chinook salmon (Oncorhynchus tshcawytscha). Climate change and planned habitat improvements impact the production and economic value of soling chinook salmon of the Yakima River tributary of the Columbia River in eastern Washington. The paper presents a derivation of the total economic value of a chinook salmon, which includes the summation of the existence, commercial, recreational, and capital values of the fish. When currently available commercial, recreational, existence, and capital values for chinook salmon were applied to estimated population changes, the estimated change in the economic value per fish associated with reduction of one fish run proved significant.

  1. 75 FR 42069 - Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... meeting to develop a draft assessment of the factors triggering an overfishing concern for SRFC. The... consecutive years, an overfishing concern is triggered according to the terms of the Pacific Coast Salmon...

  2. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Lookout Point Dam, 2010

    SciTech Connect

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Hughes, James S.; Fischer, Eric S.; Trott, Donna M.; Ploskey, Gene R.

    2012-05-31

    Pacific Northwest National Laboratory evaluated juvenile salmonid passage and distribution at Lookout Point Dam (LOP) on the Middle Fork Willamette River for the U.S. Army Corps of Engineers, Portland District (USACE), to provide data to support decisions on long-term measures to enhance downstream passage at LOP and others dams in USACE's Willamette Valley Project. This study was conducted in response to the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. We conducted a hydroacoustic evaluation of juvenile salmonid passage and distribution at LOP during February 2010 through January 2011. Findings from this 1 year of study should be applied carefully because annual variation can be expected due to variability in adult salmon escapement, egg-to-fry and fry-to-smolt survival rates, reservoir rearing and predation, dam operations, and weather. Fish passage rates for smolt-size fish (> {approx}90 mm and < 300 mm) were highest during December-January and lowest in mid-summer through early fall. Passage peaks were also evident in early spring, early summer, and late fall. During the entire study period, an estimated total of 142,463 fish {+-} 4,444 (95% confidence interval) smolt-size fish passed through turbine penstock intakes. Of this total, 84% passed during December-January. Run timing for small-size fish ({approx}65-90 mm) peaked (702 fish) on December 18. Diel periodicity of smolt-size fish showing crepuscular peaks was evident in fish passage into turbine penstock intakes. Relatively few fish passed into the Regulating Outlets (ROs) when they were open in summer (2 fish/d) and winter (8 fish/d). Overall, when the ROs were open, RO efficiency (RO passage divided by total project passage) was 0.004. In linear regression analyses, daily fish passage (turbines and ROs combined) for smolt-size fish was significantly related to project

  3. Temporal patterns in adult salmon migration timing across southeast Alaska.

    PubMed

    Kovach, Ryan P; Ellison, Stephen C; Pyare, Sanjay; Tallmon, David A

    2015-05-01

    Pacific salmon migration timing can drive population productivity, ecosystem dynamics, and human harvest. Nevertheless, little is known about long-term variation in salmon migration timing for multiple species across broad regions. We used long-term data for five Pacific salmon species throughout rapidly warming southeast Alaska to describe long-term changes in salmon migration timing, interannual phenological synchrony, relationships between climatic variation and migratory timing, and to test whether long-term changes in migration timing are related to glaciation in headwater streams. Temporal changes in the median date of salmon migration timing varied widely across species. Most sockeye populations are migrating later over time (11 of 14), but pink, chum, and especially coho populations are migrating earlier than they did historically (16 of 19 combined). Temporal trends in duration and interannual variation in migration timing were highly variable across species and populations. The greatest temporal shifts in the median date of migration timing were correlated with decreases in the duration of migration timing, suggestive of a loss of phenotypic variation due to natural selection. Pairwise interannual correlations in migration timing varied widely but were generally positive, providing evidence for weak region-wide phenological synchrony. This synchrony is likely a function of climatic variation, as interannual variation in migration timing was related to climatic phenomenon operating at large- (Pacific decadal oscillation), moderate- (sea surface temperature), and local-scales (precipitation). Surprisingly, the presence or the absence of glaciers within a watershed was unrelated to long-term shifts in phenology. Overall, there was extensive heterogeneity in long-term patterns of migration timing throughout this climatically and geographically complex region, highlighting that future climatic change will likely have widely divergent impacts on salmon

  4. Temporal patterns in adult salmon migration timing across southeast Alaska

    USGS Publications Warehouse

    Kovach, Ryan P.; Ellison, Stephen; Pyare, Sanjay; Tallmon, David

    2015-01-01

    Pacific salmon migration timing can drive population productivity, ecosystem dynamics, and human harvest. Nevertheless, little is known about long-term variation in salmon migration timing for multiple species across broad regions. We used long-term data for five Pacific salmon species throughout rapidly warming southeast Alaska to describe long-term changes in salmon migration timing, interannual phenological synchrony, relationships between climatic variation and migratory timing, and to test whether long-term changes in migration timing are related to glaciation in headwater streams. Temporal changes in the median date of salmon migration timing varied widely across species. Most sockeye populations are migrating later over time (11 of 14), but pink, chum, and especially coho populations are migrating earlier than they did historically (16 of 19 combined). Temporal trends in duration and interannual variation in migration timing were highly variable across species and populations. The greatest temporal shifts in the median date of migration timing were correlated with decreases in the duration of migration timing, suggestive of a loss of phenotypic variation due to natural selection. Pairwise interannual correlations in migration timing varied widely but were generally positive, providing evidence for weak region-wide phenological synchrony. This synchrony is likely a function of climatic variation, as interannual variation in migration timing was related to climatic phenomenon operating at large- (Pacific decadal oscillation), moderate- (sea surface temperature), and local-scales (precipitation). Surprisingly, the presence or the absence of glaciers within a watershed was unrelated to long-term shifts in phenology. Overall, there was extensive heterogeneity in long-term patterns of migration timing throughout this climatically and geographically complex region, highlighting that future climatic change will likely have widely divergent impacts on salmon

  5. The effect of vegetation and beaver dams on geomorphic recovery rates of incised streams in the semi-arid regions of the Columbia River basin, USA.

    NASA Astrophysics Data System (ADS)

    Pollock, M.; Beechie, T.; Jordan, C.

    2005-05-01

    Channel incision is a common occurrence in semi-arid regions of the Columbia River basin and throughout the world, where a fragile balance between climate, vegetation and geology makes channels susceptible to changes in hillslope erosion, stream discharge and sediment yield. Incision is defined as a rapid downcutting and lowering of the stream bed such that it reduces the frequency and duration of flooding onto the adjacent floodplain. We are studying the feasibility of restoring incised streams throughout the interior Columbia River basin. We hypothesize that under proper land use management, it is possible for them to aggrade such that they reconnect to their former floodplains within relatively short time frames. Theoretical and empirical evidence suggests that over decadal time scales, changes to land management that excludes grazing and allows riparian vegetation to become established can cause significant fill within the incised valleys. Preliminary modeling suggests that factors most affecting the length of time for an incised valley to completely aggrade and reconnect to its pre-incision floodplain are the depth of the incision, sediment production in the watershed, the amount and type of riparian vegetation, and the extent of beaver dam construction. While most natural resource and fisheries managers are aware of widespread incision throughout the Columbia River basin, the extent of incision within the range of the Pacific salmon is largely undocumented. However, we do know many incised streams that historically supported salmon no longer do so, and that habitat conditions are severely degraded in these incised streams. The historical record shows that numerous salmon-bearing streams in the semi-arid region of the interior Columbia River basin once contained narrow and deep, slowly meandering channels lined with cottonwoods, willows and/or sedges, contained numerous beaver dams, contained abundant and easily accessible off-channel habitat on the floodplain

  6. A cabled acoustic telemetry system for detecting and tracking juvenile salmon: Part 1. Engineering design and instrumentation

    SciTech Connect

    Weiland, Mark A.; Deng, Zhiqun; Seim, Thomas A.; Lamarche, Brian L.; Choi, Eric Y.; Fu, Tao; Carlson, Thomas J.; Thronas, Aaron I.; Eppard, Matthew B.

    2011-05-26

    The U.S. Army Corps of Engineers-Portland District started development of the Juvenile Salmon Acoustic Telemetry System (JSATS), a nonproprietary technology, in 2001 to meet the needs for monitoring the survival of juvenile salmonids through the 31 federal dams in the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters, and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006 the Pacific Northwest National Laboratory (PNNL) was tasked with development of an acoustic receiver system for deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in 2 or 3-dimensions as the fish passed at the facility for determining route of passage. The additional route of passage information, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities and through the FCRPS.

  7. Diel behavior of rearing fall Chinook salmon

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Skalicky, Joseph J.

    2010-01-01

    In fisheries science, habitat use is often inferred when fish are sampled or observed in a particular location. Physical habitat is typically measured where fish are found, and thus deemed important to habitat use. Although less common, a more informative approach is to measure or observe fish behavior within given habitats to more thoroughly assess their use of those locations. While this approach better reflects how fish use habitat, fish behavior can be difficult to quantify, particularly at night. For example, Tiffan and others (2002, 2006) were able to quantify habitat availability and characteristics that were important for rearing juvenile fall Chinook Salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The authors, however, could only speculate as to how juvenile salmon use habitat and respond to changes in water level fluctuations. Conversely, in this study we provide data on the diel activities of rearing juvenile wild fall Chinook Salmon which provides a better understanding of how fish “use” these rearing habitats. Diel behavior patterns are important because fish in the Hanford Reach are often stranded on shorelines when the water level rapidly recedes because of hydroelectric power generation at upriver dams (Nugent and others 2002; Anglin and others 2006). We hypothesize that juvenile salmon are at greater risk of stranding at night because they are less active and occupy habitat differently than during the day. We used underwater videography to collect behavioral information during the day and night to determine if juvenile fall Chinook Salmon are more susceptible to stranding when water level fluctuations occur at night.

  8. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 1994 Annual Report.

    SciTech Connect

    Achord, Stephen; Matthews, Gene M.; Kamikawa, Daniel J.

    1995-09-01

    The goals of this study are to (1) characterize the outmigration timing of different wild stocks of spring/summer chinook salmon smolts at dams on the Snake and Columbia Rivers, (2) determine if consistent patterns are apparent, and (3) determine what environmental factors influence outmigration timing. The authors PIT tagged wild spring/summer chinook salmon parr in the Snake River Basin in 1993, and subsequently monitored these fish during their smolt migration through Lower Granite, Little Goose, Lower Monumental, and McNary Dams during spring, summer, and fall 1994. This report details their findings.

  9. 78 FR 10557 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 17 to the Salmon Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... trollers, and 438-495 charter boats. Based on Pacific Coast Fisheries Information Network (PacFIN) data, a... biological opinions that address the impacts of the Council managed salmon fisheries on listed salmonids as... fisheries were not likely to jeopardize SRKW (biological opinion dated May 5, 2009). Pursuant to...

  10. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Lookout Point Dam, 2010

    SciTech Connect

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Hughes, James S.; Fischer, Eric S.; Trott, Donna M.; Ploskey, Gene R.

    2011-07-01

    This report presents the results of an evaluation of juvenile salmonid passage and distribution at Lookout Point Dam (LOP) on the Middle Fork Willamette River. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District (USACE). The goal of the study was to provide fish passage and distribution data to support decisions on long-term measures to enhance downstream passage at LOP and others dams in USACE’s Willamette Valley Project in response to the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. During the year-long study period - February 1, 2010 to January 31, 2011the objectives of the hydroacoustic evaluation of fish passage and distribution at LOP were to: 1. Estimate passage rates, run timing, horizontal distribution, and diel distribution at turbine penstock intakes for smolt-size fish. 2. Estimate passage rates, run timing and diel distribution at turbine penstock intakes for small-size fish. 3. Estimate passage rates and run timing at the regulating outlets for smolt-size fish. 4. Estimate vertical distribution of smolt-size fish in the forebay near the upstream face of the dam. The fixed-location hydroacoustic technique was used to accomplish the objectives of this study. Transducers (420 kHz) were deployed in each penstock intake, above each RO entrance, and on the dam face; a total of nine transducers (2 single-beam and 7 split-beam) were used. We summarize the findings from the hydroacoustic evaluation of juvenile salmonid passage and distribution at LOP during February 2010 through January 2011 as follows. • Fish passage rates for smolt-size fish (> ~90 mm) were highest during December-January and lowest in mid-summer through early fall. • During the entire study period, an estimated total of 142,463 fish ± 4,444 (95% confidence interval) smolt

  11. STABLE ISOTOPE STUDIES ON THE USE OF MARINE-DERIVED NUTRIENTS BY COHO SALMON JUVENILES IN THE OREGON COAST RANGE

    EPA Science Inventory

    Greatly reduced spawning runs of anadromous salmon in streams of the Pacific Northwest (USA) have led to concerns about the effects of reduced marine derived nutrients (MDN's) on sustaining over-wintering juvenile salmon in those streams. In response to these concerns, state a...

  12. Saving the Salmon

    ERIC Educational Resources Information Center

    Sprangers, Donald

    2004-01-01

    In November 2000, wild Atlantic salmon were placed under the protection of the Endangered Species Act of 1973. Washington Academy (WA) in Maine has played an integral role in the education and restoration of this species. Efforts to restore the salmon's dwindling population, enhance critical habitat areas, and educate and inform the public require…

  13. National Program for Inspection of Non-Federal Dams. Spaulding Dam (NH-00390), Piscataqua River Basin, Rochester, New Hampshire. Phase I Inspection Report.

    DTIC Science & Technology

    1979-04-01

    results of the hydrology of the watershed and hydraulics of the dam. Other re- medial measures must also be implemented. DD , 1473 EDITION OF INOv O...intended to provide detailed hydro - logic and hydraulic analyses. In accordance with the established Recommended Guidelines for Safety Inspection of Dams...operated lift gates. Water discharges from the power -*1 house to an outlet channel which rejoins the Salmon Falls River about 1,100 feet below the plant

  14. Genetic Structure of Chum Salmon (Oncorhynchus Keta) Populations in the Lower Columbia River: Are Chum Salmon in Cascade Tributaries Remnant Populations?

    SciTech Connect

    Small, Maureen P.; Pichahchy, A.E.; Von Bargen, J.F.; Young, S.F.

    2004-09-01

    Prior to the 1950's, the lower Columbia River drainage supported a run of over a million chum salmon composed of at least 16 populations. By the late 1950's, over-fishing and habitat destruction had decreased the run to as little as a few hundred fish. With the exception of Grays River in the coastal region of the Columbia River and an aggregation of chum salmon spawning in creeks and the mainstem near Bonneville Dam in the Columbia Gorge region, most populations were considered extinct. However, over the years, WDFW biologists detected chum salmon spawning in tributaries originating in the Cascade Range: the Cowlitz, Lewis, and Washougal rivers. Further, chum salmon in the Cowlitz River appeared to have summer and fall run-timings. To assess whether Cascade spawners were strays from Grays River and Gorge regions or remnants of former populations, chum salmon from the Coastal, Cascade and Gorge regions were characterized genetically at 17 microsatellite loci. With the exception of Washougal River chum salmon, which grouped strongly with the Gorge genetic group, significant heterogeneity in genotype distributions were detected between regions and genotype distributions overlapped among collections within regions. In a neighbor-joining consensus tree, regional groups occupied branches with over 77% bootstrap support. In assignment tests, over 63% of individuals were correctly assigned back to region of origin although an average of 29% assigned to river of origin. Genetic distinction of Cascade region chum salmon was similar to distinction of Coastal and Gorge chum salmon and the Cascade region chum salmon had twice the number of private regional alleles. Further, the Cowlitz River supports the only summer chum salmon run in the Columbia River drainage. We propose that chum salmon in the Cascade region are remnants of original populations. We attribute the strong divergence between regional groups to diverse ecological conditions in each region, which promoted

  15. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1991 Annual Report.

    SciTech Connect

    Hawkes, Lynette A.; Martinson, Rick D.; Smith, W. William

    1992-04-01

    The 1991 smolt monitoring project of the National Marine Fisheries Service provided data on the seaward migration of juvenile salmon and steelhead at John Day, The Dalles and Bonneville Dams. All pertinent fish capture and condition data as well as dam operations and river flow data were provided to Fish Passage Center for use in developing fish passage indices and migration timing, and for water budget and spill management.

  16. Benefits of prescribed flows for salmon smolt survival enhancement vary longitudinally in a highly managed river system

    USGS Publications Warehouse

    Courter, Ian; Garrison, Thomas; Kock, Tobias J.; Perry, Russell W.; Child, David; Hubble, Joel

    2016-01-01

    The influence of streamflow on survival of emigrating juvenile Pacific salmonids Oncorhynchus spp. (smolts) is a major concern for water managers throughout the northeast Pacific Rim. However, few studies have quantified flow effects on smolt survival, and available information does not indicate a consistent flow–survival relationship within the typical range of flows under management control. In the Yakima Basin, Washington, the potential effects of streamflow alterations on smolt survival have been debated for over 20 years. Using a series of controlled flow releases from upper basin reservoirs and radiotelemetry, we quantified the relationship between flow and yearling Chinook salmon smolt survival in the 208 km reach between Roza Dam and the Yakima River mouth. A multistate mark–recapture model accounted for weekly variation in flow conditions experienced by tagged fish in four discrete river segments. Smolt survival was significantly associated with streamflow in the Roza Reach [river kilometre (rkm) 208–189] and marginally associated with streamflow in the Sunnyside Reach (rkm 169–77). However, smolt survival was not significantly associated with flow in the Naches and Prosser Reaches (rkm 189–169 and rkm 77–3). This discrepancy indicates potential differences in underlying flow-related survival mechanisms, such as predation or passage impediments. Our results clarify trade-offs between flow augmentation for fisheries enhancement and other beneficial uses, and our study design provides a framework for resolving uncertainties about streamflow effects on migratory fish survival in other river systems. 

  17. Diel spawning behavior of chum salmon in the Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.; Skalicky, J.J.

    2005-01-01

    We conducted a study during 2003 in a side channel of the Columbia River downstream of Bonneville Dam to describe the diel spawning behavior of wild chum salmon Oncorhynchus keta. We collected observational data on 14 pairs of chum salmon using a dual-frequency identification sonar. Spawners of both genders were observed chasing intruders during nighttime and daytime as nests were constructed. Regardless of diel period, females were engaged in digging to both construct nests and cover eggs, and courting males exhibited the prespawning behavior of tail-crossing. We observed a total of 13 spawning events, of which 9 occurred at night and 4 occurred during the day. Once chum salmon begin nest construction, visual cues are apparently not required for courtship, nest defense, and spawning. To enhance successful spawning, flows from Bonneville Dam during the spawning season were reduced during the day but were sometimes increased at night to pass water and meet power demand (i.e., reverse loading), the assumption being that chum salmon are inactive at night. Our findings show that this assumption was violated. Therefore, reverse loading may disrupt the complex prespawning behavior that occurs both during the day and at night, as well as attract spawners to areas that were dewatered during the day.

  18. Downstream effect of blowing a hole in a 38-meter dam

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-11-01

    On 26 October 2011, engineers blew a hole in the base of Washington state's Condit Dam, loosing nearly a million cubic meters of water in an instant. The surge of water, sand, and mud marked the end of the 38-meter-tall concrete dam that had blocked the White Salmon River for nearly 100 years and the beginning of a rapid transformation of the downstream environment. Using river gauge measurements, time-lapse photography, and other techniques, Wilcox et al. tracked how the White Salmon River evolved in the wake of the breach.

  19. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam, 2011

    SciTech Connect

    Weiland, Mark A.; Woodley, Christa M.; Ploskey, Gene R.; Hughes, James S.; Hennen, Matthew J.; Kim, Jin A.; Deng, Zhiqun; Fu, Tao; Skalski, J. R.; Townsend, Richard L.; Wagner, Katie A.; Fischer, Eric S.; Duncan, Joanne P.; Batten, G.; Carlson, Thomas J.; Carpenter, Scott M.; Cushing, Aaron W.; Elder, T.; Etherington, D. J.; Johnson, Gary E.; Khan, Fenton; Miracle, Ann L.; Mitchell, T. D.; Prather, K.; Rayamajhi, Bishes; Royer, Ida; Seaburg, Adam; Zimmerman, Shon A.

    2013-06-21

    This report presents survival, behavioral, and fish passage results for tagged yearling Chinook salmon and juvenile steelhead as part of a survival study conducted at John Day Dam during spring 2011. This study was designed to evaluate the passage and survival of yearling Chinook salmon and juvenile steelhead to assist managers in identifying dam operations for compliance testing as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the 2008 Columbia Basin Fish Accords. Survival estimates were based on a paired-release survival model.

  20. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam, 2010

    SciTech Connect

    Weiland, Mark A.; Woodley, Christa M.; Ploskey, Gene R.; Hughes, James S.; Kim, Jin A.; Deng, Zhiqun; Fu, Tao; Fischer, Eric S.; Skalski, J. R.; Townsend, Richard L.; Duncan, Joanne P.; Hennen, Matthew J.; Wagner, Katie A.; Arntzen, Evan V.; Miller, Benjamin L.; Miracle, Ann L.; Zimmerman, Shon A.; Royer, Ida M.; Khan, Fenton; Cushing, Aaron W.; Etherington, D. J.; Mitchell, T. D.; Elder, T.; Batton, George; Johnson, Gary E.; Carlson, Thomas J.

    2013-05-01

    This report presents survival, behavioral, and fish passage results for yearling and subyearling Chinook salmon smolts and juvenile steelhead tagged with JSATS acoustic micro-transmitters as part of a survival study conducted at John Day Dam during 2010. This study was designed to evaluate the passage and survival of yearling and subyearling Chinook salmon and juvenile steelhead to assist managers in identifying dam operations for compliance testing as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the 2008 Columbia Basin Fish Accords. Survival estimates were based on a single-release survival estimate model.

  1. Foraging and growth potential of juvenile Chinook Salmon after tidal restoration of a large river delta

    USGS Publications Warehouse

    David, Aaron T.; Ellings, Christopher; Woo, Isa; Simenstad, Charles A.; Takekawa, John Y.; Turner, Kelley L.; Smith, Ashley L.; Takekawa, Jean E.

    2014-01-01

    We evaluated whether restoring tidal flow to previously diked estuarine wetlands also restores foraging and growth opportunities for juvenile Chinook Salmon Oncorhynchus tshawytscha. Several studies have assessed the value of restored tidal wetlands for juvenile Pacific salmon Oncorhynchus spp., but few have used integrative measures of salmon performance, such as habitat-specific growth potential, to evaluate restoration. Our study took place in the Nisqually River delta, Washington, where recent dike removals restored tidal flow to 364 ha of marsh—the largest tidal marsh restoration project in the northwestern contiguous United States. We sampled fish assemblages, water temperatures, and juvenile Chinook Salmon diet composition and consumption rates in two restored and two reference tidal channels during a 3-year period after restoration; these data were used as inputs to a bioenergetics model to compare Chinook Salmon foraging performance and growth potential between the restored and reference channels. We found that foraging performance and growth potential of juvenile Chinook Salmon were similar between restored and reference tidal channels. However, Chinook Salmon densities were significantly lower in the restored channels than in the reference channels, and growth potential was more variable in the restored channels due to their more variable and warmer (2°C) water temperatures. These results indicate that some—but not all—ecosystem attributes that are important for juvenile Pacific salmon can recover rapidly after large-scale tidal marsh restoration.

  2. Genetic stock identification of immature chum salmon ( Oncorhynchus keta) in the western Bering Sea, 2004

    NASA Astrophysics Data System (ADS)

    Kang, Minho; Kim, Suam; Low, Loh-Lee

    2016-03-01

    Genetic stock identification studies have been widely applied to Pacific salmon species to estimate stock composition of complex mixed-stock fisheries. In a September-October 2004 survey, 739 chum salmon ( Oncorhynchus keta) specimens were collected from 23 stations in the western Bering Sea. We determined the genetic stock composition of immature chum salmon based on the previous mitochondria DNA baseline. Each regional estimate was computed based on the conditional maximum likelihood method using 1,000 bootstrap resampling and then pooled to the major regional groups: Korea - Japan - Primorie (KJP) / Russia (RU) / Northwest Alaska (NWA) / Alaska Peninsula - Southcentral Alaska - Southeast Alaska - British Columbia - Washington (ONA). The stock composition of immature chum salmon in the western Bering Sea was a mix of 0.424 KJP, 0.421 RU, 0.116 NWA, and 0.039 ONA stocks. During the study period, the contribution of Asian chum salmon stocks gradually changed from RU to KJP stock. In addition, North American populations from NWA and ONA were small but present near the vicinity of the Russian coast and the Commander Islands, suggesting that the study areas in the western Bering Sea were an important migration route for Pacific chum salmon originating both from Asia and North America during the months of September and October. These results make it possible to better understand the chum salmon stock composition of the mixed-stock fisheries in the western Bering Sea and the stock-specific distribution pattern of chum salmon on the high-seas.

  3. DAM Safety and Deformation Monitoring in Dams

    NASA Astrophysics Data System (ADS)

    Kalkan, Y.; Bilgi, S.; Potts, L.; Miiama, J.; Mahgoub, M.; Rahman, S.

    2013-12-01

    Water is the life and necessity to water is increasing day by day with respect to the World population, rising of living standards and destruction of nature. Thus, the importance of water and water structures have been increasing gradually. Dams are among the most important engineering structures used for water supplies, flood controls, agricultural purposes as well as drinking and hydroelectric power. There are about 150.000 large size dams in the World. Especially after the Second World War, higher and larger capacity dams have been constructed. Dams create certain risks like the other manmade structures. No one knows precisely how many dam failures have occurred in the World, whereas hundreds of dam failures have occurred throughout the U.S. history. Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. These physical data are measured and monitored by the instruments and equipment. Dams and their surroundings have to be monitored by using essential methods at periodic time intervals in order to determine the possible changes that may occur over the time. Monitoring programs typically consist of; surveillance or visual observation. These programs on dams provide information for evaluating the dam's performance related to the design intent and expected changes that could affect the safety performance of the dam. Additionally, these programs are used for investigating and evaluating the abnormal or degrading performance where any remedial action is necessary. Geodetic and non-geodetic methods are used for monitoring. Monitoring the performance of the dams is critical for producing and maintaining the safe dams. This study provides some information, safety and the techniques about the deformation monitoring of the

  4. Behavior and passage of juvenile salmonids during the evaluation of a behavioral guidance structure at Cowlitz Falls Dam, Washington, 2011

    USGS Publications Warehouse

    Kock, Tobias J.; Liedtke, Theresa L.; Ekstrom, Brian K.; Tomka, Ryan G.; Rondorf, Dennis W.

    2012-01-01

    Turbine passage was the most common passage route for tagged fish at Cowlitz Falls Dam during 2011. We found that 40 percent of the steelhead, 52 percent of the coho salmon, and 33 percent of the Chinook salmon passed through turbines. An additional 22 percent of the steelhead and 32 percent of the coho salmon passed through turbines or spillways when both passage routes were available. Fish collection numbers were relatively low during 2011 compared to long-term averages. In total, 37 percent of the steelhead, 14 percent of the coho salmon, and 23 percent of the Chinook salmon that entered the forebay were collected, primarily through collection flumes. The FSC collected a single radio-tagged fish (a Chinook salmon) in 2011.