Science.gov

Sample records for danish coastal waters

  1. Nitrous oxide in coastal waters

    SciTech Connect

    Bange, H.W.; Rapsomanikis, S.; Andreae, M.O.

    1996-03-01

    Measurements of dissolved and atmospheric nitrous oxide (N{sub 2}O) are presented for three coastal environments: (1) the central North Sea, (2) the German Bight, and (3) the Gironde estuary. The contribution of coastal regions to the oceanic emissions of atmospheric N{sub 2}O were also determined. N{sub 2}O was measured with a gas chromatograph equipped with an electron capture detector and analyzed. The surface waters of the central North Sea and the German bight were found to be near equilibrium with the overlying atmosphere, while the mean saturation in the Gironde estuary was 132%. Mean saturations in coastal regions without estuaries or upwelling phenomena were only slightly higher than in the open ocean. When estuaries and regions with upwelling are included, however, approximately 60% of the oceanic N{sub 2}O flux is attributable to coastal regions. A review of published data indicated that previous studies have seriously underestimated N{sub 2}O sea-to-air flux from coastal regions. 69 refs., 8 figs., 4 tabs.

  2. Levels of hydrocarbons in mussels, Mytilus edulis, and surface sediments from Danish coastal areas

    SciTech Connect

    Jensen, K.

    1981-02-01

    Until recently, most effort in oil pollution research has been spent on investigating the effects of oil spills and use of detergents. The effects of long-term low level input to the marine environment are much less elucidated. This study represents the first step in a project concerning chronic oil pollution undertaken by the Marine Pollution Laboratory, Denmark. Results from previous studies on this subject in the area concerned, which have not been internationally published, are also included. In a series of Danish coastal localities, samples of surface sediments (top cm) were taken and samples of blue mussels, Mytilus edulis, were collected by SCUBA diving.

  3. Estuaries and coastal waters need help

    SciTech Connect

    Levenson, H.

    1987-11-01

    For years, our marine environments-estuaries, coastal waters, and the open ocean-have been used extensively by coastal communities and industries for the disposal of various wastes. Historically, marine waste disposal has been relatively cheap and has solved some short-term waste-management problems; however, its consequences include a general trend toward environmental degradation, particularly in estuaries and coastal waters. Thus, without protective measures, the next few decades will witness degradation in many estuaries and some coastal waters around the country. The extent of current degradation varies greatly around the country. Although it is difficult to ascertain cause and effect relationships, enough evidence exists to conclude that the pollutants in question include disease-causing microorganisms, oxygen-demanding substances, particulate material, metals, and organic chemicals. Two statutes form the basis of most federal regulatory efforts to combat marine pollution: the Marine Protection, Research, and Sanctuaries Act (MPRSA) and the Clean Water Act (CWA). The MPRSA regulates the dumping of wastes in coastal and open-ocean waters, whereas the CWA has jurisdiction over pipeline discharges in all marine waters, wastes dumped in estuaries, and runoff. Many people consider that the passage and implementation of these two acts and their ensuing amendments established a statutory structure sufficient to protect the nation's waters from pollution. However, these provisions have not protected some estuaries and coastal waters from degradation.

  4. Waves in Oceanic and Coastal Waters

    NASA Astrophysics Data System (ADS)

    Holthuijsen, Leo H.

    2007-01-01

    Waves in Oceanic and Coastal Waters describes the observation, analysis and prediction of wind-generated waves in the open ocean, in shelf seas, and in coastal regions with islands, channels, tidal flats and inlets, estuaries, fjords and lagoons. The book brings graduate students, researchers and engineers up-to-date with the science and technology involved, assuming only a basic understanding of physics, mathematics and statistics. Most of this richly illustrated book is devoted to the physical aspects of waves. After introducing observation techniques for waves, both at sea and from space, the book defines the parameters that characterize waves. Using basic statistical and physical concepts, the author discusses the prediction of waves in oceanic and coastal waters, first in terms of generalized observations, and then in terms of the more theoretical framework of the spectral energy balance. He gives the results of established theories and also the direction in which research is developing. The book ends with a description of SWAN (Simulating Waves Nearshore), the preferred computer model of the engineering community for predicting waves in coastal waters. Illustrations from the book are featured in color, along with student questions and answers on a web site Includes a detailed description of the wave model SWAN, the preferred computer model of the engineering community for predicting waves in coastal waters Appendices briefly review pre-requisite information on mathematics, statistics and physics

  5. Measuring mercury in coastal fog water

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-04-01

    Mercury, a heavy metal neurotoxin, accumulates in sea life, in some cases reaching levels that make seafood unsafe for humans to eat. How mercury gets into aquatic organisms is debated, but part of the pathway could include mercury carried in precipitation, including rain, snow, and fog. The contribution of mercury in fog water in particular is not well known, especially in foggy coastal areas such as coastal California. To learn more, Weiss-Penzias et al. measured total mercury and monomethyl mercury concentrations in fog water and rainwater samples taken from four locations around Monterey Bay, California, during spring and summer 2011. They found that the mean monomethyl mercury concentrations in their fog water samples were about 34 times higher than the mean concentrations in their rainwater samples. Therefore, the authors believe that fog is an important, previously unrecognized source of mercury to coastal ecosystems. They also explored potential sources of mercury, finding that biotically formed monomethyl mercury from oceanic upwelling may contribute to monomethyl mercury in fog. (Geophysical Research Letters, doi:10.1029/2011GL050324, 2012)

  6. Coastal and Estuarine Waters: Light Behavior. Coastal and Estuarine Waters: Optical Sensors and Remote Sensing.

    EPA Science Inventory

    This article summarizes the use of remote sensing techniques and technology to monitor coastal and estuarine waters. These waters are rich in mineral particles stirred up from the seabed by tides and waves and dissolved organic matter transported by rivers. The majority of the li...

  7. An optical method to assess water clarity in coastal waters.

    PubMed

    Kulshreshtha, Anuj; Shanmugam, Palanisamy

    2015-12-01

    Accurate estimation of water clarity in coastal regions is highly desired by various activities such as search and recovery operations, dredging and water quality monitoring. This study intends to develop a practical method for estimating water clarity based on a larger in situ dataset, which includes Secchi depth (Z sd ), turbidity, chlorophyll and optical properties from several field campaigns in turbid coastal waters. The Secchi depth parameter is found to closely vary with the concentration of suspended sediments, vertical diffuse attenuation coefficient K d (m(-1)) and beam attenuation coefficient c (m(-1)). The optical relationships obtained for the selected wavelengths (i.e. 520, 530 and 540 nm) exhibit an inverse relationship between Secchi depth and the length attenuation coefficient (1/(c + K d )). The variation in Secchi depth is expressed in terms of undetermined coupling coefficient which is composed of light penetration factor (expressed by z(1%)K d (λ)) and a correction factor (ξ) (essentially governed by turbidity of the water column). This method of estimating water clarity was validated using independent in situ data from turbid coastal waters, and its results were compared with those obtained from the existing methods. The statistical analysis of the measured and the estimated Z sd showed that the present method yields lower error when compared to the existing methods. The spatial structures of the measured and predicted Z sd are also highly consistent with in situ data, which indicates the potential of the present method for estimating the water clarity in turbid coastal and associated lagoon waters.

  8. Reducing nitrogen loading of inland and marine waters--evaluation of Danish policy measures to reduce nitrogen loss from farmland.

    PubMed

    Grant, Ruth; Nielsen, Kurt; Waagepetersen, Jesper

    2006-05-01

    An evaluation in December 2003 of the Danish National Action Plan for the Aquatic Environment II showed that nitrogen leaching from farmland had declined to almost half the amount of that in 1989. This can be ascribed to successful implementation of several measures, the most efficient of which were related to the use of fertilizers: lowered nitrogen standards for crops, increased nitrogen utilization in manure and catch crops. Although the objectives of the plan were almost met and measurements have shown a similar, but not percentually as high a decrease in nitrogen concentrations in both inland and coastal waters, the ecological impact in estuaries and coastal areas is not yet satisfactorily significant. As a consequence, a new National Action Plan for the Aquatic Environment III, including both nitrogen and phosphorus reduction from farming, was agreed to in April 2004. To ensure that good ecological status can be achieved in water bodies according to the requirements of the European Union Water Framework Directive, the national measures will be combined with additional measures for individual river basins. PMID:16846199

  9. CLASSIFYING COASTAL WATERS:CURRENT NECESSITY AND HISTORICAL PERSPECTIVE

    EPA Science Inventory

    Coastal ecosystems are ecologically and commercially valuable, productive habitats that are experiencing escalating compromises of their structural and functional integrity. The Clean Water Act (USC 1972) requires identification of impaired water bodies and determination of the c...

  10. Can humic water discharge counteract eutrophication in coastal waters?

    PubMed

    Andersson, Agneta; Jurgensone, Iveta; Rowe, Owen F; Simonelli, Paolo; Bignert, Anders; Lundberg, Erik; Karlsson, Jan

    2013-01-01

    A common and established view is that increased inputs of nutrients to the sea, for example via river flooding, will cause eutrophication and phytoplankton blooms in coastal areas. We here show that this concept may be questioned in certain scenarios. Climate change has been predicted to cause increased inflow of freshwater to coastal areas in northern Europe. River waters in these areas are often brown from the presence of high concentrations of allochthonous dissolved organic carbon (humic carbon), in addition to nitrogen and phosphorus. In this study we investigated whether increased inputs of humic carbon can change the structure and production of the pelagic food web in the recipient seawater. In a mesocosm experiment unfiltered seawater from the northern Baltic Sea was fertilized with inorganic nutrients and humic carbon (CNP), and only with inorganic nutrients (NP). The system responded differently to the humic carbon addition. In NP treatments bacterial, phytoplankton and zooplankton production increased and the systems turned net autotrophic, whereas the CNP-treatment only bacterial and zooplankton production increased driving the system to net heterotrophy. The size-structure of the food web showed large variations in the different treatments. In the enriched NP treatments the phytoplankton community was dominated by filamentous >20 µm algae, while in the CNP treatments the phytoplankton was dominated by picocyanobacteria <5 µm. Our results suggest that climate change scenarios, resulting in increased humic-rich river inflow, may counteract eutrophication in coastal waters, leading to a promotion of the microbial food web and other heterotrophic organisms, driving the recipient coastal waters to net-heterotrophy.

  11. Water resources of Lincoln County coastal area, Oregon

    USGS Publications Warehouse

    Frank, F.J.; Laenen, Antonius

    1976-01-01

    Water supplies for all municipalities in Lincoln County currently (1975) are obtained from surface-water sources. Because of rapid economic development of the coastal area, it is expected that additional water will be needed in the future. Additional water can be supplied (1) by reservoirs on major streams; (2) by the expansion, in some locations, of present surface-water facilities on small streams; and (3) locally, by an additional small volume of supplemental water from ground-water sources.

  12. Phytoplankton Communities in Louisiana coastal waters and the continental shelf

    EPA Science Inventory

    Louisiana coastal waters and the adjacent continental shelf receive large freshwater and nutrient inputs from the Mississippi and Atchafalaya Rivers, creating favorable conditions for increased phytoplankton productivity. To examine inshore-offshore patterns in phytoplankton comm...

  13. Organophosphate pesticide concentrations in coral tissues of Indonesian coastal waters.

    PubMed

    Sabdono, Agus; Kang, Suil; Hur, Hor-Gil; Grossart, Hans-Peter; Simon, Meinhard; Radjasa, Ocky Kama

    2007-06-01

    In this study we evaluated the persistence of diazinon, chlorpyrifos, profenofos, parathion, malathion and ethion in dead coral tissues of Indonesian coastal waters (Java, Bali, Sulawesi and Komodo). Comparison of the residue levels in coral tissues showed that the highest presence of organophosphate concentrations was detected in a coral sample collected from Java coastal waters. While medium amounts of a contaminant diazinon can still lead to detectable in Bali and Sulawesi coastal waters. Prominent contamination of organophosphate was not found in a sample collected from Komodo. Neither parathion nor malathion were detected in any of the samples. This result implies that the geographical variations of organophosphate compounds are determined by the possible usage of these chemicals around coastal waters at the present or in the past. There is need for further work to identify sources and fate of pesticide contaminants, as well as to improve monitoring of pesticide use. PMID:19086563

  14. Coastal Water Protection the Navy Way

    ERIC Educational Resources Information Center

    Hura, Myron; And Others

    1976-01-01

    This article describes procedures taken by the U.S. Navy to minimize the environmental import and pollution in harbors and coastal areas resulting from ships, aircraft and shore-based Navel operations. (SL)

  15. Biogeochemical classification of South Florida's estuarine and coastal waters.

    PubMed

    Briceño, Henry O; Boyer, Joseph N; Castro, Joffre; Harlem, Peter

    2013-10-15

    South Florida's watersheds have endured a century of urban and agricultural development and disruption of their hydrology. Spatial characterization of South Florida's estuarine and coastal waters is important to Everglades' restoration programs. We applied Factor Analysis and Hierarchical Clustering of water quality data in tandem to characterize and spatially subdivide South Florida's coastal and estuarine waters. Segmentation rendered forty-four biogeochemically distinct water bodies whose spatial distribution is closely linked to geomorphology, circulation, benthic community pattern, and to water management. This segmentation has been adopted with minor changes by federal and state environmental agencies to derive numeric nutrient criteria. PMID:23968989

  16. Sediment mediated species interactions in coastal waters

    NASA Astrophysics Data System (ADS)

    Reise, Karsten

    2002-10-01

    Self-structuring in marine sediment communities is achieved by the mobility of the organisms, the trophic web, and biogenic transformations of the habitat. The latter are: bioconstruction and bioturbations, sediment stabilisation and destabilisation, with facilitating and inhibiting effects. This cursory overview intends to show that in near-shore mud and sand, biogenic habitat transformations pervade all community interactions. Consequently these deserve as much attention in benthic ecosystem analyses as do trophic pathways. Abundant phototrophs and suspension feeders tend to accumulate sediment and organic matter. Underneath phototrophic mats, composite layers of anaerobic microorganisms abound. Benthic animals provide anchorage to tufts of algae, and these in turn provide shelter and food for mobile benthos. Rooted plants slow down hydrodynamics and generate complex habitats above the sediment surface but below a meshwork of roots may inhibit burrowing animals. Abundant suspension feeders stabilise sediments, and may build loose hummocks, multi-species epibenthic thickets or solid reefs, accommodating diverse epibenthic assemblages. Their raised and rough surfaces enhance turbulence. Below the sediment surface, tubes and burrows of sessile or discretely motile animals provide microoxic habitats for diverse assemblages of small organisms. At the surface, mucus of motile organisms increases sediment cohesion. Accumulated dead hardparts of the benthos support epibionts when at the surface but cause resistance to the burrowers below. Reworking and irrigation of the sediment by the infauna increases oxygenation, and particulate and solute fluxes with the overlying water. Mounds and pits generated by resident burrowers as well as by large visiting grazers and predators further diversify the benthos. All these bioengineered structures and processes generate dynamic and complex habitat-mediated interaction webs, affecting and meshed into the trophic web, which they may

  17. Citizens' guides to ocean and coastal law: Guide to laws regulating coastal water pollution

    SciTech Connect

    Not Available

    1993-01-01

    The pamphlet is intended to help citizens, like those participating in water quality monitoring programs, who want to understand the complex nature of state, federal, and local laws that apply to the chief sources of coastal water pollution: point source pollution--pollution discharged from pipes which require state and federal permits; and nonpoint source pollution--generally unregulated runoff from agricultural operations and urban land uses, timber harvesting (silviculture), and construction activities. The pamphlet explains the legal standards and penalties established by coastal water quality laws so that citizens can better participate in the implementation and enforcement of these laws.

  18. Modeling Tidal Water Levels for Canadian Coastal and Offshore waters

    NASA Astrophysics Data System (ADS)

    Robin, C. M. I.; MacAulay, P.; Nudds, S.; Godin, A.; de Lange Boom, B.; Bartlett, J.; Maltais, L.; Herron, T.; Craymer, M. R.; Veronneau, M.; Fadaie, K.

    2014-12-01

    IIn 2010, the Canadian Hydrographic Service initiated the Continuous Vertical Datum for Canadian Waters (CVDCW) project, the aim of which is to connect tidal water level datums (high and low water levels, chart datum, etc.) to a national geodetic reference frame over all Canadian tidal waters. Currently, water level datums are tied to a geodetic reference frame at approximately 400 tide stations which have been surveyed with GPS, whereas water levels vary significantly in space even a short distance away from tide stations. The CVDCW captures the relevant spatial variability between stations and offshore by integrating ocean models, gauge data (water level analyses and/or GPS observations), sea level trends, satellite altimetry, and a geoid model. The CVDCW will enable the use of Global Navigation Satellite System technologies (primarily GPS) for hydrographers and navigators. It will also be important for other users including oceanographers, environmental and climate scientists, surveyors and engineers. For instance, it will allow easier integration of hydrographic and terrestrial data, provide a baseline for storm surge modeling and climate change adaptation, and aid with practical issues such as sovereignty and the definition of the coastline. Once high and low water surfaces are complete, they will define a large portion of the vertical link between land and ocean, helping to delineate flooding thresholds and inter-tidal ecosystem zones and boundaries. Here we present an overview of the methodology using a set of prototype model results, and will outline features of interest for studies in coastal stability, climate change adaptation, and sea level change.

  19. Characterizing Water, Sediment, Nutrients, and Contaminant Fluxes in Coastal Egypt

    NASA Astrophysics Data System (ADS)

    Peterson, Richard N.; El-Gamal, Ayman

    2010-03-01

    Marine Constituent Dynamics in Coastal Egypt; Alexandria, Egypt, 20 November 2009; The Egyptian coastal area is a highly dynamic region in which materials (water, sediment, nutrients, and contaminants) are transported from various sources to the Mediterranean and Red seas. At a workshop in Egypt, U.S. and Egyptian scientists discussed these largely unquantified processes and how they interact to drive coastal ecology. A major goal of the workshop was to identify the most pressing research priorities for the region for both scientific and management purposes. The workshop concluded by recommending that international multidisciplinary efforts be undertaken to characterize water, nutrient, sediment, and contaminant delivery fluxes and mechanisms to coastal regions of the Nile Delta.

  20. The GOES-R coastal waters imager: a new capability for monitoring the coastal ocean

    NASA Astrophysics Data System (ADS)

    Davis, Curtiss O.

    2005-08-01

    NOAA is planning to include a hyperspectral Coastal Waters imaging capability (HES-CW) as part of the Hyperspectral Environment Suite (HES) on the next generation Geostationary Operational Environmental Satellite (GOES-R) to be launched in 2012. The key advantage of a geostationary imager is frequency of revisit. Coastal waters are highly dynamic. Tides, diurnal winds, river runoff, upwelling and storm winds drive currents from one to several knots. Three hour or better sampling is required to resolve these features, and to track red tides, oil spills or other features of concern for coastal environmental management. The HES-CW will image the U.S. coastal waters once every three hours, with a goal of hourly. Additionally, HES-CW can be cued using the Advanced Baseline Imager (ABI) to image when the area is cloud free, rather than at fixed times set by the orbit for traditional polar orbiting ocean color imagers like SeaWiFS and MODIS. To prepare for HES-CW NOAA has formed the Coastal Ocean Applications and Science Team (COAST). COAST goals are to assure that ocean applications and science requirements are met and to help NOAA prepare for the immediate use of the data when HES-CW is launched. I will describe the HES-CW requirements, current status and the activities of the COAST team.

  1. Multiple Stressors: Lessons from Louisiana Coastal Waters (Invited)

    NASA Astrophysics Data System (ADS)

    Rabalais, N. N.

    2013-12-01

    Coastal Louisiana is a Mississippi River-dominated landscape driven by the long-term (millennia) and short-term (decades to hundreds of years) changes in materials flux, nature and human activities. The results are a highly productive coastal landscape and nearshore coastal waters that support rich natural and non-renewable resources. The ecosystem and socio-economic systems are intimately linked. Several factors have led to the demise of many of the healthy features of this coastal system, including long-term changes in the landscape of the Mississippi River basin watershed, alterations to the structure and flow of the Mississippi River and its tributaries, coastal landscape alterations leading to loss of productive marshes and protective barrier islands, increases in nitrogen and phosphorus loads to the coastal ocean and their detrimental effects, and reduction in the sediments delivered by the river. Increases in population and extraction of living resources and oil and gas reserves continue to drive many actions taken in the coastal landscape and waters. As a result, Louisiana is in a state of major disrepair (to be charitable) and needs thoughtful consideration of restoration actions taken in the river basin and within the coastal landscape. The first thought is to cause no further harm. The second is to proceed acknowledging that human and natural forces (particularly climate change, rising sea level and changing global economies) must be taken into account. Thirdly, a broader consideration of the river basin and coastal landscapes, their interconnectivity, and ecosystem health and social welfare must be taken into account.

  2. The inorganic carbon distribution in Irish coastal waters

    NASA Astrophysics Data System (ADS)

    McGrath, Triona; Cave, Rachel; McGovern, Evin; Kivimae, Caroline

    2014-05-01

    Despite their relatively small surface area, coastal and shelf waters play a crucial role in the global climate through their influence on major biogeochemical cycles. Due to growing concern about ocean acidification as a result of increasing atmospheric CO2 concentrations, measurements of inorganic carbon parameters (dissolved inorganic carbon (DIC), total alkalinity (TA), pH and pCO2) have been made with increasing regularity over the past two decades. While it is clear that open ocean surface waters are acidifying at a fairly uniform rate ( -0.02 pH units per decade), less is known about changes in coastal waters due to the high complexity and spatial variability in these regions. Large spatial and temporal variability in coastal CO2 parameters is mainly due to nutrient inputs, biological activity, upwelling and riverine inputs of alkalinity and inorganic and organic carbon. The inorganic carbon system in Irish coastal waters is presented here, gathered from 9 surveys around the Irish coastline between 2009 and 2013. There are striking contrasts in the CO2 system between different areas, largely attributed to the bedrock composition of the nearby rivers. Freshwater end-member concentrations of TA, calculated from TA-salinity relationships in outer estuarine and nearshore coastal water, were supported by riverine TA data from the Irish Environmental Protection Agency. A large portion of Ireland is covered with limestone bedrock and as a result, many of the rivers have extremely high TA (>5000μmol/kg) due to the carbonate mineral content of the underlying bedrock. While such high TA has resulted in elevated pH and calcium carbonate saturation states in some coastal waters, (e.g. Galway Bay and Dublin Bay), the high TA in other areas was accompanied by particularly high DIC (e.g. River Shannon on the west coast), resulting in lower pH and aragonite/calcite saturation states and even CO2 degassing in the Shannon estuary. Due to non-limestone lithology in many parts

  3. Nitrogen cycling in different types of sediments from Danish waters

    SciTech Connect

    Blackburn, T.H.; Henridsen, K.

    1983-05-01

    Variations in sediment N:C ratios were correlated with water depth and season. /sup 14/NH/sub 4//sup +/ was used to measure the rates of NH/sub 4//sup +/ production (d) and incorporation into bacterial cells (i) in sediments from different stations, at different seasons. The validity of the rates d and i was indicated by the predicted correlation of d:i ratios with N:C ratios of the sediment, and the predicted N:C ratio at which net NH/sub 4//sup +/; pore water NH/sub 4//sup +/, flux of NH/sub 4//sup +/ from sediment, and flux of NH/sub 4//sup +/ into exchangeable pool. The NO/sub 3//sup -/ flux from sediment was correlated with nitrification rate and with season. Benthic infauna increased the flux of NH/sub 4//sup +/ from the sediment by 50%. The rates of transfer of nitrogen (NO/sub 3//sup -/, NH/sub 4//sup +/, N/sub 2/) from sediment to water were 44-66% of the net rates of organic nitrogen mineralization (d-i). Flux of NO/sub 3//sup -/ + NH/sub 4//sup +/ from the sediment could supply 30-82% of the nitrogen requirement of the planktonic primary producers.

  4. Possible Causes of a Harbour Porpoise Mass Stranding in Danish Waters in 2005

    PubMed Central

    Wright, Andrew J.; Maar, Marie; Mohn, Christian; Nabe-Nielsen, Jacob; Siebert, Ursula; Jensen, Lasse Fast; Baagøe, Hans J.; Teilmann, Jonas

    2013-01-01

    An unprecedented 85 harbour porpoises stranded freshly dead along approximately 100 km of Danish coastline from 7–15 April, 2005. This total is considerably above the mean weekly stranding rate for the whole of Denmark, both for any time of year, 1.23 animals/week (ranging from 0 to 20 during 2003–2008, excluding April 2005), and specifically in April, 0.65 animals/week (0 to 4, same period). Bycatch was established as the cause of death for most of the individuals through typical indications of fisheries interactions, including net markings in the skin and around the flippers, and loss of tail flukes. Local fishermen confirmed unusually large porpoise bycatch in nets set for lumpfish (Cyclopterus lumpus) and the strandings were attributed to an early lumpfish season. However, lumpfish catches for 2005 were not unusual in terms of season onset, peak or total catch, when compared to 2003–2008. Consequently, human activity was combined with environmental factors and the variation in Danish fisheries landings (determined through a principal component analysis) in a two-part statistical model to assess the correlation of these factors with both the presence of fresh strandings and the numbers of strandings on the Danish west coast. The final statistical model (which was forward selected using Akaike information criterion; AIC) indicated that naval presence is correlated with higher rates of porpoise strandings, particularly in combination with certain fisheries, although it is not correlated with the actual presence of strandings. Military vessels from various countries were confirmed in the area from the 7th April, en route to the largest naval exercise in Danish waters to date (Loyal Mariner 2005, 11–28 April). Although sonar usage cannot be confirmed, it is likely that ships were testing various equipment prior to the main exercise. Thus naval activity cannot be ruled out as a possible contributing factor. PMID:23460787

  5. Possible causes of a harbour porpoise mass stranding in Danish waters in 2005.

    PubMed

    Wright, Andrew J; Maar, Marie; Mohn, Christian; Nabe-Nielsen, Jacob; Siebert, Ursula; Jensen, Lasse Fast; Baagøe, Hans J; Teilmann, Jonas

    2013-01-01

    An unprecedented 85 harbour porpoises stranded freshly dead along approximately 100 km of Danish coastline from 7-15 April, 2005. This total is considerably above the mean weekly stranding rate for the whole of Denmark, both for any time of year, 1.23 animals/week (ranging from 0 to 20 during 2003-2008, excluding April 2005), and specifically in April, 0.65 animals/week (0 to 4, same period). Bycatch was established as the cause of death for most of the individuals through typical indications of fisheries interactions, including net markings in the skin and around the flippers, and loss of tail flukes. Local fishermen confirmed unusually large porpoise bycatch in nets set for lumpfish (Cyclopterus lumpus) and the strandings were attributed to an early lumpfish season. However, lumpfish catches for 2005 were not unusual in terms of season onset, peak or total catch, when compared to 2003-2008. Consequently, human activity was combined with environmental factors and the variation in Danish fisheries landings (determined through a principal component analysis) in a two-part statistical model to assess the correlation of these factors with both the presence of fresh strandings and the numbers of strandings on the Danish west coast. The final statistical model (which was forward selected using Akaike information criterion; AIC) indicated that naval presence is correlated with higher rates of porpoise strandings, particularly in combination with certain fisheries, although it is not correlated with the actual presence of strandings. Military vessels from various countries were confirmed in the area from the 7th April, en route to the largest naval exercise in Danish waters to date (Loyal Mariner 2005, 11-28 April). Although sonar usage cannot be confirmed, it is likely that ships were testing various equipment prior to the main exercise. Thus naval activity cannot be ruled out as a possible contributing factor.

  6. Linking integrated water resources management and integrated coastal zone management.

    PubMed

    Rasch, P S; Ipsen, N; Malmgren-Hansen, A; Mogensen, B

    2005-01-01

    Some of the world's most valuable aquatic ecosystems such as deltas, lagoons and estuaries are located in the coastal zone. However, the coastal zone and its aquatic ecosystems are in many places under environmental stress from human activities. About 50% of the human population lives within 200 km of the coastline, and the population density is increasing every day. In addition, the majority of urban centres are located in the coastal zone. It is commonly known that there are important linkages between the activities in the upstream river basins and the environment conditions in the downstream coastal zones. Changes in river flows, e.g. caused by irrigation, hydropower and water supply, have changed salinity in estuaries and lagoons. Land use changes, such as intensified agricultural activities and urban and industrial development, cause increasing loads of nutrients and a variety of chemicals resulting in considerable adverse impacts in the coastal zones. It is recognised that the solution to such problems calls for an integrated approach. Therefore, the terms Integrated Water Resources Management (IWRM) and Integrated Coastal Zone Management (ICZM) are increasingly in focus on the international agenda. Unfortunately, the concepts of IWRM and ICZM are mostly being developed independently from each other by separate management bodies using their own individual approaches and tools. The present paper describes how modelling tools can be used to link IWRM and ICZM. It draws a line from the traditional sectoral use of models for the Istanbul Master Planning and assessment of the water quality and ecological impact in the Bosphorus Strait and the Black Sea 10 years ago, to the most recent use of models in a Water Framework Directive (WFD) context for one of the selected Pilot River Basins in Denmark used for testing of the WFD Guidance Documents.

  7. Linking integrated water resources management and integrated coastal zone management.

    PubMed

    Rasch, P S; Ipsen, N; Malmgren-Hansen, A; Mogensen, B

    2005-01-01

    Some of the world's most valuable aquatic ecosystems such as deltas, lagoons and estuaries are located in the coastal zone. However, the coastal zone and its aquatic ecosystems are in many places under environmental stress from human activities. About 50% of the human population lives within 200 km of the coastline, and the population density is increasing every day. In addition, the majority of urban centres are located in the coastal zone. It is commonly known that there are important linkages between the activities in the upstream river basins and the environment conditions in the downstream coastal zones. Changes in river flows, e.g. caused by irrigation, hydropower and water supply, have changed salinity in estuaries and lagoons. Land use changes, such as intensified agricultural activities and urban and industrial development, cause increasing loads of nutrients and a variety of chemicals resulting in considerable adverse impacts in the coastal zones. It is recognised that the solution to such problems calls for an integrated approach. Therefore, the terms Integrated Water Resources Management (IWRM) and Integrated Coastal Zone Management (ICZM) are increasingly in focus on the international agenda. Unfortunately, the concepts of IWRM and ICZM are mostly being developed independently from each other by separate management bodies using their own individual approaches and tools. The present paper describes how modelling tools can be used to link IWRM and ICZM. It draws a line from the traditional sectoral use of models for the Istanbul Master Planning and assessment of the water quality and ecological impact in the Bosphorus Strait and the Black Sea 10 years ago, to the most recent use of models in a Water Framework Directive (WFD) context for one of the selected Pilot River Basins in Denmark used for testing of the WFD Guidance Documents. PMID:16114636

  8. Phytoplankton community composition in nearshore coastal waters of Louisiana

    EPA Science Inventory

    Phytoplankton community compositions within near-shore coastal and estuarine waters of Louisiana were characterized by relative abundance, biovolume, and taxonomic identification to genus and species when possible. The range of total nitrogen was 0.5 to 1.3 mg L-1 and total phos...

  9. Possible satellite oceanography on coastal waters during the NPP stage

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Asanuma, I.; Zhao, C.; Huang, B.

    2007-09-01

    Ocean color monitoring on the coastal water is still under study because of an incomplete atmospheric correction over the turbid water like over the coastal water along the China main land. Currently available sensors for science as MODIS on Terra or Aqua will terminate their service in the near future and the NPOESS Preparatory Project (NPP) will be the next satellite to support the satellite oceanography on the coastal water. The Tokyo University of Information Sciences (TUIS) has updated the MODIS receiving system to capture and ingest the Visible/Infrared Imager/Radiometer Suite (VIIRS) data from NPP, which will be launched in 2008. Data processing software from the Direct Readout Laboratory (DRL), such as the Real-time Software Telemetry Processing (RT-STPS), Simulcast, and DB algorithms, will be core programs in our system. VIIRS has seven bands in VIS&NIR, which are for ocean color research. The spatial resolution is 0.742×0.259 meters at nadir. While the MODIS spatial resolution of the nine ocean color bands is 1000m. The higher spatial resolution MODIS data (250 meters) is used to illustrate the advantage of the higher spatial resolution remote sensing data, such as data from VIIRS. In this study, we propose to combine the higher spatial resolution data with the traditional products of chlorophyll-a and sea surface temperature in the low resolution so as to extract further information on the coastal ocean.

  10. The use of satellites in environmental monitoring of coastal waters

    NASA Technical Reports Server (NTRS)

    Philpot, W.; Klemas, V.

    1979-01-01

    The feasibility of using satellites in an operational system for monitoring the type, concentration, location, drift, and dispersion of pollutants in coastal waters is evaluated. Visible, microwave, and thermal infrared sensing are considered. Targets to be detected include photosynthetic pigments, iron acid waste, and sewage sludge.

  11. CLASSIFYING COASTAL WATERS: HISTORICAL PERSPECTIVE AND CURRENT FOCUS ON AQUATIC STRESSORS

    EPA Science Inventory

    Coastal ecosystems are ecologically and commercially productive habitats that are experiencing significant impacts associated with accelerated population growth in coastal zones. The Clean Water Act requires identification of impaired water bodies and determination of the causes ...

  12. Evolution of a Man-Made Plume in Coastal Waters

    SciTech Connect

    Steinmaus, Karen L.; Bowles, Jeff; Woodruff, Dana L.; Donato, Tim; Rhea, William J.; Snyder, W. A.; Korwan, Daniel R.; Miller, Lee M.; Petrie, Gregg M.; Maxwell, Adam R.; Hibler, Lyle F.

    2006-12-19

    The ability to understand the biogeophysical parameters that create ocean color in coastal waters is fundamental to the ability to exploit remote sensing for coastal applications. This article describes an experiment in which a controlled quantity of a single inorganic material with known absorption and scattering properties was released into a coastal environment. The plume experiment was conducted in conjunction with a Pacific Northwest National Laboratory (PNNL) field collection campaign in and around Sequim Bay on the Strait of Juan de Fuca in Washington State. The objective of the field campaign was to identify and characterize features in the near shore environment from the standpoint of quantifying environmental parameters to improve operational planning in littoral regions. The aerial component of the mission involved imagery acquisitions from the NRL's PHILLS hyperspectral sensor, and two commercial IR cameras. Coincident satellite data was obtained from commercial sources. Ground truth activities included atmospheric profiles, ground, surface water, and in-water spectral measurements, panels for radiometric calibration, water column water optics, water samples and profiles from support vessels, in-situ tide and weather measurements, and beach and intertidal transects and surveys (via scientific dive teams). This field collection campaign provided a unique opportunity for a multisensor data collection effort in littoral regions, to identify and characterize features from multiple platforms (satellite, aerial, water surface and subsurface) and sensors. Data from this mission is being used as input to both radiative transfer and ocean transport models, for characterizing the water column and the near-shore, and quantitatively estimating circulation and transport in coastal environments.

  13. Contamination of diuron in coastal waters around Malaysian Peninsular.

    PubMed

    Ali, Hassan Rashid; Arifin, Marinah Mohd; Sheikh, Mohammed Ali; Shazili, Noor Azhar Mohamed; Bakari, Said Suleiman; Bachok, Zainudin

    2014-08-15

    The use of antifouling paints to the boats and ships is one among the threats facing coastal resources including coral reefs in recent decades. This study reports the current contamination status of diuron and its behaviour in the coastal waters of Malaysia. The maximum concentration of diuron was 285 ng/L detected at Johor port. All samples from Redang and Bidong coral reef islands were contaminated with diuron. Temporal variation showed relatively high concentrations but no significant difference (P>0.05) during November and January (North-East monsoon) in Klang ports (North, South and West), while higher levels of diuron were detected during April, 2012 (Inter monsoon) in Kemaman, and Johor port. Although no site has shown concentration above maximum permissible concentration (430 ng/L) as restricted by the Dutch Authorities, however, long term exposure studies for environmental relevance levels of diuron around coastal areas should be given a priority in the future. PMID:24934440

  14. Bacterial pollution of Messina coastal waters: a one year study.

    PubMed

    Caruso, G; Zaccone, R; Monticelli, L; Crisafi, E; Zampino, D

    2000-07-01

    A year's monitoring of faecal pollution of marine coastal waters surrounding Messina was carried out in 1996/97. The distribution of faecal coliforms was evaluated in 15 stations located along the Sicilian coastline, sampled monthly in coincidence of the two opposing current phases ("montante" and "scendente" currents) which characterise the Straits of Messina. The data obtained provided a complete picture of hygienic-sanitary conditions of the area and highlighted the presence of heavily polluted sites in correspondence with river outflows. Higher bacterial counts were associated with lower salinity values and higher ammonia concentrations; over an annual study, they occurred during the coldest months, showing the negative impact of continental water inputs on the bacteriological quality of coastal waters. PMID:10939045

  15. Studying ground water under Delmarva coastal bays using electrical resistivity

    USGS Publications Warehouse

    Manheim, Frank T.; Krantz, David E.; Bratton, John F.

    2004-01-01

    Fresh ground water is widely distributed in subsurface sediments below the coastal bays of the Delmarva Peninsula (Delaware, Maryland, and Virginia). These conditions were revealed by nearly 300 km of streamer resistivity surveys, utilizing a towed multichannel cable system. Zones of high resistivity displayed by inversion modeling were confirmed by vibradrilling investigations to correspond to fresh ground water occurrences. Fresh water lenses extended from a few hundred meters up to 2 km from shore. Along the western margins of coastal bays in areas associated with fine-grained surficial sediments, high-resistivity layers were widespread and were especially pronounced near tidal creeks. Fresh ground water layers were less common along the eastern barrier-bar margins of the bays, where sediments were typically sandy. Mid-bay areas in Chincoteague Bay, Maryland, did not show evidence of fresh water. Indian River Bay, Delaware, showed complex subsurface salinity relationships, including an area with possible hypersaline brines. The new streamer resistivity system paired with vibradrilling in these investigations provides a powerful approach to recovering information required for extension of hydrologic modeling of shallow coastal aquifer systems into offshore areas.

  16. Extending electromagnetic methods to map coastal pore water salinities

    USGS Publications Warehouse

    Greenwood, Wm. J.; Kruse, S.; Swarzenski, P.

    2006-01-01

    The feasibility of mapping pore water salinity based on surface electromagnetic (EM) methods over land and shallow marine water is examined in a coastal wetland on Tampa Bay, Florida. Forward models predict that useful information on seabed conductivity can be obtained through <1.5 m of saline water, using floating EM-31 and EM-34 instruments from Geonics Ltd. The EM-31 functioned as predicted when compared against resistivity soundings and pore water samples and proved valuable for profiling in otherwise inaccessible terrain due to its relatively small size. Experiments with the EM-34 in marine water, however, did not reproduce the theoretical instrument response. The most effective technique for predicting pore water conductivities based on EM data entailed (1) computing formation factors from resistivity surveys and pore water samples at representative sites and (2) combining these formation factors with onshore and offshore EM-31 readings for broader spatial coverage. This method proved successful for imaging zones of elevated pore water conductivities/ salinities associated with mangrove forests, presumably caused by salt water exclusion by mangrove roots. These zones extend 5 to 10 m seaward from mangrove trunks fringing Tampa Bay. Modeling indicates that EM-31 measurements lack the resolution necessary to image the subtle pore water conductivity variations expected in association with diffuse submarine ground water discharge of fresher water in the marine water of Tampa Bay. The technique has potential for locating high-contrast zones and other pore water salinity anomalies in areas not accessible to conventional marine- or land-based resistivity arrays and hence may be useful for studies of coastal-wetland ecosystems. Copyright ?? 2005 National Ground Water Association.

  17. Linking climate change mitigation and coastal eutrophication management through biogas technology: Evidence from a new Danish bioenergy concept.

    PubMed

    Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael; Møller, Henrik Bjarne; Butts, Michael Brian; Jensen, Niels H; Kjaer, Tyge

    2016-01-15

    The interest in sustainable bioenergy solutions has gained great importance in Europe due to the need to reduce GHG emissions and to meet environmental policy targets, not least for the protection of groundwater and surface water quality. In the Municipality of Solrød in Denmark, a novel bioenergy concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under construction, was designed to handle an annual input of up to 200,000 t of biomass based on four main fractions: pectin wastes, carrageenan wastes, manure and beach-cast seaweed. This paper describes how this bioenergy concept can contribute to strengthening the linkages between climate change mitigation strategies and Water Framework Directive (WFD) action planning. Our assessments of the projected biogas plant indicate an annual reduction of GHG emissions of approx. 40,000 t CO2 equivalents, corresponding to approx. 1/3 of current total GHG emissions in the Municipality of Solrød. In addition, nitrogen and phosphorous loads to Køge Bay are estimated to be reduced by approx. 63 t yr.(-1) and 9 tyr.(-1), respectively, contributing to the achievement of more than 70% of the nutrient reduction target set for Køge Bay in the first WFD river basin management plan. This study shows that anaerobic co-digestion of the specific food industry residues, pig manure and beach-cast seaweed is feasible and that there is a very significant, cost-effective GHG and nutrient loading mitigation potential for this bioenergy concept. Our research demonstrates how an integrated planning process where considerations about the total environment are integrated into the design and decision processes can support the development of this kind of holistic bioenergy solutions. PMID:26476058

  18. Linking climate change mitigation and coastal eutrophication management through biogas technology: Evidence from a new Danish bioenergy concept.

    PubMed

    Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael; Møller, Henrik Bjarne; Butts, Michael Brian; Jensen, Niels H; Kjaer, Tyge

    2016-01-15

    The interest in sustainable bioenergy solutions has gained great importance in Europe due to the need to reduce GHG emissions and to meet environmental policy targets, not least for the protection of groundwater and surface water quality. In the Municipality of Solrød in Denmark, a novel bioenergy concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under construction, was designed to handle an annual input of up to 200,000 t of biomass based on four main fractions: pectin wastes, carrageenan wastes, manure and beach-cast seaweed. This paper describes how this bioenergy concept can contribute to strengthening the linkages between climate change mitigation strategies and Water Framework Directive (WFD) action planning. Our assessments of the projected biogas plant indicate an annual reduction of GHG emissions of approx. 40,000 t CO2 equivalents, corresponding to approx. 1/3 of current total GHG emissions in the Municipality of Solrød. In addition, nitrogen and phosphorous loads to Køge Bay are estimated to be reduced by approx. 63 t yr.(-1) and 9 tyr.(-1), respectively, contributing to the achievement of more than 70% of the nutrient reduction target set for Køge Bay in the first WFD river basin management plan. This study shows that anaerobic co-digestion of the specific food industry residues, pig manure and beach-cast seaweed is feasible and that there is a very significant, cost-effective GHG and nutrient loading mitigation potential for this bioenergy concept. Our research demonstrates how an integrated planning process where considerations about the total environment are integrated into the design and decision processes can support the development of this kind of holistic bioenergy solutions.

  19. Pathogenic human viruses in coastal waters

    USGS Publications Warehouse

    Griffin, Dale W.; Donaldson, Kim A.; Paul, J.H.; Rose, Joan B.

    2003-01-01

    This review addresses both historical and recent investigations into viral contamination of marine waters. With the relatively recent emergence of molecular biology-based assays, a number of investigations have shown that pathogenic viruses are prevalent in marine waters being impacted by sewage. Research has shown that this group of fecal-oral viral pathogens (enteroviruses, hepatitis A viruses, Norwalk viruses, reoviruses, adenoviruses, rotaviruses, etc.) can cause a broad range of asymptomatic to severe gastrointestinal, respiratory, and eye, nose, ear, and skin infections in people exposed through recreational use of the water. The viruses and the nucleic acid signature survive for an extended period in the marine environment. One of the primary concerns of public health officials is the relationship between the presence of pathogens and the recreational risk to human health in polluted marine environments. While a number of studies have attempted to address this issue, the relationship is still poorly understood. A contributing factor to our lack of progress in the field has been the lack of sensitive methods to detect the broad range of both bacterial and viral pathogens. The application of new and advanced molecular methods will continue to contribute to our current state of knowledge in this emerging and

  20. Pathogenic Human Viruses in Coastal Waters

    PubMed Central

    Griffin, Dale W.; Donaldson, Kim A.; Paul, John H.; Rose, Joan B.

    2003-01-01

    This review addresses both historical and recent investigations into viral contamination of marine waters. With the relatively recent emergence of molecular biology-based assays, a number of investigations have shown that pathogenic viruses are prevalent in marine waters being impacted by sewage. Research has shown that this group of fecal-oral viral pathogens (enteroviruses, hepatitis A viruses, Norwalk viruses, reoviruses, adenoviruses, rotaviruses, etc.) can cause a broad range of asymptomatic to severe gastrointestinal, respiratory, and eye, nose, ear, and skin infections in people exposed through recreational use of the water. The viruses and the nucleic acid signature survive for an extended period in the marine environment. One of the primary concerns of public health officials is the relationship between the presence of pathogens and the recreational risk to human health in polluted marine environments. While a number of studies have attempted to address this issue, the relationship is still poorly understood. A contributing factor to our lack of progress in the field has been the lack of sensitive methods to detect the broad range of both bacterial and viral pathogens. The application of new and advanced molecular methods will continue to contribute to our current state of knowledge in this emerging and important field. PMID:12525429

  1. Backscattering by very small particles in coastal waters

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Gray, Deric J.

    2015-10-01

    The volume scattering and backscattering by very small particles (VSPs) of sizes <0.2 µm in four coastal waters in U.S. (Chesapeake Bay, Monterey Bay, Mobile Bay, and the LEO-15 site) were estimated by inverting the measured volume scattering functions (VSFs) at 532 nm. The measured VSFs are consistent with concurrent measurements of total scattering coefficients by the ac-meters and angular scattering at 100, 125, and 150° by the ECO-VSF sensor and at 140° by the HydroScat-6 sensor. The inferred backscattering coefficients by the VSPs correlate strongly with the absorption coefficients measured for the colored dissolved organic matter, indicating that the dissolved portion of particles do scatter light. In the coastal waters that we studied, the backscattering by VSPs dominate over larger particles (of sizes >0.2 µm), accounting for 40-80% of total backscattering at 532 nm, while only account for <5% of total scattering.

  2. Environmental control on aerobic methane oxidation in coastal waters

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Maltby, Johanna; Engbersen, Nadine; Zopfi, Jakob; Bange, Hermann; Elvert, Marcus; Hinrichs, Kai-Uwe; Kock, Annette; Lehmann, Moritz; Treude, Tina; Niemann, Helge

    2016-04-01

    Large quantities of methane are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, where some of it is consumed by aerobic methane oxidizing bacteria (MOB). Aerobic methane oxidation (MOx) in the water column is consequently the final sink for methane before its release to the atmosphere, where it acts as a potent greenhouse gas. In the context of the ocean's contribution to atmospheric methane, coastal seas are particularly important accounting >75% of global methane emission from marine systems. Coastal oceans are highly dynamic, in particular with regard to the variability of methane and oxygen concentrations as well as temperature and salinity, all of which are potential key environmental factors controlling MOx. To determine important environmental controls on the activity of MOBs in coastal seas, we conducted a two-year time-series study with measurements of physicochemical water column parameters, MOx activity and the composition of the MOB community in a coastal inlet in the Baltic Sea (Boknis Eck Time Series Station, Eckernförde Bay - E-Bay). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, hypoxia developed in bottom waters towards the end of the stratification period. Constant methane liberation from sediments resulted in bottom water methane accumulations and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were (i) perturbations of the water column (ii) temperature and (iii) oxygen concentration. (i) Perturbations of the water column caused by storm events or seasonal mixing led to a decrease in MOx, probably caused by replacement of stagnant water with a high standing stock of MOB by 'new' waters with a lower abundance of methanotrophs. b) An increase in temperature generally led to higher MOx rates. c) Even though methane was

  3. Diurnal changes in ocean color in coastal waters

    NASA Astrophysics Data System (ADS)

    Arnone, Robert; Vandermeulen, Ryan; Ladner, Sherwin; Ondrusek, Michael; Kovach, Charles; Yang, Haoping; Salisbury, Joseph

    2016-05-01

    Coastal processes can change on hourly time scales in response to tides, winds and biological activity, which can influence the color of surface waters. These temporal and spatial ocean color changes require satellite validation for applications using bio-optical products to delineate diurnal processes. The diurnal color change and capability for satellite ocean color response were determined with in situ and satellite observations. Hourly variations in satellite ocean color are dependent on several properties which include: a) sensor characterization b) advection of water masses and c) diurnal response of biological and optical water properties. The in situ diurnal changes in ocean color in a dynamic turbid coastal region in the northern Gulf of Mexico were characterized using above water spectral radiometry from an AErosol RObotic NETwork (AERONET -WavCIS CSI-06) site that provides up to 8-10 observations per day (in 15-30 minute increments). These in situ diurnal changes were used to validate and quantify natural bio-optical fluctuations in satellite ocean color measurements. Satellite capability to detect changes in ocean color was characterized by using overlapping afternoon orbits of the VIIRS-NPP ocean color sensor within 100 minutes. Results show the capability of multiple satellite observations to monitor hourly color changes in dynamic coastal regions that are impacted by tides, re-suspension, and river plume dispersion. Hourly changes in satellite ocean color were validated with in situ observation on multiple occurrences during different times of the afternoon. Also, the spatial variability of VIIRS diurnal changes shows the occurrence and displacement of phytoplankton blooms and decay during the afternoon period. Results suggest that determining the temporal and spatial changes in a color / phytoplankton bloom from the morning to afternoon time period will require additional satellite coverage periods in the coastal zone.

  4. Development of a coastal information system for the management of Jeddah coastal waters in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Mayerle, R.; Al-Subhi, A.; Fernández Jaramillo, J.; Salama, A.; Bruss, G.; Zubier, K.; Runte, K.; Turki, A.; Hesse, K.; Jastania, H.; Ladwig, N.; Mudarris, M.

    2016-04-01

    This paper presents results of the development and application of a web-based information system, Jeddah CIS, for assisting decision makers in the management of Jeddah coastal waters, in Saudi Arabia. The system will support coastal planning, management of navigation and tackle pollution due to accidents. The system was developed primarily to nowcast in quasi-real time and to deliver short-term forecasts of water levels, current velocities and waves with high spatial and temporal resolution for the area near Jeddah. Therefor it will hasten response when adverse weather conditions prevail. The Jeddah-CIS integrates sensors transmitting in real time, meteorological, oceanographic and water quality parameters and operational models for flow and waves. It also provides interactive tools using advanced visualization techniques to facilitate dissemination of information. The system relies on open source software and has been designed to facilitate the integration of additional components for enhanced information processing, data evaluation and generation of higher water level, current velocity and wave for the general public. Jeddah-CIS has been operational since 2013. Extensions of the system to speed operations and improving the accuracy of the predictions to the public are currently underway.

  5. Seagrass restoration enhances "blue carbon" sequestration in coastal waters.

    PubMed

    Greiner, Jill T; McGlathery, Karen J; Gunnell, John; McKee, Brent A

    2013-01-01

    Seagrass meadows are highly productive habitats that provide important ecosystem services in the coastal zone, including carbon and nutrient sequestration. Organic carbon in seagrass sediment, known as "blue carbon," accumulates from both in situ production and sedimentation of particulate carbon from the water column. Using a large-scale restoration (>1700 ha) in the Virginia coastal bays as a model system, we evaluated the role of seagrass, Zosteramarina, restoration in carbon storage in sediments of shallow coastal ecosystems. Sediments of replicate seagrass meadows representing different age treatments (as time since seeding: 0, 4, and 10 years), were analyzed for % carbon, % nitrogen, bulk density, organic matter content, and ²¹⁰Pb for dating at 1-cm increments to a depth of 10 cm. Sediment nutrient and organic content, and carbon accumulation rates were higher in 10-year seagrass meadows relative to 4-year and bare sediment. These differences were consistent with higher shoot density in the older meadow. Carbon accumulation rates determined for the 10-year restored seagrass meadows were 36.68 g C m⁻² yr⁻¹. Within 12 years of seeding, the restored seagrass meadows are expected to accumulate carbon at a rate that is comparable to measured ranges in natural seagrass meadows. This the first study to provide evidence of the potential of seagrass habitat restoration to enhance carbon sequestration in the coastal zone.

  6. Tall tower landscape scale N2O flux measurements in a Danish agricultural and urban, coastal area

    NASA Astrophysics Data System (ADS)

    Ibrom, Andreas; Lequy, Émeline; Loubet, Benjamin; Pilegaard, Kim; Ambus, Per

    2015-04-01

    eastern coastline of the Roskilde fjord on the Danish island Zealand. The tower is surrounded by the fjord, by agricultural area, forests and, in the South by the urban area of the City of Roskilde. The City of Roskilde operates a waste incinerator and a waste water treatment plant, which drains treated waste water into the fjord. The level of the measured flux values was generally relatively low. Based on the clear definition of the lag time between N2O concentrations and the vertical wind speed, fluxes were measureable over larger periods. The fluxes showed clear directional relationships indicating their large spatial and temporal variability in the landscape. Footprint calculations were performed to attribute source areas to the measured fluxes ...(Kormann and Meixner, 2001; Neftel et al., 2008). The footprint of the flux measurement included areas between 200 m and several kilometres distance from the tower. A preliminary approach was developed to generate monthly maps of N2O fluxes around the tower. Here we present the results from the first seven months of flux measurements. Based on these results we discuss the potential and the limitations of tall tower eddy covariance measurements to estimate maps of N2O fluxes and the integral value of the landscape N2O flux. Acknowledgements: This work was funded by the EU-FP7 InGOS project. We thank Ebba Dellwik (Technical University of Denmark) for providing sonic anemometer data. References: Kormann, R. and Meixner, F.X., 2001. An Analytical Footprint Model For Non-Neutral Stratification. Boundary-Layer Meteorology, 99(2): 207-224. Neftel, A., Spirig, C. and Ammann, C., 2008. Application and test of a simple tool for operational footprint evaluations. Environmental Pollution, 152(3): 644-652.

  7. Hydrogeomorphic and Anthropogenic Influences on Water Quality, Habitat, and Fish of Great Lakes Coastal Wetlands

    EPA Science Inventory

    Great Lakes coastal wetlands represent a dynamic interface between coastal watersheds and the open lake. Compared to the adjacent lakes, these wetlands have generally warmer water, reduced wave energy, shallow bathymetry, higher productivity, and structurally complex vegetated h...

  8. The National Danish Water Resources Model - using an integrated groundwater - surface water model for decision support and WFD implementation in a changing climate

    NASA Astrophysics Data System (ADS)

    Lajer Hojberg, Anker; Hinsby, Klaus; Jørgen Henriksen, Hans; Troldborg, Lars

    2014-05-01

    Integrated and sustainable water resources management and development of river basin management plans according to the Water Framework Directive is getting increasingly complex especially when taking projected climate change into account. Furthermore, uncertainty in future developments and incomplete knowledge of the physical system introduces a high degree of uncertainty in the decision making process. Knowledge based decision making is therefore vital for formulation of robust management plans and to allow assessment of the inherent uncertainties. The Department of Hydrology at the Geological Survey of Denmark and Greenland started in 1996 to develop a mechanistically, transient and spatially distributed groundwater-surface water model - the DK-model - for the assessment of groundwater quantitative status accounting for interactions with surface water and anthropogenic changes, such as extraction strategies and land use, as well as climate change. The model has been subject to continuous update building on hydrogeological knowledge established by the regional water authorities and other national research institutes. With the on-going improvement of the DK-model it is now increasingly applied both by research projects and for decision support e.g. in implementation of the Water Framework Directive or to support other decisions related to protection of water resources (quantitative and chemical status), ecosystems and the built environment. At present, the DK-model constitutes the backbone of a strategic modelling project funded by the Danish Environmental Protection Agency, with the aim of developing a modelling complex that will provide the foundation of the implementation of the Water Framework Directive. Since 2003 the DK-model has been used in more than 25 scientific papers and even more public reports. In the poster and the related review paper we describe the most important applications in both science and policy, where the DK-model has been used either

  9. Anthropogenic marine debris in the coastal environment: a multi-year comparison between coastal waters and local shores.

    PubMed

    Thiel, M; Hinojosa, I A; Miranda, L; Pantoja, J F; Rivadeneira, M M; Vásquez, N

    2013-06-15

    Anthropogenic marine debris (AMD) is frequently studied on sandy beaches and occasionally in coastal waters, but links between these two environments have rarely been studied. High densities of AMD were found in coastal waters and on local shores of a large bay system in northern-central Chile. No seasonal pattern in AMD densities was found, but there was a trend of increasing densities over the entire study period. While plastics and Styrofoam were the most common types of AMD both on shores and in coastal waters, AMD composition differed slightly between the two environments. The results suggest that AMD from coastal waters are deposited on local shores, which over time accumulate all types of AMD. The types and the very low percentages of AMD with epibionts point to mostly local sources. Based on these results, it can be concluded that a reduction of AMD will require local solutions.

  10. Anthropogenic marine debris in the coastal environment: a multi-year comparison between coastal waters and local shores.

    PubMed

    Thiel, M; Hinojosa, I A; Miranda, L; Pantoja, J F; Rivadeneira, M M; Vásquez, N

    2013-06-15

    Anthropogenic marine debris (AMD) is frequently studied on sandy beaches and occasionally in coastal waters, but links between these two environments have rarely been studied. High densities of AMD were found in coastal waters and on local shores of a large bay system in northern-central Chile. No seasonal pattern in AMD densities was found, but there was a trend of increasing densities over the entire study period. While plastics and Styrofoam were the most common types of AMD both on shores and in coastal waters, AMD composition differed slightly between the two environments. The results suggest that AMD from coastal waters are deposited on local shores, which over time accumulate all types of AMD. The types and the very low percentages of AMD with epibionts point to mostly local sources. Based on these results, it can be concluded that a reduction of AMD will require local solutions. PMID:23507233

  11. Remote sensing of water clarity and suspended sediments in coastal waters

    USGS Publications Warehouse

    Stumpf, R.P.

    1992-01-01

    Processing of data for estimation of suspended sediment concentrations and water clarity in turbid coastal water requires three components: (1) correction of raw data to water reflectance; (2) establishment of appropriate general models relating reflectance characteristics to materials in the water; and (3) determination of the coefficients of the models appropriate for the area under study. This paper presents equations and procedures appropriate for this processing. It provides example coefficients and data for the NOAA advanced very high resolution radiometer, which is the most appropriate sensor for investigating larger estuaries and turbid coastal systems until the launch of an ocean color imager (SeaWiFS) in late 1993.

  12. Pesticides in Ground Water of the Maryland Coastal Plain

    USGS Publications Warehouse

    Denver, Judith M.; Ator, Scott W.

    2006-01-01

    Selected pesticides are detectable at low levels (generally less than 0.1 microgram per liter) in unconfined ground water in many parts of the Maryland Coastal Plain. Samples were recently collected (2001-04) from 47 wells in the Coastal Plain and analyzed for selected pesticides and degradate compounds (products of pesticide degradation). Most pesticide degradation occurs in the soil zone before infiltration to the water table, and degradates of selected pesticides were commonly detected in ground water, often at higher concentrations than their respective parent compounds. Pesticides and their degradates often occur in ground water in mixtures of multiple compounds, reflecting similar patterns in usage. All measured concentrations in ground water were below established standards for drinking water, and nearly all were below other health-based guidelines. Although drinking-water standards and guidelines are typically much higher than observed concentrations in ground water, they do not exist for many detected compounds (particularly degradates), or for mixtures of multiple compounds. The distribution of observed pesticide compounds reflects known usage patterns, as well as chemical properties and environmental factors that affect the fate and transport of these compounds in the environment. Many commonly used pesticides, such as glyphosate, pendimethalin, and 2,4-D were not detected in ground water, likely because they were sorbed onto organic matter or degraded in the soil zone. Others that are more soluble and (or) persistent, like atrazine, metolachlor, and several of their degradates, were commonly detected in ground water where they have been used. Atrazine, for example, an herbicide used primarily on corn, was most commonly detected in ground water on the Eastern Shore (where agriculture is common), particularly where soils are well drained. Conversely, dieldrin, an insecticide previously used heavily for termite control, was detected only on the Western

  13. Echolocation by the harbour porpoise: life in coastal waters.

    PubMed

    Miller, Lee A; Wahlberg, Magnus

    2013-01-01

    The harbor porpoise is one of the smallest and most widely spread of all toothed whales. They are found abundantly in coastal waters all around the northern hemisphere. They are among the 11 species known to use high frequency sonar of relative narrow bandwidth. Their narrow biosonar beam helps isolate echoes from prey among those from unwanted items and noise. Obtaining echoes from small objects like net mesh, net floats, and small prey is facilitated by the very high peak frequency around 130 kHz with a wavelength of about 12 mm. We argue that such echolocation signals and narrow band auditory filters give the harbor porpoise a selective advantage in a coastal environment. Predation by killer whales and a minimum noise region in the ocean around 130 kHz may have provided selection pressures for using narrow bandwidth high frequency biosonar signals. PMID:23596420

  14. Echolocation by the harbour porpoise: life in coastal waters

    PubMed Central

    Miller, Lee A.; Wahlberg, Magnus

    2013-01-01

    The harbor porpoise is one of the smallest and most widely spread of all toothed whales. They are found abundantly in coastal waters all around the northern hemisphere. They are among the 11 species known to use high frequency sonar of relative narrow bandwidth. Their narrow biosonar beam helps isolate echoes from prey among those from unwanted items and noise. Obtaining echoes from small objects like net mesh, net floats, and small prey is facilitated by the very high peak frequency around 130 kHz with a wavelength of about 12 mm. We argue that such echolocation signals and narrow band auditory filters give the harbor porpoise a selective advantage in a coastal environment. Predation by killer whales and a minimum noise region in the ocean around 130 kHz may have provided selection pressures for using narrow bandwidth high frequency biosonar signals. PMID:23596420

  15. Echolocation by the harbour porpoise: life in coastal waters.

    PubMed

    Miller, Lee A; Wahlberg, Magnus

    2013-01-01

    The harbor porpoise is one of the smallest and most widely spread of all toothed whales. They are found abundantly in coastal waters all around the northern hemisphere. They are among the 11 species known to use high frequency sonar of relative narrow bandwidth. Their narrow biosonar beam helps isolate echoes from prey among those from unwanted items and noise. Obtaining echoes from small objects like net mesh, net floats, and small prey is facilitated by the very high peak frequency around 130 kHz with a wavelength of about 12 mm. We argue that such echolocation signals and narrow band auditory filters give the harbor porpoise a selective advantage in a coastal environment. Predation by killer whales and a minimum noise region in the ocean around 130 kHz may have provided selection pressures for using narrow bandwidth high frequency biosonar signals.

  16. Environmental Controls on Aerobic Methane Oxidation in Coastal Waters

    NASA Astrophysics Data System (ADS)

    Steinle, L.; Maltby, J.; Engbersen, N.; Zopfi, J.; Bange, H. W.; Elvert, M.; Hinrichs, K. U.; Kock, A.; Lehmann, M. F.; Treude, T.; Niemann, H.

    2015-12-01

    Large quantities of the greenhouse gas CH4 are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, and later into the atmosphere. Indeed, coastal seas account for more than 75% of global oceanic CH4 emissions. Yet, aerobic CH4 oxidizing bacteria (MOB) consume an important part of CH4 in the water column, thus mitigating CH4 release to the atmosphere. Coastal oceans are highly dynamic systems, in particular with regard to the variability of temperature, salinity and oxygen concentrations, all of which are potential key environmental factors controlling MOx. To determine the most important controlling factors, we conducted a two-year time-series study with measurements of CH4, MOx, the composition of the MOB community, and physicochemical water column parameters in a coastal inlet in the Baltic Sea (Eckernförde(E-) Bay, Boknis Eck Time Series Station). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, seasonal stratification leads to hypoxia in bottom waters towards the end of the stratification period. Methane is produced year-round in the sediments, resulting in accumulation of methane in bottom waters, and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were a) perturbations of the water column caused by storm events, currents or seasonal mixing, b) temperature and c) oxygen concentration. a) Perturbations of the water column led to a sharp decrease in MOx within hours, probably caused by replacement of 'old' water with a high standing stock of MOB by 'new' waters with a lower abundance of MOB. b) An increase in temperature generally led to higher MOx rates. c) Even though CH4 was abundant at all depths, MOx was highest in bottom waters (1-5 nM/d), which usually contain the lowest O2 concentrations. Lab-based experiments with adjusted O2

  17. Assessment of coastal water quality at Bakkhali, West Bengal (India).

    PubMed

    Singh, Shiv; Bhadurfi, Bhaskar; Banerjee, Prasanta Kumar; Datta, Siddhartha

    2012-04-01

    Spatial variations of some physico-chemical water quality of the coastal water of a segment of Bakkhali (Bay of Bengal) were studied between the months of November 2009 and February 2010 before 12:00 a.m. The studies were carried out at three coastal sites of Bakkhali Beach (south extreme point, middle point and far north point, about 1.2 km along the shore) which is influenced by anthropogenic input from land-based sources. The site receives domestic, agricultural and industrial wastes. The water is being used for fishing, transportation of goods and by people for several purposes. The banks of the estuarine channels have traditionally been preferred locations for human settlement. Considering the various uses of this coastal segment, between Bakkhali to Haldia, the studies related to water quality monitoring were carried out. The pH, temperature, turbidity, salinity, TDS and conductivity vary in range of 8.24 - 8.65, 27.5 degrees C-31.5 degrees C, 480 NTU - 808 NTU, 21.6 PSU-30.0 PSU, 676 mg/L -934 mg/L and 1.72 mS/cm -1.97 mS/ cm respectively. Dissolved oxygen, biochemical oxygen demand (BOD) concentrations at different sites vary within a narrow range 6.05 mg/L - 8.1 mg/L and 1.05 mg/L - 3.0 mg/L respectively. Chemical oxygen demand concentrations vary in a wide range of 170 mg/L - 812 mg/L. The bacterial count at the sampling site varied from 76-150 CFU. PMID:24749373

  18. Using Lagrangian Coherent Structures to understand coastal water quality

    NASA Astrophysics Data System (ADS)

    Fiorentino, L. A.; Olascoaga, M. J.; Reniers, A.; Feng, Z.; Beron-Vera, F. J.; MacMahan, J. H.

    2012-09-01

    The accumulation of pollutants near the shoreline can result in low quality coastal water with negative effects on human health. To understand the role of mixing by tidal flows in coastal water quality we study the nearshore Lagrangian circulation. Specifically, we reveal Lagrangian Coherent Structures (LCSs), i.e., distinguished material curves which shape global mixing patterns and thus act as skeletons of the Lagrangian circulation. This is done using the recently developed geodesic theory of transport barriers. Particular focus is placed on Hobie Beach, a recreational subtropical marine beach located in Virginia Key, Miami, Florida. According to studies of water quality, Hobie Beach is characterized by high microbial levels. Possible sources of pollution in Hobie Beach include human bather shedding, dog fecal matter, runoff, and sand efflux at high tides. Consistent with the patterns formed by satellite-tracked drifter trajectories, the LCSs extracted from simulated currents reveal a Lagrangian circulation favoring the retention near the shoreline of pollutants released along the shoreline, which can help explain the low quality water registered at Hobie Beach.

  19. Analysis of impacts: Produced waters in sensitive coastal habitats. Central coastal Gulf of Mexico

    SciTech Connect

    Boesch, D.F.; Rabalais, N.N.

    1989-06-01

    This study quantified the location and characteristics of outer continental shelf (OCS) produced waters discharged into coastal environments of the Gulf of Mexico and provided an assessment of the environmental fate and effects of selected discharges. An inventory of produced-water discharges based on records of regulatory agencies in Texas and Louisiana was compiled. The other Gulf states do not permit the discharge of produced water into surface waters. Three sites representing large volumes of OCS-generated produced water discharges and different hydrological conditions were selected for field assessment. Produced water contained elevated levels of dissolved and dispersed petroleum hydrocarbons, organic acids, and tract metals. Concentrations of the organic constituents may depend on the separation and treatment technologies employed. Substantial contamination of fine-grained bottom sediments with petroleum hydrocarbons was observed near the discharges at the three sites studied. General surveys at the three sites showed evidence of biological effects in terms of reduced density and diversity of macrobenthic organisms in contaminated sediments and the accumulation of petroleum hydrocarbons in the tissues of filter-feeding bivalves proximate to the discharge sites.

  20. Evaluation of coastal zone color scanner diffuse attenuation coefficient algorithms for application to coastal waters

    NASA Astrophysics Data System (ADS)

    Mueller, James L.; Trees, Charles C.; Arnone, Robert A.

    1990-09-01

    The Coastal Zone Color Scannez (ZCS) and associated atmospheric and in-water algorithms have allowed synoptic analyses of regional and large scale variability of bio-optical properties [phytoplankton pigments and diffuse auenuation coefficient K(490)}. Austin and Petzold (1981) developed a robust in-water K(490) algorithm which related the diffuse attenuation coefficient at one optical depth [1/K(490)] to the ratio of the water-leaving radiances at 443 and 550 nm. Their regression analysis included diffuse attenuation coefficients K(490) up to 0.40 nm, but excluded data from estuarine areas, and other Case II waters, where the optical properties are not predominantly determined by phytoplankton. In these areas, errors are induced in the retrieval of remote sensing K(490) by extremely low water-leaving radiance at 443 nm [Lw(443) as viewed at the sensor may only be 1 or 2 digital counts], and improved cury can be realized using algorithms based on wavelengths where Lw(λ) is larger. Using ocean optical profiles quired by the Visibility Laboratory, algorithms are developed to predict K(490) from ratios of water leaving radiances at 520 and 670, as well as 443 and 550 nm.

  1. Modeling the Dynamic Water Resource Needs of California's Coastal Watersheds

    NASA Astrophysics Data System (ADS)

    Alford, C.

    2009-12-01

    Many watersheds face formidable water supply challenges when it comes to managing water availability to meet diverse water supply and ecosystem management objectives. California’s central coast watersheds are no exception, and both the scarcity of water resources during drier water years and mandates to establish minimum instream flows for salmon habitat have prompted interests in reassessing water management strategies for several of these watersheds. Conventional supply-oriented hydrologic models, however, are not adequate to fully investigate and describe the reciprocal implications of surface water demands for human use and the maintenance of instream flows for salmon habitat that vary both temporally and spatially within a watershed. In an effort to address this issue I developed a coastal watershed management model based on the San Gregorio watershed utilizing the Water Evaluation and Planning (WEAP) system, which permits demand-side prioritization at a time step interval and spatial resolution that captures functional supply and demand relationships. Physiographic input data such as soil type, land cover, elevation, habitat, and water demand sites were extrapolated at a sub-basin level in a GIS. Time-series climate data were collected and processed utilizing the Berkeley Water Center Data Cube at daily time steps for the period 1952 through September 2009. Recent synoptic flow measurements taken at seven tributary sites during the 2009 water year, water depth measured by pressure transducers at six sites within the watershed from September 2005 through September 2009, and daily gauge records from temporary gauges installed in 1981 were used to assess the hydrologic patterns of sub-basins and supplement historic USGS gauge flow records. Empirical functions were used to describe evapotranspiration, surface runoff, sub-surface runoff, and deep percolation. Initial model simulations carried out under both dry and wet water year scenarios were able to capture

  2. Community and household determinants of water quality in coastal Ghana.

    PubMed

    McGarvey, Stephen T; Buszin, Justin; Reed, Holly; Smith, David C; Rahman, Zarah; Andrzejewski, Catherine; Awusabo-Asare, Kofi; White, Michael J

    2008-09-01

    Associations between water sources, socio-demographic characteristics and household drinking water quality are described in a representative sample of six coastal districts of Ghana's Central Region. Thirty-six enumeration areas (EAs) were randomly chosen from a representative survey of 90 EAs in rural, semi-urban and urban residence strata. In each EA, 24 households were randomly chosen for water quality sampling and socio-demographic interview. Escherichia coli per 100 ml H2O was quantified using the IDEXX Colilert system and multi-stage regression models estimated cross-sectional associations between water sources, sanitation and socio-demographic factors. Almost three quarters, 74%, of the households have > 2 E. coli /100 ml H2O. Tap water has significantly lower E. coli levels compared with surface or rainwater and well water had the highest levels. Households with a water closet toilet have significantly lower E. coli compared with those using pit latrines or no toilets. Household size is positively associated, and a possessions index is negatively associated, with E. coli. Variations in community and household socio-demographic and behavioural factors are key determinants of drinking water quality. These factors should be included in planning health education associated with investments in water systems.

  3. Community and household determinants of water quality in coastal Ghana

    PubMed Central

    McGarvey, Stephen T.; Buszin, Justin; Reed, Holly; Smith, David C.; Rahman, Zarah; Andrzejewski, Catherine; Awusabo-Asare, Kofi; White, Michael J.

    2013-01-01

    Associations between water sources, socio-demographic characteristics and household drinking water quality are described in a representative sample of six coastal districts of Ghana’s Central Region. Thirty-six enumeration areas (EAs) were randomly chosen from a representative survey of 90 EAs in rural, semi-urban and urban residence strata. In each EA, 24 households were randomly chosen for water quality sampling and socio-demographic interview. Escherichia coli per 100 ml H2O was quantified using the IDEXX Colilert® system and multi-stage regression models estimated cross-sectional associations between water sources, sanitation and socio-demographic factors. Almost three quarters, 74%, of the households have > 2 E. coli /100 ml H2O. Tap water has significantly lower E. coli levels compared with surface or rainwater and well water had the highest levels. Households with a water closet toilet have significantly lower E. coli compared with those using pit latrines or no toilets. Household size is positively associated, and a possessions index is negatively associated, with E. coli. Variations in community and household socio-demographic and behavioural factors are key determinants of drinking water quality. These factors should be included in planning health education associated with investments in water systems. PMID:19108554

  4. Remote Sensing of Selected Water-Quality Indicators with the Hyperspectral Imager for the Coastal Ocean (HICO) Sensor

    EPA Science Inventory

    The Hyperspectral Imager for the Coastal Ocean (HICO) offers the coastal environmental monitoring community an unprecedented opportunity to observe changes in coastal and estuarine water quality across a range of spatial scales not feasible with traditional field-based monitoring...

  5. The effects of precipitation, river discharge, land use and coastal circulation on water quality in coastal Maine.

    PubMed

    Tilburg, Charles E; Jordan, Linda M; Carlson, Amy E; Zeeman, Stephan I; Yund, Philip O

    2015-07-01

    Faecal pollution in stormwater, wastewater and direct run-off can carry zoonotic pathogens to streams, rivers and the ocean, reduce water quality, and affect both recreational and commercial fishing areas of the coastal ocean. Typically, the closure of beaches and commercial fishing areas is governed by the testing for the presence of faecal bacteria, which requires an 18-24 h period for sample incubation. As water quality can change during this testing period, the need for accurate and timely predictions of coastal water quality has become acute. In this study, we: (i) examine the relationship between water quality, precipitation and river discharge at several locations within the Gulf of Maine, and (ii) use multiple linear regression models based on readily obtainable hydrometeorological measurements to predict water quality events at five coastal locations. Analysis of a 12 year dataset revealed that high river discharge and/or precipitation events can lead to reduced water quality; however, the use of only these two parameters to predict water quality can result in a number of errors. Analysis of a higher frequency, 2 year study using multiple linear regression models revealed that precipitation, salinity, river discharge, winds, seasonality and coastal circulation correlate with variations in water quality. Although there has been extensive development of regression models for freshwater, this is one of the first attempts to create a mechanistic model to predict water quality in coastal marine waters. Model performance is similar to that of efforts in other regions, which have incorporated models into water resource managers' decisions, indicating that the use of a mechanistic model in coastal Maine is feasible.

  6. The effects of precipitation, river discharge, land use and coastal circulation on water quality in coastal Maine

    PubMed Central

    Tilburg, Charles E.; Jordan, Linda M.; Carlson, Amy E.; Zeeman, Stephan I.; Yund, Philip O.

    2015-01-01

    Faecal pollution in stormwater, wastewater and direct run-off can carry zoonotic pathogens to streams, rivers and the ocean, reduce water quality, and affect both recreational and commercial fishing areas of the coastal ocean. Typically, the closure of beaches and commercial fishing areas is governed by the testing for the presence of faecal bacteria, which requires an 18–24 h period for sample incubation. As water quality can change during this testing period, the need for accurate and timely predictions of coastal water quality has become acute. In this study, we: (i) examine the relationship between water quality, precipitation and river discharge at several locations within the Gulf of Maine, and (ii) use multiple linear regression models based on readily obtainable hydrometeorological measurements to predict water quality events at five coastal locations. Analysis of a 12 year dataset revealed that high river discharge and/or precipitation events can lead to reduced water quality; however, the use of only these two parameters to predict water quality can result in a number of errors. Analysis of a higher frequency, 2 year study using multiple linear regression models revealed that precipitation, salinity, river discharge, winds, seasonality and coastal circulation correlate with variations in water quality. Although there has been extensive development of regression models for freshwater, this is one of the first attempts to create a mechanistic model to predict water quality in coastal marine waters. Model performance is similar to that of efforts in other regions, which have incorporated models into water resource managers' decisions, indicating that the use of a mechanistic model in coastal Maine is feasible. PMID:26587258

  7. The effects of precipitation, river discharge, land use and coastal circulation on water quality in coastal Maine.

    PubMed

    Tilburg, Charles E; Jordan, Linda M; Carlson, Amy E; Zeeman, Stephan I; Yund, Philip O

    2015-07-01

    Faecal pollution in stormwater, wastewater and direct run-off can carry zoonotic pathogens to streams, rivers and the ocean, reduce water quality, and affect both recreational and commercial fishing areas of the coastal ocean. Typically, the closure of beaches and commercial fishing areas is governed by the testing for the presence of faecal bacteria, which requires an 18-24 h period for sample incubation. As water quality can change during this testing period, the need for accurate and timely predictions of coastal water quality has become acute. In this study, we: (i) examine the relationship between water quality, precipitation and river discharge at several locations within the Gulf of Maine, and (ii) use multiple linear regression models based on readily obtainable hydrometeorological measurements to predict water quality events at five coastal locations. Analysis of a 12 year dataset revealed that high river discharge and/or precipitation events can lead to reduced water quality; however, the use of only these two parameters to predict water quality can result in a number of errors. Analysis of a higher frequency, 2 year study using multiple linear regression models revealed that precipitation, salinity, river discharge, winds, seasonality and coastal circulation correlate with variations in water quality. Although there has been extensive development of regression models for freshwater, this is one of the first attempts to create a mechanistic model to predict water quality in coastal marine waters. Model performance is similar to that of efforts in other regions, which have incorporated models into water resource managers' decisions, indicating that the use of a mechanistic model in coastal Maine is feasible. PMID:26587258

  8. Sunscreen products as emerging pollutants to coastal waters.

    PubMed

    Tovar-Sánchez, Antonio; Sánchez-Quiles, David; Basterretxea, Gotzon; Benedé, Juan L; Chisvert, Alberto; Salvador, Amparo; Moreno-Garrido, Ignacio; Blasco, Julián

    2013-01-01

    A growing awareness of the risks associated with skin exposure to ultraviolet (UV) radiation over the past decades has led to increased use of sunscreen cosmetic products leading the introduction of new chemical compounds in the marine environment. Although coastal tourism and recreation are the largest and most rapidly growing activities in the world, the evaluation of sunscreen as source of chemicals to the coastal marine system has not been addressed. Concentrations of chemical UV filters included in the formulation of sunscreens, such as benzophehone 3 (BZ-3), 4-methylbenzylidene camphor (4-MBC), TiO₂ and ZnO, are detected in nearshore waters with variable concentrations along the day and mainly concentrated in the surface microlayer (i.e. 53.6-577.5 ng L⁻¹ BZ-3; 51.4-113.4 ng L⁻¹ 4-MBC; 6.9-37.6 µg L⁻¹ Ti; 1.0-3.3 µg L⁻¹ Zn). The presence of these compounds in seawater suggests relevant effects on phytoplankton. Indeed, we provide evidences of the negative effect of sunblocks on the growth of the commonly found marine diatom Chaetoceros gracilis (mean EC₅₀ = 125±71 mg L⁻¹). Dissolution of sunscreens in seawater also releases inorganic nutrients (N, P and Si forms) that can fuel algal growth. In particular, PO₄³⁻ is released by these products in notable amounts (up to 17 µmol PO₄³⁻g⁻¹). We conservatively estimate an increase of up to 100% background PO₄³⁻ concentrations (0.12 µmol L⁻¹ over a background level of 0.06 µmol L⁻¹) in nearshore waters during low water renewal conditions in a populated beach in Majorca island. Our results show that sunscreen products are a significant source of organic and inorganic chemicals that reach the sea with potential ecological consequences on the coastal marine ecosystem. PMID:23755233

  9. Geophysical surveys for monitoring coastal salt water intrusion

    NASA Astrophysics Data System (ADS)

    Loperte, A.; Satriani, A.; Simoniello, T.; Imbrenda, V.; Lapenna, V.

    2009-04-01

    Geophysical surveys have been exploited in a coastal forest reserve, at the mouth of the river Bradano in South Italy (Basilicata, southern Italy, N 40°22', E 16°51'), to investigate the subsurface saltwater contamination. Forest Reserve of Metapontum is a wood of artificial formation planted to protect fruit and vegetable cultivations from salt sea-wind; in particular it is constituted by a back dune pine forest mainly composed of Aleppo Pine trees (Pinus halepensis) and domestic pine trees (Pinus pinea). Two separate geophysical field campaigns, one executed in 2006 and a second executed in 2008, were performed in the forest reserve; in particular, electrical resistivity tomographies, resistivity and ground penetrating radar maps were elaborated and analyzed. In addition, chemical and physical analyses on soil and waters samples were performed in order to confirm and integrate geophysical data. The analyses carried out allowed an accurate characterization of salt intrusion phenomenon: the spatial extension and depth of the saline wedge were estimated. Primary and secondary salinity of the Metapontum forest reserve soil occurred because of high water-table and the evapo-transpiration rate which was much higher than the rainfall rate; these, of course, are linked to natural factors such as climate, natural drainage patterns, topographic features, geological structure and distance to the sea. Naturally, since poor land management, like the construction of river dams, indiscriminate extraction of inert from riverbeds that subtract supplies sedimentary, the alteration of the natural water balance, plays an important role in this process. The obtained results highlighted that integrated geophysical surveys gave a precious contribute for better evaluating marine intrusion wedge in coastal aquifers and providing a rapid, non-invasive and low cost tool for coastal monitoring.

  10. Sunscreen products as emerging pollutants to coastal waters.

    PubMed

    Tovar-Sánchez, Antonio; Sánchez-Quiles, David; Basterretxea, Gotzon; Benedé, Juan L; Chisvert, Alberto; Salvador, Amparo; Moreno-Garrido, Ignacio; Blasco, Julián

    2013-01-01

    A growing awareness of the risks associated with skin exposure to ultraviolet (UV) radiation over the past decades has led to increased use of sunscreen cosmetic products leading the introduction of new chemical compounds in the marine environment. Although coastal tourism and recreation are the largest and most rapidly growing activities in the world, the evaluation of sunscreen as source of chemicals to the coastal marine system has not been addressed. Concentrations of chemical UV filters included in the formulation of sunscreens, such as benzophehone 3 (BZ-3), 4-methylbenzylidene camphor (4-MBC), TiO₂ and ZnO, are detected in nearshore waters with variable concentrations along the day and mainly concentrated in the surface microlayer (i.e. 53.6-577.5 ng L⁻¹ BZ-3; 51.4-113.4 ng L⁻¹ 4-MBC; 6.9-37.6 µg L⁻¹ Ti; 1.0-3.3 µg L⁻¹ Zn). The presence of these compounds in seawater suggests relevant effects on phytoplankton. Indeed, we provide evidences of the negative effect of sunblocks on the growth of the commonly found marine diatom Chaetoceros gracilis (mean EC₅₀ = 125±71 mg L⁻¹). Dissolution of sunscreens in seawater also releases inorganic nutrients (N, P and Si forms) that can fuel algal growth. In particular, PO₄³⁻ is released by these products in notable amounts (up to 17 µmol PO₄³⁻g⁻¹). We conservatively estimate an increase of up to 100% background PO₄³⁻ concentrations (0.12 µmol L⁻¹ over a background level of 0.06 µmol L⁻¹) in nearshore waters during low water renewal conditions in a populated beach in Majorca island. Our results show that sunscreen products are a significant source of organic and inorganic chemicals that reach the sea with potential ecological consequences on the coastal marine ecosystem.

  11. Sunscreen Products as Emerging Pollutants to Coastal Waters

    PubMed Central

    Tovar-Sánchez, Antonio; Sánchez-Quiles, David; Basterretxea, Gotzon; Benedé, Juan L.; Chisvert, Alberto; Salvador, Amparo; Moreno-Garrido, Ignacio; Blasco, Julián

    2013-01-01

    A growing awareness of the risks associated with skin exposure to ultraviolet (UV) radiation over the past decades has led to increased use of sunscreen cosmetic products leading the introduction of new chemical compounds in the marine environment. Although coastal tourism and recreation are the largest and most rapidly growing activities in the world, the evaluation of sunscreen as source of chemicals to the coastal marine system has not been addressed. Concentrations of chemical UV filters included in the formulation of sunscreens, such as benzophehone 3 (BZ-3), 4-methylbenzylidene camphor (4-MBC), TiO2 and ZnO, are detected in nearshore waters with variable concentrations along the day and mainly concentrated in the surface microlayer (i.e. 53.6–577.5 ng L-1 BZ-3; 51.4–113.4 ng L-1 4-MBC; 6.9–37.6 µg L-1 Ti; 1.0–3.3 µg L-1 Zn). The presence of these compounds in seawater suggests relevant effects on phytoplankton. Indeed, we provide evidences of the negative effect of sunblocks on the growth of the commonly found marine diatom Chaetoceros gracilis (mean EC50 = 125±71 mg L-1). Dissolution of sunscreens in seawater also releases inorganic nutrients (N, P and Si forms) that can fuel algal growth. In particular, PO43− is released by these products in notable amounts (up to 17 µmol PO43− g−1). We conservatively estimate an increase of up to 100% background PO43− concentrations (0.12 µmol L-1 over a background level of 0.06 µmol L-1) in nearshore waters during low water renewal conditions in a populated beach in Majorca island. Our results show that sunscreen products are a significant source of organic and inorganic chemicals that reach the sea with potential ecological consequences on the coastal marine ecosystem. PMID:23755233

  12. Dispersal of fine sediment in nearshore coastal waters

    USGS Publications Warehouse

    Warrick, Jonathan A.

    2013-01-01

    Fine sediment (silt and clay) plays an important role in the physical, ecological, and environmental conditions of coastal systems, yet little is known about the dispersal and fate of fine sediment across coastal margin settings outside of river mouths. Here I provide simple physical scaling and detailed monitoring of a beach nourishment project near Imperial Beach, California, with a high portion of fines (40% silt and clay by weight). These results provide insights into the pathways and residence times of fine sediment transport across a wave-dominated coastal margin. Monitoring of the project used physical, optical, acoustic, and remote sensing techniques to track the fine portion of the nourishment sediment. The initial transport of fine sediment from the beach was influenced strongly by longshore currents of the surf zone that were established in response to the approach angles of the waves. The mean residence time of fine sediment in the surf zone—once it was suspended—was approximately 1 hour, and rapid decreases in surf zone fine sediment concentrations along the beach resulted from mixing and offshore transport in turbid rip heads. For example, during a day with oblique wave directions and surf zone longshore currents of approximately 25 cm/s, the offshore losses of fine sediment in rips resulted in a 95% reduction in alongshore surf zone fine sediment flux within 1 km of the nourishment site. However, because of the direct placement of nourishment sediment on the beach, fine suspended-sediment concentrations in the swash zone remained elevated for several days after nourishment, while fine sediment was winnowed from the beach. Once offshore of the surf zone, fine sediment settled downward in the water column and was observed to transport along and across the inner shelf. Vertically sheared currents influenced the directions and rates of fine sediment transport on the shelf. Sedimentation of fine sediment was greatest on the seafloor directly offshore

  13. Barnacles as biomonitors of metal contamination in coastal waters

    NASA Astrophysics Data System (ADS)

    Reis, Pedro A.; Salgado, Maria Antónia; Vasconcelos, Vitor

    2011-07-01

    The use of barnacles as biomonitors of metal contamination in coastal waters worldwide is reviewed as a critique compilation of the reported studies and presents resume-tables of available data for future reference. The barnacle body reflects both short and long-term metal level environmental variations and the metal bioaccumulation occurs mainly in their granules (relatively inactive pools). The barnacle body is considered as good biomonitoring material and different barnacle species could bioaccumulate metal concentration ranges of 40-153,000 μg/g of Zn, 20-22,230 μg/g de Fe, 1.5-21,800 μg/g of Cu, 5.9-4742 μg/g of Mn, 0.1-1000 μg/g of Pb, 0.7-330 μg/g of Cd, 0.4-99 μg/g of Ni and 0.2-49 μg/g of Cr. However, as the plates ('shells') of barnacle exoskeletons can be affected by metal levels in coastal waters, mainly in their composition and morphology, they are not considered good biomonitoring material. Despite this, the use of a specific barnacle species or group of species in a specific region must firstly be carefully validated and the interpretation of the contaminant bioaccumulation levels should involve specific environmental variations of the region, physiological parameters of the barnacle species and the relationship between the potential toxicity of the contaminant for the environment and their significance for the barnacle species. Barnacles, particularly a widespread cosmopolitan species such as Amphibalanus amphitrite, have a great potential as biomonitors of anthropogenic contamination in coastal waters and have been used worldwide, including Europe (United Kingdom, Turkey, Poland, Croatia, Spain and Portugal), Asia (India and China), Oceania (Australia), North America (Florida, Massachusetts and Mexico) and South America (Brazil). The use of barnacle species as biomonitors of metal contamination in coastal waters is considered an important and valuable tool to evaluate and predict the ecological quality of an ecosystem.

  14. Hydrodynamic modeling of Singapore's coastal waters: Nesting and model accuracy

    NASA Astrophysics Data System (ADS)

    Hasan, G. M. Jahid; van Maren, Dirk Sebastiaan; Ooi, Seng Keat

    2016-01-01

    The tidal variation in Singapore's coastal waters is influenced by large-scale, complex tidal dynamics (by interaction of the Indian Ocean and the South China Sea) as well as monsoon-driven low frequency variations, requiring a model with large spatial coverage. Close to the shores, the complex topography, influenced by headlands and small islands, requires a high resolution model to simulate tidal dynamics. This can be achieved through direct nesting or multi-scale nesting, involving multiple model grids. In this paper, we investigate the effect of grid resolution and multi-scale nesting on the tidal dynamics in Singapore's coastal waters, by comparing model results with observations using different statistical techniques. The results reveal that the intermediate-scale model is generally sufficiently accurate (equal to or better than the most refined model), but also that the most refined model is only more accurate when nested in the intermediate scale model (requiring multi-scale nesting). This latter is the result of the complex tidal dynamics around Singapore, where the dominantly diurnal tidal currents are decoupled from the semi-diurnal water level variations. Furthermore, different techniques to quantify model accuracy (harmonic analysis, basic statistics and more complex statistics) are inconsistent in determining which model is more accurate.

  15. Toxic and harmful algae in the coastal waters of Russia

    NASA Astrophysics Data System (ADS)

    Vershinin, A. O.; Orlova, T. Yu.

    2008-08-01

    Toxic algal species of marine and brackish-water plankton, as well as nontoxic microalgae, which are capable of initiating harmful blooms, cause a detriment to human health (seafood poisoning) and often lead to a total crisis of coastal water ecosystems. The Russian coastal waters are inhabited by dozens of toxic and bloom-causing algal species, their toxins are accumulated in the tissues of edible mollusks, and there have been incidents of human poisonings and marine fauna mortality due to these blooms. An analysis of the current situation concerning the problem of toxic algae and harmful blooms of nontoxic species in the seas of Russia provides evidence that it is necessary to create a system of compulsory governmental monitoring of the exploited marine areas to serve as the basis of ecological safety control in the exploitation of the biological resources of the Russian Federation, as well to introduce compulsory sanitary control of diarrheic, paralytic, and amnesic phycotoxins. The compiled summary of algal toxic and potentially toxic species met in the European and Far Eastern seas of Russia is given with notes on their toxicity type and its manifestations.

  16. Modeling of coastal water contamination in Fortaleza (Northeastern Brazil).

    PubMed

    Pereira, S P; Rosman, P C C; Alvarez, C; Schetini, C A F; Souza, R O; Vieira, R H S F

    2015-01-01

    An important tool in environmental management projects and studies due to the complexity of environmental systems, environmental modeling makes it possible to integrate many variables and processes, thereby providing a dynamic view of systems. In this study the bacteriological quality of the coastal waters of Fortaleza (a state capital in Northeastern Brazil) was modeled considering multiple contamination sources. Using the software SisBaHiA, the dispersion of thermotolerant coliforms and Escherichia coli from three sources of contamination (local rivers, storm drains and submarine outfall) was analyzed. The models took into account variations in bacterial decay due to solar radiation and other environmental factors. Fecal pollution discharged from rivers and storm drains is transported westward by coastal currents, contaminating strips of beach water to the left of each storm drain or river. Exception to this condition only occurs on beaches protected by the breakwater of the harbor, where counterclockwise vortexes reverse this behavior. The results of the models were consistent with field measurements taken during the dry and the rainy season. Our results show that the submarine outfall plume was over 2 km from the nearest beach. The storm drains and the Maceió stream are the main factors responsible for the poor water quality on the waterfront of Fortaleza. The depollution of these sources would generate considerable social, health and economic gains for the region. PMID:26360752

  17. Computer derived coastal water classifications via spectral signatures

    NASA Technical Reports Server (NTRS)

    Clark, D. K.; Zaitzeff, J. B.; Strees, L. V.; Glidden, W. S.

    1974-01-01

    In April 1973, the National Environmental Satellite Service conducted a remote sensing investigation within the coastal waters of the New York Bight. Remote sensor records acquired from the ERTS-1 Multispectral Scanner and the Bendix 24 Channel Multispectral Scanner records flown on the NASA C-130 were used for water mass classification. Computer-derived classifications are discussed and compared. Such features as the Hudson River's turbid discharge plumes, acid waste and shelf water are examined in terms of their distribution of suspended particulates (2-203 microns), transmissivity, diffuse attenuation, incident and returned spectral irradiances. The characteristics of these features and their relationship to the computer derived classifications are presented and discussed with respect to radiative transfer theory.

  18. Seasonal variations in 228Ra/226Ra ratio within coastal waters of the Sea of Japan: implications for water circulation patterns in coastal areas.

    PubMed

    Inoue, M; Tanaka, K; Watanabe, S; Kofuji, H; Yamamoto, M; Komura, K

    2006-01-01

    In this study, low-background gamma-spectrometry was used to determine the (228)Ra/(226)Ra ratio of 131 coastal water samples from various environments around Honshu Island, Japan (mainly around Noto Peninsula) at 1-3 month intervals from April 2003 until September 2005. Spatial variation in (228)Ra/(226)Ra ratios was also assessed by analyzing 34 coastal water samples from five areas within the Sea of Japan during May and June 2004. The (228)Ra/(226)Ra ratio of coastal water from all sites around Noto Peninsula shows seasonal variation, with minimum values during summer ((228)Ra/(226)Ra=0.7) and maximum values during autumn-winter ((228)Ra/(226)Ra=1.7-2). This seasonal variation is similar to that recorded for coastal water between Tsushima Strait and Noto Peninsula. The measured lateral variation in (228)Ra/(226)Ra ratios within coastal water between Tsushima Strait and Noto Peninsula is only minor (0.5-0.7; May-June 2004). Coastal waters from two other sites (Pacific shore and Tsugaru Strait, north Honshu) show no clear seasonal variation in (228)Ra/(226)Ra ratio. These measured variations in (228)Ra/(226)Ra ratio, especially the temporal variations, have important implications for seasonal changes in patterns of coastal water circulation within the Sea of Japan.

  19. SPATIAL AND TEMPORAL DISTRIBUTION OF COLORED DISSOLOVED ORGANIC MATTER (CDOM) IN SOUTHERN NEW ENGALND COASTAL WATERS

    EPA Science Inventory

    The concentration of colored dissolved organic matter (CDOM) is a primary factor affecting the absorption of incident sunlight in coastal and estuarine waters. CDOM is extracted from water-soluble humic substances and transported by runoff into lakes and coastal waters. CDOM is a...

  20. Remote Sensing of Suspended Sediments and Shallow Coastal Waters

    NASA Technical Reports Server (NTRS)

    Li, Rong-Rong; Kaufman, Yoram J.; Gao, Bo-Cai; Davis, Curtiss O.

    2002-01-01

    Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  1. Characteristic levels of chlorinated hydrocarbons and trace metals in fish from coastal waters of North and Baltic sea.

    PubMed

    Luckas, B; Harms, U

    1987-01-01

    During investigations on the occurrence and distribution of contaminants in coastal waters of the North Sea and the Baltic organochlorine compounds such as hexachlorobenzene (HCB), octachlorostyrene (OCS), hexachlorocyclohexane isomers (HCH), dichlorodiphenyltrichloroethane (p,p'-DDT) and its metabolites and polychlorinated biphenyls (PCBs) and heavy metals such as mercury, cadmium and lead were determined in a selected flatfish species (flounder, Platichthys flesus L.). The sampling network covered the outer estuaries of the rivers Weser and Elbe, the German Bight, the Danish North Sea coast and coastal regions of the south-western Baltic. Organochlorine compounds were determined by high-resolution glass capillary gas chromatography with electron capture detector after sample pretreatment and clean up. For the determination of heavy metals a multi-stage analytical procedure was used, in which graphite furnace (for Cd and Pb) resp. cold vapour (for Hg) atomic absorption spectrometry was combined with pre-instrumental separation and enrichment techniques. Evaluation of the data from the programme made obvious significant geographical differences in the levels and the pattern with regard to the substances involved. For HCB, OCS and Hg a crucial point of contamination within the German Bright was recognized that was apparently influenced to a large extent by the inflow of waters from the Elbe.

  2. Characteristic levels of chlorinated hydrocarbons and trace metals in fish from coastal waters of North and Baltic sea.

    PubMed

    Luckas, B; Harms, U

    1987-01-01

    During investigations on the occurrence and distribution of contaminants in coastal waters of the North Sea and the Baltic organochlorine compounds such as hexachlorobenzene (HCB), octachlorostyrene (OCS), hexachlorocyclohexane isomers (HCH), dichlorodiphenyltrichloroethane (p,p'-DDT) and its metabolites and polychlorinated biphenyls (PCBs) and heavy metals such as mercury, cadmium and lead were determined in a selected flatfish species (flounder, Platichthys flesus L.). The sampling network covered the outer estuaries of the rivers Weser and Elbe, the German Bight, the Danish North Sea coast and coastal regions of the south-western Baltic. Organochlorine compounds were determined by high-resolution glass capillary gas chromatography with electron capture detector after sample pretreatment and clean up. For the determination of heavy metals a multi-stage analytical procedure was used, in which graphite furnace (for Cd and Pb) resp. cold vapour (for Hg) atomic absorption spectrometry was combined with pre-instrumental separation and enrichment techniques. Evaluation of the data from the programme made obvious significant geographical differences in the levels and the pattern with regard to the substances involved. For HCB, OCS and Hg a crucial point of contamination within the German Bright was recognized that was apparently influenced to a large extent by the inflow of waters from the Elbe. PMID:2439467

  3. Does salt water intrusion constitute a mercury contamination risk for coastal fresh water aquifers?

    PubMed

    Protano, G; Riccobono, F; Sabatini, G

    2000-12-01

    Four different sampling surveys were carried out in 1998 to evaluate the possible causes of severe mercury contamination involving many wells spread over a vast territory along the coast of southern Tuscany (Italy). Several samples of groundwater and coastal sea water were collected to determine the Hg, Cl, Ar, He and N contents. Anthropogenic or deep-seated sources of the Hg involved in the contamination event can be excluded. The observed coupling of Hg pollution with progressive salt water intrusion along the coastal aquifer indicates a close causal relation between these two phenomena.

  4. Water quality assessment using water quality index and geographical information system methods in the coastal waters of Andaman Sea, India.

    PubMed

    Jha, Dilip Kumar; Devi, Marimuthu Prashanthi; Vidyalakshmi, Rajendran; Brindha, Balan; Vinithkumar, Nambali Valsalan; Kirubagaran, Ramalingam

    2015-11-15

    Seawater samples at 54 stations in the year 2011-2012 from Chidiyatappu, Port Blair, Rangat and Aerial Bays of Andaman Sea, have been investigated in the present study. Datasets obtained have been converted into simple maps using coastal water quality index (CWQI) and Geographical Information System (GIS) based overlay mapping technique to demarcate healthy and polluted areas. Analysis of multiple parameters revealed poor water quality in Port Blair and Rangat Bays. The anthropogenic activities may be the likely cause for poor water quality. Whereas, good water quality was witnessed at Chidiyatappu Bay. Higher CWQI scores were perceived in the open sea. However, less exploitation of coastal resources owing to minimal anthropogenic activity indicated good water quality index at Chidiyatappu Bay. This study is an attempt to integrate CWQI and GIS based mapping technique to derive a reliable, simple and useful output for water quality monitoring in coastal environment.

  5. Water quality assessment using water quality index and geographical information system methods in the coastal waters of Andaman Sea, India.

    PubMed

    Jha, Dilip Kumar; Devi, Marimuthu Prashanthi; Vidyalakshmi, Rajendran; Brindha, Balan; Vinithkumar, Nambali Valsalan; Kirubagaran, Ramalingam

    2015-11-15

    Seawater samples at 54 stations in the year 2011-2012 from Chidiyatappu, Port Blair, Rangat and Aerial Bays of Andaman Sea, have been investigated in the present study. Datasets obtained have been converted into simple maps using coastal water quality index (CWQI) and Geographical Information System (GIS) based overlay mapping technique to demarcate healthy and polluted areas. Analysis of multiple parameters revealed poor water quality in Port Blair and Rangat Bays. The anthropogenic activities may be the likely cause for poor water quality. Whereas, good water quality was witnessed at Chidiyatappu Bay. Higher CWQI scores were perceived in the open sea. However, less exploitation of coastal resources owing to minimal anthropogenic activity indicated good water quality index at Chidiyatappu Bay. This study is an attempt to integrate CWQI and GIS based mapping technique to derive a reliable, simple and useful output for water quality monitoring in coastal environment. PMID:26346804

  6. Use of oysters to mitigate eutrophication in coastal waters

    NASA Astrophysics Data System (ADS)

    Kellogg, M. Lisa; Smyth, Ashley R.; Luckenbach, Mark W.; Carmichael, Ruth H.; Brown, Bonnie L.; Cornwell, Jeffrey C.; Piehler, Michael F.; Owens, Michael S.; Dalrymple, D. Joseph; Higgins, Colleen B.

    2014-12-01

    Enhancing populations of suspension feeding bivalves, particularly the eastern oyster, Crassostrea virginica, has been proposed as a means of mitigating eutrophication in coastal waters. Review of studies evaluating the effects of C. virginica on nitrogen (N) cycling found that oysters can have effects on water quality that vary by orders of magnitude among sites, seasons, and growing condition (e.g., oyster reefs, aquaculture). Nitrogen contained in phytoplankton consumed by oysters may be returned to the water column, assimilated into oyster tissue and shell, buried in the sediments, or returned to the atmosphere as dinitrogen gas, primarily via denitrification. Accurately quantifying oyster-related N removal requires detailed knowledge of these primary fates of N in coastal waters. A review of existing data demonstrated that the current state of knowledge is incomplete in many respects. Nitrogen assimilated into oyster tissue and shell per gram of dry weight was generally similar across sites and in oysters growing on reefs compared to aquaculture. Data on long-term burial of N associated with oyster reefs or aquaculture are lacking. When compared to suitable reference sites, denitrification rates were not consistently enhanced. Depending on environmental and oyster growing conditions, changes in denitrification rates varied by orders of magnitude among studies and did not always occur. Oyster aquaculture rarely enhanced denitrification. Unharvested oyster reefs frequently enhanced denitrification rates. Incorporating oysters into nutrient reduction strategies will require filling gaps in existing data to determine the extent to which relationships between N removal and environmental and/or growing conditions can be generalized.

  7. Distribution of bacteria in a domestic hot water system in a Danish apartment building.

    PubMed

    Bagh, Lene Karen; Albrechtsen, Hans Jørgen; Arvin, Erik; Ovesen, Kaj

    2004-01-01

    Bacterial growth in hot water systems seems to cause problems such as bad odor of the water, skin allergies and increased heat transfer resistance in heating coils. In order to establish a basis for long-term suppression of bacterial growth, we studied the distribution of bacteria in a Danish domestic hot water system. Heterotrophic plate counts (HPC) were measured in both water and biofilm samples from various sampling sites in the system. In hot water samples, where the temperature was 55-60 degrees C, the HPC were 10(3)-10(4)CFU/mL at incubation temperatures of 25 degrees C or 37 degrees C and 10(5)CFU/mL at 55 degrees C or 65 degrees C. In the cold water (10 degrees C) supplying the hot water system, the HPC at 25 degrees C or 37 degrees C was lower than in the hot water, and no bacteria were found after incubation at 55 degrees C or 65 degrees C. HPC constituted from 38% to 84% of the AODC results in hot water but only 2% in cold water, which showed a high ratio of culturable bacteria in hot water. Biofilm samples from the hot water tank and the inner surface of the pipes in the cold and hot water distribution system were collected by specially designed sampling devices, which were exposed in the system for 42 days. The quasi-steady-state number of bacteria in the biofilm, measured as the geometric mean of the HPC obtained between 21 and 42 days, was five-fold higher in the hot water pipe (13x10(5)CFU/cm(2) at 55 degrees C) than in the cold water pipe (2.8x10(5)CFU/cm(2) at 25 degrees C). There was no significant difference between the number of bacteria in the biofilm samples from the top, middle and bottom of the hot water tank, and the number of bacteria in the biofilm counted at 55 degrees C ranged from 0.6x10(4) to 1.7x10(4)CFU/cm(2). The surfaces of the sacrificial aluminum anodes and the heating coils in the hot water tank also contained high bacterial numbers. The measured number of bacteria in water and biofilm samples was related to the dimensions of

  8. Study on the cumulative impact of reclamation activities on ecosystem health in coastal waters.

    PubMed

    Shen, Chengcheng; Shi, Honghua; Zheng, Wei; Li, Fen; Peng, Shitao; Ding, Dewen

    2016-02-15

    The purpose of this study is to develop feasible tools to investigate the cumulative impact of reclamations on coastal ecosystem health, so that the strategies of ecosystem-based management can be applied in the coastal zone. An indicator system and model were proposed to assess the cumulative impact synthetically. Two coastal water bodies, namely Laizhou Bay (LZB) and Tianjin coastal waters (TCW), in the Bohai Sea of China were studied and compared, each in a different phase of reclamations. Case studies showed that the indicator scores of coastal ecosystem health in LZB and TCW were 0.75 and 0.68 out of 1.0, respectively. It can be concluded that coastal reclamations have a historically cumulative effect on benthic environment, whose degree is larger than that on aquatic environment. The ecosystem-based management of coastal reclamations should emphasize the spatially and industrially intensive layout.

  9. The Carbon Budget of Coastal Waters of Eastern North America

    NASA Astrophysics Data System (ADS)

    Najjar, R.; Boyer, E. W.; Burdige, D.; Butman, D. E.; Cai, W. J.; Canuel, E. A.; Chen, R. F.; Friedrichs, M. A.; Griffith, P. C.; Herrmann, M.; Kemp, W. M.; Kroeger, K. D.; Mannino, A.; McCallister, S. L.; McGillis, W. R.; Mulholland, M. R.; Salisbury, J.; Signorini, S. R.; Tian, H.; Tzortziou, M.; Vlahos, P.; Wang, A. Z.; Zimmerman, R. C.; Pilskaln, C. H.

    2015-12-01

    Observations and the output of numerical and statistical models are synthesized to construct a carbon budget of the coastal waters of eastern North America. The domain extends from the head of tide to (roughly) the continental shelf break and from southern Florida to southern Nova Scotia. The domain area is 2% tidal wetlands, 19% estuarine open water, and 78% shelf water. Separate budgets are constructed for inorganic and organic carbon; for tidal wetlands, estuaries, and shelf waters; and for three main subregions: the Gulf of Maine, the Mid-Atlantic Bight, and the South Atlantic Bight. Net primary production for the study region is about 150 Tg C yr-1, with 12% occurring in tidal wetlands and 7% in estuaries. Though respiration and photosynthesis are nearly balanced in most systems and regions, tidal wetlands and shelf waters are each found to be net autotrophic whereas estuaries are net heterotrophic. The domain as a whole is a sink of 5 Tg C yr-1 of atmospheric CO2, with tidal wetlands and shelf waters taking up 10 Tg C yr-1 (split roughly equally) and estuaries releasing 5 Tg C yr-1 to the atmosphere. Carbon burial is about 3 Tg C yr-1, split roughly equally among tidal wetlands, estuaries, and shelf waters. Rivers supply 6-7 Tg C yr-1 to estuaries, about 2/3 of which is organic. Tidal wetlands supply an additional 4 Tg C yr-1 to estuaries, about half of which is organic. Carbon in organic and inorganic forms is exported from estuaries to shelf waters and from shelf waters to the open ocean. In summary, tidal wetlands and estuaries, though small in area, contribute substantially to the overall carbon budget of the region.

  10. A new source of freshwater for Antarctica's coastal waters

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-06-01

    Research into submarine groundwater discharge (SGD), predominantly regarding its prevalence as a source of freshwater and nutrients to coastal ecosystems, has recently grown in prominence. Using a new groundwater discharge sensor specifically designed for use in the cold polar ocean, Uemura et al. measured the flows of freshwater streaming through the Antarctic subsurface and into the surrounding coastal waters. The researchers found that SGD rates measured in Lützow-Holm Bay in eastern Antarctica showed important differences from SGD rates measured elsewhere on Earth. At midlatitudes, discharge rates drop with increasing ocean depth, while the Antarctic flows were relatively consistent despite differences in depth among the seven survey sites scattered throughout the bay. In addition, the measured average flow rates, ranging from 0.85 × 10-7 to 9.5 × 10-7 meters per second, were 10-100 times higher than flow rates at similar depths made at midlatitudes. The authors also found that SDG rates oscillated with a period of 12.8 hours, peaking at low tide. Further, the discharge rates roughly tracked the size of the tide, having higher peaks in spring, when tides were strongest. The researchers propose that the most likely source of the freshwater flow is meltwater formed beneath the massive glaciers surrounding the bay. (Geophysical Research Letters, doi:10.1029/2010GL046394, 2011)

  11. Water pollution in estuaries and coastal zones. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning the studies of water pollution in estuaries and coastal zones. Citations examine the development, management, and protection of estuary and coastal resources. Topics include pollution sources, environmental monitoring, water chemistry, eutrophication, models, land use, government policy, and laws and regulations. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. Water quality management in the coastal city in the period of considerable water consumption decrease.

    PubMed

    Bogdanowicz, R; Drwal, J; Maksymiuk, Z; Osinski, A

    2001-01-01

    Gdansk water supply system belongs among the oldest in Continental Europe. In 1992 one of the first joint-venture water companies was established in the city. Under a contract concluded between the firm and the municipality, the company was obliged to secure quick and considerable improvement of drinking water quality. At the same time a considerable water consumption decrease was observed. The drop entails new environmental, technical and economic problems. The biggest threat to the supplies of safe and good quality water is the phenomenon of secondary pollution of water resulting from the overdimensioning of the water supply network. Positive aspects of water consumption decrease are related to the opportunity of more rational and sustainable water resources management. The solutions adopted in Gdansk can serve as a starting point for working out the best model for water quality management in the coastal cities.

  13. Applications of remote sensing for water quality and biological measurements in coastal waters

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Harriss, R. C.

    1979-01-01

    Potential applications of remote sensing technology to the study of coastal marine environments are reviewed, emphasizing water quality and biological measurements. Parameters measurable by airborne or spaceborne remote sensors include particulates, measured by visual or multispectral photography, chlorophyll a, measured by the Ocean Color Scanner or Coastal Zone Color Scanner, temperature distributions, by IR or microwave sensors, and salinity, by means of microwave radiometers. Research projects in which wide area synoptic or repetitive remote sensing can make a major contribution include the study of estuarine and continental shelf sediment transport dynamics, marine pollutant transport, marine phytoplankton dynamics and ocean fronts.

  14. Percentage of microbeads in pelagic microplastics within Japanese coastal waters.

    PubMed

    Isobe, Atsuhiko

    2016-09-15

    To compare the quantity of microbeads with the quantity of pelagic microplastics potentially degraded in the marine environment, samples were collected in coastal waters of Japan using neuston nets. Pelagic spherical microbeads were collected in the size range below 0.8mm at 9 of the 26 stations surveyed. The number of pelagic microbeads smaller than 0.8mm accounted for 9.7% of all microplastics collected at these 9 stations. This relatively large percentage results from a decrease in the abundance of microplastics smaller than 0.8mm in the upper ocean, as well as the regular loading of new microbeads from land areas, in this size range. In general, microbeads in personal care and cosmetic products are not always spherical, but rather are often a variety of irregular shapes. It is thus likely that this percentage is a conservative estimate, because of the irregular shapes of the remaining pelagic microbeads. PMID:27297592

  15. Percentage of microbeads in pelagic microplastics within Japanese coastal waters.

    PubMed

    Isobe, Atsuhiko

    2016-09-15

    To compare the quantity of microbeads with the quantity of pelagic microplastics potentially degraded in the marine environment, samples were collected in coastal waters of Japan using neuston nets. Pelagic spherical microbeads were collected in the size range below 0.8mm at 9 of the 26 stations surveyed. The number of pelagic microbeads smaller than 0.8mm accounted for 9.7% of all microplastics collected at these 9 stations. This relatively large percentage results from a decrease in the abundance of microplastics smaller than 0.8mm in the upper ocean, as well as the regular loading of new microbeads from land areas, in this size range. In general, microbeads in personal care and cosmetic products are not always spherical, but rather are often a variety of irregular shapes. It is thus likely that this percentage is a conservative estimate, because of the irregular shapes of the remaining pelagic microbeads.

  16. Trends in chronic marine oil pollution in Danish waters assessed using 22 years of beached bird surveys.

    PubMed

    Larsen, Jørn Lennart; Durinck, Jan; Skov, Henrik

    2007-09-01

    Beached bird surveys provide an important tool for monitoring the level of oil pollution at sea, which is the most significant observable cause of death for a large number of waterbird species and pose a serious threat to wintering seabird populations. Linear regression analyses of oil rates from the Danish 22 year dataset show a decline in the oil pollution level in offshore areas of the eastern North Sea and Skagerrak and in near-shore parts of the Kattegat; but a worsening in the offshore areas of the Kattegat. These results raise concern for species such as common scoter, velvet scoter, eider and razorbill, for which the Kattegat serves as a globally important wintering area. It is recommended that surveillance for oil spills is intensified in inner Danish waters, and that action is taken to make responses towards offenders faster, and penalties for oil seepage higher.

  17. Halogen radicals contribute to photooxidation in coastal and estuarine waters

    NASA Astrophysics Data System (ADS)

    Parker, Kimberly M.; Mitch, William A.

    2016-05-01

    Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl‑ and Br‑ by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters.

  18. Halogen radicals contribute to photooxidation in coastal and estuarine waters.

    PubMed

    Parker, Kimberly M; Mitch, William A

    2016-05-24

    Although halogen radicals are recognized to form as products of hydroxyl radical ((•)OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM ((3)DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater (•)OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark (•)OH generation by gamma radiolysis demonstrates that halogen radical production via (•)OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl(-) and Br(-) by (3)DOM*, an (•)OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters. PMID:27162335

  19. Halogen radicals contribute to photooxidation in coastal and estuarine waters

    NASA Astrophysics Data System (ADS)

    Parker, Kimberly M.; Mitch, William A.

    2016-05-01

    Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl- and Br- by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters.

  20. Monitoring Environmental Recovery at Terminated Produced Water Discharge Sites in Coastal Louisiana Waters

    SciTech Connect

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents the results of a study of terminated produced water discharge sites in the coastal waters of Louisiana. Environmental recovery at the sites is documented by comparing pre-termination and post-termination (six months and one year) data. Produced water, sediments, and sediment interstitial water samples were analyzed for radionuclides, metals, and hydrocarbons. Benthic infauna were identified from samples collected in the vicinity of the discharge and reference sites. Radium isotope activities were determined in fish and crustacean samples. In addition, an environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  1. ERTS imagery applied to Alaskan coastal problems. [surface water circulation

    NASA Technical Reports Server (NTRS)

    Wright, F. F.; Sharma, G. D.; Burbank, D. C.; Burns, J. J.

    1974-01-01

    Along the Alaska coast, surface water circulation is relatively easy to study with ERTS imagery. Highly turbid river water, sea ice, and fluvial ice have proven to be excellent tracers of the surface waters. Sea truth studies in the Gulf of Alaska, Cook Inlet, Bristol Bay, and the Bering Strait area have established the reliability of these tracers. ERTS imagery in the MSS 4 and 5 bands is particularly useful for observing lower concentrations of suspended sediment, while MSS 6 data is best for the most concentrated plumes. Ice features are most clearly seen on MSS 7 imagery; fracture patterns and the movement of specific floes can be used to map circulation in the winter when runoff is restricted, if appropriate allowance is made for wind influence. Current patterns interpreted from satellite data are only two-dimensional, but since most biological activity and pollution are concentrated near the surface, the information developed can be of direct utility. Details of Alaska inshore circulation of importance to coastal engineering, navigation, pollution studies, and fisheries development have been clarified with satellite data. ERTS has made possible the analysis of circulation in many parts of the Alaskan coast.

  2. Assessment of water quality using multivariate statistical techniques in the coastal region of Visakhapatnam, India.

    PubMed

    Pati, Sangeeta; Dash, Mihir K; Mukherjee, C K; Dash, B; Pokhrel, S

    2014-10-01

    The present study was intended to develop a Water Quality Index (WQI) for the coastal water of Visakhapatnam, India from multiple measured water quality parameters using different multivariate statistical techniques. Cluster analysis was used to classify the data set into three major groups based on similar water quality characteristics. Discriminant analysis was used to generate a discriminant function for developing a WQI. Discriminant analysis gave the best result for analyzing the seasonal variation of water quality. It helped in data reduction and found the most discriminant parameters responsible for seasonal variation of water quality. Coastal water was classified into good, average, and poor quality considering WQI and the nutrient load. The predictive capacity of WQI was proved with random samples taken from coastal areas. High concentration of ammonia in surface water during winter was attributed to nitrogen fixation by the phytoplankton bloom which resulted due to East India Coastal Current. This study brings out the fact that water quality in the coastal region not only depends on the discharge from different pollution sources but also on the presence of different current patterns. It also illustrates the usefulness of WQI for analyzing the complex nutrient data for assessing the coastal water and identifying different pollution sources, considering reasons for seasonal variation of water quality.

  3. Coastal processes influencing water quality at Great Lakes beaches

    USGS Publications Warehouse

    ,

    2013-01-01

    In a series of studies along the Great Lakes, U.S. Geological Survey scientists are examining the physical processes that influence concentrations of fecal indicator bacteria and related pathogens at recreational beaches. These studies aim to estimate human health risk, improve management strategies, and understand the fate and transport of microbes in the nearshore area. It was determined that embayed beaches act as traps, accumulating Escherichia coli (E. coli) and other bacteria in the basin and even in beach sand. Further, shear stress and wave run-up could resuspend accumulated bacteria, leading to water-contamination events. These findings are being used to target beach design and circulation projects. In previous research, it was determined that E. coli followed a diurnal pattern, with concentrations decreasing throughout the day, largely owing to solar inactivation, but rebounding overnight. Studies at a Chicago beach identified the impact of wave-induced mass transport on this phenomenon, a finding that will extend our understanding of bacterial fate in the natural environment. In another series of studies, scientists examined the impact of river outfalls on bacteria concentrations, using mechanistic and empirical modeling. Through these studies, the models can indicate range and extent of impact, given E. coli concentration in the source water. These findings have been extended to extended lengths of coastlines and have been applied in beach management using empirical predictive modeling. Together, these studies are helping scientists identify and eliminate threats to human and coastal health.

  4. Microplastics in coastal sediments from Southern Portuguese shelf waters.

    PubMed

    Frias, J P G L; Gago, J; Otero, V; Sobral, P

    2016-03-01

    Microplastics are well-documented pollutants in the marine environment that result from fragmentation of larger plastic items. Due to their long chemical chains, they can remain in the environment for long periods of time. It is estimated that the vast majority (80%) of marine litter derives from land sources and that 70% will sink and remain at the bottom of the ocean. Microplastics that result from fragmentation of larger pieces of plastic are common to be found in beaches and in the water surface. The most common microplastics are pellets, fragments and fibres. This work provides original data of the presence of microplastics in coastal sediments from Southern Portuguese shelf waters, reporting on microplastic concentration and polymer types. Microplastic particles were found in nearly 56% of sediment samples, accounting a total of 31 particles in 27 samples. The vast majority were microfibers (25), identified as rayon fibres, and fragments (6) identified as polypropylene, through infrared spectroscopy (μ-FTIR). The concentration and polymer type data is consistent with other relevant studies and reports worldwide. PMID:26748246

  5. Microplastics in coastal sediments from Southern Portuguese shelf waters.

    PubMed

    Frias, J P G L; Gago, J; Otero, V; Sobral, P

    2016-03-01

    Microplastics are well-documented pollutants in the marine environment that result from fragmentation of larger plastic items. Due to their long chemical chains, they can remain in the environment for long periods of time. It is estimated that the vast majority (80%) of marine litter derives from land sources and that 70% will sink and remain at the bottom of the ocean. Microplastics that result from fragmentation of larger pieces of plastic are common to be found in beaches and in the water surface. The most common microplastics are pellets, fragments and fibres. This work provides original data of the presence of microplastics in coastal sediments from Southern Portuguese shelf waters, reporting on microplastic concentration and polymer types. Microplastic particles were found in nearly 56% of sediment samples, accounting a total of 31 particles in 27 samples. The vast majority were microfibers (25), identified as rayon fibres, and fragments (6) identified as polypropylene, through infrared spectroscopy (μ-FTIR). The concentration and polymer type data is consistent with other relevant studies and reports worldwide.

  6. Suspended marine particulate proteins in coastal and oligotrophic waters

    NASA Astrophysics Data System (ADS)

    Bridoux, Maxime C.; Neibauer, Jaqui; Ingalls, Anitra E.; Nunn, Brook L.; Keil, Richard G.

    2015-03-01

    Metaproteomic analyses were performed on suspended sediments collected in one coastal environment (Washington margin, Pacific Ocean, n = 5) and two oligotrophic environments (Atlantic Ocean near BATS, n = 5, and Pacific Ocean near HOTS, n = 5). Using a database of 2.3 million marine proteins developed using the NCBI database, 443 unique peptides were detected from which 363 unique proteins were identified. Samples from the euphotic zone contained on average 2-3x more identifiable proteins than deeper waters (150-1500 m) and these proteins were predominately from photosynthetic organisms. Diatom peptides dominate the spectra of the Washington margin while peptides from cyanobacteria, such as Synechococcus sp. dominated the spectra of both oligotrophic sites. Despite differences in the exact proteins identified at each location, there is good agreement for protein function and cellular location. Proteins in surface waters code for a variety of cellular functions including photosynthesis (24% of detected proteins), energy production (10%), membrane production (9%) and genetic coding and reading (9%), and are split 60-40 between membrane proteins and intracellular cytoplasmic proteins. Sargasso Sea surface waters contain a suite of peptides consistent with proteins involved in circadian rhythms that promote both C and N fixation at night. At depth in the Sargasso Sea, both muscle-derived myosin protein and the muscle-hydrolyzing proteases deseasin MCP-01 and metalloprotease Mcp02 from γ-proteobacteria were observed. Deeper waters contain peptides predominately sourced from γ-proteobacteria (37% of detected proteins) and α-proteobacteria (26%), although peptides from membrane and photosynthetic proteins attributable to phytoplankton were still observed (13%). Relative to surface values, detection frequencies for bacterial membrane proteins and extracellular enzymes rose from 9 to 16 and 2 to 4% respectively below the thermocline and the overall balance between

  7. Freshwater and Nutrient Fluxes to Coastal Waters of Everglades National Park - A Synthesis

    USGS Publications Warehouse

    McPherson, Benjamin F.; Torres, Arturo E.

    2006-01-01

    Freshwater in the Everglades and the Big Cypress Swamp drains south and southwest into coastal regions where it mixes with seawater to create the salinity gradients characteristic of productive estuarine and marine systems. Studies in Florida Bay have shown that over the last 100-200 years, salinity and seagrass distributions have fluctuated substantially in response to natural climatic cycles. The timing of this change coincides at least in part with the canal construction and landscape alterations in the Everglades that have altered the quantity, timing, distribution, and quality of surface water that flows south into the coastal waters. Federal and State agencies have undertaken a massive Everglades restoration project that will require changes in water management throughout the Everglades, and this will affect water flows to the coastal region. A major concern involves how changes in water flow could affect salinity and nutrient availability in coastal waters.

  8. Toward N Criteria in Coastal Waters: Normalizing N Loading for Estuarine Volume and Local Residence Time

    EPA Science Inventory

    One approach to developing criteria for nitrogen (N) in coastal waters has been to determine quantitative relationships between N loading and ecological effects (e.g., hypoxia) in coastal estuaries. Although this approach has met with some success, data obtained from field sites ...

  9. Ecological Condition of Coastal Ocean Waters along the U.S. Western Continental Shelf: 2003

    EPA Science Inventory

    The western National Coastal Assessment program of EPA, in conjunction with the NOAA National Ocean Service, west coast states (WA, OR, and CA), and the Southern California Coastal Water Research Project Bight ’03 program, assessed the ecological condition of soft sediment habita...

  10. Development of Benthic Indicators for Nearshore Coastal Waters of New Jersey - A REMAP Project

    EPA Science Inventory

    EPA's National Coastal Assessment (NCA) is providing the first complete, consistent dataset on the condition of benthic communities in the nation's estuaries. Prior to NCA, New Jersey based its evaluation of the ecological condition of its coastal waters solely on dissolved oxyg...

  11. An approach to derive groundwater and stream threshold values for total nitrogen and ensure good ecological status of associated aquatic ecosystems - example from a coastal catchment to a vulnerable Danish estuary.

    NASA Astrophysics Data System (ADS)

    Hinsby, Klaus; Markager, Stiig; Kronvang, Brian; Windolf, Jørgen; Sonnenborg, Torben; Sørensen, Lærke

    2015-04-01

    Nitrate, which typically makes up the major part (~>90%) of dissolved inorganic nitrogen in groundwater and surface water, is the most frequent pollutant responsible for European groundwater bodies failing to meet the good status objectives of the European Water Framework Directive generally when comparing groundwater monitoring data with the nitrate quality standard of the Groundwater Directive (50 mg/l = the WHO drinking water standard). Still, while more than 50 % of the European surface water bodies do not meet the objective of good ecological status "only" 25 % of groundwater bodies do not meet the objective of good chemical status according to the river basin management plans reported by the EU member states. However, based on a study on interactions between groundwater, streams and a Danish estuary we argue that nitrate threshold values for aerobic groundwater often need to be significantly below the nitrate quality standard to ensure good ecological status of associated surface water bodies, and hence that the chemical status of European groundwater is worse than indicated by the present assessments. Here we suggest a methodology for derivation of groundwater and stream threshold values for total nitrogen ("nitrate") in a coastal catchment based on assessment of maximum acceptable nitrogen loadings (thresholds) to the associated vulnerable estuary. The applied method use existing information on agricultural practices and point source emissions in the catchment, groundwater, stream quantity and quality monitoring data that all feed data to an integrated groundwater and surface water modelling tool enabling us to conduct an assessment of total nitrogen loads and threshold concentrations derived to ensure/restore good ecological status of the investigated estuary. For the catchment to the Horsens estuary in Denmark we estimate the stream and groundwater thresholds for total nitrogen to be about 13 and 27 mg/l (~ 12 and 25 mg/l of nitrate). The shown example of

  12. An Approach to Developing Numeric Water Quality Criteria for Coastal Waters Using the SeaWiFS Satellite Data Record

    PubMed Central

    2011-01-01

    Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and associated ecological impacts. Numeric nutrient water quality standards are needed to protect coastal waters from eutrophication impacts. The Environmental Protection Agency determined that numeric nutrient criteria were necessary to protect designated uses of Florida’s waters. The objective of this study was to evaluate a reference condition approach for developing numeric water quality criteria for coastal waters, using data from Florida. Florida’s coastal waters have not been monitored comprehensively via field sampling to support numeric criteria development. However, satellite remote sensing had the potential to provide adequate data. Spatial and temporal measures of SeaWiFS OC4 chlorophyll-a (ChlRS-a, mg m–3) were resolved across Florida’s coastal waters between 1997 and 2010 and compared with in situ measurements. Statistical distributions of ChlRS-a were evaluated to determine a quantitative reference baseline. A binomial approach was implemented to consider how new data could be assessed against the criteria. The proposed satellite remote sensing approach to derive numeric criteria may be generally applicable to other coastal waters. PMID:22192062

  13. ASSESSING COASTAL WATERS OF AMERICAN SAMOA: TERRITORY-WIDE WATER QUALITY DATA PROVIDE A CRITICAL 'BIG-PICTURE' VIEW FOR THIS TROPICAL ARCHIPELAGO

    EPA Science Inventory

    The coastal waters of American Samoa’s 5 high islands (Tutuila, Aunu’u, Ofu, Olosega,and Ta’u) were surveyed in 2004 using a probabilistic design. Water quality data were collected from the near-shore coastal habitat, defined as all near-shore coastal waters including embayments,...

  14. Gas hydrates over the Egyptian Med. Coastal waters

    NASA Astrophysics Data System (ADS)

    Sharaf El Din, Sayed; Nassar, Marawan

    2010-05-01

    Natural gas hydrates occur worldwide in different oceanic environments, especially in areas of onshore and offshore permafrost and in sediments on continental slops, PT conditions required to initiate the hydrate formation and to stabilize its structure are encountered along the continental slop of the nile delta. Hydocarbon gases in the Nile Delta are not geochemically homogeneous, originating from the decomposition of organic matter by biochemical and thermal processes. The structure of the hydrate determines the type of gas molecules contained. Although Gas hydrates exist over the Egyptian Med. Coastal waters, very little is known on its, origin, quality and quantity. Several studies had been done by several oil companies in the vicinity of the Egyptian territory. High concentration in thin, patchy zones just above the BSR may be, destabilized by Tectonic uplift or climate changes. The seismic profiles taken over the continental slope of the Nile Delta from Damietta to Rashid gave strong evidence of MH with very clear BSR. Geological and geochemical setting of Gas Hydrate Reservoir in front of the Egyptian Nile Delta need more investigations.

  15. Anthropogenic nutrients and harmful algae in coastal waters.

    PubMed

    Davidson, Keith; Gowen, Richard J; Harrison, Paul J; Fleming, Lora E; Hoagland, Porter; Moschonas, Grigorios

    2014-12-15

    Harmful algal blooms (HABs) are thought to be increasing in coastal waters worldwide. Anthropogenic nutrient enrichment has been proposed as a principal causative factor of this increase through elevated inorganic and/or organic nutrient concentrations and modified nutrient ratios. We assess: 1) the level of understanding of the link between the amount, form and ratio of anthropogenic nutrients and HABs; 2) the evidence for a link between anthropogenically generated HABs and negative impacts on human health; and 3) the economic implications of anthropogenic nutrient/HAB interactions. We demonstrate that an anthropogenic nutrient-HAB link is far from universal, and where it has been demonstrated, it is most frequently associated with high biomass rather than low biomass (biotoxin producing) HABs. While organic nutrients have been shown to support the growth of a range of HAB species, insufficient evidence exists to clearly establish if these nutrients specifically promote the growth of harmful species in preference to benign ones, or if/how they influence toxicity of harmful species. We conclude that the role of anthropogenic nutrients in promoting HABs is site-specific, with hydrodynamic processes often determining whether blooms occur. We also find a lack of evidence of widespread significant adverse health impacts from anthropogenic nutrient-generated HABs, although this may be partly due to a lack of human/animal health and HAB monitoring. Detailed economic evaluation and cost/benefit analysis of the impact of anthropogenically generated HABs, or nutrient reduction schemes to alleviate them, is also frequently lacking.

  16. Microplastics in mussels along the coastal waters of China.

    PubMed

    Li, Jiana; Qu, Xiaoyun; Su, Lei; Zhang, Weiwei; Yang, Dongqi; Kolandhasamy, Prabhu; Li, Daoji; Shi, Huahong

    2016-07-01

    Microplastic has been confirmed as an emerging pollutant in marine environments. One of the primary environmental risks of microplastics is their bioavailability for aquatic organisms. Bivalves are of particular interest because their extensive filter-feeding activity exposes them directly to microplastics present in the water column. In the present study, we investigated microplastic pollution in mussels (Mytilus edulis) from 22 sites along 12,400 mile coastlines of China in 2015. The number of total microplastics varied from 0.9 to 4.6 items/g and from 1.5 to 7.6 items/individual. M. edulis contained more microplastics (2.7 items/g) in wild groups than that (1.6 items/g) in farmed groups. The abundance of microplastics was 3.3 items/g in mussels from the areas with intensive human activities and significantly higher than that (1.6 items/g) with less human activities. The most common microplastics were fibers, followed by fragments. The proportion of microplastics less than 250 μm in size arranged from 17% to 79% of the total microplastics. Diatom was distinguished from microplastics in mussels for the first time using Scanning Electron Microscope. Our results suggested that the numbers of microplastic kept within a relatively narrow range in mussels and were closely related to the contamination of the environments. We proposed that mussels could be used as a potential bioindicator of microplastic pollution of the coastal environment. PMID:27086073

  17. Anthropogenic nutrients and harmful algae in coastal waters.

    PubMed

    Davidson, Keith; Gowen, Richard J; Harrison, Paul J; Fleming, Lora E; Hoagland, Porter; Moschonas, Grigorios

    2014-12-15

    Harmful algal blooms (HABs) are thought to be increasing in coastal waters worldwide. Anthropogenic nutrient enrichment has been proposed as a principal causative factor of this increase through elevated inorganic and/or organic nutrient concentrations and modified nutrient ratios. We assess: 1) the level of understanding of the link between the amount, form and ratio of anthropogenic nutrients and HABs; 2) the evidence for a link between anthropogenically generated HABs and negative impacts on human health; and 3) the economic implications of anthropogenic nutrient/HAB interactions. We demonstrate that an anthropogenic nutrient-HAB link is far from universal, and where it has been demonstrated, it is most frequently associated with high biomass rather than low biomass (biotoxin producing) HABs. While organic nutrients have been shown to support the growth of a range of HAB species, insufficient evidence exists to clearly establish if these nutrients specifically promote the growth of harmful species in preference to benign ones, or if/how they influence toxicity of harmful species. We conclude that the role of anthropogenic nutrients in promoting HABs is site-specific, with hydrodynamic processes often determining whether blooms occur. We also find a lack of evidence of widespread significant adverse health impacts from anthropogenic nutrient-generated HABs, although this may be partly due to a lack of human/animal health and HAB monitoring. Detailed economic evaluation and cost/benefit analysis of the impact of anthropogenically generated HABs, or nutrient reduction schemes to alleviate them, is also frequently lacking. PMID:25173729

  18. Microplastics in mussels along the coastal waters of China.

    PubMed

    Li, Jiana; Qu, Xiaoyun; Su, Lei; Zhang, Weiwei; Yang, Dongqi; Kolandhasamy, Prabhu; Li, Daoji; Shi, Huahong

    2016-07-01

    Microplastic has been confirmed as an emerging pollutant in marine environments. One of the primary environmental risks of microplastics is their bioavailability for aquatic organisms. Bivalves are of particular interest because their extensive filter-feeding activity exposes them directly to microplastics present in the water column. In the present study, we investigated microplastic pollution in mussels (Mytilus edulis) from 22 sites along 12,400 mile coastlines of China in 2015. The number of total microplastics varied from 0.9 to 4.6 items/g and from 1.5 to 7.6 items/individual. M. edulis contained more microplastics (2.7 items/g) in wild groups than that (1.6 items/g) in farmed groups. The abundance of microplastics was 3.3 items/g in mussels from the areas with intensive human activities and significantly higher than that (1.6 items/g) with less human activities. The most common microplastics were fibers, followed by fragments. The proportion of microplastics less than 250 μm in size arranged from 17% to 79% of the total microplastics. Diatom was distinguished from microplastics in mussels for the first time using Scanning Electron Microscope. Our results suggested that the numbers of microplastic kept within a relatively narrow range in mussels and were closely related to the contamination of the environments. We proposed that mussels could be used as a potential bioindicator of microplastic pollution of the coastal environment.

  19. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    NASA Astrophysics Data System (ADS)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased

  20. Reflected GPS Power for the Detection of Surface Roughness Patterns in Coastal Water

    NASA Technical Reports Server (NTRS)

    Oertel, George, F.; Allen, Thomas R.

    2000-01-01

    Coastal bays formed by the barrier islands of Delaware, Maryland and Virginia are parts of a coastal region known as a "Coastal Compartment". The coastal compartment between the Chesapeake and Delaware Bays is actually the mosaic of landscapes on the headland of the interfluve that separates these large drainage basins. The coastal compartments form a variety of different-shaped waterways landward of the coastline. Shape differences along the boundaries produce differences in exposure to wind and waves. Different shoreface topographies seaward of the coastline also influence surface roughness by changing wave-refraction patterns. Surface-water roughness (caused by waves) is controlled by a number of parameters, including fetch, shielding, exposure corridors, water-mass boundary conditions, wetland vegetation and water depth in coastal bays. In the coastal ocean, surface roughness patterns are controlled by shoreface shoaling and inlet refraction patterns in the coastal ocean. Knowledge of wave phenomena in the nearshore and backbarrier areas is needed to understand how wave climate influences important ecosystems in estuaries and bays.

  1. Bicarbonate, sulfate, and chloride water in a shallow, clastic-dominated coastal flow system, Argentina

    SciTech Connect

    Logan, W.S.; Auge, M.P.; Panarello, H.O.

    1999-03-01

    Most of the cities southeast of Buenos Aires, Argentina, depend heavily on ground water for water supply. Whereas ground water quality is generally good in the region, economic development along the coastal plain has been constrained by high salinities. Fifty-four wells were sampled for major ions in zones of recharge, transport and discharge in an area near La Plata, 50 km southeast of Buenos Aires. The shallow, southwest to northeast coastal flow system is >30 km long but is only 50 to 80 m thick. It consists of Plio-Pleistocene fluvial sand overlain by Pleistocene eolian and fluvial silt and Holocene estuarine silty clay. Hydrochemical endmembers include HCO{sub 3}, SO{sub 4}, and Cl water. Bicarbonate-type water includes high plain recharge water that evolves through cation exchange and calcite dissolution to a high pH, pure Na-HCO{sub 3} endmember at the southwest edge of the coastal plain. Similar Na-HCO{sub 3} water is also found underlying recharge areas of the central coastal plain, and a lens of Ca-HCO{sub 3} water is associated with a ridge of shell debris parallel to the coast. Mixed cation-Cl water near the coastline represents intruded sea water that has undergone cation exchange. Chemically similar water underlying the southwest coastal plain, however, can be shown isotopically to have formed from fairly dilute solutions concentrated many times by evapotranspiration.

  2. Non-energy resources, Connecticut and Rhode Island coastal waters

    USGS Publications Warehouse

    Neff, N.F.; Lewis, R.S.

    1989-01-01

    Cores collected from Long Island Sound, Connecticut, were used to establish control on the geologic framework of the area. Lithologic and stratigraphic analyses verified the presence of the following units: (1) Cretaceous coastal plain, (2) Pleistocene glacial till, (3) late Pleistocene glacial lake, (4) late Pleistocene glacial outwash, and (5) Holocene fluvial, estuarine and marine deposits. Cores collected in Block Island Sound, Rhode Island, were obtained from inferred, relict shoreline features and were analyzed for heavy mineral content. Concentrations ranged from 0.3 to 3.4%; no significant downcore changes were found. The results indicated that surficial sediments in areas of high-velocity tidal flow yield greater amounts of heavy minerals than do inferred placer deposits. During the second phase of the program of study, Connecticut and Rhode Island pooled resources to develop a study plan for the comprehensive quantification of all non-energy resources in the adjacent waters of the states. A literature and data survey was conducted to assess the occurrence, extent, and accessibility of these resources. Sand and gravel and heavy minerals were found in concentrations offering potential for resource exploitation. Constraints on exploitation include (1) water depth restrictions for the protection of shellfish beds and public beaches, (2) fishing activities, (3) military, commercial, and fishing vessel traffic, (4) seafloor cable routes and (5) dump sites. Deposits composed of Pleistocene glacial sediments and/or Holocene marine sediments in regions of little or no user conflict were identified as sites potentially suitable for resource exploitation. The study plan stated additional data needs (geophysical profiling and vibracore sampling) at these sites. Subsequent to these recommendations, high-resolution seismic profiles and sidescan sonographs were obtained from these sites. Seismic stratigraphic analyses confirm the presence of extensive deposits of

  3. An investigation of dispersion characteristics in shallow coastal waters

    NASA Astrophysics Data System (ADS)

    Yu, Yingying; Zhang, Hong; Spencer, David; Dunn, Ryan J. K.; Lemckert, Charles

    2016-10-01

    Hydrodynamic dispersion has a significant impact on the mass transport of sediments and contaminants within coastal waters. In this study apparent horizontal dispersion in a tidally-dominated shallow estuary was investigated using field observations and a numerical model. A cluster of four Lagrangian drifters was released in two shallow regions inside Moreton Bay, Australia: between two small islands and in an open water area. During a 16-h tracking period, the drifters generally showed similar behaviour, initially moving with the dominant current and remaining together before spreading apart at the change of tide. Two dispersion regimes were identified, a slow dispersion during the earlier stage and a rapid dispersion during the latter stage of deployment. Such change in regime typically occurred during the succeeding ebb or flow tides, which may be attributable to residual eddies breaking down during reversal of tidal direction. In addition, a power function of the squared separation distance over the apparent dispersion coefficient produced an R2 exceeding 0.7, indicating a significant relationship between them. By applying a three-dimensional hydrodynamic model, the trajectories of artificial particles spreading in the bay were simulated, which allowed the calculation of dispersion coefficients throughout the entire bay. The study results demonstrate that the tidal effects on dispersion were dependent on the effect of tidal excursion and residual current. The tide was found to be the most dominant driver of dispersion in the bay when unobstructed by land; however, bathymetric and shoreline characteristics were also significant localised drivers of dispersion between the two islands as a result of island wake.

  4. An interdisciplinary study of the estuarine and coastal oceanography of Block Island Sound and adjacent New York coastal waters

    NASA Technical Reports Server (NTRS)

    Yost, E. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. The synoptic repetitive coverage of the multispectral imagery from the ERTS-1 satellite, when photographically reprocessed using the state-of-the-art techniques, has given indication of spectral differences in Block Island and adjacent New England waters which were heretofore unknown. Of particular interest was the possible detection of relatively small amounts of phytoplankton prior to the occurrence of the red tide in Massachusetts waters. Preparation of spatial and temporal hydrographic charts using ERTS-1 imagery and ground truth analysis will hopefully determine the environmental impact on New York coastal waters.

  5. Rationale for a New Generation of Indicators for Coastal Waters

    PubMed Central

    Niemi, Gerald; Wardrop, Denice; Brooks, Robert; Anderson, Susan; Brady, Valerie; Paerl, Hans; Rakocinski, Chet; Brouwer, Marius; Levinson, Barbara; McDonald, Michael

    2004-01-01

    More than half the world’s human population lives within 100 km of the coast, and that number is expected to increase by 25% over the next two decades. Consequently, coastal ecosystems are at serious risk. Larger coastal populations and increasing development have led to increased loading of toxic substances, nutrients and pathogens with subsequent algal blooms, hypoxia, beach closures, and damage to coastal fisheries. Recent climate change has led to the rise in sea level with loss of coastal wetlands and saltwater intrusion into coastal aquifers. Coastal resources have traditionally been monitored on a stressor-by-stressor basis such as for nutrient loading or dissolved oxygen. To fully measure the complexities of coastal systems, we must develop a new set of ecologic indicators that span the realm of biological organization from genetic markers to entire ecosystems and are broadly applicable across geographic regions while integrating stressor types. We briefly review recent developments in ecologic indicators and emphasize the need for improvements in understanding of stress–response relationships, contributions of multiple stressors, assessments over different spatial and temporal scales, and reference conditions. We provide two examples of ecologic indicators that can improve our understanding of these inherent problems: a) the use of photopigments as indicators of the interactive effects of nutrients and hydrology, and b) biological community approaches that use multiple taxa to detect effects on ecosystem structure and function. These indicators are essential to measure the condition of coastal resources, to diagnose stressors, to communicate change to the public, and ultimately to protect human health and the quality of the coastal environment. PMID:15198917

  6. Organic and Inorganic Matter in Louisiana Coastal Waters: Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi Regions.

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and...

  7. Remote estimation of in water constituents in coastal waters using neural networks

    NASA Astrophysics Data System (ADS)

    Ioannou, Ioannis; Gilerson, Alexander; Ondrusek, Michael E.; Hlaing, Soe; Foster, Robert; El-Habashi, Ahmed; Bastani, Kaveh; Ahmed, Samir

    2014-10-01

    Remote estimations of oceanic constituents from optical reflectance spectra in coastal waters are challenging because of the complexity of the water composition as well as difficulties in estimation of water leaving radiance in several bands possibly due to inadequacy of current atmospheric correction schemes. This work focuses on development of a multiband inversion algorithm that combines remote sensing reflectance measurements at several wavelengths in the blue, green and red for retrievals of the absorption coefficients of phytoplankton, color dissolved organic matter and nonalgal particulates at 443nm as well as the particulate backscatter coefficient at 443nm. The algorithm was developed, using neural networks (NN), and was designed to use as input measurements on ocean color bands matching those of the Visible Infrared Imaging Radiometer Suite (VIIRS). The NN is trained on a simulated data set generated through a biooptical model for a broad range of typical coastal water parameters. The NN was evaluated using several statistical indicators, initially on the simulated data-set, as well as on field data from the NASA bio-Optical Marine Algorithm Data set, NOMAD, and data from our own field campaigns in the Chesapeake Bay which represent well the range of water optical properties as well as chlorophyll concentrations in coastal regions. The algorithm was also finally applied on a satellite - in situ databases that were assembled for the Chesapeake Bay region using MODIS and VIIRS satellite data. These databases were created using in-situ chlorophyll concentrations routinely measured in different locations throughout Chesapeake Bay and satellite reflectance overpass data that coexist in time with these in-situ measurements. NN application on this data-sets suggests that the blue (412 and 443nm) satellite bands are erroneous. The NN which was assessed for retrievals from VIIRS using only the 486, 551 and 671 bands showed that retrievals that omitted the 671 nm

  8. Regional Jurassic geologic framework of Alabama coastal waters area and adjacent Federal waters area

    USGS Publications Warehouse

    Mink, R.M.; Bearden, B.L.; Mancini, E.A.

    1989-01-01

    To date, numerous Jurassic hydrocarbon fields and pools have been discovered in the Cotton Valley Group, Haynesville Formation, Smackover Formation and Norphlet Formation in the tri-state area of Mississippi, Alabama and Florida, and in Alabama State coastal waters and adjacent Federal waters area. Petroleum traps are basement highs, salt anticlines, faulted salt anticlines and extensional faults associated with salt movement. Reservoirs include continental and marine sandstones, limestones and dolostones. Hydrocarbon types are oil, condensate and natural gas. The onshore stratigraphic and structural information can be used to establish a regional geologic framework for the Jurassic for the State coastal waters and adjacent Federal waters areas. Evaluation of the geologic information along with the hydrocarbon data from the tri-state area indicates that at least three Jurassic hydrocarbon trends (oil, oil and gas condensate, and deep natural gas) can be identified onshore. These onshore hydrocarbon trends can be projected into the Mobile area in the Central Gulf of Mexico and into the Pensacola, Destin Dome and Apalachicola areas in the Eastern Gulf of Mexico. Substantial reserves of natural gas are expected to be present in Alabama State waters and the northern portion of the Mobile area. Significant accumulations of oil and gas condensate may be encountered in the Pensacola, Destin Dome, and Apalachicola areas. ?? 1989.

  9. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef.

    PubMed

    Macdonald, Rachael K; Ridd, Peter V; Whinney, James C; Larcombe, Piers; Neil, David T

    2013-09-15

    Water turbidity and suspended sediment concentration (SSC) are commonly used as part of marine monitoring and water quality plans. Current management plans utilise threshold SSC values derived from mean-annual turbidity concentrations. Little published work documents typical ranges of turbidity for reefs within open coastal waters. Here, time-series turbidity measurements from 61 sites in the Great Barrier Reef (GBR) and Moreton Bay, Australia, are presented as turbidity exceedance curves and derivatives. This contributes to the understanding of turbidity and SSC in the context of environmental management in open-coastal reef environments. Exceedance results indicate strong spatial and temporal variability in water turbidity across inter/intraregional scales. The highest turbidity across 61 sites, at 50% exceedance (T50) is 15.3 NTU and at 90% exceedance (T90) 4.1 NTU. Mean/median turbidity comparisons show strong differences between the two, consistent with a strongly skewed turbidity regime. Results may contribute towards promoting refinement of water quality management protocols.

  10. Data access and decision tools for coastal water resources management

    EPA Science Inventory

    US EPA has supported the development of numerous models and tools to support implementation of environmental regulations. However, transfer of knowledge and methods from detailed technical models to support practical problem solving by local communities and watershed or coastal ...

  11. EVALUATION OF FISH SAMPLING DESIGNS FOR COASTAL WATERS

    EPA Science Inventory

    Because no objective assessment of fish sampling methodologies has been completed for Great Lakes coastal wetlands we evaluated catches from several techniques and studies to determine the most effective combinations for these habitats. Data from six underdeveloped sites in Green...

  12. Seasonal oscillations in water exchange between aquifers and the coastal ocean.

    PubMed

    Michael, Holly A; Mulligan, Ann E; Harvey, Charles F

    2005-08-25

    Ground water of both terrestrial and marine origin flows into coastal surface waters as submarine groundwater discharge, and constitutes an important source of nutrients, contaminants and trace elements to the coastal ocean. Large saline discharges have been observed by direct measurements and inferred from geochemical tracers, but sufficient seawater inflow has not been observed to balance this outflow. Geochemical tracers also suggest a time lag between changes in submarine groundwater discharge rates and the seasonal oscillations of inland recharge that drive groundwater flow towards the coast. Here we use measurements of hydraulic gradients and offshore fluxes taken at Waquoit Bay, Massachusetts, together with a modelling study of a generalized coastal groundwater system to show that a shift in the freshwater-saltwater interface-controlled by seasonal changes in water table elevation-can explain large saline discharges that lag inland recharge cycles. We find that sea water is drawn into aquifers as the freshwater-saltwater interface moves landward during winter, and discharges back into coastal waters as the interface moves seaward in summer. Our results demonstrate the connection between the seasonal hydrologic cycle inland and the saline groundwater system in coastal aquifers, and suggest a potentially important seasonality in the chemical loading of coastal waters.

  13. Characterizing storm water dispersion and dilution from small coastal streams

    NASA Astrophysics Data System (ADS)

    Romero, Leonel; Siegel, David A.; McWilliams, James C.; Uchiyama, Yusuke; Jones, Charles

    2016-06-01

    Characterizing the dispersion and dilution of storm water from small coastal creeks is important for understanding the importance of land-derived subsidies to nearby ecosystems and the management of anthropogenic pollutants. In Southern California, creek runoff is episodic, intense, and short-lived while the plumes are buoyant, all of which make the field sampling of freshwater plumes challenging. Numerical modeling offers a viable way to characterize these systems. The dilution and dispersion of freshwater from two creeks that discharge into the Santa Barbara Channel, California is investigated using Regional Ocean Modeling System (ROMS) simulations with a horizontal resolution of 100 m. Tight coupling is found among precipitation, hydrologic discharge, wind forcing, and submesoscale flow structures which all contribute to plume evolution. During flooding, plumes are narrow and attached to the coast, due to downwelling/onshore wind forcing and intense vorticity filaments lying parallel to the shelf. As the storm passes, the winds typically shift to offshore/upwelling favorable conditions and the plume is advected offshore which enhances its dilution. Plumes reach the bottom nearshore while they form thin layers a few meters thick offshore. Dilution field of passive tracers released with the runoff is strongly anisotropic with stronger cross-shelf gradients than along-shelf. Dispersion analysis of statistical moments of the passive tracer distribution results in scale-dependent diffusivities consistent with the particle-pair analysis of Romero et al. Model validation, the roles of submesoscale processes, and wind forcing on plume evolution and application to ecological issues and marine resource management are discussed.

  14. Pharmaceuticals, alkylphenols and pesticides in Mediterranean coastal waters: Results from a pilot survey using passive samplers

    NASA Astrophysics Data System (ADS)

    Munaron, Dominique; Tapie, Nathalie; Budzinski, Hélène; Andral, Bruno; Gonzalez, Jean-Louis

    2012-12-01

    21 pharmaceuticals, 6 alkylphenols and 27 hydrophilic pesticides and biocides were investigated using polar organic contaminant integrative samplers (POCIS) during a large-scale study of contamination of French Mediterranean coastal waters. Marine and transitional water-bodies, defined under the EU Water Framework Directive were monitored. Our results show that the French Mediterranean coastal waters were contaminated with a large range of emerging contaminants, detected at low concentrations during the summer season. Caffeine, carbamazepine, theophilline and terbutaline were detected with a detection frequency higher than 83% in the coastal waters sampled, 4-nonylphenol (4-NP), 4-tert-octylphenol (4-OP) and 4-nonylphenol diethoxylate (NP2EO) were detected in all coastal waters sampled, and diuron, terbuthylazine, atrazine, irgarol and simazine were detected in more than 77% of samples. For pharmaceuticals, highest time-weighted average (TWA) concentrations were measured for caffeine and carbamazepine (32 and 12 ng L-1, respectively). For alkylphenols, highest TWA concentrations were measured for 4-nonylphenol mono-ethoxylate and 4-nonylphenol (41 and 33 ng L-1, respectively), and for herbicides and biocides, they were measured for diuron and irgarol (33 and 2.5 ng L-1, respectively). Except for Diana lagoon, lagoons and semi-enclosed bays were the most contaminated areas for herbicides and pharmaceuticals, whilst, for alkylphenols, levels of contamination were similar in lagoons and coastal waters. This study demonstrates the relevance and utility of POCIS as quantitative tool for measuring low concentrations of emerging contaminants in marine waters.

  15. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Pollution of coastal and navigable waters. 4.66b...; DEPARTMENT OF THE TREASURY VESSELS IN FOREIGN AND DOMESTIC TRADES Foreign Clearances § 4.66b Pollution of... shorelines, or into or upon the waters of the contiguous zone in violation of the Federal Water...

  16. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Pollution of coastal and navigable waters. 4.66b...; DEPARTMENT OF THE TREASURY VESSELS IN FOREIGN AND DOMESTIC TRADES Foreign Clearances § 4.66b Pollution of... shorelines, or into or upon the waters of the contiguous zone in violation of the Federal Water...

  17. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Pollution of coastal and navigable waters. 4.66b...; DEPARTMENT OF THE TREASURY VESSELS IN FOREIGN AND DOMESTIC TRADES Foreign Clearances § 4.66b Pollution of... shorelines, or into or upon the waters of the contiguous zone in violation of the Federal Water...

  18. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Pollution of coastal and navigable waters. 4.66b...; DEPARTMENT OF THE TREASURY VESSELS IN FOREIGN AND DOMESTIC TRADES Foreign Clearances § 4.66b Pollution of... shorelines, or into or upon the waters of the contiguous zone in violation of the Federal Water...

  19. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Pollution of coastal and navigable waters. 4.66b...; DEPARTMENT OF THE TREASURY VESSELS IN FOREIGN AND DOMESTIC TRADES Foreign Clearances § 4.66b Pollution of... shorelines, or into or upon the waters of the contiguous zone in violation of the Federal Water...

  20. USEPA'S APPROACH FOR ESTABLISHING NATIONAL NUTRIENT CRITERIA FOR ESTUARIES AND COASTAL WATER

    EPA Science Inventory

    The USEP A is developing procedures for establishing nutrient criteria to aid states and tribes in setting nutrient standards for the nation's water bodies and coastal waters. Criteria are being developed separately by water body type (e.g. lakes and reservoirs, rivers and stream...

  1. Drinking water insecurity: water quality and access in coastal south-western Bangladesh.

    PubMed

    Benneyworth, Laura; Gilligan, Jonathan; Ayers, John C; Goodbred, Steven; George, Gregory; Carrico, Amanda; Karim, Md Rezaul; Akter, Farjana; Fry, David; Donato, Katherine; Piya, Bhumika

    2016-01-01

    National drinking water assessments for Bangladesh do not reflect local variability, or temporal differences. This paper reports on the findings of an interdisciplinary investigation of drinking water insecurity in a rural coastal south-western Bangladesh. Drinking water quality is assessed by comparison of locally measured concentrations to national levels and water quality criteria; resident's access to potable water and their perceptions are based on local social surveys. Residents in the study area use groundwater far less than the national average; salinity and local rainwater scarcity necessitates the use of multiple water sources throughout the year. Groundwater concentrations of arsenic and specific conductivity (SpC) were greater than surface water (pond) concentrations; there was no statistically significant seasonal difference in mean concentrations in groundwater, but there was for ponds, with arsenic higher in the dry season. Average arsenic concentrations in local water drinking were 2-4 times times the national average. All of the local groundwater samples exceeded the Bangladesh guidance for SpC, although the majority of residents surveyed did not perceive their water as having a 'bad' or 'salty' taste. PMID:27277537

  2. Drinking water insecurity: water quality and access in coastal south-western Bangladesh.

    PubMed

    Benneyworth, Laura; Gilligan, Jonathan; Ayers, John C; Goodbred, Steven; George, Gregory; Carrico, Amanda; Karim, Md Rezaul; Akter, Farjana; Fry, David; Donato, Katherine; Piya, Bhumika

    2016-01-01

    National drinking water assessments for Bangladesh do not reflect local variability, or temporal differences. This paper reports on the findings of an interdisciplinary investigation of drinking water insecurity in a rural coastal south-western Bangladesh. Drinking water quality is assessed by comparison of locally measured concentrations to national levels and water quality criteria; resident's access to potable water and their perceptions are based on local social surveys. Residents in the study area use groundwater far less than the national average; salinity and local rainwater scarcity necessitates the use of multiple water sources throughout the year. Groundwater concentrations of arsenic and specific conductivity (SpC) were greater than surface water (pond) concentrations; there was no statistically significant seasonal difference in mean concentrations in groundwater, but there was for ponds, with arsenic higher in the dry season. Average arsenic concentrations in local water drinking were 2-4 times times the national average. All of the local groundwater samples exceeded the Bangladesh guidance for SpC, although the majority of residents surveyed did not perceive their water as having a 'bad' or 'salty' taste.

  3. Water sources and water-use efficiency in mediterranean coastal dune vegetation.

    PubMed

    Alessio, G A; De Lillis, M; Brugnoli, E; Lauteri, M

    2004-05-01

    In coastal environments plants have to cope with various water sources: rainwater, water table, seawater, and mixtures. These are usually characterized by different isotopic signatures ( (18)O/ (16)O and D/H ratios). Xylem water reflects the isotopic compositions of the water sources. Additionally, water-use efficiency (WUE) can be assessed with carbon isotope discrimination (Delta) analyses. Gas exchange, Delta of leaf dry matter, and isotopic composition (delta (18)O) of xylem water were measured from June to August 2001 in herbaceous perennials of mobile dunes (Ammophila littoralis, Elymus farctus) and sclerophyllous shrubs and climbers (Arbutus unedo, Pistacia lentiscus, Phillyrea angustifolia, Qercus ilex, Juniperus oxycedrus, Smilax aspera) of consolidated dunes. Assimilation rates were rather low and did not show clear seasonal patterns, possibly due to limited precipitation and generally low values of stomatal conductance. The lowest values were shown in S. aspera. Different physiological patterns were found, on the basis of delta (18)O and Delta analyses. Values of delta (18)O of xylem water of phanerophytes were remarkably constant and matched those of the water table, indicating dependence on a reliable water source; values of Delta were relatively high, indicating low intrinsic WUE, with the exception of J. oxycedrus. Surprisingly, very high delta (18)O values were found for the xylem water from S. aspera in August. This suggests retrodiffusion of leaf water to xylem sap in the stem or direct uptake of water by leaves or stems, owing to dew or fog occurrence. Low Delta values indicated high WUE in S. aspera. Contrasting strategies were shown by the species of mobile dunes: E. farctus relied on superficial water and exhibited low WUE, accordingly to its therophyte-like vegetative cycle; on the contrary, A. littoralis used deeper water sources, showing higher WUE in relation to its long-lasting vegetative habit. PMID:15143444

  4. Use of SeaWiFS, MODIS, and MERIS in developing water quality numeric criteria for Florida’s coastal waters

    EPA Science Inventory

    Human activities on land often increase nutrient loads to coastal waters and may cause increased phytoplankton production, algal biomass, and eutrophication. The U. S. Environmental Protection Agency determined that numeric criteria were necessary to protect Florida's coastal wa...

  5. The spectral signature analysis of inland and coastal water bodies acquired from field spectroradiometric measurements

    NASA Astrophysics Data System (ADS)

    Papoutsa, Christiana; Akylas, Evangelos; Hadjimitsis, Diofantos

    2013-08-01

    The main goal of this research is to examine the optical properties of different water bodies such as coastal water; oligotrophic and eutrophic inland water by observing their spectral signatures. Spectral profiles of sampling points, which correspond to water bodies with different water quality characteristics, are extracted and analyzed. Field spectroscopy is a very important tool giving critical information for the comprehension of spectral signatures of different water bodies. Field spectroradiometric measurements can assist to improve or develop new algorithms and methodology enables to classify several water bodies according to their water quality characteristics using remotely sensed data. Field spectroradiometric data presented at this study were obtained for inland water in Asprokremmos Dam, Paphos District/Cyprus; in Larnaca's Salt Lake, Larnaca District/Cyprus; and in Karla Lake, Volos District/Greece and for coastal water in Zugi-Vasilikos-Old Harbour, Limassol District/Cyprus.

  6. Techniques for Producing Coastal Land Water Masks from Landsat and Other Multispectral Satellite Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hall, Callie

    2005-01-01

    Coastal erosion and land loss continue to threaten many areas in the United States. Landsat data has been used to monitor regional coastal change since the 1970s. Many techniques can be used to produce coastal land water masks, including image classification and density slicing of individual bands or of band ratios. Band ratios used in land water detection include several variations of the Normalized Difference Water Index (NDWI). This poster discusses a study that compares land water masks computed from unsupervised Landsat image classification with masks from density-sliced band ratios and from the Landsat TM band 5. The greater New Orleans area is employed in this study, due to its abundance of coastal habitats and its vulnerability to coastal land loss. Image classification produced the best results based on visual comparison to higher resolution satellite and aerial image displays. However, density sliced NDWI imagery from either near infrared (NIR) and blue bands or from NIR and green bands also produced more effective land water masks than imagery from the density-sliced Landsat TM band 5. NDWI based on NIR and green bands is noteworthy because it allows land water masks to be generated from multispectral satellite sensors without a blue band (e.g., ASTER and Landsat MSS). NDWI techniques also have potential for producing land water masks from coarser scaled satellite data, such as MODIS.

  7. Techniques for Producing Coastal Land Water Masks from Landsat and Other Multispectral Satellite Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joe; Hall, Callie

    2005-01-01

    Coastal erosion and land loss continue to threaten many areas in the United States. Landsat data has been used to monitor regional coastal change since the 1970's. Many techniques can be used to produce coastal land water masks, including image classification and density slicing of individual bands or of band ratios. Band ratios used in land water detection include several variations of the Normalized Difference Water Index (NDWI). This poster discusses a study that compares land water masks computed from unsupervised Landsat image classification with masks from density-sliced band ratios and from the Landsat TM band 5. The greater New Orleans area is imployed in this study, due to its abundance of coastal habitats and ist vulnerability to coastal land loss. Image classification produced the best results based on visual comparison to higher resolution satellite and aerial image displays. However, density-sliced NDWI imagery from either near infrared (NIR) and blue bands or from NIR and green bands also produced more effective land water masks than imagery from the density-sliced Landsat TM band 5. NDWI based on NIR and green bands is noteworthy because it allows land water masks to be generated form multispectral satellite sensors without a blue band (e.g., ASTER and Landsat MSS). NDWI techniques also have potential for producing land water masks from coarser scaled satellite data, such as MODIS.

  8. The influence of submarine groundwater discharge on greenhouse gas evasion from coastal waters (Invited)

    NASA Astrophysics Data System (ADS)

    Santos, I. R.

    2013-12-01

    Coastal waters are thought to play a major role on global carbon budgets but we still lack a quantitative understanding about some mechanisms driving greenhouse gas cycling in coastal waters. Very little is known about the role of submarine groundwater discharge (SGD) in delivering carbon to rivers, estuaries and coastal waters even though the concentrations of most carbon species in groundwater are often much higher than those in surface waters. I hypothesize that SGD plays a significant role in coastal carbon and greenhouse gas budgets even if the volumetric SGD contribution is small. I will report new, detailed observations of radon (a natural groundwater tracer) and carbon dioxide and methane concentrations and stable isotopes in tidal rivers, estuaries, coastal wetlands, mangroves and coral reef lagoons. Groundwater exchange at these contrasting sites was driven by a wide range of processes, including terrestrial hydraulic gradients, tidal pumping, and convection. In all systems, SGD was an important source of carbon dioxide, DIC, and methane to surface waters. In some cases, groundwater seepage alone could account for 100% of carbon dioxide evasion from surface waters to the atmosphere. Combining high precision in situ radon and greenhouse gas concentration and stable isotope observations allows for an effective, unambiguous assessment of how groundwater seepage drives carbon dynamics in surface waters.

  9. Modeling of Dense Water Production and Salt Transport from Alaskan Coastal Polynyas

    NASA Technical Reports Server (NTRS)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2000-01-01

    The main significance of this paper is that a realistic, three-dimensional, high-resolution primitive equation model has been developed to study the effects of dense water formation in Arctic coastal polynyas. The model includes realistic ambient stratification, realistic bottom topography, and is forced by time-variant surface heat flux, surface salt flux, and time-dependent coastal flow. The salt and heat fluxes, and the surface ice drift, are derived from satellite observations (SSM/I and NSCAT sensors). The model is used to study the stratification, salt transport, and circulation in the vicinity of Barrow Canyon during the 1996/97 winter season. The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model using the wind-transport regression. The results show that for the 1996/97 winter the northeastward coastal current exports 13% to 26% of the salt produced by coastal polynyas upstream of Barrow Canyon in 20 to 30 days. The salt export occurs more rapidly during less persistent polynyas. The inclusion of ice-water stress in the model makes the coastal current slightly weaker and much wider due to the combined effects of surface drag and offshore Ekman transport.

  10. [Analysis on characteristics of red tide in Fujian coastal waters during the last 10 years].

    PubMed

    Li, Xue-Ding

    2012-07-01

    There were 161 red tide events collected during the last 10 years from 2001 to 2010 in Fujian coastal waters. Comprehensive analysis was performed using statistical methods and the results indicated the following characteristics of the temporal and spatial distribution of red tide in Fujian coastal waters: (1) Outbreaks of red tide often occurred between April and September, and the peak period was in May and June. Most red tide events lasted for 2 to 4 days, and the affected area was below 50 square kilometers. The first outbreak of red tide tended to occur earlier in recent years, and the lasting time became longer. (2) There were 20 species of organisms causing the red tides in Fujian coastal waters, among which 10 species were Bacillariophyta, 9 species were Dinophyta and 1 species was Protozoa. Prorocentrum donghaiense was the most frequent cause of red tides, followed by Noctiluca scintillans, Skeletonema costatum and Chaetoceros sp.. The species caused red tides obeyed the succession law and there were always new species involved. (2) In terms of spatial distribution, outbreaks of red tides mainly occurred in the coastal waters of Ningde, Fuzhou and Xiamen. The species causing red tides were Prorocentrum donghaiense and Noctiluca in the coastal waters in the north of Pingtan, Fujian Province, Skeletonema costatum and Chaetoceros in the coastal waters in the south of Pingtan, Fujian Province. The comprehensive analysis of the characteristics of red tides during the last 10 years is expected to provide scientific and reasonable basis for the prevention, reduction and forecast of red tides in Fujian coastal waters.

  11. [Analysis on characteristics of red tide in Fujian coastal waters during the last 10 years].

    PubMed

    Li, Xue-Ding

    2012-07-01

    There were 161 red tide events collected during the last 10 years from 2001 to 2010 in Fujian coastal waters. Comprehensive analysis was performed using statistical methods and the results indicated the following characteristics of the temporal and spatial distribution of red tide in Fujian coastal waters: (1) Outbreaks of red tide often occurred between April and September, and the peak period was in May and June. Most red tide events lasted for 2 to 4 days, and the affected area was below 50 square kilometers. The first outbreak of red tide tended to occur earlier in recent years, and the lasting time became longer. (2) There were 20 species of organisms causing the red tides in Fujian coastal waters, among which 10 species were Bacillariophyta, 9 species were Dinophyta and 1 species was Protozoa. Prorocentrum donghaiense was the most frequent cause of red tides, followed by Noctiluca scintillans, Skeletonema costatum and Chaetoceros sp.. The species caused red tides obeyed the succession law and there were always new species involved. (2) In terms of spatial distribution, outbreaks of red tides mainly occurred in the coastal waters of Ningde, Fuzhou and Xiamen. The species causing red tides were Prorocentrum donghaiense and Noctiluca in the coastal waters in the north of Pingtan, Fujian Province, Skeletonema costatum and Chaetoceros in the coastal waters in the south of Pingtan, Fujian Province. The comprehensive analysis of the characteristics of red tides during the last 10 years is expected to provide scientific and reasonable basis for the prevention, reduction and forecast of red tides in Fujian coastal waters. PMID:23002593

  12. Layered analytical radiative transfer model for simulating water color of coastal waters and algorithm development

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.; Huddleston, Lisa H.

    2000-12-01

    A remote sensing reflectance model, which describes the transfer of irradiant light within a homogeneous water column has previously been used to simulate the nadir viewing reflectance just above or below the water surface by Bostater, et al. Wavelength dependent features in the water surface reflectance depend upon the nature of the down welling irradiance, bottom reflectance and the water absorption and backscatter coefficients. The latter are very important coefficients, and depend upon the constituents in water and both vary as a function of the water depth and wavelength in actual water bodies. This paper describes a preliminary approach for the analytical solution of the radiative transfer equations in a two-stream representation of the irradiance field with variable coefficients due to the depth dependent water concentrations of substances such as chlorophyl pigments, dissolved organic matter and suspended particulate matter. The analytical model formulation makes use of analytically based solutions to the 2-flow equations. However, in this paper we describe the use of the unique Cauchy boundary conditions previously used, along with a matrix solution to allow for the prediction of the synthetic water surface reflectance signatures within a nonhomogeneous medium. Observed reflectance signatures as well as model derived 'synthetic signatures' are processed using efficient algorithms which demonstrate the error induced using the layered matrix approach is much less than 1 percent when compared to the analytical homogeneous water column solution. The influence of vertical gradients of water constituents may be extremely important in remote sensing of coastal water constituents as well as in remote sensing of submerged targets and different bottom types such as corals, sea grasses and sand.

  13. Coastal waters environmental monitoring supported by river basin pluviometry and offshore wave data.

    PubMed

    Abramic, Andrej; Martínez-Alzamora, Nieves; González del Rio Rams, Julio; Ferrer Polo, José

    2015-03-15

    Environmental monitoring in the scope of the Water Framework Directive 2000/60/EC (WFD) is usually expensive and requires considerable human effort. In this study, we analyzed data obtained by a WFD coastal waters monitoring network over a three-year period (35 campaigns), with the aim to ascertain is it possible to increase the monitoring efficiency and obtain more accurate results. As the trophic condition of the coastal waters of Valencia is primarily, but not entirely, determined by continental loads and hydrodynamic conditions, additionally we analyzed related river basin pluviometry (daily frequency) and oceanographic (one hour frequency) data. Chlorophyll a, salinity, rain and wave data time series were analyzed separately, to identify any possible pattern. Analyzing coastal water bodies integrating all four parameters, it is found strong interactions between coastal waters trophic conditions, sea hydrodynamics and related basin pluviometry. Eight phytoplankton biomass scenarios associated to environmental conditions are identified and finally developed basis for a new efficient monitoring strategy and more accurate coastal waters assessment.

  14. Acidification of subsurface coastal waters enhanced by eutrophication

    EPA Science Inventory

    Uptake of fossil-fuel carbon dioxide (CO2) from the atmosphere has acidified the surface ocean by ~0.1 pH units and driven down the carbonate saturation state. Ocean acidification is a threat to marine ecosystems and may alter key biogeochemical cycles. Coastal oceans have also b...

  15. Coastal groundwater/surface-water interactions: a Great Lakes case study

    USGS Publications Warehouse

    Neff, Brian P.; Haack, Sheridan K.; Rosenberry, Donald O.; Savino, Jacqueline F.; Lundstrom, Scott C.

    2006-01-01

    Key similarities exist between marine and Great Lakes coastal environments. Water and nutrient fluxes across lakebeds in the Great Lakes are influenced by seiche and wind set-up and set-down, analogous to tidal influence in marine settings. Groundwater/surface-water interactions also commonly involve a saline-fresh water interface, although in the Great-Lakes cases, it is groundwater that is commonly saline and surface water that is fresh. Evapotranspiration also affects nearshore hydrology in both settings. Interactions between groundwater and surface water have recently been identified as an important component of ecological processes in the Great Lakes. Water withdrawals and the reversal of the groundwater/surface water seepage gradient are also common to many coastal areas around the Great Lakes. As compared to surface water, regional groundwater that discharges to western Lake Erie from Michigan is highly mineralized. Studies conducted by the U.S. Geological Survey at Erie State Game Area in southeastern Michigan, describe groundwater flow dynamics and chemistry, shallow lake-water chemistry, and fish and invertebrate communities. Results presented here provide an overview of recent progress of ongoing interdisciplinary studies of Great Lakes nearshore systems and describe a conceptual model that identifies relations among geologic, hydrologic, chemical, and biological processes in the coastal habitats of Lake Erie. This conceptual model is based on analysis of hydraulic head in piezometers at the study site and chemical analysis of deep and shallow coastal groundwater.

  16. Use of optical scattering to discriminate particle types in coastal waters.

    PubMed

    Sullivan, James M; Twardowski, Michael S; Donaghay, Percy L; Freeman, Scott A

    2005-03-20

    The particulate scattering characteristics of coastal waters were examined at nine locations around the United States, including near-shore sites in the Gulf of Mexico and the Atlantic and Pacific oceans. The scattering measurements were used in conjunction with inversion models to estimate particle size distributions and bulk refractive indices of the suspended particles. The relationships between various scattering properties and chlorophyll concentration were also investigated and compared with previous relationships described for case I waters. Although the general patterns of scattering and particle characteristics in coastal waters were fairly consistent, fine-scale variability within the water column was substantial. Combining optical measurements with inversion techniques provided a more informative view of the environment and a better understanding of the nature of particle populations in the coastal ocean.

  17. Evaluating Radiometric Sensitivity of LandSat 8 Over Coastal-Inland Waters

    NASA Technical Reports Server (NTRS)

    Pahlevan, Nima; Wei, Jian-Wei; Shaaf, Crystal B.; Schott, John R.

    2014-01-01

    The operational Land Imager (OLI) aboard Landsat 8 was launched in February 2013 to continue the Landsat's mission of monitoring earth resources at relatively high spatial resolution. Compared to Landsat heritage sensors, OLI has an additional 443-nm band (termed coastal/aerosol (CA) band), which extends its potential for mapping/monitoring water quality in coastal/inland waters. In addition, OLI's pushbroom design allows for longer integration time and, as a result, higher signal-to-noise ratio (SNR). Using a series of radiative transfer simulations, we provide insights into the radiometric sensitivity of OLI when studying coastal/inland waters. This will address how the changes in water constituents manifest at top-of-atmosphere (TOA) and whether the changes are resolvable at TOA (focal plane) relative to OLI's overall noise.

  18. Floating marine debris in coastal waters of the SE-Pacific (Chile).

    PubMed

    Thiel, M; Hinojosa, I; Vásquez, N; Macaya, E

    2003-02-01

    Herein we report on the abundance and composition of floating marine debris (FMD) in coastal waters of the SE-Pacific (off the Chilean coast) during the austral summer 2002. The observed FMD consisted mainly of plastic material (86.9%). Densities of FMD were highest between 20 degrees S and 40 degrees S, corresponding to the main concentrations of human population and activities. Low densities of FMD were found in the south between 40 degrees S and 50 degrees S (<1 item km(-2)). Generally, the highest densities were recorded in nearshore waters of major port cities (>20 items km(-2)), but occasionally high concentrations of debris were also found 50 km offshore. Densities of FMD in coastal waters of the SE-Pacific are of similar magnitudes as those found in coastal waters or inland seas of highly populated regions in the northern hemisphere, indicating the need for improved regulation and legislation in the countries of the SE-Pacific.

  19. Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2011-12-01

    We report here some efforts and results in studying the imbalance in groundwater-surface water interactions and processes of groundwater-surface water interactions and groundwater flooding creating hazards in the coastal zones. Hazards, hydrological and geophysical risk analysis related to imbalance in groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of significance of imbalance in groundwater-surface water interactions. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models, and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health. In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction under conditions of imbalance in groundwater-surface water interactions. This paper proposes consideration of two case studies which are important and significant for future understanding of a concept of imbalance in groundwater-surface water interactions and development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone. It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due

  20. The impact of mariculture on nutrient dynamics and identification of the nitrate sources in coastal waters.

    PubMed

    Kang, Pingping; Xu, Shiguo

    2016-01-01

    Reclamation along coastal zones is a method that has been used to relieve the problems of strained resources and land. Aquaculture, as one of the major man-made activities in reclamation areas, has an environmental impact on coastal waters. The effluents from aquaculture ponds are known to enrich the levels of nutrients such as nitrogen and phosphate. The goals of the present study are to evaluate the environmental impact of mariculture on coastal waters in the east coast of Laizhou Bay, China, and to identify the nitrate sources. Monitoring the concentrations of dissolved nitrogen and phosphate was used to assess their impact on the water quality of coastal waters. A dual isotope (δ(15)N-NO3(-) and δ(18)O-NO3(-)) approach was used to identify the nitrate sources. Higher dissolved nitrogen concentrations (NH4(+) and NO3(-)) than PO4(3-) concentrations associated with enriched δ(15)N-NO3(-) values were observed in the drainage channels, sea cucumber ponds, and groundwater, which indicated that aquaculture activity has more influence on nitrogen nutrients than on phosphate nutrients. In this coastal area with seawater intrusion, nitrogen released from sea cucumber ponds accumulated in nearshore water and migrated in the offshore direction in groundwater currents. This behavior results in nitrogen enrichment in groundwater within the hinterland. Isotopic data indicate that mixing of multiple nitrate sources exists in groundwater, and nitrogen from mariculture is the main source.

  1. The impact of mariculture on nutrient dynamics and identification of the nitrate sources in coastal waters.

    PubMed

    Kang, Pingping; Xu, Shiguo

    2016-01-01

    Reclamation along coastal zones is a method that has been used to relieve the problems of strained resources and land. Aquaculture, as one of the major man-made activities in reclamation areas, has an environmental impact on coastal waters. The effluents from aquaculture ponds are known to enrich the levels of nutrients such as nitrogen and phosphate. The goals of the present study are to evaluate the environmental impact of mariculture on coastal waters in the east coast of Laizhou Bay, China, and to identify the nitrate sources. Monitoring the concentrations of dissolved nitrogen and phosphate was used to assess their impact on the water quality of coastal waters. A dual isotope (δ(15)N-NO3(-) and δ(18)O-NO3(-)) approach was used to identify the nitrate sources. Higher dissolved nitrogen concentrations (NH4(+) and NO3(-)) than PO4(3-) concentrations associated with enriched δ(15)N-NO3(-) values were observed in the drainage channels, sea cucumber ponds, and groundwater, which indicated that aquaculture activity has more influence on nitrogen nutrients than on phosphate nutrients. In this coastal area with seawater intrusion, nitrogen released from sea cucumber ponds accumulated in nearshore water and migrated in the offshore direction in groundwater currents. This behavior results in nitrogen enrichment in groundwater within the hinterland. Isotopic data indicate that mixing of multiple nitrate sources exists in groundwater, and nitrogen from mariculture is the main source. PMID:26358214

  2. Organic micropollutants in coastal waters from NW Mediterranean Sea: sources distribution and potential risk.

    PubMed

    Sánchez-Avila, Juan; Tauler, Romà; Lacorte, Silvia

    2012-10-01

    This study provides a first estimation on the sources, distribution and risk of organic micropollutants (OMPs) in coastal waters from NW Mediterranean Sea. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorinated pesticides, polybrominated diphenyl ethers, phthalates and alkylphenols were analyzed by solid phase extraction and gas chromatography coupled to tandem mass spectrometry (SPE-GC-EI-MS/MS). River waters and wastewater treatment plant effluents discharging to the sea were identified as the main sources of OMPs to coastal waters, with an estimated input amount of around of 25,800 g d(-1). The concentration of ΣOMPs in coastal areas ranged from 17.4 to 8442 ng L(-1), and was the highest in port waters, followed by coastal and river mouth seawaters. A summarized overview of the patterns and sources of OMP contamination on the investigated coastal sea waters of NW Mediterranean Sea, as well as of their geographical distribution was obtained by Principal Component Analysis of the complete data set after its adequate pretreatment. Alkylphenols, bisphenol A and phthalates were the main contributors to ΣOMPs and produced an estimated significant pollution risk for fish, algae and the sensitive mysid shrimp organisms in seawater samples. The combination of GC-MS/MS, chemometrics and risk analysis is proven to be useful for a better control and management of OMP discharges. PMID:22706016

  3. Remote sensing for water quality and biological measurements in coastal waters

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Harriss, R. C.

    1980-01-01

    Recent remote sensing experiments in the United States' coastal waters indicate that certain biological and water quality parameters have distinctive spectral characteristics. Data outputs from remote sensors, to date, include: (1) high resolution measurements to determine concentrations and distributions of total suspended particulates, temperature, salinity, chlorophyll a, and phytoplankton color group associations from airborne and/or satellite platforms, and (2) low resolution measurements of total suspended solids, temperature, ocean color, and possibly chlorophyll from satellite platforms. A summary of platforms, sensors and parameters measured is given. Remote sensing, especially when combined with conventional oceanographic research methods, can be useful in such high priority research areas as estuarine and continental shelf sediment transport dynamics, transport and fate of marine pollutants, marine phytoplankton dynamics, and ocean fronts.

  4. Monitoring Dissolved Oxygen in New Jersey Coastal Waters Using Autonomous Gliders

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  5. Spatial and Temporal Monitoring of Dissolved Oxygen (DO) in New Jersey Coastal Waters Using Autonomous Gliders

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  6. Spatial and Temporal Monitoring of Dissolved Oxygen in NJ Coastal Waters using AUVs (Presentation)

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  7. DEVELOPING A MULTI-AGENCY 305(B) MONITORING PROGRAM FOR THE COASTAL WATERS OF ALABAMA

    EPA Science Inventory

    Proceedings of the National Water Quality Monitoring Conference "Monitoring Critical Foundations to Protect Our Waters," 7-9 July 1998, Reno, NV.

    With the ability of many federal agencies to maintain long-term coastal monitoring in jeopardy due to shrinking budgets, many s...

  8. Estimating Chlorophyll Conditions in Southern New England Coastal Waters from Hyperspectral Aircraft Remote Sensing

    EPA Science Inventory

    Chlorophyll a (chl a) is commonly measured in water quality monitoring programs for coastal and freshwater systems. The concentration of chl a, when evaluated with other condition indicators such as water clarity and dissolved oxygen concentrations, provides information on the en...

  9. Bark water uptake promotes localized hydraulic recovery in coastal redwood crown

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coastal redwood (Sequoia sempervirens), the world’s tallest tree species, rehydrates leaves via foliar water uptake during fog/rain events. Here we examine if bark also permits water uptake in redwood branches, along with potential flow mechanisms and biological significance. Using isotopic labeling...

  10. The Uncertainty of Coastal Water Colour Products of S3: Implications for Scientific Applications and Monitoring

    NASA Astrophysics Data System (ADS)

    Doerffer, Roland; Brockmann, Carsten; Krasemann, Hajo; Muller, Dagmar

    2015-12-01

    This paper presents neural network based procedures to identify reflectance spectra, which are out of scope of the retrieval algorithm, and to determine uncertainties of OLCI products of optically complex coastal waters. It discusses the limited information content of reflectance spectra and presents examples how to improve the utilisation of these products by indicating their limitations and uncertainties for different types of waters.

  11. Application of Hyperspectral Remote Sensing Techniques to Evaluate Water Quality in Turbid Coastal Waters of South Carolina.

    NASA Astrophysics Data System (ADS)

    Ali, K. A.; Ryan, K.

    2014-12-01

    Coastal and inland waters represent a diverse set of resources that support natural habitat and provide valuable ecosystem services to the human population. Conventional techniques to monitor water quality using in situ sensors and laboratory analysis of water samples can be very time- and cost-intensive. Alternatively, remote sensing techniques offer better spatial coverage and temporal resolution to accurately characterize the dynamic and unique water quality parameters. Existing remote sensing ocean color products, such as the water quality proxy chlorophyll-a, are based on ocean derived bio-optical models that are primarily calibrated in Case 1 type waters. These traditional models fail to work when applied in turbid (Case 2 type), coastal waters due to spectral interference from other associated color producing agents such as colored dissolved organic matter and suspended sediments. In this work, we introduce a novel technique for the predictive modeling of chlorophyll-a using a multivariate-based approach applied to in situ hyperspectral radiometric data collected from the coastal waters of Long Bay, South Carolina. This method uses a partial least-squares regression model to identify prominent wavelengths that are more sensitive to chlorophyll-a relative to other associated color-producing agents. The new model was able to explain 80% of the observed chlorophyll-a variability in Long Bay with RMSE = 2.03 μg/L. This approach capitalizes on the spectral advantage gained from current and future hyperspectral sensors, thus providing a more robust predicting model. This enhanced mode of water quality monitoring in marine environments will provide insight to point-sources and problem areas that may contribute to a decline in water quality. The utility of this tool is in its versatility to a diverse set of coastal waters and its use by coastal and fisheries managers with regard to recreation, regulation, economic and public health purposes.

  12. Wastewater discharge degrades coastal waters and reef communities in southern Thailand.

    PubMed

    Reopanichkul, Pasinee; Carter, R W; Worachananant, Suchai; Crossland, C J

    2010-06-01

    Runoff and sewage discharge from land developments can cause significant changes in water quality of coastal waters, resulting in coral degradation. Coastal waters around Phuket, Thailand are influenced by numerous sewage outfalls associated with rapid tourism development. Water quality and biological monitoring around the Phuket region was undertaken to quantify water quality and biotic characteristics at various distances from sewage outfalls. The surveys revealed strong gradients in water quality and biotic characteristics associated with tourism concentration levels as well as seasonal variability. Water and reef quality tended to decrease with increasing tourist intensity, but improved with increasing distance from sewage discharge within each of the three study locations. In addition, the effect of wastewater discharge was not localised around the source of pollution, but appeared to be transported to non-developed sites by currents, and exacerbated in the wet season.

  13. Factors Affecting Nitrate Delivery to Streams from Shallow Ground Water in the North Carolina Coastal Plain

    USGS Publications Warehouse

    Harden, Stephen L.; Spruill, Timothy B.

    2008-01-01

    An analysis of data collected at five flow-path study sites between 1997 and 2006 was performed to identify the factors needed to formulate a comprehensive program, with a focus on nitrogen, for protecting ground water and surface water in the North Carolina Coastal Plain. Water-quality protection in the Coastal Plain requires the identification of factors that affect the transport of nutrients from recharge areas to streams through the shallow ground-water system. Some basins process or retain nitrogen more readily than others, and the factors that affect nitrogen processing and retention were the focus of this investigation to improve nutrient management in Coastal Plain streams and to reduce nutrient loads to coastal waters. Nitrate reduction in ground water was observed at all five flow-path study sites in the North Carolina Coastal Plain, although the extent of reduction at each site was influenced by various environmental, hydrogeologic, and geochemical factors. Denitrification was the most common factor responsible for decreases in nitrate along the ground-water flow paths. Specific factors, some of which affect denitrification rates, that appeared to influence ground-water nitrate concentrations along the flow paths or in the streams include soil drainage, presence or absence of riparian buffers, evapotranspiration, fertilizer use, ground-water recharge rates and residence times, aquifer properties, subsurface tile drainage, sources and amounts of organic matter, and hyporheic processes. The study data indicate that the nitrate-reducing capacity of the buffer zone combined with that of the hyporheic zone can substantially lower the amount of ground-water nitrate discharged to streams in agricultural settings of the North Carolina Coastal Plain. At the watershed scale, the effects of ground-water discharge on surface-water quality appear to be greatly influenced by streamflow conditions and the presence of extensive riparian vegetation. Streamflow statistics

  14. Downstream and coastal impacts of damming and water abstraction in Africa.

    PubMed

    Snoussi, Maria; Kitheka, Johnson; Shaghude, Yohanna; Kane, Alioune; Arthurton, Russell; Le Tissier, Martin; Virji, Hassan

    2007-05-01

    Anthropogenic factors associated with damming and water abstraction, and the resultant environmental pressures, are reviewed in six African river catchments using records and forecasts of climatic, demographic, and land-use change. Changes in the states of the flow regime through catchment drainage systems to the coastal sea are considered in conjunction with climate change and other human-induced pressures. The impacts of these changes on downstream and coastal environments and their communities are described in past, present, and future perspectives. Linkages between the issues and the pressures of damming and water abstraction are appraised and scientific, policy, and management responses proposed aimed at remedying existing and perceived future negative impacts. The study proposes that there is a need to integrate catchment and coastal management to account for the whole water flow regime together with its human dimensions. Management priorities relating to the operation of existing damming and abstraction schemes and planning of future schemes include the following: consideration of ways in which water discharges could be adjusted to provide improvements in downstream and coastal environmental and socioeconomic conditions; addressing the problem of sediment trapping impacting on the sustainability of dam reservoirs; and assessment of downstream and coastal impacts of future schemes in the light of climate change forecasts.

  15. Effects of a coastal golf complex on water quality, periphyton, and seagrass

    USGS Publications Warehouse

    Lewis, M.A.; Boustany, R.G.; Dantin, D.D.; Quarles, R.L.; Moore, J.C.; Stanley, R.S.

    2002-01-01

    The objective of this study was to provide baseline information on the effects of a golf course complex on water quality, colonized periphyton, and seagrass meadows in adjacent freshwater, near-coastal, and wetland areas. The chemical and biological impacts of the recreational facility, which uses reclaimed municipal wastewater for irrigation, were limited usually to near-field areas and decreased seaward during the 2-year study. Concentrations of chromium, copper, and organochlorine pesticides were below detection in surface water, whereas mercury, lead, arsenic, and atrazine commonly occurred at all locations. Only mercury and lead exceeded water quality criteria. Concentrations of nutrients and chlorophyll a were greater in fairway ponds and some adjacent coastal areas relative to reference locations and Florida estuaries. Periphyton ash free dry weight and pigment concentrations statistically differed but not between reference and non-reference coastal areas. Biomass of Thalassia testudinum (turtle grass) was approximately 43% less in a meadow located adjacent to the golf complex (P < 0.05). The results of the study suggest that the effects of coastal golf courses on water quality may be primarily localized and limited to peripheral near-coastal areas. However, this preliminary conclusion needs additional supporting data. ?? 2002 Elsevier Science (USA).

  16. Effects of a coastal golf complex on water quality, periphyton, and seagrass.

    PubMed

    Lewis, Michael A; Boustany, Ronald G; Dantin, Darrin D; Quarles, Robert L; Moore, James C; Stanley, Roman S

    2002-09-01

    The objective of this study was to provide baseline information on the effects of a golf course complex on water quality, colonized periphyton, and seagrass meadows in adjacent freshwater, near-coastal, and wetland areas. The chemical and biological impacts of the recreational facility, which uses reclaimed municipal wastewater for irrigation, were limited usually to near-field areas and decreased seaward during the 2-year study. Concentrations of chromium, copper, and organochlorine pesticides were below detection in surface water, whereas mercury, lead, arsenic, and atrazine commonly occurred at all locations. Only mercury and lead exceeded water quality criteria. Concentrations of nutrients and chlorophyll a were greater in fairway ponds and some adjacent coastal areas relative to reference locations and Florida estuaries. Periphyton ash free dry weight and pigment concentrations statistically differed but not between reference and non-reference coastal areas. Biomass of Thalassia testudinum (turtle grass) was approximately 43% less in a meadow located adjacent to the golf complex (P < 0.05). The results of the study suggest that the effects of coastal golf courses on water quality may be primarily localized and limited to peripheral near-coastal areas. However, this preliminary conclusion needs additional supporting data.

  17. Ground-water discharge and nitrate loadings to the coastal bays of Maryland

    USGS Publications Warehouse

    Dillow, Jonathan J.A.; Greene, Earl A.

    1999-01-01

    Nitrate in ground water discharged to the Atlantic coastal bays of Maryland enhances the growth of phytoplankton and algae in the bays, which in turn contributes to the process of eutrophication (changes in a body of water as nutrients and sediments accumulate), which is one of the principal environmental problems in the bays. Information on nitrate loading to the bays has been identified as a major data gap by State and Federal resource managers. This report presents results of a study to estimate ground-water discharge and potential nitrate loads to the coastal bays of Maryland, which include Chincoteague, Newport, Sinepuxent, Isle of Wight, and Assawoman Bays. The nitrate load from the discharge of ground water to the coastal bays is dependent on the concentration of nitrate in the water and the volume of ground water being discharged. Data from 388 wells completed in the surficial aquifer that discharges to the bays were used to construct a map of the distribution of nitrate concentration in the ground water. On the basis of those data, and on several simplifying assumptions, the potential nitrate load to the coastal bays from direct discharge of ground water was estimated to be 272,000 pounds of nitrate per year, distributed throughout the 108-square-mile surface area of the bays. Nitrate from ground water can also enter the coastal bays by way of base flow to streams that discharge to the bays. The potential nitrate load to the bays from the base flow of streams was estimated to be 862,000 pounds per year, assuming that the concentration of nitrate in stream base flow is 3.2 milligrams per liter, which is the median concentration of nitrate in ground water in the study area.

  18. Strategic assessment of near coastal waters: Northeast case study. Interim draft report

    SciTech Connect

    Not Available

    1987-11-01

    The report is an interim draft of a forthcoming case study of coastal and estuarine data for 17 estuaries of the Northeast USA. It illustrates the progress made toward completion of the final report. Most of the information presented is compiled from data bases developed by NOAA's continuing program of strategic assessments, including its National Coastal Pollutant Discharge Inventory, National Coastal Wetlands Inventory, and Public Outdoor Recreational Facilities Inventory. Data are compiled and organized into 7 sections: (1) physical and hydrologic characteristics; (2) land use and population; (3) nutrient discharges to estuaries; (4) classified shellfish waters; (5) toxic discharges to estuaries and hazardous waste disposal sites; (6) coastal wetlands; and (7) public outdoor recreation facilities. The fifth section has been completed to illustrate the approximate scale and scope of the information content and discussion that will be presented for each theme in the final report.

  19. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences

    NASA Astrophysics Data System (ADS)

    Justić, Dubravko; Rabalais, Nancy N.; Turner, R. Eugene; Dortch, Quay

    We present an analysis of extensive nutrient data sets from two river-dominated coastal ecosystems, the northern Adriatic Sea and the northern Gulf of Mexico, demonstrating significant changes in surface nutrient ratios over a period of 30 years. The silicon:nitrogen ratios have decreased, indicating increased potential for silicon limitation. The nitrogen:phosphorus and the silicon:phosphorus ratios have also changed substantially, and the coastal nutrient structures have become more balanced and potentially less limiting for phytoplankton growth. It is likely that net phytoplankton productivity increased under these conditions and was accompanied by increasing bottom water hypoxia and major changes in community species composition. These findings support the hypothesis that increasing coastal eutrophication to date may be associated with stoichiometric nutrient balance, due to increasing potential for silicon limitation and decreasing potential for nitrogen and phosphorus limitation. On a worldwide basis, coastal ecosystems adjacent to rivers influenced by anthropogenic nutrient loads may experience similar alterations.

  20. Recent Advances in Understanding the Sources of Methylmercury to Coastal Waters

    NASA Astrophysics Data System (ADS)

    Mason, R. P.; Balcom, P.; Chen, C.; Gosnell, K. J.; Jonsson, S.; Mazrui, N.; Ortiz, V.; Seelen, E.; Schartup, A. T.; Sunderland, E. M.

    2015-12-01

    Understanding the sources of methylmercury (MeHg) to the food chain in coastal waters is important given the related health concerns from consumption of seafood containing elevated MeHg. While water column dissolved or particulate MeHg is the best predictor of bioaccumulation into pelagic organisms in coastal waters, there is debate concerning the dominant sources of MeHg to the water column, and how the relative importance of these sources vary with ecosystem characteristics. Potential sources include both external inputs from the watershed and offshore waters and internal sources (net methylation in sediments and the associated flux of MeHg to the water column and/or net MeHg production in the water column). We will report the results from our various studies in estuarine and coastal waters which have examined the distribution and partitioning of sediment and water column MeHg, and its formation and degradation, across a geographic range from Labrador, Canada to the Chesapeake Bay, USA. The ecosystems studied vary from shallow estuarine bays to deeper systems, and from salt wedge to tidally-dynamic systems. Additionally, both pristine and contaminated environments were examined. The studies examined the factors controlling the net production of MeHg in sediments, and in our more recent work, the potential formation of MeHg in the oxic water column of coastal waters. Sediment measurements (core and grab samples) included both solid phase and porewater MeHg and total mercury (HgT) and important ancillary parameters. Water column parameters included dissolved and particulate MeHg and HgT, TSS, nutrients, and DOC. Stable Hg isotope tracer incubations were used to assess the degree of methylation and demethylation in sediments and surface waters. Average suspended particle MeHg ranged from <5 to 120 pmol/g, and was 1-8% of HgT across sites. Mass balance estimates provide insights into the importance of external MeHg sources to coastal waters. We will use the

  1. Identification and antimicrobial resistance of Enterococcus spp. isolated from the river and coastal waters in northern Iran.

    PubMed

    Alipour, Majid; Hajiesmaili, Reza; Talebjannat, Maryam; Yahyapour, Yousef

    2014-01-01

    As fecal streptococci commonly inhabit the intestinal tract of humans and warm blooded animals, and daily detection of all pathogenic bacteria in coastal water is not practical, thus these bacteria are used to detect the fecal contamination of water. The present study examined the presence and the antibiotic resistance patterns of Enterococcus spp. isolated from the Babolrud River in Babol and coastal waters in Babolsar. Seventy samples of water were collected in various regions of the Babolrud and coastal waters. Isolated bacteria were identified to the species level using standard biochemical tests and PCR technique. In total, 70 Enterococcus spp. were isolated from the Babolrud River and coastal waters of Babolsar. Enterococcus faecalis (68.6%) and Enterococcus faecium (20%) were the most prevalent species. Resistance to chloramphenicol, ciprofloxacin, and tetracyclin was prevalent. The presence of resistant Enterococcus spp. in coastal waters may transmit resistant genes to other bacteria; therefore, swimming in such environments is not suitable.

  2. Water-Level Changes in Aquifers of the Atlantic Coastal Plain, Predevelopment to 2000

    USGS Publications Warehouse

    dePaul, Vincent T.; Rice, Donald E.; Zapecza, Otto S.

    2008-01-01

    The Atlantic Coastal Plain aquifer system, which underlies a large part of the east coast of the United States, is an important source of water for more than 20 million people. As the population of the region increases, further demand is being placed on those ground-water resources. To define areas of past and current declines in ground-water levels, as well as to document changes in those levels, historical water-level data from more than 4,000 wells completed in 13 regional aquifers in the Atlantic Coastal Plain were examined. From predevelopment to 1980, substantial water-level declines occurred in many areas of the Atlantic Coastal Plain. Regional variability in water-level change in the confined aquifers of the Atlantic Coastal Plain resulted from regional differences in aquifer properties and patterns of ground-water withdrawals. Within the Northern Atlantic Coastal Plain, declines of more than 100 ft were observed in New Jersey, Delaware, Maryland, Virginia, and North Carolina. Regional declines in water levels were most widespread in the deeper aquifers that were most effectively confined?the Upper, Middle, and Lower Potomac aquifers. Within these aquifers, water levels had declined up to 200 ft in southern Virginia and to more than 100 ft in New Jersey, Delaware, Maryland, and North Carolina. Substantial water-level declines were also evident in the regional Lower Chesapeake aquifer in southeastern New Jersey; in the Castle Hayne-Piney Point aquifer in Delaware, Maryland, southern Virginia and east-central North Carolina; in the Peedee-Severn aquifer in east-central New Jersey and southeastern North Carolina; and in the Black Creek-Matawan aquifer in east-central New Jersey and east-central North Carolina. Conversely, declines were least severe in the regional Upper Chesapeake aquifer during this period. In the Southeastern Coastal Plain, declines of more than 100 ft in the Chattahoochee River aquifer occurred in eastern South Carolina and in southwestern

  3. OCTS And Seawifs Bio-Optical Algorithm and Product Vaildattion and Intercomparison in US Coastal Waters

    NASA Technical Reports Server (NTRS)

    Brow, Chirstopher; Subramaniam, Ajit; Culver, Mary; Brock, John C.

    2000-01-01

    Monitoring the health of U.S. coastal waters is an important goal of the National Oceanic and Atmospheric Administration (NOAA). Satellite sensors are capable of providing daily synoptic data of large expanses of the U.S. coast. Ocean color sensor, in particular, can be used to monitor the water quality of coastal waters on an operational basis. To appraise the validity of satellite-derived measurements, such as chlorophyll concentration, the bio-optical algorithms used to derive them must be evaluated in coastal environments. Towards this purpose, over 21 cruises in diverse U.S. coastal waters have been conducted. Of these 21 cruises, 12 have been performed in conjunction with and under the auspices of the NASA/SIMBIOS Project. The primary goal of these cruises has been to obtain in-situ measurements of downwelling irradiance, upwelling radiance, and chlorophyll concentrations in order to evaluate bio-optical algorithms that estimate chlorophyll concentration. In this Technical Memorandum, we evaluate the ability of five bio-optical algorithms, including the current SeaWiFS algorithm, to estimate chlorophyll concentration in surface waters of the South Atlantic Bight (SAB). The SAB consists of a variety of environments including coastal and continental shelf regimes, Gulf Stream waters, and the Sargasso Sea. The biological and optical characteristics of the region is complicated by temporal and spatial variability in phytoplankton composition, primary productivity, and the concentrations of colored dissolved organic matter (CDOM) and suspended sediment. As such, the SAB is an ideal location to test the robustness of algorithms for coastal use.

  4. Monitoring of hourly variations in coastal water turbidity using the geostationary ocean color imager (GOCI)

    NASA Astrophysics Data System (ADS)

    Choi, J.; Ryu, J.

    2011-12-01

    Temporal variations of suspended sediment concentration (SSC) in coastal water are the key to understanding the pattern of sediment movement within coastal area, in particular, such as in the west coast of the Korean Peninsula which is influenced by semi-diurnal tides. Remote sensing techniques can effectively monitor the distribution and dynamic changes in seawater properties across wide areas. Thus, SSC on the sea surface has been investigated using various types of satellite-based sensors. An advantage of Geostationary Ocean Color Imager (GOCI), the world's first geostationary ocean color observation satellite, over other ocean color satellite images is that it can obtain data every hour during the day and makes it possible to monitor the ocean in real time. In this study, hourly variations in turbidity on the coastal waters were estimated quantitatively using GOCI. Thirty three water samples were obtained on the coastal water surface in southern Gyeonggi Bay, located on the west coast of Korea. Water samples were filtered using 25-mm glass fiber filters (GF/F) for the estimation of SSC. The radiometric characteristics of the surface water, such as the total water-leaving radiance (LwT, W/m2/nm/sr), the sky radiance (Lsky, W/m2/nm/sr) and the downwelling irradiance, were also measured at each sampling location. In situ optical properties of the surface water were converted into remote sensing reflectance (Rrs) and then were used to develop an algorithm to generate SSC images in the study area. GOCI images acquired on the same day as the samples acquisition were used to generate the map of turbidity and to estimate the difference in SSC displayed in each image. The estimation of the time-series variation in SSC in a coastal, shallow-water area affected by tides was successfully achieved using GOCI data that had been acquired at hourly intervals during the daytime.

  5. Assessment of a bidirectional reflectance distribution correction of above-water and satellite water-leaving radiance in coastal waters.

    PubMed

    Hlaing, Soe; Gilerson, Alexander; Harmel, Tristan; Tonizzo, Alberto; Weidemann, Alan; Arnone, Robert; Ahmed, Samir

    2012-01-10

    Water-leaving radiances, retrieved from in situ or satellite measurements, need to be corrected for the bidirectional properties of the measured light in order to standardize the data and make them comparable with each other. The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms specifically tuned for typical coastal waters and other case 2 conditions are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multispectral and hyperspectral radiometers, which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with average improvement of 2.4% over the spectral range. LISCO's time series data have also been used to evaluate improvements in match-up comparisons of Moderate Resolution Imaging Spectroradiometer satellite data when the proposed BRDF correction is used in lieu of the current algorithm. It is shown that the discrepancies between coincident in-situ sea-based and satellite data decreased by 3.15% with the use of the proposed algorithm. This confirms the advantages of the proposed model over the current

  6. Coastal inshore waters in the NW Mediterranean: Physicochemical and biological characterization and management implications

    NASA Astrophysics Data System (ADS)

    Flo, Eva; Garcés, Esther; Manzanera, Marta; Camp, Jordi

    2011-07-01

    The physicochemical and biological characteristics of coastal waters form a gradient extending from land to ocean. In the Mediterranean this gradient is particularly large, due to the sea's weak tides. Within coastal waters, those waters in contact with land are called coastal inshore waters (CIW), defined herein as between 0 and 200 m from the shoreline. Here we present the first physicochemical and biological characterization of CIW of the NW Mediterranean Sea. This case study is based on 19 years of data collected from coastal inshore (CIW; 0-200 m), nearshore (CNW; 200-1500 m), and offshore (COW; >1500 m) waters of the Catalan coast. Analyses of these data showed that the physicochemical and biological characteristics of CIW differ significantly from those of CNW and COW due to: (1) significantly higher concentrations of dissolved inorganic nutrients (nitrate = 11.07 μM, nitrite = 0.52 μM, ammonium = 6.43 μM, phosphate = 0.92 μM, silicates = 5.99 μM) and chlorophyll- a (=2.42 μg/L) in CIW than in either CNW or COW (in some cases up to one order of magnitude); (2) a greater variability of dissolved inorganic nutrients and chlorophyll- a in CIW than in CNW and COW, and (3) the presence of a mostly urban population and the effects of river inflows as a primary source of CIW variability but with minimal impact on CNW or COW. In addition, the risk of eutrophication was found to be highest in CIW, placing human and environmental interests at greater risk than in the outermost coastal waters. The results highlight the importance of considering the distinctive physicochemical and biological properties of CIW in future coastal waters studies. This is of major importance in assessments of eutrophication and coastal water quality, not only to identify the pressure-impact relationships but also to allow the timely detection of local environmental problems and thus avoid endangering the unique communities of CIW and ensuring the sustainability of human activities. In

  7. Coastal Zone Hazards Related to Groundwater-Surface Water Interactions and Groundwater Flooding

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2009-12-01

    Worldwide, as many as half a million people have died in natural and man-made disasters since the turn of the 21st century (Wirtz, 2008). Further, natural and man-made hazards can lead to extreme financial losses (Elsner et al, 2009). Hazards, hydrological and geophysical risk analysis related to groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of its significance. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models (Geist and Parsons, 2006), and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health (Glantz, 2007). In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction. This paper proposes consideration of two case studies which are important and significant for future development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone (Zavialov, 2005). It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered

  8. Influence of aerosol estimation on coastal water products retrieved from HICO images

    NASA Astrophysics Data System (ADS)

    Patterson, Karen W.; Lamela, Gia

    2011-06-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) is a hyperspectral sensor which was launched to the International Space Station in September 2009. The Naval Research Laboratory (NRL) has been developing the Coastal Water Signatures Toolkit (CWST) to estimate water depth, bottom type and water column constituents such as chlorophyll, suspended sediments and chromophoric dissolved organic matter from hyperspectral imagery. The CWST uses a look-up table approach, comparing remote sensing reflectance spectra observed in an image to a database of modeled spectra for pre-determined water column constituents, depth and bottom type. In order to successfully use this approach, the remote sensing reflectances must be accurate which implies accurately correcting for the atmospheric contribution to the HICO top of the atmosphere radiances. One tool the NRL is using to atmospherically correct HICO imagery is Correction of Coastal Ocean Atmospheres (COCOA), which is based on Tafkaa 6S. One of the user input parameters to COCOA is aerosol optical depth or aerosol visibility, which can vary rapidly over short distances in coastal waters. Changes to the aerosol thickness results in changes to the magnitude of the remote sensing reflectances. As such, the CWST retrievals for water constituents, depth and bottom type can be expected to vary in like fashion. This work is an illustration of the variability in CWST retrievals due to inaccurate aerosol thickness estimation during atmospheric correction of HICO images.

  9. Interactions of aquaculture, marine coastal ecosystems, and near-shore waters: A bibliography. Bibliographies and literature of agriculture (Final)

    SciTech Connect

    Hanfman, D.T.; Coleman, D.E.; Tibbitt, S.J.

    1991-01-01

    The bibliography contains selected literature citations on the interactions of aquaculture and marine coastal ecosystems. The focus is on aquaculture effluents and their impact on marine coastal ecosystems and waterways as well as the impact of pollutants on aquaculture development. Factors affecting these issues include domestic and industrial wastes, thermal discharges, acid rain, heavy metals, oil spills, and microbial contamination of marine waters and aquatic species. Coastal zone management, environmenal impact of aquaculture, and water quality issues are also included in the bibliography.

  10. Assessment of a Bidirectional Reflectance Distribution Correction of Above-Water and Satellite Water-Leaving Radiance in Coastal Waters

    NASA Technical Reports Server (NTRS)

    Hlaing, Soe; Gilerson, Alexander; Harmal, Tristan; Tonizzo, Alberto; Weidemann, Alan; Arnone, Robert; Ahmed, Samir

    2012-01-01

    Water-leaving radiances, retrieved from in situ or satellite measurements, need to be corrected for the bidirectional properties of the measured light in order to standardize the data and make them comparable with each other. The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms specifically tuned for typical coastal waters and other case 2 conditions are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multispectral and hyperspectral radiometers, which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with average improvement of 2.4% over the spectral range. LISCO's time series data have also been used to evaluate improvements in match-up comparisons of Moderate Resolution Imaging Spectroradiometer satellite data when the proposed BRDF correction is used in lieu of the current algorithm. It is shown that the discrepancies between coincident in-situ sea-based and satellite data decreased by 3.15% with the use of the proposed algorithm.

  11. Climatic variability and trends in the surface waters of coastal British Columbia

    NASA Astrophysics Data System (ADS)

    Cummins, Patrick F.; Masson, Diane

    2014-01-01

    Multi-decadal records of monthly sea surface temperature (SST) and sea surface salinity (SSS) collected at a set of lighthouse stations are used to examine climatic variability and trends in the coastal waters of British Columbia. Particular attention is given to relations between the water property anomalies and variability in coastal freshwater discharge and alongshore wind stress. Within the Strait of Georgia, SSS anomalies are closely related to Fraser River discharge anomalies. Along the Pacific coast, anomalies in alongshore wind stress and freshwater runoff have the characteristics of white noise processes. A cross-correlation analysis demonstrates that SST and SSS variability along the open west coast is consistent with the response of a first-order autoregressive process driven by anomalous alongshore wind stress and coastal freshwater discharge, respectively. Thus climatic variability of SST and SSS along the Pacific coast of British Columbia occurs, in part, through the integration of noisy atmospheric forcing and coastal precipitation. Seasonal correlations show that SST is strongly related to wind stress during winter and fall. Conversely, SSS is relatively weakly related to the alongshore wind during spring, suggesting that variability in upwelling makes only a modest contribution to variability of SSS in the nearshore environment. Consistent with previous studies, secular trends indicate long-term warming and freshening of the coastal ocean at most stations. It is shown that long-term SST trends can be obscured by the pronounced climatic variability of these waters, requiring that time series extend for several decades to be reliably detected.

  12. Skylab and ERTS-1 investigations of coastal land use and water properties. [Delaware Bay

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Bartlett, D.; Rogers, R.

    1974-01-01

    The author has identified the following significant results. ERTS-1 multispectral scanner and Skylab's S190A, S190B, and S192 data products were evaluated for their utility in studying current circulation, suspended sediment concentrations and pollution dispersal in Delaware Bay and in mapping coastal vegetation and land use. Imagery from the ERTS-1 MSS, S190A and S190B cameras shows considerable detail in water structure, circulation, suspended sediment distribution and within waste disposal plumes in shelf waters. These data products were also used in differentiating and mapping twelve coastal vegetation and land use classes. The spatial resolution of the S190A multispectral facility appears to be about 30 to 70 meters while that of the S190B earth terrain camera is about 10 to 30 meters. Such resolution, along with good cartographic quality, indicates a considerable potential for mapping coastal land use and monitoring water properties in estuaries and on the continental shelf. The ERTS-1 MSS has a resolution of about 70-100 meters. Moreover, its regular 18-day cycle permits observation of important changes, including the environmental impact of coastal zone development on coastal vegetation and ecology.

  13. Paleo-hydrological history in pore water extracted from sedimentary rocks in the coastal area

    NASA Astrophysics Data System (ADS)

    Ikawa, R.; Machida, I.; Koshigai, M.; Nishizaki, S.; Marui, A.; Yoshizawa, T.; Ito, N.

    2010-12-01

    Over the past decade, new utilization methods of underground space development such as geological disposal of high level radioactive waste (HLW) and carbon capture and storage (CCS) have been important issues under discussion in Japan. Coastal areas have been identified as suitable candidate sites for such projects. A good understanding of the structure of seawater/freshwater interface and fault is important due to the fact that it serves as a preferential pathway through which radionuclide can be transported by means of groundwater. There is, however, little available information worldwide on deep groundwater studies in coastal areas. There is also virtually no study has been conducted on the behavior of groundwater and pore water in coastal impermeable sedimentary rocks. In this study, large scale core drilling (1000m depth) has been carried out in coastal area at Hamasato in the Horonobe area of Hokkaido, Japan in order to investigate the geological structure and deep groundwater flow system with the residence time. Pore water with various adsorptivity from drilling core samples was gradually collected by centrifugation and squeezing methods and analyzed for water chemistry. This is aimed at estimating the paleo-hydrological history of the coastal environment by geochemical information from the pore water. Lithoface in the study area consists of sandy r and alternate (sandy and silty) layers intercalations up to 250m deep. Below 250m, shows sand and silt layers. Pore water volume collected in the sand layers by centrifugation method was almost same, contrary to that in the silt layers which decreased with depth. On the other hand, the ratio of pore water with high adsorpivity in silt layers increased with depth. Except the surface layer (<50m), electric conductivity (EC) and Cl values in pore water samples increased with depth below 300m. In this study, we report on the characteristics of seawater/freshwater interface and deep groundwater flow system based on

  14. WATER QUALITY IN THE NEAR COASTAL WATERS OF THE GULF OF MEXICO AFFECTED BY HURRICANE KATRINA: BEFORE AND AFTER THE STORM

    EPA Science Inventory

    Water quality was assessed following Hurricane Katrina in the affected waters of Alabama, Mississippi and Louisiana. Post-landfall water quality was compared to pre-hurricane conditions using indicators assessed by EPA's National Coastal Assessment program and additional indicat...

  15. Approach to developing numeric water quality criteria for coastal waters: a transition from SeaWiFS to MODIS and MERIS satellites.

    EPA Science Inventory

    Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and potentially cause harmful ecological effects. States can adopt numeric water quality criteria into their water quality standards to protect the designa...

  16. Water quality of surficial aquifers in the Georgia-Florida Coastal Plain

    USGS Publications Warehouse

    Crandall, C.A.; Berndt, M.P.

    1996-01-01

    The National Water Quality Assessment Program of the U.S. Geological Survey established the Georgia-Florida Coastal Plain study unit in 1991. The ground-water study-unit survey was conducted in 1993 to provide a broad over-view of water quality in surficial aquifers. Three land resource provinces were included in the Georgia-Florida Coastal Plain study-unit survey: the Central Florida Ridge, the Coastal Flatwoods, and the Southern Coastal Plain. The U.S. Geological Survey sampled 37 wells in surficial aquifers, 18 in the Coastal Flatwoods and 19 in the Southern Coastal Plain. The Florida Department of Environmental Protection sampled 27 wells tapping surficial aquifers in the Central Florida Ridge as part of the background ground-water quality monitoring network from 1985 through 1989. The data were used to characterize water quality in surficial aquifers of the Central Florida Ridge. Results of the study-unit survey indicated that dissolved solids concentrations in ground water were mostly less than 100 mg/L (milligrams per liter). Higher medians of pH, specific conductance, and concentrations of calcium, bicarbonate, and dissolved solids were measured in samples from the Central Florida Ridge compared to the Southern Coastal Plain and Coastal Flatwoods, probably because of a greater percentage of carbonate minerals in aquifer materials. The U.S. Environmental Protection Agency secondary maximum contaminant level for iron of 300 ug/L (micrograms per liter) in drinking water was exceeded in 15 of 45 samples. Concentrations of nitrate as nitrogen were less than 3.0 mg/L in most samples (74 percent), indicating little or no influence from human activity. Only five samples (9 percent) had concentrations above 10 mg/L, the U.S. Environmental Protection Agency maximum contaminant level for nitrate concentration in drinking water. Significantly lower median concentrations of nitrate were measured in samples from polyvinyl chloride monitoring wells with diameters less

  17. Coastal hypoxia diminished by intrusion of open ocean water after long El Nino Events: Case study of Hong Kong waters

    NASA Astrophysics Data System (ADS)

    Lui, H. K.; Chen, C. T. A.

    2015-12-01

    Coastal regions suffer from increasing terrestrial inputs of nutrients and organic matter. Consequently, hypoxia (dissolved oxygen (DO) < 30% or 2 mg/L) in the coastal regions has become more serious. In the study of coastal eutrophication and hypoxia, incoming offshore seawater has rarely been addressed. With references to the time-series data in the coast of Hong Kong and at the South East Asia Time Series Study (SEATS) station located in the northern South China Sea (SCS), this study demonstrates that coastal waters of Hong Kong have suffered hypoxia for over a decade. The hypoxia condition, however, diminished between 2002 and 2004, most likely owning to a large scale intrusion of the West Philippine Sea (WPS) seawater. For instance, at station SM18 located south of Hong Kong, the summer DO minimum has generally decreased from a saturation state of about 60% to as low as 5% from 1990 to 2013. The almost anoxic condition occurred in 2011 after a La Nina event. On the other hand, the summer DO minimum reached a high value of 79% in 2004 after a long El Nino event. Meanwhile, seawater at the SEATS site also contained the highest proportion of the WPS water, reflecting the large intrusion of the WPS seawater into the SCS. Such a result illustrates a situation that coastal eutrophication and hypoxia could be worsened when the intrusion of open ocean water decreases, and vice versa.

  18. Monitoring Ground-Water Quality in Coastal Ecosystems

    USGS Publications Warehouse

    Colman, John A.; Masterson, John P.

    2007-01-01

    INTRODUCTION The Cape Cod National Seashore (CACO) extends along more than 70 km of Atlantic Ocean open-beach coastline and includes three large saltwater bays - Wellfleet Harbor, Nauset Marsh, and Pleasant Bay (fig. 1). CACO encompasses about 18,000 ha of uplands, lakes, wetlands, and tidal lands (Godfrey and others, 1999) including most habitats typical of the sandy coast in National seashores and parks extending southward from Massachusetts to Florida. In 1995, CACO was selected by the National Park Service (NPS) as a prototype park typifying the Atlantic and Gulf Coast biogeographic region for long-term coastal ecosystem monitoring. The U.S. Geological Survey (USGS) is currently (2007) assisting the NPS in the development of protocols for a Long-Term Coastal Ecosystem Monitoring Program at the CACO in Massachusetts. The overall purpose of the monitoring program is to characterize both natural and human-induced change in the biological resources of the CACO, over a time scale of decades, in the context of a changing global ecosystem.

  19. Hydrogeologic setting and potential for denitrification in ground water, coastal plain of southern Maryland

    USGS Publications Warehouse

    Krantz, David E.; Powars, David S.

    2000-01-01

    The types and distribution of Coastal Plain sediments in the Patuxent River Basin may contribute to relatively low concentrations of nitrate (typically less than 1 milligram per liter) in stream base flow because of the chemical reduction of dissolved nitrate (denitrification) in ground water. Water chemistry data from synoptic stream base-flow surveys in the Patuxent River Basin show higher dissolved nitrate concentrations in the Piedmont than in the Coastal Plain section of the watershed. Stream base flow reflects closely the chemistry of ground water discharging from the surficial (unconfined) aquifer to the stream. Because land use in the sampled subbasins is virtually the same in each section, differences in the physical and geochemical characteristics of the surficial aquifer may explain the observed differences in water chemistry. One possible cause of lower nitrate concentrations in the Coastal Plain is denitrification within marine sediments that contain chemically reduced compounds. During denitrification, the oxygen atoms on the nitrate (N03-) molecule are transferred to a reduced compound and N gas is produced. Organic carbon and ferrous iron (Fe2+), derived from the dissolution of minerals such as pyrite (FeS2) and glauconite (an iron aluminosilicate clay), can act as reducing substrates; these reduced chemical species are common in the marine and estuarine deposits in Southern Maryland. The spatial distribution of geologic units and their lithology (sediment type) has been used to create a map of the potential for denitrification of ground water in the surficial aquifer of the Coastal Plain in Southern Maryland.

  20. Ground-water withdrawals from the Coastal Plain of New Jersey, 1956-1980

    USGS Publications Warehouse

    Vowinkel, E.F.

    1984-01-01

    Withdrawals and site data for wells with a pump capacity of 100 ,000 gallons per day or greater in the Coastal Plain of New Jersey are stored in computer files for 1956-80. The data are aggregated by computer into tables, graphs and maps to show the distribution of ground-water withdrawals. Withdrawals are reported by type of use and aquifer for each county in the Coastal Plain. Public-supply wells withdraw the largest quantity of ground water in the Coastal Plain, followed by industrial and agricultural wells. In 1980 public-supply withdrawals were about 280 million gallons per day; the maximum monthly rate was about 355 million gallons per day in July, and the lowest was about 215 million gallons per day in February. Average industrial withdrawals were about 65 million gallons per day. Ground-water withdrawals used for agriculture vary significantly during the year. In 1980, about 75 percent of the agricultural withdrawals occurred from June through September. Several aquifers are used as sources of water supply in the Coastal Plain. Five regional aquifers are the major sources of water for public-supply, industrial, or agricultural use. In decreasing order of withdrawals in 1980, in million gallons per day, they are: The Potomac-Raritan-Magothy aquifer system, 243; Kirkwood-Cohansey aquifer system, 70; Atlantic City 800-foot sand, 21; Englishtown aquifer, 12; and the Wenonah-Mount Laurel aquifer system, 5. (USGS)

  1. Metal contamination in water, sediment and biota from a semi-enclosed coastal area.

    PubMed

    Aly, Walid; Williams, Ian D; Hudson, Malcolm D

    2013-05-01

    This study identifies and quantifies the spatial variations of metal contamination in water, sediment and biota: the common cockle (Cerastoderma edule) and the Mermaid's glove sponge (Haliclona oculata), within a heavily anthropogenically impacted semi-enclosed estuarine-coastal area with a low ability to disperse and flush contaminants (Poole Harbour, UK). The results showed that metal contamination was detected in all environmental compartments. Water was polluted with As, and Hg sediment metals were mostly within "the possible effect range" in which adverse effects occasionally occurs. Cockles had considerable concentrations of Ni, Ag and Hg in areas close to pollution sources, and sponges accumulate Cu and Zn with very high magnitude. A systematic monitoring approach that includes biological monitoring techniques, which covers all embayments, is needed, and an integrated management of the semi-enclosed coastal zones should be based on the overall hydrological characteristics of these sensitive areas and their ability to self-restore which is different than open coastal zones.

  2. Contingency plan improvement for managing oil spills in the coastal waters of Thailand.

    PubMed

    Singkran, Nuanchan

    2014-12-15

    The estimated risks of being impacted by oil spills in the coastal waters were used to improve the oil spill contingency plan of Thailand. Functional roles of local agencies are integrated into the plan. Intensive measures are suggested for the coastal provinces located in high-very high risk zones, whereas light and moderate measures are suggested for the coastal provinces located in low and moderate risk zones, respectively. The estimated percentage risks due to simulated oil slicks hitting the coast and/or important resources (PRoilspill) were used to guide the year-round water activities that should be carefully handled at a certain radius with a low-moderate PRoilspill, whereas they should be avoided at a certain radius with a high-very high PRoilspill. Important measures before, during, and post periods of an oil spill incident are suggested to prevent and monitor oil spill incidents and mitigate their impacts on the environment.

  3. Pollution of the Black Sea coastal waters: Sources, present-day level, annual variability

    SciTech Connect

    Fashchuk, D.Ya.; Shaporenko, S.I.

    1995-05-01

    Results of regular (for the last 10 years) observations at marine and coastal hydrometeorological posts are analyzed. These are observations of volumes and concentrations of pollutants entering the sea with the flow of the Danube and Dnieper rivers and wastewaters of coastal industrial enterprises, as a result of oil spills caused by ship accidents, pipeline damage, and sea shipping. An integral criterion used to estimate the overall specific anthropogenic load of pollutants in the coastal zone is calculated. The pollutants were compared with regard to their overall specific load, taking into account the percentage of each of them. A water pollution index is calculated for 19 regions of the sea; water quality is evaluated for three types of pollutants and oxygen content. Pollution structure is revealed, physical and dynamic causes of its changes are investigated.

  4. Baseline metals pollution profile of tropical estuaries and coastal waters of the Straits of Malacca.

    PubMed

    Looi, Ley Juen; Aris, Ahmad Zaharin; Wan Johari, Wan Lutfi; Md Yusoff, Fatimah; Hashim, Zailina

    2013-09-15

    The status report on metal pollution in tropical estuaries and coastal waters is important to understand potential environmental health hazards. Detailed baseline measurements were made on physicochemical parameters (pH, temperature, redox potential, electrical conductivity, salinity, dissolved oxygen, total dissolved solid), major ions (Na, Ca, Mg, K, HCO3, Cl, SO4 and NO3) and metals concentrations ((27)Al, (75)As, (138)Ba, (9)Be, (111)Cd, (59)Co, (63)Cu, (52)Cr, (57)Fe, (55)Mn, (60)Ni, (208)Pb, (80)Se, (66)Zn) at estuaries and coastal waters along the Straits of Malacca. Principal component analysis (PCA) was employed to reveal potential pollution sources. Seven principal components were extracted with relation to pollution contribution from minerals-related parameters, natural and anthropogenic sources. The output from this study will generate a profound understanding on the metal pollution status and pollution risk of the estuaries and coastal system.

  5. 33 CFR 165.1310 - Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... adjacent coastal waters of Northwest Washington; Makah Whale Hunting-Regulated Navigation Area. 165.1310... and adjacent coastal waters of Northwest Washington; Makah Whale Hunting—Regulated Navigation Area. (a.... Datum: NAD 1983. (b) During a whale hunt, while the international numeral pennant five (5) is flown by...

  6. 33 CFR 165.1310 - Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... adjacent coastal waters of Northwest Washington; Makah Whale Hunting-Regulated Navigation Area. 165.1310... and adjacent coastal waters of Northwest Washington; Makah Whale Hunting—Regulated Navigation Area. (a.... Datum: NAD 1983. (b) During a whale hunt, while the international numeral pennant five (5) is flown by...

  7. 33 CFR 165.1310 - Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... adjacent coastal waters of Northwest Washington; Makah Whale Hunting-Regulated Navigation Area. 165.1310... and adjacent coastal waters of Northwest Washington; Makah Whale Hunting—Regulated Navigation Area. (a.... Datum: NAD 1983. (b) During a whale hunt, while the international numeral pennant five (5) is flown by...

  8. 33 CFR 165.1310 - Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... adjacent coastal waters of Northwest Washington; Makah Whale Hunting-Regulated Navigation Area. 165.1310... and adjacent coastal waters of Northwest Washington; Makah Whale Hunting—Regulated Navigation Area. (a.... Datum: NAD 1983. (b) During a whale hunt, while the international numeral pennant five (5) is flown by...

  9. 33 CFR 165.1310 - Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... adjacent coastal waters of Northwest Washington; Makah Whale Hunting-Regulated Navigation Area. 165.1310... and adjacent coastal waters of Northwest Washington; Makah Whale Hunting—Regulated Navigation Area. (a.... Datum: NAD 1983. (b) During a whale hunt, while the international numeral pennant five (5) is flown by...

  10. Artesian water in the Malabar coastal plain of southern Kerala, India

    USGS Publications Warehouse

    Taylor, George C.; Ghosh, P.K.

    1964-01-01

    The present report is based on a geological and hydrological reconnaissance during 1954 of the Malabar Coastal Plain and adjacent island area of southern Kerala to evaluate the availability of ground water for coastal villages and municipalities and associated industries and the potentialities for future development. The work was done in cooperation with the Geological Survey of India and under the auspices of the U.S. Technical Cooperation Mission to India. The State of Kerala, which lies near the southern tip of India and along the eastern shore of the Caspian Sea, contains a total area of 14,937 square miles. The eastern part of the state is s rugged mountainous highland which attains altitudes of more than 6,000 feet. This highland descends westward through piedmont upland to s narrow coastal plain, which reaches a maximum width of about 16 miles in the latitude of Shertalli. A tropical monsoon rain-forest climate prevails in most of Kerala, and annual rainfall ranges from 65 to 130 inches in the southern part of the coastal plain to as much a 200 inches in the highland. The highland and piedmont upland tracts of Kerala are underlain by Precambrian meamorphic and igneous rocks belonging in large parabola-the so-called Charnockite Series. Beneath ahe coastal plain are semiconsolidated asunconsolidated sedimentary deposits whose age ranges from Miocene to Recent. These deposits include sofa sandstone and clay shale containing some marl or limestone and sand, and clay and pea containing some gravel. The sofa sandstone, sand, and gravel beds constitute important aquifers a depths ranging from a few tens of feet to 400 feet or more below the land surface. The shallow ground war is under water-able or unconfined conditions, but the deeper aquifers contain water under artesian pressure. Near the coast, drilled wells tapping the deeper aquifers commonly flow with artesian heads as much as 10 to 12 feet above the land surface. The draft from existing wells in the

  11. Impact of sewage discharges on coastal water quality of Mumbai, India: present and future scenarios.

    PubMed

    Vijay, Ritesh; Mardikar, Trupti; Kumar, Rakesh

    2016-07-01

    The simulation study assesses the impact of sewage discharges on the present and predicted water quality of the Mumbai coast using MIKE 21. Water quality parameters in terms of dissolved oxygen (DO), biochemical oxygen demand (BOD) and faecal coliform (FC) are checked against specified standards. The simulation is validated for the present coastal hydrodynamics and observed water quality parameters. The validated model is further used for predicting scenarios in terms of upgradation in a pumping station and improvement in wastewater collection, treatment level and disposal systems. The water quality of the existing coastal environment does not conform to the stipulated standards but improves considerably in the prediction scenarios. However, despite a marked improvement in FC, it is not as per desired standards as no treatment for bacteria removal is considered. The simulation study emphasizes the need for exploring options like the reuse or recycle of treated effluent, as an effort for water conservation.

  12. Simulation of Integrated Surface-Water/Ground-Water Flow and Salinity for a Coastal Wetland and Adjacent Estuary

    USGS Publications Warehouse

    Langevin, Christian D.; Swain, Eric D.; Melinda A., Wolfert

    2004-01-01

    The SWIFT2D surface-water flow and transport code, which solves the St. Venant equations in two dimensions, was coupled with the SEAWAT variable-density ground-water code to represent hydrologic processes in coastal wetlands and adjacent estuaries. The integrated code was applied to the southern Everglades of Florida to quantify flow and salinity patterns and to evaluate effects of hydrologic processes. Results indicate that most surface water within Taylor Slough flows through Joe Bay and into Florida Bay through Trout Creek. Overtopping of the Buttonwood Embankment, a narrow but continuous ridge that separates the coastal wetlands from Florida Bay, does occur in response to tropical storms, but the net overflow is only 1.5 percent of creek discharge. The net leakage rate for the coastal wetland is about zero with nearly equal upward (17.1 cm/yr) and downward (17.4 cm/yr) rates. During the dry season, the coastal wetland increases in salinity to 30-35 practical salinity units but is flushed each year with the onset of the wet season. Model results demonstrate that surface-water/ground-water interactions, density-dependent flow, and wind affect flow and salinity patterns.

  13. Analysis of Water Resource Utilization Potential for Jiangsu Coastal Area ' in Nantong City

    NASA Astrophysics Data System (ADS)

    Ren, Li; Liu, Jin-Tao; Ni, Jian-Jun

    2015-04-01

    Along with the advance of the growth of population and social economy, requirements for water quality and quantity in coastal areas is getting higher and higher, but due to the uneven distribution of rainfall years and water exploitation, use and management level, the influence of the shortage of water resources is increasingly prominent, seriously restricting the social and economic sustainable development in this region. Accordingly, water resource utilization potential in Jiangsu coastal region is vital for water security in the region. Taking Nantong City as the study area, the regional water resources development and utilization status were evaluated. In this paper, the meaning of water resources, water resources development and utilization, and water resources development and utilization of the three stages of concepts such as system were discussed. Then the development and utilization of regional water resource evaluation were carried out, and the significance of regional society, economy, resources and environment and its development status quo of water resources were exploited. According to conditions and area source, an evaluation index system for development and utilization of water resources of Nantong was built up. The index layer was composed of 16 indicators. In this study, analytic hierarchy process (AHP) was used to determine of weights of indicators at all levels in the index system. Multistage fuzzy comprehensive evaluation model was selected to evaluate the water resources development and utilization status of Nantong, and then water resource utilization potential of Nantong was analyzed.

  14. A simulation-optimization model for effective water resources management in the coastal zone

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos

    2015-04-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater mathematical models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. However, most integrated surface water-groundwater models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated surface water-groundwater model IRENE (Spanoudaki et al., 2009; Spanoudaki, 2010) has been modified in order to simulate surface water-groundwater flow and salinity interactions in the coastal zone. IRENE, in its original form, couples the 3D shallow water equations to the equations describing 3D saturated groundwater flow of constant density. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection

  15. Towards the development of a combined Norovirus and sediment transport model for coastal waters

    NASA Astrophysics Data System (ADS)

    Barry, K.; O'Kane, J. P. J.

    2009-04-01

    Sewage effluent in coastal waters used for oyster culture poses a risk to human health. The primary pathogen in outbreaks of gastroenteritis following consumption of raw oysters is the Norovirus or "winter vomiting bug". The Norovirus is a highly infectious RNA virus of the Caliciviridae taxonomic family. It has a long survival time in coastal waters (T90 = 30 days in winter). Oysters selectively concentrate Norovirus in their digestive ducts. The virus cannot be removed by conventional depuration. The primary goal of the research is to quantify the risk of Norovirus infection in coastal waters through physically-based high-resolution numerical modelling. Cork Harbour and Clew Bay in Ireland provide case studies for the research. The models simulate a number of complex physical, chemical and biological processes which influence the transport and decay of the virus as well as its bioaccumulation in oyster tissue. The current phase of the research is concerned with the adsorption of the virus to suspended sediment in the water column. Adsorbed viruses may be taken out of the water column when sedimentation occurs and, subsequently, be added to it with resuspension of the bed sediment. Preliminary simulations of the Norovirus-sediment model indicate that suspended sediment can influence the transport of the virus in coastal waters when a high sediment-water partitioning coefficient is used and the model is run under calm environmental conditions. In this instance a certain fraction of the adsorbed viruses are taken out of the water column by sedimentation and end up locked in the bed sediment. Subsequently, under storm conditions, a large number of viruses in the bed are released into the water column by erosion of the bed and a risk of contamination occurs at a time different to when the viruses were initially released into the body of water.

  16. Metabarcoding approach for nonindigenous species surveillance in marine coastal waters.

    PubMed

    Zaiko, Anastasija; Samuiloviene, Aurelija; Ardura, Alba; Garcia-Vazquez, Eva

    2015-11-15

    In this study, high-throughput sequencing (HTS) metabarcoding was applied for the surveillance of plankton communities within the southeastern (SE) Baltic Sea coastal zone. These results were compared with those from routine monitoring survey and morphological analyses. Four of five nonindigenous species found in the samples were identified exclusively by metabarcoding. All of them are considered as invasive in the Baltic Sea with reported impact on the ecosystem and biodiversity. This study indicates that, despite some current limitations, HTS metabarcoding can provide information on the presence of exotic species and advantageously complement conventional approaches, only requiring the same monitoring effort as before. Even in the currently immature status of HTS, this combination of HTS metabarcoding and observational records is recommended in the early detection of marine pests and delivery of the environmental status metrics of nonindigenous species. PMID:26422121

  17. A numerical study on flow and pollutant transport in Singapore coastal waters.

    PubMed

    Xu, Ming; Chua, Vivien P

    2016-10-15

    Intensive economic and shipping activities in Singapore Strait have caused Singapore coastal waters to be under high risk of water pollution. A nested three-dimensional unstructured-grid SUNTANS model is applied to Singapore coastal waters to simulate flow and pollutant transport. The small domain (~50m resolution) Singapore coastal model is nested within a large domain (~200m resolution) regional model. The nested model is able to predict water surface elevations and velocities with high R(2) values of 0.96 and 0.91, respectively. Model results delineate the characteristics of circulation pattern in Singapore coastal waters during the Northeast and Southwest monsoons. The pollutants are modeled as passive tracers, and are released at six key sailing locations Points 1-6 in Singapore coastal waters and are named as Passive Tracers 1-6, respectively. Our results show that the rate of dispersion is twice as large for the Northeast monsoon compared to the Southwest monsoon due to differences in large-scale monsoons and small-scale local winds. The volume averaged concentration (VAC) diminishes faster and the local flushing time is shorter during the Northeast monsoon than the Southwest monsoon. Dispersion coefficients K and the VAC decreasing rate are maximum for Tracers 2 and 3 with shortest local flushing time due to the strong surrounding currents and abrupt bathymetry changes near Senang and St. John Islands. Dispersion coefficients K and the VAC decreasing rate are minimum for Tracer 1 due to weak currents induced by the semi-enclosed coastline near Tuas. It is found that both the lateral dispersion coefficient Ky and the compound dispersion coefficient K obey a "4/3-law", which defines a linear correlation between dispersion coefficients and 4/3-power of selected length scale. PMID:27431749

  18. A numerical study on flow and pollutant transport in Singapore coastal waters.

    PubMed

    Xu, Ming; Chua, Vivien P

    2016-10-15

    Intensive economic and shipping activities in Singapore Strait have caused Singapore coastal waters to be under high risk of water pollution. A nested three-dimensional unstructured-grid SUNTANS model is applied to Singapore coastal waters to simulate flow and pollutant transport. The small domain (~50m resolution) Singapore coastal model is nested within a large domain (~200m resolution) regional model. The nested model is able to predict water surface elevations and velocities with high R(2) values of 0.96 and 0.91, respectively. Model results delineate the characteristics of circulation pattern in Singapore coastal waters during the Northeast and Southwest monsoons. The pollutants are modeled as passive tracers, and are released at six key sailing locations Points 1-6 in Singapore coastal waters and are named as Passive Tracers 1-6, respectively. Our results show that the rate of dispersion is twice as large for the Northeast monsoon compared to the Southwest monsoon due to differences in large-scale monsoons and small-scale local winds. The volume averaged concentration (VAC) diminishes faster and the local flushing time is shorter during the Northeast monsoon than the Southwest monsoon. Dispersion coefficients K and the VAC decreasing rate are maximum for Tracers 2 and 3 with shortest local flushing time due to the strong surrounding currents and abrupt bathymetry changes near Senang and St. John Islands. Dispersion coefficients K and the VAC decreasing rate are minimum for Tracer 1 due to weak currents induced by the semi-enclosed coastline near Tuas. It is found that both the lateral dispersion coefficient Ky and the compound dispersion coefficient K obey a "4/3-law", which defines a linear correlation between dispersion coefficients and 4/3-power of selected length scale.

  19. ASSESSING THE CONDITION OF THE NATION'S COASTAL WATERS

    EPA Science Inventory

    EPA's Office of Water submits a National Water Quality Inventory every 2 years to Congress prepared under Section 305(b) of the Clean Water Act. The estimate of total estuarine area increased by 49,000 square miles in 1998 primarily due to the addition of Alaska. This resulted in...

  20. Method 365.5 Determination of Orthophosphate in Estuarine and Coastal Waters by Automated Colorimetric Analysis

    EPA Science Inventory

    This method provides a procedure for the determination of low-level orthophosphate concentrations normally found in estuarine and/or coastal waters. It is based upon the method of Murphy and Riley1 adapted for automated segmented flow analysis2 in which the two reagent solutions ...

  1. Survey of cyanomyovirus abundance in Shantou coastal waters by g20

    NASA Astrophysics Data System (ADS)

    Li, Chuanbiao; Ding, Jun; Zhou, Lizhen; Zhang, Zhao; Li, Shengkang; Liu, Wenhua; Wen, Xiaobo

    2015-05-01

    To understand the genetic diversity and population changes in cyanophages in the coastal waters of Shantou, northeast South China Sea, we used the capsid assembly protein gene g20 as a marker of the abundance and phylogeny of natural cyanomyovirus communities. The abundance of total viruses, heterotrophic bacteria, and picophytoplankton in the coastal waters was monitored with flow cytometry. Hydrological parameters (NO{3/-}, NO{2/-}, NH3, soluble reactive phosphorus, total dissolved nitrogen, total dissolved phosphorus, dissolved oxygen, chemical oxygen demand, temperature, salinity, and chlorophyll a concentration) and microbial abundance (total viruses, total bacteria, Prochlorococcus, Synechococcus, and eukaryotes) were measured in the upper and lower layers at four sampling sites in the research area. In the direct viral counts, cyanomyoviruses accounted for 1.92% to >10% of the total viral community. A phylogenetic analysis showed that the g20 sequences in the Shantou coastal waters were very diverse, distributed in eight distinct operational taxonomic units, including the newly formed Cluster W. The g20 gene copies inferred from real time PCR assay indicated that cyanomyoviruses were correlated significantly with the heterotrophic bacteria numbers and the nitrate and chlorophyll a concentrations. These results suggest that cyanomyoviruses are ubiquitous and are an abundant component of the virioplankton in Shantou coastal waters.

  2. Ground-water use in the coastal plain of Maryland, 1900-1980

    USGS Publications Warehouse

    Wheeler, J.C.; Wilde, F.D.

    1989-01-01

    This report presents groundwater withdrawal data from 1900 through 1980 for Maryland counties lying with the Coastal Plain physiographic province, as well as a summary section for the total Maryland Coastal Plain. The types of water use included are domestic, military, water supplier, industrial/commercial, and irrigation. The data were obtained from state and county reports, biannual pumpage reports submitted to the Maryland Water Resources Administration, communication with individual owners, and estimates based on existing published data. The amount of groundwater withdrawn from aquifers in the Maryland Coastal Plain in 1900 was approximately 26 million gallons per day (Mgal/d) compared to nearly 134 Mgal/d in 1980. Jurisdictions withdrawing more than 10 Mgal/d for most of the 80-year period were Anne Arundel and Baltimore Counties and Baltimore City. The greatest withdrawals for most of the early part of the period were for domestic and industrial/commercial uses; however, water-supplier use dominated after 1965. Groundwater use for irrigation became important in the Coastal Plain around 1960 and increased steadily from approximately 2 Mgal/d in 1960 to nearly 12 Mgal/d in 1980. (USGS)

  3. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations

    NASA Astrophysics Data System (ADS)

    Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.

    2016-10-01

    Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.

  4. EFFECTS OF A COASTAL GOLF COMPLEX ON WATER QUALITY, PERIPHYTON, AND SEAGRASS.

    EPA Science Inventory

    The objective of this study was to determine the effects of a golf course complex on water quality, colonized periphyton and seagrass meadows in adjacent freshwater, near-coastal and wetland areas. The environmental impact of the recreational facility, which uses spray wastewater...

  5. EUTROPHICATION OF COASTAL WATER BODIES: RELATIONSHIPS BETWEEN NUTRIENT LOADINGS AND ECOLOGICAL RESPONSE

    EPA Science Inventory

    This newly initiated research is intended to provide environmental managers with an empirical method to develop regional nutrient input limits for East Coast estuaries and other coastal water bodies. Our goal is to create an improved model of nutrient load-response relationships....

  6. Preliminary study on pisionids (Annelida: Polychaeta Pisionidae) from Hainan Island coastal waters, South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Bao-Ling; Ding, Zhi-Hu; Huang, Feng-Peng

    1998-06-01

    Of the four species of Pisione Grube (1856) collected from the coastal waters of Hainan Island, the South China Sea, and described in this paper, Pisione hainanensis n. sp. is new to science; Pisione oerstedii Grube, 1857; Pisione complexa Alikunhi, 1947, and Pisione levisetosa Zhao, Westheide & Wu, 1991 are reported for the first time from this area.

  7. Ecological Condition of Coastal Ocean Waters Along the U.S. Mid-Atlantic Bight: 2006

    EPA Science Inventory

    This report presents the results of an assessment of ecological condition in coastal-ocean waters of the U.S. mid-Atlantic Bight (MAB), along the U.S. continental shelf from Cape Cod, MA and Nantucket Shoals to the northeast to Cape Hatteras to the south, based on sampling conduc...

  8. Future riverine nitrogen export to US coastal regions: Prospects for improving water quality considering population growth

    EPA Science Inventory

    Excess nitrogen (N) in the environment degrades ecosystems and adversely affects human health. Here we examine predictions of contemporary (2000) and future (2030) coastal N loading in the continental US by the Nutrient Export from WaterSheds (NEWS) model. Future output is from s...

  9. Future riverine nitrogen export to US coastal regions: Prospects for improving water quality amid population growth.

    EPA Science Inventory

    Excess nitrogen (N) in the environment degrades ecosystems and adversely affects human health. Here we examine predictions of contemporary (2000) and future (2030) coastal N loading in the continental US by the Nutrient Export from WaterSheds (NEWS) model. Future scenarios were b...

  10. EUTROPHICATION OF COASTAL WATER BODIES: RELATIONSHIPS BETWEEN NUTRIENT LOADING AND ECOLOGICAL RESPONSE

    EPA Science Inventory

    This newly initiated research will provide environmental managers with an empirical method to develop regional nutrient input limits for East Coast estuaries/coastal water bodies. The goal will be to reduce the current uncertainty associated with nutrient load-response relationsh...

  11. Assessment of satellite derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters

    EPA Science Inventory

    Optical data collected in coastal waters off South Florida and in the Caribbean Sea between January 2009 and December 2010 were used to evaluate products derived with three bio-optical inversion algorithms applied to MOIDS/Aqua, MODIS/Terra, and SeaWiFS satellite observations. Th...

  12. Sediment Quality in Near Coastal Waters of the Gulf of Mexico: Influence of Hurricane Katrina

    EPA Science Inventory

    The results from this study represent a synoptic analysis of sediment quality in coastal waters of Lake Pontchartrain and Mississippi Sound two months after the landfall of Hurricane Katrina. Post-hurricane conditions were compared to pre-hurricane (2000-2004) conditions, for se...

  13. Status of the amphipod Diporeia ssp. in coastal waters of the Laurentian Great Lakes

    EPA Science Inventory

    Diporeia has historically been the dominant benthic macroinvertebrate in deeper waters of the Laurentian Great Lakes, and its abundance has been proposed as an indicator of ecological condition. In 2010, the USEPA incorporated the Great Lakes into the National Coastal Condition A...

  14. CDOM PRODUCTION BY MANGROVE LEAF LITTER AND SARGASSUM COLONIES IN FLORIDA KEYS COASTAL WATERS

    EPA Science Inventory

    We have investigated the importance of leaf litter from red mangroves (Rhizophora mangle) and living Sargassum plants as sources of chromophoric dissolved organic matter (CDOM) to the coastal ocean waters and coral reef system of the Florida Keys. The magnitude of UVB exposure t...

  15. Using Coastal Fog to Support Sustainable Water Use in a California Agricultural System

    NASA Astrophysics Data System (ADS)

    Baguskas, S. A.; Loik, M. E.

    2015-12-01

    Impacts of climate change threaten California farmers in a number of ways, most importantly through a decline in freshwater availability, concurrent with a rise in water demand. The future of California's multibillion-dollar agricultural industry depends on increasing water use efficiency on farms. In coastal California, the growing season of economically important crops overlaps with the occurrence of coastal fog, which buffers the summer dry season through shading effects and direct water inputs. While the impacts of coastal fog on plant biology have been extensively studied in natural ecosystems, very few studies have evaluated its direct effects on the water and energy budgets of agricultural systems. The objective of this study was to develop a mechanistic understanding of the relationships between coastal fog and the water and energy budgets of croplands in order to improve estimates of crop-scale evapotranspiration rates, which has potential to curtail groundwater use based on local cloud meteorology. We established three sites on strawberry farms along a coastal-inland gradient in the Salinas Valley, California. At each site, we installed a passive fog collector and a micrometeorological station to monitor variation in microclimate conditions. Flow meters were installed in drip lines to quantify irrigation amount and timing. To assess plant response to foggy and non-foggy conditions, we collected measurements of photosynthesis and transpiration rates at the leaf and canopy-scale between June-September 2015. We found that canopy-level transpiration rates on foggy days were reduced by half compared to sunny, clear days (1.5 and 3 mmol H2O m-2 s-1, respectively). Whereas the amount of direct fog water inputs to the soil did not differ significantly between foggy and clear days, average photosynthetically active radiation between 0900-1100 hr. was reduced from 1500 to 500 μmol photons m-2 s-1 between these sampling periods. Our results provide convincing

  16. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh.

    PubMed

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2016-07-01

    More than 35 million people in coastal Bangladesh are vulnerable to increasing freshwater salinization. This will continue to affect more people and to a greater extent as climate change projections are realised in this area in the future. However the evidence for health effects of consuming high salinity water is limited. This research examined the association between drinking water salinity and blood pressure in young adults in coastal Bangladesh. We conducted a cross-sectional study during May-June 2014 in a rural coastal sub-district of Bangladesh. Data on blood pressure (BP) and salinity of potable water sources was collected from 253 participants aged 19-25 years. A linear regression method was used to examine the association between water salinity exposure categories and systolic BP (SBP) and diastolic BP (DBP) level. Sixty five percent of the study population were exposed to highly saline drinking water above the Bangladesh standard (600 mg/L and above). Multivariable linear regression analyses identified that compared to the low water salinity exposure category (<600 mg/L), those in the high water salinity category (>600 mg/L), had statistically significantly higher SBP (B 3.46, 95% CI 0.75, 6.17; p = 0.01) and DBP (B 2.77, 95% CI 0.31, 5.24; p = 0.03). Our research shows that elevated salinity in drinking water is associated with higher BP in young coastal populations. Blood pressure is an important risk factor of hypertension and cardiovascular diseases. Given the extent of salinization of freshwater in many low-lying countries including in Bangladesh, and the likely exacerbation related to climate change-induced sea level rise, implementation of preventative strategies through dietary interventions along with promotion of low saline drinking water must be a priority in these settings.

  17. Fluorescence contribution to reflectance spectra for a variety of coastal waters

    NASA Astrophysics Data System (ADS)

    Gilerson, A.; Zhou, J.; Hlaing, S.; Ioannou, I.; Amin, R.; Gross, B.; Moshary, F.; Ahmed, S.

    2007-09-01

    Improved remote sensing retrievals of the chlorophyll fluorescence component in coastal water reflectance can significantly help environmental impact assessments. While retrieval of chlorophyll fluorescence from satellite observations of open ocean reflectance using Fluorescence Line Height (FLH) algorithms is now routine, it is much more complicated in coastal waters where the fluorescence overlaps with a NIR elastic scattering peak arising from the combination of photosynthetic pigment and particulate scattering and absorption, and rapidly increasing water absorption. To examine retrieval accuracies attainable in coastal waters by MODIS and other FLH algorithms, we compared the results of extensive numerical simulations with those of our field measurements in the Chesapeake Bay. The relationship between the contribution of fluorescence in the reflectance spectra and [Chl] and other water constituents was analyzed by simulations of more than 1000 reflectances using the HYDROLIGHT radiative transfer program. For these, IOP were related to parameterized microphysical models, following the same procedures used to generate the IOCCG dataset, but with higher (1 nm) spectral resolution, and wider range of parameters including chlorophyll specific absorption more typical of coastal waters. Results of simulations and field measurements show that the variability of retrieved fluorescence can be attributed largely to its attenuation in the water by algae, CDOM and mineral particles, and much less to the variation of the fluorescence quantum yield. Our systematic parametric study of fluorescence as a function of the other water components is then used to define the range of water parameters where fluorescence contributes significantly to the NIR peak reflectance, and where it is almost undetectable.

  18. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh.

    PubMed

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2016-07-01

    More than 35 million people in coastal Bangladesh are vulnerable to increasing freshwater salinization. This will continue to affect more people and to a greater extent as climate change projections are realised in this area in the future. However the evidence for health effects of consuming high salinity water is limited. This research examined the association between drinking water salinity and blood pressure in young adults in coastal Bangladesh. We conducted a cross-sectional study during May-June 2014 in a rural coastal sub-district of Bangladesh. Data on blood pressure (BP) and salinity of potable water sources was collected from 253 participants aged 19-25 years. A linear regression method was used to examine the association between water salinity exposure categories and systolic BP (SBP) and diastolic BP (DBP) level. Sixty five percent of the study population were exposed to highly saline drinking water above the Bangladesh standard (600 mg/L and above). Multivariable linear regression analyses identified that compared to the low water salinity exposure category (<600 mg/L), those in the high water salinity category (>600 mg/L), had statistically significantly higher SBP (B 3.46, 95% CI 0.75, 6.17; p = 0.01) and DBP (B 2.77, 95% CI 0.31, 5.24; p = 0.03). Our research shows that elevated salinity in drinking water is associated with higher BP in young coastal populations. Blood pressure is an important risk factor of hypertension and cardiovascular diseases. Given the extent of salinization of freshwater in many low-lying countries including in Bangladesh, and the likely exacerbation related to climate change-induced sea level rise, implementation of preventative strategies through dietary interventions along with promotion of low saline drinking water must be a priority in these settings. PMID:27089422

  19. NASA COAST and OCEANIA Airborne Missions Support Ecosystem and Water Quality Research in the Coastal Zone

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Kudela, R. M.; Hooker, S. B.; Morrow, J. H.; Russell, P. B.; Palacios, S. L.; Livingston, J. M.; Negrey, K.; Torres-Perez, J. L.; Broughton, J.

    2014-12-01

    NASA has a continuing requirement to collect high-quality in situ data for the vicarious calibration of current and next generation ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal is to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. The imaging spectrometer (Headwall) is optimized in the blue spectral domain to emphasize remote sensing of marine and freshwater ecosystems. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data are accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the CIRPAS Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of phytoplankton for coastal zone research.

  20. Chronic kidney disease in two coastal districts of Andhra Pradesh, India: role of drinking water.

    PubMed

    Reddy, D V; Gunasekar, A

    2013-08-01

    Chronic kidney disease (CKD) has been reported in a few coastal regions of Srikakulam district and Chimakurthy mandal (~30-40 km away from the coast) in the Prakasham district of Andhra Pradesh, India. Some medical experts and the local population have apprehensions that the drinking water is the sole reason for this disease in these areas. As the source of drinking water for these two regions is only groundwater, major ions and trace elements were measured on waters from different sources to identify the causative element(s), if any. Comparison of hydrochemical data of both the areas indicates that groundwater in Srikakulam coastal region is less mineralized than that of the Prakasham region, which may be due to geological, hydrological and climatic reasons. However, the concentrations of various inorganic chemicals are within the permissible limits of drinking water. Hence, for the inorganic chemicals to cause ill health, including CKD, is unlikely or is ruled out in the study areas.

  1. Synthesis of the Danish Experience with Combating Nutrient Pollution of Surface Waters: The Old Regulatory Approach and a New Targeted Approach Utilising the Natural Attenuation Capacity in Landscapes

    NASA Astrophysics Data System (ADS)

    Kronvang, Brian; Windolf, Jørgen; Blicher-Mathiesen, Gitte; Tornbjerg, Henrik; Højberg, Anker; Rieman, Bo

    2016-04-01

    Excess nitrogen (N) and phosphorus (P) emissions to surface waters are a high priority environmental problem worldwide for protection of water resources in times of population growth and climate change. As clean water is a scarce resource the struggle for reducing nutrient emissions are an ongoing issue for many countries and regions. Since the mid1980s a wide range of national regulatory general measures have been implemented to reduce land based nitrogen (N) and phosphorus (P) loadings of the Danish aquatic environment. These measures have addressed both point source emissions and emissions from diffuse sources especially from agricultural production. Following nearly 4 decades of combating nutrient pollution our surface waters such as lakes and estuaries are only slowly responding on the 50% reduction in N and 56% reduction in P. Therefore, the implementation of the EU Water Framework Directive in Danish surface waters still call for further reductions of N and P loadings. Introduction of a new paradigm of targeted implemented measures was the proposed outcome of a Commission on Nature and Agriculture established by the Danish Government in 2013. Their White Book points to the need of increased growth and better environment through more targeted and efficient regulation using advanced technological mitigation methods that are implemented intelligently according to the local natural attenuation capacity for nutrients in the landscape. As a follow up a national consensus model for N was established chaining existing leaching, 3D groundwater and surface water models. The new model concept enables a calculation of the N dynamics and attenuation capacity within a scale of 15 km2. Moreover, several research projects have been conducted to investigate the effect of a suite of targeted mitigation measures such as restored natural wetlands, constructed wetlands, controlled drainage and intelligent buffer zones. The outcome of six Danish management plans for nutrient load

  2. Hydrocarbon-water interactions during brine migration: Evidence from hydrocarbon inclusions in calcite cements from Danish North Sea oil fields

    USGS Publications Warehouse

    Jensenius, J.; Burruss, R.C.

    1990-01-01

    Crude oils in primary and secondary fluid inclusions in calcite from fractures in seven offshore oil fields associated with diapiric salt structures in the Danish sector of the North Sea were analyzed by capillary column gas chromatography and compared with crude oils produced from the same reservoirs. Oils from fluid inclusions in all fields show evidence of biodegradation (decreased n-C17/pristane and n-C18/phytane ratios and loss of n-C7, 2-methyl hexane, and 3-methyl hexane relative to methyl cyclohexane) and water washing (absence of benzene and depletion of toluene). Some oils in inclusions are extremely enriched in C6 and C7 cyclic alkanes suggesting that these samples contain hydrocarbons exsolved from ascending, hotter formation waters. Compared to inclusion oils the produced oils are less biodegraded, but are water washed, indicating that both types of oil interacted with large volumes of formation water. The carbon isotopic composition of the calcite host of the fluid inclusions in the Dagmar and Skjold fields is as light as -16.5%. PDB and the sulfur isotopic composition of pyrite in and adjacent to the calcite veins in the Skjold field is as light as -39.6%. CDT, indicating that biodegradation of the oils was a source of some of the carbon in the calcite and sulfate reduction was the source of sulfur for the pyrite. The evidence for microbial degradation of petroleum is consistent with present-day reservoir temperatures (65??-96??C) but is not consistent with previous estimates of the temperatures of calcite vein filling (95??-130??C) which are much higher than the temperatures of known occurrences of biodegraded oil. ?? 1990.

  3. Determining return water levels at ungauged coastal sites: a case study for northern Germany

    NASA Astrophysics Data System (ADS)

    Arns, Arne; Wahl, Thomas; Haigh, Ivan D.; Jensen, Jürgen

    2015-04-01

    We estimate return periods and levels of extreme still water levels for the highly vulnerable and historically and culturally important small marsh islands known as the Halligen, located in the Wadden Sea offshore of the coast of northern Germany. This is a challenging task as only few water level records are available for this region, and they are currently too short to apply traditional extreme value analysis methods. Therefore, we use the Regional Frequency Analysis (RFA) approach. This originates from hydrology but has been used before in several coastal studies and is also currently applied by the local federal administration responsible for coastal protection in the study area. The RFA enables us to indirectly estimate return levels by transferring hydrological information from gauged to related ungauged sites. Our analyses highlight that this methodology has some drawbacks and may over- or underestimate return levels compared to direct analyses using station data. To overcome these issues, we present an alternative approach, combining numerical and statistical models. First, we produced a numerical multidecadal model hindcast of water levels for the entire North Sea. Predicted water levels from the hindcast are bias corrected using the information from the available tide gauge records. Hence, the simulated water levels agree well with the measured water levels at gauged sites. The bias correction is then interpolated spatially to obtain correction functions for the simulated water levels at each coastal and island model grid point in the study area. Using a recommended procedure to conduct extreme value analyses from a companion study, return water levels suitable for coastal infrastructure design are estimated continuously along the entire coastline of the study area, including the offshore islands. A similar methodology can be applied in other regions of the world where tide gauge observations are sparse.

  4. Assessment of the role of remote sensing in the study of inland and coastal waters

    NASA Technical Reports Server (NTRS)

    Curfman, H. J.; Oberholtzer, J. D.; Schertler, R. J.

    1980-01-01

    Several problems within Great Lakes, coastal, and continental shelf water were selected and organized under the topical headings of Productivity, Sedimentation, Water Dynamics, Eutrophication, and Hazardous Substances. The measurements required in the study of each of the problems were identified. An assessment was made of the present capability and the potential of remote sensing to make these measurements. The relevant remote-sensing technology for each of these classifications was discussed and needed advancements indicated.

  5. Development of a Coupled Ocean-Hydrologic Model to Simulate Pollutant Transport in Singapore Coastal Waters

    NASA Astrophysics Data System (ADS)

    Chua, V. P.

    2015-12-01

    Intensive agricultural, economic and industrial activities in Singapore and Malaysia have made our coastal areas under high risk of water pollution. A coupled ocean-hydrologic model is employed to perform three-dimensional simulations of flow and pollutant transport in Singapore coastal waters. The hydrologic SWAT model is coupled with the coastal ocean SUNTANS model by outputting streamflow and pollutant concentrations from the SWAT model and using them as inputs for the SUNTANS model at common boundary points. The coupled model is calibrated with observed sea surface elevations and velocities, and high correlation coefficients that exceed 0.97 and 0.91 are found for sea surface elevations and velocities, respectively. The pollutants are modeled as Gaussian passive tracers, and are released at five upstream locations in Singapore coastal waters. During the Northeast monsoon, pollutants released in Source 1 (Johor River), Source 2 (Tiram River), Source 3 (Layang River) and Source 4 (Layau River) enter the Singapore Strait after 4 days of release and reach Sentosa Island within 9 days. Meanwhile, pollutants released in Source 5 (Kallang River) reach Sentosa Island after 4 days. During the Southwest monsoon, the dispersion time is roughly doubled, with pollutants from Sources 1 - 4 entering the Singapore Strait only after 12 days of release due to weak currents.

  6. Occurrence and distribution of antifouling biocide Irgarol-1051 in coastal waters of Peninsular Malaysia.

    PubMed

    Ali, Hassan Rashid; Arifin, Marinah Mohd; Sheikh, Mohammed Ali; Mohamed Shazili, Noor Azhar; Bachok, Zainudin

    2013-05-15

    Emerging booster biocides contamination raises particular attention in the marine ecosystem health. This study provides the baseline data on the occurrence of Irgarol-1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamiono-s-triazine) in the selected coastal water around Malaysia. The maximum detected concentration of Irgarol was 2021 ng/L at Klang West, commercial and cargo port. Coral reef Islands (Redang and Bidong) were relatively less contaminated compared to other coastal areas. The temporal variation revealed that only 1% of 28 stations sampled on November, 2011 was above the environmental risk limit of 24 ng/L as suggested by Dutch Authorities, while in January and April, 2012; 46% and 92% of the stations were above the limit respectively. The present findings demonstrate the wide detection of novel antifouling materials Irgarol-1051 which advocates the need for proper monitoring and conservation strategies for the coastal resources. PMID:23490347

  7. Ground water contamination and costs of pesticide restrictions in the southeastern coastal plain

    SciTech Connect

    Danielson, L.E.; Carlson, G.A.; Liu, S.; Weber, J.B.; Warren, R.

    1993-01-01

    The project developed new methodology for estimating: (1) groundwater contamination potential (GWCP) in the Southeast Coastal Plain, and (2) the potential economic impacts of selected policies that restrict pesticide use. The potential for ground water contamination was estimated by use of a simple matrix for combining ratings for both soil leaching potential and pesticide leaching potential. Key soil variables included soil texture, soil acidity and organic matter content. Key pesticide characteristics included Koc, pesticide half-life, the rate of application and the fraction of the pesticide hitting the soil. Comparisons of pesticide use from various farmer and expert opinion surveys were made for pesticide groups and for individual pesticide products. Methodology for merging the GWCP changes and lost benefits from selected herbicide cancellations was developed using corn production in the North Carolina Coastal Plain. Economic evaluations of pesticide cancellations for corn included national and Coastal Plain estimates for atrazine; metolachlor; dicamba; dicamba and atrazine; and dicamba, atrazine and metolachlor.

  8. Drinking water contributes to high salt consumption in young adults in coastal Bangladesh.

    PubMed

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Malek, Abdul; Khan, Sheela; Chu, Cordia

    2016-04-01

    Increasing salinity of freshwater from environmental and anthropogenic influences is threatening the health of 35 million inhabitants in coastal Bangladesh. Yet little is known about the characteristics of their exposure to salt (sodium), a major risk factor for hypertension and related chronic diseases. This research examined sodium consumption levels and associated factors in young adults. We assessed spot urine samples for 282 participants (19-25 years) during May-June 2014 in a rural sub-district in southwestern coastal Bangladesh and measured sodium levels of their potable water sources. The significant factors associated with high sodium consumption were determined from logistic regression analyses. Mean sodium content in tube-well water (885 mg/L) was significantly higher than pond water (738 mg/L) (P = 0.01). Fifty three percent of subjects were consuming sodium at levels above the WHO recommended level (≥2 g/day). The users of tube-well water were more likely to consume sodium above this recommended level than pond water users. Salinity problems are projected to increase with climate change, and with large populations potentially at risk, appropriate public health and behavior-change interventions are an urgent priority for this vulnerable coastal region along with targeted research to better understand sodium exposure pathways and health benefits of alternative water supplies. PMID:27105414

  9. Drinking water contributes to high salt consumption in young adults in coastal Bangladesh.

    PubMed

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Malek, Abdul; Khan, Sheela; Chu, Cordia

    2016-04-01

    Increasing salinity of freshwater from environmental and anthropogenic influences is threatening the health of 35 million inhabitants in coastal Bangladesh. Yet little is known about the characteristics of their exposure to salt (sodium), a major risk factor for hypertension and related chronic diseases. This research examined sodium consumption levels and associated factors in young adults. We assessed spot urine samples for 282 participants (19-25 years) during May-June 2014 in a rural sub-district in southwestern coastal Bangladesh and measured sodium levels of their potable water sources. The significant factors associated with high sodium consumption were determined from logistic regression analyses. Mean sodium content in tube-well water (885 mg/L) was significantly higher than pond water (738 mg/L) (P = 0.01). Fifty three percent of subjects were consuming sodium at levels above the WHO recommended level (≥2 g/day). The users of tube-well water were more likely to consume sodium above this recommended level than pond water users. Salinity problems are projected to increase with climate change, and with large populations potentially at risk, appropriate public health and behavior-change interventions are an urgent priority for this vulnerable coastal region along with targeted research to better understand sodium exposure pathways and health benefits of alternative water supplies.

  10. Iron clad wetlands: Soil iron-sulfur buffering determines coastal wetland response to salt water incursion

    NASA Astrophysics Data System (ADS)

    Schoepfer, Valerie A.; Bernhardt, Emily S.; Burgin, Amy J.

    2014-12-01

    Coastal freshwater wetland chemistry is rapidly changing due to increased frequency of salt water incursion, a consequence of global change. Seasonal salt water incursion introduces sulfate, which microbially reduces to sulfide. Sulfide binds with reduced iron, producing iron sulfide (FeS), recognizable in wetland soils by its characteristic black color. The objective of this study is to document iron and sulfate reduction rates, as well as product formation (acid volatile sulfide (AVS) and chromium reducible sulfide (CRS)) in a coastal freshwater wetland undergoing seasonal salt water incursion. Understanding iron and sulfur cycling, as well as their reduction products, allows us to calculate the degree of sulfidization (DOS), from which we can estimate how long soil iron will buffer against chemical effects of sea level rise. We show that soil chloride, a direct indicator of the degree of incursion, best predicted iron and sulfate reduction rates. Correlations between soil chloride and iron or sulfur reduction rates were strongest in the surface layer (0-3 cm), indicative of surface water incursion, rather than groundwater intrusion at our site. The interaction between soil moisture and extractable chloride was significantly related to increased AVS, whereas increased soil chloride was a stronger predictor of CRS. The current DOS in this coastal plains wetland is very low, resulting from high soil iron content and relatively small degree of salt water incursion. However, with time and continuous salt water exposure, iron will bind with incoming sulfur, creating FeS complexes, and DOS will increase.

  11. Susceptibility and status of Gulf of Mexico estuaries to nutrient discharges. Strategic assessment of near-coastal waters. Summary report

    SciTech Connect

    Quinn, H.; Tolson, J.P.; Klein, C.J.; Orlando, S.P.; Alexander, C.

    1989-06-01

    The report summarizes the estimated relative susceptibility and estimated status of 23 estuaries in the Gulf of Mexico with respect to nutrient-related pollution. It is the second of a series of reports being developed to assist the U.S. EPA implement its Near Coastal Waters Program and National Estuary Program. The report is intended to increase understanding of coastal environmental problems and to serve as a tool for coastal resource decision-making.

  12. Potable water scarcity: options and issues in the coastal areas of Bangladesh.

    PubMed

    Islam, Atikul; Sakakibara, Hiroyuki; Karim, Rezaul; Sekine, Masahiko

    2013-09-01

    In the coastal areas of Bangladesh, scarcity of drinking water is acute as freshwater aquifers are not available at suitable depths and surface water is highly saline. Households are mainly dependent on rainwater harvesting, pond sand filters and pond water for drinking purposes. Thus, individuals in these areas often suffer from waterborne diseases. In this paper, water consumption behaviour in two southwestern coastal districts of Bangladesh has been investigated. The data for this study were collected through a survey conducted on 750 rural households in 39 villages of the study area. The sample was selected using a random sampling technique. Households' choice of water source is complex and seasonally dependent. Water sourcing patterns, households' preference of water sourcing options and economic feasibility of options suggest that a combination of household and community-based options could be suitable for year-round water supply. Distance and time required for water collection were found to be difficult for water collection from community-based options. Both household and community-based options need regular maintenance. In addition to installation of water supply facilities, it is necessary to make the residents aware of proper operation and maintenance of the facilities.

  13. Fog Water Use in Coastal California Shrub Species

    NASA Astrophysics Data System (ADS)

    Emery, N.; D'Antonio, C. M.

    2014-12-01

    Fog strongly influences plant communities along the California coast. Chaparral and California Sage Scrub are no exception. This study identified fog water use in five shrub species from the Santa Barbara region. The authors collected fog, rain and groundwater from several field sites for three years (2011-2013) to establish the source water isotopic signatures. Plant stem tissue was collected periodically throughout the summer months and water was extracted for stable isotope analysis. To account for soil evaporative fractionation, the authors collected soil samples from the field and constructed local evaporative correction lines. Preliminary mixing model analysis suggests fog water use in several shrub species while others utilized rain and groundwater during the late summer. This additional water may buffer the effects of summer drought in only some of the species that live in the shrub-dominated communities along the California coast.

  14. The dead zones: oxygen-starved coastal waters.

    PubMed Central

    Joyce, S

    2000-01-01

    After the great Mississippi River flood of 1993, the hypoxic (or low-oxygen) "dead zone" in the Gulf of Mexico more than doubled its size, reaching an all-time high of over 7,700 square miles in July of 1999. Scientists attribute the Gulf of Mexico dead zone largely to nutrient runoff from agriculture in the Mississippi River basin. During the warm months, these nutrients fuel eutrophication, or high organic production, causing large algal blooms. When the algae decay, the result is hypoxia. Reports of such hypoxic events around the world have been increasing since the mid 1960s. Eutrophication and hypoxia have resulted in mortality of bottom-dwelling life in dozens of marine ecosystems and have stressed fisheries worldwide. Some algal blooms can alter the function of coastal ecosystems or, potentially, threaten human health. Anthropogenic nutrient loading from sources such as agriculture, fossil fuel emissions, and climate events is believed to be related to the global increase in frequency, size, and duration of certain algal blooms. PMID:10706539

  15. The dead zones: oxygen-starved coastal waters.

    PubMed

    Joyce, S

    2000-03-01

    After the great Mississippi River flood of 1993, the hypoxic (or low-oxygen) "dead zone" in the Gulf of Mexico more than doubled its size, reaching an all-time high of over 7,700 square miles in July of 1999. Scientists attribute the Gulf of Mexico dead zone largely to nutrient runoff from agriculture in the Mississippi River basin. During the warm months, these nutrients fuel eutrophication, or high organic production, causing large algal blooms. When the algae decay, the result is hypoxia. Reports of such hypoxic events around the world have been increasing since the mid 1960s. Eutrophication and hypoxia have resulted in mortality of bottom-dwelling life in dozens of marine ecosystems and have stressed fisheries worldwide. Some algal blooms can alter the function of coastal ecosystems or, potentially, threaten human health. Anthropogenic nutrient loading from sources such as agriculture, fossil fuel emissions, and climate events is believed to be related to the global increase in frequency, size, and duration of certain algal blooms.

  16. Portraits of our coastal waters. Supplement to the national water quality inventory. Report from the EPA regions

    SciTech Connect

    Not Available

    1991-06-01

    Contents: pathogen contamination in great bay, new hampshire; water quality problems in the middle atlantic bight; red tide in the eastern Gulf of Mexico; oxygen depleted coastal and estuarine waters in Louisiana and Texas; sediment deficit and saltwater intrusion in Barataria Basin, Louisiana; toxic contamination in San Diego Bay, California; salmon mortality problems in Port Townsend Bay, Washington; multimedia pollutants effect Green Bay/Fox River, Wisconsin.

  17. Phosphorus load to surface water from bank erosion in a Danish lowland river basin.

    PubMed

    Kronvang, Brian; Audet, Joachim; Baattrup-Pedersen, Annette; Jensen, Henning S; Larsen, Søren E

    2012-01-01

    Phosphorus loss from bank erosion was studied in the catchment of River Odense, a lowland Danish river basin, with the aim of testing the hypothesis of whether stream banks act as major diffuse phosphorus (P) sources at catchment scale. Furthermore, the study aimed at analyzing the impact of different factors influencing bank erosion and P loss such as stream order, anthropogenic disturbances, width of uncultivated buffer strips, and the vegetation of buffer strips. A random stratified procedure in geographical information system (GIS) was used to select two replicate stream reaches covering different stream orders, channelized vs. naturally meandering channels, width of uncultivated buffer strips (≤ 2 m and ≥ 10 m), and buffer strips with different vegetation types. Thirty-six 100-m stream reaches with 180 bank plots and a total of 3000 erosion pins were established in autumn 2006, and readings were conducted during a 3-yr period (2006-2009). The results show that neither stream size nor stream disturbance measured as channelization of channel or the width of uncultivated buffer strip had any significant ( < 0.05) influence on bank erosion and P losses during each of the 3 yr studied. In buffer strips with natural trees bank erosion was significantly ( < 0.05) lower than in buffer strips dominated by grass and herbs. Gross and net P input from bank erosion amounted to 13.8 to 16.5 and 2.4 to 6.3 t P, respectively, in the River Odense catchment during the three study years. The net P input from bank erosion equaled 17 to 29% of the annual total P export and 21 to 62% of the annual export of P from diffuse sources from the River Odense catchment. Most of the exported total P was found to be bioavailable (71.7%) based on a P speciation of monthly suspended sediment samples collected at the outlet of the river basin. The results found in this study have a great importance for managers working with P mitigation and modeling at catchment scale.

  18. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp.

    PubMed Central

    Teichberg, Mirta; Fox, Sophia E; Olsen, Ylva S; Valiela, Ivan; Martinetto, Paulina; Iribarne, Oscar; Muto, Elizabeti Yuriko; Petti, Monica A V; Corbisier, Thaïs N; Soto-Jiménez, Martín; Páez-Osuna, Federico; Castro, Paula; Freitas, Helena; Zitelli, Andreina; Cardinaletti, Massimo; Tagliapietra, Davide

    2010-01-01

    Receiving coastal waters and estuaries are among the most nutrient-enriched environments on earth, and one of the symptoms of the resulting eutrophication is the proliferation of opportunistic, fast-growing marine seaweeds. Here, we used a widespread macroalga often involved in blooms, Ulva spp., to investigate how supply of nitrogen (N) and phosphorus (P), the two main potential growth-limiting nutrients, influence macroalgal growth in temperate and tropical coastal waters ranging from low- to high-nutrient supplies. We carried out N and P enrichment field experiments on Ulva spp. in seven coastal systems, with one of these systems represented by three different subestuaries, for a total of nine sites. We showed that rate of growth of Ulva spp. was directly correlated to annual dissolved inorganic nitrogen (DIN) concentrations, where growth increased with increasing DIN concentration. Internal N pools of macroalgal fronds were also linked to increased DIN supply, and algal growth rates were tightly coupled to these internal N pools. The increases in DIN appeared to be related to greater inputs of wastewater to these coastal waters as indicated by high δ15N signatures of the algae as DIN increased. N and P enrichment experiments showed that rate of macroalgal growth was controlled by supply of DIN where ambient DIN concentrations were low, and by P where DIN concentrations were higher, regardless of latitude or geographic setting. These results suggest that understanding the basis for macroalgal blooms, and management of these harmful phenomena, will require information as to nutrient sources, and actions to reduce supply of N and P in coastal waters concerned.

  19. Temporal and spatial diversity of bacterial communities in coastal waters of the South china sea.

    PubMed

    Du, Jikun; Xiao, Kai; Li, Li; Ding, Xian; Liu, Helu; Lu, Yongjun; Zhou, Shining

    2013-01-01

    Bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems. Temporal and geographical patterns in ocean bacterial communities have been observed in many studies, but the temporal and spatial patterns in the bacterial communities from the South China Sea remained unexplored. To determine the spatiotemporal patterns, we generated 16S rRNA datasets for 15 samples collected from the five regularly distributed sites of the South China Sea in three seasons (spring, summer, winter). A total of 491 representative sequences were analyzed by MOTHUR, yielding 282 operational taxonomic units (OTUs) grouped at 97% stringency. Significant temporal variations of bacterial diversity were observed. Richness and diversity indices indicated that summer samples were the most diverse. The main bacterial group in spring and summer samples was Alphaproteobacteria, followed by Cyanobacteria and Gammaproteobacteria, whereas Cyanobacteria dominated the winter samples. Spatial patterns in the samples were observed that samples collected from the coastal (D151, D221) waters and offshore (D157, D1512, D224) waters clustered separately, the coastal samples harbored more diverse bacterial communities. However, the temporal pattern of the coastal site D151 was contrary to that of the coastal site D221. The LIBSHUFF statistics revealed noticeable differences among the spring, summer and winter libraries collected at five sites. The UPGMA tree showed there were temporal and spatial heterogeneity of bacterial community composition in coastal waters of the South China Sea. The water salinity (P=0.001) contributed significantly to the bacteria-environment relationship. Our results revealed that bacterial community structures were influenced by environmental factors and community-level changes in 16S-based diversity were better explained by spatial patterns than by temporal patterns.

  20. Couplings of watersheds and coastal waters: Sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts

    SciTech Connect

    Valiela, I.; Foreman, K.; LaMontagne, M.; Hersh, D.; Costa, J. ); Peckol, P.; DeMeo-Anderson, B. ); D'Avanzo, C.; Babione, M. ); Sham, Chiho; Brawley, J.; Lajtha, K. )

    1992-12-01

    Human activities on coastal watersheds provide the major sources of nutrients entering shallow coastal ecosystems. Nutrient loadings from watersheds alter structure and function of receiving aquatic ecosystems. To investigate this coupling of land to marine systems, a series of subwatersheds of Waquoit Bay differing in degree of urbanization and with widely different nutrient loading rates was studied. The subwatersheds differ in septic tanks numbers and forest acreage. Ground water is the major mechanism that transports nutrients to coastal waters. Some attenuation of nutrient concentrations within the aquifer or at the sediment-water interface, but significant increases in the nutrient content of groundwater arriving at the shore's edge are in urbanized areas. The groundwater flows through the sediment-water boundary, and sufficient groundwater-borne nutrients (nitrogen in particular) traverse the sediment-water boundary to cause significant changes in the aquatic ecosystem. These loading-dependent alterations include increased nutrients in water, greater primary production by phytoplankton, and increased macroalgal biomass and growth. The increased macroalgal biomass dominates the bay ecosystem through second- or third-order effects such as alterations of nutrient status of water columns and increasing frequency of anoxic events. The increases in seaweeds have decreased the areas covered by eelgrass habitats. The change in habitat type, plus the increased frequency of anoxic events, change the composition of the benthic fauna. The importance of bottom-up control in shallow coastal food webs is evident. The coupling of land to sea by groundwater-borne nutrient transport is mediated by a complex series of steps, making it unlikely to find a one-to-one relation between land use and conditions in the aquatic ecosystem. Appropriate models may provide a way to deal with the complexities of the coupling. 22 refs., 14 figs., 5 tabs.

  1. Ground-water data as of 1967, Central Coastal Subregion, California

    USGS Publications Warehouse

    Bader, J.S.

    1969-01-01

    Most usable ground water in the predominantly mountainous Central Coastal Subregion occurs in alluvium-filled valleys and coastal plains and in deeper aquifers of Quaternary and Tertiary age. The intervening mountainous areas are underlain by consolidated sedimentary, igneous, and metamorphic rocks, mainly of Mesozoic age. These older rocks contain only small quantities of recoverable ground water and, therefore, are not considered a major source of ground water. In the Central Coastal Subregion, 24 basins have been identified as significant sources of ground water. The total area of the 24 basins is about 3,500 square miles. The water-bearing deposits range in thickness from about 200 to 4,000 feet. Depending on local conditions, recharge infiltrates at rates of less than 1½ feet per day to more than 10 feet per day in the upper part of alluvial fans and stream channels and at the outcrops of the deeper aquifers. The maximum measured depth to water in the water-bearing deposits is 568 ft. In several valleys there are flowing wells. Total storage capacity of 16 of the basins is more than 20,000,000 acre-feet . The usable storage capacity of 18 of the basins is more than 7,600,000 acre-feet; the limiting factors are sea-water intrusion and high pumping lift. Ground-water temperature ranges from about 55° to about 75°F . The dissolved-solids content of the water is generally less than 800 parts per million, but locally is more than 11,000 parts per million. The predominant water type is calcium bicarbonate, but sodium, magnesium, sulfate, and chloride are present locally in significant quantities. Properly constructed wells in some areas can yield 425 gallons per minute.

  2. Fractionation of 210Po and 210Pb in coastal waters of the NW Mediterranean continental margin

    NASA Astrophysics Data System (ADS)

    Tateda, Yutaka; Carvalho, Fernando P.; Fowler, Scott W.; Miquel, Juan-Carlos

    2003-03-01

    The natural radionuclides 210Po and 210Pb were analyzed in samples of surface sea water, rain and dry fallout, and river water collected along the NW Mediterranean coast as well as from a sediment trap moored 3 km south of Monaco. Using a box model calculation, the balances and fluxes of 210Po and 210Pb in the coastal waters of the NW Mediterranean were estimated. Atmospheric inputs of 210Po and 210Pb to Monaco coastal waters varied seasonally and were maximal in winter when storms and strong winds transfered continental 222Rn-rich air and aerosols of top soil particles to coastal surface waters, which in turn enhanced the 210Po and 210Pb input to these waters. The balance estimation using all fluxes in surface waters indicated that 210Pb was removed from surface water with residence times of 2.1, 0.40, and 2.7 years for dissolved, particulate, and total 210Pb, respectively. In the bottom water and surface sediments, additional excess 210Pb sinking and sedimentation fluxes were observed, suggesting a substantial down slope transport of sediment particles. Similarly, the residence times of 210Po in surface water were 1.2, 0.38, and 0.77 years for dissolved, particulate, and total 210Po, respectively; however, a deficit in the 210Po sinking flux in the bottom layer, compared to removal flux from the surface waters, suggested rapid degradation of 210Po-bearing biogenic particles during sinking following periods of low biological productivity.

  3. Sources of Potential Water Imbalance in Low-gradient Coastal Watersheds

    NASA Astrophysics Data System (ADS)

    Amatya, D. M.; Trettin, C.; Williams, T. M.

    2011-12-01

    In recent years there has been an increasing concern of water yield/balance from watersheds because of population growth, land use change, and climate change, including variability of its extremes. These concerns are equally valid for the humid Southeastern Coastal Plain as well as arid/semi-arid regions. The Coastal Plain is generally characterized by flat, low-gradient systems where the average annual rainfall generally equals or exceeds the potential evapotranspiration (ET) often resulting in excess soil-water. More than 60% of the region is covered by forest ecosystems, including wetlands, where the regional long-term water balance includes 70-80% of average annual precipitation lost to ET. Maintaining this balance is important to both economic development as well as land and water management practices in this landscape. However, both anthropogenic and natural disturbances can easily create "imbalance" of rainfall, ET, and eventually, in water yield and supply. In this presentation we summarize various reasons that can and are tending to cause the imbalance of water in this region. Clearing of forest ecosystems near the coastal waters for rapid and expanded urbanization with increased imperviousness results in decreased transpiration, dramatic increase in surface runoff and flooding as well as decrease in sustained base flows. Understanding of such imbalances from pre-developed forested conditions is critical for developing best management practices (BMPs) to create a new sustained "balance" in the developed system. An " imbalance" caused by a dramatic temporal shift in water balance as may occur in the forest ecosystem due to continuous climate change or changes in magnitude and frequency of extreme climatic events. This may be caused by shift in vegetation species and growth patterns, including invasive species and forest die-off, all of which affect rainfall-ET balance and, thereby, water yield. Similarly, the extreme climatic events characteristic to the

  4. Hydrogeology, water quality, and microbial assessment of a coastal alluvial aquifer in western Saudi Arabia: potential use of coastal wadi aquifers for desalination water supplies

    NASA Astrophysics Data System (ADS)

    Missimer, Thomas M.; Hoppe-Jones, Christiane; Jadoon, Khan Z.; Li, Dong; Al-Mashharawi, Samir K.

    2014-12-01

    Wadi alluvial aquifers located along coastal areas of the Middle East have been assumed to be suitable sources of feed water for seawater reverse osmosis facilities based on high productivity, connectedness to the sea for recharge, and the occurrence of seawater with chemistry similar to that in the adjacent Red Sea. An investigation of the intersection of Wadi Wasimi with the Red Sea in western Saudi Arabia has revealed that the associated predominantly unconfined alluvial aquifer divides into two sand-and-gravel aquifers at the coast, each with high productivity (transmissivity = 42,000 m2/day). This aquifer system becomes confined near the coast and contains hypersaline water. The hydrogeology of Wadi Wasimi shows that two of the assumptions are incorrect in that the aquifer is not well connected to the sea because of confinement by very low hydraulic conductivity terrigenous and marine muds and the aquifer contains hypersaline water as a result of a hydraulic connection to a coastal sabkha. A supplemental study shows that the aquifer system contains a diverse microbial community composed of predominantly of Proteobacteria with accompanying high percentages of Gammaproteobacteria, Alphaproteobacteria and Deltaproteobacteria.

  5. Coastal water quality from remote sensing and GIS. A case study on South West Sardinia (Italy)

    SciTech Connect

    Poli, U.; Ippoliti, M.; Venturini, C.; Falcone, P.; Marino, A.

    1997-08-01

    In this paper the application of remote sensing image processing and GIS techniques in monitoring and managing coastal areas is proposed. The methodology has been applied to South-West Sardinia Coast where the environment is endangered by industrial plants and other human activities. The area is characterized by the presence of many submarine springs aligned along coastal cliffs. Water quality parameters (chlorophyll, suspended sediments and temperature) spatial and temporal variations, have been studied using Landsat TM images. Particularly, in this paper are reported the results referred to sea surface thermal gradients, considered as one of the main water quality index. Thermal gradients have been mapped in order to outline water circulation, thermal pollution and presence and distribution of submarine springs. Furthermore, a GIS approach of relating mono and multitemporal TM data with ground referenced information on industrial plants characteristics and distribution has been applied.

  6. Cloud masking of SeaWiFS images over coastal waters using spectral variability.

    PubMed

    Nordkvist, Karin; Loisel, Hubert; Gaurier, Lucile D

    2009-07-20

    Cloud masks developed in the frame of ocean color missions are usually based on the assumption that the marine reflectance is close to zero in the near-infrared (NIR). This is valid over the open ocean, but coastal (Case-2) waters may have a higher NIR reflectance due to suspended matter and non-maritime aerosols. Cloud-free pixels are sometimes classed as clouds, leading to a loss of data. We present an algorithm, based on standard ocean color wavelengths, that makes use of the lower spectral variability of clouds compared to water. Images from different coastal areas have been used to develop and test the algorithm and a radiative transfer model has been used for a numerical sensitivity analysis. The algorithm shows a good performance in many of the tested scenes, and using this algorithm instead of the standard SeaWiFS NIR threshold will increase the amount of data over Case-2 waters.

  7. Bathing water profile in the coastal belt of the province of Pescara (Italy, Central Adriatic Sea).

    PubMed

    Liberatore, Lolita; Murmura, Federica; Scarano, Antonio

    2015-06-15

    The quality of bathing water is fundamental, not only from an environmental point of view but also due to the economic importance of tourism. This paper examines the water profile in the coastal belt of the province of Pescara (Italy, Central Adriatic Sea) with reference to the microbiological parameters Escherichia coli and intestinal enterococci required by Directive 2006/07 of European Commission. The water quality of 15 coastal beaches was surveyed; data were produced from monitoring and controls made available by the Abruzzo Regional Environmental Prevention and Protection Agency (ARTA) and extracted and elaborated for the period of interest (2010-2013). Statistical analysis was used to confirm the aspects deduced from mean values of monitoring and control data for each stretch. The data highlight critical situations in various parts of the coast; these problems can be attributed to river pollution, mainly due to the malfunctioning of the treatment plants for urban wastewater.

  8. Bathing water profile in the coastal belt of the province of Pescara (Italy, Central Adriatic Sea).

    PubMed

    Liberatore, Lolita; Murmura, Federica; Scarano, Antonio

    2015-06-15

    The quality of bathing water is fundamental, not only from an environmental point of view but also due to the economic importance of tourism. This paper examines the water profile in the coastal belt of the province of Pescara (Italy, Central Adriatic Sea) with reference to the microbiological parameters Escherichia coli and intestinal enterococci required by Directive 2006/07 of European Commission. The water quality of 15 coastal beaches was surveyed; data were produced from monitoring and controls made available by the Abruzzo Regional Environmental Prevention and Protection Agency (ARTA) and extracted and elaborated for the period of interest (2010-2013). Statistical analysis was used to confirm the aspects deduced from mean values of monitoring and control data for each stretch. The data highlight critical situations in various parts of the coast; these problems can be attributed to river pollution, mainly due to the malfunctioning of the treatment plants for urban wastewater. PMID:25934432

  9. Drivers of water quality variability in northern coastal Ecuador.

    PubMed

    Levy, Karen; Hubbard, Alan E; Nelson, Kara L; Eisenberg, Joseph N S

    2009-03-15

    Microbiological safety of water is commonly measured using indicator organisms, but the spatiotemporal variability of these indicators can make interpretation of data difficult. Here, we systematically explore the variability in Escherichia coil concentrations in surface source and household drinking water in a rural Ecuadorian village over one year. We observed more variability in water quality on an hourly basis (up to 2.4 log difference) than on a daily (2.2 log difference) or weekly basis (up to 1.8 log difference). E. coli counts were higher in the wet season than in the dry season for source (0.42 log difference, p < 0.0001) and household (0.11 log difference, p = 0.077) samples. In the wet season, a 1 cm increase in weekly rainfall was associated with a 3% decrease (p = 0.006) in E. coli counts in source samples and a 6% decrease (p = 0.012) in household samples. Each additional person in the river when source samples were collected was associated with a 4% increase (p = 0.026) in E. coil counts in the wet season. Factors affecting household water quality included rainfall, water source, and covering the container. The variability can be understood as a combination of environmental (e.g., seasonal and soil processes) and other drivers (e.g., human river use, water practices, and sanitation), each working at different time scales.

  10. MOCASSIM - an operational forecast system for the Portuguese coastal waters.

    NASA Astrophysics Data System (ADS)

    Vitorino, J.; Soares, C.; Almeida, S.; Rusu, E.; Pinto, J.

    2003-04-01

    An operational system for the forecast of oceanographic conditions off the Portuguese coast is presently being implemented at Instituto Hidrográfico (IH), in the framework of project MOCASSIM. The system is planned to use a broad range of observations provided both from IH observational networks (wave buoys, tidal gauges) and programs (hydrographic surveys, moorings) as well as from external sources. The MOCASSIM system integrates several numerical models which, combined, are intended to cover the relevant physical processes observed in the geographical areas of interest. At the present stage of development the system integrates a circulation module and a wave module. The circulation module is based on the Harvard Ocean Prediction System (HOPS), a primitive equation model formulated under the rigid lid assumption, which includes a data assimilation module. The wave module is based on the WaveWatch3 (WW3) model, which provides wave conditions in the North Atlantic basin, and on the SWAN model which is used to improve the wave forecasts on coastal or other specific areas of interest. The models use the meteorological forcing fields of a limited area model (ALADIN model) covering the Portuguese area, which are being provided in the framework of a close colaboration with Instituto de Meteorologia. Although still under devellopment, the MOCASSIM system has already been used in several operationnal contexts. These included the operational environmental assessment during both national and NATO navy exercises and, more recently, the monitoring of the oceanographic conditions in the NW Iberian area affected by the oil spill of MV "Prestige". The system is also a key component of ongoing research on the oceanography of the Portuguese continental margin, which is presently being conducted at IH in the framework of national and European funded projects.

  11. Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters

    PubMed Central

    Unrein, Fernando; Gasol, Josep M; Not, Fabrice; Forn, Irene; Massana, Ramon

    2014-01-01

    Grazing rate estimates indicate that approximately half of the bacterivory in oligotrophic oceans is due to mixotrophic flagellates (MFs). However, most estimations have considered algae as a single group. Here we aimed at opening the black-box of the phytoflagellates (PFs) <20 μm. Haptophytes, chlorophytes, cryptophytes and pigmented dinoflagellates were identified using fluorescent in situ hybridization or by standard 4′,6-diamidino-2-phenylindole staining. Their fluctuations in abundance, cell size, biomass and bacterivory rates were measured through an annual cycle in an oligotrophic coastal system. On average, we were able to assign to these groups: 37% of the total pico-PFs and 65% of the nano-PFs composition. Chlorophytes were mostly picoplanktonic and they never ingested fluorescently labeled bacteria. About 50% of the PF <20 μm biomass was represented by mixotrophic algae. Pigmented dinoflagellates were the least abundant group with little impact on bacterioplankton. Cryptophytes were quantitatively important during the coldest periods and explained about 4% of total bacterivory. Haptophytes were the most important mixotrophic group: (i) they were mostly represented by cells 3–5 μm in size present year-round; (ii) cell-specific grazing rates were comparable to those of other bacterivorous non-photosynthetic organisms, regardless of the in situ nutrient availability conditions; (iii) these organisms could acquire a significant portion of their carbon by ingesting bacteria; and (iv) haptophytes explained on average 40% of the bacterivory exerted by MFs and were responsible for 9–27% of total bacterivory at this site. Our results, when considered alongside the widespread distribution of haptophytes in the ocean, indicate that they have a key role as bacterivores in marine ecosystems. PMID:23924785

  12. Satellite-based virtual buoy system to monitor coastal water quality

    NASA Astrophysics Data System (ADS)

    Hu, Chuanmin; Barnes, Brian B.; Murch, Brock; Carlson, Paul

    2014-05-01

    There is a pressing need to assess coastal and estuarine water quality state and anomaly events to facilitate coastal management, but such a need is hindered by lack of resources to conduct frequent ship-based or buoy-based measurements. Here, we established a virtual buoy system (VBS) to facilitate satellite data visualization and interpretation of water quality assessment. The VBS is based on a virtual antenna system (VAS) that obtains low-level satellite data and generates higher-level data products using both National Aeronautics and Space Administration standard algorithms and regionally customized algorithms in near real time. The VB stations are predefined and carefully chosen to cover water quality gradients in estuaries and coastal waters, where multiyear time series at monthly and weekly intervals are extracted for the following parameters: sea surface temperature (°C), chlorophyll-a concentration (mg m-3), turbidity (NTU), diffuse light attenuation at 490 nm [Kd(490), m-1] or secchi disk depth (m), absorption coefficient of colored dissolved organic matter (m-1), and bottom available light (%). The time-series data are updated routinely and provided in both ASCII and graphical formats via a user-friendly web interface where all information is available to the user through a simple click. The VAS and VBS also provide necessary infrastructure to implement peer-reviewed regional algorithms to generate and share improved water quality data products with the user community.

  13. Assessment of acidification and eutrophication in the coastal waters of Bolinao, Pangasinan, Philippines

    NASA Astrophysics Data System (ADS)

    Lagumen, M. C. T.; San Diego-McGlone, M. L.

    2014-12-01

    Ocean acidification is becoming a global concern due to its potential effects on marine resources. In coastal areas, an emerging problem is ocean acidicification due to eutrophication resulting from human activities. The coastal water of Bolinao, Pangasinan, Philippines has become eutrophic due to increased nutrient loading from unconsumed fish feeds in fish cages. Mariculture is a big industry in Bolinao. In over a decade, the area has experienced decreased oxygen levels leading to hypoxia, fish kills, and algal blooms. The decomposition of organic matter from unconsumed fish feeds results not only to high nutrient buildup but also increased CO2 and acidity in the area. Nutrients (ammonia, nitrate, nitrite, phosphate and silicate), total alkalinity (TA), dissolved inorganic carbon (DIC), pH, dissolved oxygen (DO), aragonite saturation state (Ωarg) and partial pressure of carbon dioxide (pCO2) were measured to determine the combined effect of acidification and eutrophication in Bolinao. Monitoring results have shown an increase in nutrients by 30% to 70% in over a decade. Stratified water during rainy season have resulted in low DO (<5.5) and acidic water (<7.5) with high pCO2 level (>900 μatm). Shallow stations with poor water circulation have shown undersaturated aragonite state (< 2.0) and high pCO2 levels of 800 matm. The eutrophic and acidified coastal waters of Bolinao are already affecting the seagrass and coral reef ecosystems in the area.

  14. Comparing Stable Water Isotope Variation in Atmospheric Moisture Observed over Coastal Water and Forests

    NASA Astrophysics Data System (ADS)

    Lai, C. T.; Rambo, J. P.; Welp, L. R.; Bible, K.; Hollinger, D. Y.

    2014-12-01

    Stable oxygen (δ18O) and hydrogen (δD) isotopologues of atmospheric moisture are strongly influenced by large-scale synoptic weather cycles, surface evapotranspiration and boundary layer mixing. Atmospheric water isotope variation has been shown to empirically relate to relative humidity (Rh) of near surface moisture, and to a less degree, air temperature. Continuous δ18O and δD measurements are becoming more available, providing new opportunities to investigate processes that control isotope variability. This study shows the comparison of δ18O and δD measured at a continental location and over coastal waters for 3 seasons (spring to fall, 2014). The surface moisture isotope measurements were made using two LGR spectroscopy water vapor isotope analyzers (Los Gatos Research Inc.), one operated in an old-growth coniferous forest at Wind River field station, WA (45.8205°N, 121.9519°W), and another sampling marine air over seawater at the Scripps Pier in San Diego, CA (32.8654°N, 117.2536°W), USA. Isotope variations were measured at 1Hz and data were reported as hourly averages with an overall accuracy of ±0.1‰ for δ18O, ±0.5‰ for δ2H. Day-to-day variations in δ18O and δD are shown strongly influenced by synoptic weather events at both locations. Boundary layer mixing between surface moisture and the dry air entrained from the free troposphere exerts a midday maximum and a consistent diel pattern in deuterium excess (dx). At the forest site, surface moisture also interacts with leaf water through transpiration during the day and re-equilibration at night. The latter occurs by retro-diffusion of atmospheric H2O molecules into leaf intercellular space, which becomes intensified as Rh increaes after nightfall, and continues until sunrise, to counter-balance the evaporative isotopic enrichment in leaf water on a daily basis. These vegetation effects lead to negative dx values consistently observed at nighttime in this continental location that were not

  15. Influence of Reservoir Infill on Coastal Deep Water Hypoxia.

    PubMed

    Linker, Lewis C; Batiuk, Richard A; Cerco, Carl F; Shenk, Gary W; Tian, Richard; Wang, Ping; Yactayo, Guido

    2016-05-01

    Ecological restoration of the Chesapeake through the Chesapeake Bay total maximum daily load (TMDL) requires the reduction of nitrogen, phosphorus, and sediment loads in the Chesapeake watershed because of the tidal water quality impairments and damage to living resources they cause. Within the Chesapeake watershed, the Conowingo Reservoir has been filling in with sediment for almost a century and is now in a state of near-full capacity called . The development of the Chesapeake TMDL in 2010 was with the assumption that the Conowingo Reservoir was still effectively trapping sediment and nutrients. This is now known not to be the case. In a TMDL, pollutant loads beyond the TMDL allocation, which are brought about by growth or other conditions, must be offset. Using the analysis tools of the Chesapeake TMDL for assessing the degree of water quality standard attainment, the estimated nutrient and sediment loads from a simulated dynamic equilibrium infill condition of the Conowingo Reservoir were determined. The influence on Chesapeake water quality by a large storm and scour event of January 1996 on the Susquehanna River was estimated, and the same storm and scour events were also evaluated in the more critical living resource period of June. An analysis was also made on the estimated influence of more moderate high flow events. The infill of the Conowingo reservoir had estimated impairments of water quality, primarily on deep-water and deep-channel dissolved oxygen, because of increased discharge and transport of organic and particulate inorganic nutrients from the Conowingo Reservoir. PMID:27136155

  16. Influence of Reservoir Infill on Coastal Deep Water Hypoxia.

    PubMed

    Linker, Lewis C; Batiuk, Richard A; Cerco, Carl F; Shenk, Gary W; Tian, Richard; Wang, Ping; Yactayo, Guido

    2016-05-01

    Ecological restoration of the Chesapeake through the Chesapeake Bay total maximum daily load (TMDL) requires the reduction of nitrogen, phosphorus, and sediment loads in the Chesapeake watershed because of the tidal water quality impairments and damage to living resources they cause. Within the Chesapeake watershed, the Conowingo Reservoir has been filling in with sediment for almost a century and is now in a state of near-full capacity called . The development of the Chesapeake TMDL in 2010 was with the assumption that the Conowingo Reservoir was still effectively trapping sediment and nutrients. This is now known not to be the case. In a TMDL, pollutant loads beyond the TMDL allocation, which are brought about by growth or other conditions, must be offset. Using the analysis tools of the Chesapeake TMDL for assessing the degree of water quality standard attainment, the estimated nutrient and sediment loads from a simulated dynamic equilibrium infill condition of the Conowingo Reservoir were determined. The influence on Chesapeake water quality by a large storm and scour event of January 1996 on the Susquehanna River was estimated, and the same storm and scour events were also evaluated in the more critical living resource period of June. An analysis was also made on the estimated influence of more moderate high flow events. The infill of the Conowingo reservoir had estimated impairments of water quality, primarily on deep-water and deep-channel dissolved oxygen, because of increased discharge and transport of organic and particulate inorganic nutrients from the Conowingo Reservoir.

  17. How climate change threats water resource: the case of the Thau coastal lagoon (Mediterranean Sea, France)

    NASA Astrophysics Data System (ADS)

    La Jeunesse, Isabelle; Sellami, Haykel; Cirelli, Claudia

    2014-05-01

    The latest reports of the intergovernmental panel on climate change explained that the Mediterranean regions are especially vulnerable to the impacts of climate change. These latest are expected to have strong impacts on the management of water resources and on regional economies. The aim of this paper is to discuss impacts of climate changes on the Thau case study in relation to the evolution of water balance, water uses and adaptation to climate change. The Thau coastal lagoon is located in the Mediterranean coast in south of France in the Languedoc-Roussillon Region. Economic activities are diverse from shellfish farming, fertilizers industries to agriculture and tourism. However, tourism and shellfish farming are of major importance for local economy. If tourism is mainly turned to the Sea coast, shellfishes grow within the lagoon and rely on water quality. Previous studies have demonstrated the link between the coastal lagoon water quality and inputs of freshwater from the catchment. Thus, changes in rainfalls, runoff and water balance would not only affect water uses but also water quality. Climate changes projections are presented following the implementation of 4 downscaled climatic models. Impacts on water balance are modelled with SWAT (Soil Water Assessment Tool) for 2041-2070 compared to the 1971-2000 reference period. The decrease of precipitations and water balance will impact discharges and thus decrease the freshwater inputs to the coastal lagoon. A study of water uses conducted in interactions with stakeholders within the Thau area has permitted to assess both current and evolution of water uses. It has revealed local water resources are depleting while water demand is increasing and is planned to continue to increase in the really near future. To prevent water scarcity events, mainly due to the climate change context, the Regional authorities have connected the catchment to the Rhône river to import water. The conclusion of this study is while

  18. Combining Natural Attenuation Capacity and use of Targeted Technological Mitigation Measures for Reducing Diffuse Nutrient Emissions to Surface Waters: The Danish Way

    NASA Astrophysics Data System (ADS)

    Kronvang, B.; Højberg, A. L.; Hoffmann, C. C.; Windolf, J.; Blicher-Mathiesen, G.

    2015-12-01

    Excess nitrogen (N) and phosphorus (P) emissions to surface waters are a high priority environmental problem worldwide for protection of water resources in times of population growth and climate change. As clean water is a scarce resource the struggle for reducing nutrient emissions are an ongoing issue for many countries and regions. Since the mid1980s a wide range of national regulatory general measures have been implemented to reduce land based nitrogen (N) and phosphorus (P) loadings of the Danish aquatic environment. These measures have addressed both point source emissions and emissions from diffuse sources especially from agricultural production. Following nearly 4 decades of combating nutrient pollution our surface waters such as lakes and estuaries are only slowly responding on the 50% reduction in N and 56% reduction in P. Therefore, the implementation of the EU Water Framework Directive in Danish surface waters still call for further reductions of N and P loadings. Therefore, a new era of targeted implemented measures was the outcome of a Commission on Nature and Agriculture established by the Danish Government in 2013. Their White Book points to the need of increased growth and better environment through more targeted and efficient regulation using advanced technological mitigation methods that are implemented intelligently according to the local natural attenuation capacity for nutrients in the landscape. As a follow up a national consensus model for N was established chaining existing leaching, 3D groundwater and surface water models that enable a calculation of the N dynamics and attenuation capacity within a scale of 15 km2. Moreover, several research projects have been conducted to investigate the effect of a suite of targeted mitigation measures such as restored natural wetlands, constructed wetlands, controlled drainage, buffer strips and constructed buffer strips. The results of these studies will be shared in this presentation.

  19. Sustainable and integrated water resources management for the coastal areas of Shandong Province, China.

    PubMed

    Kutzner, R; Zhang, B; Kaden, S; Geiger, W F

    2006-01-01

    Water scarcity and water pollution are severe problems in the Northern part of China, strongly affecting socio-economic development and standards of living and environment. The Shandong province is specifically plagued by water scarcity. In the coastal catchments of the Shandong province the water scarcity is even increased due to saltwater intrusion, reducing the usability of water resources available. The pressing water problems in the costal catchments in the Shandong province and resulting socio-economic troubles forced the Chinese authorities to implement a variety of measures to relieve water scarcity and abate saltwater intrusion. But not much has been achieved so far as the measures are not coordinated in their effects and cost-benefit relations have not been considered sufficiently. Such a situation calls for good, which means integrated, sustainable water management. The assessment of this situation in the project "Flood Control and Groundwater Recharge in Coastal Catchments" financed by the German Ministry of Research and Education is presented. Further objectives and first ideas for an IWRM-concept are explained. These ideas are based on concepts developed in Germany in the context of the fulfilment of the European Water Framework Directive.

  20. Virus decay and its causes in coastal waters.

    PubMed

    Noble, R T; Fuhrman, J A

    1997-01-01

    Recent evidence suggests that viruses play an influential role within the marine microbial food web. To understand this role, it is important to determine rates and mechanisms of virus removal and degradation. We used plaque assays to examine the decay of infectivity in lab-grown viruses seeded into natural seawater. The rates of loss of infectivity of native viruses from Santa Monica Bay and of nonnative viruses from the North Sea in the coastal seawater of Santa Monica Bay were determined. Viruses were seeded into fresh seawater that had been pretreated in various ways: filtration with a 0.2-(mu)m-pore-size filter to remove organisms, heat to denature enzymes, and dissolved organic matter enrichment to reconstitute enzyme activity. Seawater samples were then incubated in full sunlight, in the dark, or under glass to allow partitioning of causative agents of virus decay. Solar radiation always resulted in increased rates of loss of virus infectivity. Virus isolates which are native to Santa Monica Bay consistently degraded more slowly in full sunlight in untreated seawater (decay ranged from 4.1 to 7.2% h(sup-1)) than nonnative marine bacteriophages which were isolated from the North Sea (decay ranged from 6.6 to 11.1% h(sup-1)). All phages demonstrated susceptibility to degradation by heat-labile substances, as heat treatment reduced the decay rates to about 0.5 to 2.0% h(sup-1) in the dark. Filtration reduced decay rates by various amounts, averaging 20%. Heat-labile, high-molecular-weight dissolved material (>30 kDa, probably enzymes) appeared responsible for about 1/5 of the maximal decay. Solar radiation was responsible for about 1/3 to 2/3 of the maximal decay of nonnative viruses and about 1/4 to 1/3 of that of the native viruses, suggesting evolutionary adaptation to local light levels. Our results suggest that sunlight is an important contributing factor to virus decay but also point to the significance of particles and dissolved substances in seawater.

  1. Virus decay and its causes in coastal waters.

    PubMed

    Noble, R T; Fuhrman, J A

    1997-01-01

    Recent evidence suggests that viruses play an influential role within the marine microbial food web. To understand this role, it is important to determine rates and mechanisms of virus removal and degradation. We used plaque assays to examine the decay of infectivity in lab-grown viruses seeded into natural seawater. The rates of loss of infectivity of native viruses from Santa Monica Bay and of nonnative viruses from the North Sea in the coastal seawater of Santa Monica Bay were determined. Viruses were seeded into fresh seawater that had been pretreated in various ways: filtration with a 0.2-(mu)m-pore-size filter to remove organisms, heat to denature enzymes, and dissolved organic matter enrichment to reconstitute enzyme activity. Seawater samples were then incubated in full sunlight, in the dark, or under glass to allow partitioning of causative agents of virus decay. Solar radiation always resulted in increased rates of loss of virus infectivity. Virus isolates which are native to Santa Monica Bay consistently degraded more slowly in full sunlight in untreated seawater (decay ranged from 4.1 to 7.2% h(sup-1)) than nonnative marine bacteriophages which were isolated from the North Sea (decay ranged from 6.6 to 11.1% h(sup-1)). All phages demonstrated susceptibility to degradation by heat-labile substances, as heat treatment reduced the decay rates to about 0.5 to 2.0% h(sup-1) in the dark. Filtration reduced decay rates by various amounts, averaging 20%. Heat-labile, high-molecular-weight dissolved material (>30 kDa, probably enzymes) appeared responsible for about 1/5 of the maximal decay. Solar radiation was responsible for about 1/3 to 2/3 of the maximal decay of nonnative viruses and about 1/4 to 1/3 of that of the native viruses, suggesting evolutionary adaptation to local light levels. Our results suggest that sunlight is an important contributing factor to virus decay but also point to the significance of particles and dissolved substances in seawater

  2. Water levels in major artesian aquifers of the New Jersey Coastal Plain, 1983

    USGS Publications Warehouse

    Eckel, J.A.; Walker, R.L.

    1986-01-01

    Water levels and changes in water levels in the major aquifers of the New Jersey Coastal Plain are documented. Water levels in 1,071 wells were measured in 1983, and are compared with 827 water level measurements made in the same wells in 1978. Increased groundwater withdrawals from the major artesian aquifers that underlie the New Jersey Coastal Plain have caused large cones of depression in the artesian heads. These cones are delineated on detailed potentiometric surface maps based on water level data collected in the fall of 1983. Hydrographs from observation wells show trends of water levels for the 6-year period of 1978 through 1983. The Potomac-Raritan-Magothy aquifer system is divided into the lower, middle, and upper aquifers. The potentiometric surfaces in these aquifers form large cones of depression centered in the Camden and Middlesex-Monmouth County areas. Measured water levels declined as much as 23 ft in these areas for the period of study. The lowest levels are 96 ft below sea level in Camden County and 91 ft below sea level in the Middlesex-Monmouth County area. Deep cones of depression in coastal Monmouth and Ocean counties in both the Englishtown aquifer system and Wenonah-Mount Laurel aquifer are similar in location and shape. This is because of an effective hydraulic connection between these aquifers. Measured water levels declined as much as 29 ft in the Englishtown aquifer system and 21 ft in the Wenonah-Mount Laurel aquifer during the period of study. The lowest levels are 249 ft below sea level in the Englishtown aquifer system and 196 ft below sea level in the Wenonah-Mount Laurel aquifer. Water levels in the Piney Point aquifer are as low as 75 ft below sea level at Seaside Park, Ocean County and 35 ft below sea level in southern Cumberland County. Water levels in Cumberland County are affected by large withdrawals of groundwater in Kent County, Delaware. Water levels in the Atlantic City 800 ft sand of the Kirkwood Formation define an

  3. TECHNIQUES USED IN THE ENVIRONMENTAL ASSESSMENT OF COASTAL WATERS

    EPA Science Inventory

    A variety of laboratory and field assessment techniques are used to evaluate the environmental condition of estuaries. Acute and chronic toxicity tests have been conducted with as many as 25 species to evaluate the effects of surface water and sediment on algae, invertebrates and...

  4. Mathematical modelling of surface water-groundwater flow and salinity interactions in the coastal zone

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2014-05-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. In these numerical models surface water flow is usually described by the 1-D Saint Venant equations (e.g. Swain and Wexler, 1996) or the 2D shallow water equations (e.g. Liang et al., 2007). Further simplified equations, such as the diffusion and kinematic wave approximations to the Saint Venant equations, are also employed for the description of 2D overland flow and 1D stream flow (e.g. Gunduz and Aral, 2005). However, for coastal bays, estuaries and wetlands it is often desirable to solve the 3D shallow water equations to simulate surface water flow. This is the case e.g. for wind-driven flows or density-stratified flows. Furthermore, most integrated models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated

  5. Gradients in microbial methanol uptake: productive coastal upwelling waters to oligotrophic gyres in the Atlantic Ocean.

    PubMed

    Dixon, Joanna L; Sargeant, Stephanie; Nightingale, Philip D; Colin Murrell, J

    2013-03-01

    Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d(-1) (~10 nmol l(-1 )d(-1)). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (≤20 m), contain a microbial population that uses a relatively high amount of carbon (0.3-10 nmol l(-1 )d(-1)), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04-0.68 nmol l(-1 )d(-1). Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air-sea exchange scientists. PMID:23178665

  6. Gradients in microbial methanol uptake: productive coastal upwelling waters to oligotrophic gyres in the Atlantic Ocean.

    PubMed

    Dixon, Joanna L; Sargeant, Stephanie; Nightingale, Philip D; Colin Murrell, J

    2013-03-01

    Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d(-1) (~10 nmol l(-1 )d(-1)). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (≤20 m), contain a microbial population that uses a relatively high amount of carbon (0.3-10 nmol l(-1 )d(-1)), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04-0.68 nmol l(-1 )d(-1). Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air-sea exchange scientists.

  7. Chlorophyll Concentration Estimates for Coastal Waters using Pixel-Based Atmospheric Correction of Landsat Images

    NASA Astrophysics Data System (ADS)

    Kouba, E.; Xie, H.

    2014-12-01

    Ocean color analysis is more challenging for coastal regions than the global ocean due the effects of optical brightness, shallow and turbid water, higher phytoplankton growth rates, and the complex geometry of coastal bays and estuaries. Also, one of the key atmospheric correction assumptions (zero water leaving radiance in the near infrared) is not valid for these complex conditions. This makes it difficult to estimate the spectral radiance noise caused by atmospheric aerosols, which can vary rapidly with time and space. This project evaluated using Landsat-7 ETM+ observations over a set of coastal bays, and allowing atmospheric correction calculations to vary with time and location as much as practical. Precise satellite orbit vector data was combined with operational weather and climate data to create interpolated arrays of atmospheric profiles which varied with time and location, allowing separate calculation of the Rayleigh and aerosol radiance corrections for all pixels. The resulting normalized water-leaving radiance values were compared with chlorophyll fluorescence measurements made at five in-situ stations inside a set of Texas coastal bays: the Mission-Aransas National Estuarine Research Reserve. Curve-fitting analysis showed it was possible to estimate chlorophyll surface area concentrations by using ETM+ water-leaving radiance values and a third-order polynomial equation. Two pairs of ETM+ bands were identified as inputs (Bands 1 and 3, and the Log10 values of Bands 3 and 4), both achieving R2 of 0.69. Additional research efforts were recommended to obtain additional data, identify better curve fitting equations, and potentially extend the radiative transfer model into the water column.

  8. Modeling dense water production and salt transport from Alaskan coastal polynyas

    NASA Astrophysics Data System (ADS)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2002-09-01

    A three-dimensional primitive equation model was used to assess the effects of dense water formation from winter (1996/1997) polynyas on the ambient stratification, salt transport, and circulation in the vicinity of Barrow Canyon. The model, which includes ambient stratification and bottom topography, is forced by time-varying surface heat flux, surface salt flux, and coastal flow. The influence of sea ice drift on the circulation and salt transport is also analyzed by prescribing ice water stress at the sea surface. The surface fluxes and ice drift are derived from satellite observations (Special Sensor Microwave Imager (SSM/I) and NASA scatterometer (NSCAT) sensors). The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model by using a wind-transport regression. One set of experiments was forced by strong and persistent polynyas, simulated by 20-day averaged heat and salt fluxes originating from the largest events. In this set of experiments both strong and weak steady coastal currents were imposed. The amount of salt exported from the generation area depended on the strength of the current. Another set of experiments was forced by weaker and less persistent polynyas using time-varying forcing. The experiments with time-varying polynya forcing were conducted with two ambient vertical stratifications, one representing fall conditions and one representing winter conditions. The amount of salt retained on the shelf was found to be quite sensitive to the initial stratification. Weaker vertical stratification promotes a deeper mixed layer, which develops 20 times faster than the horizontal advective timescale of the coastal current, thus increasing the residence time of the salt generated by the polynya on the shelf. The time-varying northeastward coastal current, combined with the offshore Ekman transport, can export 29-73% of the salt produced by polynyas upstream of Barrow Canyon, depending upon the

  9. Nutrient Enrichment of Coastal Receiving Waters from Catchments Across the USA

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Bricker, S. B.; Smith, R. A.; Alexander, R. B.; Schwarz, G. B.

    2005-05-01

    Though the abundant supply of reactive nutrients to the landscape provides many benefits to society in terms of food and energy production, the environmental consequences of nutrient over-enrichment are severe, particularly in the coastal zone. We assess eutrophication of surface waters, considered to be the most widespread water quality problem in the USA. We highlight hot spots of mass loadings of nutrients to coastal receiving waters based on results from several spatially referenced regression models applied at the national scale. We explore inter-annual variability and long-term trends of nutrient delivery from several key catchments to sensitive estuaries based on long-term monitoring data. We assess the coastal response and ecological effects resulting from these nutrient loads, considering differences such as the physicochemical characteristics and hydrological residence times of estuaries. Further, we discuss the need to understand precursor source of nitrogen to receiving waters. For example, recent research on algal blooms in both the east and west coasts of the US shows that the growth of toxic and harmful algae is stimulated specifically by urea, an organic nitrogen compound dominant in nitrogen inputs from agricultural and urban runoff, over inorganic nitrogen sources such as ammonium and nitrate that are dominant in nitrogen inputs from atmospheric deposition.

  10. [Status analysis of nutrients and eutrophication assessment in Shenzhen coastal waters].

    PubMed

    Dai, Ji-cui; Gao, Xiao-wei; Ni, Jin-ren; Yin, Kui-hao

    2009-10-15

    Based on the field data of Shenzhen coastal water quality in 2002-2007, variation characteristics of nutrients including NH4+ -N, NO3- -N, NO2- -N, PO4(3-) -P and DIN were presented. And the correlationships between nutrients and pH, salinity were also investigated. Furthermore, eutrophication index (E), organic pollution index (A) and potential eutrophication were employed to assess the eutrophication degree of Shenzhen coastal waters. Results show that the nutrient levels of east coast are higher than that of west coast. And the peak year of nutrients are 2002 and 2006. The average concentrations of PO4(3-) -P and DIN are 0.007 mg/L and 0.078 mg/L for Shenzhen east coast while 0.090 mg/L and 1.544 mg/L for west coast. Nutrients in Shenzhen coastal waters have negative correlations with pH and salinity. The N/P ratios are all far more than 16 indicating that Shenzhen coast belongs to seriously P-limiting water. Eutrophication degree of Shenzhen east coast is far lower than that of west coast, and the average eutrophication index of east coast is 0.11 while 42.15 for west coast. Furthermore, west coast is classified as P-limiting moderate level potential eutrophication area and even as P-limiting potential eutrophication level.

  11. The new Danish stream monitoring programme (NOVANA)--preparing monitoring activities for the Water Framework Directive era.

    PubMed

    Friberg, Nikolai; Baattrup-Pedersen, Annette; Pedersen, Morten Lauge; Skriver, Jens

    2005-12-01

    Denmark has a long tradition of monitoring the aquatic environment. Previous monitoring has mainly focused on loss of nutrients and subsequent impacts on the biological structure in lakes and coastal areas. However, as part of the third Action Plan for the Aquatic Environment more emphasis has been put on stream ecology. The present paper describes background, strategy and content of the new NOVANA stream programme, which will run for the period 2004-2009. The new programme will encompass more than 800 stations covering all stream types in Denmark and monitoring will include three biological quality elements (macrophytes, macroinvertebrates and fish) as well as physico-chemical features and hydromorphological elements. In addition, the new programme integrates monitoring of elements both in the stream itself and in the riparian zone. Compliance with important European Commission Directives such as the Water Framework Directive and the Habitat Directive is discussed. PMID:16311820

  12. Seasonal factors affecting surfactant biodegradation in Antarctic coastal waters: comparison of a polluted and pristine site.

    PubMed

    George, Alison L

    2002-05-01

    This report is the first seasonal study of anthropogenic pollutant biodegradation rates in Antarctic coastal waters. The capacity of surface waters from Rothera Research Station, Adelaide Island, Antarctica, to biodegrade the anionic surfactant sodium dodecyl sulphate (SDS) was quantified in biodegradation tests from April 1988 to January 1999. Large temporal differences in the persistence of SDS were observed. In mid-winter (July), the SDS-biodegradation half life was twice that measured in mid-summer (January), despite small temperature differences (up to 2.45 degrees C). Comparisons between water from a pristine site and a site receiving grey-waste water from the station showed that some acclimation to SDS was occurring in the contaminated water. This resulted in SDS half lives up to to approximately 80 h shorter in the polluted water compared with the pristine site in the summer months when a large population of SDS-degrading bacteria had developed. Biodegradation half lives in Antarctic coastal waters (160-460 h) were generally far higher than those observed in temperate waters.

  13. Geochemistry of shallow ground water in coastal plain environments in the southeastern United States: Implications for aquifer susceptibility

    USGS Publications Warehouse

    Tesoriero, A.J.; Spruill, T.B.; Eimers, J.L.

    2004-01-01

    Ground-water chemistry data from coastal plain environments have been examined to determine the geochemical conditions and processes that occur in these areas and assess their implications for aquifer susceptibility. Two distinct geochemical environments were studied to represent a range of conditions: an inner coastal plain setting having more well-drained soils and lower organic carbon (C) content and an outer coastal plain environment that has more poorly drained soils and high organic C content. Higher concentrations of most major ions and dissolved inorganic and organic C in the outer coastal plain setting indicate a greater degree of mineral dissolution and organic matter oxidation. Accordingly, outer coastal plain waters are more reducing than inner coastal plain waters. Low dissolved oxygen (O2) and nitrate (NO 3-) concentrations and high iron (Fe) concentrations indicate that ferric iron (Fe (III)) is an important electron acceptor in this setting, while dissolved O2 is the most common terminal electron acceptor in the inner coastal plain setting. The presence of a wide range of redox conditions in the shallow aquifer system examined here underscores the importance of providing a detailed geochemical characterization of ground water when assessing the intrinsic susceptibility of coastal plain settings. The greater prevalence of aerobic conditions in the inner coastal plain setting makes this region more susceptible to contamination by constituents that are more stable under these conditions and is consistent with the significantly (p<0.05) higher concentrations of NO3- found in this setting. Herbicides and their transformation products were frequently detected (36% of wells sampled), however concentrations were typically low (<0.1 ??g/L). Shallow water table depths often found in coastal plain settings may result in an increased risk of the detection of pesticides (e.g., alachlor) that degrade rapidly in the unsaturated zone.

  14. Monitoring coastal water properties and current circulation with ERTS-1

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Otley, M.; Wethe, C.; Rogers, R. H.

    1977-01-01

    Imagery and digital tapes from nine successful ERTS-1 passes over Delaware Bay during different portions of the tidal cycle were analyzed with special emphasis on turbidity, current circulation, waste disposal plumes, and convergent boundaries between different water masses. ERTS-1 image radiance correlated well with Secchi depth and suspended sediment concentration. Circulation patterns observed by ERTS-1 during different parts of the tidal cycle, agreed well with predicted and measured currents throughout Delaware Bay.

  15. Interacting coastal based ecosystem services: recreation and water quality in Puget Sound, WA.

    PubMed

    Kreitler, Jason; Papenfus, Michael; Byrd, Kristin; Labiosa, William

    2013-01-01

    Coastal recreation and water quality are major contributors to human well-being in coastal regions. They can also interact, creating opportunities for ecosystem based management, ecological restoration, and water quality improvement that can positively affect people and the environment. Yet the effect of environmental quality on human behavior is often poorly quantified, but commonly assumed in coastal ecosystem service studies. To clarify this effect we investigate a water quality dataset for evidence that environmental condition partially explains variation in recreational visitation, our indicator of human behavior. In Puget Sound, WA, we investigate variation in visitation in both visitation rate and fixed effects (FE) models. The visitation rate model relates the differences in annual recreational visitation among parks to environmental conditions, park characteristics, travel cost, and recreational demand. In our FE model we control for all time-invariant unobserved variables and compare monthly variation at the park level to determine how water quality affects visitation during the summer season. The results of our first model illustrate how visitation relates to various amenities and costs. In the FE analysis, monthly visitation was negatively related to water quality while controlling for monthly visitation trends. This indicates people are responding to changes in water quality, and an improvement would yield an increase in the value of recreation. Together, these results could help in prioritizing water quality improvements, could assist the creation of new parks or the modification of existing recreational infrastructure, and provide quantitative estimates for the expected benefits from potential changes in recreational visitation and water quality improvements. Our results also provide an example of how recreational visitation can be quantified and used in ecosystem service assessments.

  16. Interacting coastal based ecosystem services: recreation and water quality in Puget Sound, WA

    USGS Publications Warehouse

    Kreitler, Jason; Papenfus, Michael; Byrd, Kristin; Labiosa, William

    2013-01-01

    Coastal recreation and water quality are major contributors to human well-being in coastal regions. They can also interact, creating opportunities for ecosystem based management, ecological restoration, and water quality improvement that can positively affect people and the environment. Yet the effect of environmental quality on human behavior is often poorly quantified, but commonly assumed in coastal ecosystem service studies. To clarify this effect we investigate a water quality dataset for evidence that environmental condition partially explains variation in recreational visitation, our indicator of human behavior. In Puget Sound, WA, we investigate variation in visitation in both visitation rate and fixed effects (FE) models. The visitation rate model relates the differences in annual recreational visitation among parks to environmental conditions, park characteristics, travel cost, and recreational demand. In our FE model we control for all time-invariant unobserved variables and compare monthly variation at the park level to determine how water quality affects visitation during the summer season. The results of our first model illustrate how visitation relates to various amenities and costs. In the FE analysis, monthly visitation was negatively related to water quality while controlling for monthly visitation trends. This indicates people are responding to changes in water quality, and an improvement would yield an increase in the value of recreation. Together, these results could help in prioritizing water quality improvements, could assist the creation of new parks or the modification of existing recreational infrastructure, and provide quantitative estimates for the expected benefits from potential changes in recreational visitation and water quality improvements. Our results also provide an example of how recreational visitation can be quantified and used in ecosystem service assessments.

  17. Unsupervised classification and areal measurement of land and water coastal features on the Texas coast

    NASA Technical Reports Server (NTRS)

    Flores, L. M.; Reeves, C. A.; Hixon, S. B.; Paris, J. F.

    1973-01-01

    Multispectral scanner (MSS) digital data from ERTS-1 was used to delineate coastal land, vegetative, and water features in two portions of the Texas Coastal Zone. Data (Scene ID's 1037-16244 and 1037-16251) acquired on August 29, 1972, were analyzed on NASA Johnson Space Center systems through the use of two clustering algorithms. Seventeen to 30 spectrally homogeneous classes were so defined. Many classes were identified as being pure features such as water masses, salt marsh, beaches, pine, hardwoods, and exposed soil or construction materials. Most classes were identified to be mixtures of the pure class types. Using an objective technique for measuring the percentage of wetland along salt marsh boundaries, an analysis was made of the accuracy of areal measurement of salt marshes. Accuracies ranged from 89 to 99 percent. Aircraft photography was used as the basis for determining the true areal size of salt marshes in the study sites.

  18. Assessment of ecological quality of coastal lagoons with a combination of phytobenthic and water quality indices.

    PubMed

    Christia, Chrysoula; Giordani, Gianmarco; Papastergiadou, Eva

    2014-09-15

    Coastal lagoons are ecotones between continents and the sea. Coastal lagoons of Western Greece, subjected to different human pressures, were classified into four different types based on their hydromorphological characteristics and monitored over a three year period for their biotic and abiotic features. Six ecological indices based on water quality parameters (TSI-Chl-a, TSI-TP, TRIX), benthic macrophytes (E-MaQI, EEI-c) and an integrated index TWQI, were applied to assess the ecological status of studied lagoons under real conditions. The trophic status ranged from oligotrophic to hypertrophic according to the index applied. The ecological quality of transitional water ecosystems can be better assessed by using indices based on benthic macrophytes as changes in abundance and diversity of sensitive and tolerant species are the first evidence of incoming eutrophication. The multi-parametric index TWQI can be considered appropriate for the ecological assessment of these ecosystems due to its robustness and the simple application procedure.

  19. Selective transport of microplastics and mesoplastics by drifting in coastal waters.

    PubMed

    Isobe, Atsuhiko; Kubo, Kenta; Tamura, Yuka; Kako, Shin'ichio; Nakashima, Etsuko; Fujii, Naoki

    2014-12-15

    The quantity and size distributions of small plastic fragments in the Seto Inland Sea, Japan were investigated using field surveys and a numerical particle-tracking model. The model was used to interpret the distributions of small plastic fragments and the possible transport processes in coastal waters. Of note, the size and quantity of mesoplastics (approximately >5mm) gradually increased close to the coast irrespective of the existence of river mouths, which probably act as a major source of anthropogenic marine debris. Additionally, microplastics were more dominant as we moved further offshore. The numerical model reproduced the near-shore trapping of mesoplastics, suggesting that mesoplastics are selectively conveyed onshore by a combination of Stokes drift and terminal velocity, dependent on fragment sizes. It is suggested that mesoplastics washed ashore on beaches degrade into microplastics, and that the microplastics, which are free from near-shore trapping, are thereafter spread offshore in coastal waters.

  20. In Brief: Some decline in contaminants affecting U.S. coastal waters

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-05-01

    A new report indicates that environmental laws enacted in the 1970s are having a positive effect on reducing overall contaminant levels in U.S. coastal waters. However, there are continuing concerns with elevated levels of metals and organic contaminants found near urban and industrial areas of the coasts, according to the 12 May report issued by the U.S. National Oceanic and Atmospheric Administration (NOAA). ``Pesticides such as DDT [dichlorodiphenyltrichloroethane] and industrial chemicals such as PCBs [polychlorinated biphenyls] show significant decreasing trends around the nation, but similar trends were not found for trace metals,'' said Gunnar Lauenstein, manager of the NOAA Mussel Watch program, the nation's longest continuous national contaminant-monitoring program in U.S. coastal waters.

  1. Cyanobacterial blooms and biomagnification of the neurotoxin BMAA in South Florida coastal waters

    NASA Astrophysics Data System (ADS)

    Brand, L.; Mash, D.

    2008-12-01

    Blooms of cyanobacteria have developed in Florida Bay, Biscayne Bay and other coastal waters of South Florida. It has recently been shown that virtually all cyanobacteria produce the potent neurotoxin, beta-N- methylamino-L-alanine (BMAA). Studies in Guam indicate that BMAA can biomagnify up the food chain from cyanobacteria to human food and humans. Recent studies in Guam and on human brains in North America suggest an association between BMAA and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Amyotrophic Lateral Sclerosis (ALS). A variety of organisms from South Florida coastal waters are being analyzed for BMAA content to determine if BMAA is biomagnifying in these food chains and if it is a potential human health hazard. Some have extremely high concentrations of BMAA.

  2. Filament formation and evolution in buoyant coastal waters: Observation and modelling

    NASA Astrophysics Data System (ADS)

    Iermano, Ilaria; Liguori, Giovanni; Iudicone, Daniele; Buongiorno Nardelli, Bruno; Colella, Simone; Zingone, Adriana; Saggiomo, Vincenzo; Ribera d'Alcalà, Maurizio

    2012-11-01

    This paper presents a detailed analysis of the formation and subsequent evolution of filament-like structures observed in a relatively small area of the mid-Tyrrhenian Sea (Mediterranean Sea). The filament dynamics and potential impact on the cross-shelf exchange budget are investigated based on a combined use of remote sensing imagery, in situ data and numerical modelling. The complexity of these phenomena is shown by focusing on four distinct events that led to cross-shelf transport, each representative of a different dynamic process and a distinct expected impact on the coastal area. A systematic analysis of available observations for the years 1998-2006 underlines the role of the interplay of atmospheric freshwater fluxes, river loads and wind stress variations, which may create favourable conditions for the convergence of shelf waters (particularly at coastal capes) and the subsequent formation of short-lived filaments along the coast. The response of the buoyant coastal waters to periods of wind reversal and fluctuating freshwater discharge rates is examined through idealised Regional Ocean Modeling System (ROMS) simulations. The filaments observed in remote sensing imagery were well reproduced by the numerical exercise, where the filaments appear as organised submesoscale structures that possess high relative vorticity and develop at the river mouths or adjacent capes. In both scenarios, the filaments appear largely determined by (i) the presence of a buoyancy anomaly, (ii) the angle between the wind pulse direction and the coast and (iii) irregularities in the coastal profile. The ensemble of results suggests that the occurrence of such transient, intense structures may contribute considerably to the biological variability and cross-shelf exchange in coastal areas with similar traits.

  3. Comparison of the Seasonal Variations of Synechococcus Assemblage Structures in Estuarine Waters and Coastal Waters of Hong Kong

    PubMed Central

    Xia, Xiaomin; Vidyarathna, Nayani K.; Palenik, Brian; Lee, Puiyin

    2015-01-01

    Seasonal variation in the phylogenetic composition of Synechococcus assemblages in estuarine and coastal waters of Hong Kong was examined through pyrosequencing of the rpoC1 gene. Sixteen samples were collected in 2009 from two stations representing estuarine and ocean-influenced coastal waters, respectively. Synechococcus abundance in coastal waters gradually increased from 3.6 × 103 cells ml−1 in March, reaching a peak value of 5.7 × 105 cells ml−1 in July, and then gradually decreased to 9.3 × 103 cells ml−1 in December. The changes in Synechococcus abundance in estuarine waters followed a pattern similar to that in coastal waters, whereas its composition shifted from being dominated by phycoerythrin-rich (PE-type) strains in winter to phycocyanin-only (PC-type) strains in summer owing to the increase in freshwater discharge from the Pearl River and higher water temperature. The high abundance of PC-type Synechococcus was composed of subcluster 5.2 marine Synechococcus, freshwater Synechococcus (F-PC), and Cyanobium. The Synechococcus assemblage in the coastal waters, on the other hand, was dominated by marine PE-type Synechococcus, with subcluster 5.1 clades II and VI as the major lineages from April to September, when the summer monsoon prevailed. Besides these two clades, clade III cooccurred with clade V at relatively high abundance in summer. During winter, the Synechococcus assemblage compositions at the two sites were similar and were dominated by subcluster 5.1 clades II and IX and an undescribed clade (represented by Synechococcus sp. strain miyav). Clade IX Synechococcus was a relatively ubiquitous PE-type Synechococcus found at both sites, and our study demonstrates that some strains of the clade have the ability to deal with large variation of salinity in subtropical estuarine environments. Our study suggests that changes in seawater temperature and salinity caused by the seasonal variation of monsoonal forcing are two major determinants of

  4. National water quality assessment of the Georgia-Florida Coastal Plain study unit; water withdrawals and treated wastewater discharges, 1990

    USGS Publications Warehouse

    Marella, R.L.; Fanning, J.L.

    1996-01-01

    The Georgia-Florida Coastal Plain study unit covers nearly 62,600 square miles along the southeastern United States coast in Georgia and Florida. In 1990, the estimated population of the study unit was 9.3 million, and included all or part of the cities of Atlanta, Jacksonville, Orlando, Tampa, and St. Petersburg. Estimated freshwater withdrawn in the study unit in 1990 was nearly 5,075 million gallons per day. Ground-water accounted for more than 57 percent of the water withdrawn during 1990 and the Floridan aquifer system provided nearly 91 percent of the total ground-water withdrawn. Surface-water accounted for nearly 43 percent of the water withdrawn in the study unit in 1990 with large amounts of withdrawals from the Altamaha River, Hillsborough River, the Ocmulgee River, the Oconee River, the St. Johns River, and the Suwannee River. Water withdrawn for public supply in the Georgia-Florida Coastal Plain study unit in 1990 totaled 1,139 million gallons per day, of which 83 percent was ground water and 17 percent was surface water. Self-supplied domestic withdrawals in the Georgia-Florida Coastal Plain study unit in 1990 totaled nearly 230 million gallons per day. Ground water supplied over 80 percent of the study units population for drining water purposes; nearly 5.8 million people were served by public supply and 1.8 million people were served by self-supplied systems. Water withdrawn for self-supplied domestic use in Georgia and Florida is derived almost exclusively from ground water, primarily because this source can provide the quantity and quality of water needed for drinking purposes. Nearly 1.7 million people served by public supply utilized surface water for their drinking water needs. Water withdrawn for self-supplied commercial-industrial uses in the study unit in 1990 totaled 862 million gallons per day, of which 93 percent was ground water and 7 percent was surface water. Water withdrawn for agriculture purposes in the study unit in 1990 totaled 1

  5. In situ sampling in coastal waters - in search for an adequate spatial resolution for chlorophyll monitoring

    NASA Astrophysics Data System (ADS)

    Tolvanen, H.; Suominen, T.

    2012-04-01

    Shallow coastal archipelagos give rise to highly dynamic water quality patterns. In situ sampling inevitably loses detail of this spatio-temporal variation, regardless of the spatial and temporal resolution of the monitoring. In the shallow coastal areas of SW Finland in the Baltic Sea, the spatio-temporal variation of water properties is especially high due to the complexity of the archipelago environment and its bathymetry. Water quality monitoring is traditionally carried out in situ on a point network with 5-20 km distance between the sampling stations. Also the temporal coverage is irregular and often focused to the high summer (late July to early August) to capture the highest algal occurrences resulting from eutrophication. The amount of phytoplankton may have irregular vertical variation caused by local prevailing conditions, and therefore the biomass within the productive layer is usually measured by the amount of chlorophyll as a collective sample of the single vertical profile per station. However, the amount of phytoplankton varies also horizontally over short distances in the coastal water that may be homogenous in temperature and salinity. We tested the representativeness of the traditional single sampling station method by expanding the measurement station into six parallel sampling points within a 0.25 km2 area around the station. We measured the chlorophyll content in depth profiles from 1 m to 10 m depth using an optical water quality sonde. This sampling scheme provides us with a better understanding of the occurrence and distribution of phytoplankton in the water mass. The data include three six-point stations in different parts of the coastal archipelago. All stations were sampled several times during the growing season of 2007. In this paper, we compare the results of the established one-point collective depth sampling with the locally extended sampling scheme that portrays also the small-scale horizontal variation of phytoplankton. We

  6. Skylab and ERTS-1 investigations of coastal land-use and water properties in Delaware Bay

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Bartlett, D.; Rogers, R.

    1974-01-01

    Study of coastal land use and water properties of Delaware Bay using digital and visual analysis of enhanced imagery from NASA's Earth Resources Technology Satellite (ERTS) and from the Skylab Earth Resources Experimental Package (EREP). ERTS is shown to have the advantage of repetitive coverage of the test site which facilitates change detection experiments by gathering data under a variety of tidal, seasonal, and atmospheric conditions. Skylab-EREP data, on the other hand, are superior in both spatial and spectral resolution.

  7. Water Levels In Major Artesian Aquifers Of The New Jersey Coastal Plain, 1988

    USGS Publications Warehouse

    Rosman, Robert; Lacombe, Pierre J.; Storck, Donald A.

    1995-01-01

    Water levels in 1,251 wells in the New Jersey Coastal Plain, Philadelphia County, Pennsylvania, and Kent and New Castle Counties, Delaware, were measured from October 1988 to February 1989 and compared with 1,071 water levels measured from September 1983 to May 1984. Water levels in 916 of the wells measured in the 1983 study were remeasured in the 1988 study. Alternate wells were selected to replace wells used in 1983 that were inaccessible at the time of the water-level measurements in 1988 or had been destroyed. New well sites were added in strategic locations to increase coverage where possible. Large cones of depression have formed or expanded in the nine major artesian aquifers that underlie the New Jersey Coastal Plain. Water levels are shown on nine potentiometric-surface maps. Hydrographs for observation wells typically show water-level declines for 1983, through 1989. In the confined Cohansey aquifer, the lowest water level, 20 feet below sea level, was measured in a well located at Cape May City Water Department, Cape May County. Water levels in the Atlantic City 800-foot sand declined as much as 21 feet at Ventnor, Atlantic County, over the 6-year period from the 1983 study to this study for 1988. Water levels in the Piney Point aquifer were as low as 56 feet below sea level at Seaside Park, Ocean County; 45 feet below sea level in southern Cumberland County; and 28 feet below sea level at Margate, Atlantic County. Water levels in the Vincentown aquifer did not change over the 6-year period. The lowest water levels in the Wenonah-Mount Laurel aquifer and the Englishtown aquifer system were 218 feet and 256 feet below sea level, respectively. Large cones of depression in the Potomac- Raritan-Magothy aquifer system are centered in the Camden County area and the Middlesex and Monmouth County area. Water levels declined as much as 46 feet in these areas over the 6-year period.

  8. Land-margin ecosystem hydrologic data for the coastal Everglades, Florida, water years 1996-2012

    USGS Publications Warehouse

    Anderson, Gordon H.; Smith, Thomas J.; Balentine, Karen M.

    2014-01-01

    Mangrove forests and salt marshes dominate the landscape of the coastal Everglades (Odum and McIvor, 1990). However, the ecological effects from potential sea-level rise and increased water flows from planned freshwater Everglades restoration on these coastal systems are poorly understood. The National Park Service (NPS) proposed the South Florida Global Climate Change Project (SOFL-GCC) in 1990 to evaluate climate change and the effect from rising sea levels on the coastal Everglades, particularly at the marsh/mangrove interface or ecotone (Soukup and others, 1990). A primary objective of SOFL-GCC project was to monitor and synthesize the hydrodynamics of the coastal Everglades from the upstream freshwater marsh to the downstream estuary mangrove. Two related hypotheses were set forward (Nuttle and Cosby, 1993): 1. There exists hydrologic conditions (tide, local rainfall, and upstream water deliveries), which characterize the location of the marsh/mangrove ecotone along the marine and terrestrial hydrologic gradient; and 2. The marsh/mangrove ecotone is sensitive to fluctuations in sea level and freshwater inflow from inland areas. Hydrologic monitoring of the SOFL-GCC network began in 1995 after startup delays from Hurricane Andrew (August 1992) and organizational transfers from the NPS to the National Biological Survey (October 1993) and the merger with the U.S. Geological Survey (USGS) Biological Research Division in 1996 (Smith, 2004). As the SOFL-GCC project progressed, concern by environmental scientists and land managers over how the diversion of water from Everglades National Park would affect the restoration of the greater Everglades ecosystem. Everglades restoration scenarios were based on hydrodynamic models, none of which included the coastal zone (Fennema and others, 1994). Modeling efforts were expanded to include the Everglades coastal zone (Schaffranek and others, 2001) with SOFL-GCC hydrologic data assisting the ecological modeling needs. In 2002

  9. Seagrass Restoration Enhances “Blue Carbon” Sequestration in Coastal Waters

    PubMed Central

    Greiner, Jill T.; McGlathery, Karen J.; Gunnell, John; McKee, Brent A.

    2013-01-01

    Seagrass meadows are highly productive habitats that provide important ecosystem services in the coastal zone, including carbon and nutrient sequestration. Organic carbon in seagrass sediment, known as “blue carbon,” accumulates from both in situ production and sedimentation of particulate carbon from the water column. Using a large-scale restoration (>1700 ha) in the Virginia coastal bays as a model system, we evaluated the role of seagrass, Zosteramarina, restoration in carbon storage in sediments of shallow coastal ecosystems. Sediments of replicate seagrass meadows representing different age treatments (as time since seeding: 0, 4, and 10 years), were analyzed for % carbon, % nitrogen, bulk density, organic matter content, and 210Pb for dating at 1-cm increments to a depth of 10 cm. Sediment nutrient and organic content, and carbon accumulation rates were higher in 10-year seagrass meadows relative to 4-year and bare sediment. These differences were consistent with higher shoot density in the older meadow. Carbon accumulation rates determined for the 10-year restored seagrass meadows were 36.68 g C m-2 yr-1. Within 12 years of seeding, the restored seagrass meadows are expected to accumulate carbon at a rate that is comparable to measured ranges in natural seagrass meadows. This the first study to provide evidence of the potential of seagrass habitat restoration to enhance carbon sequestration in the coastal zone. PMID:23967303

  10. Human impacts and changes in the coastal waters of south China.

    PubMed

    Wang, Linlin; Li, Qiang; Bi, Hongsheng; Mao, Xian-Zhong

    2016-08-15

    Human impact on the environment remains at the center of the debate on global environmental change. Using the Hong Kong-Shenzhen corridor in south China as an example, we present evidence that rapid urbanization and economic development in coastal areas were the dominant factors causing rapid changes in coastal waters. From 1990 to 2012, coastal seawater temperature increased ~0.060°C per year, sea level rose 4.4mm per year and pH decreased from 8.2 to 7.7, much faster than global averages. In the same period, there were exponential increases in the local population, gross domestic product and land fill area. Empirical analyses suggest that the large increase in the population affected local temperature, and economic development had a major impact on local pH. Results also show that pH and temperature were significantly correlated with local sea level rise, but pH had more predictive power, suggesting it could be considered a predictor for changes in local sea level. We conclude that human activities could significantly exacerbate local environmental changes which should be considered in predictive models and future development plans in coastal areas.

  11. Is the atmosphere really an important source of reactive nitrogen to coastal waters?

    NASA Astrophysics Data System (ADS)

    Spokes, Lucinda J.; Jickells, Tim D.

    2005-10-01

    Increasing inputs of reactive nitrogen have led to excessive phytoplankton growth in some coastal waters. Until recently, rivers were thought to be the most important nitrogen source but we now know that atmospheric inputs are large and can equal, or exceed, those from the rivers. These atmospheric nitrogen compounds have both agricultural sources (ammonia emitted from animal wastes) and combustion sources (nitrate derived from NO x emitted by vehicles and power stations). Our hypothesis is that atmospheric nitrogen deposition in summer to nutrient depleted, well lit, surface waters in coastal seas stimulates phytoplankton blooms. This paper summarises and compares studies conducted in the North Sea, the North East Atlantic Ocean and the Kattegat Sea. Budgeting approaches imply that the atmosphere can, under certain meteorological conditions and over short time periods, provide enough nitrogen to support a large increase in phytoplankton growth. This is not true in all areas and at all times and this emphasises the highly episodic nature of atmospheric deposition. However, productivity-based approaches suggest that atmospheric nitrogen inputs have little effect on phytoplankton growth. This may be because productivity in the North Sea and the Kattegat is controlled by internal recycling of nitrogen, even in the summer when inorganic nitrogen levels are very low. Over longer time scales, atmospheric inputs do increase the overall nitrogen stock in the water column. Reducing the input of nitrogen from the atmosphere will, therefore, reduce total nitrogen loads to coastal seas and hence may decrease eutrophication problems.

  12. Distribution of Human Norovirus in the Coastal Waters of South Korea

    PubMed Central

    Choi, Yong Seon; Kim, Ji Young; Yoo, Chang Hoon; Yoon, Hyun Jin; Kim, Tae-Ok; Choi, Hyun Bae; Kim, Ji Hoon; Choi, Jong Deok; Park, Kwon-Sam; Shin, Yongsik; Kim, Young-Mog; Ko, GwangPyo; Jeong, Yong Seok

    2016-01-01

    The presence of human norovirus in the aquatic environment can cause outbreaks related to recreational activities and the consumption of norovirus-contaminated clams. In this study, we investigated the prevalence of norovirus genogroups I (GI) and II (GII) in the coastal aquatic environment in South Korea (March 2014 to February 2015). A total of 504 water samples were collected periodically from four coastal areas (total sites = 63), of which 44 sites were in estuaries (clam fisheries) and 19 were in inflow streams. RT-PCR analysis targeting ORF2 region C revealed that 20.6% of the water samples were contaminated by GI (13.3%) or GII (16.6%). The prevalence of human norovirus was higher in winter/spring than in summer/fall, and higher in inflow streams (50.0%) than in estuaries (7.9%). A total of 229 human norovirus sequences were identified from the water samples, and phylogenetic analysis showed that the sequences clustered into eight GI genotypes (GI.1, 2, 3, 4, 5, 6, 7, and 9) and nine GII genotypes (GII.2, 3, 4, 5, 6, 11, 13, 17, and 21). This study highlighted three issues: 1) a strong correlation between norovirus contamination via inflow streams and coastal areas used in clam fisheries; 2) increased prevalence of certain non-GII.4 genotypes, exceeding that of the GII.4 pandemic variants; 3) seasonal shifts in the dominant genotypes of both GI and GII. PMID:27681683

  13. Spatio-temporal representativeness of euphotic depth in situ sampling in transitional coastal waters

    NASA Astrophysics Data System (ADS)

    Luhtala, Hanna; Tolvanen, Harri

    2016-06-01

    In dynamic coastal waters, the representativeness of spot sampling is limited to the measurement time and place due to local heterogeneity and irregular water property fluctuations. We assessed the representativeness of in situ sampling by analysing spot-sampled depth profiles of photosynthetically active radiation (PAR) in dynamic coastal archipelago waters in the south-western Finnish coast of the Baltic Sea. First, we assessed the role of spatio-temporality within the underwater light dynamics. As a part of this approach, an anomaly detection procedure was tested on a dataset including a large archipelago area and extensive temporal coverage throughout the ice-free season. The results suggest that euphotic depth variability should be treated as a spatio-temporal process rather than considering spatial and temporal dimensions separately. Second, we assessed the representativeness of spot sampling through statistical analysis of comparative data from spatially denser sampling on three test sites on two optically different occasions. The datasets revealed variability in different dimensions and scales. The suitability of a dataset to reveal wanted phenomena can usually be improved by careful planning and by clearly defining the data sampling objectives beforehand. Nonetheless, conducting a sufficient in situ sampling in dynamic coastal area is still challenging: detecting the general patterns at all the relevant dimensions is complicated by the randomness effect, which reduces the reliability of spot samples on a more detailed scale. Our results indicate that good representativeness of a euphotic depth sampling location is not a stable feature in a highly dynamic environment.

  14. Exchange of nitrogen and phosphorus between a shallow lagoon and coastal waters

    USGS Publications Warehouse

    Hayn, Melanie; Howarth, Robert W.; Ganju, Neil K.; Berg, Peter; Foreman, Kenneth H.; Giblin, Anne E.; McGlathery, Karen

    2014-01-01

    West Falmouth Harbor, a shallow lagoon on Cape Cod, has experienced a threefold increase in nitrogen load since the mid- to late 1990s due to input from a groundwater plume contaminated by a municipal wastewater treatment plant. We measured the exchange of nitrogen and phosphorus between the harbor and the coastal waters of Buzzards Bay over several years when the harbor was experiencing this elevated nitrogen load. During summer months, the harbor not only retained the entire watershed nitrogen load but also had a net import of nitrogen from Buzzards Bay. During the spring and fall, the harbor had a net export of nitrogen to Buzzards Bay. We did not measure the export in winter, but assuming the winter net export was less than 112 % of the load, the harbor exported less than half of the watershed nitrogen load on an annual basis. For phosphorus, the harbor had a net import from coastal waters in the spring and summer months and a net export in the fall. Despite the large increase in nitrogen load to the harbor, the summertime import of phosphorus from Buzzards Bay was sufficient to maintain nitrogen limitation of primary productivity during the summer. Our findings illustrate that shallow systems dominated by benthic producers have the potential to retain large terrestrial nitrogen loads when there is sufficient supply of phosphorus from exchange with coastal waters.

  15. Factors controlling physico-chemical characteristics in the coastal waters off Mangalore-A multivariate approach

    SciTech Connect

    Shirodkar, P.V. Mesquita, A.; Pradhan, U.K.; Verlekar, X.N.; Babu, M.T.; Vethamony, P.

    2009-04-15

    Water quality parameters (temperature, pH, salinity, DO, BOD, suspended solids, nutrients, PHc, phenols, trace metals-Pb, Cd and Hg, chlorophyll-a (chl-a) and phaeopigments) and the sediment quality parameters (total phosphorous, total nitrogen, organic carbon and trace metals) were analysed from samples collected at 15 stations along 3 transects off Karnataka coast (Mangalore harbour in the south to Suratkal in the north), west coast of India during 2007. The analyses showed high ammonia off Suratkal, high nitrite (NO{sub 2}-N) and nitrate (NO{sub 3}-N) in the nearshore waters off Kulai and high nitrite (NO{sub 2}-N) and ammonia (NH{sub 3}-N) in the harbour area. Similarly, high petroleum hydrocarbon (PHc) values were observed near the harbour, while phenols remained high in the nearshore waters of Kulai and Suratkal. Significantly, high concentrations of cadmium and mercury with respect to the earlier studies were observed off Kulai and harbour regions, respectively. R-mode varimax factor analyses were applied separately to surface and bottom water data sets due to existing stratification in the water column caused by riverine inflow and to sediment data. This helped to understand the interrelationships between the variables and to identify probable source components for explaining the environmental status of the area. Six factors (each for surface and bottom waters) were found responsible for variance (86.9% in surface and 82.4% in bottom) in the coastal waters between Mangalore and Suratkal. In sediments, 4 factors explained 86.8% of the observed total variance. The variances indicated addition of nutrients and suspended solids to the coastal waters due to weathering and riverine transport and are categorized as natural sources. The observed contamination of coastal waters indicated anthropogenic inputs of Cd and phenol from industrial effluent sources at Kulai and Suratkal, ammonia from wastewater discharges off Kulai and harbour, PHc and Hg from boat traffic

  16. The distribution of dissolved lead in the coastal waters of the East China Sea.

    PubMed

    Li, Yan; Yang, Rujun; Zhang, Aibin; Wang, Shirong

    2014-08-30

    The distribution of dissolved lead in the coastal waters of the East China Sea was investigated seasonally. The average concentrations in surface waters during the spring and autumn were 0.52 nM and 0.27 nM, respectively. In the spring, the concentration of dissolved Pb in the surface waters and bottom waters ranged from 0.13 to 1.86 nM and from 0.15 to 0.94 nM, respectively. For both the surface water and the bottom water, the highest values were observed at the Yangtze River Estuary. Seasonal variability of D-Pb between spring and autumn in the ECS was observed. These results suggested that riverine inputs and atmospheric inputs may be the main sources of lead in this area, while adsorption and co-precipitation on suspended particles at the river estuary and biological process may be the major sinks.

  17. SPATIAL AND TEMPORAL DISTRIBUTION OF COLOURED DISSOLVED ORGANIC MATTER (CDOM) IN NARRAGANSETT BAY, RI: IMPLICATIONS FOR PHYTOPLANKTON IN COASTAL WATERS

    EPA Science Inventory

    One indicator of health in estuarine and coastal ecosystems is the ability of local waters to transmit sunlight to planktonic, macrophytic, and other submerged vegetation for photosynthesis. The concentration of coloured dissolved organic matter (CDOM) is a primary factor affecti...

  18. Method 349.0 Determination of Ammonia in Estuarine and Coastal Waters by Gas Segmented Continuous Flow Colorimetric Analysis

    EPA Science Inventory

    This method provides a procedure for the determination of ammonia in estuarine and coastal waters. The method is based upon the indophenol reaction,1-5 here adapted to automated gas-segmented continuous flow analysis.

  19. Method 440.0 Determination of Carbon and Nitrogen in Sediments and Particulatesof Estuarine/Coastal Waters Using Elemental Analysis

    EPA Science Inventory

    Elemental analysis is used to determine particulate carbon (PC) and particulate nitrogen (PN) in estuarine and coastal waters and sediment. The method measures the total carbon and nitrogen irrespective of source (inorganic or organic).

  20. Helicopter-based lidar in remote sensing of coastal waters

    SciTech Connect

    Bunkin, A.; Voliak, K.; Nunes, R.; Valente, L.C.G.

    1997-06-01

    We have developed and tested onboard a helicopter Kamov-32 and a ship a versatile lidar system for monitoring the water pollution by oil products and dissolved organic matter as well and for measuring the concentration of chlorophyll {open_quotes}a{close_quotes} of phytoplankton in the ocean {open_quotes}effective{close_quotes} subsurface layer. This system can be also used for shallow sea bathymetry and for studying the physiological state of green plants and the elemental content of soil. The lidar setup includes: a Nd:YAG laser with frequency doubling (second harmonic pulse energy 200 mJ, pulse duration 10 ns, repetition rate 10 Hz); a receiving-transmitting device with a mirror telescope of 15 cm diameter; a polychromator; and a recording system consisting of a gated light amplifier and a CCD camera cooled to -10 C. The field experimental data on surface chlorophyll distribution and oil spills in the Black Sea and Guanabara Bay are presented.

  1. Optimum contracted-for water supply for hotels in arid coastal regions.

    PubMed

    Lamei, A; von Münch, E; van der Zaag, P; Imam, E

    2009-01-01

    Hotels in arid coastal areas use mainly desalinated water for their domestic water demands, and treated wastewater for irrigating green areas. Private water companies supply these hotels with their domestic water needs. There is normally a contractual agreement stating a minimum requirement that has to be supplied by the water company and that the hotel management has to pay for regardless of its actual consumption ("contracted-for water supply"). This paper describes a model to determine what value a hotel should choose for its contracted-for water supply in order to minimize its total annual water costs. An example from an arid coastal tourism-dominated city is presented: Sharm El Sheikh, Egypt.The managers of hotels with expected high occupancy rates (74% and above) can contract for more than 80%. On the other hand, hotels with expected lower occupancy rates (60% and less) can contract for less than 70% of the peak daily domestic water demand. With a green area ratio of 40 m(2)/room or less, an on-site wastewater treatment plant can satisfy the required irrigation demand for an occupancy rate as low as 42%. Increasing the ratio of green irrigated area to 100 m(2)/room does not affect the contracted-for water supply at occupancy rates above 72%; at lower occupancy rates, however, on-site treated wastewater is insufficient for irrigating the green areas. Increasing the green irrigated area to 120 m(2)/room increases the need for additional water, either from externally sourced treated wastewater or potable water. The cost of the former is much lower than the latter (0.58 versus 1.52 to 2.14 US$/m(3) in the case study area).

  2. Optimum contracted-for water supply for hotels in arid coastal regions.

    PubMed

    Lamei, A; von Münch, E; van der Zaag, P; Imam, E

    2009-01-01

    Hotels in arid coastal areas use mainly desalinated water for their domestic water demands, and treated wastewater for irrigating green areas. Private water companies supply these hotels with their domestic water needs. There is normally a contractual agreement stating a minimum requirement that has to be supplied by the water company and that the hotel management has to pay for regardless of its actual consumption ("contracted-for water supply"). This paper describes a model to determine what value a hotel should choose for its contracted-for water supply in order to minimize its total annual water costs. An example from an arid coastal tourism-dominated city is presented: Sharm El Sheikh, Egypt.The managers of hotels with expected high occupancy rates (74% and above) can contract for more than 80%. On the other hand, hotels with expected lower occupancy rates (60% and less) can contract for less than 70% of the peak daily domestic water demand. With a green area ratio of 40 m(2)/room or less, an on-site wastewater treatment plant can satisfy the required irrigation demand for an occupancy rate as low as 42%. Increasing the ratio of green irrigated area to 100 m(2)/room does not affect the contracted-for water supply at occupancy rates above 72%; at lower occupancy rates, however, on-site treated wastewater is insufficient for irrigating the green areas. Increasing the green irrigated area to 120 m(2)/room increases the need for additional water, either from externally sourced treated wastewater or potable water. The cost of the former is much lower than the latter (0.58 versus 1.52 to 2.14 US$/m(3) in the case study area). PMID:19403967

  3. Microbial water quality before and after the repair of a failing onsite wastewater treatment system adjacent to coastal waters

    USGS Publications Warehouse

    Conn, K.E.; Habteselassie, M.Y.; Denene, Blackwood A.; Noble, R.T.

    2012-01-01

    Aims: The objective was to assess the impacts of repairing a failing onsite wastewater treatment system (OWTS, i.e., septic system) as related to coastal microbial water quality. Methods and Results: Wastewater, groundwater and surface water were monitored for environmental parameters, faecal indicator bacteria (total coliforms, Escherichia coli, enterococci) and the viral tracer MS2 before and after repairing a failing OWTS. MS2 results using plaque enumeration and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) often agreed, but inhibition limited the qRT-PCR assay sensitivity. Prerepair, MS2 persisted in groundwater and was detected in the nearby creek; postrepair, it was not detected. In groundwater, total coliform concentrations were lower and E.??coli was not detected, while enterococci concentrations were similar to prerepair levels. E.??coli and enterococci surface water concentrations were elevated both before and after the repair. Conclusions: Repairing the failing OWTS improved groundwater microbial water quality, although persistence of bacteria in surface water suggests that the OWTS was not the singular faecal contributor to adjacent coastal waters. A suite of tracers is needed to fully assess OWTS performance in treating microbial contaminants and related impacts on receiving waters. Molecular methods like qRT-PCR have potential but require optimization. Significance and Impact of Study: This is the first before and after study of a failing OWTS and provides guidance on selection of microbial tracers and methods. ?? 2011 The Authors. Journal of Applied Microbiology ?? 2011 The Society for Applied Microbiology.

  4. Climate Proof Areas: Adaptation of water management in coastal areas to climate change

    NASA Astrophysics Data System (ADS)

    Bormann, H.; Ahlhorn, F.; Giani, L.; Klenke, T.

    2009-04-01

    Due to future climate change coastal areas within the North Sea region will be faced with severe water management problems. On the one hand, mean sea level as well as storm tides will remarkably rise within the 21st century, and on the other hand it can be expected that the mean runoff from coastal river catchments will increase as well. The increase in runoff in Northwest Germany mainly will be caused by a changed seasonality of the water cycle (increase in runoff generation during winter, decrease in runoff generation during summer) and an increase in flooding intensity. Large parts of the German North Sea coast consist of low lying marsh and fen areas which are already intensively drained to be cultivable as agricultural land and to be usable to build settlements. Water management will have to adapt in order to be able to still use those areas in the presence of climate change. Innovative strategies for coastal protection and drainage will be required, considering the increased probability in summer drought periods as well which might accelerate salt water intrusion into surface and groundwater in summer time in particular inducing the need of irrigation. This contribution firstly introduces the hydrological effects of expected future climate change on the water cycle at the Lower Saxon North Sea coast (Germany). Then, the EC funded Interreg IVb project ‘Climate Proof Areas' is introduced, focusing on the development of adaptation strategies for water management in the North Sea region. Based on a participatory approach, future water management problems are defined, priorities and necessities are assessed, and possible approaches for a sustainable, future water management within the Wesermarsch region are developed. The scenario technique is used in order to elaborate and evaluate different, partly contrasting development paths and adaptations strategies. First water management adaptation scenarios point out potential conflicts between the diverse interests of

  5. Phytoplankton blooms in estuarine and coastal waters: seasonal patterns and key species

    USGS Publications Warehouse

    Carstensen, Jacob; Klais, Riina; Cloern, James E.

    2015-01-01

    Phytoplankton blooms are dynamic phenomena of great importance to the functioning of estuarine and coastal ecosystems. We analysed a unique (large) collection of phytoplankton monitoring data covering 86 coastal sites distributed over eight regions in North America and Europe, with the aim of investigating common patterns in the seasonal timing and species composition of the blooms. The spring bloom was the most common seasonal pattern across all regions, typically occurring early (February–March) at lower latitudes and later (April–May) at higher latitudes. Bloom frequency, defined as the probability of unusually high biomass, ranged from 5 to 35% between sites and followed no consistent patterns across gradients of latitude, temperature, salinity, water depth, stratification, tidal amplitude or nutrient concentrations. Blooms were mostly dominated by a single species, typically diatoms (58% of the blooms) and dinoflagellates (19%). Diatom-dominated spring blooms were a common feature in most systems, although dinoflagellate spring blooms were also observed in the Baltic Sea. Blooms dominated by chlorophytes and cyanobacteria were only common in low salinity waters and occurred mostly at higher temperatures. Key bloom species across the eight regions included the diatoms Cerataulina pelagica and Dactyliosolen fragilissimus and dinoflagellates Heterocapsa triquetra and Prorocentrum cordatum. Other frequent bloom-forming taxa were diatom genera Chaetoceros, Coscinodiscus, Skeletonema, and Thalassiosira. Our meta-analysis shows that these 86 estuarine-coastal sites function as diatom-producing systems, the timing of that production varies widely, and that bloom frequency is not associated with environmental factors measured in monitoring programs. We end with a perspective on the limitations of conclusions derived from meta-analyses of phytoplankton time series, and the grand challenges remaining to understand the wide range of bloom patterns and

  6. Geographical distribution of non-PBDE-brominated flame retardants in mussels from Asian coastal waters.

    PubMed

    Isobe, Tomohiko; Ogawa, Shohei P; Ramu, Karri; Sudaryanto, Agus; Tanabe, Shinsuke

    2012-09-01

    Hexabromocyclododecanes (HBCDs), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), and decabromodiphenyl ethane (DBDPE) used as alternatives for polybrominated diphenyl ethers (PBDEs) are also persistent in the environment as PBDEs. Limited information on these non-PBDE brominated flame retardants (BFRs) is available; in particular, there are only few publications on environmental pollution by these contaminants in the coastal waters of Asia. In this regard, we investigated the contamination status of HBCDs, BTBPE, and DBDPE in the coastal waters of Asia using mussels as a bioindicator. Concentrations of HBCDs, BTBPE, and DBDPE were determined in green (Perna viridis) and blue mussels (Mytilus edulis) collected from the coastal areas in Cambodia, China (mainland), SAR China (Hong Kong), India, Indonesia, Japan, Malaysia, the Philippines, and Vietnam on 2003-2008. BTBPE and DBDPE were analyzed using GC-MS, whereas HBCDs were determined by LC-MS/MS. HBCDs, BTBPE, and DBDPE were found in mussels at levels ranging from <0.01 to 1,400, <0.1 to 13, and <0.3 to 22 ng/g lipid wt, respectively. Among the three HBCD diastereoisomers, α-HBCD was the dominant isomer followed by γ- and β-HBCDs. Concentrations of HBCDs and DBDPE in mussels from Japan and Korea were higher compared to those from the other Asian countries, indicating extensive usage of these non-PBDE BFRs in Japan and Korea. Higher levels of HBCDs and DBDPE than PBDEs were detected in some mussel samples from Japan. The results suggest that environmental pollution by non-PBDE BFRs, especially HBCDs in Japan, is ubiquitous. This study provides baseline information on the contamination status of these non-PBDE BFRs in the coastal waters of Asia. PMID:22875421

  7. MODIS imagery as a tool for water quality assessments in southern California coastal ocean

    NASA Astrophysics Data System (ADS)

    Nezlin, N. P.; Digiacomo, P. M.; Jones, B. H.; Reifel, K. M.; Warrick, J. A.; Johnson, S. C.; Mengel, M.

    2007-05-01

    Stormwater plumes are main source of coastal pollution in southern California coastal waters. The data on surface salinity, concentrations of total suspended solids (TSS), colored dissolved organic matter (CDOM) and bacterial counts collected during the Bight'03 Regional Water Quality Program surveys in February 2004 and February-March 2005 were compared to MODIS-Aqua satellite imagery. The spectra of normalized water-leaving radiation (nLw) were different in plumes and in ambient ocean waters, enabling plumes discrimination and plume area size assessments from remotely-sensed data. The plume/ocean nLw differences (i.e., plume optical signatures) were most evident during first days after the rainstorm and less evident in the area where TSS concentration in discharged water was lower than in other regions. The accuracy of plume area assessments from satellite imagery was not high (77% on average), seemingly because of inexactitude in satellite data processing. In particular, the expected correlation between remotely-sensed CDOM absorption estimated by Lee's quasi-analytical algorithm (QAA) and CDOM concentrations in water column was often obscured by external factors including wind-driven sea state and phytoplankton blooms. Nevertheless, satellite imagery is a useful tool for estimation of the extension of polluted plumes, which is hardly achievable by contact methods.

  8. Subsurface object recognition by means of regularization techniques for mapping coastal waters floor

    NASA Astrophysics Data System (ADS)

    Jiménez-Rodríguez, Luis O.; Umana-Diaz, Alejandra; Diaz-Santos, Jose; Neira-Carolina, Gerardino; Morales-Morales, Javier; Rodriguez, Eladio

    2005-10-01

    A fundamental challenge to Remote Sensing is mapping the ocean floor in coastal shallow waters where variability, due to the interaction between the coast and the sea, can bring significant disparity in the optical properties of the water column. The objects to be detected, coral reefs, sands and submerged aquatic vegetation, have weak signals, with temporal and spatial variation. In real scenarios the absorption and backscattering coefficients have spatial variation due to different sources of variability (river discharge, different depths of shallow waters, water currents) and temporal fluctuations. This paper presents the development of algorithms for retrieving information and its application to the recognition, classification and mapping of objects under coastal shallow waters. A mathematical model that simplifies the radiative transfer equation was used to quantify the interaction between the object of interest, the medium and the sensor. The retrieval of information requires the development of mathematical models and processing tools in the area of inversion, image reconstruction and detection. The algorithms developed were applied to one set of remotely sensed data: a high resolution HYPERION hyperspectral imagery. An inverse problem arises as this spectral data is used for mapping the ocean shallow waters floor. Tikhonov method of regularization was used in the inversion process to estimate the bottom albedo of the ocean floor using a priori information in the form of stored spectral signatures, previously measured, of objects of interest, such as sand, corals, and sea grass.

  9. Sensitivity of the remote sensing reflectance of ocean and coastal waters to uncertainties in aerosol characteristics

    NASA Astrophysics Data System (ADS)

    Seidel, F. C.; Garay, M. J.; Zhai, P.; Kalashnikova, O. V.; Diner, D. J.

    2015-12-01

    Remote sensing is a powerful tool for optical oceanography and limnology to monitor and study ocean, coastal, and inland water ecosystems. However, the highly spatially and temporally variable nature of water conditions and constituents, as well as atmospheric conditions are challenging factors, especially for spaceborne observations.Here, we study the quantitative impact of uncertainties in the spectral aerosol optical and microphysical properties, namely aerosol optical depth (AOD), spectral absorption, and particle size, on the remote sensing reflectance (Rrs) of simulated typical open ocean and coastal waters. Rrs is related to the inherent optical properties of the water column and is a fundamental parameter in ocean optics retrievals. We use the successive order of scattering (SOS) method to perform radiative transfer calculations of the coupled system of atmosphere and water. The optics of typical open ocean and coastal waters are simulated with bio-optical models. We derive sensitivities by comparing spectral SOS calculations of Rrs with a reference aerosol model against similar calculations performed using a different aerosol model. One particular focus of this study lies on the impact of the spectral absorption of dust and brown carbon, or similar particles with greater absorption at short wavelengths on Rrs. The results are presented in terms of the minimum expected error in Rrs due to the choice of an incorrect aerosol model during the atmospheric correction of ocean color remote sensing data from space. This study is independent of errors related to observational data or retrieval techniques.The results are relevant for quantifying requirements of aerosol retrievals to derive accurate Rrs from spaceborne observations, such as NASA's future Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) mission.

  10. Enrichment of omnivorous cercozoan nanoflagellates from coastal Baltic Sea waters.

    PubMed

    Piwosz, Kasia; Pernthaler, Jakob

    2011-01-01

    Free-living nano-sized flagellates are important bacterivores in aquatic habitats. However, some slightly larger forms can also be omnivorous, i.e., forage upon both bacterial and eukaryotic resources. This hitherto largely ignored feeding mode may have pronounced implications for the interpretation of experiments about protistan bacterivory. We followed the response of an uncultured group of omnivorous cercozoan nanoflagellates from the Novel Clade 2 (Cerc_BAL02) to experimental food web manipulation in samples from the Gulf of Gdańsk (Southern Baltic Sea). Seawater was either prefiltered through 5 µm filters to exclude larger predators of nanoflagellates (F-treatment), or prefiltered and subsequently 1∶10 diluted with sterile seawater (F+D-treatment) to stimulate the growth of both, flagellates and bacteria. Initially, Cerc_BAL02 were rapidly enriched under both conditions. They foraged on both, eukaryotic prey and bacteria, and were highly competitive at low concentrations of food. However, these omnivores were later only successful in the F+D treatment, where they eventually represented almost one fifth of all aplastidic nanoflagellates. By contrast, their numbers stagnated in the F-treatment, possibly due to top-down control by a concomitant bloom of other, unidentified flagellates. In analogy with observations about the enrichment of opportunistically growing bacteria in comparable experimental setups we suggest that the low numbers of omnivorous Cerc_Bal02 flagellates in waters of the Gulf of Gdańsk might also be related to their vulnerability to grazing pressure.

  11. Effects of sea-level rise on ground water flow in a coastal aquifer system

    USGS Publications Warehouse

    Masterson, J.P.; Garabedian, S.P.

    2007-01-01

    The effects of sea-level rise on the depth to the fresh water/salt water interface were simulated by using a density-dependent, three-dimensional numerical ground water flow model for a simplified hypothetical fresh water lens that is similar to shallow, coastal aquifers found along the Atlantic coast of the United States. Simulations of sea-level rise of 2.65 mm/year from 1929 to 2050 resulted in an increase in water levels relative to a fixed datum, yet a net decrease in water levels relative to the increased sea-level position. The net decrease in water levels was much greater near a gaining stream than farther from the stream. The difference in the change in water levels is attributed to the dampening effect of the stream on water level changes in response to sea-level rise. In response to the decreased water level altitudes relative to local sea level, the depth to the fresh water/salt water interface decreased. This reduction in the thickness of the fresh water lens varied throughout the aquifer and was greatly affected by proximity to a ground water fed stream and whether the stream was tidally influenced. Away from the stream, the thickness of the fresh water lens decreased by about 2% from 1929 to 2050, whereas the fresh water lens thickness decreased by about 22% to 31% for the same period near the stream, depending on whether the stream was tidally influenced. The difference in the change in the fresh water/salt water interface position is controlled by the difference in the net decline in water levels relative to local sea level. ?? 2007 National Ground Water Association.

  12. Geologic framework of the Jurassic (Oxfordian) Smackover Formation the Alabama coastal waters area

    SciTech Connect

    Tew, B.H.; Mancini, E.A. ); Mink R.M.; Mann, S.D. ); Mancini, E.A.

    1993-09-01

    The Jurassic (Oxfordian) Smackover Formation is a prolific hydrocarbon-producing geologic unit in the onshore Gulf of Mexico area, including southwest Alabama. However, no Smackover strata containing commercial accumulations of oil or gas have thus far been discovered in the Alabama state coastal waters area (ACW). This study of the regional geologic framework of the Smackover Formation was done to characterize the unit in the ACW and to compare strata in the ACW with productive Smackover intervals in the onshore area. In the study area, the Smackover Formation was deposited on a highly modified carbonate associated with pre-Smackover topographic features. In the onshore Alabama, north of the Wiggins arch complex, an inner ramp developed in the area of the Mississippi interior salt basin and the Manila and Conecuh embayments. South of the Wiggins arch complex in extreme southern onshore Alabama and in the ACW, an outer ramp formed that was characterized by a much thicker Smackover section. In the outer ramp setting, four lithofacies associations are recognized: lower, middle, and upper outer ramp lithofacies (ORL) and the coastal dolostone lithofacies. The coastal dolostone lithofacies accounts for most of the reservoir-grade porosity in the outer ramp setting. The lower, middle, and upper ORL, for the most part, are nonporous. Volumetrically, intercrystalline porosity is the most important pore type in the coastal dolostone lithofacies. Numerous data in the ACW area indicate that halokinesis has created structural conditions favorable for accumulation and entrapment of oil and gas in the outer ramp lithofacies of the Smackover. Prolific hydrocarbon source rocks are present in the ACW, as evidenced by the significant natural gas accumulations in the Norphlet Formation. To date, however, reservoir quality rocks of the coastal dolostone lithofacies coincident with favorable structural conditions have not been encountered in the ACW.

  13. Appraising the extractable tidal energy resource of the UK's western coastal waters.

    PubMed

    Yates, Nick; Walkington, Ian; Burrows, Richard; Wolf, Judith

    2013-02-28

    A two-dimensional west coast tidal model, built on the ADCIRC platform (an unstructured grid two-dimensional depth-integrated shallow water model), has been developed to examine the scope for reliable and fully predictable electricity generation from UK coastal waters using an ambitious combination of estuary barrages, tidal lagoons and tidal stream generator arrays. The main emphasis has been towards conjunctive operation of major estuary barrages, initially including the presence of pilot-scale tidal stream developments, though ambitious exploitation of extensive tidal streams has also been explored. PMID:23319704

  14. Organotin and Irgarol-1051 contamination in Singapore coastal waters.

    PubMed

    Basheer, C; Tan, K S; Lee, H K

    2002-07-01

    The seas surrounding Singapore are principally utilized by the shipping industry but are now also increasingly used for a variety of other purposes, including desalination for supplies of drinking water and intensive aquaculture of food fish. While stringent environmental pollution standards are in place for industrial effluents, there is currently no legislative control over pollution from anti-fouling paints in Singapore. In this study, the concentrations of toxic antifouling agents tributyltin (TBT), triphenyltin (TPhT) and Irgarol-1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine) were determined from seawater obtained from 26 locations along and off the coast of Singapore in October and November 2000. These compounds were isolated by liquid-liquid extraction derivatized under controlled microwave heating and quantified by gas chromatography-mass spectrometry. TBT concentrations in seawater ranged between 0.43 and 3.20 microg 1(-1) with a mean value of 1.40 +/- 0.60 micro 1(-1). The mean values of DBT and MBT were 1.07 +/- 0.80 microg 11(-1) and 0.34 +/- 0.50 microg 1(-1) respectively, while TPhT concentrations of up to 0.40 microg 1(-1) were found. Monophenyltin and diphenyltin were not detected in all samples analysed. Irgarol-1051 was found to be present at concentrations of between 3.02 microg 1(-1) and 4.20 microg 1(-1) in seawater with a mean value of 2.00 +/- 1.20 microg 1(-1).

  15. Solubility of Particulate Mercury in Coastal Waters of the Central U.S. Gulf Coast

    NASA Astrophysics Data System (ADS)

    Engle, M.; Krabbenhoft, D. P.; Sabin, T. G.; Geboy, N. J.; Kolker, A.

    2010-12-01

    There is growing awareness that dry deposition can contribute substantially to the overall atmospheric mercury (Hg) load, especially in near-coastal settings. Previous studies have shown that a significant portion of particulate mercury (Hg-P) in coastal environments is contained in the coarse (≥2.5 μm) fraction, and it is assumed that much of this coarse Hg-P is derived from reactive gaseous Hg adsorbed onto sea salt aerosols in the marine boundary layer. While enhanced Hg-P deposition in coastal areas is the likely result, there is little understanding of the post-depositional fate of Hg dry deposition to aquatic ecosystems. This study was conducted to better understand potential dry-to-wet transfer of Hg in coastal aquatic environments. In some portions of the U.S., these coastal ecosystems are susceptible to enhanced methyl Hg production. Coarse and fine (<2.5 μm) fractions of atmospheric particulate matter (PM) were collected at the Grand Bay National Estuarine Research Reserve in coastal Mississippi during the first half of May, 2010 (after the Deepwater Horizon Blowout, but before oil made landfall at the study area) over 30-hour intervals using Hi-Vol cascade impactors. Portions of the filters containing the fine and coarse PM were brought to the lab and incubated in aliquots of water from Grand Bay, which is a mixture of roughly 30% seawater and 70% freshwater, and from the Escatawpa River, a nearby low-TDS, acidic black water stream. Incubations were conducted for periods of 1-hour, 4-hours, 12-hours, and 1-week for each size fraction and water type. The post-incubation solutions and remaining portions of the filters used in the incubations were analyzed for total and methyl Hg at the USGS Mercury Laboratory in Middleton, Wisconsin. In addition, a set of 10 fractions of PM, ranging in size from <0.18 to >18 μm, was collected during the study using a micro-orifice uniform-deposit impactor (MOUDI) and analyzed for trace elements via ICP-MS. Overall

  16. Composition of heterotrophic flagellates in coastal waters of different trophic status.

    PubMed

    Cheung, Man Kit; Nong, Wenyan; Kwan, Hoi Shan; Wong, Chong Kim

    2013-09-01

    Heterotrophic flagellates (HFs) are important members of the aquatic microbial food web. However, information on their spatial patterns in relation to eutrophication is limited. Here, we examined the composition and spatial distributions of HFs (<3 μm) in subtropical coastal waters of different trophic status by re-analyzing two previously published small subunit rDNA pyrosequence datasets using information from the newly launched Protist Ribosomal Reference database (PR(2)). Whereas the contributions of different major clades composing the Marine Stramenopiles (MASTs), picobiliphytes and Chrysophyceae were found relatively comparable between the stations, contrasting compositions of the Marine Alveolates (MALV) groups I and II were observed. The high and relatively stable contribution of MAST-1, -3 and -7 among the MASTs in both stations suggest their importance as bacterial grazers in coastal waters, irrespective of trophic status. By contrast, the dominance of clades 3, 5 and 14 of MALV II in the eutrophic station implies their importance in regulating the dinoflagellate population at the site. Our study provides insights into the ecological importance of different HF groups in eutrophic coastal ecosystems. PMID:23636495

  17. Metal contamination in water, sediment and biota from a semi-enclosed coastal area.

    PubMed

    Aly, Walid; Williams, Ian D; Hudson, Malcolm D

    2013-05-01

    This study identifies and quantifies the spatial variations of metal contamination in water, sediment and biota: the common cockle (Cerastoderma edule) and the Mermaid's glove sponge (Haliclona oculata), within a heavily anthropogenically impacted semi-enclosed estuarine-coastal area with a low ability to disperse and flush contaminants (Poole Harbour, UK). The results showed that metal contamination was detected in all environmental compartments. Water was polluted with As, and Hg sediment metals were mostly within "the possible effect range" in which adverse effects occasionally occurs. Cockles had considerable concentrations of Ni, Ag and Hg in areas close to pollution sources, and sponges accumulate Cu and Zn with very high magnitude. A systematic monitoring approach that includes biological monitoring techniques, which covers all embayments, is needed, and an integrated management of the semi-enclosed coastal zones should be based on the overall hydrological characteristics of these sensitive areas and their ability to self-restore which is different than open coastal zones. PMID:23014922

  18. Nutrient Loads Flowing into Coastal Waters from the Main Rivers of China (2006-2012).

    PubMed

    Tong, Yindong; Zhao, Yue; Zhen, Gengchong; Chi, Jie; Liu, Xianhua; Lu, Yiren; Wang, Xuejun; Yao, Ruihua; Chen, Junyue; Zhang, Wei

    2015-01-01

    Based on monthly monitoring data of unfiltered water, the nutrient discharges of the eight main rivers flowing into the coastal waters of China were calculated from 2006 to 2012. In 2012, the total load of NH3-N (calculated in nitrogen), total nitrogen (TN, calculated in nitrogen) and total phosphorus (TP, calculated in phosphorus) was 5.1 × 10(5), 3.1 × 10(6) and 2.8 × 10(5) tons, respectively, while in 2006, the nutrient load was 7.4 × 10(5), 2.2 × 10(6) and 1.6 × 10(5) tons, respectively. The nutrient loading from the eight major rivers into the coastal waters peaked in summer and autumn, probably due to the large water discharge in the wet season. The Yangtze River was the largest riverine nutrient source for the coastal waters, contributing 48% of the NH3-N discharges, 66% of the TN discharges and 84% of the TP discharges of the eight major rivers in 2012. The East China Sea received the majority of the nutrient discharges, i.e. 50% of NH3-N (2.7 × 10(5) tons), 70% of TN (2.2 × 10(6) tons) and 87% of TP (2.5 × 10(5) tons) in 2012. The riverine discharge of TN into the Yellow Sea and Bohai Sea was lower than that from the direct atmospheric deposition, while for the East China Sea, the riverine TN input was larger. PMID:26582206

  19. Chlorophyll concentration estimates for coastal water using pixel-based atmospheric correction of Landsat images

    NASA Astrophysics Data System (ADS)

    Kouba, Eric

    Ocean color analysis is more challenging for coastal regions than the global ocean due the effects of optical brightness, shallow and turbid water, higher phytoplankton growth rates, and the complex geometry of coastal bays and estuaries. Also, one of the key atmospheric correction assumptions (zero water leaving radiance in the near infrared) is not valid for these complex conditions. This makes it difficult to estimate the spectral radiance noise caused by atmospheric aerosols, which can vary rapidly with time and space. This study conducts pixel-based atmospheric correction of Landsat-7 ETM+ images over the Texas coast. Precise satellite orbit data, operational weather data, and climate data are combined to create interpolated arrays of viewing angles and atmospheric profiles. These arrays vary with time and location, allowing calculation of the Rayleigh and aerosol radiances separately for all pixels. The resulting normalized water-leaving radiances are then compared with in situ chlorophyll fluorescence measurements from five locations inside a set of Texas coastal bays: the Mission-Aransas National Estuarine Research Reserve. Curve-fitting analysis shows it is possible to estimate chlorophyll-a surface area concentrations by using ETM+ water-leaving radiance values and a third-order polynomial equation. Two pairs of ETM+ bands are identified as inputs (Bands 1 and 3, and the Log10 values of Bands 3 and 4), both achieving good performance (R2 of 0.69). Further research efforts are recommended to obtain additional data, identify better curve fitting equations, and potentially extend the radiative transfer model into the water column.

  20. Nutrient Loads Flowing into Coastal Waters from the Main Rivers of China (2006–2012)

    PubMed Central

    Tong, Yindong; Zhao, Yue; Zhen, Gengchong; Chi, Jie; Liu, Xianhua; Lu, Yiren; Wang, Xuejun; Yao, Ruihua; Chen, Junyue; Zhang, Wei

    2015-01-01

    Based on monthly monitoring data of unfiltered water, the nutrient discharges of the eight main rivers flowing into the coastal waters of China were calculated from 2006 to 2012. In 2012, the total load of NH3-N (calculated in nitrogen), total nitrogen (TN, calculated in nitrogen) and total phosphorus (TP, calculated in phosphorus) was 5.1 × 105, 3.1 × 106 and 2.8 × 105 tons, respectively, while in 2006, the nutrient load was 7.4 × 105, 2.2 × 106 and 1.6 × 105 tons, respectively. The nutrient loading from the eight major rivers into the coastal waters peaked in summer and autumn, probably due to the large water discharge in the wet season. The Yangtze River was the largest riverine nutrient source for the coastal waters, contributing 48% of the NH3-N discharges, 66% of the TN discharges and 84% of the TP discharges of the eight major rivers in 2012. The East China Sea received the majority of the nutrient discharges, i.e. 50% of NH3-N (2.7 × 105 tons), 70% of TN (2.2 × 106 tons) and 87% of TP (2.5 × 105 tons) in 2012. The riverine discharge of TN into the Yellow Sea and Bohai Sea was lower than that from the direct atmospheric deposition, while for the East China Sea, the riverine TN input was larger. PMID:26582206

  1. An index for assessing salt-water vulnerability in coastal regions

    NASA Astrophysics Data System (ADS)

    Bhattachan, A.; Emanuel, R. E.; Moody, A.

    2015-12-01

    Low-lying coastal landscapes are at risk as sea level rises. Future projections suggest that 50 cm to 100 cm sea-level rise is imminent by the end of the century. One of the responses to increasing sea level is salt-water intrusion of freshwater-dependent ecosystems with long-term negative impacts on ecosystem services. This effect is further exacerbated by the presence of human-modified artificial drainages, which serve as gateways through which salt water penetrates inland areas. We present a novel conceptual model to investigate the vulnerability of low-lying, freshwater-dependent landscapes to saltwater intrusion. The saltwater intrusion vulnerability index (SIVI) is determined by the ratio of protected elevation above sea level to the log transformed local drainage area as a proxy for freshwater subsidies. As an index, SIVI represents the balance between vulnerability to salt-water exposure on one hand and the potential for freshwater flushing on the other. To this end, we use a high resolution Lidar-derived digital elevation model (DEM) to derive protected elevation, whereas the local drainage area is derived using a downscaled 100-m DEM to reflect the natural drainage and flushing potential in the absence of man-made structures. Thus, SIVI will serve as a guiding tool to determine the potential for salt-water intrusion, initially in coastal North Carolina, but eventually in similarly low-lying coastal regions. It will also aid understanding of the natural and human influences on observed patterns of salt-water intrusion and subsequent implications for ecosystem productivity, biodiversity and associated ecological processes.

  2. Nutrient Loads Flowing into Coastal Waters from the Main Rivers of China (2006-2012).

    PubMed

    Tong, Yindong; Zhao, Yue; Zhen, Gengchong; Chi, Jie; Liu, Xianhua; Lu, Yiren; Wang, Xuejun; Yao, Ruihua; Chen, Junyue; Zhang, Wei

    2015-11-19

    Based on monthly monitoring data of unfiltered water, the nutrient discharges of the eight main rivers flowing into the coastal waters of China were calculated from 2006 to 2012. In 2012, the total load of NH3-N (calculated in nitrogen), total nitrogen (TN, calculated in nitrogen) and total phosphorus (TP, calculated in phosphorus) was 5.1 × 10(5), 3.1 × 10(6) and 2.8 × 10(5) tons, respectively, while in 2006, the nutrient load was 7.4 × 10(5), 2.2 × 10(6) and 1.6 × 10(5) tons, respectively. The nutrient loading from the eight major rivers into the coastal waters peaked in summer and autumn, probably due to the large water discharge in the wet season. The Yangtze River was the largest riverine nutrient source for the coastal waters, contributing 48% of the NH3-N discharges, 66% of the TN discharges and 84% of the TP discharges of the eight major rivers in 2012. The East China Sea received the majority of the nutrient discharges, i.e. 50% of NH3-N (2.7 × 10(5) tons), 70% of TN (2.2 × 10(6) tons) and 87% of TP (2.5 × 10(5) tons) in 2012. The riverine discharge of TN into the Yellow Sea and Bohai Sea was lower than that from the direct atmospheric deposition, while for the East China Sea, the riverine TN input was larger.

  3. Analytical characterization of selective benthic flux components in estuarine and coastal waters

    USGS Publications Warehouse

    King, Jeffrey N.

    2011-01-01

    Benthic flux is the rate of flow across the bed of a water body, per unit area of bed. It is forced by component mechanisms, which interact. For example, pressure gradients across the bed, forced by tide, surface gravity waves, density gradients, bed–current interaction, turbulence, and terrestrial hydraulic gradients, drive an advective benthic flux of water and constituents between estuarine and coastal waters, and surficial aquifers. Other mechanisms also force benthic flux, such as chemical gradients, bioturbation, and dispersion. A suite of component mechanisms force a total benthic flux at any given location, where each member of the suite contributes a component benthic flux. Currently, the types and characteristics of component interactions are not fully understood. For example, components may interact linearly or nonlinearly, and the interaction may be constructive or destructive. Benthic flux is a surface water–groundwater interaction process. Its discharge component to a marine water body is referred to, in some literature, as submarine groundwater discharge. Benthic flux is important in characterizing water and constituent budgets of estuarine and coastal systems. Analytical models to characterize selective benthic flux components are reviewed. Specifically, these mechanisms are for the component associated with the groundwater tidal prism, and forced by surface gravity wave setup, surface gravity waves on a plane bed, and the terrestrial hydraulic gradient. Analytical models are applied to the Indian River Lagoon, Florida; Great South Bay, New York; and the South Atlantic Bight in South Carolina and portions of North Carolina.

  4. Distribution and elemental composition of suspended matter in Alaskan coastal waters

    SciTech Connect

    Feely, R.A.; Massoth, G.J.; Paulson, A.J.; Lamb, M.F.

    1980-09-01

    The distribution of suspended matter in the northeastern Gulf of Alaska is affected by a number of parameters which combine to form a unique distribution pattern. East of Kayak Island the surface particulate matter distributions are dominated by the discharge of sedimentary material from the coastal streams which drain the Beering, Guyot and Malaspina Glaciers. The major source of sedimentary material to the Gulf of Alaska is the Copper River. In general, concentrations of suspended matter in the northeast Gulf of Alaska are high at the surface with an average concentration of approximately 1.0 mg/l. Recent studies of oil spills in coastal waters containing high suspended loads have indicated rapid dispersal and removal of the oil by sorption onto particles along frontal zones.

  5. Classifying risk zones by the impacts of oil spills in the coastal waters of Thailand.

    PubMed

    Singkran, Nuanchan

    2013-05-15

    Risk zones that could be subject to the impacts of oil spills were identified at a national scale across the 23 coastal provinces of Thailand based on the average percentage risk of critical variables, including frequency of oil spill incidents, number of ports, number of local boats, number of foreign boats, and presence of important resources (i.e., protection area, conservation area, marine park, mangrove, aquaculture, coral reef, seagrass, seagull, seabird, sea turtle, dugong, dolphin, whale, guitar fish, and shark). Risks at the local scale were determined based on the frequency of simulated oil slicks hitting the coast and/or important resources. Four zones with varied risk magnitudes (low, moderate, high, and very high) were mapped to guide the preparation of effective plans to minimize oil spill incidents and impacts in coastal waters. Risk maps with sufficient information could be used to improve regulations related to shipping and vessel navigation in local and regional seas.

  6. Classifying risk zones by the impacts of oil spills in the coastal waters of Thailand.

    PubMed

    Singkran, Nuanchan

    2013-05-15

    Risk zones that could be subject to the impacts of oil spills were identified at a national scale across the 23 coastal provinces of Thailand based on the average percentage risk of critical variables, including frequency of oil spill incidents, number of ports, number of local boats, number of foreign boats, and presence of important resources (i.e., protection area, conservation area, marine park, mangrove, aquaculture, coral reef, seagrass, seagull, seabird, sea turtle, dugong, dolphin, whale, guitar fish, and shark). Risks at the local scale were determined based on the frequency of simulated oil slicks hitting the coast and/or important resources. Four zones with varied risk magnitudes (low, moderate, high, and very high) were mapped to guide the preparation of effective plans to minimize oil spill incidents and impacts in coastal waters. Risk maps with sufficient information could be used to improve regulations related to shipping and vessel navigation in local and regional seas. PMID:23518446

  7. Halogenated phenolic contaminants in the blood of marine mammals from Japanese coastal waters.

    PubMed

    Nomiyama, Kei; Kanbara, Chika; Ochiai, Mari; Eguchi, Akifumi; Mizukawa, Hazuki; Isobe, Tomohiko; Matsuishi, Takashi; Yamada, Tadasu K; Tanabe, Shinsuke

    2014-02-01

    Information on accumulation of halogenated phenolic contaminants in the blood of marine mammal is limited. The present study, we determined the residue levels and patterns of chlorinated and brominated phenolic contaminants (OH-PCBs, OH-PBDEs and bromophenols) in the blood collected from pinnipeds (northern fur seal, spotted seal, Steller sea lion and ribbon seal) and small cetaceans (harbor porpoise and Dall's porpoise) from Japanese coastal waters. Concentrations of PCBs and OH-PCBs found in pinnipeds were the same as in small cetaceans living in the same coastal area. However, significantly lower concentrations of brominated compounds (PBDEs, MeO-PBDEs, OH-PBDEs) were found in the blood of pinnipeds than the levels found in cetacean species which live same area (p < 0.05). This difference of accumulation pattern suggested pinnipeds have an enhanced capability to degrade organobromine compounds relative to cetaceans. PMID:24060385

  8. Aerospace remote sensing of the coastal zone for water quality and biotic productivity applications

    NASA Technical Reports Server (NTRS)

    Pritchard, E. B.; Harriss, R. C.

    1981-01-01

    Remote sensing can provide the wide area synoptic coverage of surface waters which is required for studies of such phenomena as river plume mixing, phytoplankton dynamics, and pollutant transport and fate, but which is not obtainable by conventional oceanographic techniques. The application of several remote sensors (aircraftborne and spacecraftborne multispectral scanners, passive microwave radiometers, and active laser systems) to coastal zone research is discussed. Current measurement capabilities (particulates, chlorophyll a, temperature, salinity, ocean dumped materials, other pollutants, and surface winds and roughness) are defined and the results of recent remote sensing experiments conducted in the North Atlantic coastal zone are presented. The future development of remote sensing must rely on an integrated laboratory research program in optical physics. Recent results indicate the potential for separation of particulates into subsets by remote sensors.

  9. Discovery of a living coral reef in the coastal waters of Iraq

    NASA Astrophysics Data System (ADS)

    Pohl, Thomas; Al-Muqdadi, Sameh W.; Ali, Malik H.; Fawzi, Nadia Al-Mudaffar; Ehrlich, Hermann; Merkel, Broder

    2014-03-01

    Until now, it has been well-established that coral complex in the Arabian/Persian Gulf only exist in the coastal regions of Bahrain, Iran, Kuwait, Oman, Qatar, Saudi Arabia, and United Arab Emirates and it was thought that there are no coral reefs in Iraq. However, here for the first time we show the existence of a living 28 km2 large coral reef in this country. These corals are adapted to one of the most extreme coral-bearing environments on earth: the seawater temperature in this area ranges between 14 and 34°C. The discovery of the unique coral reef oasis in the turbid coastal waters of Iraq will stimulate the interest of governmental agencies, environmental organizations, as well as of the international scientific community working on the fundamental understanding of coral marine ecosystems and global climate today.

  10. Discovery of a living coral reef in the coastal waters of Iraq.

    PubMed

    Pohl, Thomas; Al-Muqdadi, Sameh W; Ali, Malik H; Fawzi, Nadia Al-Mudaffar; Ehrlich, Hermann; Merkel, Broder

    2014-01-01

    Until now, it has been well-established that coral complex in the Arabian/Persian Gulf only exist in the coastal regions of Bahrain, Iran, Kuwait, Oman, Qatar, Saudi Arabia, and United Arab Emirates and it was thought that there are no coral reefs in Iraq. However, here for the first time we show the existence of a living 28 km(2) large coral reef in this country. These corals are adapted to one of the most extreme coral-bearing environments on earth: the seawater temperature in this area ranges between 14 and 34°C. The discovery of the unique coral reef oasis in the turbid coastal waters of Iraq will stimulate the interest of governmental agencies, environmental organizations, as well as of the international scientific community working on the fundamental understanding of coral marine ecosystems and global climate today.

  11. Discovery of a living coral reef in the coastal waters of Iraq

    PubMed Central

    Pohl, Thomas; Al-Muqdadi, Sameh W.; Ali, Malik H.; Fawzi, Nadia Al-Mudaffar; Ehrlich, Hermann; Merkel, Broder

    2014-01-01

    Until now, it has been well-established that coral complex in the Arabian/Persian Gulf only exist in the coastal regions of Bahrain, Iran, Kuwait, Oman, Qatar, Saudi Arabia, and United Arab Emirates and it was thought that there are no coral reefs in Iraq. However, here for the first time we show the existence of a living 28 km2 large coral reef in this country. These corals are adapted to one of the most extreme coral-bearing environments on earth: the seawater temperature in this area ranges between 14 and 34°C. The discovery of the unique coral reef oasis in the turbid coastal waters of Iraq will stimulate the interest of governmental agencies, environmental organizations, as well as of the international scientific community working on the fundamental understanding of coral marine ecosystems and global climate today. PMID:24603901

  12. Surface water-groundwater exchange in transitional coastal environments by airborne electromagnetics: The Venice Lagoon example

    NASA Astrophysics Data System (ADS)

    Viezzoli, A.; Tosi, L.; Teatini, P.; Silvestri, S.

    2010-01-01

    A comprehensive investigation of the mixing between salt/fresh surficial water and groundwater in transitional environments is an issue of paramount importance considering the ecological, cultural, and socio-economic relevance of coastal zones. Acquiring information, which can improve the process understanding, is often logistically challenging, and generally expensive and slow in these areas. Here we investigate the capability of airborne electromagnetics (AEM) at the margin of the Venice Lagoon, Italy. The quasi-3D interpretation of the AEM outcome by the spatially constrained inversion (SCI) methodology allows us to accurately distinguish several hydrogeological features down to a depth of about 200 m. For example, the extent of the saltwater intrusion in coastal aquifers and the transition between the upper salt saturated and the underlying fresher sediments below the lagoon bottom are detected. The research highlights the AEM capability to improve the hydrogeological characterization of subsurface processes in worldwide lagoons, wetlands, deltas.

  13. Flow and transport within a coastal aquifer adjacent to a stratified water body

    NASA Astrophysics Data System (ADS)

    Oz, Imri; Yechieli, Yoseph; Eyal, Shalev; Gavrieli, Ittai; Gvirtzman, Haim

    2016-04-01

    The existence of a freshwater-saltwater interface and the circulation flow of saltwater beneath the interface is a well-known phenomenon found at coastal aquifers. This flow is a natural phenomenon that occurs due to density differences between fresh groundwater and the saltwater body. The goals of this research are to use analytical, numerical, and physical models in order to examine the configuration of the freshwater-saltwater interface and the density-driven flow patterns within a coastal aquifer adjacent to long-term stratified saltwater bodies (e.g. meromictic lake). Such hydrological systems are unique, as they consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. This research also aims to examine the influence of such stratification on hydrogeological processes within the coastal aquifer. The coastal aquifer adjacent to the Dead Sea, under its possible future meromictic conditions, serves as an ideal example to examine these processes. The results show that adjacent to a stratified saltwater body three interfaces between three different water bodies are formed, and that a complex flow system, controlled by the density differences, is created, where three circulation cells are developed. These results are significantly different from the classic circulation cell that is found adjacent to non-stratified water bodies (lakes or oceans). In order to obtain a more generalized insight into the groundwater behavior adjacent to a stratified water body, we used the numerical model to perform sensitivity analysis. The hydrological system was found be sensitive to three dimensionless parameters: dimensionless density (i.e. the relative density of the three water bodies'); dimensionless thickness (i.e. the ratio between the relative thickness of the upper layer and the whole thickness of the lake); and dimensionless flux. The results

  14. Submarine Groundwater Discharge and Coastal Water Quality on the Kona Coast: The Land Use Connection

    NASA Astrophysics Data System (ADS)

    Knee, K. L.; Street, J. H.; Grossman, E. G.; Boehm, A. B.; Paytan, A.

    2008-12-01

    For several decades, the Kona, or western, coast of the island of Hawai'i (Hawai'i, USA) has been recognized as a region of exceptionally high submarine groundwater discharge (SGD). Maintaining good water quality on the Kona coast is important for the local coral reef ecosystems and tourism-based economy. However, rapid development in the recent past and planned development in the near future may pose a threat to coastal waters. In this study, we quantified SGD-related fluxes of freshwater, nutrients and trace metals into the coastal ocean at 12 sites on the Kona coast. Radium-224 activity, silica concentration, and salinity were used as groundwater tracers, and a mass-balance approach was used to estimate fluxes. The relation between fresh groundwater quality and land use was also investigated. Fresh SGD was pervasive along the Kona coast, occurring to a measurable extent at 11 of 12 study sites. However, the volume percent of fresh groundwater at coastal ocean sites varied considerably, from 0-47%, indicating that SGD affects some sites much more than others. Inverse, linear relationships between salinity and concentrations of nitrate+nitrite, phosphate, and silica in the coastal ocean indicated conservative behavior and suggested that nutrients are diluted or advected away from shore faster than they can be used biologically. Neither the population density nor the percentage of urbanized, agricultural, forested or bare land in the vicinity of the study sites influenced groundwater nutrient concentrations; however, sites closest to golf courses had significantly higher concentrations of nitrate+nitrite. Relations between land use and trace metal concentrations in groundwater were also investigated.

  15. Impact of sea-level rise on sea water intrusion in coastal aquifers.

    PubMed

    Werner, Adrian D; Simmons, Craig T

    2009-01-01

    Despite its purported importance, previous studies of the influence of sea-level rise on coastal aquifers have focused on specific sites, and a generalized systematic analysis of the general case of the sea water intrusion response to sea-level rise has not been reported. In this study, a simple conceptual framework is used to provide a first-order assessment of sea water intrusion changes in coastal unconfined aquifers in response to sea-level rise. Two conceptual models are tested: (1) flux-controlled systems, in which ground water discharge to the sea is persistent despite changes in sea level, and (2) head-controlled systems, whereby ground water abstractions or surface features maintain the head condition in the aquifer despite sea-level changes. The conceptualization assumes steady-state conditions, a sharp interface sea water-fresh water transition zone, homogeneous and isotropic aquifer properties, and constant recharge. In the case of constant flux conditions, the upper limit for sea water intrusion due to sea-level rise (up to 1.5 m is tested) is no greater than 50 m for typical values of recharge, hydraulic conductivity, and aquifer depth. This is in striking contrast to the constant head cases, in which the magnitude of salt water toe migration is on the order of hundreds of meters to several kilometers for the same sea-level rise. This study has highlighted the importance of inland boundary conditions on the sea-level rise impact. It identifies combinations of hydrogeologic parameters that control whether large or small salt water toe migration will occur for any given change in a hydrogeologic variable.

  16. Impact of sea-level rise on sea water intrusion in coastal aquifers.

    PubMed

    Werner, Adrian D; Simmons, Craig T

    2009-01-01

    Despite its purported importance, previous studies of the influence of sea-level rise on coastal aquifers have focused on specific sites, and a generalized systematic analysis of the general case of the sea water intrusion response to sea-level rise has not been reported. In this study, a simple conceptual framework is used to provide a first-order assessment of sea water intrusion changes in coastal unconfined aquifers in response to sea-level rise. Two conceptual models are tested: (1) flux-controlled systems, in which ground water discharge to the sea is persistent despite changes in sea level, and (2) head-controlled systems, whereby ground water abstractions or surface features maintain the head condition in the aquifer despite sea-level changes. The conceptualization assumes steady-state conditions, a sharp interface sea water-fresh water transition zone, homogeneous and isotropic aquifer properties, and constant recharge. In the case of constant flux conditions, the upper limit for sea water intrusion due to sea-level rise (up to 1.5 m is tested) is no greater than 50 m for typical values of recharge, hydraulic conductivity, and aquifer depth. This is in striking contrast to the constant head cases, in which the magnitude of salt water toe migration is on the order of hundreds of meters to several kilometers for the same sea-level rise. This study has highlighted the importance of inland boundary conditions on the sea-level rise impact. It identifies combinations of hydrogeologic parameters that control whether large or small salt water toe migration will occur for any given change in a hydrogeologic variable. PMID:19191886

  17. Measured and modeled radiometric quantities in coastal waters: toward a closure.

    PubMed

    Bulgarelli, Barbara; Zibordi, Giuseppe; Berthon, Jean-François

    2003-09-20

    Accurate radiative transfer modeling in the coupled atmosphere-sea system is increasing in importance for the development of advanced remote-sensing applications. Aiming to quantify the uncertainties in the modeling of coastal water radiometric quantities, we performed a closure experiment to intercompare theoretical and experimental data as a function of wavelength lambda and water depth z. Specifically, the study focused on above-water downward irradiance E(d)(lambda, 0+) and in-water spectral profiles of upward nadir radiance L(u)(lambda, z), upward irradiance E(u)(lambda, z), downward irradiance E(d)(lambda, z), the E(u)(lambda, z)/L(u)(lambda, z) ratio (the nadir Q factor), and the E(u)(lambda, z)/E(d)(lambda, z) ratio (the irradiance reflectance). The theoretical data were produced with the finite-element method radiative transfer code ingesting in situ atmospheric and marine inherent optical properties. The experimental data were taken from a comprehensive coastal shallow-water data set collected in the northern Adriatic Sea. Under various measurement conditions, differences between theoretical and experimental data for the above-water E(d)(lambda, 0+) and subsurface E(d)(lambda, 0-) as well as for the in-water profiles of the nadir Q factor were generally less than 15%. In contrast, the in-water profiles of L(u)(lambda, z), E(d)(lambda, z), E(u)(lambda, z) and of the irradiance reflectance exhibited larger differences [to approximately 60% for L(u)(lambda, z) and E(u)(lambda, z), 30% for E(d)(lambda, z), and 50% for the irradiance reflectance]. These differences showed a high sensitivity to experimental uncertainties in a few input quantities used for the simulations: the seawater absorption coefficient; the hydrosol phase function backscattering probability; and, mainly for clear water, the bottom reflectance. PMID:14526823

  18. Impact of anthropogenic development on coastal ground-water hydrology in southeastern Florida, 1900-2000

    USGS Publications Warehouse

    Renken, Robert A.; Dixon, Joann; Koehmstedt, John A.; Ishman, Scott; Lietz, A.C.; Marella, Richard L.; Telis, Pamela A.; Rodgers, Jeff; Memberg, Steven

    2005-01-01

    Southeastern Florida is an area that has been subject to widely conflicting anthropogenic stress to the Everglades and coastal ecosystems. This stress is a direct consequence of the 20th century economic competition for limited land and water resources needed to satisfy agricultural development and its expansion, its displacement by burgeoning urban development, and the accompanying growth of the limestone mining industry. The development of a highly controlled water-management system designed to reclaim land for urban and agricultural development has severely impacted the extent, character, and vitality of the historic Everglades and coastal ecosystems. An extensive conveyance system of canals, levees, impoundments, surface- water control structures, and numerous municipal well fields are used to sustain the present-day Everglades hydrologic system, prevent overland flow from moving eastward and flooding urban and agricultural areas, maintain water levels to prevent saltwater intrusion, and provide an adequate water supply. Extractive mining activities expanded considerably in the latter part of the 20th century, largely in response to urban construction needs. Much of the present-day urban-agricultural corridor of southeastern Florida lies within an area that is no more than 15 feet above NGVD 1929 and formerly characterized by freshwater marsh, upland, and saline coastal wetland ecosystems. Miami- Dade, Broward, and Palm Beach Counties have experienced explosive population growth, increasing from less than 4,000 inhabitants in 1900 to more than 5 million in 2000. Ground-water use, the principal source of municipal supply, has increased from about 65 Mgal/d (million gallons per day) obtained from 3 well fields in 1930 to more than 770 Mgal/d obtained from 65 well fields in 1995. Water use for agricultural supply increased from 505 Mgal/d in 1953 to nearly 1,150 Mgal/d in 1988, but has since declined to 764 Mgal/d in 1995, partly as a result of displacement of the

  19. Effects of macro-pores on water flow in coastal subsurface drainage systems

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Yu, Xiayang; Lu, Chunhui; Li, Ling

    2016-01-01

    Leaching through subsurface drainage systems has been widely adopted to ameliorate saline soils. The application of this method to remove salt from reclaimed lands in the coastal zone, however, may be impacted by macro-pores such as crab burrows, which are commonly distributed in the soils. We developed a three-dimensional model to investigate water flow in subsurface drainage systems affected by macro-pores distributed deterministically and randomly through Monte Carlo simulations. The results showed that, for subsurface drainage systems under the condition of continuous surface ponding, macro-pores increased the hydraulic head in the deep soil, which in turn reduced the hydraulic gradient between the surface and deep soil. As a consequence, water infiltration across the soil surface was inhibited. Since salt transport in the soil is dominated by advection, the flow simulation results indicated that macro-pores decreased the efficiency of salt leaching by one order of magnitude, in terms of both the elapsed time and the amount of water required to remove salt over the designed soil leaching depth (0.6 m). The reduction of the leaching efficiency was even greater in drainage systems with a layered soil stratigraphy. Sensitivity analyses demonstrated that with an increased penetration depth or density of macro-pores, the leaching efficiency decreased further. The revealed impact of macro-pores on water flow represents a significant shortcoming of the salt leaching technique when applied to coastal saline soils. Future designs of soil amelioration schemes in the coastal zone should consider and aim to minimize the bypassing effect caused by macro-pores.

  20. Toxic pressure of herbicides on microalgae in Dutch estuarine and coastal waters

    NASA Astrophysics Data System (ADS)

    Booij, Petra; Sjollema, Sascha B.; van der Geest, Harm G.; Leonards, Pim E. G.; Lamoree, Marja H.; de Voogt, W. Pim; Admiraal, Wim; Laane, Remi W. P. M.; Vethaak, A. Dick

    2015-08-01

    For several decades now, there has been an increase in the sources and types of chemicals in estuarine and coastal waters as a consequence of anthropogenic activities. This has led to considerable concern about the effects of these chemicals on the marine food chain. The fact is that estuarine and coastal waters are the most productive ecosystems with high primary production by microalgae. The toxic pressure of specific phytotoxic chemicals now poses a major threat to these ecosystems. In a previous study, six herbicides (atrazine, diuron, irgarol, isoproturon, terbutryn and terbutylazine) were identified as the main contaminants affecting photosynthesis in marine microalgae. The purpose of this study is to investigate the toxic pressure of these herbicides in the Dutch estuarine and coastal waters in relation to the effective photosystem II efficiency (ΦPSII) in microalgae. Temporal and spatial variations in the concentrations of these herbicides were analyzed based on monitoring data. Additionally, a field study was carried out in which chemical analysis of water was performed and also a toxicity assessment using the Pulse Amplitude Modulation (PAM) fluorometry assay that measures ΦPSII. The toxic pressure on ΦPSII in microalgae has decreased with 55-82% from 2003 to 2012, with the Western Scheldt estuary showing the highest toxic pressure. By combining toxicity data from the PAM assay with chemical analysis of herbicide concentrations, we have identified diuron and terbutylazine as the main contributors to the toxic pressure on microalgae. Although direct effects are not expected, the toxic pressure is close to the 10% effect level in the PAM assay. A compliance check with the current environmental legislation of the European Union revealed that the quality standards are not sufficient to protect marine microalgae.

  1. Physico-chemical analysis of ground water samples of coastal areas of south Chennai in the post-Tsunami scenario.

    PubMed

    Rajendran, A; Mansiya, C

    2015-11-01

    The study of changes in ground water quality on the east coast of chennai due to the December 26, 2004 tsunami and other subsequent disturbances is a matter of great concern. The post-Tsunami has caused considerable plant, animal, material and ecological changes in the entire stretch of chennai coastal area. Being very close to sea and frequently subjected to coastal erosion, water quality has been a concern in this coastal strip, and especially after the recent tsunami this strip seems to be more vulnerable. In the present investigation, ten ground water samples were collected from various parts of south chennai coastal area. Physico-chemical parameters such as pH, temperature, Biochemical oxygen demand (BOD), Dissolved oxygen (DO), total solids; turbidity and fecal coliform were analyzed. The overall Water quality index (WQI) values for all the samples were found to be in the range of 68.81-74.38 which reveals a fact that the quality of all the samples is only medium to good and could be used for drinking and other domestic uses only after proper treatment. The long term adverse impacts of tsunami on ground water quality of coastal areas and the relationships that exist and among various parameters are carefully analyzed. Local residents and corporation authorities have been made aware of the quality of their drinking water and the methods to conserve the water bodies. PMID:25863773

  2. Physico-chemical analysis of ground water samples of coastal areas of south Chennai in the post-Tsunami scenario.

    PubMed

    Rajendran, A; Mansiya, C

    2015-11-01

    The study of changes in ground water quality on the east coast of chennai due to the December 26, 2004 tsunami and other subsequent disturbances is a matter of great concern. The post-Tsunami has caused considerable plant, animal, material and ecological changes in the entire stretch of chennai coastal area. Being very close to sea and frequently subjected to coastal erosion, water quality has been a concern in this coastal strip, and especially after the recent tsunami this strip seems to be more vulnerable. In the present investigation, ten ground water samples were collected from various parts of south chennai coastal area. Physico-chemical parameters such as pH, temperature, Biochemical oxygen demand (BOD), Dissolved oxygen (DO), total solids; turbidity and fecal coliform were analyzed. The overall Water quality index (WQI) values for all the samples were found to be in the range of 68.81-74.38 which reveals a fact that the quality of all the samples is only medium to good and could be used for drinking and other domestic uses only after proper treatment. The long term adverse impacts of tsunami on ground water quality of coastal areas and the relationships that exist and among various parameters are carefully analyzed. Local residents and corporation authorities have been made aware of the quality of their drinking water and the methods to conserve the water bodies.

  3. Distribution and species composition of juvenile and adult scombropids (Teleostei, Scombropidae) in Japanese coastal waters.

    PubMed

    Itoi, S; Odaka, J; Yuasa, K; Akeno, S; Nakajima, A; Suenaga, A; Noda, T; Akimoto, S; Myojin, T; Ikeda, Y; Masuda, Y; Takai, N; Yoshihara, K; Sugita, H

    2010-02-01

    Two scombropid fishes, Scombrops boops and Scombrops gilberti, are closely related and commercially important species in Japan. These species are often confused in commercial markets because of their morphological similarity. In this study, scombropid specimens collected from various Japanese coastal waters were subjected to polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis and phylogenetic analysis of the 16S rRNA gene in mitochondrial DNA. These analyses showed that all the scombropid specimens collected from localities in the Sea of Japan were identified as S. boops, whereas those from the Pacific Ocean included two species, S. boops and S. gilberti. Almost all juvenile (<200 mm standard body length, S(L)) S. gilberti originated from the Pacific coastal waters of the northern Japan, whereas adults (>400 mm S(L)) were found only in deep water off the Izu Peninsula to the Izu Islands. This suggests that S. gilberti might migrate extensively during its life cycle. In addition, differences in the number of specimens and the distribution between the two species suggest that S. gilberti is less abundant than S. boops in Japanese waters.

  4. Distribution of Vibrio alginolyticus-like species in Shenzhen coastal waters, China

    PubMed Central

    Chen, Ming-Xia; Li, He-Yang; Li, Gang; Zheng, Tian-Ling

    2011-01-01

    We investigated the distribution of vibrios in Shenzhen coastal waters in order to obtain valuable information for the aquaculture industry and a health warning system. Quantities of vibrios from surface waters ranged from 0 to 4.40×104 CFUs mL-1 in April (spring), while from 0 to 2.57×103 CFUs mL-1 in September (autumn); the abundance of V. alginolyticus-like species from surface water ranged from 0 to 6.72×103 CFUs mL-1 in April (spring) and from 0 to 1.28×103 CFUs mL-1 in September (autumn); higher counts were observed in spring. The V. alginolyticus-like species was dominant in Shenzhen coastal waters, with the highest abundance in the clean region (stations YMK001 and GDN064) in April, suggesting that Vibrio spp. were naturally occurring bacteria in marine environments. The correlation between the abundance of vibrios (including V. alginolyticus-like species) and environmental factors varied in different regions and different seasons. There were no vibrios detected when the salinity was less than 11.15‰ in the Zhujiang River estuary, which indicated that salinity played a key role in the distribution of vibrios and V. alginolyticus-like species. PMID:24031704

  5. Effect of intense short rainfall events on coastal water quality parameters from remote sensing data

    NASA Astrophysics Data System (ADS)

    Corbari, Chiara; Lassini, Fabio; Mancini, Marco

    2016-07-01

    Strong rainfall events, especially during summer, in small river basins cause spills in the sea that often compromise the quality of coastal waters. The goal of this paper is then to study the changes of coastal waters quality as a result of intense rainfall events during the bathing season through the use of remote sensing data. These analyses are performed at the outlets of small watersheds which are not usually affected by high sediment transport as in the case of large basins which are persistently affected by intense solid transport which does not allow retrieving a reliable correlation between rainfall events and water quality parameters. Four small watersheds in different Italian regions on the Mediterranean Sea are selected for this study. The remotely sensed parameters of turbidity, total suspend solids and secchi disk depth, are retrieved from MODIS data. Secchi disk depths are also compared to available ground data during the summer seasons between 2003 and 2006 showing good correlations. Then the spatial and temporal changes of these parameters are analyzed after intense short storm events. Increases of turbidity and total suspend solids are found to be around 35 NTU and 20 mg L-1 respectively depending on the intensity of the rainfall event and on the distance from the shoreline. Moreover the recovery of water quality after the rain event is reached after two or three days.

  6. Evaluation of trace metal levels in tissues of two commercial fish species in Kapar and Mersing coastal waters, Peninsular Malaysia.

    PubMed

    Bashir, Fathi Alhashmi; Shuhaimi-Othman, Mohammad; Mazlan, A G

    2012-01-01

    This study is focused on evaluating the trace metal levels in water and tissues of two commercial fish species Arius thalassinus and Pennahia anea that were collected from Kapar and Mersing coastal waters. The concentrations of Fe, Zn, Al, As, Cd and Pb in these coastal waters and muscle, liver and gills tissues of the fishes were quantified. The relationship among the metal concentrations and the height and weight of the two species were also examined. Generally, the iron has the highest concentrations in both water and the fish species. However, Cd in both coastal waters showed high levels exceeding the international standards. The metal level concentration in the sample fishes are in the descending order livers > gills > muscles. A positive association between the trace metal concentrations and weight and length of the sample fishes was investigated. Fortunately the level of these metal concentrations in fish has not exceeded the permitted level of Malaysian and international standards. PMID:22046193

  7. Evaluation of Trace Metal Levels in Tissues of Two Commercial Fish Species in Kapar and Mersing Coastal Waters, Peninsular Malaysia

    PubMed Central

    Bashir, Fathi Alhashmi; Shuhaimi-Othman, Mohammad; Mazlan, A. G.

    2012-01-01

    This study is focused on evaluating the trace metal levels in water and tissues of two commercial fish species Arius thalassinus and Pennahia anea that were collected from Kapar and Mersing coastal waters. The concentrations of Fe, Zn, Al, As, Cd and Pb in these coastal waters and muscle, liver and gills tissues of the fishes were quantified. The relationship among the metal concentrations and the height and weight of the two species were also examined. Generally, the iron has the highest concentrations in both water and the fish species. However, Cd in both coastal waters showed high levels exceeding the international standards. The metal level concentration in the sample fishes are in the descending order livers > gills > muscles. A positive association between the trace metal concentrations and weight and length of the sample fishes was investigated. Fortunately the level of these metal concentrations in fish has not exceeded the permitted level of Malaysian and international standards. PMID:22046193

  8. Optical assessment of colored dissolved organic matter and its related parameters in dynamic coastal water systems

    NASA Astrophysics Data System (ADS)

    Shanmugam, Palanisamy; Varunan, Theenathayalan; Nagendra Jaiganesh, S. N.; Sahay, Arvind; Chauhan, Prakash

    2016-06-01

    Prediction of the curve of the absorption coefficient of colored dissolved organic matter (CDOM) and differentiation between marine and terrestrially derived CDOM pools in coastal environments are hampered by a high degree of variability in the composition and concentration of CDOM, uncertainties in retrieved remote sensing reflectance and the weak signal-to-noise ratio of space-borne instruments. In the present study, a hybrid model is presented along with empirical methods to remotely determine the amount and type of CDOM in coastal and inland water environments. A large set of in-situ data collected on several oceanographic cruises and field campaigns from different regional waters was used to develop empirical methods for studying the distribution and dynamics of CDOM, dissolved organic carbon (DOC) and salinity. Our validation analyses demonstrated that the hybrid model is a better descriptor of CDOM absorption spectra compared to the existing models. Additional spectral slope parameters included in the present model to differentiate between terrestrially derived and marine CDOM pools make a substantial improvement over those existing models. Empirical algorithms to derive CDOM, DOC and salinity from remote sensing reflectance data demonstrated success in retrieval of these products with significantly low mean relative percent differences from large in-situ measurements. The performance of these algorithms was further assessed using three hyperspectral HICO images acquired simultaneously with our field measurements in productive coastal and lagoon waters on the southeast part of India. The validation match-ups of CDOM and salinity showed good agreement between HICO retrievals and field observations. Further analyses of these data showed significant temporal changes in CDOM and phytoplankton absorption coefficients with a distinct phase shift between these two products. Healthy phytoplankton cells and macrophytes were recognized to directly contribute to the

  9. Trace element accumulation in fishes collected from coastal waters of the Caspian Sea.

    PubMed

    Anan, Yasumi; Kunito, Takashi; Tanabe, Shinsuke; Mitrofanov, Igor; Aubrey, David G

    2005-01-01

    Concentrations of 13 trace elements (V, Mn, Cr, Co, Cu, Zn, Se, Mo, Ag, Cd, Hg, Tl and Pb) were determined in muscle of bony fishes collected from coastal areas of the Caspian Sea (Kazakhstan, Azerbaijan, Turkmenistan and Iran). In all the fishes, Zn concentration was highest, followed by Cu, Se, Mn and Co, while levels of toxic elements (Ag, Cd, Cd, Tl and Pb) were relatively low. Concentrations of several elements were significantly varied between the species in each sampling area. For most of the trace elements examined, the concentrations decreased significantly with body weight of fishes. In contrast, a positive correlation with body weight was found for Co, Se and Pb concentrations in one fish species, and Hg in 2 fish species. Geographical difference in the concentrations of trace elements was examined using the Caspian roach collected from five stations of Iranian coastal waters. The concentrations of Co, Mo, Ag, Cd and Tl were higher in fishes from western stations than those from eastern stations, whereas the opposite trend was observed for Hg, indicating that local sources of trace metal pollution may be present in the Iranian coastal areas of the Caspian Sea. Levels of trace elements in Caspian fishes were relatively low in comparison to those of other regions, but Zn and Hg levels in some specimens exceeded the guideline values for food. PMID:16051278

  10. Dinoflagellate bloom in tropical fish ponds of coastal waters of the South China Sea.

    PubMed

    Shamsudin, L; Awang, A; Ambak, A; Ibrahim, S

    1996-05-01

    Red tide of dinoflagellate was observed in brackish water fish ponds of Terengganu along the coast of the South China Sea during the study period between January 1992 to December 1992. The nearby coastal moat water facing the South China Sea is the source of water for fish pond culture activities of sea bass during the study period. An examination of water quality in fish ponds during the study period indicated that both the organic nutrients were high during the pre-wet monsoon period. The source of the nutrients in coastal water was believed to be derived from the agro-based industrial effluents, fertilizers from paddy fields and untreated animal wastes. This coincided with the peak production of dinoflagellate in the water column in October 1992. The cell count ranges from 8.3 to 60.4×10.4×10(4)/l during the bloom peak period and the bloom species were compared entirely of non-toxic dinoflagellates with Protoperidinium quinquecorne occurring >90% of the total cell count. However, both cultured and indigenous fish species were seen to suffer from oxygen asphyxiation (suffocation due to lack of oxygen). The bloom lasted for a short period (4-5 days) with a massive cell collapse from subsurface to bottom water on the sixth day. The productivity values ranged from 5-25 C g/ l / h with a subsurface maximum value in October 1992. Two species of Ciliophora, Tintinnopsis and Favella, were observed to graze on these dinoflagellates at the end of the bloom period.

  11. Hg concentrations in fish from coastal waters of California and Western North America.

    PubMed

    Davis, J A; Ross, J R M; Bezalel, S; Sim, L; Bonnema, A; Ichikawa, G; Heim, W A; Schiff, K; Eagles-Smith, C A; Ackerman, J T

    2016-10-15

    The State of California conducted an extensive and systematic survey of mercury (Hg) in fish from the California coast in 2009 and 2010. The California survey sampled 3483 fish representing 46 species at 68 locations, and demonstrated that methylHg in fish presents a widespread exposure risk to fish consumers. Most of the locations sampled (37 of 68) had a species with an average concentration above 0.3μg/gwet weight (ww), and 10 locations an average above 1.0μg/gww. The recent and robust dataset from California provided a basis for a broader examination of spatial and temporal patterns in fish Hg in coastal waters of Western North America. There is a striking lack of data in publicly accessible databases on Hg and other contaminants in coastal fish. An assessment of the raw data from these databases suggested the presence of relatively high concentrations along the California coast and in Puget Sound, and relatively low concentrations along the coasts of Alaska and Oregon, and the outer coast of Washington. The dataset suggests that Hg concentrations of public health concern can be observed at any location on the coast of Western North America where long-lived predator species are sampled. Output from a linear mixed-effects model resembled the spatial pattern observed for the raw data and suggested, based on the limited dataset, a lack of trend in fish Hg over the nearly 30-year period covered by the dataset. Expanded and continued monitoring, accompanied by rigorous data management procedures, would be of great value in characterizing methylHg exposure, and tracking changes in contamination of coastal fish in response to possible increases in atmospheric Hg emissions in Asia, climate change, and terrestrial Hg control efforts in coastal watersheds. PMID:27067833

  12. Hg concentrations in fish from coastal waters of California and Western North America

    USGS Publications Warehouse

    Davis, Jay; Ross, John; Bezalel, Shira; Sim, Lawrence; Bonnema, Autumn; Ichikawa, Gary; Heim, Wes; Schiff, Kenneth C; Eagles-Smith, Collin A.; Ackerman, Josh

    2016-01-01

    The State of California conducted an extensive and systematic survey of mercury (Hg) in fish from the California coast in 2009 and 2010. The California survey sampled 3483 fish representing 46 species at 68 locations, and demonstrated that methylHg in fish presents a widespread exposure risk to fish consumers. Most of the locations sampled (37 of 68) had a species with an average concentration above 0.3 μg/g wet weight (ww), and 10 locations an average above 1.0 μg/g ww. The recent and robust dataset from California provided a basis for a broader examination of spatial and temporal patterns in fish Hg in coastal waters of Western North America. There is a striking lack of data in publicly accessible databases on Hg and other contaminants in coastal fish. An assessment of the raw data from these databases suggested the presence of relatively high concentrations along the California coast and in Puget Sound, and relatively low concentrations along the coasts of Alaska and Oregon, and the outer coast of Washington. The dataset suggests that Hg concentrations of public health concern can be observed at any location on the coast of Western North America where long-lived predator species are sampled. Output from a linear mixed-effects model resembled the spatial pattern observed for the raw data and suggested, based on the limited dataset, a lack of trend in fish Hg over the nearly 30-year period covered by the dataset. Expanded and continued monitoring, accompanied by rigorous data management procedures, would be of great value in characterizing methylHg exposure, and tracking changes in contamination of coastal fish in response to possible increases in atmospheric Hg emissions in Asia, climate change, and terrestrial Hg control efforts in coastal watersheds.

  13. Analysis of Dynamics in Bays and Coastal Waters Impacted by Hurricanes

    NASA Astrophysics Data System (ADS)

    Li, C.; Lin, H.; Chen, C.

    2012-12-01

    The dynamical processes in coastal bays/estuaries and continental shelf are mostly tidally and wind driven. Under severe weather conditions such as hurricanes and tropical storms, the process is much more dynamic and variable. In an attempt to illustrate the dynamical regimes in coastal bays and adjacent coastal ocean, we have simulated circulation and storm tides in the northern Gulf of Mexico forced by 49 hurricanes, respectively; among which 4 are the most recent real hurricanes: Hurricane Katrina and Hurricane Rita of 2005, and Hurricane Gustav and Hurricane Ike of 2008. The other 45 hurricanes are hypothetical in their tracks, but based on the real hurricanes in terms of forcing conditions. More specifically, these 45 hurricanes are divided into five groups, each corresponding to one of these four real hurricanes plus a group for hypothetical Category 5 hurricanes, based on the information of Hurricane Katrina, except that the strength of the hurricane is increased to Category 5. Using otherwise the same forcing conditions of the hurricanes, we apply variations of each of the hurricane tracks with roughly the same moving speed. Each group has a total of 9 simulations (with 9 different tracks). Our model allows inundation of wetland, and low lying lands on the coast and around the Louisiana Bays. The model for the hurricane storm tide was done with an implementation of the Finite Volume Coastal Ocean Model, or FVCOM. Our analysis of the results reveals rich dynamical processes in the bays and estuaries and on the adjacent continental shelf. It involves various oscillations, depending on the hurricane conditions and track history and positions, long waves, under the influence of earth rotation, and currents. The protruding delta, bathymetry, and the setup of the bays all play some roles in shaping the dynamics, water movement, inundation, and receding of the storm surges.

  14. Seasonal variability of phytoplankton blooms in the coastal waters along the East coast of India

    NASA Astrophysics Data System (ADS)

    Preethi Latha, T.; Rao, K. H.; Amminedu, E.; Nagamani, P. V.; Choudhury, S. B.; Lakshmi, E.; Sridhar, P. N.; Dutt, C. B. S.; Dhadwal, V. K.

    2014-11-01

    Bay of Bengal (BOB) is a semi enclosed tropical basin located in the north eastern part of the Indian Ocean with high influence of fresh water discharge from major rivers and rainfall. Bay of Bengal (BOB) is highly influenced by monsoons and represents a natural laboratory to study the effect of fresh water fluxes on the marine ecosystem. Bay of Bengal (BOB) is very low in productivity often with the observations of Phytoplankton Blooms. Phytoplankton blooms are one of the prominent features of biological variability in the coastal ecosystems such as estuaries, lagoons, bays, and tidal rivers with rapid production and accumulation of phytoplankton biomass in the ocean. These blooms usually respond to changing physical forcings originating in the coastal ocean like tides, currents and river runoff and to the atmospheric forcing like wind. These physical forcings have different timescales of variability, so algal blooms can be short-term episodic events, recurrent seasonal phenomena, or rare events associated with exceptional climatic or hydrologic conditions. Bloom events and their variability on spatial & temporal scales monitoring through field measurements is difficult. Based on this key hypothesis an effort is made to understand the seasonal and spatial variability of Phytoplankton Blooms along the East Coast of India. In this paper we present the bloom dynamics in their context to the chlorophyll concentration along with species composition and abundance in estuarine and near shore coastal waters of Godavari basin using Oceansat-2 Ocean Colour Monitor (OCM). The initial results revealed that the quasi permanent phytoplankton blooms initiates in the month of mid- February and evolves for a period of two months and then slowly starts decaying by the mid of May month. The results also stand as a base for the study of influence of Phytoplankton Blooms on the carbon flux estimations and bio-geo-chemical processes in the Bay of Bengal.

  15. Nationwide monitoring of mercury in wild and farmed fish from fresh and coastal waters of Korea.

    PubMed

    Kim, Chan-Kook; Lee, Tae-Woo; Lee, Kyu-Tae; Lee, Jong-Hyeon; Lee, Chang-Bok

    2012-11-01

    Mercury (Hg) concentrations were monitored in wild and cultured fish collected from fresh and coastal waters in the Korean peninsula from April 2006 to August 2008 nationwide. Total Hg concentrations were reported for 5043 fish samples, including 78 species from 133 locations. Significant interspecies variation was noted in the Hg levels. The average Hg concentration in each fish species ranged from 6.31 μg kg(-1) for mullet (Mugil cephalus) to 200 μg kg(-1) for mandarin fish (Siniperca scherzeri). Among the species collected, the maximum concentration of Hg, 1720 μg kg(-1), was measured in an Amur catfish (Silurus asotus). Only wild freshwater fish exceeded the WHO ingestion standard. Wild freshwater piscivorous fish samples from a large artificial upstream lake contained the highest Hg levels. Hg concentrations were compared between fish groups categorized as wild and farmed fish from freshwater and coastal waters. Although the wild freshwater fish had similar size ranges, their Hg concentrations were higher than those of the other groups. Compared to the feed of farmed marine and freshwater fishes, the prey of wild freshwater fish had a higher Hg concentration, and the total Hg concentrations in freshwater and associated sediment samples were higher than those in coastal water and associated sediment samples. In the freshwater environment, piscivorous fish bioaccumulated two times more Hg than carnivorous and omnivorous fish and four times more than planktivorous fish. The difference in Hg concentrations among trophic groups might have been due to differences in the size of fish, in addition to the variations among different trophic groups. These data will be useful for developing the fish consumption advisory as a management measure to reduce Hg exposure.

  16. Reconstruction of Redox Conditions and Productivity in Coastal Waters of the Bothnian Sea during the Holocene

    NASA Astrophysics Data System (ADS)

    Dijkstra, N.; Quintana Krupinski, N. B.; Slomp, C. P.

    2014-12-01

    Hypoxia is a growing problem in coastal waters worldwide, and is a well-known cause of benthic mortality. The semi-enclosed Baltic Sea is currently the world's largest human-induced dead zone. During the early Holocene, it experienced several periods of natural hypoxia following the intrusion of seawater into the previous freshwater lake. Recent studies suggest that at that time, the hypoxia expanded north to include the deep basin of the Bothnian Sea. In this study, we assess whether the coastal zone of the Bothnian Sea was also hypoxic during the early Holocene. We analysed a unique sediment record (0 - 30 mbsf) from the Ångermanälven estuary, which was retrieved during the International Ocean Discovery Programme (IODP) Baltic Sea Paleoenvironment Expedition 347 in 2013. Using geochemical proxies and foraminifera abundances, we reconstruct the changes in redox conditions, salinity and productivity in the estuary. Our preliminary results suggest that bottom waters in this coastal basin became anoxic upon the intrusion of brackish seawater in the early Holocene and that the productivity was elevated. The presence of benthic foraminifera in this estuary during the mid-Holocene suggests more saline conditions in the Bothnian Sea than today. Due to isostatic uplift, the estuary likely gradually became more isolated from the Bothnian Sea, which itself became more isolated from the Baltic Sea. Both factors likely explain the subsequent re-oxygenation of bottom waters and gradual refreshening of the estuary as recorded in the sediments. Interestingly, the upper meters of sediment are enriched in minerals that contain iron, phosphorus and manganese. We postulate that the refreshening of the estuary triggered the formation of these minerals, thereby increasing the phosphorus retention in these sediments and further reducing primary productivity. This enhanced retention linked to refreshening may contribute to the current oligotrophic conditions in the Bothnian Sea.

  17. Erratum to "Use of oysters to mitigate eutrophication in coastal waters" [Estuar. Coast. Shelf Sci. 151 (2014) 156-168

    NASA Astrophysics Data System (ADS)

    Kellogg, M. Lisa; Smyth, Ashley R.; Luckenbach, Mark W.; Carmichael, Ruth H.; Brown, Bonnie L.; Cornwell, Jeffrey C.; Piehler, Michael F.; Owens, Michael S.; Dalrymple, D. Joseph; Higgins, Colleen B.

    2015-03-01

    The publisher regrets to inform that the article by Kellogg and colleagues (M. Lisa Kellogg, Ashley R. Smyth, Mark W. Luckenbach, Ruth H. Carmichael, Bonnie L. Brown, Jeffrey C. Cornwell, Michael F. Piehler, Michael S. Owens, D. Joseph Dalrymple, Colleen B. Higgins, Use of oysters to mitigate eutrophication in coastal waters, Estuarine, Coastal and Shelf Science, Volume 151, Pages 156-168, http://dx.doi.org/10.1016/j.ecss.2014.09.025.

  18. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas

    SciTech Connect

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-04-01

    As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

  19. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas

    SciTech Connect

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-11-01

    As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, Battelle, Pacific Northwest Laboratories reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Radionuclide concentration data were used in preliminary estimates of individual dose for the period 1964 through 1966. This report summarizes the literature and database reviews and the results of the preliminary dose estimates.

  20. Diversity, environmental requirements, and biogeography of bivalve wood-borers (Teredinidae) in European coastal waters

    PubMed Central

    2014-01-01

    Background Bivalve teredinids inflict great destruction to wooden maritime structures. Yet no comprehensive study was ever carried out on these organisms in European coastal waters. Thus, the aims of this study were to: investigate the diversity of teredinids in European coastal waters; map their past and recent distributions to detect range expansion or contraction; determine salinity-temperature (S-T) requirements of species; flag, for future monitoring, the species that pose the greatest hazard for wooden structures. Results A total of nine teredinid species were found established in European coastal waters. Seven were considered cryptogenic, of unknown origin, and two were considered alien species. Teredo navalis and Nototeredo norvagica were the species with the widest distribution in European waters. Recently, T. navalis has been reported occurring further east in the Baltic Sea but it was not found at a number of sites on the Atlantic coast of southern Europe. The Atlantic lineage of Lyrodus pedicellatus was the dominant teredinid in the southern Atlantic coast of Europe. In the Mediterranean six teredinid species occurred in sympatry, whereas only three of these occurred in the Black Sea. The species that pose the greatest hazard to wooden maritime structures in European coastal areas are T. navalis and the two lineages of L. pedicellatus. Conclusions Combined data from field surveys and from the literature made it possible to determine the diversity of established teredinid species and their past and recent distribution in Europe. The environmental requirements of species, determined using climatic envelopes, produced valuable information that assisted on the explanation of species distribution. In addition, the observed trends of species range extension or contraction in Teredo navalis and in the two lineages of Lyrodus pedicellatus seem to emphasise the importance of temperature and salinity as determinants of the distribution of teredinids, whereas

  1. Nephtys bangladeshi n. sp., a new species of Nephtyidae (Annelida: Phyllodocida) from Bangladesh coastal waters.

    PubMed

    Hossain, M Belal; Hutchings, Pat

    2016-01-01

    A new species of nephtyid polychaete, Nephtys bangladeshi n. sp., from the intertidal zone of Bangladesh is described. It is characterized by having a pharynx with 9 pairs of bifid terminal and 14 rows of subterminal papillae, each subterminal row with 5-7 papillae, as well as the presence of branchiae from chaetiger 7 to 27. The new species is compared with other species from the Indo-Pacific. This is the first report of a new polychaete species from Bangladesh coastal waters. PMID:27395990

  2. Coupling Bacterioplankton Populations and Environment to Community Function in Coastal Temperate Waters

    PubMed Central

    Traving, Sachia J.; Bentzon-Tilia, Mikkel; Knudsen-Leerbeck, Helle; Mantikci, Mustafa; Hansen, Jørgen L. S.; Stedmon, Colin A.; Sørensen, Helle; Markager, Stiig; Riemann, Lasse

    2016-01-01

    Bacterioplankton play a key role in marine waters facilitating processes important for carbon cycling. However, the influence of specific bacterial populations and environmental conditions on bacterioplankton community performance remains unclear. The aim of the present study was to identify drivers of bacterioplankton community functions, taking into account the variability in community composition and environmental conditions over seasons, in two contrasting coastal systems. A Least Absolute Shrinkage and Selection Operator (LASSO) analysis of the biological and chemical data obtained from surface waters over a full year indicated that specific bacterial populations were linked to measured functions. Namely, Synechococcus (Cyanobacteria) was strongly correlated with protease activity. Both function and community composition showed seasonal variation. However, the pattern of substrate utilization capacity could not be directly linked to the community dynamics. The overall importance of dissolved organic matter (DOM) parameters in the LASSO models indicate that bacterioplankton respond to the present substrate landscape, with a particular importance of nitrogenous DOM. The identification of common drivers of bacterioplankton community functions in two different systems indicates that the drivers may be of broader relevance in coastal temperate waters. PMID:27729909

  3. Land Use Patterns and Fecal Contamination of Coastal Waters in Western Puerto Rico

    NASA Technical Reports Server (NTRS)

    Norat, Jose

    1994-01-01

    The Department of Environmental Health of the Graduate School of Public Health of the Medical Sciences Campus, University of Puerto Rico (UPR-RCM) conducted this research project on how different patterns of land use affect the microbiological quality of rivers flowing into Mayaguez Bay in Western Puerto Rico. Coastal shellfish growing areas, stream and ocean bathing beaches, and pristine marine sites in the Bay are affected by the discharge of the three study rivers. Satellite imagery was used to study watershed land uses which serve as point and nonpoint sources of pathogens affecting stream and coastal water users. The study rivers drain watersheds of different size and type of human activity (including different human waste treatment and disposal facilities). Land use and land cover in the study watersheds were interpreted, classified and mapped using remotely sensed images from NASA's Landsat Thematic Mapper (TM). This study found there is a significant relationship between watershed land cover and microbiological water quality of rivers flowing into Mayaguez Bay in Western Puerto Rico. Land covers in the Guanajibo, Anasco, and Yaguez watersheds were classified into forested areas, pastures, agricultural zones and urban areas so as to determine relative contributions to fecal water contamination. The land cover classification was made processing TM images with IDRISI and ERDAS software.

  4. Nitrogen-fixing bacteria associated with copepods in coastal waters of the North Atlantic Ocean.

    PubMed

    Scavotto, Rosemary E; Dziallas, Claudia; Bentzon-Tilia, Mikkel; Riemann, Lasse; Moisander, Pia H

    2015-10-01

    The community composition of N2 -fixing microorganisms (diazotrophs) was investigated in copepods (primarily Acartia spp.) in parallel to that of seawater in coastal waters off Denmark (Øresund) and New England, USA. The unicellular cyanobacterial diazotroph UCYN-A was detected from seawater and full-gut copepods, suggesting that the new N contributed by UCYN-A is directly transferred to higher trophic levels in these waters. Deltaproteobacterial and Cluster 3 nifH sequences were detected in > 1 μm seawater particles and full-gut copepods, suggesting that they associate with copepods primarily via feeding. The dominant communities in starved copepods were Vibrio spp. and related Gammaproteobacteria, suggesting they represent the most permanent diazotroph associations in the copepods. N2 fixation rates were up to 3.02 pmol N copepod(-1) day(-1). Although at a typical copepod density in estuarine waters, these volumetric rates are low; considering the small size of a copepod, these mesozooplanktonic crustaceans may serve as hotspots of N2 fixation, at 12.9-71.9 μmol N dm(-3) copepod biomass day(-1). Taken together, diazotroph associations range from more permanent attachments to copepod feeding on some groups. Similar diazotroph groups detected on the eastern and western Atlantic Ocean suggest that these associations are a general phenomenon and play a role in the coastal N cycles.

  5. Heterotrophic Bacteria Show Weak Competition for Nitrogen in Mediterranean Coastal Waters (Thau Lagoon) in Autumn.

    PubMed

    Trottet, Aurore; Leboulanger, Christophe; Vidussi, Francesca; Pete, Romain; Bouvy, Marc; Fouilland, Eric

    2016-02-01

    The importance of heterotrophic bacteria relative to phytoplankton in the uptake of ammonium and nitrate was studied in Mediterranean coastal waters (Thau Lagoon) during autumn, when the Mediterranean Sea received the greatest allochthonous nutrient loads. Specific inhibitors and size-fractionation methods were used in combination with isotopic (15)N tracers. NO3 (-) and NH4 (+) uptake was dominated by phytoplankton (60 % on average) during the study period, which included a flood event. Despite lower biomass specific NH4 (+) and NO3 uptake rates, free-living heterotrophic bacteria contributed significantly (>30 %) to total microbial NH4 (+) and NO3 (-) uptake rates in low chlorophyll waters. Under these conditions, heterotrophic bacteria may be responsible for more than 50 % of primary production, using very little freshly produced phytoplankton exudates. In low chlorophyll coastal waters as reported during the present 3-month study, the heterotrophic bacteria seemed to depend to a greater extent on allochthonous N and C substrates than on autochthonous substrates derived from phytoplankton.

  6. Nitrite-induced enhancement of toxicity of phenanthrene in fish and its implications for coastal waters

    NASA Astrophysics Data System (ADS)

    Shailaja, M. S.; Rodrigues, A.

    2003-04-01

    Coastal areas are prone to varying degrees of anthropogenic chemical contamination. In many coastal environments experiencing reducing conditions in the water column, nitrite is produced as a result of denitrification. With a view to determining the effect of a natural stress such as the presence of nitrite in water on the xenobiotic metabolism in fish, the euryhaline cichlid Oreochromis mossambicus was exposed for up to 9 days to environmentally relevant concentrations of water-borne nitrite and phenanthrene, a polycyclic aromatic hydrocarbon. Analyses of different biomarkers in the treated fish indicated significant increase in the metabolism of phenanthrene as a result of exposure to nitrite. For example, the activity of the biotransformation enzyme measured as 7-ethoxyresorufin- O-deethylase activity was, in the presence of 1 μM nitrite, nearly twice that produced by phenanthrene alone. Similarly, biliary fixed fluorescence values reflecting phenanthrene and its metabolites were rendered 1.7 times higher when exposed simultaneously to nitrite. Contact with nitrite and phenanthrene together also led to severe hepatic damage with possible cell death as inferred from the large enhancement in sorbitol dehydrogenase activity in the serum and reduced liver somatic index.

  7. Abundance of epiphytic dinoflagellates from coastal waters off Jeju Island, Korea During Autumn 2009

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Seop; Yih, Wonho; Kim, Jong Hyeok; Myung, Geumog; Jeong, Hae Jin

    2011-09-01

    The occurrence of harmful epiphytic dinoflagellates is of concern to scientists, the aquaculture industry, and government due to their toxicity not only to marine organisms but also to humans. There have been no studies on the abundance of the epiphytic dinoflagellates in Korean waters. We explored the presence of epiphytic dinoflagellates in the coastal waters off Jeju Island, southwestern Korea. Furthermore, we measured the abundance of epiphytic dinoflagellates on the thalli of 24 different macroalgae, collected from five different locations in October 2009. Five epiphytic dinoflagellate genera Amphidinium, Coolia, Gambierdiscus, Ostreopsis, and Prorocentrum were found. These five genera were observed on the thalli of the macroalgae Chordaria flagelliformis, Martensia sp., Padina arborescens, and Sargassum sp., while none were observed exceptionally on Codium fragile. The abundance of Ostreopsis spp. was highest on Derbesia sp. (8,660 cells/g wet weight), while that of Gambierdiscus spp. was highest on Martensia sp. (4,870 cells/g-ww). The maximum abundances of Amphidinium spp., Coolia spp., and Prorocentrum spp. were 410, 710, and 300 cells/g-ww, respectively. The maximum abundance of Coolia spp., Gambierdiscus spp., and Ostreopsis spp. obtained in the present study was lower than for other locations reported in literature. The results of the present study suggest that the presence and abundance of epiphytic dinoflagellates may be related to the macroalgal species of the coastal waters of Jeju Island.

  8. Cadmium in edible crabs (Cancer pagurus L.) from Scottish coastal waters.

    PubMed

    Falconer, C R; Davies, I M; Topping, G

    1986-10-01

    Concentrations of cadmium in the hepatopancreas (0.1-61.3 mg kg-1), gonad (0.15-11.0 mg kg-1) and gills (0.2-10.7 mg kg-1) of the edible crab Cancer pagurus L. from 16 sampling sites round the Scottish coast are reported, and compared with published elevated concentrations in crabs from the Orkney Islands. Geographical variations in the distribution of cadmium between organs indicate that the dietary uptake of cadmium is predominant in northern mainland and Orkney crabs, but that uptake from the water is more important in the south of Scotland. Mean dissolved cadmium concentrations in eastern coastal water increase from approximately 10 ng dm-3 in northern waters to approximately 25 ng dm-3 in the south. It seems likely that a regional contamination of the environment by cadium of geological origin occurs in the extreme north coast of Scotland, and in the Orkney and Shetland areas.

  9. Inland and coastal water environment remote sensing monitoring system: rapid construction and application

    NASA Astrophysics Data System (ADS)

    Xu, Hua; Gu, Xingfa; Yin, Qiu; Li, Li; Chen, Qiang; Ren, Yuhuan; Chen, Hong; Liu, Xudong; Zhang, Juan

    2009-10-01

    This paper aims at bridging the gap between the academic research and practical application in water environment monitoring by remote sensing. It mainly focuses on how to rapidly construct the Inland and coastal Water Environment Remote Sensing Monitoring System (IWERSMS) in a software perspective. In this paper, the remote sensed data processing framework, dataflow and product levels are designed based on the retrieval algorithms of water quality parameters. The prototype is four-tier architecture and modules are designed elaborately. The paper subsequently analyzes the strategy and key technology of conglutinating hybrid components, adopting semantic metafiles and tiling image during rapid construction of prototype. Finally, the paper introduces the successful application to 2008 Qingdao enteromorpha prolifra disaster emergency monitoring in Olympics Sailing Match fields. The solution can also fit other domains in remote sensing and especially it provides a clue for researchers who are in an attempt to establish a prototype to apply research fruits to practical applications.

  10. Estuarine, Inland and Coastal Water Quality Monitoring Using Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Pan, Delu

    2013-01-01

    The quality of water is one of the top issues worldwide. The objective of this project (ID. 5351) is to adapt or develop available algorithms to the high turbid water (extremely high concentration of suspended particulate matter and plankton blooms), and to monitor the suspended matter and associated turbidity/light attenuation and plankton blooms in particular of cyanobacteria and red tides in coastal and lake waters. In this final report, we give the executive status and the achievements of our project. First, we introduce the project objectives, research methods, partners and roles in brief. Second, we give the in-situ data measurements during the period of our project. Third, we present the details of the achievements and final results of our project. Finally, the recommendations and the publications are present in the last sections.

  11. An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters.

    PubMed

    Moore, Timothy S; Dowell, Mark D; Bradt, Shane; Verdu, Antonio Ruiz

    2014-03-01

    Bio-optical models are based on relationships between the spectral remote sensing reflectance and optical properties of in-water constituents. The wavelength range where this information can be exploited changes depending on the water characteristics. In low chlorophyll-a waters, the blue/green region of the spectrum is more sensitive to changes in chlorophyll-a concentration, whereas the red/NIR region becomes more important in turbid and/or eutrophic waters. In this work we present an approach to manage the shift from blue/green ratios to red/NIR-based chlorophyll-a algorithms for optically complex waters. Based on a combined in situ data set of coastal and inland waters, measures of overall algorithm uncertainty were roughly equal for two chlorophyll-a algorithms-the standard NASA OC4 algorithm based on blue/green bands and a MERIS 3-band algorithm based on red/NIR bands-with RMS error of 0.416 and 0.437 for each in log chlorophyll-a units, respectively. However, it is clear that each algorithm performs better at different chlorophyll-a ranges. When a blending approach is used based on an optical water type classification, the overall RMS error was reduced to 0.320. Bias and relative error were also reduced when evaluating the blended chlorophyll-a product compared to either of the single algorithm products. As a demonstration for ocean color applications, the algorithm blending approach was applied to MERIS imagery over Lake Erie. We also examined the use of this approach in several coastal marine environments, and examined the long-term frequency of the OWTs to MODIS-Aqua imagery over Lake Erie. PMID:24839311

  12. An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters

    PubMed Central

    Moore, Timothy S.; Dowell, Mark D.; Bradt, Shane; Verdu, Antonio Ruiz

    2014-01-01

    Bio-optical models are based on relationships between the spectral remote sensing reflectance and optical properties of in-water constituents. The wavelength range where this information can be exploited changes depending on the water characteristics. In low chlorophyll-a waters, the blue/green region of the spectrum is more sensitive to changes in chlorophyll-a concentration, whereas the red/NIR region becomes more important in turbid and/or eutrophic waters. In this work we present an approach to manage the shift from blue/green ratios to red/NIR-based chlorophyll-a algorithms for optically complex waters. Based on a combined in situ data set of coastal and inland waters, measures of overall algorithm uncertainty were roughly equal for two chlorophyll-a algorithms—the standard NASA OC4 algorithm based on blue/green bands and a MERIS 3-band algorithm based on red/NIR bands—with RMS error of 0.416 and 0.437 for each in log chlorophyll-a units, respectively. However, it is clear that each algorithm performs better at different chlorophyll-a ranges. When a blending approach is used based on an optical water type classification, the overall RMS error was reduced to 0.320. Bias and relative error were also reduced when evaluating the blended chlorophyll-a product compared to either of the single algorithm products. As a demonstration for ocean color applications, the algorithm blending approach was applied to MERIS imagery over Lake Erie. We also examined the use of this approach in several coastal marine environments, and examined the long-term frequency of the OWTs to MODIS-Aqua imagery over Lake Erie. PMID:24839311

  13. Spatial assessment of monitoring network in coastal waters: a case study of Kuwait Bay.

    PubMed

    Al-Mutairi, Nawaf; AbaHussain, Asma; El-Battay, Ali

    2015-10-01

    Spatial analyses of water-quality-monitoring networks in coastal waters are important because pollution sources vary temporally and spatially. This study was conducted to evaluate the spatial distribution of the water-quality-monitoring network of Kuwait Bay using both geostatistical and multivariate techniques. Three years of monthly data collected from six existing monitoring stations covering Kuwait Bay between 2009 and 2011 were employed in conjunction with data collected from 20 field sampling sites. Field sampling locations were selected based on a stratified random sampling scheme oriented by an existing classification map of Kuwait Bay. Two water quality datasets obtained from different networks were compared by cluster analysis applied to the Water Quality Index (WQI) and other water quality parameters, after which the Kriging method was used to generate distribution maps of water quality for spatial assessment. Cluster analysis showed that the current monitoring network does not represent water quality patterns in Kuwait Bay. Specifically, the distribution maps revealed that the existing monitoring network is inadequate for heavily polluted areas such as Sulaibikhat Bay and the northern portion of Kuwait Bay. Accordingly, the monitoring system in Kuwait Bay must be revised or redesigned. The geostatistical approach and cluster analysis employed in this study will be useful for evaluating future proposed modifications to the monitoring stations network in Kuwait Bay. PMID:26362877

  14. Variations in Southeast Greenland fjord and coastal waters and their impact on glacier dynamics

    NASA Astrophysics Data System (ADS)

    Scharrer, K.; Duijkers, M.; Murray, T.; Booth, A.; Selmes, N.; James, T. D.; Bevan, S. L.; Luckman, A. J.

    2009-12-01

    The southeast quadrant of the Greenland ice sheet has undergone rapid changes in recent years and many marine-terminating outlet glaciers synchronously accelerated, thinned and their calving fronts retreated significantly between 2003 and 2005. Subsequently these glaciers have slowed, again simultaneously, with many outlets in 2008 flowing at speeds close to or even slower than in 2000/1. These dynamic changes seem to be triggered at the calving fronts of the glaciers, with changes in fjord water composition acting as the first order control. However, little is known about ocean-glacier interactions, especially about the processes and changes in the glacier-fjord-coastal ocean system in southeast (SE) Greenland. In order to investigate recent changes in outlet glacier dynamics in SE Greenland in the context of variations in fjord and ocean circulation, we analysed detailed time series of high-resolution satellite-derived sea surface temperature (SST) datasets for the period 2000 to 2009. In order to link these surface data to processes deeper in the water column we conducted a field campaign in Sermilik Fjord (Helheim glacier) during summer 2009. Coastal circulation patterns were investigated using the weekly SST product from the MODIS (MODerate Resolution Imaging Spectroradiometer) imagery, which provides coverage at 4 km spatial resolution with an accuracy of +/- 0.25 degrees Celsius. In addition, we used the 60 m resolution thermal band of Landsat-7 imagery to identify seasonal and annual temperature variations of coast and fjord waters at higher resolution. Temporal sequences of Landsat derived SST images were analysed at 6 locations along the SE Greenland coast. We also produced maps of bathymetry, and the temperature-depth and salinity-depth structure of Sermilik Fjord. Our data confirm that the speedup of SE Greenland outlet glaciers coincides with a decline of the cold East Greenland Coastal Current (EGCC), which was accompanied by the incursion of warm and

  15. Submarine groundwater discharge of total mercury and monomethylmercury to central California coastal waters.

    PubMed

    Black, Friank J; Paytan, Adina; Knee, Karen L; De Sieyes, Nicholas R; Ganguli, Priya M; Gray, Ellen; Flegal, A Russell

    2009-08-01

    Fluxes of total mercury (Hg(T)) and monomethylmercury (MMHg) associated with submarine groundwater discharge (SGD) at two sites onthe central California coast were estimated by combining measurements of Hg(T) and MMHg in groundwater with the use of short-lived, naturally occurring radium isotopes as tracers of groundwater inputs. Concentrations of Hg(T) were relatively low, ranging from 1.2 to 28.3 pM in filtered groundwater, 0.8 to 11.6 pM in filtered surface waters, and 2.5 to 12.9 pM in unfiltered surface waters. Concentrations of MMHg ranged from < 0.04 to 3.1 pM in filtered groundwater, < 0.04 to 0.53 pM in filtered surface waters, and 0.07 to 1.2 pM in unfiltered surface waters. Multiple linear regression analysis identified significant (p < 0.05) positive correlations between dissolved groundwater concentrations of Hg(T) and those of NH4+ and SiO2, and between dissolved groundwater concentrations of MMHg and those of Hg(T) and NH4+. However, such relationships did not account for the majority of the variability in concentration data for either mercury species in groundwater. Fluxes of Hg(T) via SGD were estimated to be 250 +/- 160 nmol day m(-1) of shoreline at Stinson Beach and 3.0 +/- 2.0 nmol m(-2) day(-1) at Elkhorn Slough. These Hg(T) fluxes are substantially greater than net atmospheric inputs of Hg(T) reported for waters in nearby San Francisco Bay. Calculated fluxes of MMHg to coastal waters via SGD were 10 +/- 12 nmol day(-1) m(-1) of shoreline at Stinson Beach and 0.24 +/- 0.21 nmol m(-2) day at Elkhorn Slough. These MMHg fluxes are similar to benthic fluxes of MMHg out of surface sediments commonly reported for estuarine and coastal environments. Consequently, this work demonstrates that SGD is an important source of both Hg(T) and MMHg to coastal waters along the central California coast.

  16. Assessing the benthic ecological status in the stressed coastal waters of Yantai, Yellow Sea, using AMBI and M-AMBI.

    PubMed

    Li, Baoquan; Wang, Quanchao; Li, Bingjun

    2013-10-15

    The coastal waters around Yantai have been subjected to a variety of anthropogenic pressures over the last two decades. To assess the current benthic ecological health and the recovery process of the benthic ecosystem, four surveys were conducted in 2010 and 2011. The AMBI and M-AMBI were applied to assess the benthic ecological status. The ecological status of the Sishili Bay and Taozi Bay was "moderate" to "good" at most sampling stations during four surveys, but some stations were degraded due to pollution and eutrophication induced by human activities. The ecological status improved after removal of the marine raft culture and minimizing the amount of waste water discharged into the coastal waters of Yantai. The AMBI and M-AMBI could be used as suitable bio-indicator indices to assess the benthic ecological status of coastal waters in Yantai, Shandong Province.

  17. Simulation of ground-water flow in the Coastal Plain aquifer system of North Carolina

    USGS Publications Warehouse

    Giese, G.I.; Eimers, J.L.; Coble, R.W.

    1997-01-01

    A three-dimensional finite-difference digital model was used to simulate ground-water flow in the 25,000-square-mile aquifer system of the North Carolina Coastal Plain. The model was developed from a hydrogeologic framework that is based on an alternating sequence of 10 aquifers and 9 confining units, which make up a seaward-thickening wedge of sediments that form the Coastal Plain aquifer system in the State of North Carolina. The model was calibrated by comparing observed and simulated water levels. The model calibration was achieved by adjusting model parameters, primarily leakance of confining units and transmissivity of aquifers, until differences between observed and simulated water levels were within acceptable limits, generally within 15 feet. The maximum transmissivity of an individual aquifer in the calibrated model is 200,000 feet squared per day in a part of the Castle Hayne aquifer, which consists predominantly of limestone. The maximum value for simulated vertical hydraulic conductivity in a confining unit was 2.5 feet per day, in a part of the confining unit overlying the upper Cape Fear aquifer. The minimum value was 4.1x10-6 feet per day, in part of the confining unit overlying the lower Cape Fear aquifer. Analysis indicated the model is highly sensitive to changes in transmissivity and leakance near pumping centers; away from pumping centers, the model is only slightly sensitive to changes in transmissivity but is moderately sensitive to changes in leakance. Recharge from precipitation to the surficial aquifer ranges from about 12 inches per year in areas having clay at the surface to about 20 inches per year in areas having sand at the surface. Most of this recharge moves laterally to streams, and only about 1 inch per year moves downward to the confined parts of the aquifer system. Under predevelopment conditions, the confined aquifers were generally recharged in updip interstream areas and discharged through streambeds and in downdip coastward

  18. Bacterial pathogens in Hawaiian coastal streams--associations with fecal indicators, land cover, and water quality.

    PubMed

    Viau, Emily J; Goodwin, Kelly D; Yamahara, Kevan M; Layton, Blythe A; Sassoubre, Lauren M; Burns, Siobhán L; Tong, Hsin-I; Wong, Simon H C; Lu, Yuanan; Boehm, Alexandria B

    2011-05-01

    This work aimed to understand the distribution of five bacterial pathogens in O'ahu coastal streams and relate their presence to microbial indicator concentrations, land cover of the surrounding watersheds, and physical-chemical measures of stream water quality. Twenty-two streams were sampled four times (in December and March, before sunrise and at high noon) to capture seasonal and time of day variation. Salmonella, Campylobacter, Staphylococcus aureus, Vibrio vulnificus, and V. parahaemolyticus were widespread -12 of 22 O'ahu streams had all five pathogens. All stream waters also had detectable concentrations of four fecal indicators and total vibrio with log mean ± standard deviation densities of 2.2 ± 0.8 enterococci, 2.7 ± 0.7 Escherichia coli, 1.1 ± 0.7 Clostridium perfringens, 1.2 ± 0.8 F(+) coliphages, and 3.6 ± 0.7 total vibrio per 100 ml. Bivariate associations between pathogens and indicators showed enterococci positively associated with the greatest number of bacterial pathogens. Higher concentrations of enterococci and higher incidence of Campylobacter were found in stream waters collected before sunrise, suggesting these organisms are sensitive to sunlight. Multivariate regression models of microbes as a function of land cover and physical-chemical water quality showed positive associations between Salmonella and agricultural and forested land covers, and between S. aureus and urban and agricultural land covers; these results suggested that sources specific to those land covers may contribute these pathogens to streams. Further, significant associations between some microbial targets and physical-chemical stream water quality (i.e., temperature, nutrients, turbidity) suggested that organism persistence may be affected by stream characteristics. Results implicate streams as a source of pathogens to coastal waters. Future work is recommended to determine infectious risks of recreational waterborne illness related to O'ahu stream exposures and to

  19. Coastal water quality near to desalination project in Cyprus using Earth observation

    NASA Astrophysics Data System (ADS)

    Papoutsa, Christiana; Hadjimitsis, Diofantos G.; Alexakis, Dimitrios D.

    2011-11-01

    Remote sensing can become a very useful tool in order to monitor coastal water quality. Economically benefits of using remote sensing techniques are obviously comparatively to the field-based monitoring because water quality can be checked daily or weekly depended on satellite overpass frequency rather than monthly as done by traditional methods which involve expensive sampling campaigns. Moreover remote sensing allows the spatial and temporal assessment of various physical, biological and ecological parameters of water bodies giving the opportunity to examine a large area by applying the suitable algorithm. This paper describes the overall methodology in order to retrieve a coastal water monitoring tool for a high risk area in Cyprus. This project is funded by the Research Promotion Foundation of Cyprus and is been developed by the Department of Civil Engineering & Geomatics, Remote Sensing Laboratory, Cyprus University of Technology in corporation with the Department of Fisheries and Marine Research in Cyprus. Firstly a time series of pigments will be done in order to determine the concentrations of the expedient parameters such as Chlorophyll, turbidity, suspended solids (SS), temperature etc at the same time of satellite overpass. At the same time in situ spectroradiometric measurements will be taken in order to retrieve the best fitted algorithm. Statistical analysis of the data will be done for the correlation of each parameter to the in situ spectroradiometric measures. Several algorithms retrieved from the in situ data are then applied to the satellite images e.g. Landsat TM/ETM+, MODIS in order to verify the suitable algorithm for each parameter. In conclusion, the overall approach is to develop regression models in which each water quality parameter will be retrieved using image, field spectroscopy, and water quality data.

  20. Species composition and seasonal abundance of Chaetognatha in the subtropical coastal waters of Hong Kong

    NASA Astrophysics Data System (ADS)

    Tse, P.; Hui, S. Y.; Wong, C. K.

    2007-06-01

    Species composition, species diversity and seasonal abundance of chaetognaths were studied in Tolo Harbour and the coastal waters of eastern Hong Kong. Tolo Harbour is a semi-enclosed and poorly flushed bay with a long history of eutrophication. It opens into the eastern coast of Hong Kong which is fully exposed to water currents from the South China Sea. Zooplankton samples were collected monthly from July 2003 to July 2005 at six stations. Twenty species of chaetognaths were identified. They included six species of the genus Aidanosagitta ( Aidanosagitta neglecta, Aidanosagitta delicata, Aidanosagitta johorensis, Aidanosagitta regularis, Aidanosagitta bedfordii and Aidanosagitta crassa), four species of the genus Zonosagitta ( Zonosagitta nagae, Zonosagitta bedoti, Zonosagitta bruuni and Zonosagitta pulchra), three species of the genus Ferosagitta ( Ferosagitta ferox, Ferosagitta tokiokai and Ferosagitta robusta) and one species each from the genera Serratosagitta ( Serratosagitta pacifica), Decipisagitta ( Decipisagitta decipiens), Flaccisagitta ( Flaccisagitta enflata), Krohnitta ( Krohnitta pacifica), Mesosagitta ( Mesosagitta minima), Pterosagitta ( Pterosagitta draco) and Sagitta ( Sagitta bipunctata). The most abundant species were Flaccisagitta enflata, A. neglecta and A. delicata. Averaged over the entire study period, the densities of Flaccisagitta enflata, A. neglecta and A. delicata were 9.3, 6.6 and 5.2 ind. m -3, respectively. Overall, these species constituted 39.7%, 28.2% and 22.0% of all chaetognaths collected in the study. Averaged over the entire study, the density of most of the low abundance species was <0.6 ind. m -3. Flaccisagitta enflata occurred throughout the year at all sampling stations. Aidanosagitta neglecta occurred at all sampling stations, but was most common in summer. Aidanosagitta delicata was most common in Tolo Harbour during summer. Tolo Harbour supported larger populations, but fewer species of chaetognaths than the

  1. Bacteriological assessment of drinking water supply options in coastal areas of Bangladesh.

    PubMed

    Islam, Md Atikul; Sakakibara, Hiroyuki; Karim, Md Rezaul; Sekine, Masahiko; Mahmud, Zahid Hayat

    2011-06-01

    This study was conducted to assess the bacteriological quality of alternative drinking water supply options in southwest coastal areas of Bangladesh. A total of 90 water samples were collected during both dry and wet seasons from household based rainwater harvesting systems (RWHSS), community based rain water harvesting systems (CRWHSs), pond-sand filters (PSFs) and ponds. The samples were evaluated for faecal coliform, Escherichia coli and Heterotrophic Plate Count, as well as Vibrio cholerae, Salmonella spp., Shigella spp. and Pseudomonas spp. Physico-chemical parameters (pH, electrical conductivity, and color) were also examined. In addition, sanitary inspections were conducted to identify faecal contamination sources. All options showed varying degrees of indicator bacterial contamination. The median E. coli concentrations measured for RWHSs, CRWHSS, PSFS, and ponds were 16, 7, 11, and 488 cfu/100 ml during the wet season, respectively. Vibrio cholerae 01/0139, Salmonella and Shigella spp. were not found in any samples. However, Vibrio cholerae Non-01/Non-0139 and Pseudomonas spp. were isolated from 74.4% and 91.1% of the water samples collected during the wet season. A maximum pH of 10.4 was found in CRWHSS. Estimation of the disease burden for all options in disability adjusted life years (DALYs) showed an increased disease burden during the wet season. According to sanitary inspections, poor maintenance and unprotected ponds were responsible for rainwater and PSF water contamination, respectively. The findings of the present study suggest that alternative drinking water supply options available in southwest coastal Bangladesh pose a substantial risk to public health.

  2. Influence of Microsprinkler Irrigation Amount on Water, Soil, and pH Profiles in a Coastal Saline Soil

    PubMed Central

    Chu, Linlin; Kang, Yaohu; Wan, Shuqin

    2014-01-01

    Microsprinkler irrigation is a potential method to alleviate soil salinization. After conducting a homogeneous, highly saline, clayey, and coastal soil from the Bohai Gulf in northern China in a column experiment, the results show that the depth of the wetting front increased as the water amount applied increased, low-salinity and low-SAR enlarged after irrigation and water redistribution, and the soil pH increased with an increase in irrigation amount. We concluded that a water amount of 207 mm could be used to reclaim the coastal saline soil in northern China. PMID:25147843

  3. Influence of microsprinkler irrigation amount on water, soil, and pH profiles in a coastal saline soil.

    PubMed

    Chu, Linlin; Kang, Yaohu; Wan, Shuqin

    2014-01-01

    Microsprinkler irrigation is a potential method to alleviate soil salinization. After conducting a homogeneous, highly saline, clayey, and coastal soil from the Bohai Gulf in northern China in a column experiment, the results show that the depth of the wetting front increased as the water amount applied increased, low-salinity and low-SAR enlarged after irrigation and water redistribution, and the soil pH increased with an increase in irrigation amount. We concluded that a water amount of 207 mm could be used to reclaim the coastal saline soil in northern China.

  4. Study of water mixing in the coastal waters of the western Taiwan Strait based on radium isotopes.

    PubMed

    Men, Wu; Jiang, Yuwu; Liu, Guangshan; Wang, Fenfen; Zhang, Yusheng

    2016-02-01

    Radium is considered to be a useful tracer for studying the physical processes of seawater. In this work, three naturally occurring radium isotopes, (224)Raex, (226)Ra and (228)Ra, were measured in the coastal zone of the western Taiwan Strait during the summer seasons. Based on the distributions of the three radium isotopes and the salinity, we conclude that the water mixing pattern in the study area in summer consists of diluted water flowing from the Jiulong River to the open sea towards the east and southeast, and open sea seawater flowing inward from south to north. The submarine ground water discharges in the estuarine region, as suggested by the radium and salinity data. The residence times of the Jiulong River estuary, ranging from 7 to 49 d, were estimated using the radium isotope pairs (224)Raex and (226)Ra.

  5. Study of water mixing in the coastal waters of the western Taiwan Strait based on radium isotopes.

    PubMed

    Men, Wu; Jiang, Yuwu; Liu, Guangshan; Wang, Fenfen; Zhang, Yusheng

    2016-02-01

    Radium is considered to be a useful tracer for studying the physical processes of seawater. In this work, three naturally occurring radium isotopes, (224)Raex, (226)Ra and (228)Ra, were measured in the coastal zone of the western Taiwan Strait during the summer seasons. Based on the distributions of the three radium isotopes and the salinity, we conclude that the water mixing pattern in the study area in summer consists of diluted water flowing from the Jiulong River to the open sea towards the east and southeast, and open sea seawater flowing inward from south to north. The submarine ground water discharges in the estuarine region, as suggested by the radium and salinity data. The residence times of the Jiulong River estuary, ranging from 7 to 49 d, were estimated using the radium isotope pairs (224)Raex and (226)Ra. PMID:26630036

  6. Experimental evidence of nitrogen control on pCO(2) in phosphorus-enriched humic and clear coastal lagoon waters.

    PubMed

    Peixoto, Roberta B; Marotta, Humberto; Enrich-Prast, Alex

    2013-01-01

    Natural and human-induced controls on carbon dioxide (CO(2)) in tropical waters may be very dynamic (over time and among or within ecosystems) considering the potential role of warmer temperatures intensifying metabolic responses and playing a direct role on the balance between photosynthesis and respiration. The high magnitude of biological processes at low latitudes following eutrophication by nitrogen (N) and phosphorus (P) inputs into coastal lagoons waters may be a relevant component of the carbon cycle, showing controls on partial pressure of CO(2) (pCO(2)) that are still poorly understood. Here we assessed the strength of N control on pCO(2) in P-enriched humic and clear coastal lagoons waters, using four experimental treatments in microcosms: control (no additional nutrients) and three levels of N additions coupled to P enrichments. In humic coastal lagoons waters, a persistent CO(2) supersaturation was reported in controls and all nutrient-enriched treatments, ranging from 24- to 4-fold the atmospheric equilibrium value. However, both humic and clear coastal lagoons waters only showed significant decreases in pCO(2) in relation to the controlled microcosms in the two treatments with higher N addition levels. Additionally, clear coastal lagoons water microcosms showed a shift from CO(2) sources to CO(2) sinks, in relation to the atmosphere. Only in the two more N-enriched treatments did pCO(2) substantially decrease, from 650 µatm in controls and less N-enriched treatments to 10 µatm in more N-enriched microcosms. Humic substrates and N inputs can modulate pCO(2) even in P-enriched coastal lagoons waters, thereby being important drivers on CO(2) outgassing from inland waters.

  7. Experimental evidence of nitrogen control on pCO2 in phosphorus-enriched humic and clear coastal lagoon waters

    PubMed Central

    Peixoto, Roberta B.; Marotta, Humberto; Enrich-Prast, Alex

    2013-01-01

    Natural and human-induced controls on carbon dioxide (CO2) in tropical waters may be very dynamic (over time and among or within ecosystems) considering the potential role of warmer temperatures intensifying metabolic responses and playing a direct role on the balance between photosynthesis and respiration. The high magnitude of biological processes at low latitudes following eutrophication by nitrogen (N) and phosphorus (P) inputs into coastal lagoons waters may be a relevant component of the carbon cycle, showing controls on partial pressure of CO2 (pCO2) that are still poorly understood. Here we assessed the strength of N control on pCO2 in P-enriched humic and clear coastal lagoons waters, using four experimental treatments in microcosms: control (no additional nutrients) and three levels of N additions coupled to P enrichments. In humic coastal lagoons waters, a persistent CO2 supersaturation was reported in controls and all nutrient-enriched treatments, ranging from 24- to 4-fold the atmospheric equilibrium value. However, both humic and clear coastal lagoons waters only showed significant decreases in pCO2 in relation to the controlled microcosms in the two treatments with higher N addition levels. Additionally, clear coastal lagoons water microcosms showed a shift from CO2 sources to CO2 sinks, in relation to the atmosphere. Only in the two more N-enriched treatments did pCO2 substantially decrease, from 650 µatm in controls and less N-enriched treatments to 10 µatm in more N-enriched microcosms. Humic substrates and N inputs can modulate pCO2 even in P-enriched coastal lagoons waters, thereby being important drivers on CO2 outgassing from inland waters. PMID:23390422

  8. Evaluation of WRF Planetary Boundary Layer Schemes over the Coastal Waters of Southern New England

    NASA Astrophysics Data System (ADS)

    Sienkiewicz, Matthew J.

    Winds, temperatures and moisture in the planetary boundary layer (PBL) are often difficult for operational models to predict given the relatively sparse observations and that most model PBL parameterizations were developed over inland locations. Coastal marine layer forecasts are important for the forecasting of severe storms and wind energy resources in the highly populated coastal marine environment of the Northeast U.S. (NEUS). Mesoscale models are known to have large biases in wind speeds and temperatures at these lower levels over coastal waters. The goal of this project is to evaluate the performance of six PBL schemes in the Weather Research and Forecasting (WRF-ARW) model version 3.4.1 in the coastal marine environment of the NEUS. This study region, stretching from the south shore of Long Island out to Cape Cod is an ideal location for an offshore wind energy grid based on such factors as regional energy demand, water depth, and available wind resource. Verification of six WRF PBL schemes (two non-local, first-order schemes and four local, TKE-order schemes) was performed using a dataset of observations at multiple levels from the Cape Wind tower in Nantucket Sound from 2003 to 2011, as well as surrounding NDBC and ASOS stations. A series of 30-hour WRF runs were conducted for 90 randomly selected days between 2003 and 2011, with initial and boundary conditions supplied by the North American Regional Reanalysis (NARR). All schemes generally displayed negative wind speed biases over the water. The cool season displayed the largest negative biases as well as a shear profile indicative of an over-mixed boundary layer. It is hypothesized that errors in the model SST field in Nantucket Sound aided in the too-stable (unstable) model MABL structures during the warm (cool) seasons and the resultant under-mixed (over-mixed) wind shear profiles. Additional model verification from three Long-EZ aircraft flights during the Improving the Mapping and Prediction of

  9. Effect of ecological group classification schemes on performance of the AMBI benthic index in US coastal waters

    EPA Science Inventory

    The AZTI Marine Biotic Index (AMBI) requires less geographically-specific calibration than other benthic indices, but has not performed as well in US coastal waters as it has in the European waters for which it was originally developed. Here we examine the extent of improvement i...

  10. Seasonality, Water Quality Variability and Diarrheal Disease in Northern Coastal Ecuador

    NASA Astrophysics Data System (ADS)

    Levy, K.; Hubbard, A. E.; Nelson, K. L.; Eisenberg, J. N.

    2008-12-01

    Objective Seasonality plays a key role in determining incidence of infectious diseases. Diarrheal diseases in particular show seasonal trends, with bacterial pathogens usually peaking in warmer months and viral pathogens peaking in cooler, dryer months. However, studies of the impacts of water quality on diarrheal disease are usually undertaken cross-sectionally, over a short period of time. In this study, we explore how seasonality affects diarrheal disease incidence in a rural area of northern coastal Ecuador, using longer-term datasets. Materials and Methods We use water quality data (as measured by E.coli counts) for both source and in-home water samples collected on a weekly basis over the course of one year in one village. We test the relationship between weekly variability in water quality and diarrheal disease incidence, water treatment and water storage practices in the home. Results We find that peaks in geometric mean values of microbial contamination of source waters often correspond to peaks in weekly village diarrhea incidence in the wet season, but not in the dry season. We also find that perceptions of villagers about water cleanliness do not correspond to levels of microbial contamination; people are more likely to treat their water in the dry season, whereas microbial contamination of source waters peaks in the wet season. We relate these findings to a broader analysis of the relationship between weekly rainfall and diarrheal disease incidence in 21 villages across a larger region over the course of five years. Conclusions Our findings suggest that seasonal variability plays a role in the relationship between water quality and waterborne disease. A consideration of seasonality can help guide public health interventions, by targeting messages about water treatment at times when people are most at risk for waterborne disease. These data can also help inform projections of the impact of climate change on waterborne disease.

  11. Incorporation of glucose under anoxic conditions by bacterioplankton from coastal North Sea surface waters.

    PubMed

    Alonso, Cecilia; Pernthaler, Jakob

    2005-04-01

    It has been hypothesized that the potential for anaerobic metabolism might be a common feature of bacteria in coastal marine waters (L. Riemann and F. Azam, Appl. Environ. Microbiol. 68: 5554-5562, 2002). Therefore, we investigated whether different phylogenetic groups of heterotrophic picoplankton from the coastal North Sea were able to take up a simple carbon source under anoxic conditions. Oxic and anoxic incubations (4 h) or enrichments (24 h) of seawater with radiolabeled glucose were performed in July and August 2003. Bacteria with incorporated substrate were identified by using a novel protocol in which we combined fluorescence in situ hybridization and microautoradiography of cells on membrane filters. Incorporation of glucose under oxic and anoxic conditions was found in alpha-Proteobacteria, gamma-Proteobacteria, and the Cytophaga-Flavobacterium cluster of the Bacteroidetes at both times, but not in marine Euryarchaeota. In July, the majority of cells belonging to the alpha-proteobacterial Roseobacter clade showed tracer incorporation both in oxic incubations and in oxic and anoxic enrichments. In August, only a minority of the Roseobacter cells, but most bacteria affiliated with Vibrio spp., were able to incorporate the tracer under either condition. A preference for glucose uptake under anoxic conditions was observed for bacteria related to Alteromonas and the Pseudoalteromonas-Colwellia group. These genera are commonly considered to be strictly aerobic, but facultatively fermentative strains have been described. Our findings suggest that the ability to incorporate substrates anaerobically is widespread in pelagic marine bacteria belonging to different phylogenetic groups. Such bacteria may be abundant in fully aerated coastal marine surface waters.

  12. Avoiding the Water-Climate-Poverty Trap: Adaptive Risk Management for Bangladesh's Coastal Embankments

    NASA Astrophysics Data System (ADS)

    Hall, J. W.

    2015-12-01

    Our recent research on water security (Sadoff et al., 2015, Dadson et al., 2015) has revealed the dynamic relationship between water security and human well-being. A version of this dynamic is materialising in the coastal polder areas of Khulna, Bangladesh. Repeated coastal floods increase salinity, wipe out agricultural yields for several years and increase out-migration. As a tool to help inform and target future cycles of investment in improvements to the coastal embankments, in this paper we propose a dynamical model of biophysical processes and human well-being, which downscales our previous research to the Khulna region. State variables in the model include agricultural production, population, life expectancy and child mortality. Possible infrastructure interventions include embankment improvements, groundwater wells and drainage infrastructure. Hazard factors include flooding, salinization and drinking water pollution. Our system model can be used to inform adaptation decision making by testing the dynamical response of the system to a range of possible policy interventions, under uncertain future conditions. The analysis is intended to target investment and enable adaptive resource reallocation based on learning about the system response to interventions over the seven years of our research programme. The methodology and paper will demonstrate the complex interplay of factors that determine system vulnerability to climate change. The role of climate change uncertainties (in terms of mean sea level rise and storm surge frequency) will be evaluated alongside multiple other uncertain factors that determine system response. Adaptive management in a 'learning system' will be promoted as a mechanism for coping with climate uncertainties. References:Dadson, S., Hall, J.W., Garrick, D., Sadoff, C. and Grey, D. Water security, risk and economic growth: lessons from a dynamical systems model, Global Environmental Change, in review.Sadoff, C.W., Hall, J.W., Grey, D

  13. The origin of high sodium bicarbonate waters in the Atlantic and Gulf Coastal Plains

    USGS Publications Warehouse

    Foster, M.D.

    1950-01-01

    Some sodium bicarbonate waters at depth in the Atlantic and Gulf Coastal Plains have the same bicarbonate content as the shallower calcium bicarbonate waters in the same formation and appear to be the result of replacement of calcium by sodium through the action of base-exchange minerals. Others, however, contain several hundred parts per million more of bicarbonate than any of the calcium bicarbonate waters and much more bicarbonate than can be attributed to solution of calcium carbonate through the action of carbon dioxide derived from the air and soil. As the waters in the Potomac group (Cretaceous) are all low in sulphate and as the environmental conditions under which the sediments of the Potomac group were deposited do not indicate that large amounts of sulphate are available for solution, it does not seem probable that carbon dioxide generated by chemical or biochemical breakdown of sulphate is responsible for the high sodium bicarbonate waters in this area. Sulphate as a source of oxygen is not necessary for the generation of carbon dioxide by carbonaceous material. Oxygen is an important constituent of carbonaceous material and carbon dioxide is a characteristic decomposition product of such material-as, for example, peat and lignite. Experimental work showed that distilled water, calcium bicarbonate water, and sodium bicarbonate water, after contact with lignite, calcium carbonate, and permutite (a base-exchange material), had all increased greatly in sodium bicarbonate content and had become similar in chemical character and in mineral content to high sodium bicarbonate waters found in the Coastal Plain. The tests indicated that carbonaceous material can act as a source of carbon dioxide, which, when dissolved in water, enables it to take into solution more calcium carbonate. If base-exchange materials are also present to replace calcium with sodium, a still greater amount of bicarbonate can be held in solution. The presence of carbonaceous material

  14. Changes in forcing factors affecting coastal and shallow water erosion in the future Arctic climate change projections.

    NASA Astrophysics Data System (ADS)

    Dobrynin, Mikhail; Razumov, Sergey; Brovkin, Victor; Ilyina, Tatiana; Grigoriev, Mikhail

    2016-04-01

    Driving factors of seabed and coastal erosion in the Arctic can be classified as thermal and mechanical. Thermal factors such as air and ocean temperatures affect the seabed and coastal ground temperatures. Mechanical factors such as ocean currents and surface gravity waves contribute to the seabed and costal erosion due to shear stress. Due to polar amplification, the Arctic experiences strong increase in air and water temperature, sea-ice loss and changes in the ocean and atmospheric circulation, temperature and wind distribution. These climatic changes lead to changes in factors driving seabed and coastal erosion, which is expected to accelerate in the shallow Arctic regions such as the Laptev sea and East Siberian sea. In these regions, the coastal line to a large extent consists of frozen rocks, sediments and organic soils including ground ice. The increase of erosion rate of the coastal line will increase the release of organic and inorganic matter from thawed permafrost. Dynamics of thermal and mechanical drivers of seabed and coastal erosion in the present and future climate change (RCP8.5 scenario) simulated by the CMIP5 version of the MPI Earth system model and wave model WAM will be presented. Special attention will be given to changes in the air temperature, wind dynamics and development of new waves system in the ``ice-free'' Arctic and its role in the seabed and coastal erosion.

  15. Inter- annual variability of water vapor over an equatorial coastal station using Microwave Radiometer observations.

    NASA Astrophysics Data System (ADS)

    Renju, Ramachandran Pillai; Uma, K. N.; Krishna Moorthy, K.; Mathew, Nizy; Raju C, Suresh

    The south-western region of the Indian peninsula is the gateway of Indian summer monsoon. This region experiences continuous monsoon rain for a longer period of about six months from June to November. The amount of water vapor variability is one of the important parameters to study the onset, active and break phases of the monsoon. Keeping this in view, a multi-frequency Microwave Radiometer Profiler (MRP) has been made operational for continuous measurements of water vapor over an equatorial coastal station Thiruvananthapuram (8.5(°) N, 76.9(°) E) since April 2010. The MRP estimated precipitable water vapor (PWV) for different seasons including monsoon periods have been evaluated by comparing with the collocated GPS derived water vapor and radiosonde measurements. The diurnal, seasonal and inter annual variation of water vapor has been studied for the last four years (2010-2013) over this station. The significant diurnal variability of water vapor is found only during the winter and pre-monsoon periods (Dec -April). The vertical distribution of water vapour is studied in order to understand its variability especially during the onset of monsoon. During the building up of south-west monsoon, the specific humidity increases to ˜ 10g/kg in the altitude range of 4-6 km and consistently maintained it throughout the active spells and reduces to below 2g/kg during break spells of monsoon. The instrument details and the results will be presented.

  16. Bark water uptake promotes localized hydraulic recovery in coastal redwood crown.

    PubMed

    Mason Earles, J; Sperling, Or; Silva, Lucas C R; McElrone, Andrew J; Brodersen, Craig R; North, Malcolm P; Zwieniecki, Maciej A

    2016-02-01

    Coastal redwood (Sequoia sempervirens), the world's tallest tree species, rehydrates leaves via foliar water uptake during fog/rain events. Here we examine if bark also permits water uptake in redwood branches, exploring potential flow mechanisms and biological significance. Using isotopic labelling and microCT imaging, we observed that water entered the xylem via bark and reduced tracheid embolization. Moreover, prolonged bark wetting (16 h) partially restored xylem hydraulic conductivity in isolated branch segments and whole branches. Partial hydraulic recovery coincided with an increase in branch water potential from about -5.5 ± 0.4 to -4.2 ± 0.3 MPa, suggesting localized recovery and possibly hydraulic isolation. As bark water uptake rate correlated with xylem osmotic potential (R(2)  = 0.88), we suspect a symplastic role in transferring water from bark to xylem. Using historical weather data from typical redwood habitat, we estimated that bark and leaves are wet more than 1000 h per year on average, with over 30 events being sufficiently long (>24 h) to allow for bark-assisted hydraulic recovery. The capacity to uptake biologically meaningful volumes of water via bark and leaves for localized hydraulic recovery throughout the crown during rain/fog events might be physiologically advantageous, allowing for relatively constant transpiration.

  17. Water quality in the near coastal waters of the Gulf of Mexico affected by Hurricane Katrina: before and after the storm.

    PubMed

    Smith, Lisa M; Macauley, John M; Harwell, Linda C; Chancy, Cynthia A

    2009-07-01

    Water quality was assessed following Hurricane Katrina in the affected waters of Alabama, Mississippi, and Louisiana. Post-landfall water quality was compared to pre-hurricane conditions using indicators assessed by EPA's National Coastal Assessment program and additional indicators of contaminants in water and pathogens. Water quality data collected after Hurricane Katrina suggest that the coastal waters affected by the storm exhibited higher salinity and concentrations of chlorophyll a, dissolved inorganic phosphorus, and total suspended solids following the storm compared to the previous 5-year averages. Higher bottom dissolved oxygen concentrations and light attenuation were also observed. Contaminant concentrations measured in the water column were very low or undetectable, as were the presence of pathogens. Overall water quality did not significantly differ from water quality assessed in the five years preceding the storm. Statistical analyses indicate that use of a probabilistic survey design is appropriate for making pre-storm and post storm comparisons for water quality condition on an areal basis.

  18. Evaluation of Surface Hydrological Connectivity Between a Forested Coastal Wetland and Regulated Waters of the United States

    NASA Astrophysics Data System (ADS)

    Dean, D. D.; Wilcox, B. P.; Jacob, J. S.; Sipocz, A.; Munster, C.

    2008-12-01

    Rapid urbanization, industry, and agriculture have put enormous developmental pressure on coastal forested wetlands along the Texas coast. At least 97,000 acres of freshwater forested wetlands on the Texas coast have been lost since 1955, amid much larger losses of other coastal wetland types (TPWD-Texas Wetlands Conservation Plan, 1996). Some coastal wetlands are protected by federal regulations under the Clean Water Act in an effort to maintain wetland hydrological and ecological services, such as water quality improvement and flood control. However, federal protection of many important coastal wetlands is dependent upon documented proof of a hydrologic connection to federally protected Waters of the United States and reasonable influence on the quality of those waters. This study focuses on a 13 acre catchment of coastal flatwoods wetland with an ambiguous legal status because of a possible , but undocumented, hydrologic connection to regulated Waters of the United States. Documentation of the hydrologic connectivity of this type of wetland is critical because of the geographic extent of similar wetlands and their contributions to water quality. The objective of the study was to determine if a hydrologic connection exists, and if so, to quantify the strength of the connection. A surface connection was established based on runoff and rainfall data collected since April of 2005, with the wetland discharging surface water directly into an adjacent protected wetland. The connection was weak during dry years, but in years with average rainfall, surface runoff accounted for a much more significant portion of the water budget. These results suggest that runoff water from similar wetlands contributes directly to protected wetland waters, and may influence water quality downstream.

  19. Water uptake by trees of coastal forested wetlands in Guadeloupe, French West Indies.

    NASA Astrophysics Data System (ADS)

    Bompy, Felix; Lambs, Luc; Dulormne, Maguy; Imbert, Daniel

    2013-04-01

    In the Caribbean islands, coastal wetlands comprise two main ecosystems: the mangrove forest and the freshwater swamp forest dominated by the legume Pterocarpus officinalis. These forest ecosystems make an interface between sea and land, providing significant ecological and socioeconomic functions. During the last centuries, human activities have modified the hydrologic connections of these wetlands by digging canals to drain waterlogged soils and by cutting forests to promote cattle grazing and waterfowl hunting. Peat formation is associated to the highest water-table levels. The thickest peat deposits occur seaward as a result of the Holocene marine transgression into Pleistocene coastal plains and estuaries. Landward, soils overlay volcanic or calcareous bedrocks and are mainly clayey. Such differences in soil formation and physical characteristics (especially porosity) confer to the system its hydraulic properties. Furthermore, the dual origin of water (tides and watershed runoff) gives way to a complex pattern of groundwater salinity. In five forest stands of Guadeloupe wetlands, we have traced water uptake using the stable isotopes of water (d18O and dD). Preliminary results reveal that evapo-transpiration process in the swamp forest is compensated by fresh groundwater coming out from springs scattered around and inside the forest. In the mangrove forest, the highest evaporation rates are located in the Avicennia pure stand and the mixed scrub stand; the mixed tall stand is located where fresh and salt water melt. Measurement of xylem sap also suggests that mangrove trees uptake groundwater where salinity is the lowest. The low tidal range and the absence of large watershed, like in most wetlands of Caribbean islands, certainly explain the poor hydro-dynamics and resilience of the system.

  20. Effects of 50-years unmanaged water resource in Southern Tuscany coastal plains (Italy)

    NASA Astrophysics Data System (ADS)

    Rossetto, R.; Debolini, M.; Galli, M. A.; Bonari, E.

    2012-04-01

    Southern Tuscany coastal plains show favorable conditions from the agro-pedoclimatic point of view and are characterized by a relevant touristic flux, being one of the most popular seaside resort. In such conditions, water resource is one of the main assets: disregarded water management may then lead to severe consequences for the development and growth of the socio-economic system and agro-ecosystem maintenance. During the 1960 decade, ante-II World War projects for hydropower production (i.e. the Farma-Merse scheme) were rearranged in favor of irrigation and the enhancement of crop production. Storage of about 110 Mm3 was thought to provide water for about 35000 Ha. At the end of the 70's, mass tourism began to take place in coastal areas giving rise to water access conflicts between agriculture and the touristic infrastructure. Being none of these projects realized, the increasing demand for drinking water was satisfied by tapping the Mount Amiata aquifer for 70% of the annual demand, and the remaining 30% coming from local aquifers. Due to the absence of rainfall and then of surface water flow in streams at the end of the spring and during the summer period, irrigation requirements were also satisfied by means of groundwater withdrawals. As a consequence of overdraft, aquifer salinisation started in most of the coastal areas (Regione Toscana, 1995; Bianchi et al., 2011; Scuola Superiore Sant'Anna, 2011). All this happened in the completely absence of controls on groundwater abstractions. In the early 90's, the Commissione Leon (Regione Toscana, 1991) re-analyzed the largest dam projects and presented as feasible a conjunctive use of surface water stored in artificial basins (to be built) and by planned and controlled local aquifers. Anyway, political issues and environmental concerns halted any kind of realization, so that today the largest basin in the area is private, it dates back to 1930, and it shows a reduced capacity of about 1.8 Mm3, instead than the

  1. Water exchange on a geological timescale - examples from two coastal sites in the Baltic Sea.

    PubMed

    Eriksson, Christin; Engqvist, Anders

    2013-05-01

    The water turnover of two coastal areas, Forsmark and Laxemar-Simpevarp, has been modeled for 13 selected years between 6500 BC and 9000 AD by utilizing information about past, present, and future bathymetry. The Forsmark area can be described as an open-ended funnel, and is analyzed with a 3D-model (MIKE 3-FM); the Laxemar area is partitioned into clusters of sub-basins treated with a discrete coupled basin model (CouBa). In all simulations, the main variation factor is the land uplift. The 3D-model domain is successively modified. For the CouBa approach the successive basin configurations are objectively deduced based on the 3D domain modifications. The average age (AvA) of the resident water relative to the open coast is generally lower for the Forsmark area. A typical progression is that the AvA values increase until a sub-basin ceases to be connected to the coastal zone. This disconnection is often preceded by a lowered AvA.

  2. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters.

    PubMed

    Frias, J P G L; Otero, V; Sobral, P

    2014-04-01

    Records of high concentrations of plastic and microplastic marine debris floating in the ocean have led to investigate the presence of microplastics in samples of zooplankton from Portuguese coastal waters. Zooplankton samples collected at four offshore sites, in surveys conducted between 2002 and 2008, with three different sampling methods, were used in this preliminary study. A total of 152 samples were processed and microplastics were identified in 93 of them, corresponding to 61% of the total. Costa Vicentina, followed by Lisboa, were the regions with higher microplastic concentrations (0.036 and 0.033 no. m⁻³) and abundances (0.07 and 0.06 cm³ m⁻³), respectively. Microplastic: zooplankton ratios were also higher in these two regions, which is probably related to the proximity of densely populated areas and inputs from the Tejo and Sado river estuaries. Microplastics polymers were identified using Micro Fourier Transformed Infrared Spectroscopy (μ-FTIR), as polyethylene (PE), polypropylene (PP) and polyacrylates (PA). The present work is the first report on the composition of microplastic particles collected with plankton nets in Portuguese coastal waters. Plankton surveys from regular monitoring campaigns conducted worldwide may be used to monitor plastic particles in the oceans and constitute an important and low cost tool to address marine litter within the scope of the Marine Strategy Framework Directive (2008/56/EC). PMID:24461782

  3. Green seaweed Ulva as a monitor for pollution in coastal waters

    SciTech Connect

    Levine, H.G.

    1983-01-01

    Methods have been developed which capitalize on the capacity of Ulva to function as a bioindicator of pollution in coastal waters. Studies have been performed evaluating the growth of both Ulva tissue discs and Ulva germlings as they relate to physical and chemical parameters of the environment. The Ulva tissue disc method for the in situ monitoring of organic load (nitrogen and phosphorus) in coastal waters was demonstrated to be marginally effective. The in situ differential growth reponse of parthenogenetically developed germlings fulfilled the monitoring objective, but multi-faceted environmental considerations introduced complications which reduced the feasibility of the germling deployment method for routine monitoring. The assessment of Ulva as a bioaccumulator was undertaken. Use of Ulva as an in situ sampling device has demonstrated appreciable success. This in situ monitor can provide concentrated samples of environmental pollutants. Analytical techniques have been employed to extract information on trace metals, pesticides, PCBs and other accumulated organohalides. Ulva is a bioacumulator which, by all standards, has much to recommend it. Precedures have been developed to reduce much of the inherent biological varation. Ulva has world-wide occurrence, and is therefore capable of providing a standard for comparison of data. This alga merits consideration as an international monitor for pollutants in the marine environment.

  4. An optical model for deriving the spectral particulate backscattering coefficients in clear and turbid coastal waters

    NASA Astrophysics Data System (ADS)

    Tiwari, S. P.; Shanmugam, P.

    2013-02-01

    An optical model is developed based on the diffuse attenuation coefficient (Kd) to estimate particulate backscattering coefficients bbp(λ) in clear and turbid coastal waters. A large in-situ data set is used to establish robust relationships between bbp(530) and bbp(555) and Kd(490) using an efficient nonlinear least square method which uses the Trust-Region algorithm with Bisquare weights scheme to adjust the coefficients. These relationships are obtained with good correlation coefficients (R2 = 0.786 and 0.790), low Root Mean Square Error (RMSE = 0.00076 and 0.00072) and 95% confidence bounds. The new model is tested with two independent data sets such as the NOMAD SeaWiFS Match-ups and OOXIX IOP algorithm workshop evaluation data set (Version 2.0w APLHA). Results show that the new model makes good retrievals of bbp at all key wavelengths (from 412-683 nm), with statistically significant improvements over other inversion models. Thus, the new model has the potential to improve our knowledge of particulate matters and their optical variability in both clear and turbid coastal waters.

  5. Reproductive aspects of the flyingfish, Hirundichthys affinis from the Northeastern coastal waters of Brazil.

    PubMed

    Oliveira, M R; Carvalho, M M; Silva, N B; Yamamoto, M E; Chellappa, S

    2015-01-01

    The epipelagic flyingfish, Hirundichthys affinis is a major artisanal fishery resource from the Northeastern coastal waters of Brazil. However, biological information about this species has been poorly documented. This paper presents data on the length-weight relationship, sex ratio, length at first sexual maturity, gonadal development and fecundity of H. affinis sampled from the coastal waters of Rio Grande do Norte, Brazil. The total body length and weight for both sexes ranged from 23.4 to 29.4 cm and from 89 to 188g, respectively. The allometric coefficient of males was 2.208 and that of females was 2.985, indicating negatively allometric growth. The sex ratio was 1M:1.6F thus differing from the expected ratio of 1:1 (χ2 = 18.63). The total length at first sexual maturity was estimated at 27.3 cm for males and 27.1 cm for females. The macroscopic characteristics of the gonads indicated four maturation stages. Histological studies of gonads of H. affinis showed seven phases of oocyte development and four phases of spermatocyte development. The mean absolute fecundity was 9092 vitelogenic oocytes. Spawning occurred during the months of March to July. The microscopic descriptions of the stages of gonad maturation indicate that the study area is an important spawning ground of H. affinis. PMID:25945638

  6. Self-similar distribution of oil spills in European coastal waters

    NASA Astrophysics Data System (ADS)

    Redondo, Jose M; Platonov, Alexei K

    2009-01-01

    Marine pollution has been highlighted thanks to the advances in detection techniques as well as increasing coverage of catastrophes (e.g. the oil tankers Amoco Cadiz, Exxon Valdez, Erika, and Prestige) and of smaller oil spills from ships. The new satellite based sensors SAR and ASAR and new methods of oil spill detection and analysis coupled with self-similar statistical techniques allow surveys of environmental pollution monitoring large areas of the ocean. We present a statistical analysis of more than 700 SAR images obtained during 1996-2000, also comparing the detected small pollution events with the historical databases of great marine accidents during 1966-2004 in European coastal waters. We show that the statistical distribution of the number of oil spills as a function of their size corresponds to Zipf's law, and that the common small spills are comparable to the large accidents due to the high frequency of the smaller pollution events. Marine pollution from tankers and ships, which has been detected as oil spills between 0.01 and 100 km2, follows the marine transit routes. Multi-fractal methods are used to distinguish between natural slicks and spills, in order to estimate the oil spill index in European coastal waters, and in particular, the north-western Mediterranean Sea, which, due to the influence of local winds, shows optimal conditions for oil spill detection.

  7. High genetic diversity and novelty in planktonic protists inhabiting inland and coastal high salinity water bodies.

    PubMed

    Triadó-Margarit, Xavier; Casamayor, Emilio O

    2013-07-01

    We analyzed the genetic diversity (18S rRNA gene) of planktonic microbial eukaryotes in 34 different coastal and inland saline ponds. A wide range of environmental conditions was covered with up to 30-fold differences in salinity concentrations (12.5-384 g L(-1)), and in situ temperatures (1.3-37.5 °C), and three orders of magnitude in the trophic status (i.e. chlorophyll a < 0.1 to >50 mg L(-1)). Geographically distant sites were studied with contrasting salt origins, and different temporal patterns of wetting and drying. The genetic diversity was high, far beyond the few groups traditionally considered as high salinity-adapted, with sequences spread throughout eight high-rank taxonomic groups and 27 eukaryal classes. The novelty level was extremely high, with 10% of the whole dataset showing < 90% identity to any previously reported sequence in GenBank. Opisthokonta and Rhizaria contained the highest novelty and Chlorophyta and Alveolata the lowest. Low identity sequences were observed both in coastal and inland sites and at lower and at higher salinities, although the degree of novelty was higher in the hypersaline waters (> 6.5% salinity). Overall, this study shows important gaps in the current knowledge about protists inhabiting continental (hyper)saline water bodies, highlighting the need for future, more detailed investigations.

  8. Fortnightly atmospheric tides forced by spring and neap tides in coastal waters

    PubMed Central

    Iwasaki, Shinsuke; Isobe, Atsuhiko; Miyao, Yasuyuki

    2015-01-01

    The influence of sea surface temperature (SST) on atmospheric processes over the open ocean has been well documented. However, atmospheric responses to SST in coastal waters are poorly understood. Oceanic stratification (and consequently, SST) in coastal waters largely depends on the fortnightly spring–neap tidal cycle, because of variations in vertical tidal mixing. Here we investigate how changes in SST during the fortnightly tidal cycle affect the lower-level atmosphere over the Seto Inland Sea, Japan. We use a combination of in situ measurements, satellite observations and a regional atmospheric model. We find that the SST in summer shows cool (warm) anomalies over most of the inland sea during spring (neap) tides. Additionally, surface air temperature is positively correlated with the SST as it varies during the fortnightly tidal cycle. Moreover, the fortnightly spring–neap cycle also influences the surface wind speed because the atmospheric boundary layer becomes stabilized or destabilized in response to the difference between air temperature and SST. PMID:25984948

  9. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters.

    PubMed

    Frias, J P G L; Otero, V; Sobral, P

    2014-04-01

    Records of high concentrations of plastic and microplastic marine debris floating in the ocean have led to investigate the presence of microplastics in samples of zooplankton from Portuguese coastal waters. Zooplankton samples collected at four offshore sites, in surveys conducted between 2002 and 2008, with three different sampling methods, were used in this preliminary study. A total of 152 samples were processed and microplastics were identified in 93 of them, corresponding to 61% of the total. Costa Vicentina, followed by Lisboa, were the regions with higher microplastic concentrations (0.036 and 0.033 no. m⁻³) and abundances (0.07 and 0.06 cm³ m⁻³), respectively. Microplastic: zooplankton ratios were also higher in these two regions, which is probably related to the proximity of densely populated areas and inputs from the Tejo and Sado river estuaries. Microplastics polymers were identified using Micro Fourier Transformed Infrared Spectroscopy (μ-FTIR), as polyethylene (PE), polypropylene (PP) and polyacrylates (PA). The present work is the first report on the composition of microplastic particles collected with plankton nets in Portuguese coastal waters. Plankton surveys from regular monitoring campaigns conducted worldwide may be used to monitor plastic particles in the oceans and constitute an important and low cost tool to address marine litter within the scope of the Marine Strategy Framework Directive (2008/56/EC).

  10. Fortnightly atmospheric tides forced by spring and neap tides in coastal waters.

    PubMed

    Iwasaki, Shinsuke; Isobe, Atsuhiko; Miyao, Yasuyuki

    2015-01-01

    The influence of sea surface temperature (SST) on atmospheric processes over the open ocean has been well documented. However, atmospheric responses to SST in coastal waters are poorly understood. Oceanic stratification (and consequently, SST) in coastal waters largely depends on the fortnightly spring-neap tidal cycle, because of variations in vertical tidal mixing. Here we investigate how changes in SST during the fortnightly tidal cycle affect the lower-level atmosphere over the Seto Inland Sea, Japan. We use a combination of in situ measurements, satellite observations and a regional atmospheric model. We find that the SST in summer shows cool (warm) anomalies over most of the inland sea during spring (neap) tides. Additionally, surface air temperature is positively correlated with the SST as it varies during the fortnightly tidal cycle. Moreover, the fortnightly spring-neap cycle also influences the surface wind speed because the atmospheric boundary layer becomes stabilized or destabilized in response to the difference between air temperature and SST. PMID:25984948

  11. Integrated modelling of nitrate loads to coastal waters and land rent applied to catchment-scale water management.

    PubMed

    Refsgaard, A; Jacobsen, T; Jacobsen, B; Ørum, J-E

    2007-01-01

    The EU Water Framework Directive (WFD) requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by intensive agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling approach applied in river basin management. Point sources (e.g. sewage treatment plant discharges) and distributed diffuse sources (nitrate leakage) are included to provide a modelling tool capable of simulating pollution transport from source to recipient to analyse the effects of specific, localized basin water management plans. The paper also includes a land rent modelling approach which can be used to choose the most cost-effective measures and the location of these measures. As a forerunner to the use of basin-scale models in WFD basin water management plans this project demonstrates the potential and limitations of comprehensive, integrated modelling tools.

  12. Recent hydrographic measurements in the Lake Issyk Kul: Coastal currents, thermohaline structure, water quality indicators

    NASA Astrophysics Data System (ADS)

    Zavialov, Peter; Osadchiev, Alexander; Pelevin, Vadim; Konovalov, Boris; Goncharenko, Igor

    2015-04-01

    Issyk Kul is a deep (670 m) terminal lake in the northern Tian Shan mountains in eastern Kyrgyzstan. It is the tenth largest lake in the world by volume, and the second largest saline lake after the Caspian Sea. The lake is a Ramsar site of globally significant biodiversity. We report preliminary results of a field survey undertaken in the northern coastal part of the lake, off Cholpon-Ata township, on September 10-13, 2014. A fishery boat was used to carry out CTD profiling and water sampling at 16 stations. An UV fluorescent lidar working continuosly throughout the survey yielded surface concentrations of chlorophyll-a, suspended matter, and dissolved organic substances. In addition, we deployed 3 mooring stations equipped with current meters, all at approximately 15 m isobath, recording the velocity and direction of the near-bottom currents with 10 min sampling intervals. During the experiment, the coastal waters of the lake were fully mixed down to the depth of 15-20 m and nearly uniform vertically at salinity about 5 g/kg. The only exception referred to the areas adjacent to the mouths of small river and creeks, where stable salinity stratification developed at 0.01-0.03 g/kg per 1 m of depth. The temperature stratification generally followed the diurnal pattern. The dominant coastal currents were directed westward, which agrees with the established notion about the cyclonic character of the basin-scale circulation. Superimposed on this general cyclonic pattern, there was a persistent variability of currents at the periods of 17 to 24 hours, likely associated with the interplay between the inertial oscillation and signal of breeze in the wind forcing. There was an evidence of mesoscale eddies, possibly, associated with topographic features of the shoreline. The observed velocity in the near-bottom layer was about 9 cm/s on the average, with the maximum values exceeding 25 cm/s. The Issyk Kul lake is ultra-oligotrophic - the concentrations of chlorophyll-a were

  13. Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters.

    PubMed

    Sydor, M; Arnone, R A

    1997-09-20

    We use remote sensing reflectance (RSR) together with the inherent optical properties of suspended particulates to determine the backscattering ratio b(b)/b for coastal waters. We examine the wavelength dependence of b(b)(lambda) and f(lambda)/Q(lambda) and establish the conditions when C(lambda) in RSR(lambda) approximately or = C(lambda)b(b)(lambda)/a(lambda) can be treated as a constant. We found that for case 2 waters, RSR was insensitive to the natural fluctuations in particle-size distributions. The cross-sectional area of the suspended particulate per unit volume, x(g), showed an excellent correlation with the volume scattering coefficient. PMID:18259562

  14. Detection of Helicobacter pylori in the coastal waters of Georgia, Puerto Rico and Trinidad.

    PubMed

    Holman, Chelsea B; Bachoon, D S; Otero, Ernesto; Ramsubhag, Adesh

    2014-02-15

    Fecal pollution in the coastal marine environments was assessed at eleven sampling locations along the Georgia coast and Trinidad, and nine sites from Puerto-Rico. Membrane filtration (EPA method 1604 and method 1600) was utilized for Escherichia coli and enterococci enumeration at each location. Quantitative polymerase chain reaction (qPCR) amplification of the 16S ribosomal RNA gene was used to determine the presence of the Helicobacter pylori in marine samples. There was no significant correlation between the levels of E. coli, enterococci and H. pylori in these water samples. H. pylori was detected at four of the 31 locations sampled; Oak Grove Island and Village Creek Landing in Georgia, Maracas river in Trinidad, and Ceiba Creek in Puerto Rico. The study confirms the potential public health risk to humans due to the widespread distribution of H. pylori in subtropical and tropical costal marine waters.

  15. Using MODIS Terra 250 m Imagery to Map Concentrations of Total Suspended Matter in Coastal Waters

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; McKee, Brent A.

    2004-01-01

    High concentrations of suspended particulate matter in coastal waters directly effect or govern numerous water column and benthic processes. The concentration of suspended sediments derived from bottom sediment resuspension or discharge of sediment-laden rivers is highly variable over a wide range of time and space scales. Although there has been considerable effort to use remotely sensed images to provide synoptic maps of suspended particulate matter, there are limited routine applications of this technology due in-part to the low spatial resolution, long revisit period, or cost of most remotely sensed data. In contrast, near daily coverage of medium-resolution data is available from the MODIS Terra instrument without charge from several data distribution gateways. Equally important, several display and processing programs are available that operate on low cost computers.

  16. Water quality of a coastal Louisiana swamp and how dredging is undermining restoration efforts

    NASA Astrophysics Data System (ADS)

    Lane, Robert R.; Huang, Haosheng; Day, John W.; Justic, Dubravko; DeLaune, Ronald D.

    2015-01-01

    The Bayou Boeuf Basin (BBB), a sub-basin of the Barataria Basin estuary in coastal Louisiana, consists of forested and floating wetlands receiving drainage from surrounding agricultural fields and urban watersheds. We characterized surface water quality in the BBB, and determined through hydrologic modeling if a series of levee breaks along major drainage channels would significantly improve water quality by allowing flow into surrounding wetlands. Surface water monitoring found surrounding sugarcane farm fields to be major sources of nutrient and sediment loading. Hydrological modeling indicated that levee breaks would increase N reduction from the current 21.4% to only 29.2%, which is much lower than the anticipated 90-100% removal rate. This was due to several factors, one them being dredging of main drainage channels to such a degree that water levels do not rise much above the surrounding wetland elevation even during severe storms, so only a very small fraction of the stormwater carried in the channel is exposed to wetlands. These unexpected results provide insight into an undoubtedly pervasive problem in human dominated wetland systems; that of decreased flooding during storm events due to channel deepening by dredging activities. Additional water quality management practices should be implemented at the farm field level, prior to water entering major drainage canals.

  17. Recent measurements of the spectral backward-scattering coefficient in coastal waters

    NASA Astrophysics Data System (ADS)

    Maffione, Robert A.; Dana, David R.

    1997-02-01

    The backward scattering coefficient bb was measured in various coastal waters with fixed-angle backscattering sensors developed by the authors. Measurements were made at four discrete wavelengths covering the spectral range 440 to 675 nm. A power law spectral dependence of bb due to scattering by particles was investigated of the form bbp((lambda) ) equals bbp ((lambda) 0) ((lambda) 0/(lambda) )(gamma , where the superscript p denotes particle scattering and (lambda) is the wavelength. The exponent (gamma) depends on the particle size distribution and composition of particles. Extensive measurements in Monterey Bay, California, showed that 0.1 waters generally below 10 m. For the upper 10 m, 0.7 waters near Panama City, Florida, (gamma) for the upper 10 m was found to be in the range, 0.9 water, 0.9 waters of East Sound, Washington, 0 waters measured.

  18. Overview of investigations into mercury in ground water, soils, and septage, New Jersey coastal plain

    USGS Publications Warehouse

    Barringer, J.L.; Szabo, Z.

    2006-01-01

    Since the early 1980s, investigations by health departments of eight counties in southern New Jersey, by the NJ Department of Environmental Protection (NJDEP), and subsequently by the US Geological Survey (USGS), have shown that Hg concentrations in water tapped by about 600 domestic wells exceed the maximum contaminant level (MCL) of 2 ??g/L. The wells are finished in the areally extensive unconfined Kirkwood-Cohansey aquifer system of New Jersey's Coastal Plain; background concentrations of Hg in water from this system are < 0.01 ??g/L. Evidence of contributions from point sources of Hg, such as landfills or commercial and industrial hazardous-waste sites, is lacking. During 1996-2003, the USGS collected water samples from 203 domestic, irrigation, observation, and production wells using ultraclean techniques; septage, leach-field effluent, soils, and aquifer sediments also were sampled. Elevated concentrations of NH4, B, Cl, NO3, and Na and presence of surfactants in domestic-well water indicate that septic-system effluent can affect water quality in unsewered residential areas, but neither septage nor effluent appears to be a major Hg source. Detections of hydrogen sulfide in ground water at a residential area indicate localized reducing conditions; undetectable SO4 concentrations in water from other residential areas indicate that reducing conditions, which could be conducive to Hg methylation, may be common locally. Volatile organic compounds (VOCs), mostly chlorinated solvents, also are found in ground water at the affected areas, but statistically significant associations between presence of Hg and VOCs were absent for most areas evaluated. Hg concentrations are lower in some filtered water samples than in paired unfiltered samples, likely indicating that some Hg is associated with particles or colloids. The source of colloids may be soils, which, when undisturbed, contain higher concentrations of Hg than do disturbed soils and aquifer sediments. Soil

  19. Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters.

    PubMed

    Kalanetra, Karen M; Bano, Nasreen; Hollibaugh, James T

    2009-09-01

    We compared abundance, distributions and phylogenetic composition of Crenarchaeota and ammonia-oxidizing Archaea (AOA) in samples collected from coastal waters west of the Antarctic Peninsula during the summers of 2005 and 2006, with samples from the central Arctic Ocean collected during the summer of 1997. Ammonia-oxidizing Archaea and Crenarchaeota abundances were estimated from quantitative PCR measurements of amoA and 16S rRNA gene abundances. Crenarchaeota and AOA were approximately fivefold more abundant at comparable depths in the Antarctic versus the Arctic Ocean. Crenarchaeota and AOA were essentially absent from the Antarctic Summer Surface Water (SSW) water mass (0-45 m depth). The ratio of Crenarchaeota 16S rRNA to archaeal amoA gene abundance in the Winter Water (WW) water mass (45-105 m depth) of the Southern Ocean was much lower (0.15) than expected and in sharp contrast to the ratio (2.0) in the Circumpolar Deep Water (CDW) water mass (105-3500 m depth) immediately below it. We did not observe comparable segregation of this ratio by depth or water mass in Arctic Ocean samples. A ubiquitous, abundant and polar-specific crenarchaeote was the dominant ribotype in the WW and important in the upper halocline of the Arctic Ocean. Our data suggest that this organism does not contain an ammonia monooxygenase gene. In contrast to other studies where Crenarchaeota populations apparently lacking amoA genes are found in bathypelagic waters, this organism appears to dominate in well-defined, ammonium-rich, near-surface water masses in polar oceans. PMID:19601959

  20. Impact of saline water sources on hypertension and cardiovascular disease risk in coastal Bangladesh

    NASA Astrophysics Data System (ADS)

    Butler, Adrian; Hoque, Mohammad; Mathewson, Eleanor; Ahmed, Kazi; Rahman, Moshuir; Vineis, Paolo; Scheelbeek, Pauline

    2016-04-01

    Southern Bangladesh is periodically affected by tropical cyclone induced storm surges. Such events can result in the inundation of large areas of the coastal plain by sea water. Over time these episodic influxes of saline water have led to the build-up of a high of salinities (e.g. > 1,000 mg/l) in the shallow (up to ca. 150 m depth) groundwater. Owing to the highly saline groundwater, local communities have developed alternative surface water sources by constructing artificial drinking water ponds, which collect monsoonal rainwater. These have far greater storage than traditional rainwater harvesting systems, which typically use 40 litre storage containers that are quickly depleted during the dry season. Unfortunately, the ponds can also become salinised during storm surge events, the impacts of which can last for a number of years. A combined hydrological and epidemiological research programme over the past two years has been undertaken to understand the potential health risks associated with these saline water sources, as excessive intake of sodium can lead to hypertension and an increased risk of cardiovascular disease (such as stroke and heart attack). An important aspect of the selected research sites was the variety of drinking water sources available. These included the presence of managed aquifer recharge sites where monsoonal rainwater is stored in near-surface (semi-)confined aquifers for abstraction during the dry season. This provided an opportunity for the effects of interventions with lower salinity sources to be assessed. Adjusting for confounding factors such as age, gender and diet, the results show a significant association between salinity and blood pressure. Furthermore, the results also showed such impacts are reversible. In order to evaluate the costs and benefits of such interventions, a water salinity - dose impact model is being developed to assess the effectiveness of alternative drinking water sources, such as enhanced rainwater

  1. Chemical analyses of ground water for saline-water resources studies in Texas Coastal Plain stored in National Water Data Storage and Retrieval System

    USGS Publications Warehouse

    Taylor, R.E.

    1975-01-01

    Chemical analyses of 4,269 water samples from wells in 66 counties in Texas have been processed into the National Water Data Storage and Retrieval System by the Gulf Coast Hydrogeology Project of the U. S. Geological Survey. More than 65,000 chemical analyses of saline waters produced by oil test and production wells have been contributed to the project by major oil companies. The computerized tabulation and the computer-drawn map of the locations of sampling sites are the initial release of oil company, State, and Federal data in Texas Coastal Plain from the data bank.

  2. Toxicity of crude oil to fresh water shrimp, Macrobrachium macrobrachion and Macrobrachium vollenhovenii, from Nigerian coastal water.

    PubMed

    Ekanem, A P; Asuquo, F Emile; Ndick, E J

    2011-04-01

    The water soluble fraction (WSF) of crude oil was tested against Macrobrachium macrobrachion and Macrobrachium vollenhovenii, at 2, 4, 6, 8 and 10 mg/L in glass aquaria stocked with ten animals for 96 h under observations for changes. Moribund swimming, restlessness, respiratory difficulties, depigmentation and mortalities were observed in the WSF exposure groups, but not in the controls. LC(50) values were estimated at 5 ± 1.76 and 4 ± 1.76 mg/L for M. macrobrachion and M. vollenhovenii respectively. There was no significant difference in mortalities between the two species (p > 0.05), leading to the conclusion that the WSF of crude oil in the Nigerian coastal waters may be equally toxic to M. macrobrachion and M. vollenhovenii.

  3. Remote measurement of water color in coastal waters. [spectral radiance data used to obtain quantitative values for chlorophyll and turbidity

    NASA Technical Reports Server (NTRS)

    Weldon, J. W.

    1973-01-01

    An investigation was conducted to develop procedure to obtain quantitative values for chlorophyll and turbidity in coastal waters by observing the changes in spectral radiance of the backscattered spectrum. The technique under consideration consists of Examining Exotech model 20-D spectral radiometer data and determining which radiance ratios best correlated with chlorophyll and turbidity measurements as obtained from analyses of water samples and sechi visibility readings. Preliminary results indicate that there is a correlation between backscattered light and chlorophyll concentration and secchi visibility. The tests were conducted with the spectrometer mounted in a light aircraft over the Mississippi Sound at altitudes of 2.5K, 2.8K and 10K feet.

  4. The development of policy approaches for reducing nitrogen pollution to coastal waters of the USA.

    PubMed

    Howarth, Robert W

    2005-12-01

    Two-thirds of the coastal rivers and bays in the United States are degraded from nutrient pollution, and nitrogen inputs these waters continue to increase. The nitrogen comes from a variety of sources, including runoff from agricultural fields, concentrated animal feeding operations, atmospheric deposition from fossil fuel combustion, and sewage and septic wastes. Technical solutions for nitrogen pollution exist at reasonable cost. That most of these solutions have not yet been implemented to any significant extent across the United States suggests that new policy approaches are necessary. The best solution may involve a combination of voluntary and mandatory approaches, applying different approaches to different sources of nitrogen pollution. A watershed-based approach that relies heavily on voluntary mechanisms (such as crop-yield insurance to reduce over-fertilization) is likely to be the most effective for some sources of nitrogen (such as runoff from agricultural fields), while a uniform national regulatory approach may be better for others (such as NOx emissions from fossil fuel combustion). Implementation of management strategies should be carefully coupled to monitoring programs to assess the effectiveness of these strategies. While both nitrogen and phosphorus are important to control, the focus should be on nitrogen management, in part because nitrogen is more generally the causal agent of coastal eutrophication. Also, while nitrogen-control practices tend to also reduce phosphorus pollution, phosphorus-control practices often have little effect on nitrogen. Although current scientific and technical knowledge is sufficient to begin to make substantial progress toward solving coastal nitrogen pollution, progress will be made more quickly and more cost effectively with increased investment in appropriate scientific research. PMID:16512202

  5. The development of policy approaches for reducing nitrogen pollution to coastal waters of the USA.

    PubMed

    Howarth, Robert W

    2005-09-01

    Two-thirds of the coastal rivers and bays in the United States are degraded from nutrient pollution, and nitrogen inputs these waters continue to increase. The nitrogen comes from a variety of sources, including runoff from agricultural fields, concentrated animal feeding operations, atmospheric deposition from fossil fuel combustion, and sewage and septic wastes. Technical solutions for nitrogen pollution exist at reasonable cost. That most of these solutions have not yet been implemented to any significant extent across the United States suggests that new policy approaches are necessary. The best solution may involve a combination of voluntary and mandatory approaches, applying different approaches to different sources of nitrogen pollution. A watershed-based approach that relies heavily on voluntary mechanisms (such as crop-yield insurance to reduce over-fertilization) is likely to be the most effective for some sources of nitrogen (such as runoff from agricultural fields), while a uniform national regulatory approach may be better for others (such as NO(x) emissions from fossil fuel combustion). Implementation of management strategies should be carefully coupled to monitoring programs to assess the effectiveness of these strategies. While both nitrogen and phosphorus are important to control, the focus should be on nitrogen management, in part because nitrogen is more generally the causal agent of coastal eutrophication. Also, while nitrogen-control practices tend to also reduce phosphorus pollution, phosphorus-control practices often have little effect on nitrogen. Although current scientific and technical knowledge is sufficient to begin to make substantial progress toward solving coastal nitrogen pollution, progress will be made more quickly and more cost effectively with increased investment in appropriate scientific research. PMID:20549435

  6. The development of policy approaches for reducing nitrogen pollution to coastal waters of the USA.

    PubMed

    Howarth, Robert W

    2005-12-01

    Two-thirds of the coastal rivers and bays in the United States are degraded from nutrient pollution, and nitrogen inputs these waters continue to increase. The nitrogen comes from a variety of sources, including runoff from agricultural fields, concentrated animal feeding operations, atmospheric deposition from fossil fuel combustion, and sewage and septic wastes. Technical solutions for nitrogen pollution exist at reasonable cost. That most of these solutions have not yet been implemented to any significant extent across the United States suggests that new policy approaches are necessary. The best solution may involve a combination of voluntary and mandatory approaches, applying different approaches to different sources of nitrogen pollution. A watershed-based approach that relies heavily on voluntary mechanisms (such as crop-yield insurance to reduce over-fertilization) is likely to be the most effective for some sources of nitrogen (such as runoff from agricultural fields), while a uniform national regulatory approach may be better for others (such as NOx emissions from fossil fuel combustion). Implementation of management strategies should be carefully coupled to monitoring programs to assess the effectiveness of these strategies. While both nitrogen and phosphorus are important to control, the focus should be on nitrogen management, in part because nitrogen is more generally the causal agent of coastal eutrophication. Also, while nitrogen-control practices tend to also reduce phosphorus pollution, phosphorus-control practices often have little effect on nitrogen. Although current scientific and technical knowledge is sufficient to begin to make substantial progress toward solving coastal nitrogen pollution, progress will be made more quickly and more cost effectively with increased investment in appropriate scientific research.

  7. The development of policy approaches for reducing nitrogen pollution to coastal waters of the USA.

    PubMed

    Howarth, Robert W

    2005-09-01

    Two-thirds of the coastal rivers and bays in the United States are degraded from nutrient pollution, and nitrogen inputs these waters continue to increase. The nitrogen comes from a variety of sources, including runoff from agricultural fields, concentrated animal feeding operations, atmospheric deposition from fossil fuel combustion, and sewage and septic wastes. Technical solutions for nitrogen pollution exist at reasonable cost. That most of these solutions have not yet been implemented to any significant extent across the United States suggests that new policy approaches are necessary. The best solution may involve a combination of voluntary and mandatory approaches, applying different approaches to different sources of nitrogen pollution. A watershed-based approach that relies heavily on voluntary mechanisms (such as crop-yield insurance to reduce over-fertilization) is likely to be the most effective for some sources of nitrogen (such as runoff from agricultural fields), while a uniform national regulatory approach may be better for others (such as NO(x) emissions from fossil fuel combustion). Implementation of management strategies should be carefully coupled to monitoring programs to assess the effectiveness of these strategies. While both nitrogen and phosphorus are important to control, the focus should be on nitrogen management, in part because nitrogen is more generally the causal agent of coastal eutrophication. Also, while nitrogen-control practices tend to also reduce phosphorus pollution, phosphorus-control practices often have little effect on nitrogen. Although current scientific and technical knowledge is sufficient to begin to make substantial progress toward solving coastal nitrogen pollution, progress will be made more quickly and more cost effectively with increased investment in appropriate scientific research.

  8. The water budget of a coastal low-lying wetland area at the German Baltic Coast

    NASA Astrophysics Data System (ADS)

    Bronstert, Axel; Graeff, Thomas; Selle, Benny; Salzmann, Thomas; Franck, Christian; Miegel, Konrad

    2016-04-01

    Coastal wetlands along the German Baltic Sea coastline and the Bodden waters are characteristic elements of the landscape of this region. Their hydrological dynamic is characterized by a significant groundwater flow from the hinterland towards the landscapes areas close to the coast, a direct hydrological intertwining of groundwater and surface waters (creeks, ponds, lakes and fens) in those near-coast areas and a potential for exchange between the fens and the Baltic Sea. Due to human interventions, e.g. the construction of dunes and dykes, drainage systems and lately also renaturation measures, their hydrological regime has undergone several transitions during the last centuries. We present the results of studies at a catchment "Hütelmoor und Heiligensee" close to the city of Rostock, aimed at understanding and quantification the relevant hydrological process dynamics of such catchments. This area has formerly been used for pasture and has recently been restored as a nature reserve, which allows the investigation of past changes and the evaluation of possible and future developments. The investigations are based on a monitoring network measuring groundwater levels and electric conductivity within the fen since 2009, as well as on measurements of the flow and of meteorological variables. We have conducted a general water budgeting, i.e. the balancing of the different water flows across the system's borders, such as precipitation, evapotranspiration, inflows from the neighboring parts of the catchment area, subterranean exchange processes with the Baltic Sea and the area's surface discharge. The analysis of the general hydrological characterization showed that the internal processes of those fens can only be understood if the groundwater flow from the hinterland is taken into consideration. The surface discharge out of the area is mainly generated within the catchment, whereby this area is also a transfer zone with considerable retention effects. It is surprising

  9. High frequency water quality and flow observations of a hypereutrophic Coastal Plain millpond

    NASA Astrophysics Data System (ADS)

    Andres, S.; Ullman, W. J.; Voynova, Y. G.

    2014-12-01

    Eutrophication due to runoff of N and P occurs in many impoundments in agricultural areas around the world with deleterious impacts on fisheries, drinking water, and recreational resources. Coursey Pond, a hypereutrophic, shallow, Coastal Plain mill pond located on the Murderkill River in central Delaware has seasonal algal blooms between May and October. High frequency automated water quality, meteorlogical, and flow observations initiated in June 2014 as part of the NEWRNet project provide insights into the relationships between hydrologic events, changes in water quality, and primary productivity. During blooms the pond becomes stratified, allowing for dissolved oxygen (DO) levels at the surface to exceed 150% saturation, while DO within 2 m of the surface to falls below 50% saturation. During fair weather turbidity and dissolved organic carbon (DOC) also gradually rise. Turbidity, DOC, and DO quickly decrease in response to storms and increased flow, indicating that storms are important regulators of water column stratification. Decreases in primary productivity due to decreased sunlight, dilution by addition of rain and runoff, and mixing in response to storm winds and flows abruptly end blooms, although they often return within a few days of storm events. Analysis of hourly meterological data will help determine the importance of solar insolation, winds, and rainfall intensity to the timing, rate, and magnitude of these water quality changes. Groundwater is the primary source of water to the streams that feed the pond and delivers nitrogen as nitrate. Historical grab sample nitrate concentration data from summer months (<1 mg/L) in comparison to winter months (4-8 mg/L) indicate that primary productivity consumes nearly all available nitrate during algal blooms, and perhaps improving water quality in downstream areas. There is no clear relationship between storms, flow and nitrate in the short period of high frequency observations, when nitrate concentrations

  10. Quantifying Organic Matter in Surface Waters of the United States and Delivery to the Coastal Zone

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Alexander, R. B.; Smith, R. A.; Shih, J.

    2012-12-01

    Organic carbon (OC) is a critical water quality characteristic in surface waters. It is an important component of the energy balance and food chains in freshwater and estuarine aquatic ecosystems, is significant in the mobilization and transport of contaminants along flow paths, and is associated with the formation of known carcinogens in drinking water supplies. The importance of OC dynamics on water quality has been recognized, but challenges remain in quantitatively addressing processes controlling OC fluxes over broad spatial scales in a hydrological context, and considering upstream-downstream linkages along flow paths. Here, we: 1) quantified lateral OC fluxes in rivers, streams, and reservoirs across the nation from headwaters to the coasts; 2) partitioned how much organic carbon that is stored in lakes, rivers and streams comes from allochthonous sources (produced in the terrestrial landscape) versus autochthonous sources (produced in-stream by primary production); 3) estimated the delivery of dissolved and total forms of organic carbon to coastal estuaries and embayments; and 4) considered seasonal factors affecting the temporal variation in OC responses. To accomplish this, we developed national-scale models of organic carbon in U.S. surface waters using the spatially referenced regression on watersheds (SPARROW) technique. The modeling approach uses mechanistic formulations, imposes mass balance constraints, and provides a formal parameter estimation structure to statistically estimate sources and fate of OC in terrestrial and aquatic ecosystems. We calibrated and evaluated the model with statistical estimates of OC loads that were observed at a network of monitoring stations across the nation, and further explored factors controlling seasonal dynamics of OC based on these long term monitoring data. Our results illustrate spatial patterns and magnitudes OC loadings in rivers, highlighting hot spots and suggesting origins of the OC to each location

  11. Ground-water geology of the coastal zone, Long Beach-Santa Ana area, California

    USGS Publications Warehouse

    Poland, J.F.; Piper, A.M.

    1956-01-01

    This paper is the first chapter of a comprehensive report on the ground-water features in the southern part of the coastal plain in Los Angeles and Orange Counties, Calif., with special reference to the effectiveness of the so-called coastal barrier--the Newport-Inglewood structural zone--in restraining landwar,-1 movement of saline water. The coastal plain in Los Angeles and Orange Counties, which covers some 775 square miles, sustains a large urban and rural population, diverse industries, and intensive agricultural developments. The aggregate ground-water withdrawal in 1945 was about 400,000 acre-feet a year, an average of about 360 million gallons a day. The dominant land-form elements are a central lowland plain with tongues extending to the coast, bordering highlands and foothills, and a succession of low hills and mesas aligned northwestward along the coastal edge of the central low- land plain. These low hills and mesas are the land-surface expression of geologic structure in the Newport-Inglewood zone. The highland areas that border the inland edge of the coastal plain are of moderate altitude and relief; most of the ridge crests range from 1,400 to 2,500 feet in altitude, but Santiago Peak in the Santa Ana Mountains attains a height of 5,680 feet above sea level. From these highlands the land surface descends across foothills and aggraded alluvial aprons to the central lowland, Downey Plain, here defined as the surface formed by alluvial aggradation during the post-Pleistocene time of rising base level. The Newport-Inglewood belt of hills and plains (mesas) has a maximum relief of some 500 feet but is widely underlain at a depth of about 30 feet by a surface of marine plantation. As initially formed in late Pleistocene time that surface was largely a featureless plain. Thus the present land-surface forms within the Newport-Inglewood belt measure the earth deformation that has occurred there since late Pleistocene time and so are pertinent with respect to

  12. Long time-series of turbid coastal water using AVHRR: An example from Florida Bay, USA

    USGS Publications Warehouse

    Stumpf, R.P.; Frayer, M.L.

    1997-01-01

    The AVHRR can provide information on the reflectance of turbid case II water, permitting examination of large estuaries and plumes from major rivers. The AVHRR has been onboard several NOAA satellites, with afternoon overpasses since 1981, offering a long time-series to examine changes in coastal water. We are using AVHRR data starting in December 1989, to examine water clarity in Florida Bay, which has undergone a decline since the late 1980's. The processing involves obtaining a nominal reflectance for red light with standard corrections including those for Rayleigh and aerosol path radiances. Established relationships between reflectance and the water properties being measured in the Bay provide estimates of diffuse attenuation and light limitation for phytoplankton and seagrass productivity studies. Processing also includes monthly averages of reflectance and attenuation. The AVHRR data set describes spatial and temporal patterns, including resuspension of bottom sediments in the winter, and changes in water clarity. The AVHRR also indicates that Florida Bay has much higher reflectivity relative to attenuation than other southeastern US estuaries. ??2005 Copyright SPIE - The International Society for Optical Engineering.

  13. MODIS imagery as a tool for synoptic water quality assessments in the southern California coastal ocean

    USGS Publications Warehouse

    Nezlin, N.P.; DiGiacomo, P.M.; Jones, B.H.; Reifel, K.M.; Warrick, J.A.; Johnson, S.C.; Mengel, M.J.

    2007-01-01

    The dynamics of rainstorm plumes in the coastal waters of southern California was studied during the Bight'03 Regional Water Quality Program surveys. Measurements of surface salinity and bacterial counts collected from research vessels were compared to MODIS-Aqua satellite imagery. The spectra of normalized water-leaving radiation (nLw) were different in plumes and ambient ocean waters, enabling plumes discrimination and plume area size assessments from remotely-sensed data. The plume/ocean nLw differences (i.e., plume optical signatures) were most evident during first days after the rainstorm over the San Pedro shelf and in the San Diego region and less evident in Santa Monica Bay, where suspended sediments concentration in discharged water was lower than in other regions. In the Ventura area, plumes contained more suspended sediments than in other regions, but the grid of ship-based stations covered only a small part of the freshwater plume and was insufficient to reveal the differences between the plume and ocean optical signatures. The accuracy of plume area assessments from satellite imagery was not high (77% on average), seemingly because of inexactitude in satellite data processing. Nevertheless, satellite imagery is a useful tool for the estimation of the extent of polluted plumes, which is hardly achievable by contact methods.

  14. NASA COAST and OCEANIA Airborne Missions in Support of Ecosystem and Water Quality Research in the Coastal Zone

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra; Torres-Perez, Juan

    2015-01-01

    Worldwide, coastal marine ecosystems are exposed to land-based sources of pollution and sedimentation from anthropogenic activities including agriculture and coastal development. Ocean color products from satellite sensors provide information on chlorophyll (phytoplankton pigment), sediments, and colored dissolved organic material. Further, ship-based in-water measurements and emerging airborne measurements provide in situ data for the vicarious calibration of current and next generation satellite ocean color sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal of the airborne missions was to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. Utilizing an imaging spectrometer optimized in the blue to green spectral domain enables higher signal for detection of the relatively dark radiance measurements from marine and freshwater ecosystem features. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic

  15. Cost-Efficient Interstate Management of Nitrogen Enrichment of Rivers, Streams, and Coastal Waters

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Schwarz, G. E.; Alexander, R. B.

    2008-12-01

    Rivers carry water-borne contaminants over long distances and across political boundaries, a natural phenomenon that complicates the regulation and management of water quality. In the United States and many other countries, individual state and provincial governments have the primary responsibility for water- quality management within their jurisdictions. In this study, however, we consider the benefits of a cost- minimizing approach for addressing the important water quality problem of excess total nitrogen (TN) and nutrient enrichment. Our study asked the question, can savings in pollution control costs be achieved through cooperative interstate management of the TN that flows from a variety of sources to coastal waters through the stream and river systems of the conterminous United States. The potential for cost savings exists because TN is gradually removed during downstream transport in watersheds by biogeochemical processes such as denitrification and plant uptake, and because the rates of removal vary by location within the watersheds of the Nation. If pollution controls are selectively applied to nitrogen sources so as to take full advantage of the natural and interstate-transport characteristics of watersheds, then the total cost of meeting water quality goals might be substantially less than when individual states control pollution sources using separate regulatory policies. In this study, we combined a national-scale model of TN transport (SPARROW: SPAtially-Referenced Regression On Watershed attributes) with a cost-minimizing algorithm for applying TN controls in order to estimate the amount of savings that were associated with a control strategy that recognized the transport characteristics of watersheds. The SPARROW model was calibrated with data from 425 long-term USGS water quality and streamflow monitoring stations. The model describes the mass balance relating individual sources of nitrogen (2002 data) in 65,000 contiguous watersheds of the

  16. Long-term fluctuations of water resources availability and its implications for a sustainable management of arid agricultural coastal regions

    NASA Astrophysics Data System (ADS)

    Grundmann, Jens; Schütze, Niels

    2015-04-01

    Freshwater scarcity and ongoing population growth associated with increasing water demands are major challenges for water management in coastal arid regions. Excessive use of groundwater for irrigation in agriculture puts those regions at risk of saltwater intrusion which limits agricultural opportunities. Additionally, some arid regions are characterised by a cyclic climate in which longer periods of dry years are followed by longer periods of wet years. This results also in long-term fluctuations of groundwater replenishment rates and water resources availability which may reach the same order of magnitude like long-term average values. Therefore, these long-term fluctuations should be considered for water resources management planning and operation. In order to evaluate their impact a simulation-based integrated water management system for coastal arid regions is used. The management system couples a groundwater module, assessing the water resources availability, and an agricultural module, controlling irrigation and cultivation within an optimisation module which allow for multi-objective optimisation of the water management regarding profitable and sustainable water resources and agricultural management on farm and regional scale. To achieve a fast and robust operation of the water management system, surrogate models are used which emulate the behaviour of physically based process models and a hierarchical optimisation scheme is applied. The water management system is driven by different scenarios of the water resources availability which were generated by using time series analyses and modelling of local groundwater replenishment rates. An application is performed for the south Batinah coastal region in the Sultanate of Oman which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. Several scenarios of water resources availability are used to compare long-term and adaptive

  17. Biogeography of Wood-Boring Crustaceans (Isopoda: Limnoriidae) Established in European Coastal Waters

    PubMed Central

    Borges, Luísa M. S.; Merckelbach, Lucas M.; Cragg, Simon M.

    2014-01-01

    Marine wood-borers of the Limnoriidae cause great destruction to wooden structures exposed in the marine environment. In this study we collated occurrence data obtained from field surveys, spanning over a period of 10 years, and from an extensive literature review. We aimed to determine which wood-boring limnoriid species are established in European coastal waters; to map their past and recent distribution in Europe in order to infer species range extension or contraction; to determine species environmental requirements using climatic envelopes. Of the six species of wood-boring Limnoria previously reported occurring in Europe, only Limnoria lignorum, L. quadripunctata and L. tripunctata are established in European coastal waters. L. carinata and L. tuberculata have uncertain established status, whereas L. borealis is not established in European waters. The species with the widest distribution in Europe is Limnoria lignorum, which is also the most tolerant species to a range of salinities. L. quadripunctata and L. tripunctata appear to be stenohaline. However, the present study shows that both L. quadripunctata and L. tripunctata are more widespread in Europe than previous reports suggested. Both species have been found occurring in Europe since they were described, and their increased distribution is probably the results of a range expansion. On the other hand L. lignorum appears to be retreating poleward with ocean warming. In certain areas (e.g. southern England, and southern Portugal), limnoriids appear to be very abundant and their activity is rivalling that of teredinids. Therefore, it is important to monitor the distribution and destructive activity of these organisms in Europe. PMID:25313796

  18. A survey of benthic assemblages of foraminifera in tropical coastal waters of pulau pinang, malaysia.

    PubMed

    Minhat, Fatin Izzati; Yahya, Khairun; Talib, Anita; Ahmad, Omar

    2013-08-01

    The distribution of benthic Foraminifera throughout the coastal waters of Taman Negara Pulau Pinang (Penang National Park), Malaysia was studied to assess the impact of various anthropogenic activities, such as fishing, ecotourism and floating cage culture. Samples were obtained at 200 m intervals within the subtidal zone, extending up to 1200 m offshore at Teluk Bahang, Teluk Aling, Teluk Ketapang and Pantai Acheh. The depth within coastal waters ranged between 1.5 m and 10.0 m, with predominantly muddy substrate at most stations. Water quality analysis showed little variation in micronutrient (nitrite, NO2; nitrate, NO3; ammonia, NH4 and orthophosphate, PO4) concentrations between sampling stations. Temperature (29.6±0.48°C), salinity (29.4±0.28 ppt), dissolved oxygen content (5.4±0.95 mg/l) and pH (8.5± 0.13) also showed little fluctuation between stations. A total of nine genera of foraminifera were identified in the study (i.e., Ammonia, Elphidium, Ammobaculites, Bigenerina, Quinqueloculina, Reopax, Globigerina, Textularia and Nonion). The distribution of benthic foraminifera was dominated by opportunistic groups that have a high tolerance to anthropogenic stressors. Ammonia had the highes