Sample records for danish wheat varieties

  1. Variation of volatile compounds among wheat varieties and landraces.

    PubMed

    Starr, G; Petersen, M A; Jespersen, B M; Hansen, Å S

    2015-05-01

    Analysis of volatile compounds was performed on 81 wheat varieties and landraces, grown under controlled greenhouse conditions, in order to investigate the possibility of differentiating wheat varieties according to their volatile compound profiles. Volatile compounds from wheat samples were extracted by dynamic headspace extraction and analysed by gas chromatography-mass spectrometry. Seventy-two volatile compounds were identified in the wheat samples. Multivariate analysis of the data showed a large diversity in volatile profiles between samples. Differences occurred between samples from Austria compared to British, French and Danish varieties. Landraces were distinguishable from modern varieties and they were characterised by higher averaged peak areas for esters, alcohols, and some furans. Modern varieties were characterised by higher averaged peak areas for terpenes, pyrazines and straight-chained aldehydes. Differences in volatile profiles are demonstrated between wheat samples for the first time, based on variety. These results are significant to plant breeders and commercial users of wheat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Nutritional composition of Pakistani wheat varieties*

    PubMed Central

    Ikhtiar, Khan; Alam, Zeb

    2007-01-01

    Pakistani wheat varieties are grown over a wide agro-climatic range and as such are anticipated to exhibit yield and quality differences. It is therefore necessary to investigate the nutritional status of wheat varieties in terms of biochemical and physiochemical characteristics available for food and nutritional purposes in Pakistan. The result shows that wheat grains of different varieties contain a net protein level of 9.15%~10.27%, 2.15%~2.55% total fats, 1.72%~1.85% dietary fibers, 77.65×10−6~84.25×10−6 of potassium and 7.70×10−6~35.90×10−6 of sodium ions concentration, 0.24×10−6~0.84×10−6 of phosphorus, 1.44%~2.10% ash, 31.108~43.602 g of thousand grain mass (TGM) and 8.38%~9.67% moisture contents. This study is significant in providing an opportunity to explore the available wheat varieties and to further improve their nutritional excellence and also essential for setting nutritional regulations for domestic and export purposes. PMID:17657856

  3. Comparison of bloat potential between a variety of soft-red versus a variety of hard-red winter wheat forage.

    PubMed

    Akins, M S; Kegley, E B; Coffey, K P; Caldwell, J D; Lusby, K S; Moore, J C; Coblentz, W K

    2009-10-01

    Some aspects of wheat pasture bloat have been researched extensively, but few studies have evaluated the effect of wheat type or variety on bloat. Eight Gelbvieh x Angus ruminally cannulated heifers (515 +/- 49 kg of BW) and 48 Angus heifers (238 +/- 12 kg of BW) grazed 1-ha pastures of hard-red or soft-red winter wheat (Triticum aestivum L.) to evaluate the effect of wheat variety on bloat potential. In Exp. 1, cattle grazed from November 11 to 22 and from November 26 to December 7, 2006, in a crossover design. In Exp. 2, cattle were shrunk for 20 h and then grazed from December 19 to 20, 2006, and from January 19 to 20, 2007. In both experiments, bloat was scored at 1000 and 1600 h daily. Rumen samples were collected at 0600, 1200, and 1800 h during each of the last 2 d of each period in Exp. 1 and during both days of each period of Exp. 2. Rumen samples were evaluated for pH, foam production and strength, and viscosity. In Exp. 1, cannulated heifers grazing soft-red had a greater (P < 0.01) percentage of observed bloat (21.9 vs. 5.6%) than those grazing hard-red winter wheat, but bloat incidence was low (2.1%) for the stocker cattle, with no difference between hard-red and soft-red winter wheat (P = 0.52). Viscosity of the rumen fluid was affected (P = 0.03) by the wheat variety x time interaction, with soft-red at 1200 and 1800 h being more viscous than soft-red at 0600 h and hard-red at all times. Foam strength, as determined by bubbling CO(2) gas through rumen fluid, had a wheat variety x time interaction (P = 0.02) with both wheat varieties similar at 0600 h but soft-red having greater foam strength at 1200 and 1800 h. In Exp. 2, no bloat was observed, and no differences between wheat varieties were observed for any of the rumen foam measures. Therefore, for these 2 varieties, the soft-red winter wheat had a greater bloat potential than the hard-red winter wheat based on results from the cannulated heifers, but no differences were observed in the frequency

  4. Evaluation of broiler performance when fed Roundup-Ready wheat (event MON 71800), control, and commercial wheat varieties.

    PubMed

    Kan, C A; Hartnell, G F

    2004-08-01

    We evaluated the nutritional value of broiler diets containing approximately 40% wheat grain from Roundup Ready wheat (MON 71800), its similar nontransgenic control (MON 71900), or reference commercial wheat varieties. The feeding trial lasted 40 d, and each treatment consisted of 10 replicates of 1-d-old Ross 308 broilers (5 pens of males and 5 pens of females). Each pen contained 12 birds, and at d 13 birds were randomly removed until 9 birds remained. Body weight and feed intake were measured on pen basis at 40 d. At d 41, four broilers per pen were slaughtered. The carcasses were dissected, and cut-up yields were determined. Dry matter, protein, and fat contents of breast meat were determined. The data were analyzed by an ANOVA procedure. The BW and feed conversion at d 40 averaged 2,450 g and 1.52, respectively. There were no significant treatment x sex interactions, except for evisceration yield with significant differences (P < 0.05) in yield between birds fed 2 commercial wheat varieties. Data for final BW, feed conversion, carcass yield, and breast meat were not statistically different (P < 0.05) between broilers fed MON 71800 or MON 71900 or the population of birds fed commercial wheat varieties, except a lower carcass yield at d 41 for birds fed the nontransgenic control wheat. Thus MON 71800 was nutritionally equivalent to nongenetically modified wheat varieties when fed to broilers.

  5. Maternal effects of the English grain aphids feeding on the wheat varieties with different resistance traits.

    PubMed

    Hu, Xiang-Shun; Zhang, Zhan-Feng; Zhu, Tong-Yi; Song, Yue; Wu, Li-Juan; Liu, Xiao-Feng; Zhao, Hui-Yan; Liu, Tong-Xian

    2018-05-09

    The maternal effects of the English grain aphid, Sitobion avenae on offspring phenotypes and performance on wheat varieties with different resistance traits were examined. We found that both conditioning wheat varieties(the host plant for over 3 months) and transition wheat varieties affected the biological parameters of aphid offspring after they were transferred between wheat varieties with different resistance traits. The conditioning varieties affected weight gain, development time (DT), and the intrinsic rate of natural increase (r m ), whereas transition varieties affected the fecundity, r m , net reproductive rate, and fitness index. The conditioning and transition wheat varieties had significant interaction effects on the aphid offspring's DT, mean relative growth rate, and fecundity. Our results showed that there was obvious maternal effects on offspring when S. avenae transferred bwteen wheat varieties with different resistance level, and the resistance traits of wheat varieties could induce an interaction between the conditioning and transition wheat varieties to influence the growth, development, reproduction, and even population dynamics of S. avenae. The conditioning varieties affected life-history traits related to individual growth and development to a greater extent, whereas transition varieties affected fecundity and population parameters more.

  6. Physico-chemical characteristics, nutrient composition and consumer acceptability of wheat varieties grown under organic and inorganic farming conditions.

    PubMed

    Nitika; Punia, Darshan; Khetarpaul, N

    2008-05-01

    The aim of the investigation was to analyse physico-chemical characteristics, nutrient composition and consumer acceptability of wheat varieties grown under organic and inorganic farming conditions. The seeds of five varieties of wheat (C-306, WH-283, WH-711, WH-896 and WH-912) grown under organic and inorganic farming conditions were ground in a Junior Mill to pass through 60-mesh sieves and were stored in air-tight containers until use. Standard methods were used to estimate the physico-chemical characteristics and nutrient composition. Consumer acceptability was studied by carrying out the organoleptic evaluation of wheat chapatis, a common item in diets of the Indian population. The results of study revealed that inorganically grown wheat varieties had significantly higher 1,000-grain weight and more grain hardness as compared with organically grown wheat varieties, and a non-significant difference was observed in their gluten content, water absorption capacity and hydration capacity. On average, wheat varieties grown under inorganic conditions contained significantly higher protein and crude fibre content as compared with varieties grown under organic conditions. WH-711 variety had maximum protein content. Protein fractions (i.e. albumin, globulin, prolamin and glutelin) were significantly higher in varieties grown under inorganic conditions than those of varieties grown under organic conditions. The variety WH-711 had the highest total soluble sugars and variety WH-912 had the highest starch content. Phytic acid and polyphenol contents were significantly higher in inorganically grown wheat varieties as compared with organically grown wheat varieties. The wheat varieties grown under organic conditions had significantly higher protein and starch digestibility than the wheat grown under inorganic conditions. The data revealed that there were significant differences in total calcium and phosphorus contents of wheat varieties grown under organic and inorganic

  7. Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.

    PubMed

    Kataria, Sunita; Guruprasad, K N

    2015-12-01

    Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (<315 nm), UV-A/B (<400 nm) or transmitted ambient UV or lacked filters. The results indicated that solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more

  8. Repeatability of Mice Consumption Discrimination of Wheat (Triticum aestivum L.) Varieties across Field Experiments and Mouse Cohorts.

    PubMed

    Kiszonas, Alecia M; Fuerst, E Patrick; Morris, Craig F

    2015-07-01

    Whole grain wheat (Triticum aestivum L.) foods can provide critical nutrients for health and nutrition in the human diet. Potential flavor differences among varieties can be examined using consumption discrimination of the house mouse (Mus musculus L.) as a model system. This study examines consistency and repeatability of the mouse model and potentially, wheat grain flavor. A single elimination tournament design was used to measure relative consumption preference for hard red spring and hard white spring varieties across all 3 experiments in combination with 2 mouse cohorts. Fifteen replicate mice were used in 24-h trials to examine differences in preference among paired wheat varieties until an overall "winner" was established as the most highly preferred variety of wheat. In all 3 experiment-cohort combinations, the same varieties were preferred as the "winner" of both the hard red spring and hard white spring wheat varieties, Hollis and BR 7030, respectively. Despite the consistent preference for these varieties across experiments, the degree (magnitude) to which the mice preferred these varieties varied across experiments. For the hard white spring wheat varieties, the small number of varieties and confounding effects of experiment and cohort limited our ability to accurately gauge repeatability. Conversely, for the hard red spring wheat varieties, consumption preferences were consistent across experiments and mice cohorts. The single-elimination tournament model was effective in providing repeatable results in an effort to more fully understand the mouse model system and possible flavor differences among wheat varieties. The mouse model system used here is effective in identifying wheat varieties that may be more or less desirable to humans in whole wheat foods. The system identifies consistent differences across different mouse cohorts and crop years. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  9. Tripartite Interactions of Barley Yellow Dwarf Virus, Sitobion avenae and Wheat Varieties

    PubMed Central

    Liu, Xiao-Feng; Hu, Xiang-Shun; Keller, Mike A.; Zhao, Hui-Yan; Wu, Yun-Feng; Liu, Tong-Xian

    2014-01-01

    The tripartite interactions in a pathosystem involving wheat (Triticum aestivum L.), the Barley yellow dwarf virus (BYDV), and the BYDV vector aphid Sitobion avenae were studied under field conditions to determine the impact of these interactions on aphid populations, virus pathology and grain yield. Wheat varietal resistance to BYDV and aphids varied among the three wheat varieties studied over two consecutive years. The results demonstrated that (1) aphid peak number (APN) in the aphid + BYDV (viruliferous aphid) treatment was greater and occurred earlier than that in the non-viruliferous aphid treatment. The APN and the area under the curve of population dynamics (AUC) on a S. avenae-resistant variety 98-10-30 was significantly lower than on two aphid-susceptible varieties Tam200(13)G and Xiaoyan6. (2) The production of alatae (PA) was greater on the variety 98-10-30 than on the other varieties, and PA was greater in the aphid + BYDV treatment on 98-10-30 than in the non-viruliferous aphid treatment, but this trend was reversed on Tam200(13)G and Xiaoyan6. (3) The BYDV disease incidence (DIC) on the variety 98-10-30 was greater than that on the other two varieties in 2012, and the disease index (DID) on Tam200(13)G was lower than on the other varieties in the aphid + BYDV and BYDV treatments in 2012, but not in 2011 when aphid vector numbers were generally lower. (4) Yield loss in the aphid + BYDV treatment tended to be greater than that in the aphid or BYDV alone treatments across varieties and years. We suggested that aphid population development and BYDV transmission tend to promote each other under field conditions. The aphids + BYDV treatment caused greater yield reductions than non-viruliferous aphids or virus treatment. Wheat varietal resistance in 98-10-30 affects the aphid dispersal, virus transmission and wheat yield loss though inhibits aphid populations from increasing. PMID:25184214

  10. Impact of Solid and Hollow Varieties of Winter and Spring Wheat on Severity of Wheat Stem Sawfly (Hymenoptera: Cephidae) Infestations and Yield and Quality of Grain.

    PubMed

    Szczepaniec, Adrianna; Glover, Karl D; Berzonsky, William

    2015-10-01

    Wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), has recently emerged as a key pest of wheat (Triticum aestivum L.) in the Great Plains and Canadian provinces. The expanding impact of WSS has caused considerable economic losses to wheat production. Solid-stem varieties of wheat remain the only effective measure of suppression of WSS, and the goal of this research was to test whether five solid- and hollow-stem varieties of winter and spring wheat reduce survival of WSS in South Dakota. We reported that solid-stem varieties had significantly lower numbers of WSS larvae, and this effect was especially evident when WSS infestation rates exceeded 15%. We also observed that the yield of solid-stem varieties was significantly lower than hollow-stem varieties when the abundance of WSS was low, but not when populations of WSS were relatively high. We did not observe consistent differences in grain quality between solid- and hollow-stem varieties, however, and in case of protein levels of grain, solid-stem wheat varieties performed better than hollow-stem wheat. We conclude that solid-stem varieties of wheat appear to effectively suppress WSS survival, and reduced yield of these varieties is less apparent when populations of C. cinctus are high enough to affect the yield of hollow-stem wheat. This is the first report to describe the effectiveness of solid-stem varieties of wheat on WSS in South Dakota. More research in the state is necessary before more robust conclusions can be drawn. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Suitability of spring wheat varieties for the production of best quality pizza.

    PubMed

    Tehseen, Saima; Anjum, Faqir Muhammad; Pasha, Imran; Khan, Muhammad Issa; Saeed, Farhan

    2014-08-01

    The selection of appropriate wheat cultivars is an imperative issue in product development and realization. The nutritional profiling of plants and their cultivars along with their suitability for development of specific products is of considerable interests for multi-national food chains. In this project, Pizza-Hut Pakistan provided funds for the selection of suitable newly developed Pakistani spring variety for pizza production. In this regard, the recent varieties were selected and evaluated for nutritional and functional properties for pizza production. Additionally, emphasis has been paid to assess all varieties for their physico-chemical attributes, rheological parameters and mineral content. Furthermore, pizza prepared from respective flour samples were further evaluated for sensory attributes Results showed that Anmool, Abadgar, Imdad, SKD-1, Shafaq and Moomal have higher values for protein, gluten content, pelshenke value and SDS sedimentation and these were relatively better in studied parameters as compared to other varieties although which were considered best for good quality pizza production. TD-1 got significantly highest score for flavor of pizza and lowest score was observed from wheat variety Kiran. Moreover, it is concluded from current study that all wheat varieties except TJ-83 and Kiran exhibited better results for flavor.

  12. Fusarium head blight resistance loci in a stratified population of wheat landraces and varieties

    USDA-ARS?s Scientific Manuscript database

    To determine if Chinese and Japanese wheat landraces and varieties have unique sources of Fusarium head blight (FHB) resistance, an association mapping panel of 195 wheat accessions including both commercial varieties and landraces was genotyped with 364 genome-wide simple sequence repeat (SSR) and ...

  13. [Effects of sowing times on the spike differentiation of different wheat varieties under the climate of warm winter].

    PubMed

    Gao, Qinglu; Xue, Xiang; Wu, Yu; Ru, Zhengang

    2003-10-01

    Spike differentiation processes and freezing damage of three wheat varieties were studied by sowing in different stages. The results showed that under the condition of weather changing warm, the time of entering each stage of spike differentiation of wheat of strong spring variety was earlier than that of wheat of spring variety and semi-winter variety. Sowing times had more effects on durative time of the elongation stage, single-prism stage and two-prism stage of the spike differentiation. Under sowing early, the stronger the springness of wheat was, the quicker it developed, the higher spike differentiation phases it reached before winter, and the more serious freezing damage it suffered in wintering. According to this, the semi-winter varieties of wheat should be adopted first and arranged in pairs with spring varieties in wheat production, and the sowing times should not be too early as the weather becoming warm.

  14. Targeted and efficient transfer of multiple value-added genes into wheat varieties

    USDA-ARS?s Scientific Manuscript database

    With an objective to optimize an approach to transfer multiple value added genes to a wheat variety while maintaining and improving agronomic performance, two alleles with mutations in the acetolactate synthase (ALS) gene located on wheat chromosomes 6B and 6D providing tolerance to imidazolinone (I...

  15. Identification of wheat varieties with a parallel-plate capacitance sensor using fisher linear discriminant analysis

    USDA-ARS?s Scientific Manuscript database

    Fisher’s linear discriminant (FLD) models for wheat variety classification were developed and validated. The inputs to the FLD models were the capacitance (C), impedance (Z), and phase angle ('), measured at two frequencies. Classification of wheat varieties was obtained as output of the FLD mod...

  16. [Genetic diversity of common wheat varieties at the gliadin-coding loci].

    PubMed

    Novoselskaya-Dragovich, A Yu; Bespalova, L A; Shishkina, A A; Melnik, V A; Upelniek, V P; Fisenko, A V; Dedova, L V; Kudryavtsev, A M

    2015-03-01

    One hundred and fifty Russian and foreign winter common wheat varieties were examined by the PAGE method. A total of 70 alleles were identified at seven gliadin-coding loci. It was demonstrated that 42% of varieties were heterogeneous, i.e., were represented by a number of genotypes, while 52% of varieties were homogeneous. A unique combination of gliadin alleles was typical of 91.3% of examined varieties, while 8.7% of varieties had identical alleles of all gliadin-coding loci and were indistinguishable. Frequent and rare alleles were identified, with the former accounting for 18.6% of all alleles. It was demonstrated that allelic diversity at the Gli-2 loci (47 alleles) was almost twice that at the Gli-1 loci (23 loci) and was determined by the number of rare alleles. New alleles for the winter common wheat, including three alleles of the GliA2 locus and two alleles of the Gli-B2 locus, were determined. A tendency toward a reduction of the genetic diversity level in modern varieties, which was due to the use of identical parental varieties in breeding programs, was identified.

  17. Assessment of chapatti quality of wheat varieties based on physicochemical, rheological and sensory traits.

    PubMed

    Kundu, Manju; Khatkar, Bhupendar Singh; Gulia, Neelam

    2017-07-01

    Fifty wheat varieties were assessed for chapatti quality using grain characteristics, dough rheological properties and pasting characteristics. Results revealed that 88% of wheat varieties studied were medium-hard to hard based on kernel texture. Water absorption and damaged starch were found to be important parameters for chapatti quality as both parameters had significant positive effect on the pliability and puffing height of chapatti. Protein content and gluten strength parameters like SDS sedimentation volume, dough stability and gluten index were found to have a negative impact on chapatti quality. Based on chapatti quality assessment the wheat varieties were classified into four distinct clusters viz. good, acceptable, fair and poor for chapatti making. It was elucidated that 46% of the varieties studied were good to acceptable for chapatti making, while 54% resulted in fair or poor chapatti quality thereby clearly indicating the need to establish and substantiate the development of product-specific varieties. Copyright © 2016. Published by Elsevier Ltd.

  18. Changes in the phenolic composition of pancake fractions made from refined and whole-wheat flour of two wheat varieties

    USDA-ARS?s Scientific Manuscript database

    In this study, we investigated the changes in the levels of phenolic acids during pancake preparation from refined and whole-wheat flours of two wheat varieties. Comparison of the efficacy of two commonly used methods for hydrolysis and extraction of phenolic acids, namely ultrasonic-assisted extrac...

  19. Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease

    PubMed Central

    de Jong, Hein C.; Salentijn, Elma M. J.; Dekking, Liesbeth; Bosch, Dirk; Hamer, Rob J.; Gilissen, Ludovicus J. W. J.; van der Meer, Ingrid M.; Smulders, Marinus J. M.

    2010-01-01

    Gluten proteins from wheat can induce celiac disease (CD) in genetically susceptible individuals. Specific gluten peptides can be presented by antigen presenting cells to gluten-sensitive T-cell lymphocytes leading to CD. During the last decades, a significant increase has been observed in the prevalence of CD. This may partly be attributed to an increase in awareness and to improved diagnostic techniques, but increased wheat and gluten consumption is also considered a major cause. To analyze whether wheat breeding contributed to the increase of the prevalence of CD, we have compared the genetic diversity of gluten proteins for the presence of two CD epitopes (Glia-α9 and Glia-α20) in 36 modern European wheat varieties and in 50 landraces representing the wheat varieties grown up to around a century ago. Glia-α9 is a major (immunodominant) epitope that is recognized by the majority of CD patients. The minor Glia-α20 was included as a technical reference. Overall, the presence of the Glia-α9 epitope was higher in the modern varieties, whereas the presence of the Glia-α20 epitope was lower, as compared to the landraces. This suggests that modern wheat breeding practices may have led to an increased exposure to CD epitopes. On the other hand, some modern varieties and landraces have been identified that have relatively low contents of both epitopes. Such selected lines may serve as a start to breed wheat for the introduction of ‘low CD toxic’ as a new breeding trait. Large-scale culture and consumption of such varieties would considerably aid in decreasing the prevalence of CD. PMID:20664999

  20. [Low-temperature response and cold tolerance at spike differentiation stage of winter wheat varieties sowed in spring].

    PubMed

    Xu, Lan; Gao, Zhi-fiang; An, Wei; Yuan, Ya-qi; Li, Yan-liang

    2015-06-01

    A total of 10 winter wheat varieties were imported from the middle and lower reaches of the Yangtze River region in China. Those varieties were sowed in spring in Xinding basin area of Shanxi Province, and the field trials were performed for two years (2013-2014). The traits and physiological characteristics under low temperature stress including grain yield, total content of chlorophyll, osmotic adjustment, membrane system, ion leakage rate, contents of soluble sugar and soluble protein were investigated, and the cold tolerance levels of the wheat varieties were assessed. The results showed that low temperature stress led to increases in wheat leaf ion leakage rate, soluble sugar and protein contents, but obvious reduction of chlorophyll content. According to principal component analysis and cold tolerance (D value) , Yumai 10, Yangmai 20, and Yunmai 42 were classed as cold sensitive wheat varieties. Yangmai 13, Yumai 12, and Ningmai 13 were classed as stronger cold-resistant wheat genotypes, and showed stability through two-year field trials, with the D values being 0.665-0.659, 0.493-0.495, and 0.471-0.583, respectively, while the D values for the controls Ning 2038 and Xinchun 30 were 0.368-0.397, and 0.328-0.330, respectively. The grain yields of the cold resistant wheat varieties were significantly higher than that of the other varieties tested. Therefore, Yangmai 13, Yumai 12 and Ningmai 13 could be imported and used as the cold tolerant wheat varieties for North Plain of China.

  1. Effects of variety, year of cultivation and sulphur supply on the accumulation of free asparagine in the grain of commercial wheat varieties.

    PubMed

    Curtis, Tanya Y; Powers, Stephen J; Wang, Ruiyun; Halford, Nigel G

    2018-01-15

    Free asparagine concentration, which is the determining factor for acrylamide-forming potential in cereals, was measured in grain from wheat grown in field trials in the United Kingdom in 2011-2012 and 2012-2013. There were 25 varieties in 2012 and 59 in 2013, with eleven present in both trials. The trials were split-plot, with half of each plot supplied with sulphur and the other half not. The varietal means (mmol per kg) for free asparagine in the sulphur-fed wheat ranged from 1.521 to 2.687 in 2011-2012 and 0.708 to 11.29 in 2012-2013. Eight varieties were identified as having consistently low free asparagine concentration. There was a differential response of varieties to sulphur, and much higher levels of free asparagine in 2012-2013 versus 2011-2012. Given the short commercial lifespan of some wheat varieties, it is concluded that information on free asparagine concentration should be made available when a variety is launched. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Effect of waterlogging at different growth stages on some morphological traits of wheat varieties.

    PubMed

    Ghobadi, Mohammad Eghbal; Ghobadi, Mokhtar; Zebarjadi, Alireza

    2017-04-01

    Excess rainfalls may be the cause of waterlogging in soil, which affects the growth and development of wheat. Therefore, the objectives of this study were to examine the effects of waterlogging on shoot and root growth and physiological characteristics of wheat. Three experiments were conducted: experiment 1 (E1): evaluation of seedling growth on ten Iranian winter wheat varieties with waterlogging periods (1-4, 4-8, 8-12, and 12-16 days starting from seed germination). Seminal roots and plumule were investigated at seedling. The others are E2: pretreatment of waterlogging (15 days) at tillering and stem elongation stages and its effects on shoot and root growth at anthesis stage and experiment 3 (E3): pretreatment of waterlogging (15 days) at tillering and jointing stages and its effects on yield and yield components and also evaluation of stress tolerance indexes. The results of the seedling growth test (E1) showed that 1-4- and 4-8-day waterlogging severity reduced seminal root length (94.5 to 93.7 %) and plumule length (86.2 to 50.0 %) compared to control. Results of E2 indicated that waterlogging stress decreased shoot dry weight, root dry weight, total secondary root length, and chlorophyll a + b content of flag leaf by 28-31, 44-35, 20-31, and 28-35 %, respectively. Also, result of E3 showed that the grain yields of wheat varieties at two conditions of stress were different in base tolerance indexes. In general, the responses of wheat varieties to waterlogging were different at the three experiments. The varieties that had the most of dry weight and length of the root were tolerant. Thus, it is possible to use these characteristics as an index for selecting the varieties with tolerance to waterlogging.

  3. Effect of waterlogging at different growth stages on some morphological traits of wheat varieties

    NASA Astrophysics Data System (ADS)

    Ghobadi, Mohammad Eghbal; Ghobadi, Mokhtar; Zebarjadi, Alireza

    2017-04-01

    Excess rainfalls may be the cause of waterlogging in soil, which affects the growth and development of wheat. Therefore, the objectives of this study were to examine the effects of waterlogging on shoot and root growth and physiological characteristics of wheat. Three experiments were conducted: experiment 1 (E1): evaluation of seedling growth on ten Iranian winter wheat varieties with waterlogging periods (1-4, 4-8, 8-12, and 12-16 days starting from seed germination). Seminal roots and plumule were investigated at seedling. The others are E2: pretreatment of waterlogging (15 days) at tillering and stem elongation stages and its effects on shoot and root growth at anthesis stage and experiment 3 (E3): pretreatment of waterlogging (15 days) at tillering and jointing stages and its effects on yield and yield components and also evaluation of stress tolerance indexes. The results of the seedling growth test (E1) showed that 1-4- and 4-8-day waterlogging severity reduced seminal root length (94.5 to 93.7 %) and plumule length (86.2 to 50.0 %) compared to control. Results of E2 indicated that waterlogging stress decreased shoot dry weight, root dry weight, total secondary root length, and chlorophyll a + b content of flag leaf by 28-31, 44-35, 20-31, and 28-35 %, respectively. Also, result of E3 showed that the grain yields of wheat varieties at two conditions of stress were different in base tolerance indexes. In general, the responses of wheat varieties to waterlogging were different at the three experiments. The varieties that had the most of dry weight and length of the root were tolerant. Thus, it is possible to use these characteristics as an index for selecting the varieties with tolerance to waterlogging.

  4. Extraordinarily soft, medium-hard and hard Indian wheat varieties: Composition, protein profile, dough and baking properties.

    PubMed

    Katyal, Mehak; Singh, Narpinder; Virdi, Amardeep Singh; Kaur, Amritpal; Chopra, Nidhi; Ahlawat, Arvind Kumar; Singh, Anju Mahendru

    2017-10-01

    Hard wheat (HW), medium-hard wheat (MHW) and extraordinarily soft wheat (Ex-SW) varieties with grain hardness index (GHI) of 83 to 95, 72 to 80, 17 to 29 were evaluated for pasting, protein molecular weight (MW) distribution, dough rheology and baking properties. Flours from varieties with higher GHI had more protein content, ash content and paste viscosities. Ex-SW had more glutenins proportion as compared to HW and MHW. Flours from Ex-SW varieties showed lower NaSRC, WA and mixographic parameters as compared to HW and MHW. Dough from flours milled from Ex-SW had higher Intermolecular-β-sheets (IM-β-sheets) than those from MHW and HW. Muffins volume increased with decrease in GHI, Ex-SW varieties had more muffin volume and less air space. The accumulation of polypeptides (PPs) varied significantly in different varieties. Ex-SW variety (QBP12-10) showed accumulation of 98, 90, 81 and 79kDa PPs, which was unique and was different from other varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effects of Post-harvest Storage Duration and Variety on Nutrient Digestibility and Energy Content Wheat in Finishing Pigs.

    PubMed

    Guo, P P; Li, P L; Li, Z C; Stein, H H; Liu, L; Xia, T; Yang, Y Y; Ma, Y X

    2015-10-01

    This study was conducted to investigate the effects of post-harvest storage duration and wheat variety on the digestibility and energy content of new season wheat fed to finishing pigs. Two wheat varieties (Shi and Zhong) were harvested in 2013 and stored in the warehouse of the Fengning Pig Experimental Base at China Agricultural University for 3, 6, 9, or 12 mo. For each storage period, 12 barrows were placed in metabolism crates and allotted to diets containing 1 of the 2 wheat varieties in a randomized complete block design. The experimental diets contained 97.34% wheat and 2.66% of a vitamin and trace mineral premix. With an extension of storage duration from 3 mo to 12 mo, the gross energy (GE) and crude protein (CP) of the wheat decreased by 2.0% and 12.01%, respectively, while the concentration of neutral detergent fiber (NDF), acid detergent fiber (ADF) and starch content increased by 30.26%, 19.08%, and 2.46%, respectively. Total non-starch polysaccharide, total arabinose, total xylose and total mannose contents decreased by 46.27%, 45.80%, 41.71%, and 75.66%, respectively. However, there were no significant differences in the chemical composition between the two wheat varieties with the exception of ADF which was approximately 13.37% lower in Shi. With an extension of storage duration from 3 mo to 12 mo, the digestible energy (DE), metabolizable energy (ME) content and the apparent total tract digestibility of GE, CP, dry matter, organic matter, ether extract, ADF and metabolizability of energy in wheat decreased linearly (p<0.01) by 5.74%, 7.60%, 3.75%, 3.88%, 3.50%, 2.47%, 26.22%, 27.62%, and 3.94%, respectively. But the digestibility of NDF changed quadratically (p<0.01). There was an interaction between wheat variety and storage time for CP digestibility (p<0.05), such that the CP digestibility of variety Zhong was stable during 9 mo of storage, while the CP digestibility of variety Shi decreased (p<0.05). In conclusion, the GE, DE, and ME of wheat

  6. Fingerprinting and characterization of anthocyanins in 94 colored wheat varieties and blue aleurone and purple pericarp wheat crosses.

    PubMed

    Krüger, Stephanie; Morlock, Gertrud E

    2018-02-23

    Colored wheat varieties and crosses were analyzed to figure out their anthocyanin profiles, and thus, their potential as health-related food. After method development, the obtained 94 anthocyanin fingerprints allowed the clear differentiation of the blue aleurone and purple pericarp genotypes as well as their breeding lines. The method was trimmed so that the complete analysis of the whole grain flour including sample preparation of up to 20 samples on one plate took less than 3 h (<9 min per sample) and total costs including sample preparation were <1.0 Euro/sample. Sample preparation of the complex wheat matrix was reduced to a minimum (only acidified methanol extraction of the ground whole wheat grain). Separation was well achieved on amino phases with a mixture of ethyl acetate, 2-butanone, water and formic acid. It was superior to the separation on either normal or reversed phases and more robust with regard to intrinsic pH variances of the sample extracts. Pattern recognition of anthocyanins was simply performed by visual detection (the image), a key feature of high-performance thin-layer chromatography. Wheat varieties and crosses with higher anthocyanin contents were easily selectable, and thus, successfully made out. Prominent anthocyanin zones were characterized by electrospray ionization mass spectrometry. Their sugar moiety was characterized via methanolysis and compared with the sugars available freely in the whole wheat grain. The developed profiling is a fast and efficient screening tool with option for quantification or identification on the same HPTLC plate. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Physical, textural, and antioxidant properties of extruded waxy wheat flour snack supplemented with several varieties of bran

    USDA-ARS?s Scientific Manuscript database

    Wheat represents a ubiquitous commodity and while industries valorize 10% of wheat bran, most of this antioxidant-rich byproduct gets discarded. The objective of this study was to incorporate wheat bran into an extruded snack. Bran varieties from hard red spring, white club Bruehl, and purple whea...

  8. Fast neutron radiation induced Glu-B1 deficient lines of an elite bread wheat variety

    USDA-ARS?s Scientific Manuscript database

    Five isogenic wheat lines deficient in high-molecular weight subunit (HMW-GS) proteins encoded by the B-genome were identified from a fast-neutron radiation-mutagenized population of Summit, an elite variety of bread wheat (Triticum aestivum L.). The mutant lines differ from the wild-type progenit...

  9. Relationship of deoxynivalenol content in grain, chaff, and straw with Fusarium head blight severity in wheat varieties with various levels of resistance.

    PubMed

    Ji, Fang; Wu, Jirong; Zhao, Hongyan; Xu, Jianhong; Shi, Jianrong

    2015-03-05

    A total of 122 wheat varieties obtained from the Nordic Genetic Resource Center were infected artificially with an aggressive Fusariumasiaticum strain in a field experiment. We calculated the severity of Fusarium head blight (FHB) and determined the deoxynivalenol (DON) content of wheat grain, straw and glumes. We found DON contamination levels to be highest in the glumes, intermediate in the straw, and lowest in the grain in most samples. The DON contamination levels did not increase consistently with increased FHB incidence. The DON levels in the wheat varieties with high FHB resistance were not necessarily low, and those in the wheat varieties with high FHB sensitivity were not necessarily high. We selected 50 wheat genotypes with reduced DON content for future research. This study will be helpful in breeding new wheat varieties with low levels of DON accumulation.

  10. Effects of variety, cropping year, location and fertilizer application on nutritive value of durum wheat straw.

    PubMed

    Tolera, A; Tsegaye, B; Berg, T

    2008-04-01

    This study was carried out to assess the effects of variety, year, location and level of fertilizer application on chemical composition and in sacco dry matter (DM) degradability of durum wheat straw as well as to understand the relationship between straw quality and agronomic traits of the crop and to assess the possibilities of selecting wheat varieties that combine high grain yield with desirable straw quality. Two local (Arendeto and Tikur sinde) and two improved (Boohai and Gerardo) varieties of durum wheat (Triticum turgidum Desf.) were used in the experiment. The four varieties were grown at two locations (Akaki and Ejere) in the years 2001/2002 and 2002/2003 in 5 x 5 m plots in three replications. Diammonium phosphate and urea fertilizers were applied at four levels (0/0, 32/23, 41/23 and 64/46 kg/ha of nitrogen/phosphorus). Straw quality was assessed based on chemical composition and in sacco DM degradability. Correlation of straw quality with grain and straw yield and with other agronomic characteristics of the crop was determined. The potential utility index (a measure that integrates grain and digestible straw yield) was used for ranking of the varieties. The local varieties had higher crude protein (CP) and lower neutral detergent fibre contents and higher digestibility than the improved varieties. The cropping year and location had significant effect on CP content and degradability of the straw, which could be due to climatic variation. However, the fertilizer level did not have any significant effect on straw quality except that the CP content of the straw tended to increase with increasing level of fertilizer application. Based on the potential utility index the varieties ranked, in a decreasing order, as Tikur sinde > Arendeto > Gerardo > Boohai and the ranking was consistent across years and locations. Except the CP content, straw quality was not negatively correlated with grain and straw yield. This indicates that there is a possibility of

  11. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties.

    PubMed

    Wang, Ke; Liu, Huiyun; Du, Lipu; Ye, Xingguo

    2017-05-01

    Genotype specificity is a big problem lagging the development of efficient hexaploid wheat transformation system. Increasingly, the biosecurity of genetically modified organisms is garnering public attention, so the generation of marker-free transgenic plants is very important to the eventual potential commercial release of transgenic wheat. In this study, 15 commercial Chinese hexaploid wheat varieties were successfully transformed via an Agrobacterium-mediated method, with efficiency of up to 37.7%, as confirmed by the use of Quickstix strips, histochemical staining, PCR analysis and Southern blotting. Of particular interest, marker-free transgenic wheat plants from various commercial Chinese varieties and their F 1 hybrids were successfully obtained for the first time, with a frequency of 4.3%, using a plasmid harbouring two independent T-DNA regions. The average co-integration frequency of the gus and the bar genes located on the two independent T-DNA regions was 49.0% in T 0 plants. We further found that the efficiency of generating marker-free plants was related to the number of bar gene copies integrated in the genome. Marker-free transgenic wheat plants were identified in the progeny of three transgenic lines that had only one or two bar gene copies. Moreover, silencing of the bar gene was detected in 30.7% of T 1 positive plants, but the gus gene was never found to be silenced in T 1 plants. Bisulphite genomic sequencing suggested that DNA methylation in the 35S promoter of the bar gene regulatory region might be the main reason for bar gene silencing in the transgenic plants. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties.

    PubMed

    Amir, Rai Muhammad; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Khan, Moazzam Rafiq; Pasha, Imran; Nadeem, Muhammad

    2013-10-01

    Quality characteristics of wheat are determined by different physiochemical and rheological analysis by using different AACC methods. AACC methods are expensive, time consuming and cause destruction of samples. Fourier transforms infrared (FTIR) spectroscopy is one of the most important and emerging tool used for analyzing wheat for different quality parameters. This technique is rapid and sensitive with a great variety of sampling techniques. In the present study different wheat varieties were analyzed for quality assessment and were also characterized by using AACC methods and FTIR technique. The straight grade flour was analyzed for physical, chemical and rheological properties by standard methods and results were obtained. FTIR works on the basis of functional groups and provide information in the form of peaks. On basis of peaks the value of moisture, protein, fat, ash, carbohydrates and hardness of grain were determined. Peaks for water were observed in the range 1,640 cm(-1) and 3,300 cm(-1) on the basis of functional group H and OH. Protein was observed in the range from 1,600 cm(-1) to 1,700 cm(-1) and 1,550 cm(-1) to 1,570 cm(-1) on the basis of bond amide I and amide II respectively. Fat was also observed within these ranges but on the basis of C-H bond and also starch was observed in the range from 2,800 and 3,000 cm(-1) (C-H stretch region) and in the range 3,000 and 3,600 cm(-1) (O-H stretch region). As FTIR is a fast tool it can be easily emplyed for wheat varieties identification according to a set criterion.

  13. Genetic Diversity and Population Structure Analysis of European Hexaploid Bread Wheat (Triticum aestivum L.) Varieties

    PubMed Central

    Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed

    2014-01-01

    Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents. PMID:24718292

  14. Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties.

    PubMed

    Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed

    2014-01-01

    Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.

  15. Repeatability of mice consumption discrimination of wheat (Triticum aestivum L.) varieties across field experiments and mouse cohorts

    USDA-ARS?s Scientific Manuscript database

    Whole grain wheat (Triticum aestivum L.) foods can provide critical nutrients for health and nutrition in the human diet. However, undesirable flavors are often suggested as a barrier to increased whole-grain consumption, yet flavor differences among wheat varieties have not been widely studied. Pot...

  16. Selecting wheat varieties for tortilla production

    USDA-ARS?s Scientific Manuscript database

    Wheat flour tortillas are the second most consumed bread product behind white pan bread. Manufactured tortillas are formulated with highly viscoelastic hard red wheat flours selected and grown for bread making. However, the inherent properties of the bread making flours require costly reducing agent...

  17. RNA interference targeting rye secalins alters flour protein composition in a wheat variety carrying a 1Bl.1RS translocation

    USDA-ARS?s Scientific Manuscript database

    Wheat varieties carrying chromosome translocations from rye are part of the international wheat breeding pool, despite being associated with defects in dough processing quality. Among the proposed causes for the quality defects of flours from such wheats is the presence of the secalins, encoded by ...

  18. Differential contribution of two Ppd-1 homoeoalleles to early-flowering phenotype in Nepalese and Japanese varieties of common wheat.

    PubMed

    Nguyen, Anh T; Iehisa, Julio C M; Mizuno, Nobuyuki; Nitta, Miyuki; Nasuda, Shuhei; Takumi, Shigeo

    2013-12-01

    Wheat landraces carry abundant genetic variation in heading and flowering times. Here, we studied flowering-related traits of two Nepalese varieties, KU-4770 and KU-180 and a Japanese wheat cultivar, Shiroganekomugi (SGK). These three wheat varieties showed similar flowering time in a common garden experiment. In total, five significant quantitative trait loci (QTLs) for three examined traits, the heading, flowering and maturation times, were detected using an F2 population of SGK/KU-4770. The QTLs were found at the Ppd-1 loci on chromosomes 2B and 2D and the 2B QTL was also confirmed in another F2 population of SGK/KU-180. The Ppd-D1 allele from SGK and the Ppd-B1 alleles from the two Nepalese varieties might be causal for early-flowering phenotype. The SGK Ppd-D1 allele contained a 2-kb deletion in the 5' upstream region, indicating a photoperiod-insensitive Ppd-D1a allele. Real-time PCR analysis estimating the Ppd-B1 copy number revealed that the two Nepalese varieties included two intact Ppd-B1 copies, putatively resulting in photoperiod insensitivity and an early-flowering phenotype. The two photoperiod-insensitive Ppd-1 homoeoalleles could independently contribute to segregation of early-flowering individuals in the two F2 populations. Therefore, wheat landraces are genetic resources for discovery of alleles useful for improving wheat heading or flowering times.

  19. Differential contribution of two Ppd-1 homoeoalleles to early-flowering phenotype in Nepalese and Japanese varieties of common wheat

    PubMed Central

    Nguyen, Anh T.; Iehisa, Julio C. M.; Mizuno, Nobuyuki; Nitta, Miyuki; Nasuda, Shuhei; Takumi, Shigeo

    2013-01-01

    Wheat landraces carry abundant genetic variation in heading and flowering times. Here, we studied flowering-related traits of two Nepalese varieties, KU-4770 and KU-180 and a Japanese wheat cultivar, Shiroganekomugi (SGK). These three wheat varieties showed similar flowering time in a common garden experiment. In total, five significant quantitative trait loci (QTLs) for three examined traits, the heading, flowering and maturation times, were detected using an F2 population of SGK/KU-4770. The QTLs were found at the Ppd-1 loci on chromosomes 2B and 2D and the 2B QTL was also confirmed in another F2 population of SGK/KU-180. The Ppd-D1 allele from SGK and the Ppd-B1 alleles from the two Nepalese varieties might be causal for early-flowering phenotype. The SGK Ppd-D1 allele contained a 2-kb deletion in the 5′ upstream region, indicating a photoperiod-insensitive Ppd-D1a allele. Real-time PCR analysis estimating the Ppd-B1 copy number revealed that the two Nepalese varieties included two intact Ppd-B1 copies, putatively resulting in photoperiod insensitivity and an early-flowering phenotype. The two photoperiod-insensitive Ppd-1 homoeoalleles could independently contribute to segregation of early-flowering individuals in the two F2 populations. Therefore, wheat landraces are genetic resources for discovery of alleles useful for improving wheat heading or flowering times. PMID:24399909

  20. WheatGenome.info: A Resource for Wheat Genomics Resource.

    PubMed

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ .

  1. Characterization of a mini core collection of Japanese wheat varieties using single-nucleotide polymorphisms generated by genotyping-by-sequencing.

    PubMed

    Kobayashi, Fuminori; Tanaka, Tsuyoshi; Kanamori, Hiroyuki; Wu, Jianzhong; Katayose, Yuichi; Handa, Hirokazu

    2016-03-01

    A core collection of Japanese wheat varieties (JWC) consisting of 96 accessions was established based on their passport data and breeding pedigrees. To clarify the molecular basis of the JWC collection, genome-wide single-nucleotide polymorphism (SNP) genotyping was performed using the genotyping-by-sequencing (GBS) approach. Phylogenetic tree and population structure analyses using these SNP data revealed the genetic diversity and relationships among the JWC accessions, classifying them into four groups; "varieties in the Hokkaido area", "modern varieties in the northeast part of Japan", "modern varieties in the southwest part of Japan" and "classical varieties including landraces". This clustering closely reflected the history of wheat breeding in Japan. Furthermore, to demonstrate the utility of the JWC collection, we performed a genome-wide association study (GWAS) for three traits, namely, "days to heading in autumn sowing", "days to heading in spring sowing" and "culm length". We found significantly associated SNP markers with each trait, and some of these were closely linked to known major genes for heading date or culm length on the genetic map. Our study indicates that this JWC collection is a useful set of germplasm for basic and applied research aimed at understanding and utilizing the genetic diversity among Japanese wheat varieties.

  2. Molecular order and functional properties of starches from three waxy wheat varieties grown in China.

    PubMed

    Wang, Shujun; Wang, Jinrong; Zhang, Wei; Li, Caili; Yu, Jinglin; Wang, Shuo

    2015-08-15

    Molecular order and functional properties of starch from three waxy wheat varieties grown in China were investigated by a combination of various technical analyses. The total starch content of the waxy wheat ranged between 54.1% and 55.0%, and the amylose content of the starch was between 0.71% and 1.63%. Average particle diameter of the three starches varied between 16.5 and 17.4 μm. Three waxy wheat starches presented the typical A-type X-ray diffraction pattern, with relative crystallinity between 38.7% and 40.0%. No significant differences were observed in relative crystallinity, IR ratios of 1047/1022 cm(-1) and 1022/995 cm(-1), and FWHH of the band at 480 cm(-1), indicating the similarity in long-range order of crystallites and short-range order of double helices of three starch granules. Small differences were observed in swelling power, gelatinization parameters, pasting viscosities, and in vitro enzymatic digestibility of three waxy wheat starches. Under the stored condition, no retrogradation occurred for three waxy wheat starches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. [The high-molecular glutenins of the soft winter wheats from European countries and their relationship to the glutenin composition of the ancient and modern wheat varieties of Ukraine].

    PubMed

    Rabinovich, S V; Fedak, G; Lukov, O

    2000-01-01

    The sources of high-quality components of HMW glutenines determining grain quality, as initial material for breeding in the conditions of Ukraine were revealed on the base of analysis of 75 literature sources data about composition of high-molecular weight (HMW) glutenin and pedigrees of 598 European wheats from 12 countries, bred in 1923-1997, including, 449 cultivars from West and 149 East Europe. Origin of these components was observed in varieties of Great Britain, France and Germany from ancient Ukrainian wheat Red Fife and it derivative spring wheats of Canada--Marquis, Garnet, Regent, Saunders, Selkirk and of USA--spring wheat Thatcher and winter wheats--Kanred and Oro--as directly as via cultivars of European countries and Australia; in wheats of East European countries from winter wheats Myronivs'ka 808 and Bezostaya 1 (derivative of Ukrainian cultivars Ukrainka and Krymka) and their descendants; in wheats of Austria and Italy--from the both genetical sources.

  4. Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability.

    PubMed

    Alvarez, Sophie; Roy Choudhury, Swarup; Pandey, Sona

    2014-03-07

    Wheat is one of the most highly cultivated cereals in the world. Like other cultivated crops, wheat production is significantly affected by abiotic stresses such as drought. Multiple wheat varieties suitable for different geographical regions of the world have been developed that are adapted to different environmental conditions; however, the molecular basis of such adaptations remains unknown in most cases. We have compared the quantitative proteomics profile of the roots of two different wheat varieties, Nesser (drought-tolerant) and Opata (drought-sensitive), in the absence and presence of abscisic acid (ABA, as a proxy for drought). A labeling LC-based quantitative proteomics approach using iTRAQ was applied to elucidate the changes in protein abundance levels. Quantitative differences in protein levels were analyzed for the evaluation of inherent differences between the two varieties as well as the overall and variety-specific effect of ABA on the root proteome. This study reveals the most elaborate ABA-responsive root proteome identified to date in wheat. A large number of proteins exhibited inherently different expression levels between Nesser and Opata. Additionally, significantly higher numbers of proteins were ABA-responsive in Nesser roots compared with Opata roots. Furthermore, several proteins showed variety-specific regulation by ABA, suggesting their role in drought adaptation.

  5. Environment and genotype effects on antioxidant properties of organically grown wheat varieties: a 3-year study.

    PubMed

    Di Silvestro, Raffaella; Di Loreto, Alessandro; Bosi, Sara; Bregola, Valeria; Marotti, Ilaria; Benedettelli, Stefano; Segura-Carretero, Antonio; Dinelli, Giovanni

    2017-01-01

    Wheat grain (Triticum aestivum L.) possesses significant amounts of antioxidants that contribute to the dietary antiradical protection against a number of chronic diseases. Despite the increasing interest in organic food among both consumers and scientists, the availability of literature studies concerning the environment effect under organic management is still scarce. The aim of this study was to evaluate the antioxidant properties of wheat varieties by considering the genotype response to different environmental factors under biodynamic management. The soluble fraction of phenolic compounds was mainly determined by the environment, whereas a major genotypic effect was observed for the bound forms, which were present at higher amounts in red grain varieties. Moreover, a predominant effect of genotype was observed for yellow pigment content and antioxidant activity determined by the FRAP method. Despite some changes induced by environment, most genotypes had stable antioxidant properties and different phenolic profiles as determined by high-performance liquid chromatography-mass spectrometry, except for the old variety Inallettabile, which was the most sensitive to environmental fluctuations. The red grain varieties Andriolo, Gentil rosso and Verna were identified as the most promising breeding material for the development of varieties with high nutraceutical value under low-input management. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress.

    PubMed

    Sharma, Marisha; Gupta, Sunil K; Majumder, Baisakhi; Maurya, Vivek K; Deeba, Farah; Alam, Afroz; Pandey, Vivek

    2017-06-23

    Salicylic acid (SA) induced drought tolerance can be a key trait for increasing and stabilizing wheat production. These SA induced traits were studied in two Triticum aestivum L. varieties; drought tolerant, Kundan and drought sensitive, Lok1 under two different water deficit regimes: and rehydration at vegetative and flowering stages. SA alleviated the negative effects of water stress on photosynthesis more in Kundan. SA induced defense responses against drought by increasing antioxidative enzymes and osmolytes (proline and total soluble sugars). Differential proteomics revealed major role of carbon metabolism and signal transduction in enhancing drought tolerance in Kundan which was shifted towards defense, energy production and protection in Lok1. Thioredoxins played important role between SA and redox signaling in activating defense responses. SA showed substantial impact on physiology and carbon assimilation in tolerant variety for better growth under drought. Lok1 exhibited SA induced drought tolerance through enhanced defense system and energy metabolism. Plants after rehydration showed complete recovery of physiological functions under SA treatment. SA mediated constitutive defense against water stress did not compromise yield. These results suggest that exogenously applied SA under drought stress confer growth promoting and stress priming effects on wheat plants thus alleviating yield limitation. Studies have shown morphological, physiological and biochemical aspects associated with the SA mediated drought tolerance in wheat while understanding of molecular mechanism is limited. Herein, proteomics approach has identified significantly changed proteins and their potential relevance to SA mediated drought stress responses in drought tolerant and sensitive wheat varieties. SA regulates wide range of processes such as photosynthesis, carbon assimilation, protein metabolism, amino acid and energy metabolism, redox homeostasis and signal transduction under

  7. Physical, Textural, and Antioxidant Properties of Extruded Waxy Wheat Flour Snack Supplemented with Several Varieties of Bran.

    PubMed

    Fleischman, Emily F; Kowalski, Ryan J; Morris, Craig F; Nguyen, Thuy; Li, Chongjun; Ganjyal, Girish; Ross, Carolyn F

    2016-09-28

    Wheat represents a ubiquitous commodity and although industries valorize 10% of wheat bran, most of this antioxidant-rich byproduct gets fed to livestock. The objective of this study was to incorporate wheat bran into an extruded snack. Bran samples from hard red spring, soft white club cv. Bruehl, and purple wheat lines were added to cv. Waxy-Pen wheat flour (Triticum aestivum L.) at replacement concentrations of 0%, 12.5%, 25%, and 37.5% (w/w; n = 10). Extrudates were evaluated for antioxidant capacity, color, and physical properties. Results showed that high fiber concentrations altered several pasting properties, reduced expansion ratios (P < 0.0001), and created denser products (P < 0.0001), especially for white bran supplemented extrudates. Purple bran supplemented extrudates produced harder products compared to white and red bran treatments (P < 0.0001). Extrudates produced with 37.5% (w/w) of each bran variety absorbed more water than the control with no added bran. The oxygen radical absorption capacity assay, expressed as Trolox Equivalents, showed that extrudates made with addition of red (37.5%) and purple (37.5%) bran had higher values compared to the other treatments; the control, red, and white bran treatments had less antioxidant activity after extrusion (P < 0.0001) compared to purple bran supplemented extrudates. Purple and red brans may serve as viable functional ingredients in extruded foods given their higher antioxidant activities. Future studies could evaluate how bran variety and concentration, extruded shape, and flavor influence consumer acceptance. © 2016 Institute of Food Technologists®

  8. Swedish spring wheat varieties with the rare high grain protein allele of NAM-B1 differ in leaf senescence and grain mineral content.

    PubMed

    Asplund, Linnéa; Bergkvist, Göran; Leino, Matti W; Westerbergh, Anna; Weih, Martin

    2013-01-01

    Some Swedish spring wheat varieties have recently been shown to carry a rare wildtype (wt) allele of the gene NAM-B1, known to affect leaf senescence and nutrient retranslocation to the grain. The wt allele is believed to increase grain protein concentration and has attracted interest from breeders since it could contribute to higher grain quality and more nitrogen-efficient varieties. This study investigated whether Swedish varieties with the wt allele differ from varieties with one of the more common, non-functional alleles in order to examine the effect of the gene in a wide genetic background, and possibly explain why the allele has been retained in Swedish varieties. Forty varieties of spring wheat differing in NAM-B1 allele type were cultivated under controlled conditions. Senescence was monitored and grains were harvested and analyzed for mineral nutrient concentration. Varieties with the wt allele reached anthesis earlier and completed senescence faster than varieties with the non-functional allele. The wt varieties also had more ears, lighter grains and higher yields of P and K. Contrary to previous information on effects of the wt allele, our wt varieties did not have increased grain N concentration or grain N yield. In addition, temporal studies showed that straw length has decreased but grain N yield has remained unaffected over a century of Swedish spring wheat breeding. The faster development of wt varieties supports the hypothesis of NAM-B1 being preserved in Fennoscandia, with its short growing season, because of accelerated development conferred by the NAM-B1 wt allele. Although the possible effects of other gene actions were impossible to distinguish, the genetic resource of Fennoscandian spring wheats with the wt NAM-B1 allele is interesting to investigate further for breeding purposes.

  9. Swedish Spring Wheat Varieties with the Rare High Grain Protein Allele of NAM-B1 Differ in Leaf Senescence and Grain Mineral Content

    PubMed Central

    Asplund, Linnéa; Bergkvist, Göran; Leino, Matti W.; Westerbergh, Anna; Weih, Martin

    2013-01-01

    Some Swedish spring wheat varieties have recently been shown to carry a rare wildtype (wt) allele of the gene NAM-B1, known to affect leaf senescence and nutrient retranslocation to the grain. The wt allele is believed to increase grain protein concentration and has attracted interest from breeders since it could contribute to higher grain quality and more nitrogen-efficient varieties. This study investigated whether Swedish varieties with the wt allele differ from varieties with one of the more common, non-functional alleles in order to examine the effect of the gene in a wide genetic background, and possibly explain why the allele has been retained in Swedish varieties. Forty varieties of spring wheat differing in NAM-B1 allele type were cultivated under controlled conditions. Senescence was monitored and grains were harvested and analyzed for mineral nutrient concentration. Varieties with the wt allele reached anthesis earlier and completed senescence faster than varieties with the non-functional allele. The wt varieties also had more ears, lighter grains and higher yields of P and K. Contrary to previous information on effects of the wt allele, our wt varieties did not have increased grain N concentration or grain N yield. In addition, temporal studies showed that straw length has decreased but grain N yield has remained unaffected over a century of Swedish spring wheat breeding. The faster development of wt varieties supports the hypothesis of NAM-B1 being preserved in Fennoscandia, with its short growing season, because of accelerated development conferred by the NAM-B1 wt allele. Although the possible effects of other gene actions were impossible to distinguish, the genetic resource of Fennoscandian spring wheats with the wt NAM-B1 allele is interesting to investigate further for breeding purposes. PMID:23555754

  10. Anchoring durum wheat diversity in the reality of traditional agricultural systems: varieties, seed management, and farmers’ perception in two Moroccan regions

    PubMed Central

    2014-01-01

    Background Traditional agrosystems are the places were crop species have evolved and continue to evolve under a combination of human and environmental pressures. A better knowledge of the mechanisms underlying the dynamics of crop diversity in these agrosystems is crucial to sustain food security and farmers’ self-reliance. It requires as a first step, anchoring a description of the available diversity in its geographical, environmental, cultural and socio-economic context. Methods We conducted interviews with farmers cultivating durum wheat in two contrasted traditional agrosystems of Morocco in the Pre-Rif (163 farmers) and in the oases of the Atlas Mountains (110 farmers). We documented the varietal diversity of durum wheat, the main characteristics of the farms, the farming and seed management practices applied to durum wheat, and the farmers’ perception of their varieties. Results As expected in traditional agrosystems, farmers largely practiced diversified subsistence agriculture on small plots and relied on on-farm seed production or informal seed exchange networks. Heterogeneity nevertheless prevailed on many variables, especially on the modernization of practices in the Pre-Rif region. Fourteen (resp. 11) traditional and 5 (resp. 3) modern varieties were identified in the Pre-Rif region (resp. in the Atlas Mountains). The majority of farmers grew a single variety, and most traditional varieties were distributed in restricted geographical areas. At the farm level, more than half of the varieties were renewed in the last decade in the Pre-Rif, a more rapid renewal than in the Atlas Mountain. Modern varieties were more prevalent in the Pre-Rif region and were integrated in the traditional practices of seed production, selection and exchange. They were clearly distinguished by the farmers from the landraces, the last ones being appreciated for their quality traits. Conclusions The surveyed traditional agrosystems constitute open, dynamic and heterogeneous

  11. Advances in cold-resistant wheat varieties

    USDA-ARS?s Scientific Manuscript database

    Two lines of research have been pursued to increase the understanding and utility of the existing levels of winterhardiness of winter wheat. Much progress has been made from agronomic approaches such that in a recent review, it was observed that, while western Canada and Siberia have the coldest cli...

  12. WheatGenome.info: an integrated database and portal for wheat genome information.

    PubMed

    Lai, Kaitao; Berkman, Paul J; Lorenc, Michal Tadeusz; Duran, Chris; Smits, Lars; Manoli, Sahana; Stiller, Jiri; Edwards, David

    2012-02-01

    Bread wheat (Triticum aestivum) is one of the most important crop plants, globally providing staple food for a large proportion of the human population. However, improvement of this crop has been limited due to its large and complex genome. Advances in genomics are supporting wheat crop improvement. We provide a variety of web-based systems hosting wheat genome and genomic data to support wheat research and crop improvement. WheatGenome.info is an integrated database resource which includes multiple web-based applications. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second-generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This system includes links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/.

  13. Molecular and genealogical analysis of grain dormancy in Japanese wheat varieties, with specific focus on MOTHER OF FT AND TFL1 on chromosome 3A.

    PubMed

    Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Nakamura, Shingo

    2015-03-01

    In the wheat (Triticum aestivum L.) cultivar 'Zenkoujikomugi', a single nucleotide polymorphism (SNP) in the promoter of MOTHER OF FT AND TFL1 on chromosome 3A (MFT-3A) causes an increase in the level of gene expression, resulting in strong grain dormancy. We used a DNA marker to detect the 'Zenkoujikomugi'-type (Zen-type) SNP and examined the genotype of MFT-3A in Japanese wheat varieties, and we found that 169 of 324 varieties carry the Zen-type SNP. In Japanese commercial varieties, the frequency of the Zen-type SNP was remarkably high in the southern part of Japan, but low in the northern part. To examine the relationship between MFT-3A genotype and grain dormancy, we performed a germination assay in three wheat-growing seasons. On average, the varieties carrying the Zen-type SNP showed stronger grain dormancy than the varieties carrying the non-Zen-type SNP. Among commercial cultivars, 'Iwainodaichi' (Kyushu), 'Junreikomugi' (Kinki-Chugoku-Shikoku), 'Kinuhime' (Kanto-Tokai), 'Nebarigoshi' (Tohoku-Hokuriku), and 'Kitamoe' (Hokkaido) showed the strongest grain dormancy in each geographical group, and all these varieties, except for 'Kitamoe', were found to carry the Zen-type SNP. In recent years, the number of varieties carrying the Zen-type SNP has increased in the Tohoku-Hokuriku region, but not in the Hokkaido region.

  14. Molecular and genealogical analysis of grain dormancy in Japanese wheat varieties, with specific focus on MOTHER OF FT AND TFL1 on chromosome 3A

    PubMed Central

    Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Nakamura, Shingo

    2015-01-01

    In the wheat (Triticum aestivum L.) cultivar ‘Zenkoujikomugi’, a single nucleotide polymorphism (SNP) in the promoter of MOTHER OF FT AND TFL1 on chromosome 3A (MFT-3A) causes an increase in the level of gene expression, resulting in strong grain dormancy. We used a DNA marker to detect the ‘Zenkoujikomugi’-type (Zen-type) SNP and examined the genotype of MFT-3A in Japanese wheat varieties, and we found that 169 of 324 varieties carry the Zen-type SNP. In Japanese commercial varieties, the frequency of the Zen-type SNP was remarkably high in the southern part of Japan, but low in the northern part. To examine the relationship between MFT-3A genotype and grain dormancy, we performed a germination assay in three wheat-growing seasons. On average, the varieties carrying the Zen-type SNP showed stronger grain dormancy than the varieties carrying the non-Zen-type SNP. Among commercial cultivars, ‘Iwainodaichi’ (Kyushu), ‘Junreikomugi’ (Kinki-Chugoku-Shikoku), ‘Kinuhime’ (Kanto-Tokai), ‘Nebarigoshi’ (Tohoku-Hokuriku), and ‘Kitamoe’ (Hokkaido) showed the strongest grain dormancy in each geographical group, and all these varieties, except for ‘Kitamoe’, were found to carry the Zen-type SNP. In recent years, the number of varieties carrying the Zen-type SNP has increased in the Tohoku-Hokuriku region, but not in the Hokkaido region. PMID:25931984

  15. Genetic mapping reveals a dominant awn-inhibiting gene related to differentiation of the variety anathera in the wild diploid wheat Aegilops tauschii.

    PubMed

    Nishijima, Ryo; Ikeda, Tatsuya M; Takumi, Shigeo

    2018-02-01

    Aegilops tauschii, a wild wheat relative, is the D-genome donor of common wheat. Subspecies and varieties of Ae. tauschii are traditionally classified based on differences in their inflorescence architecture. However, the genetic information for their diversification has been quite limited in the wild wheat relatives. The variety anathera has no awn on the lemma, but the genetic basis for this diagnostic character is unknown. Wide variations in awn length traits at the top and middle spikes were found in the Ae. tauschii core collection, and the awn length at the middle spike was significantly smaller in the eastward-dispersed sublineage than in those in other sublineages. To clarify loci controlling the awnless phenotype of var. anathera, we measured awn length of an intervariety F 2 mapping population, and found that the F 2 individuals could be divided into two groups mainly based on the awn length at the middle of spike, namely short and long awn groups, significantly fitting a 3:1 segregation ratio, which indicated that a single locus controls the awnless phenotype. The awnless locus, Anathera (Antr), was assigned to the distal region of the short arm of chromosome 5D. Quantitative trait locus analysis using the awn length data of each F 2 individual showed that only one major locus was at the same chromosomal position as Antr. These results suggest that a single dominant allele determines the awnless diagnostic character in the variety anathera. The Antr dominant allele is a novel gene inhibiting awn elongation in wheat and its relatives.

  16. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2015 Crop

    USDA-ARS?s Scientific Manuscript database

    Nine experimental lines of hard spring wheat were grown at up to five locations in 2015 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Sprin...

  17. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2017 Crop

    USDA-ARS?s Scientific Manuscript database

    Nine experimental lines of hard spring wheat were grown at up to six locations in 2017 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spring...

  18. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2014 Crop

    USDA-ARS?s Scientific Manuscript database

    Eleven experimental lines of hard spring wheat were grown at up to five locations in 2014 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spr...

  19. Resistance to Wheat streak mosaic virus identified in synthetic wheat lines

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic virus (WSMV) is a significant pathogen in wheat that causes economic loss each year. WSMV is typically controlled using cultural practices such as the removal of volunteer wheat. Genetic resistance is limited. Until recently, no varieties have been available with major resista...

  20. Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality.

    PubMed

    Sharma, Monica; Sandhir, Rajat; Singh, Anuradha; Kumar, Pankaj; Mishra, Ankita; Jachak, Sanjay; Singh, Sukhvinder P; Singh, Jagdeep; Roy, Joy

    2016-01-01

    Phenolic compounds (PCs) affect the bread quality and can also affect the other types of end-use food products such as chapatti (unleavened flat bread), now globally recognized wheat-based food product. The detailed analysis of PCs and their biosynthesis genes in diverse bread wheat ( Triticum aestivum ) varieties differing for chapatti quality have not been studied. In this study, the identification and quantification of PCs using UPLC-QTOF-MS and/or MS/MS and functional genomics techniques such as microarrays and qRT-PCR of their biosynthesis genes have been studied in a good chapatti variety, "C 306" and a poor chapatti variety, "Sonalika." About 80% (69/87) of plant phenolic compounds were tentatively identified in these varieties. Nine PCs (hinokinin, coutaric acid, fertaric acid, p-coumaroylqunic acid, kaempferide, isorhamnetin, epigallocatechin gallate, methyl isoorientin-2'-O-rhamnoside, and cyanidin-3-rutinoside) were identified only in the good chapatti variety and four PCs (tricin, apigenindin, quercetin-3-O-glucuronide, and myricetin-3-glucoside) in the poor chapatti variety. Therefore, about 20% of the identified PCs are unique to each other and may be "variety or genotype" specific PCs. Fourteen PCs used for quantification showed high variation between the varieties. The microarray data of 44 phenolic compound biosynthesis genes and 17 of them on qRT-PCR showed variation in expression level during seed development and majority of them showed low expression in the good chapatti variety. The expression pattern in the good chapatti variety was largely in agreement with that of phenolic compounds. The level of variation of 12 genes was high between the good and poor chapatti quality varieties and has potential in development of markers. The information generated in this study can be extended onto a larger germplasm set for development of molecular markers using QTL and/or association mapping approaches for their application in wheat breeding.

  1. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply.

    PubMed

    Wang, Xiubo; Wang, Lifang; Shangguan, Zhouping

    2016-01-01

    Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.). In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs), but with a greater increase in instantaneous water use efficiency (WUE). At the meantime, the nitrogen (N) supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP), the maximum photochemical efficiency (Fv/Fm), the quantum yield of photosystemII(ΦPSII), and the apparent photosynthetic electron transport rate (ETR) decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root-shoot ratio (R/S) increased slightly with water stress at a low N level; the smallest root-shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency.

  2. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply

    PubMed Central

    Wang, Xiubo; Wang, Lifang; Shangguan, Zhouping

    2016-01-01

    Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.). In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs), but with a greater increase in instantaneous water use efficiency (WUE). At the meantime, the nitrogen (N) supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP), the maximum photochemical efficiency (Fv/Fm), the quantum yield of photosystemII(ΦPSII), and the apparent photosynthetic electron transport rate (ETR) decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root–shoot ratio (R/S) increased slightly with water stress at a low N level; the smallest root–shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency. PMID:27802318

  3. Effect of environment and variety on the relationships of wheat grain physical and chemical characteristics with ethanol yield.

    PubMed

    Awole, Kedija D; Kettlewell, Peter S; Hare, Martin C; Agu, Reginald C; Brosnan, James M; Bringhurst, Thomas A

    2012-02-01

    Following the Renewable Transport Fuel Obligation (RTFO), there is an increasing demand for wheat grain for liquid biofuel in the UK. In order to enhance productivity of the bioethanol industry, good quality wheat must be used. A total of 84 grain samples comprising 14 varieties collected from 11 sites in two harvest years were analysed for a range of grain quality parameters and ethanol yield (EY). The grain quality parameters studied were starch and protein concentration, specific weight, grain density, packing efficiency, thousand-grain weight (TGW), grain length, width, length/width ratio and hardness index. Regression analysis was used to establish the relationships between grain quality parameters and EY. Apart from grain length and density, all grain parameters had significant relationships with EY. In the order of importance, protein concentration, TGW, packing efficiency and specific weight showed good relationships with EY. All other parameters, including starch concentration, showed a poor correlation with EY. EY and the relationship with the grain parameters were affected more by environment than by variety. Some sites gave consistently higher EY than others. When site and variety were considered with TGW and protein, a good prediction of EY could be made (variance accounted for = 87%). Combining TGW and protein concentration could be a better indicator of EY than the current practice of specific weight and protein. Copyright © 2011 Society of Chemical Industry.

  4. Wheat for Kids! [and] Teacher's Guide.

    ERIC Educational Resources Information Center

    Idaho Wheat Commission, Boise.

    "Wheat for Kids" contains information at the elementary school level about: the structure of the wheat kernel; varieties of wheat and their uses; growing wheat; making wheat dough; the U.S. Department of Agriculture Food Guide Pyramid and nutrition; Idaho's part of the international wheat market; recipes; and word games based on the…

  5. Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality

    PubMed Central

    Sharma, Monica; Sandhir, Rajat; Singh, Anuradha; Kumar, Pankaj; Mishra, Ankita; Jachak, Sanjay; Singh, Sukhvinder P.; Singh, Jagdeep; Roy, Joy

    2016-01-01

    Phenolic compounds (PCs) affect the bread quality and can also affect the other types of end-use food products such as chapatti (unleavened flat bread), now globally recognized wheat-based food product. The detailed analysis of PCs and their biosynthesis genes in diverse bread wheat (Triticum aestivum) varieties differing for chapatti quality have not been studied. In this study, the identification and quantification of PCs using UPLC-QTOF-MS and/or MS/MS and functional genomics techniques such as microarrays and qRT-PCR of their biosynthesis genes have been studied in a good chapatti variety, “C 306” and a poor chapatti variety, “Sonalika.” About 80% (69/87) of plant phenolic compounds were tentatively identified in these varieties. Nine PCs (hinokinin, coutaric acid, fertaric acid, p-coumaroylqunic acid, kaempferide, isorhamnetin, epigallocatechin gallate, methyl isoorientin-2′-O-rhamnoside, and cyanidin-3-rutinoside) were identified only in the good chapatti variety and four PCs (tricin, apigenindin, quercetin-3-O-glucuronide, and myricetin-3-glucoside) in the poor chapatti variety. Therefore, about 20% of the identified PCs are unique to each other and may be “variety or genotype” specific PCs. Fourteen PCs used for quantification showed high variation between the varieties. The microarray data of 44 phenolic compound biosynthesis genes and 17 of them on qRT-PCR showed variation in expression level during seed development and majority of them showed low expression in the good chapatti variety. The expression pattern in the good chapatti variety was largely in agreement with that of phenolic compounds. The level of variation of 12 genes was high between the good and poor chapatti quality varieties and has potential in development of markers. The information generated in this study can be extended onto a larger germplasm set for development of molecular markers using QTL and/or association mapping approaches for their application in wheat breeding

  6. Tocotrienols and tocopherols in colored-grain wheat, tritordeum and barley.

    PubMed

    Lachman, Jaromír; Hejtmánková, Alena; Orsák, Matyáš; Popov, Marek; Martinek, Petr

    2018-02-01

    Colored-grain spring and winter wheat, spring tritordeum and barley (blue aleurone, purple pericarp, and yellow endosperm) from the harvests 2014 and 2015 were evaluated for tocol contents by HPLC-FD. Higher content of total tocols was found in spring wheat varieties compared with winter varieties. Four tocols (β-tocotrienol, α-tocotrienol, β-tocopherol, and α-tocopherol) were identified in wheat and tritordeum varieties. Dominant tocols in purple- and blue-grained wheat and yellow-grained tritordeum were α-tocopherol and β-tocotrienol, whereas spring barley varieties differed from wheat and tritordeum by high α-tocotrienol content. Tocol content was significantly affected by genotype and in a lesser extent in some varieties and lines also by rainfall and temperatures during crop year. Higher rainfall and lower temperatures caused in most varieties higher tocol contents. Purple- and blue-grained wheat lines with higher tocol, anthocyanin and phenolic acids with health benefits may be useful for breeding new varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Weather, disease, and wheat breeding effects on Kansas wheat varietal yields, 1985 to 2011

    USDA-ARS?s Scientific Manuscript database

    Wheat (Triticum aestivum L.) yields in Kansas have increased due to wheat breeding and improved agronomic practices, but are subject to climate and disease challenges. The objective of this research is to quantify the impact of weather, disease, and genetic improvement on wheat yields of varieties g...

  8. Multi-trait evolution of farmer varieties of bread wheat after cultivation in contrasting organic farming systems in Europe.

    PubMed

    Dawson, J C; Serpolay, E; Giuliano, S; Schermann, N; Galic, N; Chable, V; Goldringer, I

    2012-03-01

    Because of the lack of varieties for organic agriculture, associations of organic farmers in several European countries have begun cultivating landraces and historic varieties, effectively practicing in situ conservation of agricultural biodiversity. To promote agrobiodiversity conservation, a special list for "conservation varieties" was implemented in 2008 by the EU because for any exchange and marketing of seeds in the EU, a variety must be registered in an official catalog. Our study aimed at improving knowledge on the phenotypic diversity and evolution of such varieties when cultivated on organic farms in Europe, in order to better define their specific characteristics and the implications for the registration process. We assessed multi-trait phenotypic evolution in eight European landraces and historic varieties of bread wheat and in two pureline variety checks, each grown by eight organic farmers over 2 years and then evaluated in a common garden experiment at an organic research farm. Measurements on each farmer's version of each variety included several standard evaluation criteria for assessing distinctness, uniformity and stability for variety registration. Significant phenotypic differentiation was found among farmers' versions of each variety. Some varieties showed considerable variation among versions while others showed fewer phenotypic changes, even in comparison to the two checks. Although farmers' variety would not satisfy uniformity or stability criteria as defined in the catalog evaluation requirements, each variety remained distinct when assessed using multivariate analysis. The amount of differentiation may be related to the initial genetic diversity within landraces and historic varieties.

  9. The house mouse (Mus musculus L.) exerts strong differential grain consumption preferences among hard red and white spring wheat (Triticum aestivum L.) varieties in a single-elimination tournament design.

    PubMed

    Morris, Craig F; Fuerst, E Patrick; McLean, Derek J; Momont, Kathleen; James, Caleb P

    2014-11-01

    Wheat (Triticum aestivum L.) plays a central role in the health and nutrition of humans. Yet, little is known about possible flavor differences among different varieties. We have developed a model system using the house mouse (Mus musculus L.) to determine feeding preferences as a prelude to extending results to human sensory analysis. Here, we examine the application of a single-elimination tournament design to the analysis of consumption preferences of a set of hard red and hard white spring wheat varieties. A single-elimination tournament design in this case pairs 2 wheat varieties and only 1 of the 2 is advanced to further tests. Preferred varieties were advanced until an overall "winner" was identified; conversely, less desirable varieties were advanced such that an overall "loser" was identified. Hollis and IDO702 were the winner and loser, respectively, for the hard red varieties, and Clear White 515 and WA8123 were the winner and loser, respectively, for the hard white varieties. When using the more powerful protocol of 14 mice and a 4-d trial, differences in mean daily consumption preferences of 2 varieties were separated at P-values as small as 2 × 10(-8) . The single-elimination tournament design is an efficient means of identifying the most and least desirable varieties among a larger set of samples. One application for identifying the 2 extremes in preference within a group of varieties would be to use them as parents of a population to identify quantitative trait loci for preference. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  10. Wheat fructans: A potential breeding target for nutritionally improved, climate-resilient varieties

    USDA-ARS?s Scientific Manuscript database

    Wheat (Triticum aestivum L.) is a widely consumed staple crop and essential component of a healthy whole-grain diet. One component of wheat, fructans, is known to serve physiological roles in the plant and confer health benefits to humans. Fructans serve as reserve carbohydrates and osmotic regulato...

  11. [Evaluating the response of yield and evapotranspiration of winter wheat and the adaptation by adjusting crop variety to climate change in Huang-Huai-Hai Plain].

    PubMed

    Hu, Shi; Mo, Xing-guo; Lin, Zhong-hui

    2015-04-01

    Based on the multi-model datasets of three representative concentration pathway (RCP) emission scenarios from IPCC5, the response of yield and accumulative evapotranspiration (ET) of winter wheat to climate change in the future were assessed by VIP model. The results showed that if effects of CO2 enrichment were excluded, temperature rise would lead to a reduction in the length of the growing period for wheat under the three climate change scenarios, and the wheat yield and ET presented a decrease tendency. The positive effect of atmospheric CO2 enrichment could offset most negative effect introduced by temperature rising, indicating that atmospheric CO2 enrichment would be the prime reason of the wheat yield rising in future. In 2050s, wheat yield would increase 14.8% (decrease 2.5% without CO2 fertilization) , and ET would decrease 2.1% under RCP4.5. By adoption of new crop variety with enhanced requirement on accumulative temperature, the wheat yield would increase more significantly with CO2 fertilization, but the water consumption would also increase. Therefore, cultivar breeding new irrigation techniques and agronomical management should be explored under the challenges of climate change in the future.

  12. Concentration of benzoxazinoids in roots of field-grown wheat (Triticum aestivum L.) varieties.

    PubMed

    Stochmal, Anna; Kus, Jan; Martyniuk, Stefan; Oleszek, Wieslaw

    2006-02-22

    Benzoxazinones are naturally occurring secondary metabolites of some Gramineae plants, responsible for their resistance to some pathogenic fungi and for their allelopathic action. Six varieties of winter wheat grown in fields under organic or conventional systems and 11 old accessions were tested for two consecutive seasons and three plant development stages for the concentration in their roots of cyclic hydroxamic acids and their degradation products. This is the first report of six benzoxazinones analyzed in plants grown in the field. An analytical technique employing LC-DAD was used for determination. It was shown that 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one, its degradation product 6-methoxybenzoxazolin-2-one, and the lactam 2-hydroxy-7-methoxy-1,4-benzoxazin-2-one were predominant compounds in all tested samples. Their concentrations significantly differed with plant development stage and season, but no significant differences were found between varieties and between plant cultivation systems. The concentrations of 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and its degradation product benzoxazolin-2-one (BOA) were much lower, ranging from 60 to 430 mg/kg of dry matter, depending on accession, stage of development, and season. There was no significant difference found between plants grown in different cultivation systems, but there were significant differences between old and new varieties; concentrations of DIBOA and its derivatives were significantly lower in old accessions. It was concluded that the concentrations of DIBOA and BOA, which are precursors of highly fungicidal 2-aminophenol, 2-amino-3H-phenoxazin-3-one, and 2-acetylamino-3H-phenoxazin-3-one, are theoretically high enough to protect plants against some soilborne pathogens.

  13. Resistance of Wheat Accessions to the English Grain Aphid Sitobion avenae

    PubMed Central

    Hu, Xiang-Shun; Liu, Ying-Jie; Wang, Yu-Han; Wang, Zhe; Yu, Xin-lin; Wang, Bo; Zhang, Gai-Sheng; Liu, Xiao-Feng; Hu, Zu-Qing; Zhao, Hui-Yan; Liu, Tong-Xian

    2016-01-01

    The English grain aphid, Sitobion avenae, is a major pest species of wheat crops; however, certain varieties may have stronger resistance to infestation than others. Here, we investigated 3 classical resistance mechanisms (antixenosis, antibiosis, and tolerance) by 14 wheat varieties/lines to S. avenae under laboratory and field conditions. Under laboratory conditions, alatae given the choice between 2 wheat varieties, strongly discriminated against certain varieties. Specifically, the ‘Amigo’ variety had the lowest palatability to S. avenae alatae of all varieties. ‘Tm’ (Triticum monococcum), ‘Astron,’ ‘Xanthus,’ ‘Ww2730,’ and ‘Batis’ varieties also had lower palatability than other varieties. Thus, these accessions may use antibiosis as the resistant mechanism. In contrast, under field conditions, there were no significant differences in the number of alatae detected on the 14 wheat varieties. One synthetic line (98-10-30, a cross between of Triticum aestivum (var. Chris) and Triticum turgidum (var. durum) hybridization) had low aphid numbers but high yield loss, indicating that it has high antibiosis, but poor tolerance. In comparison, ‘Amigo,’ ‘Xiaoyan22,’ and some ‘186Tm’ samples had high aphid numbers but low yield loss rates, indicating they have low antibiosis, but good tolerance. Aphid population size and wheat yield loss rates greatly varied in different fields and years for ‘98-10-35,’ ‘Xiaoyan22,’ ‘Tp,’ ‘Tam200,’ ‘PI high,’ and other ‘186Tm’ samples, which were hybrid offspring of T. aestivum and wheat related species. Thus, these germplasm should be considered for use in future studies. Overall, S. avenae is best adapted to ‘Xinong1376,’ because it was the most palatable variety, with the greatest yield loss rates of all 14 wheat varieties. However, individual varieties/lines influenced aphid populations differently in different years. Therefore, we strongly recommend a combination of

  14. Ancient wheat species and human health: Biochemical and clinical implications.

    PubMed

    Dinu, Monica; Whittaker, Anne; Pagliai, Giuditta; Benedettelli, Stefano; Sofi, Francesco

    2018-02-01

    Wheat is the major staple food in many diets. Based on the increase in worldwide mortality attributable to diet-related chronic diseases, there is an increasing interest in identifying wheat species with greater health potential, more specifically for improved anti-oxidant and anti-inflammatory properties. In particular, ancient varieties (defined as those species that have remained unchanged over the last hundred years) are gaining interest since several studies suggested that they present a healthier nutritional profile than modern wheats. This manuscript reviews the nutritional value and health benefits of ancient wheats varieties, providing a summary of all in vitro, ex vivo, animal and human studies that have thus far been published. Differences in chemical composition, and biochemical and clinical implications of emmer, einkorn, spelt, khorasan and various regional Italian varieties are discussed. Although many studies based on in vitro analyses of grain components provide support to the premise of a healthier nutritional and functional potential of ancient wheat, other in vitro studies performed are not in support of an improved potential of ancient varieties. In the light of existing evidence derived from in vivo experiments, the ancient wheat varieties have shown convincing beneficial effects on various parameters linked to cardio-metabolic diseases such as lipid and glycaemic profiles, as well as the inflammatory and oxidative status. However, given the limited number of human trials, it is not possible to definitively conclude that ancient wheat varieties are superior to all modern counterparts in reducing chronic disease risk. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Hard Spring Wheat Technical Committee 2016 Crop

    USDA-ARS?s Scientific Manuscript database

    Seven experimental lines of hard spring wheat were grown at up to five locations in 2016 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spri...

  16. Differentiation of modern and ancient varieties of common wheat by quantitative capillary electrophoretic profile of phenolic acids.

    PubMed

    Gotti, Roberto; Amadesi, Elisa; Fiori, Jessica; Bosi, Sara; Bregola, Valeria; Marotti, Ilaria; Dinelli, Giovanni

    2018-01-12

    Phenolic compounds have received great attention among the health promoting phytochemicals in common wheat (Triticum aestivum L.), mainly because of their strong antioxidant properties. In the present study a simple Capillary Zone Electrophoresis (CZE) method with UV detection was optimized and validated for the quantitation of six of the most important phenolic acids in whole grain i.e., sinapic, ferulic, syringic, p-coumaric, vanillic and p-hydroxybenzoic acid. The separation was achieved in a running buffer composed of sodium phosphate solution (50 mM) in water/methanol 80:20 (v/v) at pH 6.0 and using a fused-silica capillary at the temperature of 30 °C under application of 27 kV. By means of diode array detector, and made possible by the favorable characteristic UV spectra, the quantitation of the solutes was carried out at 200, 220 and 300 nm, in the complex matrices represented by the soluble and bound fractions of wheat flours. The validation parameters of the method i.e., linearity, sensitivity, precision, accuracy and robustness were in line with those obtained by consolidated separation techniques applied for the same purposes (e.g., HPLC-UV), with a significant advantage in term of analysis time (less than 12 min). Ten varieties of soft wheat (five modern Italian and five old Italian genotypes) were analysed and the data were subjected to Principal Components Analysis (PCA). Interestingly, significant differences of the quantitative phenolic acids profile were observed between the modern and the ancient genotypes, with the latter showing higher amount of the main represented phenolic acids. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Intake and sources of gluten in 20- to 75-year-old Danish adults: a national dietary survey.

    PubMed

    Hoppe, Camilla; Gøbel, Rikke; Kristensen, Mette; Lind, Mads Vendelbo; Matthiessen, Jeppe; Christensen, Tue; Trolle, Ellen; Fagt, Sisse; Madsen, Mia Linda; Husby, Steffen

    2017-02-01

    Celiac disease, an immunological response triggered by gluten, affects ~1 % of the Western population. Information concerning gluten intake in the general population is scarce. We determined intake of gluten from wheat, barley, rye and oat in the Danish National Survey of Diet and Physical Activity 2005-2008. The study population comprised a random cross-sectional sample of 1494 adults 20-75 years, selected from the Danish Civil Registration System. Protein content in wheat, rye, barley and oat was determined from the National Danish Food Composition Table and multiplied with the amount of cereal used in recipes. Amount of gluten was calculated as amount of cereal protein ×0.80 for wheat and oat, ×0.65 for rye and ×0.50 for barley. Dietary intake was recorded daily during seven consecutive days in pre-coded food diaries with open-answer possibilities. Mean total gluten intake was 10.4 ± 4.4 g/day (10th-90th percentiles; 5.4-16.2 g/day), in men 12.0 ± 4.6 g/day and 9.0 ± 3.4 g/day in women. It was higher among men than among women in all age groups (20-75 years; P < 0.0001); however, this difference was eliminated when adjusting for energy intake. Intake of different gluten sources tended to be higher in men than in women with the exception of gluten from barley. Total gluten intake decreased with increasing age (P < 0.0001) as did gluten intake from wheat (P < 0.0001), whereas intake of gluten from rye (P < 0.0001) and barley (P = 0.001) increased with increasing age, also when adjusted for energy intake or body weight. This study presents representative population-based data on gluten intake in Danish adults. Total gluten intake decreased with increasing age.

  18. Registration of 'LCS Wizard' wheat

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to develop widely adapted hard winter wheat (Triticum aestivum L.) varieties to meet the needs of mills, bakeries, and consumers in the eastern and Great Plains regions of the United States. ‘LCS Wizard’ (Reg. No. CV-1111, PI 669574), a hard red winter (HRW) wheat,...

  19. Quantifying variety-specific heat resistance and the potential for adaptation to climate change.

    PubMed

    Tack, Jesse; Barkley, Andrew; Rife, Trevor W; Poland, Jesse A; Nalley, Lawton Lanier

    2016-08-01

    The impact of climate change on crop yields has become widely measured; however, the linkages for winter wheat are less studied due to dramatic weather changes during the long growing season that are difficult to model. Recent research suggests significant reductions under warming. A potential adaptation strategy involves the development of heat resistant varieties by breeders, combined with alternative variety selection by producers. However, the impact of heat on specific wheat varieties remains relatively unstudied due to limited data and the complex genetic basis of heat tolerance. Here, we provide a novel econometric approach that combines field-trial data with a genetic cluster mapping to group wheat varieties and estimate a separate extreme heat impact (temperatures over 34 °C) across 24 clusters spanning 197 varieties. We find a wide range of heterogeneous heat resistance and a trade-off between average yield and resistance. Results suggest that recently released varieties are less heat resistant than older varieties, a pattern that also holds for on-farm varieties. Currently released - but not yet adopted - varieties do not offer improved resistance relative to varieties currently grown on farm. Our findings suggest that warming impacts could be significantly reduced through advances in wheat breeding and/or adoption decisions by producers. However, current adaptation-through-adoption potential is limited under a 1 °C warming scenario as increased heat resistance cannot be achieved without a reduction in average yields. © 2015 John Wiley & Sons Ltd.

  20. Variations in yield and gluten proteins in durum wheat varieties under late-season foliar versus soil application of nitrogen fertilizer in a northern Mediterranean environment.

    PubMed

    Visioli, Giovanna; Bonas, Urbana; Dal Cortivo, Cristian; Pasini, Gabriella; Marmiroli, Nelson; Mosca, Giuliano; Vamerali, Teofilo

    2018-04-01

    With the increasing demand for high-quality foodstuffs and concern for environmental sustainability, late-season nitrogen (N) foliar fertilization of common wheat is now an important and widespread practice. This study investigated the effects of late-season foliar versus soil N fertilization on yield and protein content of four varieties of durum wheat, Aureo, Ariosto, Biensur and Liberdur, in a three-year field trial in northern Italy. Variations in low-molecular-weight glutenins (LMW-GS), high-molecular-weight glutenins (HMW-GS) and gliadins were assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). It was found that N applied to the canopy did not improve protein rate compared with N application to the soil (general mean 138 mg g -1 ), but moderately increased productivity in the high-yielding varieties Liberdur and Biensur (three-year means 7.23 vs 7.13 and 7.53 vs 7.09 t ha -1 respectively). Technological quality was mainly related to variety choice, Aureo and Ariosto having higher protein rates and glutenin/gliadin ratios. Also found was a strong 'variety × N application method' interaction in the proportions of protein subunits within each class, particularly LMW-GS and gliadins. A promising result was the higher N uptake efficiency, although as apparent balance, combined with higher HMW/LMW-GS ratio in var. Biensur. Late-season foliar N fertilization allows N fertilizer saving, potentially providing environmental benefits in the rainy climate of the northern Mediterranean area, and also leads to variety-dependent up-regulation of essential LMW-GS and gliadins. Variety choice is a key factor in obtaining high technological quality, although it is currently associated with modest grain yield. This study provides evidence of high quality in the specific high-yielding variety Biensur, suggesting its potential as a mono-varietal semolina for pasta production. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Proteomic Analysis of Albumins and Globulins from Wheat Variety Chinese Spring and Its Fine Deletion Line 3BS-8

    PubMed Central

    Ma, Chao-Ying; Gao, Li-Yan; Li, Ning; Li, Xiao-Hui; Ma, Wu-Jun; Appels, Rudi; Yan, Yue-Ming

    2012-01-01

    The relationship between chromosome deletion in wheat and protein expression were investigated using Chinese Spring and fine deletion line 3BS-8. Through 2-DE (2-D electrophoresis) analysis, no differentially expressed proteins (DEPs) were found in leaf samples; however, 47 DEPs showed at least two-fold abundance variation (p < 0.05) in matured wheat grains and 21 spots were identified by tandem MALDI-TOF/TOF-MS. Among the identified spots, four were cultivar-specific, including three (spots B15, B16, and B21) in Chinese Spring and one in 3BS-8 (spot B10). Among variety-different DEPs between Chinese Spring and 3BS-8, most spots showed a higher express profile in CS; only four spots showed up-regulated expression tendency in 3BS-8. An interesting observation was that more than half of the identified protein spots were involved in storage proteins, of which 11 spots were identified as globulins. According to these results, we can presume that the encoded genes of protein spots B15, B16, and B21 were located on the chromosome segment deleted in 3BS-8. PMID:23202959

  2. [Adaptability of APSIM model in Southwestern China: A case study of winter wheat in Chongqing City].

    PubMed

    Dai, Tong; Wang, Jing; He, Di; Zhang, Jian-ping; Wang, Na

    2015-04-01

    Field experimental data of winter wheat and parallel daily meteorological data at four typical stations in Chongqing City were used to calibrate and validate APSIM-wheat model and determine the genetic parameters for 12 varieties of winter wheat. The results showed that there was a good agreement between the simulated and observed growth periods from sowing to emergence, flowering and maturity of wheat. Root mean squared errors (RMSEs) between simulated and observed emergence, flowering and maturity were 0-3, 1-8, and 0-8 d, respectively. Normalized root mean squared errors (NRMSEs) between simulated and observed above-ground biomass for 12 study varieties were less than 30%. NRMSE between simulated and observed yields for 10 varieties out of 12 study varieties were less than 30%. APSIM-wheat model performed well in simulating phenology, aboveground biomass and yield of winter wheat in Chongqing City, which could provide a foundational support for assessing the impact of climate change on wheat production in the study area based on the model.

  3. Perspectives to breed for improved baking quality wheat varieties adapted to organic growing conditions.

    PubMed

    Osman, Aart M; Struik, Paul C; van Bueren, Edith T Lammerts

    2012-01-30

    Northwestern European consumers like their bread to be voluminous and easy to chew. These attributes require a raw material that is rich in protein with, among other characteristics, a suitable ratio between gliadins and glutenins. Achieving this is a challenge for organic growers, because they lack cultivars that can realise high protein concentrations under the relatively low and variable availability of nitrogen during the grain-filling phase common in organic farming. Relatively low protein content in wheat grains thus needs to be compensated by a high proportion of high-quality protein. Organic farming therefore needs cultivars with genes encoding for optimal levels of glutenins and gliadins, a maximum ability for nitrogen uptake, a large storage capacity of nitrogen in the biomass, an adequate balance between vegetative and reproductive growth, a high nitrogen translocation efficiency for the vegetative parts into the grains during grain filling and an efficient conversion of nitrogen into high-quality proteins. In this perspective paper the options to breed and grow such varieties are discussed. Copyright © 2011 Society of Chemical Industry.

  4. The Response of Durum Wheat to the Preceding Crop in a Mediterranean Environment

    PubMed Central

    Ercoli, Laura; Masoni, Alessandro; Pampana, Silvia; Mariotti, Marco; Arduini, Iduna

    2014-01-01

    Crop sequence is an important management practice that may affect durum wheat (Triticum durum Desf.) production. Field research was conducted in 2007-2008 and 2008-2009 seasons in a rain-fed cold Mediterranean environment to examine the impact of the preceding crops alfalfa (Medicago sativa L.), maize (Zea mays L.), sunflower (Helianthus annuus L.), and bread wheat (Triticum aestivum L.) on yield and N uptake of four durum wheat varieties. The response of grain yield of durum wheat to the preceding crop was high in 2007-2008 and was absent in the 2008-2009 season, because of the heavy rainfall that negatively impacted establishment, vegetative growth, and grain yield of durum wheat due to waterlogging. In the first season, durum wheat grain yield was highest following alfalfa, and was 33% lower following wheat. The yield increase of durum wheat following alfalfa was mainly due to an increased number of spikes per unit area and number of kernels per spike, while the yield decrease following wheat was mainly due to a reduction of spike number per unit area. Variety growth habit and performance did not affect the response to preceding crop and varieties ranked in the order Levante > Saragolla = Svevo > Normanno. PMID:25401153

  5. Quality characteristics of U.S. soft white and club wheat

    USDA-ARS?s Scientific Manuscript database

    U.S. soft white wheat from the Pacific Northwest states of Washington, Oregon and Idaho is a premium quality, versatile soft wheat. Soft White wheat (SWW) is comprised of winter and spring-sown varieties; spike morphology further delineates the class into ‘common’ (lax) and club sub-classes. The reg...

  6. Variation between Ethiopian and North American barley varieties (Hordeum vulgare) in response to Russian wheat aphid (Diuraphis noxia) populations.

    PubMed

    Araya, Alemu; Belay, Tesfay; Hussein, Temam

    2014-03-15

    The Russian wheat aphid, Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae), causes severe damage to barley, Hordeum vulgare L. (Poales: Poaceae), in the highlands of Ethiopia. Little information is available on the control of this pest in Ethiopia. An experiment aimed at evaluating the resistance of barley varieties from the USA to D. noxia populations and determining biotypic variation between Ethiopian and North American D. noxia populations was conducted. The D. noxia-resistant barley varieties Burton and RWA-1758 from the USA, the resistant barley line 3296-15 from Ethiopia, and a local Ethiopian susceptible variety were included in a randomized design in a greenhouse under natural light conditions. There were highly significant differences (P < 0.001) in the mean D. noxia population, leaf chlorosis, leaf rolling, plant stunting, number of tillers per plant, and the percentage of infested tillers per plant between the resistant and susceptible varieties. The aphid population per tiller was lower on the resistant barley plants than on the susceptible plants. Severe plant damage was observed on the local barley variety, while the least damage was observed on Burton, followed by RWA-1758. Burton and RWA-1758 were therefore highly resistant and moderately resistant, respectively, to the northern Ethiopian D. noxia populations, indicating similarities in biotypes between the United States and northern Ethiopian D. noxia populations. The damage to variety 3296-15 was greater than to Burton and RWA-1758. Leaf chlorosis scores and leaf rolling scores for variety 3296-15 upon treatment with the north Ethiopian D. noxia population indicate likely biotypic variation between D. noxia populations of northern and central Ethiopia. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

  7. Development of high amylose wheat through TILLING

    PubMed Central

    2012-01-01

    Background Wheat (Triticum spp.) is an important source of food worldwide and the focus of considerable efforts to identify new combinations of genetic diversity for crop improvement. In particular, wheat starch composition is a major target for changes that could benefit human health. Starches with increased levels of amylose are of interest because of the correlation between higher amylose content and elevated levels of resistant starch, which has been shown to have beneficial effects on health for combating obesity and diabetes. TILLING (Targeting Induced Local Lesions in Genomes) is a means to identify novel genetic variation without the need for direct selection of phenotypes. Results Using TILLING to identify novel genetic variation in each of the A and B genomes in tetraploid durum wheat and the A, B and D genomes in hexaploid bread wheat, we have identified mutations in the form of single nucleotide polymorphisms (SNPs) in starch branching enzyme IIa genes (SBEIIa). Combining these new alleles of SBEIIa through breeding resulted in the development of high amylose durum and bread wheat varieties containing 47-55% amylose and having elevated resistant starch levels compared to wild-type wheat. High amylose lines also had reduced expression of SBEIIa RNA, changes in starch granule morphology and altered starch granule protein profiles as evaluated by mass spectrometry. Conclusions We report the use of TILLING to develop new traits in crops with complex genomes without the use of transgenic modifications. Combined mutations in SBEIIa in durum and bread wheat varieties resulted in lines with significantly increased amylose and resistant starch contents. PMID:22584013

  8. Influence of low-molecular-weight glutenin subunit haplotypes on dough rheology in elite common wheat varieties

    USDA-ARS?s Scientific Manuscript database

    The low molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins. They are encoded by a multigene family located at the Glu-3 loci, and their allelic variation strongly influences wheat end-use quality. Due to ambiguities in the LMW-GS allele nomenclature and to the co...

  9. Comparative efficiency of different methods of gluten extraction in indigenous varieties of wheat.

    PubMed

    Imran, Samra; Hussain, Zaib; Ghafoor, Farkhanda; Nagra, Saeedahmad; Ziai, Naheeda Ashbeal

    2013-06-01

    The present study investigated six varieties of locally grown wheat (Lasani, Sehar, Miraj-08, Chakwal-50, Faisalabad-08 and Inqlab) procured from Punjab Seed Corporation, Lahore, Pakistan for their proximate contents. On the basis of protein content and ready availability, Faisalabad-08 (FD-08) was selected to be used for the assessment of comparative efficiency of various methods used for gluten extraction. Three methods, mechanical, chemical and microbiological were used for the extraction of gluten from FD-08. Each method was carried out under ambient conditions using a drying temperature of 55 degrees C. Mechanical method utilized four different processes viz:- dough process, dough batter process, batter process and ethanol washing process using standard 150 mesh. The starch thus obtained was analyzed for its proximate contents. Dough batter process proved to be the most efficient mechanical method and was further investigated using 200 and 300 mesh. Gluten content was determined using sandwich omega-gliadin enzyme-linked immunosorbent assay (ELISA).The results of dough batter process using 200 mesh indicated a starch product with gluten content of 678 ppm. Chemical method indicated high gluten content of more than 5000 ppm and the microbiological method reduced the gluten content from 2500 ppm to 398 ppm. From the results it was observed that no gluten extraction method is viable to produce starch which can fulfill the criteria of a gluten free product (20 ppm).

  10. Overseas Varietal Analysis: 2008 Crop Soft Red Winter Wheat

    USDA-ARS?s Scientific Manuscript database

    The 2008 U.S. Wheat Associates Overseas Varietal Analysis evaluated ten soft red winter wheat varieties DK 9577, USG 3665, and USG 3350 from Arkansas, Jamestown, Tribute, and USG 3555 from Virginia, Branson, Magnolia, and Coker 9553 from North Carolina, and Bess from Missouri. Samples were evaluate...

  11. Overseas Varietal Analysis 2010 Crop Soft Red Winter Wheat

    USDA-ARS?s Scientific Manuscript database

    The 2010 U.S. Wheat Associates Overseas Varietal Analysis project evaluated ten soft red winter wheat varieties: Jamestown, Merl and Shirley from Virginia; Coker 9553 and Oakes from North Carolina; Baldwin from Georgia; Renegade and DK 9577 from Arkansas; USG 3555 from Tennessee; and, Malabar from O...

  12. Volatile organic compounds of whole grain soft winter wheat

    USDA-ARS?s Scientific Manuscript database

    The aroma from volatile organic compounds (VOCs) is an indicator of grain soundness and also an important quality attribute of grain foods. To identify the inherent VOCs of wheat grain unaffected by fungal infestation and other extrinsic factors, grains of nine soft wheat varieties were collected at...

  13. Soft wheat quality characteristics required for making baking powder biscuits

    USDA-ARS?s Scientific Manuscript database

    Fifteen soft wheat varieties were evaluated for their grain, milling, flour and dough mixing characteristics, as well as their solvent retention capacities (SRCs), pasting properties and suitability for making baking powder biscuits, to identify wheat quality characteristics required for making bisc...

  14. [Faba bean fusarium wilt (Fusarium oxysporum )control and its mechanism in different wheat varieties and faba bean intercropping system].

    PubMed

    Dong, Yan; Dong, Kun; Zheng, Yi; Tang, Li; Yang, Zhi-Xian

    2014-07-01

    Field experiment and hydroponic culture were conducted to investigate effects of three wheat varieties (Yunmai 42, Yunmai 47 and Mianyang 29) and faba bean intercropping on the shoot biomass, disease index of fusarium wilt, functional diversity of microbial community and the amount of Fusarium oxysporum in rhizosphere of faba bean. Contents and components of the soluble sugars, free amino acids and organic acids in the root exudates were also examined. Results showed that, compared with monocropped faba bean, shoot biomass of faba bean significantly increased by 16.6% and 13.4%, disease index of faba bean fusarium wilt significantly decreased by 47.6% and 23.3% as intercropped with Yunmai 42 and Yunmai 47, but no significant differences of both shoot biomass and disease index were found as intercropped with Mianyang 29. Compared with monocropped faba bean, the average well color development (AWCD value) and total utilization ability of carbon sources of faba bean significantly increased, the amount of Fusarium oxysporum of faba bean rhizosphere significantly decreased, and the microbial community structures of faba bean rhizosphere changed as intercropped with YM42 and YM47, while no significant effects as intercropped with MY29. Total contents of soluble sugar, free amino acids and organic acids in root exudates were in the trend of MY29>YM47>YM42. Contents of serine, glutamic, glycine, valine, methionine, phenylalanine, lysine in root exudates of MY29 were significantly higher than that in YM42 and YM47. The arginine was detected only in the root exudates of YM42 and YM47, and leucine was detected only in the root exudates of MY29. Six organic acids of tartaric acid, malic acid, citric acid, succinic acid, fumaric acid, t-aconitic acid were detected in root exudates of MY29 and YM47, and four organic acids of tartaric acid, malic acid, citric acid, fumaric acid were detected in root exudates of YM42. Malic acid content in root exudates of YM47 and MY29 was

  15. Quality requirements of soft red winter wheat for making northern-style Chinese steamed bread

    USDA-ARS?s Scientific Manuscript database

    Flours of 19 soft red winter (SRW) wheat varieties having protein contents of 6.6 to 9.9% were used to determine the suitability of SRW wheat for making steamed bread and the influences of flour characteristics on the quality attributes of steamed bread. Fourteen varieties produced steamed bread of ...

  16. Overseas Varietal Analysis 2011 Crop Soft Red Winter Wheat

    USDA-ARS?s Scientific Manuscript database

    The 2011 U.S. Wheat Associates Overseas Varietal Analysis project evaluated ten soft red winter wheat varieties: Malabar and AGI 303 from Ohio, Terral TV 8861 from Louisiana, SY 9978 and Coker 9804 from North Carolina, Merl and Shirley from Virginia, AGS 2060 from Arkansas, and USG 3201 and USG 3251...

  17. Agrobacterium-Mediated Transformation of Bread and Durum Wheat Using Freshly Isolated Immature Embryos

    NASA Astrophysics Data System (ADS)

    Huixia, Wu; Angela, Doherty; Jones, Huw D.

    Agrobacterium-mediated transformation of wheat is becoming a viable alternative to the more established biolistic protocols. It offers advantages in terms of simple, low-copy-number integrations and can be applied with similar efficiencies to specific durum wheat and spring and winter bread wheat types varieties.

  18. Interspecific and intergeneric hybridization as a source of variation for wheat grain quality improvement.

    PubMed

    Alvarez, Juan B; Guzmán, Carlos

    2018-02-01

    The hybridization events with wild relatives and old varieties are an alternative source for enlarging the wheat quality variability. This review describes these process and their effects on the technological and nutritional quality. Wheat quality and its end-uses are mainly based on variation in three traits: grain hardness, gluten quality and starch. In recent times, the importance of nutritional quality and health-related aspects has increased the range of these traits with the inclusion of other grain components such as vitamins, fibre and micronutrients. One option to enlarge the genetic variability in wheat for all these components has been the use of wild relatives, together with underutilised or neglected wheat varieties or species. In the current review, we summarise the role of each grain component in relation to grain quality, their variation in modern wheat and the alternative sources in which wheat breeders have found novel variation.

  19. The Interactive Effects of Transgenically Overexpressed 1Ax1 with Various HMW-GS Combinations on Dough Quality by Introgression of Exogenous Subunits into an Elite Chinese Wheat Variety

    PubMed Central

    Zhang, Jian; Lei, Qian; Meng, Dandan; Ma, Fengyun; Hu, Wei; Chen, Mingjie; Chang, Junli; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan

    2013-01-01

    Seed storage proteins in wheat endosperm, particularly high-molecular-weight glutenin subunits (HMW-GS), are primary determinants of dough properties, and affect both end-use quality and grain utilization of wheat (Triticum aestivum L). In order to investigate the interactive effects between the transgenically overexpressed 1Ax1 subunit with different HMW-GS on dough quality traits, we developed a set of 8 introgression lines (ILs) overexpressing the transgenic HMW-glutenin subunit 1Ax1 by introgression of this transgene from transgenic line B102-1-2/1 into an elite Chinese wheat variety Chuanmai107 (C107), using conventional crossing and backcrossing breeding technique. The donor C107 strain lacks 1Ax1 but contains the HMW-GS pairs 1Dx2+1Dy12 and 1Bx7+1By9. The resultant ILs showed robust and stable expression of 1Ax1 even after five generations of self-pollination, and crossing/backcrossing three times. In addition, overexpression of 1Ax1 was compensated by the endogenous gluten proteins. All ILs exhibited superior agronomic performance when compared to the transgenic parent line, B102-1-2/1. Mixograph results demonstrated that overexpressed 1Ax1 significantly improved dough strength, resistance to extension and over-mixing tolerance, in the targeted wheat cultivar C107. Further, comparisons among the ILs showed the interactive effects of endogenous subunits on dough properties when 1Ax1 was overexpressed: subunit pair 17+18 contributed to increased over-mixing tolerance of the dough; expression of the Glu-D1 allele maintained an appropriate balance between x-type and y-type subunits and thereby improved dough quality. It is consistent with ILs C4 (HMW-GS are 1, 17+18, 2+12) had the highest gluten index and Zeleny sedimentation value. This study demonstrates that wheat quality could be improved by using transgenic wheat overexpressing HMW-GS and the feasibility of using such transgenic lines in wheat quality breeding programs. PMID:24167625

  20. Major controlling factors and prediction models for arsenic uptake from soil to wheat plants.

    PubMed

    Dai, Yunchao; Lv, Jialong; Liu, Ke; Zhao, Xiaoyan; Cao, Yingfei

    2016-08-01

    The application of current Chinese agriculture soil quality standards fails to evaluate the land utilization functions appropriately due to the diversity of soil properties and plant species. Therefore, the standards should be amended. A greenhouse experiment was conducted to investigate arsenic (As) enrichment in various soils from 18 Chinese provinces in parallel with As transfer to 8 wheat varieties. The goal of the study was to build and calibrate soil-wheat threshold models to forecast the As threshold of wheat soils. In Shaanxi soils, Wanmai and Jimai were the most sensitive and insensitive wheat varieties, respectively; and in Jiangxi soils, Zhengmai and Xumai were the most sensitive and insensitive wheat varieties, respectively. Relationships between soil properties and the bioconcentration factor (BCF) were built based on stepwise multiple linear regressions. Soil pH was the best predictor of BCF, and after normalizing the regression equation (Log BCF=0.2054 pH- 3.2055, R(2)=0.8474, n=14, p<0.001), we obtained a calibrated model. Using the calibrated model, a continuous soil-wheat threshold equation (HC5=10((-0.2054 pH+2.9935))+9.2) was obtained for the species-sensitive distribution curve, which was built on Chinese food safety standards. The threshold equation is a helpful tool that can be applied to estimate As uptake from soil to wheat. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Photosynthesis and yield reductions from wheat stem sawfly (Hymenoptera: Cephidae): interactions with wheat solidness, water stress, and phosphorus deficiency.

    PubMed

    Delaney, Kevin J; Weaver, David K; Peterson, Robert K D

    2010-04-01

    The impact of herbivory on plants is variable and influenced by several factors. The current study examined causes of variation in the impact of larval stem mining by the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), on spring wheat, Triticum aestivum L. We performed greenhouse experiments over 2 yr to (1) study whether biotic (hollow versus solid stemmed host wheat) and abiotic (water, phosphorus stress) factors interact with C. cinctus stem mining to influence degree of mined stem physiological (photosynthesis) and yield (grain weight) reductions; and (2) determine whether whole plant yield compensatory responses occur to offset stem-mining reductions. Flag leaf photosynthetic reduction was not detected 16-20 d after infestation, but were detected at 40-42 d and doubled from water or phosphorus stresses. Main stem grain weight decreased from 10 to 25% from stem mining, largely due to reductions in grain size, with greater reductions under low phosphorus and/or water levels. Phosphorus-deficient plants without water stress were most susceptible to C. cinctus, more than doubling the grain weight reduction due to larval feeding relative to other water and phosphorus treatments. Two solid stemmed varieties with stem mining had less grain weight loss than a hollow stemmed variety, so greater internal mechanical resistance may reduce larval stem mining and plant yield reductions. Our results emphasize the importance of sufficient water and macronutrients for plants grown in regions impacted by C. cinctus. Also, solid stemmed varieties not only reduce wheat lodging from C. cinctus, they may reduce harvested grain losses from infested stems.

  2. Irrigation offsets wheat yield reductions from warming temperatures

    NASA Astrophysics Data System (ADS)

    Tack, Jesse; Barkley, Andrew; Hendricks, Nathan

    2017-11-01

    Temperature increases due to climate change are expected to cause substantial reductions in global wheat yields. However, uncertainty remains regarding the potential role for irrigation as an adaptation strategy to offset heat impacts. Here we utilize over 7000 observations spanning eleven Kansas field-trial locations, 180 varieties, and 29 years to show that irrigation significantly reduces the negative impact of warming temperatures on winter wheat yields. Dryland wheat yields are estimated to decrease about eight percent for every one-degree Celsius increase in temperature, yet irrigation completely offsets this negative impact in our sample. As in previous studies, we find that important interactions exist between heat stress and precipitation for dryland production. Here, uniquely, we observe both dryland and irrigated trials side-by-side at the same locations and find that precipitation does not provide the same reduction in heat stress as irrigation. This is likely to be because the timing, intensity, and volume of water applications influence wheat yields, so the ability to irrigate—rather than relying on rainfall alone—has a stronger influence on heat stress. We find evidence of extensive differences of water-deficit stress impacts across varieties. This provides some evidence of the potential for adapting to hotter and drier climate conditions using optimal variety selection. Overall, our results highlight the critical role of water management for future global food security. Water scarcity not only reduces crop yields through water-deficit stress, but also amplifies the negative effects of warming temperatures.

  3. Bran characteristics and bread-baking quality of whole grain wheat flour

    USDA-ARS?s Scientific Manuscript database

    Varietal variations in physical and compositional characteristics of bran and their associations with bread-baking quality of whole grain wheat flour (WWF) were investigated using bran obtained from roller milling of 18 wheat varieties. Bran was characterized for composition including protein, fat, ...

  4. Unlocking the genetic diversity of Creole wheats.

    PubMed

    Vikram, Prashant; Franco, Jorge; Burgueño-Ferreira, Juan; Li, Huihui; Sehgal, Deepmala; Saint Pierre, Carolina; Ortiz, Cynthia; Sneller, Clay; Tattaris, Maria; Guzman, Carlos; Sansaloni, Carolina Paola; Ellis, Mark; Fuentes-Davila, Guillermo; Reynolds, Matthew; Sonders, Kai; Singh, Pawan; Payne, Thomas; Wenzl, Peter; Sharma, Achla; Bains, Navtej Singh; Singh, Gyanendra Pratap; Crossa, José; Singh, Sukhwinder

    2016-03-15

    Climate change and slow yield gains pose a major threat to global wheat production. Underutilized genetic resources including landraces and wild relatives are key elements for developing high-yielding and climate-resilient wheat varieties. Landraces introduced into Mexico from Europe, also known as Creole wheats, are adapted to a wide range of climatic regimes and represent a unique genetic resource. Eight thousand four hundred and sixteen wheat landraces representing all dimensions of Mexico were characterized through genotyping-by-sequencing technology. Results revealed sub-groups adapted to specific environments of Mexico. Broadly, accessions from north and south of Mexico showed considerable genetic differentiation. However, a large percentage of landrace accessions were genetically very close, although belonged to different regions most likely due to the recent (nearly five centuries before) introduction of wheat in Mexico. Some of the groups adapted to extreme environments and accumulated high number of rare alleles. Core reference sets were assembled simultaneously using multiple variables, capturing 89% of the rare alleles present in the complete set. Genetic information about Mexican wheat landraces and core reference set can be effectively utilized in next generation wheat varietal improvement.

  5. Effect of warming temperatures on US wheat yields.

    PubMed

    Tack, Jesse; Barkley, Andrew; Nalley, Lawton Lanier

    2015-06-02

    Climate change is expected to increase future temperatures, potentially resulting in reduced crop production in many key production regions. Research quantifying the complex relationship between weather variables and wheat yields is rapidly growing, and recent advances have used a variety of model specifications that differ in how temperature data are included in the statistical yield equation. A unique data set that combines Kansas wheat variety field trial outcomes for 1985-2013 with location-specific weather data is used to analyze the effect of weather on wheat yield using regression analysis. Our results indicate that the effect of temperature exposure varies across the September-May growing season. The largest drivers of yield loss are freezing temperatures in the Fall and extreme heat events in the Spring. We also find that the overall effect of warming on yields is negative, even after accounting for the benefits of reduced exposure to freezing temperatures. Our analysis indicates that there exists a tradeoff between average (mean) yield and ability to resist extreme heat across varieties. More-recently released varieties are less able to resist heat than older lines. Our results also indicate that warming effects would be partially offset by increased rainfall in the Spring. Finally, we find that the method used to construct measures of temperature exposure matters for both the predictive performance of the regression model and the forecasted warming impacts on yields.

  6. Wheat-based foods and non celiac gluten/wheat sensitivity: Is drastic processing the main key issue?

    PubMed

    Fardet, Anthony

    2015-12-01

    While gluten and wheat must be absolutely avoided in coeliac disease and allergy, respectively, nutritional recommendations are largely more confused about non-coeliac wheat/gluten sensitivity (NCWGS). Today, some even recommend avoiding all cereal-based foods. In this paper, the increased NCWGS prevalence is hypothesized to parallel the use of more and more drastic processes applied to the original wheat grain. First, a parallel between gluten-related disorders and wheat processing and consumption evolution is briefly proposed. Notably, increased use of exogenous vital gluten is considered. Drastic processing in wheat technology are mainly grain fractionation and refining followed by recombination and salt, sugars and fats addition, being able to render ultra-processed cereal-based foods more prone to trigger chronic low-grade inflammation. Concerning bread, intensive kneading and the choice of wheat varieties with high baking quality may have rendered gluten less digestible, moving digestion from pancreatic to intestinal proteases. The hypothesis of a gluten resistant fraction reaching colon and interacting with microflora is also considered in relation with increased inflammation. Besides, wheat flour refining removes fiber co-passenger which have potential anti-inflammatory property able to protect digestive epithelium. Finally, some research tracks are proposed, notably the comparison of NCWGS prevalence in populations consuming ultra-versus minimally-processed cereal-based foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat.

    PubMed

    Zhu, Xiuliang; Li, Zhao; Xu, Huijun; Zhou, Miaoping; Du, Lipu; Zhang, Zengyan

    2012-08-01

    The fungus Cochliobolus sativus is the main pathogen of common root rot, a serious soil-borne disease of wheat (Triticum aestivum L.). The fungus Fusarium graminearum is the primary pathogen of Fusarium head blight, a devastating disease of wheat worldwide. In this study, the wheat lipid transfer protein gene, TaLTP5, was cloned and evaluated for its ability to suppress disease development in transgenic wheat. TaLTP5 expression was induced after C. sativus infection. The TaLTP5 expression vector, pA25-TaLTP5, was constructed and bombarded into Chinese wheat variety Yangmai 18. Six TaLTP5 transgenic wheat lines were established and characterized. PCR and Southern blot analyses indicated that the introduced TaLTP5 gene was integrated into the genomes of six transgenic wheat lines by distinct patterns, and heritable. RT-PCR and real-time quantitative RT-PCR revealed that the TaLTP5 gene was over-expressed in the transgenic wheat lines compared to segregants lacking the transgene and wild-type wheat plants. Following challenge with C. sativus or F. graminearum, all six transgenic lines overexpressing TaLTP5 exhibited significantly enhanced resistance to both common root rot and Fusarium head blight compared to the untransformed wheat Yangmai 18.

  8. Impact of Ethylene diurea (EDU) on growth, yield and proteome of two winter wheat varieties under high ambient ozone phytotoxicity.

    PubMed

    Gupta, Sunil K; Sharma, Marisha; Majumder, Baisakhi; Maurya, Vivek K; Lohani, Meenakshi; Deeba, Farah; Pandey, Vivek

    2018-04-01

    The present study evaluated the impact of high ambient O 3 on morphological, physiological and biochemical traits and leaf proteome in two high-yielding varieties of wheat using ethylene diurea (EDU) as foliar spray (200 and 300 ppm). Average ambient ozone concentration was 60 ppb which was more than sufficient to cause phytotoxic effects. EDU treatment resulted in less lipid peroxidation along with increased chlorophyll content, biomass and yield. EDU alleviated the negative effects of ozone by enhancing activities of antioxidants and antioxidative enzymes. Two dimensional electrophoresis (2DGE) analysis revealed massive changes in protein abundance in Kundan at vegetative stage (50% proteins were increased, 20% were decreased) and at flowering stage (25% increased, 18% decreased). In PBW 343 at both the developmental stages about 15% proteins were increased whereas 20% were decreased in abundance. Higher abundance of proteins related to carbon metabolism, defense and photorespiration conferred tolerance to EDU treated Kundan. In PBW343, EDU provided incomplete protection as evidenced by low abundance of many primary metabolism related proteins. Proteomic changes in response to EDU treatment in two varieties are discussed in relation to growth and yield. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Early response of wheat antioxidant system with special reference to Fusarium head blight stress.

    PubMed

    Spanic, Valentina; Viljevac Vuletic, Marija; Abicic, Ivan; Marcek, Tihana

    2017-06-01

    Fusarium head blight (FHB) is a destructive fungal disease of wheat (Triticum aestivum L.) that causes significant grain yield losses and end-use quality reduction associated with contamination by the mycotoxin deoxynivalenol (DON). Three winter wheat varieties ('Vulkan', 'Kraljica' and 'Golubica') were screened for FHB resistance using artificial inoculation technique under field conditions. The aim of this study was to examine a relationship between FHB resistance and the effectiveness of enzyme antioxidant system of wheat varieties under different sampling times (3, 15, 24, 48, 96, 120 and 336 hai). In the time-course experiments FHB-resistant variety 'Vulkan' showed rapid induction of ascorbate peroxidase (APX) and polyphenol oxidase (PPO) activity in the early stages after infection (3 hai) and it seems that in 'Vulkan' FHB-resistance is associated with antioxidative enzymes activity. Moderately FHB resistant variety 'Kraljica' showed the higher guaiacol peroxidase (POD) activity and higher H 2 O 2 content after 24 hai, increased malondialdehyde (MDA) content at the beginning of infection (3, 15 hai) while induction of catalase (CAT), APX and PPO was delayed. FHB-susceptible variety 'Golubica' involved antioxidant enzymes in defense response much later. Based on our results the activity of antioxidant enzymes (APX and PPO) was more pronounced in 'Vulkan' than in FHB-medium resistant variety 'Kraljica' and FHB-susceptible 'Golubica'. The differences in antioxidant response of wheat varieties under Fusarium infestation could be the result of genetic properties. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat

    PubMed Central

    Zheng, Jiacheng; Yang, Zhiyuan; Madgwick, Pippa J.; Carmo-Silva, Elizabete; Parry, Martin A. J.; Hu, Yin-Gang

    2015-01-01

    ERECTA encodes a receptor-like kinase and is proposed as a candidate for determining transpiration efficiency of plants. Two genes homologous to ERECTA in Arabidopsis were identified on chromosomes 6 (TaER2) and 7 (TaER1) of bread wheat (Triticum aestivum L.), with copies of each gene on the A, B and D genomes of wheat. Similar expression patterns were observed for TaER1 and TaER2 with relatively higher expression of TaER1 in flag leaves of wheat at heading (Z55) and grain-filling (Z73) stages. Significant variations were found in the expression levels of both TaER1 and TaER2 in the flag leaves at both growth stages among 48 diverse bread wheat varieties. Based on the expression of TaER1 and TaER2, the 48 wheat varieties could be classified into three groups having high (5 varieties), medium (27 varieties) and low (16 varieties) levels of TaER expression. Significant differences were also observed between the three groups varying for TaER expression for several transpiration efficiency (TE)- related traits, including stomatal density (SD), transpiration rate, photosynthetic rate (A), instant water use efficiency (WUEi) and carbon isotope discrimination (CID), and yield traits of biomass production plant-1 (BYPP) and grain yield plant-1 (GYPP). Correlation analysis revealed that the expression of TaER1 and TaER2 at the two growth stages was significantly and negatively associated with SD (P<0.01), transpiration rate (P<0.05) and CID (P<0.01), while significantly and positively correlated with flag leaf area (FLA, P<0.01), A (P<0.05), WUEi (P<0.05), BYPP (P<0.01) and GYPP (P<0.01), with stronger correlations for TaER1 than TaER2 and at grain-filling stage than at heading stage. These combined results suggested that TaER involved in development of transpiration efficiency -related traits and yield in bread wheat, implying a function for TaER in regulating leaf development of bread wheat and contributing to expression of these traits. Moreover, the results indicate

  11. TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat.

    PubMed

    Zheng, Jiacheng; Yang, Zhiyuan; Madgwick, Pippa J; Carmo-Silva, Elizabete; Parry, Martin A J; Hu, Yin-Gang

    2015-01-01

    ERECTA encodes a receptor-like kinase and is proposed as a candidate for determining transpiration efficiency of plants. Two genes homologous to ERECTA in Arabidopsis were identified on chromosomes 6 (TaER2) and 7 (TaER1) of bread wheat (Triticum aestivum L.), with copies of each gene on the A, B and D genomes of wheat. Similar expression patterns were observed for TaER1 and TaER2 with relatively higher expression of TaER1 in flag leaves of wheat at heading (Z55) and grain-filling (Z73) stages. Significant variations were found in the expression levels of both TaER1 and TaER2 in the flag leaves at both growth stages among 48 diverse bread wheat varieties. Based on the expression of TaER1 and TaER2, the 48 wheat varieties could be classified into three groups having high (5 varieties), medium (27 varieties) and low (16 varieties) levels of TaER expression. Significant differences were also observed between the three groups varying for TaER expression for several transpiration efficiency (TE)- related traits, including stomatal density (SD), transpiration rate, photosynthetic rate (A), instant water use efficiency (WUEi) and carbon isotope discrimination (CID), and yield traits of biomass production plant-1 (BYPP) and grain yield plant-1 (GYPP). Correlation analysis revealed that the expression of TaER1 and TaER2 at the two growth stages was significantly and negatively associated with SD (P<0.01), transpiration rate (P<0.05) and CID (P<0.01), while significantly and positively correlated with flag leaf area (FLA, P<0.01), A (P<0.05), WUEi (P<0.05), BYPP (P<0.01) and GYPP (P<0.01), with stronger correlations for TaER1 than TaER2 and at grain-filling stage than at heading stage. These combined results suggested that TaER involved in development of transpiration efficiency -related traits and yield in bread wheat, implying a function for TaER in regulating leaf development of bread wheat and contributing to expression of these traits. Moreover, the results indicate

  12. Overview of the Wheat Genetic Transformation and Breeding Status in China.

    PubMed

    Han, Jiapeng; Yu, Xiaofen; Chang, Junli; Yang, Guangxiao; He, Guangyuan

    2017-01-01

    In the past two decades, Chinese scientists have achieved significant progress on three aspects of wheat genetic transformation. First, the wheat transformation platform has been established and optimized to improve the transformation efficiency, shorten the time required from starting of transformation procedure to the fertile transgenic wheat plants obtained as well as to overcome the problem of genotype-dependent for wheat genetic transformation in wide range of wheat elite varieties. Second, with the help of many emerging techniques such as CRISPR/cas9 function of over 100 wheat genes has been investigated. Finally, modern technology has been combined with the traditional breeding technique such as crossing to accelerate the application of wheat transformation. Overall, the wheat end-use quality and the characteristics of wheat stress tolerance have been improved by wheat genetic engineering technique. So far, wheat transgenic lines integrated with quality-improved genes and stress tolerant genes have been on the way of Production Test stage in the field. The debates and the future studies on wheat transformation have been discussed, and the brief summary of Chinese wheat breeding research history has also been provided in this review.

  13. Bran characteristics influencing quality attributes of whole wheat Chinese steamed bread

    USDA-ARS?s Scientific Manuscript database

    This study investigated the variations in the characteristics of brans obtained from a pilot-scale milling of 17 soft red winter wheat varieties and their influences on the quality of whole wheat northern-style Chinese steamed bread (CSB) prepared from blends of a base flour and brans of different w...

  14. Association Analysis of Genomic Loci Important for Grain Weight Control in Elite Common Wheat Varieties Cultivated with Variable Water and Fertiliser Supply

    PubMed Central

    Zhang, Kunpu; Wang, Junjun; Zhang, Liyi; Rong, Chaowu; Zhao, Fengwu; Peng, Tao; Li, Huimin; Cheng, Dongmei; Liu, Xin; Qin, Huanju; Zhang, Aimin; Tong, Yiping; Wang, Daowen

    2013-01-01

    Grain weight, an essential yield component, is under strong genetic control and markedly influenced by the environment. Here, by genome-wide association analysis with a panel of 94 elite common wheat varieties, 37 loci were found significantly associated with thousand-grain weight (TGW) in one or more environments differing in water and fertiliser levels. Five loci were stably associated with TGW under all 12 environments examined. Their elite alleles had positive effects on TGW. Four, two, three, and two loci were consistently associated with TGW in the irrigated and fertilised (IF), rainfed (RF), reduced nitrogen (RN), and reduced phosphorus (RP) environments. The elite alleles of the IF-specific loci enhanced TGW under well-resourced conditions, whereas those of the RF-, RN-, or RP-specific loci conferred tolerance to the TGW decrease when irrigation, nitrogen, or phosphorus were reduced. Moreover, the elite alleles of the environment-independent and -specific loci often acted additively to enhance TGW. Four additional loci were found associated with TGW in specific locations, one of which was shown to contribute to the TGW difference between two experimental sites. Further analysis of 14 associated loci revealed that nine affected both grain length and width, whereas the remaining loci influenced either grain length or width, indicating that these loci control grain weight by regulating kernel size. Finally, the elite allele of Xpsp3152 frequently co-segregated with the larger grain haplotype of TaGW2-6A, suggesting probable genetic and functional linkages between Xpsp3152 and GW2 that are important for grain weight control in cereal plants. Our study provides new knowledge on TGW control in elite common wheat lines, which may aid the improvement of wheat grain weight trait in further research. PMID:23469248

  15. Breeding progress, environmental variation and correlation of winter wheat yield and quality traits in German official variety trials and on-farm during 1983-2014.

    PubMed

    Laidig, Friedrich; Piepho, Hans-Peter; Rentel, Dirk; Drobek, Thomas; Meyer, Uwe; Huesken, Alexandra

    2017-01-01

    Over the last 32 years, a large gain in grain yield (24 %) was achieved in official German variety trials, and despite considerable loss in protein concentration (-7.9 %), winter wheat baking quality was partially improved over the last 32 years. On-farm gain in grain yield (32 %) exceeded gain in trials, but at yield level about 25 dt ha -1 lower. Breeding progress was very successfully transferred into both progress in grain yield and on-farm baking quality. Long-term gains in grain yield and baking quality of 316 winter wheat varieties from German official trials were evaluated. We dissected progress into a genetic and a non-genetic part to quantify the contribution of genetic improvement. We further investigated the influence of genotype and environment on total variation by estimating variance components. We also estimated genetic and phenotypic correlation between quality traits. For trial data, we found a large gain in grain yield (24%), but a strong decline in protein concentration (-8.0%) and loaf volume (-8.5%) relative to 1983. Improvement of baking quality could be achieved for falling number (5.8%), sedimentation value (7.9%), hardness (13.4%), water absorption (1.2%) and milling yield (2.4%). Grain yield, falling number and protein concentration were highly influenced by environment, whereas for sedimentation value, hardness, water absorption and loaf volume genotypes accounted for more than 60% of total variation. Strong to very strong relations exist among protein concentration, sedimentation value, and loaf volume. On-farm yields were obtained from national statistics, and grain quality data from samples collected by national harvest survey. These on-farm data were compared with trial results. On-farm gain in grain yield was 31.6%, but at a mean level about 25 dt ha -1  lower. Improvement of on-farm quality exceeded trial results considerably. A shift to varieties with improved baking quality can be considered as the main reason for this

  16. Whole Genome Association Mapping of Plant Height in Winter Wheat (Triticum aestivum L.)

    PubMed Central

    Zanke, Christine D.; Ling, Jie; Plieske, Jörg; Kollers, Sonja; Ebmeyer, Erhard; Korzun, Viktor; Argillier, Odile; Stiewe, Gunther; Hinze, Maike; Neumann, Kerstin; Ganal, Martin W.; Röder, Marion S.

    2014-01-01

    The genetic architecture of plant height was investigated in a set of 358 recent European winter wheat varieties plus 14 spring wheat varieties based on field data in eight environments. Genotyping of diagnostic markers revealed the Rht-D1b mutant allele in 58% of the investigated varieties, while the Rht-B1b mutant was only present in 7% of the varieties. Rht-D1 was significantly associated with plant height by using a mixed linear model and employing a kinship matrix to correct for population stratification. Further genotyping data included 732 microsatellite markers, resulting in 770 loci, of which 635 markers were placed on the ITMI map plus a set of 7769 mapped SNP markers genotyped with the 90 k iSELECT chip. When Bonferroni correction was applied, a total of 153 significant marker-trait associations (MTAs) were observed for plant height and the SSR markers (−log10 (P-value) ≥4.82) and 280 (−log10 (P-value) ≥5.89) for the SNPs. Linear regression between the most effective markers and the BLUEs for plant height indicated additive effects for the MTAs of different chromosomal regions. Analysis of syntenic regions in the rice genome revealed closely linked rice genes related to gibberellin acid (GA) metabolism and perception, i.e. GA20 and GA2 oxidases orthologous to wheat chromosomes 1A, 2A, 3A, 3B, 5B, 5D and 7B, ent-kaurenoic acid oxidase orthologous to wheat chromosome 7A, ent-kaurene synthase on wheat chromosome 2B, as well as GA-receptors like DELLA genes orthologous to wheat chromosomes 4B, 4D and 7A and genes of the GID family orthologous to chromosomes 2B and 5B. The data indicated that besides the widely used GA-insensitive dwarfing genes Rht-B1 and Rht-D1 there is a wide spectrum of loci available that could be used for modulating plant height in variety development. PMID:25405621

  17. Biolistic- and Agrobacterium-mediated transformation protocols for wheat.

    PubMed

    Tamás-Nyitrai, Cecília; Jones, Huw D; Tamás, László

    2012-01-01

    After rice, wheat is considered to be the most important world food crop, and the demand for high-quality wheat flour is increasing. Although there are no GM varieties currently grown, wheat is an important target for biotechnology, and we anticipate that GM wheat will be commercially available in 10-15 years. In this chapter, we summarize the main features and challenges of wheat transformation and then describe detailed protocols for the production of transgenic wheat plants both by biolistic and Agrobacterium-mediated DNA-delivery. Although these methods are used mainly for bread wheat (Triticum aestivum L.), they can also be successfully applied, with slight modifications, to tetraploid durum wheat (T. turgidum L. var. durum). The appropriate size and developmental stage of explants (immature embryo-derived scutella), the conditions to produce embryogenic callus tissues, and the methods to regenerate transgenic plants under increasing selection pressure are provided in the protocol. To illustrate the application of herbicide selection system, we have chosen to describe the use of the plasmid pAHC25 for biolistic transformation, while for Agrobacterium-mediated transformation the binary vector pAL156 (incorporating both the bar gene and the uidA gene) has been chosen. Beside the step-by-step methodology for obtaining stably transformed and normal fertile plants, procedures for screening and testing transgenic wheat plants are also discussed.

  18. Screening of Wheat Genotypes for Boron Efficiency in Bangladesh

    USDA-ARS?s Scientific Manuscript database

    A number of Bangladeshi wheat genotypes (varieties and advanced lines) have been tested for boron efficiency through sand culture experiments over two years (2007-08 & 2008-09) against two Thai check varieties ‘Fang 60’ (boron efficient) and ‘SW41’ (boron inefficient). Performances of the genotypes ...

  19. Report on hard red spring wheat varieties grown in cooperative plot and nursery experiments in the spring wheat region in 2016

    USDA-ARS?s Scientific Manuscript database

    The Hard Red Spring Wheat Uniform Regional Nursery (HRSWURN) was planted for the 86th year in 2016. The nursery contained 26 entries submitted by 8 different scientific or industry breeding programs, and 5 checks (Table 1). Trials were conducted as randomized complete blocks with three replicates ...

  20. Putative Microsatellite DNA Marker-Based Wheat Genomic Resource for Varietal Improvement and Management

    PubMed Central

    Jaiswal, Sarika; Sheoran, Sonia; Arora, Vasu; Angadi, Ulavappa B.; Iquebal, Mir A.; Raghav, Nishu; Aneja, Bharti; Kumar, Deepender; Singh, Rajender; Sharma, Pradeep; Singh, G. P.; Rai, Anil; Tiwari, Ratan; Kumar, Dinesh

    2017-01-01

    Wheat fulfills 20% of global caloric requirement. World needs 60% more wheat for 9 billion population by 2050 but climate change with increasing temperature is projected to affect wheat productivity adversely. Trait improvement and management of wheat germplasm requires genomic resource. Simple Sequence Repeats (SSRs) being highly polymorphic and ubiquitously distributed in the genome, can be a marker of choice but there is no structured marker database with options to generate primer pairs for genotyping on desired chromosome/physical location. Previously associated markers with different wheat trait are also not available in any database. Limitations of in vitro SSR discovery can be overcome by genome-wide in silico mining of SSR. Triticum aestivum SSR database (TaSSRDb) is an integrated online database with three-tier architecture, developed using PHP and MySQL and accessible at http://webtom.cabgrid.res.in/wheatssr/. For genotyping, Primer3 standalone code computes primers on user request. Chromosome-wise SSR calling for all the three sub genomes along with choice of motif types is provided in addition to the primer generation for desired marker. We report here a database of highest number of SSRs (476,169) from complex, hexaploid wheat genome (~17 GB) along with previously reported 268 SSR markers associated with 11 traits. Highest (116.93 SSRs/Mb) and lowest (74.57 SSRs/Mb) SSR densities were found on 2D and 3A chromosome, respectively. To obtain homozygous locus, e-PCR was done. Such 30 loci were randomly selected for PCR validation in panel of 18 wheat Advance Varietal Trial (AVT) lines. TaSSRDb can be a valuable genomic resource tool for linkage mapping, gene/QTL (Quantitative trait locus) discovery, diversity analysis, traceability and variety identification. Varietal specific profiling and differentiation can supplement DUS (Distinctiveness, Uniformity, and Stability) testing, EDV (Essentially Derived Variety)/IV (Initial Variety) disputes, seed purity

  1. Putative Microsatellite DNA Marker-Based Wheat Genomic Resource for Varietal Improvement and Management.

    PubMed

    Jaiswal, Sarika; Sheoran, Sonia; Arora, Vasu; Angadi, Ulavappa B; Iquebal, Mir A; Raghav, Nishu; Aneja, Bharti; Kumar, Deepender; Singh, Rajender; Sharma, Pradeep; Singh, G P; Rai, Anil; Tiwari, Ratan; Kumar, Dinesh

    2017-01-01

    Wheat fulfills 20% of global caloric requirement. World needs 60% more wheat for 9 billion population by 2050 but climate change with increasing temperature is projected to affect wheat productivity adversely. Trait improvement and management of wheat germplasm requires genomic resource. Simple Sequence Repeats (SSRs) being highly polymorphic and ubiquitously distributed in the genome, can be a marker of choice but there is no structured marker database with options to generate primer pairs for genotyping on desired chromosome/physical location. Previously associated markers with different wheat trait are also not available in any database. Limitations of in vitro SSR discovery can be overcome by genome-wide in silico mining of SSR. Triticum aestivum SSR database ( TaSSRDb ) is an integrated online database with three-tier architecture, developed using PHP and MySQL and accessible at http://webtom.cabgrid.res.in/wheatssr/. For genotyping, Primer3 standalone code computes primers on user request. Chromosome-wise SSR calling for all the three sub genomes along with choice of motif types is provided in addition to the primer generation for desired marker. We report here a database of highest number of SSRs (476,169) from complex, hexaploid wheat genome (~17 GB) along with previously reported 268 SSR markers associated with 11 traits. Highest (116.93 SSRs/Mb) and lowest (74.57 SSRs/Mb) SSR densities were found on 2D and 3A chromosome, respectively. To obtain homozygous locus, e-PCR was done. Such 30 loci were randomly selected for PCR validation in panel of 18 wheat Advance Varietal Trial (AVT) lines. TaSSRDb can be a valuable genomic resource tool for linkage mapping, gene/QTL (Quantitative trait locus) discovery, diversity analysis, traceability and variety identification. Varietal specific profiling and differentiation can supplement DUS (Distinctiveness, Uniformity, and Stability) testing, EDV (Essentially Derived Variety)/IV (Initial Variety) disputes, seed purity

  2. Report on hard red spring wheat varieties grown in cooperative plot and nursery experiments in the spring wheat region in 2014

    USDA-ARS?s Scientific Manuscript database

    The Hard Red Spring Wheat Uniform Regional Nursery (HRSWURN) was planted for the 84th year in 2014. The nursery contained 26 entries submitted by 6 different scientific or industry breeding programs, and 5 checks (Table 1). Trials were conducted as randomized complete blocks with three replicates ex...

  3. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions.

    PubMed

    Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna

    2015-01-01

    Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four

  4. Location, seeding date, and variety interactions on winter wheat yield in Southeastern United States

    USDA-ARS?s Scientific Manuscript database

    In the Southeast US, wheat (Triticum aestivum L.) is a crop grown during the winter when climate conditions are usually influenced by El Nino Southern Oscillation (ENSO). Therefore, an understanding of how management practices can be adjusted to reduce the impact of climate-related risks became impo...

  5. From early farmers to Norman Borlaug - the making of modern wheat.

    PubMed

    Vergauwen, David; De Smet, Ive

    2017-09-11

    If we wander through the countryside, passing fields of wheat, it is apparent that this crop is reasonably short in stature and that the stems carry large ears. However, this was not always the case. If we take a look at depictions of wheat throughout history, we observe that wheat used to be fairly tall. It was not until the second half of the 20 th century that dwarf wheat varieties started to dominate the agricultural landscape. Underlying this short stature are the Reduced height (Rht) genes, which encode DELLA proteins and which formed the cornerstone of the Green Revolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Crop production management: Organic wheat and small grains

    USDA-ARS?s Scientific Manuscript database

    Key management practices for organic wheat and small grain production are provided, including variety selection, planting date, seeding rate, drill calibration and operation, soil fertility, and management of weeds, insect pests, and diseases. ...

  7. [PS II photochemical efficiency in flag leaf of wheat varieties and its adaptation to strong sun- light intensity on farmland of Xiangride in Qinghai Province, Northwest China].

    PubMed

    Shi, Sheng-Bo; Chen, Wen-Jie; Shi, Rui; Li, Miao; Zhang, Huai-Gang; Sun, Ya-Nan

    2014-09-01

    Taking four wheat varieties developed by Northwest Institute of Plateau Biology, Chinese Academy of Sciences, as test materials, with the measurement of content of photosynthetic pigments, leaf area, fresh and dry mass of flag leaf, the PS II photochemistry efficiency of abaxial and adaxial surface of flag leaf and its adaptation to strong solar radiation during the period of heading stage in Xiangride region were investigated with the pulse-modulated in-vivo chlorophyll fluorescence technique. The results indicated that flag leaf angle mainly grew in horizontal state in Gaoyuan 314, Gaoyuan 363 and Gaoyuan 584, and mainly in vertical state in Gaoyuan 913 because of its smaller leaf area and larger width. Photosynthetic pigments were different among the 4 varieties, and positively correlated with intrinsic PS II photochemistry efficiencies (Fv/Fm). In clear days, especially at noon, the photosynthetic photoinhibition was more serious in abaxial surface of flag leaf due to directly facing the solar radiation, but it could recover after reduction of sunlight intensity in the afternoon, which meant that no inactive damage happened in PS II reaction centers. There were significant differences of PS II actual and maximum photochemical efficiencies at the actinic light intensity (ΦPS II and Fv'/Fm') between abaxial and adaxial surface, and their relative variation trends were on the contrary. The photochemical and non-photochemical quenching coefficients (qP and NPQ) had a similar tendency in both abaxial and adaxial surfaces. Although ΦPS II and qP were lower in adaxial surface of flag leaf, the Fv'/Fm' was significantly higher, which indicated that the potential PS II capture efficiency of excited energy was higher. The results demonstrated that process of photochemical and non-photochemical quenching could effectively dissipate excited energy caused by strong solar radiation, and there were higher adaptation capacities in wheat varieties natively cultivated in

  8. Milling and Baking Test REsults for Eastern Soft Winter Wheats Harvested in 2010

    USDA-ARS?s Scientific Manuscript database

    The Soft Wheat Quality Council (SWQC) will provide an organization structure to evaluate the quality of soft wheat experimental lines and variety that may be grown in the traditional growing regions of the United States. The SWQC also will establish other activities as requested by the membership. ...

  9. Wheat Landrace Genome Diversity

    PubMed Central

    Wingen, Luzie U.; West, Claire; Leverington-Waite, Michelle; Collier, Sarah; Orford, Simon; Goram, Richard; Yang, Cai-Yun; King, Julie; Allen, Alexandra M.; Burridge, Amanda; Edwards, Keith J.; Griffiths, Simon

    2017-01-01

    Understanding the genomic complexity of bread wheat (Triticum aestivum L.) is a cornerstone in the quest to unravel the processes of domestication and the following adaptation of domesticated wheat to a wide variety of environments across the globe. Additionally, it is of importance for future improvement of the crop, particularly in the light of climate change. Focusing on the adaptation after domestication, a nested association mapping (NAM) panel of 60 segregating biparental populations was developed, mainly involving landrace accessions from the core set of the Watkins hexaploid wheat collection optimized for genetic diversity. A modern spring elite variety, “Paragon,” was used as common reference parent. Genetic maps were constructed following identical rules to make them comparable. In total, 1611 linkage groups were identified, based on recombination from an estimated 126,300 crossover events over the whole NAM panel. A consensus map, named landrace consensus map (LRC), was constructed and contained 2498 genetic loci. These newly developed genetics tools were used to investigate the rules underlying genome fluidity or rigidity, e.g., by comparing marker distances and marker orders. In general, marker order was highly correlated, which provides support for strong synteny between bread wheat accessions. However, many exceptional cases of incongruent linkage groups and increased marker distances were also found. Segregation distortion was detected for many markers, sometimes as hot spots present in different populations. Furthermore, evidence for translocations in at least 36 of the maps was found. These translocations fell, in general, into many different translocation classes, but a few translocation classes were found in several accessions, the most frequent one being the well-known T5B:7B translocation. Loci involved in recombination rate, which is an interesting trait for plant breeding, were identified by QTL analyses using the crossover counts as a

  10. Durum wheat (Triticum Durum Desf.) lines show different abilities to form masked mycotoxins under greenhouse conditions.

    PubMed

    Cirlini, Martina; Generotti, Silvia; Dall'Erta, Andrea; Lancioni, Pietro; Ferrazzano, Gianluca; Massi, Andrea; Galaverna, Gianni; Dall'Asta, Chiara

    2013-12-24

    Deoxynivalenol (DON) is the most prevalent trichothecene in Europe and its occurrence is associated with infections of Fusarium graminearum and F. culmorum, causal agents of Fusarium head blight (FHB) on wheat. Resistance to FHB is a complex character and high variability occurs in the relationship between DON content and FHB incidence. DON conjugation to glucose (DON-3-glucoside, D3G) is the primary plant mechanism for resistance towards DON accumulation. Although this mechanism has been already described in bread wheat and barley, no data are reported so far about durum wheat, a key cereal in the pasta production chain. To address this issue, the ability of durum wheat to detoxify and convert deoxynivalenol into D3G was studied under greenhouse controlled conditions. Four durum wheat varieties (Svevo, Claudio, Kofa and Neodur) were assessed for DON-D3G conversion; Sumai 3, a bread wheat variety carrying a major QTL for FHB resistance (QFhs.ndsu-3B), was used as a positive control. Data reported hereby clearly demonstrate the ability of durum wheat to convert deoxynivalenol into its conjugated form, D3G.

  11. Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia

    USDA-ARS?s Scientific Manuscript database

    Wheat varieties with a winter growth habit require long exposures to low temperatures (vernalization) to accelerate flowering. Natural variation in the vernalization genes regulating this requirement has favored wheat adaptation to different environments. The main wheat vernalization genes VRN1, V...

  12. Re-discovering ancient wheat varieties as functional foods.

    PubMed

    Cooper, Raymond

    2015-07-01

    With the gluten-free food market worth almost $1.6 bn in 2011, there is every reason for renewed interest in ancient grains. This resurgent interest is expressed in re-discovering ancient varieties as functional foods. In particular, people affected by celiac disease have to avoid all gluten in their diet and several ancient grains may offer an important alternative.

  13. Characterization of a Wheat Breeders' Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum).

    PubMed

    Allen, Alexandra M; Winfield, Mark O; Burridge, Amanda J; Downie, Rowena C; Benbow, Harriet R; Barker, Gary L A; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; Griffiths, Simon; Bentley, Alison R; Alda, Mark; Jack, Peter; Phillips, Andrew L; Edwards, Keith J

    2017-03-01

    Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism-based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high-density Affymetrix Axiom ® genotyping array (the Wheat Breeders' Array), in a high-throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders' Array is also suitable for generating high-density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site 'CerealsDB'. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat stem rust (Puccinia graminis f. sp. tritici Eriks. and E. Henn.) is one of the most destructive diseases world-wide. Races belonging to Ug99 (or TTKSK) continue to cause crop losses in East Africa and threaten global wheat production. Developing and deploying wheat varieties with multiple race...

  15. Fourier Transform Infrared Spectroscopic Studies Of Wheat In The Mid Infrared

    NASA Astrophysics Data System (ADS)

    Olinger, Jill M.; Griffiths, Peter R.

    1989-12-01

    Official grain standards of the United States state that wheat may be divided into seven classes which are: Durum, Red Durum, Hard Red Spring, Hard Red Winter, Soft Red Winter, White, and Mixed.1 Most end uses of wheat involve converting the grain into flour through one of a variety of grinding methods. The quality of wheat-based products is often very dependent upon the type or class of wheat which was used to make the flour. Pasta products, for example, are made almost exclusively from the flour of durum wheats, which are the hardest of the wheats listed above. The highest quality breads are produced using flour from wheats classed as hard, whereas cakes, cookies and pastries are considered best when flour from wheats classed as soft are used. It is obvious then that the capability of determining the class of a particular wheat, especially with respect to hardness, is of economic importance to growers, processors, and merchants of wheat and wheat products. Hardness has been measured in many different ways 2-5 but, as of yet, no one method has become the method of choice. This paper reports on the use of principal components analysis (PCA) of mid infrared diffuse reflectance (DR) spectra of diluted ground wheats to aid in the classification of those wheats with respect to their hardness. The theory and mathematics involved in a principal component analysis have been described elsewhere.9

  16. Impact of Triticum mosaic virus infection on hard winter wheat milling and bread baking quality.

    PubMed

    Miller, Rebecca A; Martin, T Joe; Seifers, Dallas L

    2012-03-15

    Triticum mosaic virus (TriMV) is a newly discovered wheat virus. Information regarding the effect of wheat viruses on milling and baking quality is limited. The objective of this study was to determine the impact of TriMV infection on the kernel characteristics, milling yield and bread baking quality of wheat. Commercial hard winter varieties evaluated included RonL, Danby and Jagalene. The TriMV resistance of RonL is low, while that of Danby and Jagalene is unknown. KS96HW10-3, a germplasm with high TriMV resistance, was included as a control. Plots of each variety were inoculated with TriMV at the two- to three-leaf stage. Trials were conducted at two locations in two crop years. TriMV infection had no effect on the kernel characteristics, flour yield or baking properties of KS96HW10-3. The effect of TriMV on the kernel characteristics of RonL, Danby and Jagalene was not consistent between crop years and presumably an environmental effect. The flour milling and bread baking properties of these three varieties were not significantly affected by TriMV infection. TriMV infection of wheat plants did not affect harvested wheat kernel characteristics, flour milling properties or white pan bread baking quality. Copyright © 2011 Society of Chemical Industry.

  17. Unraveling Key Metabolomic Alterations in Wheat Embryos Derived from Freshly Harvested and Water-Imbibed Seeds of Two Wheat Cultivars with Contrasting Dormancy Status

    PubMed Central

    Das, Aayudh; Kim, Dea-Wook; Khadka, Pramod; Rakwal, Randeep; Rohila, Jai S.

    2017-01-01

    Untimely rains in wheat fields during harvest season can cause pre-harvest sprouting (PHS), which deteriorates the yield and quality of wheat crop. Metabolic homeostasis of the embryo plays a role in seed dormancy, determining the status of the maturing grains either as dormant (PHS-tolerant) or non-dormant (PHS-susceptible). Very little is known for direct measurements of global metabolites in embryonic tissues of dormant and non-dormant wheat seeds. In this study, physiologically matured and freshly harvested wheat seeds of PHS-tolerant (cv. Sukang, dormant) and PHS-susceptible (cv. Baegjoong, non-dormant) cultivars were water-imbibed, and the isolated embryos were subjected to high-throughput, global non-targeted metabolomic profiling. A careful comparison of identified metabolites between Sukang and Baegjoong embryos at 0 and 48 h after imbibition revealed that several key metabolic pathways [such as: lipids, fatty acids, oxalate, hormones, the raffinose family of oligosaccharides (RFOs), and amino acids] and phytochemicals were differentially regulated between dormant and non-dormant varieties. Most of the membrane lipids were highly reduced in Baegjoong compared to Sukang, which indicates that the cell membrane instability in response to imbibition could also be a key factor in non-dormant wheat varieties for their untimely germination. This study revealed that several key marker metabolites (e.g., RFOs: glucose, fructose, maltose, and verbascose), were highly expressed in Baegjoong after imbibition. Furthermore, the data showed that the key secondary metabolites and phytochemicals (vitexin, chrysoeriol, ferulate, salidroside and gentisic acid), with known antioxidant properties, were comparatively low at basal levels in PHS-susceptible, non-dormant cultivar, Baegjoong. In conclusion, the results of this investigation revealed that after imbibition the metabolic homeostasis of dormant wheat is significantly less affected compared to non-dormant wheat. The

  18. Anaerobic digestion of spring and winter wheat: Comparison of net energy yields.

    PubMed

    Rincón, Bárbara; Heaven, Sonia; Salter, Andrew M; Banks, Charles J

    2016-10-14

    Anaerobic digestion of wheat was investigated under batch conditions. The article compares the potential net energy yield between a winter wheat (sown in the autumn) and a spring wheat (sown in the spring) grown in the same year and harvested at the same growth stage in the same farm. The spring wheat had a slightly higher biochemical methane potential and required lower energy inputs in cultivation, but produced a lower dry biomass yield per hectare, which resulted in winter wheat providing the best overall net energy yield. The difference was small; both varieties gave a good net energy yield. Spring sowing may also offer the opportunity for growing an additional over-winter catch crop for spring harvest, thus increasing the overall biomass yield per hectare, with both crops being potential digester feedstocks.

  19. Genome Evolution Due to Allopolyploidization in Wheat

    PubMed Central

    Feldman, Moshe; Levy, Avraham A.

    2012-01-01

    The wheat group has evolved through allopolyploidization, namely, through hybridization among species from the plant genera Aegilops and Triticum followed by genome doubling. This speciation process has been associated with ecogeographical expansion and with domestication. In the past few decades, we have searched for explanations for this impressive success. Our studies attempted to probe the bases for the wide genetic variation characterizing these species, which accounts for their great adaptability and colonizing ability. Central to our work was the investigation of how allopolyploidization alters genome structure and expression. We found in wheat that allopolyploidy accelerated genome evolution in two ways: (1) it triggered rapid genome alterations through the instantaneous generation of a variety of cardinal genetic and epigenetic changes (which we termed “revolutionary” changes), and (2) it facilitated sporadic genomic changes throughout the species’ evolution (i.e., evolutionary changes), which are not attainable at the diploid level. Our major findings in natural and synthetic allopolyploid wheat indicate that these alterations have led to the cytological and genetic diploidization of the allopolyploids. These genetic and epigenetic changes reflect the dynamic structural and functional plasticity of the allopolyploid wheat genome. The significance of this plasticity for the successful establishment of wheat allopolyploids, in nature and under domestication, is discussed. PMID:23135324

  20. Markers linked to wheat stem rust resistance gene Sr11 effective to Puccinia graminis f. sp. tritici race TKTTF

    USDA-ARS?s Scientific Manuscript database

    Wheat stem rust caused by Puccinia graminis f. sp. tritici can cause severe yield losses on susceptible wheat varieties and cultivars. Although stem rust can be controlled by the use of genetic resistance, population dynamics of P. graminis f. sp. tritici can frequently lead to defeat of wheat stem ...

  1. Finite Element Analysis of Single Wheat Mechanical Response to Wind and Rain Loads

    NASA Astrophysics Data System (ADS)

    Liang, Li; Guo, Yuming

    One variety of wheat in the breeding process was chosen to determine the wheat morphological traits and biomechanical properties. ANSYS was used to build the mechanical model of wheat to wind load and the dynamic response of wheat to wind load was simulated. The maximum Von Mises stress is obtained by the powerful calculation function of ANSYS. And the changing stress and displacement of each node and finite element in the process of simulation can be output through displacement nephogram and stress nephogram. The load support capability can be evaluated and to predict the wheat lodging. It is concluded that computer simulation technology has unique advantages such as convenient and efficient in simulating mechanical response of wheat stalk under wind and rain load. Especially it is possible to apply various load types on model and the deformation process can be observed simultaneously.

  2. Toward Cost-Effective Fingerprinting Methodology to Distinguish Maize Open-Pollinated Varieties

    USDA-ARS?s Scientific Manuscript database

    In Africa, many smallholder farmers grow open pollinated maize varieties (OPVs), as they allow seed recycling and out-yield traditional farmer’s (unimproved) landraces. One popular OPV, ZM521 released by the International Maize and Wheat Improvement Center (CIMMYT), has been provided to farmers, o...

  3. Chemical composition, functional and sensory characteristics of wheat-taro composite flours and biscuits.

    PubMed

    Himeda, Makhlouf; Njintang Yanou, Nicolas; Fombang, Edith; Facho, Balaam; Kitissou, Pierre; Mbofung, Carl M F; Scher, Joel

    2014-09-01

    The physicochemical, alveographic and sensory characteristics of precooked taro-wheat composite flours and their biscuits were investigated. A 2x7 factorial design consisting of two varieties of taro flour (Red Ibo Ngaoundere, RIN, and egg-like varieties) and 7 levels of wheat substitutions (0, 5, 10, 15, 20, 25 and 30 %) was used for this purpose. It was observed that water absorption capacity (range 95-152 g/100 g), water solubility index (range 18.8-29.5 g/100 g) and swelling capacity (range 125.4-204.6 mL/100 g) of composite flours significantly (p < 0.05) increased with increase in taro level. Conversely the dough elasticity index (range 59.8-0 %), extensibility (78-22 mm) and strength (range 281-139 × 10(-4) joules) significantly (p < 0.05) diminished with increase in wheat substitution. Up to 10 % substitution with RIN taro flour and 15 % with egg-like taro flour, the composite taro-wheat dough exhibited elasticity indices acceptable for the production of baking products, whereas at all levels of taro substitution, the composite biscuits samples were either acceptable as or better (5-10 % substitution with RIN flour) than 100 % wheat biscuit.

  4. Induced Mutations for Improving Production on Bread and Durum Wheat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamo, Ilirjana; Ylli, Ariana; Dodbiba, Andon

    Wheat is a very important crop and has been bred for food and its improvement is continuous from cross-breeding. Radiation and chemically induced mutations have provided variability in selection for novel varieties. Four bread and one durum wheat cultivars were exposed to gamma rays, Cs 137 with doses 10, 15 and 20 krad (2000 seeds of each dose and cultivars). We have isolated mutant plants with height reduced and on cv Progress spike without chaff.

  5. Induced Mutations for Improving Production on Bread and Durum Wheat

    NASA Astrophysics Data System (ADS)

    Stamo, Ilirjana; Ylli, Ariana; Dodbiba, Andon

    2007-04-01

    Wheat is a very important crop and has been bred for food and its improvement is continuous from cross-breeding. Radiation and chemically induced mutations have provided variability in selection for novel varieties. Four bread and one durum wheat cultivars were exposed to gamma rays, Cs 137 with doses 10, 15 and 20 krad (2000 seeds of each dose and cultivars). We have isolated mutant plants with height reduced and on cv Progress spike without chaff.

  6. Hydrogen isotope composition of leaf wax n-alkanes in glaucous and non-glaucous varieties of wheat (Triticum spp.)

    NASA Astrophysics Data System (ADS)

    Pedentchouk, Nikolai; Eley, Yvette; Frizell-Armitage, Amelia; Uauy, Cristobal

    2015-04-01

    The use of the 2H/1H composition of terrestrial plants in climate and ecology studies depends on fundamental understanding of the processes within the plant that control fractionation of these two isotopes. Little is currently known about the extent of 2H/1H fractionation at different steps of biosynthesis, after the initial H uptake following leaf water photolysis. Knowing this effect is particularly important when seeking to interpret the 2H/1H composition of leaf wax biomarkers from plants that differ in the amount and type of individual compound classes in their leaf waxes. The purpose of this study was to investigate the link between the quantity and distribution of n-alkyl lipids in leaf waxes and their isotopic composition. We used a genetic approach to suppress glaucousness in 2 varieties of wheat (Alchemy and Malacca), which resulted in glaucous and non-glaucous phenotypes of both varieties. Both phenotypes were then grown outdoors under identical environmental conditions in central Norfolk, UK. At the end of the growing season, the plants were sampled for soil water, leaf water, and leaf wax isotopic measurements. Comparison of the leaf wax composition of the non-glaucous and glaucous phenotypes revealed that the non-glaucous varieties were characterised by the absence of diketones and a greater concentration of n-alkanes and primary alcohols.. Our results showed very small differences between glaucous and non-glaucous varieties with regard to soil (mean values, <2 per mil) and leaf (<1 per mil) water 2H/1H. Conversely, there was 15-20 and 10-15 per mil 2H-depletion in the C29 and C31 n-alkanes, respectively, from the non-glaucous phenotype. This 2H-depletion in the non-glaucous phenotype demonstrated that the suppression of diketone production and the increase in n-alkane and primary alcohol concentrations are linked with a shift in the 2H/1H composition of n-alkanes. The initial results of this work suggest that plants using the same environmental water

  7. Evaluation of crossability between triticale (X Triticosecale Wittmack) and common wheat, durum wheat and rye.

    PubMed

    Hills, Melissa J; Hall, Linda M; Messenger, Doug F; Graf, Robert J; Beres, Brian L; Eudes, François

    2007-01-01

    Development of transgenic triticale as a platform for novel bio-industrial products is predicated on an environmental biosafety assessment that quantifies the potential risks associated with its release. Pollen-mediated gene flow to related species and conventional triticale varieties is one pathway for transgene movement. A tier 1 quantification of triticale hybridization was conducted by emasculating and hand pollinating flowers under greenhouse conditions. Approximately 2000 manual pollinations were conducted for each cross and its reciprocal between two triticale genotypes: a modern triticale cultivar (AC Alta) and primary triticale (89TT108), and common wheat, durum wheat and rye. The frequency of outcrossing, hybrid seed appearance and weight, and F(1) emergence and fertility were recorded. Outcrossing, F(1) emergence and fertility rates were high from crosses between triticale genotypes. Outcrossing in inter-specific crosses was influenced by the species, and the genotype and gender of the triticale parent. In crosses to common and durum wheat where triticale was the male parent, outcrossing was > or =73.0% and > or =69.5%, respectively, but < or =23.9% and < or =3.0% when triticale was the female parent. Overall, outcrossing with rye was lower than with common and durum wheat. F(1) hybrid emergence was greater when triticale was the female parent. With the exception of a single seed, all wheat-triticale F(1) hybrid seeds were non-viable when triticale was the male parent in the cross. Only seven durum wheat-triticale F(1) hybrids emerged from 163 seeds sown, and all were produced with triticale 89TT108 as female parent. With rye, 8 F(1) hybrids emerged from 38 seeds sown, and all were produced from crosses to AC Alta; five with AC Alta as the female parent and three as the male. Interspecific F(1) hybrids were self-sterile, with the exception of those produced in crosses between common wheat and triticale where triticale was the female parent. Tier 2

  8. Spectral behavior of wheat yield variety trials

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.

    1981-01-01

    Little variation between varieties is seen at jointing, but the variability is found to increase during grain filling and decline again at maturity. No relationship is found between spectral response and yield, and when yields are segregated into various classes the spectral response is the same. Spring and winter nurseries are found to separate during the reproductive stage because of differences in dates of heading and maturity, but they exhibit similar spectral responses. The transformed normalized difference is at a minimum after the maximum grain weight occurs and the leaves begin to brown and fall off. These data of 100% ground cover demonstrate that it is not possible to predict grain yield from only spectral data. This, however, may not apply when reduced yields are caused by less-than-full ground cover

  9. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    PubMed

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  10. Bioavailability of trace elements in beans and zinc-biofortified wheat in pigs.

    PubMed

    Carlson, Dorthe; Nørgaard, Jan Værum; Torun, Bulent; Cakmak, Ismail; Poulsen, Hanne Damgaard

    2012-12-01

    The objectives of this experiment were to study bioavailability of trace elements in beans and wheat containing different levels of zinc and to study how the water solubility of trace elements was related to the bioavailability in pigs. Three wheat and two bean types were used: wheat of Danish origin as a control (CtrlW), two Turkish wheat types low (LZnW) and high (HZnW) in zinc, a common bean (Com), and a faba bean (Faba). Two diets were composed by combining 81 % CtrlW and 19 % Com or Faba beans. Solubility was measured as the trace element concentration in the supernatant of feedstuffs, and diets incubated in distilled water at pH 4 and 38°C for 3 h. The bioavailability of zinc and copper of the three wheat types and the two bean-containing diets were evaluated in the pigs by collection of urine and feces for 7 days. The solubility of zinc was 34-63 %, copper 18-42 %, and iron 3-11 %. The zinc apparent digestibility in pigs was similar in the three wheat groups (11-14 %), but was significantly higher in the CtrlW+Faba group (23 %) and negative in the CtrlW+Com group (-30 %). The apparent digestibility of copper was higher in the HZnW (27 %) and CtrlW+Faba (33 %) groups than in the CtrlW (17 %) and LZnW (18 %) groups. The apparent copper digestibility of the CtrlW+Com diet was negative (-7 %). The solubility and digestibility results did not reflect the concentration in feedstuffs. The in vitro results of water solubility showed no relationship to the results of trace mineral bioavailability in pigs.

  11. Aphid-parasitoid community structure on genetically modified wheat.

    PubMed

    von Burg, Simone; van Veen, Frank J F; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2011-06-23

    Since the introduction of genetically modified (GM) plants, one of the main concerns has been their potential effect on non-target insects. Many studies have looked at GM plant effects on single non-target herbivore species or on simple herbivore-natural enemy food chains. Agro-ecosystems, however, are characterized by numerous insect species which are involved in complex interactions, forming food webs. In this study, we looked at transgenic disease-resistant wheat (Triticum aestivum) and its effect on aphid-parasitoid food webs. We hypothesized that the GM of the wheat lines directly or indirectly affect aphids and that these effects cascade up to change the structure of the associated food webs. Over 2 years, we studied different experimental wheat lines under semi-field conditions. We constructed quantitative food webs to compare their properties on GM lines with the properties on corresponding non-transgenic controls. We found significant effects of the different wheat lines on insect community structure up to the fourth trophic level. However, the observed effects were inconsistent between study years and the variation between wheat varieties was as big as between GM plants and their controls. This suggests that the impact of our powdery mildew-resistant GM wheat plants on food web structure may be negligible and potential ecological effects on non-target insects limited.

  12. Identification of SNPs, QTLs, and dominant markers associated with wheat flavor using genotyping-by-sequencing

    USDA-ARS?s Scientific Manuscript database

    Whole grain foods are well known to provide important nutrients in the human diet; however, consumer acceptance can be hindered by the flavor, aroma, and texture of whole wheat products. Flavor differences among wheat varieties have been observed, but are still little understood. A lab mouse model s...

  13. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication.

    PubMed

    Avni, Raz; Nave, Moran; Barad, Omer; Baruch, Kobi; Twardziok, Sven O; Gundlach, Heidrun; Hale, Iago; Mascher, Martin; Spannagl, Manuel; Wiebe, Krystalee; Jordan, Katherine W; Golan, Guy; Deek, Jasline; Ben-Zvi, Batsheva; Ben-Zvi, Gil; Himmelbach, Axel; MacLachlan, Ron P; Sharpe, Andrew G; Fritz, Allan; Ben-David, Roi; Budak, Hikmet; Fahima, Tzion; Korol, Abraham; Faris, Justin D; Hernandez, Alvaro; Mikel, Mark A; Levy, Avraham A; Steffenson, Brian; Maccaferri, Marco; Tuberosa, Roberto; Cattivelli, Luigi; Faccioli, Primetta; Ceriotti, Aldo; Kashkush, Khalil; Pourkheirandish, Mohammad; Komatsuda, Takao; Eilam, Tamar; Sela, Hanan; Sharon, Amir; Ohad, Nir; Chamovitz, Daniel A; Mayer, Klaus F X; Stein, Nils; Ronen, Gil; Peleg, Zvi; Pozniak, Curtis J; Akhunov, Eduard D; Distelfeld, Assaf

    2017-07-07

    Wheat ( Triticum spp.) is one of the founder crops that likely drove the Neolithic transition to sedentary agrarian societies in the Fertile Crescent more than 10,000 years ago. Identifying genetic modifications underlying wheat's domestication requires knowledge about the genome of its allo-tetraploid progenitor, wild emmer ( T. turgidum ssp. dicoccoides ). We report a 10.1-gigabase assembly of the 14 chromosomes of wild tetraploid wheat, as well as analyses of gene content, genome architecture, and genetic diversity. With this fully assembled polyploid wheat genome, we identified the causal mutations in Brittle Rachis 1 ( TtBtr1 ) genes controlling shattering, a key domestication trait. A study of genomic diversity among wild and domesticated accessions revealed genomic regions bearing the signature of selection under domestication. This reference assembly will serve as a resource for accelerating the genome-assisted improvement of modern wheat varieties. Copyright © 2017, American Association for the Advancement of Science.

  14. A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat.

    PubMed

    Uauy, Cristobal; Distelfeld, Assaf; Fahima, Tzion; Blechl, Ann; Dubcovsky, Jorge

    2006-11-24

    Enhancing the nutritional value of food crops is a means of improving human nutrition and health. We report here the positional cloning of Gpc-B1, a wheat quantitative trait locus associated with increased grain protein, zinc, and iron content. The ancestral wild wheat allele encodes a NAC transcription factor (NAM-B1) that accelerates senescence and increases nutrient remobilization from leaves to developing grains, whereas modern wheat varieties carry a nonfunctional NAM-B1 allele. Reduction in RNA levels of the multiple NAM homologs by RNA interference delayed senescence by more than 3 weeks and reduced wheat grain protein, zinc, and iron content by more than 30%.

  15. TaEDS1 genes positively regulate resistance to powdery mildew in wheat.

    PubMed

    Chen, Guiping; Wei, Bo; Li, Guoliang; Gong, Caiyan; Fan, Renchun; Zhang, Xiangqi

    2018-04-01

    Three EDS1 genes were cloned from common wheat and were demonstrated to positively regulate resistance to powdery mildew in wheat. The EDS1 proteins play important roles in plant basal resistance and TIR-NB-LRR protein-triggered resistance in dicots. Until now, there have been very few studies on EDS1 in monocots, and none in wheat. Here, we report on three common wheat orthologous genes of EDS1 family (TaEDS1-5A, 5B and 5D) and their function in powdery mildew resistance. Comparisons of these genes with their orthologs in diploid ancestors revealed that EDS1 is a conserved gene family in Triticeae. The cDNA sequence similarity among the three TaEDS1 genes was greater than 96.5%, and they shared sequence similarities of more than 99.6% with the respective orthologs from diploid ancestors. The phylogenetic analysis revealed that the EDS1 family originated prior to the differentiation of monocots and dicots, and EDS1 members have since undergone clear structural differentiation. The transcriptional levels of TaEDS1 genes in the leaves were obviously higher than those of the other organs, and they were induced by Blumeria graminis f. sp. tritici (Bgt) infection and salicylic acid (SA) treatment. The BSMV-VIGS experiments indicated that knock-down the transcriptional levels of the TaEDS1 genes in a powdery mildew-resistant variety of common wheat compromised resistance. Contrarily, transient overexpression of TaEDS1 genes in a susceptible common wheat variety significantly reduced the haustorium index and attenuated the growth of Bgt. Furthermore, the expression of TaEDS1 genes in the Arabidopsis mutant eds1-1 complemented its susceptible phenotype to powdery mildew. The above evidences strongly suggest that TaEDS1 acts as a positive regulator and confers resistance against powdery mildew in common wheat.

  16. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat

    PubMed Central

    2014-01-01

    Background Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution ‘nullisomic-tetrasomic’ lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. Results We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. Conclusions We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution. PMID:24726045

  17. Drought Tolerance in Modern and Wild Wheat

    PubMed Central

    Budak, Hikmet; Kantar, Melda; Yucebilgili Kurtoglu, Kuaybe

    2013-01-01

    The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides), which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance. PMID:23766697

  18. Sonora exploratory study for the detection of wheat-leaf rust

    NASA Technical Reports Server (NTRS)

    Payne, R. W. (Principal Investigator)

    1980-01-01

    The applicability of LANDSAT remote sensing technology to the detection of a wheat-leaf-rust epidemic in Sonora, Mexico, during 1977 was investigated. LANDSAT data acquired during crop years 1975-76 and 1976-77 were clustered, classified, and analyzed in order to detect agricultural changes. Analysis of 1977 data indicates a significant proportion of the identified wheat is stressed (potentially rust-infected). Additional analyses show a significant increase in fallowing during the year, as well as a substantial decrease in reservoir levels in the Sonora agricultural region. Ground observations are required to substantiate these analyses. The possibility exists that heat-rust is not LANDSAT detectable and that the clusters identified as containing stressed signatures represent different varieties of wheat or perhaps nonwheat crops.

  19. Hybrid wheat: quantitative genetic parameters and consequences for the design of breeding programs.

    PubMed

    Longin, Carl Friedrich Horst; Gowda, Manje; Mühleisen, Jonathan; Ebmeyer, Erhard; Kazman, Ebrahim; Schachschneider, Ralf; Schacht, Johannes; Kirchhoff, Martin; Zhao, Yusheng; Reif, Jochen Christoph

    2013-11-01

    Commercial heterosis for grain yield is present in hybrid wheat but long-term competiveness of hybrid versus line breeding depends on the development of heterotic groups to improve hybrid prediction. Detailed knowledge of the amount of heterosis and quantitative genetic parameters are of paramount importance to assess the potential of hybrid breeding. Our objectives were to (1) examine the extent of midparent, better-parent and commercial heterosis in a vast population of 1,604 wheat (Triticum aestivum L.) hybrids and their parental elite inbred lines and (2) discuss the consequences of relevant quantitative parameters for the design of hybrid wheat breeding programs. Fifteen male lines were crossed in a factorial mating design with 120 female lines, resulting in 1,604 of the 1,800 potential single-cross hybrid combinations. The hybrids, their parents, and ten commercial wheat varieties were evaluated in multi-location field experiments for grain yield, plant height, heading time and susceptibility to frost, lodging, septoria tritici blotch, yellow rust, leaf rust, and powdery mildew at up to five locations. We observed that hybrids were superior to the mean of their parents for grain yield (10.7 %) and susceptibility to frost (-7.2 %), leaf rust (-8.4 %) and septoria tritici blotch (-9.3 %). Moreover, 69 hybrids significantly (P < 0.05) outyielded the best commercial inbred line variety underlining the potential of hybrid wheat breeding. The estimated quantitative genetic parameters suggest that the establishment of reciprocal recurrent selection programs is pivotal for a successful long-term hybrid wheat breeding.

  20. Fungal flora associated with combine harvester wheat and sorghum dusts from Egypt.

    PubMed

    Abdel-Hafez, S I; Moubasher, A H; Shoreit, A A; Ismail, M A

    1990-01-01

    107 species and 8 species varieties belonging to 44 genera were collected from combine harvester wheat and sorghum dusts (35 genera and 91 species + 4 varieties) and from the atmosphere of their hay sites (26 genera and 69 species + 4 varieties) on glucose- and cellulose-Czapek's Dox agar at 28 degrees C and 45 degrees C. The mycoflora of wheat and sorghum dusts were basically similar on the two types of media and the most common fungi were: Alternaria alternata, Aspergillus flavus, A. fumigatus, A. niger, A. ochraceus, A. sydowii, A. terreus, Cochliobolus spicifer, Emericella nidulans, Fusarium moniliforme, Penicillium chrysogenum, P. duclauxii, P. funiculosum and P. oxalicum. Truly thermophilic species were frequently encountered from the two substrates: Chaetomium thermophilum, Humicola grisea var. thermoidae, H. insolens, Malbranchea pulchella var., sulphurea, Rhizomucor pusillus, Sporotrichum thermophilum, Talaromyces thermophilus, Thermoascus thermophilus and Thermomyces lanuginosus. The airborne fungi in the two atmospheres were basically similar and the most prevalent species were members of Alternaria (1 species), Aspergillus (18 species + 2 varieties), Chaetomium (2 species), Cochliobolus(3 species), Emericella (3 species + 2 varieties), Fusarium (3 species), Mucor (1 species), Penicillium (14 species) and Stachybotrys (1 species).

  1. TdERF1, an ethylene response factor associated with dehydration responses in durum wheat (Triticum turgidum L. subsp. durum).

    PubMed

    Makhloufi, Emna; Yousfi, Fatma-Ezzahra; Pirrello, Julien; Bernadac, Anne; Ghorbel, Abdelwahed; Bouzayen, Mondher

    2015-01-01

    Water deficit and increasing salinization reduce productivity of wheat, the leading crop for human diet. While the complete genome sequence of this crop has not been deciphered, a BAC library screening allowed the isolation of TdERF1, the first ethylene response factor gene from durum wheat. This gene is putatively involved in mediating salt stress tolerance and its characterization provides clues toward understanding the mechanisms underlying the adaptation/tolerance of durum wheat to suboptimal growth conditions. TdERF1 expression is differentially induced by high salt treatment in 2 durum wheat varieties, the salt-tolerant Grecale (GR) and the salt-sensitive Om Rabiaa (OR). To further extend these findings, we show here that the expression of this ERF is correlated with physiological parameters, such as the accumulation of osmo-regulators and membrane integrity, that discriminate between the 2 contrasted wheat genotypes. The data confirm that GR and OR are 2 contrasted wheat genotypes with regard to salt-stress and show that TdERF1 is also induced by water stress with an expression pattern clearly discriminating between the 2 genotypes. These findings suggest that TdERF1 might be involved in responses to salt and water stress providing a potential genetic marker discriminating between tolerant and sensitive wheat varieties.

  2. A diploid wheat TILLING resource for wheat functional genomics

    PubMed Central

    2012-01-01

    Background Triticum monococcum L., an A genome diploid einkorn wheat, was the first domesticated crop. As a diploid, it is attractive genetic model for the study of gene structure and function of wheat-specific traits. Diploid wheat is currently not amenable to reverse genetics approaches such as insertion mutagenesis and post-transcriptional gene silencing strategies. However, TILLING offers a powerful functional genetics approach for wheat gene analysis. Results We developed a TILLING population of 1,532 M2 families using EMS as a mutagen. A total of 67 mutants were obtained for the four genes studied. Waxy gene mutation frequencies are known to be 1/17.6 - 34.4 kb DNA in polyploid wheat TILLING populations. The T. monococcum diploid wheat TILLING population had a mutation frequency of 1/90 kb for the same gene. Lignin biosynthesis pathway genes- COMT1, HCT2, and 4CL1 had mutation frequencies of 1/86 kb, 1/92 kb and 1/100 kb, respectively. The overall mutation frequency of the diploid wheat TILLING population was 1/92 kb. Conclusion The mutation frequency of a diploid wheat TILLING population was found to be higher than that reported for other diploid grasses. The rate, however, is lower than tetraploid and hexaploid wheat TILLING populations because of the higher tolerance of polyploids to mutations. Unlike polyploid wheat, most mutants in diploid wheat have a phenotype amenable to forward and reverse genetic analysis and establish diploid wheat as an attractive model to study gene function in wheat. We estimate that a TILLING population of 5, 520 will be needed to get a non-sense mutation for every wheat gene of interest with 95% probability. PMID:23134614

  3. Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains.

    PubMed

    Paznocht, Luboš; Kotíková, Zora; Šulc, Miloslav; Lachman, Jaromír; Orsák, Matyáš; Eliášová, Marie; Martinek, Petr

    2018-02-01

    Carotenoids are important phytonutrients responsible for the yellow endosperm color in cereal grains. Five carotenoids, namely lutein, zeaxanthin, antheraxanthin, α- and β-carotene, were quantified by HPLC-DAD-MS in fourteen genotypes of wheat, barley and tritordeum harvested in Czechia in 2014 and 2015. The highest carotenoid contents were found in yellow-grained tritordeum HT 439 (12.16μg/gDW), followed by blue-grained wheat V1-131-15 (7.46μg/gDW), and yellow-grained wheat TA 4024 (7.04μg/gDW). Comparing carotenoid contents, blue varieties had lower whereas purple ones had the same or higher levels than conventional bread wheat. Lutein was the main carotenoid found in wheat and tritordeum while zeaxanthin dominated in barley. The majority of cereals contained considerable levels of esterified forms (up to 61%) of which lutein esters prevailed. It was assessed that cereal genotype determines the proportion of free and esterified forms. High temperatures and drought during the growing season promoted carotenoid biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Use of Image-Spectroscopy Technology as a Diagnostic Method for Seed Health Testing and Variety Identification

    PubMed Central

    Vrešak, Martina; Halkjaer Olesen, Merete; Gislum, René; Bavec, Franc; Ravn Jørgensen, Johannes

    2016-01-01

    Application of rapid and time-efficient health diagnostic and identification technology in the seed industry chain could accelerate required analysis, characteristic description and also ultimately availability of new desired varieties. The aim of the study was to evaluate the potential of multispectral imaging and single kernel near-infrared spectroscopy (SKNIR) for determination of seed health and variety separation of winter wheat (Triticum aestivum L.) and winter triticale (Triticosecale Wittm. & Camus). The analysis, carried out in autumn 2013 at AU-Flakkebjerg, Denmark, included nine winter triticale varieties and 27 wheat varieties provided by the Faculty of Agriculture and Life Sciences Maribor, Slovenia. Fusarium sp. and black point disease-infected parts of the seed surface could successfully be distinguished from uninfected parts with use of a multispectral imaging device (405–970 nm wavelengths). SKNIR was applied in this research to differentiate all 36 involved varieties based on spectral differences due to variation in the chemical composition. The study produced an interesting result of successful distinguishing between the infected and uninfected parts of the seed surface. Furthermore, the study was able to distinguish between varieties. Together these components could be used in further studies for the development of a sorting model by combining data from multispectral imaging and SKNIR for identifying disease(s) and varieties. PMID:27010656

  5. Seedling Resistance to Stem Rust and Molecular Marker Analysis of Resistance Genes in Wheat Cultivars of Yunnan, China

    PubMed Central

    Li, Tian Ya; Cao, Yuan Yin; Wu, Xian Xin; Xu, Xiao Feng; Wang, Wan Lin

    2016-01-01

    Stem rust is one of the most potentially harmful wheat diseases, but has been effectively controlled in China since 1970s. However, the interest in breeding wheat with durable resistance to stem rust has been renewed with the emergence of Ug99 (TTKSK) virulent to the widely used resistance gene Sr31, and by which the wheat stem rust was controlled for 40 years in wheat production area worldwide. Yunnan Province, located on the Southwest border of China, is one of the main wheat growing regions, playing a pivotal role in the wheat stem rust epidemic in China. This study investigated the levels of resistance in key wheat cultivars (lines) of Yunnan Province. In addition, the existence of Sr25, Sr26, Sr28, Sr31, Sr32, and Sr38 genes in 119 wheat cultivars was assessed using specific DNA markers. The results indicated that 77 (64.7%) tested wheat varieties showed different levels of resistance to all the tested races of Puccinia graminis f. sp. tritici. Using molecular markers, we identified the resistance gene Sr31 in 43 samples; Sr38 in 10 samples; Sr28 in 12 samples, and one sample which was resistant against Ug99 (avirulent to Sr32). No Sr25 or Sr26 (effective against Ug99) was identified in any cultivars tested. Furthermore, 5 out of 119 cultivars tested carried both Sr31 and Sr38 and eight contained both Sr31 and Sr28. The results enable the development of appropriate strategies to breed varieties resistant to stem rust. PMID:27792757

  6. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.

    PubMed

    von Burg, Simone; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2012-01-01

    In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici) and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM) mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew) became more favourable for another pest (aphids).

  7. Indirect Effect of a Transgenic Wheat on Aphids through Enhanced Powdery Mildew Resistance

    PubMed Central

    von Burg, Simone; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2012-01-01

    In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici) and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM) mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew) became more favourable for another pest (aphids). PMID:23056284

  8. Characterization of some bread wheat genotypes using molecular markers for drought tolerance.

    PubMed

    Ateş Sönmezoğlu, Özlem; Terzi, Begüm

    2018-02-01

    Because of its wide geographical adaptation and importance in human nutrition, wheat is one of the most important crops in the world. However, wheat yield has reduced due to drought stress posing threat to sustainability and world food security in agricultural production. The first stage of drought tolerant variety breeding occurs on the molecular and biochemical characterization and classification of wheat genotypes. The aim of the present study is characterization of widely grown bread wheat cultivars and breeding lines for drought tolerance so as to be adapted to different regions in Turkey. The genotypes were screened with molecular markers for the presence of QTLs mapped to different chromosomes. Results of the molecular studies identified and detected 15 polymorphic SSR markers which gave the clearest PCR bands among the control genotypes. At the end of the research, bread wheat genotypes which were classified for tolerance or sensitivity to drought and the genetic similarity within control varieties were determined by molecular markers. According to SSR based dendrogram, two main groups were obtained for drought tolerance. At end of the molecular screening with SSR primers, genetic similarity coefficients were obtained that ranged from 0.14 to 0.71. The ones numbered 8 and 11 were the closest genotypes to drought tolerant cultivar Gerek 79 and the furthest genotypes from this cultivar were number 16 and to drought sensitive cultivar Sultan 95. The genotypes as drought tolerance due to their SSR markers scores are expected to provide useful information for drought related molecular breeding studies.

  9. Selection for water-soluble carbohydrate accumulation and investigation of genetic × environment interactions in an elite wheat breeding population

    USDA-ARS?s Scientific Manuscript database

    The potential to increase the genetic capacity for water-soluble carbohydrate (WSC) accumulation is an opportunity to improve the drought tolerance capability of rainfed wheat varieties, particularly in Australia where terminal drought is a significant constraint to wheat production. A population of...

  10. Characterization of selenium-enriched wheat by agronomic biofortification.

    PubMed

    Galinha, Catarina; Sánchez-Martínez, María; Pacheco, Adriano M G; Freitas, Maria do Carmo; Coutinho, José; Maçãs, Benvindo; Almeida, Ana Sofia; Pérez-Corona, María Teresa; Madrid, Yolanda; Wolterbeek, Hubert T

    2015-07-01

    Agronomic biofortification of staple crops is an effective way to enhance their contents in essential nutrients up the food chain, with a view to correcting for their deficiencies in animal or human status. Selenium (Se) is one such case, for its uneven distribution in the continental crust and, therefore, in agricultural lands easily translates into substantial variation in nutritional intakes. Cereals are far from being the main sources of Se on a content basis, but they are likely the major contributors to intake on a dietary basis. To assess their potential to assimilate and biotransform Se, bread and durum wheat were enriched with Se through foliar and soil addition at an equivalent field rate of 100 g of Se per hectare (ha), using sodium selenate and sodium selenite as Se-supplementation matrices, in actual field conditions throughout. Biotransformation of inorganic Se was evaluated by using HPLC-ICP-MS after enzymatic hydrolysis for Se-species extraction in the resulting mature wheat grains. Selenomethionine and Se(VI) were identified and quantified: the former was the predominant species, representing 70-100 % of the total Se in samples; the maximum amount of inorganic Se was below 5 %. These results were similar for both supplementation methods and for both wheat varieties. Judging from the present results, one can conclude that agronomic biofortification of wheat may improve the nutritional quality of wheat grains with significant amounts of selenomethionine, which is an attractive option for increasing the Se status in human diets through Se-enriched, wheat-based foodstuff.

  11. Genome-wide associations for water-soluble carbohydrate concentration and relative maturity in wheat using SNP and DArT marker arrays

    USDA-ARS?s Scientific Manuscript database

    Improving water-use efficiency by incorporating drought avoidance traits into new wheat varieties is an important objective for wheat breeding in water-limited environments. This study uses genome wide association studies (GWAS) to identify candidate loci for water-soluble carbohydrate accumulation,...

  12. Effects of protein in wheat flour on retrogradation of wheat starch.

    PubMed

    Xijun, Lian; Junjie, Guo; Danli, Wang; Lin, Li; Jiaran, Zhu

    2014-08-01

    Albumins, globulins, gliadins, and glutenins were isolated from wheat flour and the effects of those proteins on retrogradation of wheat starch were investigated. The results showed that only glutenins retarded retrogradation of wheat starch and other 3 proteins promoted it. The results of IR spectra proved that no S-S linkage formed during retrogradation of wheat starch blended with wheat proteins. Combination of wheat starch and globulins or gliadins through glucosidic bonds hindered the hydrolysis of wheat starch by α-amylase. The melting peak temperatures of retrograded wheat starch attached to different proteins were 128.46, 126.14, 132.03, 121.65, and 134.84 °C for the control with no protein, albumins, glutenins, globulins, gliadins groups, respectively, and there was no second melting temperature for albumins group. Interaction of wheat proteins and starch in retrograded wheat starch greatly decreased the endothermic enthalpy (△H) of retrograded wheat starch. Retrograded wheat starch bound to gliadins might be a new kind of resistant starch based on glycosidic bond between starch and protein. © 2014 Institute of Food Technologists®

  13. Thymol-based sub-micron emulsions exhibit antifungal activity against Fusarium graminearum and inhibit Fusarium head blight (FHB) in wheat

    USDA-ARS?s Scientific Manuscript database

    Fusarium graminearum is a very destructive fungal pathogen that leads to Fusarium head blight (FHB) in wheat, a disease that costs growers millions of dollars annually both in crop losses and control measures. Current countermeasures include the deployment of wheat varieties with some resistance to ...

  14. Wheat differential gene expression induced by different races of Puccinia triticina.

    PubMed

    Neugebauer, Kerri A; Bruce, Myron; Todd, Tim; Trick, Harold N; Fellers, John P

    2018-01-01

    Puccinia triticina, the causal agent of wheat leaf rust, causes significant losses in wheat yield and quality each year worldwide. During leaf rust infection, the host plant recognizes numerous molecules, some of which trigger host defenses. Although P. triticina reproduces clonally, there is still variation within the population due to a high mutation frequency, host specificity, and environmental adaptation. This study explores how wheat responds on a gene expression level to different P. triticina races. Six P. triticina races were inoculated onto a susceptible wheat variety and samples were taken at six days post inoculation, just prior to pustule eruption. RNA sequence data identified 63 wheat genes differentially expressed between the six races. A time course, conducted over the first seven days post inoculation, was used to examine the expression pattern of 63 genes during infection. Forty-seven wheat genes were verified to have differential expression. Three common expression patterns were identified. In addition, two genes were associated with race specific gene expression. Differential expression of an ER molecular chaperone gene was associated with races from two different P. triticina lineages. Also, differential expression in an alanine glyoxylate aminotransferase gene was associated with races with virulence shifts for leaf rust resistance genes.

  15. Selenium-enriched durum wheat improves the nutritional profile of pasta without altering its organoleptic properties.

    PubMed

    De Vita, Pasquale; Platani, Cristiano; Fragasso, Mariagiovanna; Ficco, Donatella Bianca Maria; Colecchia, Salvatore Antonio; Del Nobile, Matteo Alessandro; Padalino, Lucia; Di Gennaro, Spartaco; Petrozza, Angelo

    2017-01-01

    Two field experiments were conducted over three growing seasons (2006-07, 2008-09 and 2009-10) to evaluate Se-enriched pasta through foliar fertilization at various rates and timing of application on 4 durum wheat varieties. Our findings confirm the effectiveness of foliar Se fertilization to increase Se concentrations in durum wheat grain, even at high Se rates (120gSeha(-1)). Se fortification was significant across different genotypes, with greater Se accumulation in landraces ('Timilia') and obsolete varieties ('Cappelli'), with respect to modern varieties. The Se content in the grain was increased by up to 35-fold that of the untreated control. The Se concentration decreased during milling (11%), while processing and cooking of pasta did not show significant decreases. This biofortification stategy had no effects on grain quality parameters, except for reduced gluten index in the high-gluten variety PR22D89, as well as for the sensorial properties of the spaghetti. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.).

    PubMed

    Allen, Alexandra M; Barker, Gary L A; Berry, Simon T; Coghill, Jane A; Gwilliam, Rhian; Kirby, Susan; Robinson, Phil; Brenchley, Rachel C; D'Amore, Rosalinda; McKenzie, Neil; Waite, Darren; Hall, Anthony; Bevan, Michael; Hall, Neil; Edwards, Keith J

    2011-12-01

    Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of marker-assisted selection (MAS) in breeding programmes. A crucial step in the successful application of MAS in breeding programmes is the development of cheap and easy to use molecular markers, such as single-nucleotide polymorphisms. To mine selected elite wheat germplasm for intervarietal single-nucleotide polymorphisms, we have used expressed sequence tags derived from public sequencing programmes and next-generation sequencing of normalized wheat complementary DNA libraries, in combination with a novel sequence alignment and assembly approach. Here, we describe the development and validation of a panel of 1114 single-nucleotide polymorphisms in hexaploid bread wheat using competitive allele-specific polymerase chain reaction genotyping technology. We report the genotyping results of these markers on 23 wheat varieties, selected to represent a broad cross-section of wheat germplasm including a number of elite UK varieties. Finally, we show that, using relatively simple technology, it is possible to rapidly generate a linkage map containing several hundred single-nucleotide polymorphism markers in the doubled haploid mapping population of Avalon × Cadenza. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  17. Nutraceutical and functional scenario of wheat straw.

    PubMed

    Pasha, Imran; Saeed, Farhan; Waqas, Khalid; Anjum, Faqir Muhammad; Arshad, Muhammad Umair

    2013-01-01

    In the era of nutrition, much focus has been remunerated to functional and nutraceutical foodstuffs. The health endorsing potential of such provisions is attributed to affluent phytochemistry. These dynamic constituents have functional possessions that are imperative for cereal industry. The functional and nutraceutical significance of variety of foods is often accredited to their bioactive molecules. Numerous components have been considered but wheat straw and its diverse components are of prime consideration. In this comprehensive dissertation, efforts are directed to elaborate the functional and nutraceutical importance of wheat straw. Wheat straw is lignocellulosic materials including cellulose, hemicellulose and lignin. It hold various bioactive compounds such as policosanols, phytosterols, phenolics, and triterpenoids, having enormous nutraceutical properties like anti-allergenic, anti-artherogenic, anti-inflammatory, anti-microbial, antioxidant, anti-thrombotic, cardioprotective and vasodilatory effects, antiviral, and anticancer. These compounds are protecting against various ailments like hypercholesterolemia, intermittent claudication, benign prostatic hyperplasia and cardiovascular diseases. Additionally, wheat straw has demonstrated successfully, low cost, renewable, versatile, widely distributed, easily available source for the production of biogas, bioethanol, and biohydrogen in biorefineries to enhance the overall effectiveness of biomass consumption in protected and eco-friendly environment. Furthermore, its role in enhancing the quality and extending the shelf life of bakery products through reducing the progression of staling and retrogradation is limelight of the article.

  18. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9.

    PubMed

    Sánchez-León, Susana; Gil-Humanes, Javier; Ozuna, Carmen V; Giménez, María J; Sousa, Carolina; Voytas, Daniel F; Barro, Francisco

    2018-04-01

    Coeliac disease is an autoimmune disorder triggered in genetically predisposed individuals by the ingestion of gluten proteins from wheat, barley and rye. The α-gliadin gene family of wheat contains four highly stimulatory peptides, of which the 33-mer is the main immunodominant peptide in patients with coeliac. We designed two sgRNAs to target a conserved region adjacent to the coding sequence for the 33-mer in the α-gliadin genes. Twenty-one mutant lines were generated, all showing strong reduction in α-gliadins. Up to 35 different genes were mutated in one of the lines of the 45 different genes identified in the wild type, while immunoreactivity was reduced by 85%. Transgene-free lines were identified, and no off-target mutations have been detected in any of the potential targets. The low-gluten, transgene-free wheat lines described here could be used to produce low-gluten foodstuff and serve as source material to introgress this trait into elite wheat varieties. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. GmDREB1 overexpression affects the expression of microRNAs in GM wheat seeds.

    PubMed

    Jiang, Qiyan; Sun, Xianjun; Niu, Fengjuan; Hu, Zheng; Chen, Rui; Zhang, Hui

    2017-01-01

    MicroRNAs (miRNAs) are small regulators of gene expression that act on many different molecular and biochemical processes in eukaryotes. To date, miRNAs have not been considered in the current evaluation system for GM crops. In this study, small RNAs from the dry seeds of a GM wheat line overexpressing GmDREB1 and non-GM wheat cultivars were investigated using deep sequencing technology and bioinformatic approaches. As a result, 23 differentially expressed miRNAs in dry seeds were identified and confirmed between GM wheat and a non-GM acceptor. Notably, more differentially expressed tae-miRNAs between non-GM wheat varieties were found, indicating that the degree of variance between non-GM cultivars was considerably higher than that induced by the transgenic event. Most of the target genes of these differentially expressed miRNAs between GM wheat and a non-GM acceptor were associated with abiotic stress, in accordance with the product concept of GM wheat in improving drought and salt tolerance. Our data provided useful information and insights into the evaluation of miRNA expression in edible GM crops.

  20. Silencing of copine genes confers common wheat enhanced resistance to powdery mildew.

    PubMed

    Zou, Baohong; Ding, Yuan; Liu, He; Hua, Jian

    2018-06-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a major threat to the production of wheat (Triticum aestivum). It is of great importance to identify new resistance genes for the generation of Bgt-resistant or Bgt-tolerant wheat varieties. Here, we show that the wheat copine genes TaBON1 and TaBON3 negatively regulate wheat disease resistance to Bgt. Two copies of TaBON1 and three copies of TaBON3, located on chromosomes 6AS, 6BL, 1AL, 1BL and 1DL, respectively, were identified from the current common wheat genome sequences. The expression of TaBON1 and TaBON3 is responsive to both pathogen infection and temperature changes. Knocking down of TaBON1 or TaBON3 by virus-induced gene silencing (VIGS) induces the up-regulation of defence responses in wheat. These TaBON1- or TaBON3-silenced plants exhibit enhanced wheat disease resistance to Bgt, accompanied by greater accumulation of hydrogen peroxide and heightened cell death. In addition, high temperature has little effect on the up-regulation of defence response genes conferred by the silencing of TaBON1 or TaBON3. Our study shows a conserved function of plant copine genes in plant immunity and provides new genetic resources for the improvement of resistance to powdery mildew in wheat. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  1. Wheat signature modeling and analysis for improved training statistics

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Malila, W. A.; Cicone, R. C.; Gleason, J. M.

    1976-01-01

    The author has identified the following significant results. The spectral, spatial, and temporal characteristics of wheat and other signatures in LANDSAT multispectral scanner data were examined through empirical analysis and simulation. Irrigation patterns varied widely within Kansas; 88 percent of wheat acreage in Finney was irrigated and 24 percent in Morton, as opposed to less than 3 percent for western 2/3's of the State. The irrigation practice was definitely correlated with the observed spectral response; wheat variety differences produced observable spectral differences due to leaf coloration and different dates of maturation. Between-field differences were generally greater than within-field differences, and boundary pixels produced spectral features distinct from those within field centers. Multiclass boundary pixels contributed much of the observed bias in proportion estimates. The variability between signatures obtained by different draws of training data decreased as the sample size became larger; also, the resulting signatures became more robust and the particular decision threshold value became less important.

  2. Revised recommendations for iron fortification of wheat flour and an evaluation of the expected impact of current national wheat flour fortification programs.

    PubMed

    Hurrell, Richard; Ranum, Peter; de Pee, Saskia; Biebinger, Ralf; Hulthen, Lena; Johnson, Quentin; Lynch, Sean

    2010-03-01

    Iron fortification of wheat flour is widely used as a strategy to combat iron deficiency. To review recent efficacy studies and update the guidelines for the iron fortification of wheat flour. Efficacy studies with a variety of iron-fortified foods were reviewed to determine the minimum daily amounts of additional iron that have been shown to meaningfully improve iron status in children, adolescents, and women of reproductive age. Recommendations were computed by determining the fortification levels needed to provide these additional quantities of iron each day in three different wheat flour consumption patterns. Current wheat flour iron fortification programs in 78 countries were evaluated. When average daily consumption of low-extraction (< or = 0.8% ash) wheat flour is 150 to 300 g, it is recommended to add 20 ppm iron as NaFeEDTA, or 30 ppm as dried ferrous sulfate or ferrous fumarate. If sensory changes or cost limits the use of these compounds, electrolytic iron at 60 ppm is the second choice. Corresponding fortification levels were calculated for wheat flour intakes of < 150 g/day and > 300 g/day. Electrolytic iron is not recommended for flour intakes of < 150 g/day. Encapsulated ferrous sulfate or fumarate can be added at the same concentrations as the non-encapsulated compounds. For high-extraction wheat flour (> 0.8% ash), NaFeEDTA is the only iron compound recommended. Only nine national programs (Argentina, Chile, Egypt, Iran, Jordan, Lebanon, Syria, Turkmenistan, and Uruguay) were judged likely to have a significant positive impact on iron status if coverage is optimized. Most countries use non-recommended, low-bioavailability, atomized, reduced or hydrogen-reduced iron powders. Most current iron fortification programs are likely to be ineffective. Legislation needs updating in many countries so that flour is fortified with adequate levels of the recommended iron compounds.

  3. Exploiting a wheat EST database to assess genetic diversity

    PubMed Central

    2010-01-01

    Expressed sequence tag (EST) markers have been used to assess variety and genetic diversity in wheat (Triticum aestivum). In this study, 1549 ESTs from wheat infested with yellow rust were used to examine the genetic diversity of six susceptible and resistant wheat cultivars. The aim of using these cultivars was to improve the competitiveness of public wheat breeding programs through the intensive use of modern, particularly marker-assisted, selection technologies. The F2 individuals derived from cultivar crosses were screened for resistance to yellow rust at the seedling stage in greenhouses and adult stage in the field to identify DNA markers genetically linked to resistance. Five hundred and sixty ESTs were assembled into 136 contigs and 989 singletons. BlastX search results showed that 39 (29%) contigs and 96 (10%) singletons were homologous to wheat genes. The database-matched contigs and singletons were assigned to eight functional groups related to protein synthesis, photosynthesis, metabolism and energy, stress proteins, transporter proteins, protein breakdown and recycling, cell growth and division and reactive oxygen scavengers. PCR analyses with primers based on the contigs and singletons showed that the most polymorphic functional categories were photosynthesis (contigs) and metabolism and energy (singletons). EST analysis revealed considerable genetic variability among the Turkish wheat cultivars resistant and susceptible to yellow rust disease and allowed calculation of the mean genetic distance between cultivars, with the greatest similarity (0.725) being between Harmankaya99 and Sönmez2001, and the lowest (0.622) between Aytin98 and Izgi01. PMID:21637582

  4. Exploiting a wheat EST database to assess genetic diversity.

    PubMed

    Karakas, Ozge; Gurel, Filiz; Uncuoglu, Ahu Altinkut

    2010-10-01

    Expressed sequence tag (EST) markers have been used to assess variety and genetic diversity in wheat (Triticum aestivum). In this study, 1549 ESTs from wheat infested with yellow rust were used to examine the genetic diversity of six susceptible and resistant wheat cultivars. The aim of using these cultivars was to improve the competitiveness of public wheat breeding programs through the intensive use of modern, particularly marker-assisted, selection technologies. The F(2) individuals derived from cultivar crosses were screened for resistance to yellow rust at the seedling stage in greenhouses and adult stage in the field to identify DNA markers genetically linked to resistance. Five hundred and sixty ESTs were assembled into 136 contigs and 989 singletons. BlastX search results showed that 39 (29%) contigs and 96 (10%) singletons were homologous to wheat genes. The database-matched contigs and singletons were assigned to eight functional groups related to protein synthesis, photosynthesis, metabolism and energy, stress proteins, transporter proteins, protein breakdown and recycling, cell growth and division and reactive oxygen scavengers. PCR analyses with primers based on the contigs and singletons showed that the most polymorphic functional categories were photosynthesis (contigs) and metabolism and energy (singletons). EST analysis revealed considerable genetic variability among the Turkish wheat cultivars resistant and susceptible to yellow rust disease and allowed calculation of the mean genetic distance between cultivars, with the greatest similarity (0.725) being between Harmankaya99 and Sönmez2001, and the lowest (0.622) between Aytin98 and Izgi01.

  5. High throughput SNP discovery and genotyping in hexaploid wheat.

    PubMed

    Rimbert, Hélène; Darrier, Benoît; Navarro, Julien; Kitt, Jonathan; Choulet, Frédéric; Leveugle, Magalie; Duarte, Jorge; Rivière, Nathalie; Eversole, Kellye; Le Gouis, Jacques; Davassi, Alessandro; Balfourier, François; Le Paslier, Marie-Christine; Berard, Aurélie; Brunel, Dominique; Feuillet, Catherine; Poncet, Charles; Sourdille, Pierre; Paux, Etienne

    2018-01-01

    Because of their abundance and their amenability to high-throughput genotyping techniques, Single Nucleotide Polymorphisms (SNPs) are powerful tools for efficient genetics and genomics studies, including characterization of genetic resources, genome-wide association studies and genomic selection. In wheat, most of the previous SNP discovery initiatives targeted the coding fraction, leaving almost 98% of the wheat genome largely unexploited. Here we report on the use of whole-genome resequencing data from eight wheat lines to mine for SNPs in the genic, the repetitive and non-repetitive intergenic fractions of the wheat genome. Eventually, we identified 3.3 million SNPs, 49% being located on the B-genome, 41% on the A-genome and 10% on the D-genome. We also describe the development of the TaBW280K high-throughput genotyping array containing 280,226 SNPs. Performance of this chip was examined by genotyping a set of 96 wheat accessions representing the worldwide diversity. Sixty-nine percent of the SNPs can be efficiently scored, half of them showing a diploid-like clustering. The TaBW280K was proven to be a very efficient tool for diversity analyses, as well as for breeding as it can discriminate between closely related elite varieties. Finally, the TaBW280K array was used to genotype a population derived from a cross between Chinese Spring and Renan, leading to the construction a dense genetic map comprising 83,721 markers. The results described here will provide the wheat community with powerful tools for both basic and applied research.

  6. High throughput SNP discovery and genotyping in hexaploid wheat

    PubMed Central

    Navarro, Julien; Kitt, Jonathan; Choulet, Frédéric; Leveugle, Magalie; Duarte, Jorge; Rivière, Nathalie; Eversole, Kellye; Le Gouis, Jacques; Davassi, Alessandro; Balfourier, François; Le Paslier, Marie-Christine; Berard, Aurélie; Brunel, Dominique; Feuillet, Catherine; Poncet, Charles; Sourdille, Pierre

    2018-01-01

    Because of their abundance and their amenability to high-throughput genotyping techniques, Single Nucleotide Polymorphisms (SNPs) are powerful tools for efficient genetics and genomics studies, including characterization of genetic resources, genome-wide association studies and genomic selection. In wheat, most of the previous SNP discovery initiatives targeted the coding fraction, leaving almost 98% of the wheat genome largely unexploited. Here we report on the use of whole-genome resequencing data from eight wheat lines to mine for SNPs in the genic, the repetitive and non-repetitive intergenic fractions of the wheat genome. Eventually, we identified 3.3 million SNPs, 49% being located on the B-genome, 41% on the A-genome and 10% on the D-genome. We also describe the development of the TaBW280K high-throughput genotyping array containing 280,226 SNPs. Performance of this chip was examined by genotyping a set of 96 wheat accessions representing the worldwide diversity. Sixty-nine percent of the SNPs can be efficiently scored, half of them showing a diploid-like clustering. The TaBW280K was proven to be a very efficient tool for diversity analyses, as well as for breeding as it can discriminate between closely related elite varieties. Finally, the TaBW280K array was used to genotype a population derived from a cross between Chinese Spring and Renan, leading to the construction a dense genetic map comprising 83,721 markers. The results described here will provide the wheat community with powerful tools for both basic and applied research. PMID:29293495

  7. RNAi mediated, stable resistance to Triticum mosaic virus in wheat

    USDA-ARS?s Scientific Manuscript database

    Triticum mosaic virus (TriMV), discovered in 2006, affects wheat production systems in the Great Plains of the United States. There are no available TriMV resistant commercial varieties. RNA interference (RNAi) was evaluated as an alternative strategy to generate resistance to TriMV. An RNAi pANDA...

  8. Evaluation of fresh pasta-making properties of extra-strong common wheat (Triticum aestivum L.).

    PubMed

    Ito, Miwako; Maruyama-Funatsuki, Wakako; Ikeda, Tatsuya M; Nishio, Zenta; Nagasawa, Koichi; Tabiki, Tadashi; Yamauchi, Hiroaki

    2012-12-01

    The relationship between characterictics of flour of common wheat varieties and fresh pasta-making qualitites was examined, and the fresh pasta-making properties of extra-strong varieties that have extra-strong dough were evaluated. There was a positive correlation between mixing time (PT) and hardness of boiled pasta, indicating that the hardness of boiled pasta was affected by dough properties. Boiled pasta made from extra-strong varieties, Yumechikara, Hokkai 262 and Hokkai 259, was harder than that from other varieties and commercial flour. There was a negative correlation between flour protein content and brightness of boiled pasta. The colors of boiled pasta made from Yumechikara and Hokkai 262 grown under the condition of standard manuring culture were superior to those of boiled pasta made from other varieties. Discoloration of boiled pasta made from Yumechikara grown under the condition of heavy manuring culture was caused by increase of flour protein content. On the other hand, discoloration of boiled pasta made from Hokkai 262 grown under the condition of heavy manuring culture was less than that of boiled pasta made from Yumechikara. These results indicate that pasta made from extra-strong wheat varieties has good hardness and that Hokkai 262 has extraordinary fresh pasta-making properties.

  9. Evaluation of fresh pasta-making properties of extra-strong common wheat (Triticum aestivum L.)

    PubMed Central

    Ito, Miwako; Maruyama-Funatsuki, Wakako; Ikeda, Tatsuya M.; Nishio, Zenta; Nagasawa, Koichi; Tabiki, Tadashi; Yamauchi, Hiroaki

    2012-01-01

    The relationship between characterictics of flour of common wheat varieties and fresh pasta-making qualitites was examined, and the fresh pasta-making properties of extra-strong varieties that have extra-strong dough were evaluated. There was a positive correlation between mixing time (PT) and hardness of boiled pasta, indicating that the hardness of boiled pasta was affected by dough properties. Boiled pasta made from extra-strong varieties, Yumechikara, Hokkai 262 and Hokkai 259, was harder than that from other varieties and commercial flour. There was a negative correlation between flour protein content and brightness of boiled pasta. The colors of boiled pasta made from Yumechikara and Hokkai 262 grown under the condition of standard manuring culture were superior to those of boiled pasta made from other varieties. Discoloration of boiled pasta made from Yumechikara grown under the condition of heavy manuring culture was caused by increase of flour protein content. On the other hand, discoloration of boiled pasta made from Hokkai 262 grown under the condition of heavy manuring culture was less than that of boiled pasta made from Yumechikara. These results indicate that pasta made from extra-strong wheat varieties has good hardness and that Hokkai 262 has extraordinary fresh pasta-making properties. PMID:23341748

  10. Identification of wheat sensitization using an in-house wheat extract in Coca-10% alcohol solution in children with wheat anaphylaxis.

    PubMed

    Pacharn, Punchama; Kumjim, Sasaros; Tattiyapong, Puntanat; Jirapongsananuruk, Orathai; Piboonpocanun, Surapon

    2016-06-01

    Identification of wheat sensitization by a skin prick test (SPT) is essential for children with wheat-induced anaphylaxis, since oral food challenge can cause serious adverse effects. Wheat allergens are both water/salt and alcohol soluble. The preparation of wheat extract for SPT containing both water/salt and alcohol soluble allergen is needed. To determine if a wheat extract using Coca's solution containing 10% alcohol (Coca-10% EtOH), prepared in-house, contians both water/salt and alcohol soluble allergens. Serum of children with a history of anaphylaxis after wheat ingestion was used. Wheat flour was extracted in Coca-10% alcohol solution. An SPT with both commercial and in-house wheat extracts was performed as well as specific IgE (sIgE) for wheat and omega-5 gliadin. Direct and IgE inhibition immunoblots were performed to determine serum sIgE levels against water/salt as well as alcohol soluble (gliadins and glutenins) allergens in the extracts. Six children with history of wheat anaphylaxis had positive SPT to both commercial and in-house extracts. They also had different levels of sIgE against wheat and omega-5 gliadin allergens. The results of direct immunoblotting showed all tested sera had sIgE bound to ~35 kDa wheat protein. Further IgE inhibition immunoblotting identified the ~35 kDa wheat protein as gliadin but not gluten allergen. The in-house prepared Coca-10% EtOH solution could extract both water/salt and alcohol soluble allergens. The ~35 kDa gliadin appears to be a major wheat allergen among tested individuals.

  11. Nutritional and Nutraceutical Properties of Triticum dicoccum Wheat and Its Health Benefits: An Overview.

    PubMed

    Dhanavath, Srinu; Prasada Rao, U J S

    2017-10-01

    Triticum dicoccum wheat is one of the ancient wheat species and is gaining popularity due to its suggested health benefits as well as its suitability for organic farming. In some parts of the world, certain traditional foods prepared with dicoccum wheat are preferred due to their better taste, texture, and flavor. It is rich in bioactive compounds and its starch has been reported to have slow digestibility. However, content and composition of bioactive compounds is reported to vary depending on the geographical location, seasonal variations, varieties used, and the analytical methods followed. Therefore, in the present study, we report the food uses, digestibility of starch, nutritional and nutraceutical compositions of dicoccum wheat grown in different parts of the world, and also its health benefits in ameliorating diabetes and celiac disease. © 2017 Institute of Food Technologists®.

  12. Discovery and mapping of single feature polymorphisms in wheat using Affymetrix arrays

    PubMed Central

    Bernardo, Amy N; Bradbury, Peter J; Ma, Hongxiang; Hu, Shengwa; Bowden, Robert L; Buckler, Edward S; Bai, Guihua

    2009-01-01

    Background Wheat (Triticum aestivum L.) is a staple food crop worldwide. The wheat genome has not yet been sequenced due to its huge genome size (~17,000 Mb) and high levels of repetitive sequences; the whole genome sequence may not be expected in the near future. Available linkage maps have low marker density due to limitation in available markers; therefore new technologies that detect genome-wide polymorphisms are still needed to discover a large number of new markers for construction of high-resolution maps. A high-resolution map is a critical tool for gene isolation, molecular breeding and genomic research. Single feature polymorphism (SFP) is a new microarray-based type of marker that is detected by hybridization of DNA or cRNA to oligonucleotide probes. This study was conducted to explore the feasibility of using the Affymetrix GeneChip to discover and map SFPs in the large hexaploid wheat genome. Results Six wheat varieties of diverse origins (Ning 7840, Clark, Jagger, Encruzilhada, Chinese Spring, and Opata 85) were analyzed for significant probe by variety interactions and 396 probe sets with SFPs were identified. A subset of 164 unigenes was sequenced and 54% showed polymorphism within probes. Microarray analysis of 71 recombinant inbred lines from the cross Ning 7840/Clark identified 955 SFPs and 877 of them were mapped together with 269 simple sequence repeat markers. The SFPs were randomly distributed within a chromosome but were unevenly distributed among different genomes. The B genome had the most SFPs, and the D genome had the least. Map positions of a selected set of SFPs were validated by mapping single nucleotide polymorphism using SNaPshot and comparing with expressed sequence tags mapping data. Conclusion The Affymetrix array is a cost-effective platform for SFP discovery and SFP mapping in wheat. The new high-density map constructed in this study will be a useful tool for genetic and genomic research in wheat. PMID:19480702

  13. Genome-wide microarray analysis leads to identification of genes in response to herbicide, metribuzin in wheat leaves.

    PubMed

    Pilcher, Whitney; Zandkamiri, Hana; Arceneaux, Kelly; Harrison, Stephen; Baisakh, Niranjan

    2017-01-01

    Herbicides are an important component of weed management in wheat, particularly in the southeastern US where weeds actively compete with wheat throughout the winter for nutrients and reduce tillering and ultimately the yield of the crop. Some wheat varieties are sensitive to metribuzin, a low-cost non-selective herbicide, leading to leaf chlorosis, stand loss, and decreased yield. Knowledge of the genetics of herbicide tolerance in wheat is very limited and most new varieties have not been screened for metribuzin tolerance. The identification of genes associated with metribuzin tolerance will lead to the development of molecular markers for use in screening breeding lines for metribuzin tolerance. AGS 2035 and AGS 2060 were identified as resistant and sensitive to metribuzin in several previous field screening experiments as well as controlled condition screening of nine varieties in the present study. Genome-wide transcriptome profiling of the genes in AGS 2035 and AGS 2060 through microarray analysis identified 169 and 127 genes to be significantly (2-fold, P>0.01) up- and down-regulated, respectively in response to metribuzin. Functional annotation revealed that genes involved in cell wall biosynthesis, photosynthesis and sucrose metabolism were highly responsive to metribuzin application. (Semi)quantitative RT-PCR of seven selected differentially expressed genes (DEGs) indicated that a gene coding for alkaline alpha-galactosidase 2 (AAG2) was specifically expressed in resistant varieties only after one and two weeks of metribuzin application. Integration of the DEGs into our ongoing mapping effort and identification of the genes within the QTL region showing significant association with resistance in future will aid in development of functional markers for metribuzin resistance.

  14. The IPM Wheat Model--results of a three-year study in North Rhine-Westphalia, Lower Saxony and Schleswig-Holstein.

    PubMed

    Verreet, J A; Heger, M; Oerke, E; Dehne, H W; Finger, I; Busse, C; Klink, H

    2003-01-01

    Under the primary utilisation of phytosanitary production factors such as selection of variety, crop rotation and N fertilisation according to plant requirements, the IPM Wheat Model comprises the elements diagnosis (qualitative = type of pathogen, quantitative = disease severity), scientifically grounded treatment thresholds which, as critical values in pathogen development, can be applied to define the optimum time of fungicide application, and pathogen-specific effective fungicides and application amounts. This leads to the location and year-specific optimised control of the pathogen and of the associated yield performance. After several years of development in Bavaria (from 1985 on) and Schleswig-Holstein (1993-1999), the model was tested as part of a project involving the Universities of Bonn and Kiel and the plant protection services of the German states of Lower Saxony, North Rhine-Westphalia and Schleswig-Holstein in a three-year study (1999-2001) in interregional locations (usually nine per state) with the winter wheat variety Ritmo (interregional indicator variety) and a further variety of regional importance in different variations (untreated control, three to four times growth stage-oriented variants for the determination of the absolute damage potential, IPM-variant). In exact records (approx. 12 dates per vegetation period), the disease epidemics were recorded weekly. With the genetically uniform indicator variety Ritmo, the results documented substantially differing year- and location-specific disease and yield patterns. Interregionally, a broad wheat pathogen spectrum (Puccinia striiformis, P. recondita, Septoria tritici, Stagonospora (syn. Septoria) nodorum, Blumeria (syn. Erysiphe) graminis, Pseudocercosporella herpotrichoides, Drechslera tritici-repentis) in differing composition, disease severity and damage effect was demonstrated. The heterogeneity of the infection and damage patterns was increased in the case of the second variety, in

  15. Competitive Expression of Endogenous Wheat CENH3 May Lead to Suppression of Alien ZmCENH3 in Transgenic Wheat × Maize Hybrids.

    PubMed

    Chen, Wei; Zhu, Qilin; Wang, Haiyan; Xiao, Jin; Xing, Liping; Chen, Peidu; Jin, Weiwei; Wang, Xiu-E

    2015-11-20

    Uniparental chromosome elimination in wheat × maize hybrid embryos is widely used in double haploid production of wheat. Several explanations have been proposed for this phenomenon, one of which is that the lack of cross-species CENH3 incorporation may act as a barrier to interspecies hybridization. However, it is unknown if this mechanism applies universally. To study the role of CENH3 in maize chromosome elimination of wheat × maize hybrid embryos, maize ZmCENH3 and wheat αTaCENH3-B driven by the constitutive CaMV35S promoter were transformed into wheat variety Yangmai 158. Five transgenic lines for ZmCENH3 and six transgenic lines for αTaCENH3-B were identified. RT-PCR analysis showed that the transgene could be transcribed at a low level in all ZmCENH3 transgenic lines, whereas transcription of endogenous wheat CENH3 was significantly up-regulated. Interestingly, the expression levels of both wheat CENH3 and ZmCENH3 in the ZmCENH3 transgenic wheat × maize hybrid embryos were higher than those in the non-transformed Yangmai 158 × maize hybrid embryos. This indicates that the alien ZmCENH3 in wheat may induce competitive expression of endogenous wheat CENH3, leading to suppression of ZmCENH3 over-expression. Eliminations of maize chromosomes in hybrid embryos of ZmCENH3 transgenic wheat × maize and Yangmai 158 × maize were compared by observations on micronuclei presence, by marker analysis using maize SSRs (simple sequence repeats), and by FISH (fluorescence in situ hybridization) using 45S rDNA as a probe. The results indicate that maize chromosome elimination events in the two crosses are not significantly different. Fusion protein ZmCENH3-YFP could not be detected in ZmCENH3 transgenic wheat by either Western blotting or immnunostaining, whereas accumulation and loading of the αTaCENH3-B-GFP fusion protein was normal in αTaCENH3-B transgenic lines. As ZmCENH3-YFP did not accumulate after AM114 treatment, we speculate that low levels of Zm

  16. Technological properties of bakers' yeasts in durum wheat semolina dough.

    PubMed

    Giannone, Virgilio; Longo, Chiara; Damigella, Arcangelo; Raspagliesi, Domenico; Spina, Alfio; Palumbo, Massimo

    2010-04-01

    Properties of 13 Saccharomyces cerevisiae strains isolated from different sources (traditional sourdoughs, industrial baking yeasts etc.) were studied in dough produced with durum wheat (Sicilian semolina, variety Mongibello). Durum wheat semolina and durum wheat flour are products prepared from grain of durum wheat (Triticum durum Desf.) by grinding or milling processes in which the bran and germ are essentially removed and the remainder is comminuted to a suitable degree of fineness. Acidification and leavening properties of the dough were evaluated. Strains isolated from traditional sourdoughs (DSM PST18864, DSM PST18865 and DSM PST18866) showed higher leavening power, valuable after the first and second hours of fermentation, than commercial baking yeasts. In particular the strain DSM PST 18865 has also been successfully tested in bakery companies for the improvement of production processes. Baking and staling tests were carried out on five yeast strains to evaluate their fermentation ability directly and their resistance to the staling process. Amplified fragment length polymorphism (fAFLP) was used to investigate genetic variations in the yeast strains. This study showed an appreciable biodiversity in the microbial populations of both wild and commercial yeast strains.

  17. Wheat: The Whole Story.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  18. Behavioural responses of wheat stem sawflies to wheat volatiles

    Treesearch

    D. Piesik; D. K. Weaver; J. B. Runyon; M. Buteler; G. E. Peck; W. L. Morrill

    2008-01-01

    1) Adult wheat stem sawflies Cephus cinctus, pests of cultivated cereals that also infests wild grasses, migrate into wheat fields where they oviposit in elongating, succulent stems. 2) Volatiles released by wheat plants at susceptible stages were analyzed to determine potential semiochemical compounds. Seven major compounds were identified and...

  19. GmDREB1 overexpression affects the expression of microRNAs in GM wheat seeds

    PubMed Central

    Niu, Fengjuan; Hu, Zheng; Chen, Rui; Zhang, Hui

    2017-01-01

    MicroRNAs (miRNAs) are small regulators of gene expression that act on many different molecular and biochemical processes in eukaryotes. To date, miRNAs have not been considered in the current evaluation system for GM crops. In this study, small RNAs from the dry seeds of a GM wheat line overexpressing GmDREB1 and non-GM wheat cultivars were investigated using deep sequencing technology and bioinformatic approaches. As a result, 23 differentially expressed miRNAs in dry seeds were identified and confirmed between GM wheat and a non-GM acceptor. Notably, more differentially expressed tae-miRNAs between non-GM wheat varieties were found, indicating that the degree of variance between non-GM cultivars was considerably higher than that induced by the transgenic event. Most of the target genes of these differentially expressed miRNAs between GM wheat and a non-GM acceptor were associated with abiotic stress, in accordance with the product concept of GM wheat in improving drought and salt tolerance. Our data provided useful information and insights into the evaluation of miRNA expression in edible GM crops. PMID:28459812

  20. Harnessing Diversity in Wheat to Enhance Grain Yield, Climate Resilience, Disease and Insect Pest Resistance and Nutrition Through Conventional and Modern Breeding Approaches

    PubMed Central

    Mondal, Suchismita; Rutkoski, Jessica E.; Velu, Govindan; Singh, Pawan K.; Crespo-Herrera, Leonardo A.; Guzmán, Carlos; Bhavani, Sridhar; Lan, Caixia; He, Xinyao; Singh, Ravi P.

    2016-01-01

    Current trends in population growth and consumption patterns continue to increase the demand for wheat, a key cereal for global food security. Further, multiple abiotic challenges due to climate change and evolving pathogen and pests pose a major concern for increasing wheat production globally. Triticeae species comprising of primary, secondary, and tertiary gene pools represent a rich source of genetic diversity in wheat. The conventional breeding strategies of direct hybridization, backcrossing and selection have successfully introgressed a number of desirable traits associated with grain yield, adaptation to abiotic stresses, disease resistance, and bio-fortification of wheat varieties. However, it is time consuming to incorporate genes conferring tolerance/resistance to multiple stresses in a single wheat variety by conventional approaches due to limitations in screening methods and the lower probabilities of combining desirable alleles. Efforts on developing innovative breeding strategies, novel tools and utilizing genetic diversity for new genes/alleles are essential to improve productivity, reduce vulnerability to diseases and pests and enhance nutritional quality. New technologies of high-throughput phenotyping, genome sequencing and genomic selection are promising approaches to maximize progeny screening and selection to accelerate the genetic gains in breeding more productive varieties. Use of cisgenic techniques to transfer beneficial alleles and their combinations within related species also offer great promise especially to achieve durable rust resistance. PMID:27458472

  1. Measurement of trichothecene mycotoxins in wheat using a biolayer interferometry-based biosensor

    USDA-ARS?s Scientific Manuscript database

    Mycotoxins are secondary metabolites produced by fungi. The fungi can infest a variety of important agricultural commodities including wheat, barley, maize, peanuts, and tree nuts. Certain of the mycotoxins are potential threats to animal and human health and, for this reason, extensive monitoring i...

  2. Improved wheat for baking.

    PubMed

    Faridi, H; Finley, J W

    1989-01-01

    To bakers, wheat quality means the performance characteristics of the flour milled from the wheat when used in specific wheat products. The tremendous increase in the number of wheat cultivars grown in the U.S. in recent years, along with the unusual climate, new advances in milling technology, and increased automation of baking lines, have resulted in bakery production problems partly attributed to wheat flour quality. In this review various factors affecting wheat quality are explained. Concerns of bread and cookie/cracker manufacturers on deterioration of the wheat quality are discussed, and, finally, some solutions are proposed.

  3. Bioaccessible mineral content of malted finger millet (Eleusine coracana), wheat (Triticum aestivum), and barley (Hordeum vulgare).

    PubMed

    Platel, Kalpana; Eipeson, Sushma W; Srinivasan, Krishnapura

    2010-07-14

    Malted grains are extensively used in weaning and geriatric foods. Malting generally improves the nutrient content and digestibility of foods. The present investigation examined the influence of malting of finger millet, wheat, and barley on the bioaccessibility of iron, zinc, calcium, copper, and manganese. Malting increased the bioaccessibility of iron by >3-fold from the two varieties of finger millet and by >2-fold from wheat, whereas such a beneficial influence was not seen in barley. The bioaccessibility of zinc from wheat and barley increased to an extent of 234 and 100%, respectively, as a result of malting. However, malting reduced the bioaccessibility of zinc from finger millet. Malting marginally increased the bioaccessibility of calcium from white finger millet and wheat. Whereas malting did not exert any influence on bioaccessibility of copper from finger millet and wheat, it significantly decreased (75%) the same from barley. Malting did increase the bioaccessibility of manganese from brown finger millet (17%) and wheat (42%). Thus, malting could be an appropriate food-based strategy to derive iron and other minerals maximally from food grains.

  4. Genetic and epigenetic alterations induced by different levels of rye genome integration in wheat recipient.

    PubMed

    Zheng, X L; Zhou, J P; Zang, L L; Tang, A T; Liu, D Q; Deng, K J; Zhang, Y

    2016-06-17

    The narrow genetic variation present in common wheat (Triticum aestivum) varieties has greatly restricted the improvement of crop yield in modern breeding systems. Alien addition lines have proven to be an effective means to broaden the genetic diversity of common wheat. Wheat-rye addition lines, which are the direct bridge materials for wheat improvement, have been wildly used to produce new wheat cultivars carrying alien rye germplasm. In this study, we investigated the genetic and epigenetic alterations in two sets of wheat-rye disomic addition lines (1R-7R) and the corresponding triticales. We used expressed sequence tag-simple sequence repeat, amplified fragment length polymorphism, and methylation-sensitive amplification polymorphism analyses to analyze the effects of the introduction of alien chromosomes (either the entire genome or sub-genome) to wheat genetic background. We found obvious and diversiform variations in the genomic primary structure, as well as alterations in the extent and pattern of the genomic DNA methylation of the recipient. Meanwhile, these results also showed that introduction of different rye chromosomes could induce different genetic and epigenetic alterations in its recipient, and the genetic background of the parents is an important factor for genomic and epigenetic variation induced by alien chromosome addition.

  5. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    NASA Technical Reports Server (NTRS)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  6. Evaluation of Pakistan wheat germplasms for stripe rust resistance using molecular markers

    USDA-ARS?s Scientific Manuscript database

    Wheat production in Pakistan is seriously constrained due to rust diseases. Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici is one of these diseases that can limit yields in the area. Thus developing and cultivating genetically diverse and resistant varieties is the only sustaina...

  7. Characterizing bread wheat genotypes of Pakistani origin for grain zinc biofortification potential.

    PubMed

    Rehman, Abdul; Farooq, Muhammad; Nawaz, Ahmad; Al-Sadi, Abdullah M; Al-Hashmi, Khalid S; Nadeem, Faisal; Ullah, Aman

    2018-03-15

    Zinc (Zn) is essential for all life forms and its deficiency is a major issue of malnutrition in humans. This study was carried out to characterize 28 wheat genotypes of Pakistani origin for grain zinc biofortification potential, genetic diversity and relatedness. There was low genetic differentiation among the tested genotypes. However, they differed greatly in yield-related traits, grain mineral (Zn, calcium (Ca) and protein) concentrations and Zn bioavailability. Zinc application increased the concentration of Zn in wheat grain (32.1%), embryo (19.8%), aleurone (47%) and endosperm (23.7%), with an increase in bioavailable Zn (22.2%) and a reduction in phytate concentration (6.8%). Application of Zn also enhanced grain protein and Ca concentrations. Among wheat genotypes, Blue Silver had the highest concentration of Zn in grain, embryo, aleurone and endosperm, with high bioavailable Zn, while Kohinoor-83 had low phytate concentration. Wheat genotypes of Pakistan are genetically less diverse owing to continuous focus on the development of high-yielding varieties only. Therefore genetically diverse wheat genotypes with high endospermic Zn concentration and better grain yield should be used in breeding programs approaches, aiming at improving Zn bioavailability. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  8. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.).

    PubMed

    Millet, E; Manisterski, J; Ben-Yehuda, P; Distelfeld, A; Deek, J; Wan, A; Chen, X; Steffenson, B J

    2014-06-01

    Leaf rust and stripe rust are devastating wheat diseases, causing significant yield losses in many regions of the world. The use of resistant varieties is the most efficient way to protect wheat crops from these diseases. Sharon goatgrass (Aegilops sharonensis or AES), which is a diploid wild relative of wheat, exhibits a high frequency of leaf and stripe rust resistance. We used the resistant AES accession TH548 and induced homoeologous recombination by the ph1b allele to obtain resistant wheat recombinant lines carrying AES chromosome segments in the genetic background of the spring wheat cultivar Galil. The gametocidal effect from AES was overcome by using an "anti-gametocidal" wheat mutant. These recombinant lines were found resistant to highly virulent races of the leaf and stripe rust pathogens in Israel and the United States. Molecular DArT analysis of the different recombinant lines revealed different lengths of AES segments on wheat chromosome 6B, which indicates the location of both resistance genes.

  9. [Genealogical Analysis of the Use of Two Wheatgrass (Agropyron) Species in Common Wheat (Triticum aestivum L.) Breeding for Disease Resistance].

    PubMed

    Martynova, S P; Dobrotvorskaya, T V; Krupnov, V A

    2016-02-01

    During the last 80 years, in order to increase the genetic variability of wheat, translocations containing nine elongated wheatgrass (Agropyron elongatum) and eight intermediate wheatgrass (Agropyron intermedium) genes, which control resistance to pathogens, were transferred to this crop culture. Genealogical and statistical analysis of 1500 varieties developed using the wheatgrass gave evidence of the continuing increase in the proportion of such varieties in the total number of wheat varieties over the last half-century. Translocations from Ag. elongatum most commonly occur in the pedigrees of the varieties from the United States, less frequently they can be found in Australian and Chinese varieties, and they are extremely rare--in European and African ones. Ag. intermedium most frequently occurs in the pedigrees of the Eastern European varieties, mainly in those from Russia, as well as in the varieties from China. The observed uneven distribution of such varieties may be associated with either the effectiveness of the translocation in the development of resistance to the local populations of pathogens or with the effect of the translocation on the adaptive traits of plants. By computer tracking of pedigrees, we performed an inventory of the translocation donors from A. elongatum and A. intermedium used in the breeding programs in the United States, Russia, Australia, India, and China. The most widely occurring combinations of the gene complex Lr24/Sr24 of Ag. elongatum with other resistance genes were revealed. In Russia there were developed varieties in which the 6D chromosome was substituted by the 6Ai chromosome of Ag. intermedium, which controls disease resistance and the adaptivity of plants. The identification and introgression of new translocations indicates that the possibilities of using wheatgrass species for broadening of genetic variability of wheat are far from being exhausted.

  10. Research investment implications of shifts in the global geography of wheat stripe rust.

    PubMed

    Beddow, Jason M; Pardey, Philip G; Chai, Yuan; Hurley, Terrance M; Kriticos, Darren J; Braun, Hans-Joachim; Park, Robert F; Cuddy, William S; Yonow, Tania

    2015-09-14

    Breeding new crop varieties with resistance to the biotic stresses that undermine crop yields is tantamount to increasing the amount and quality of biological capital in agriculture. However, the success of genes that confer resistance to pests induces a co-evolutionary response that depreciates the biological capital embodied in the crop, as pests evolve the capacity to overcome the crop's new defences. Thus, simply maintaining this biological capital, and the beneficial production and economic outcomes it bestows, requires continual reinvestment in new crop defences. Here we use observed and modelled data on stripe rust occurrence to gauge changes in the geographic spread of the disease over recent decades. We document a significant increase in the spread of stripe rust since 1960, with 88% of the world's wheat production now susceptible to infection. Using a probabilistic Monte Carlo simulation model we estimate that 5.47 million tonnes of wheat are lost to the pathogen each year, equivalent to a loss of US$979 million per year. Comparing the cost of developing stripe-rust-resistant varieties of wheat with the cost of stripe-rust-induced yield losses, we estimate that a sustained annual research investment of at least US$32 million into stripe rust resistance is economically justified.

  11. Wheat streak mosaic virus resistance in eight wheat germplasm lines

    USDA-ARS?s Scientific Manuscript database

    Wheat Streak Mosaic Virus (WSMV) disease is an important disease in wheat. Use of resistant cultivars is the most effective approach to reduce the yield losses caused by the disease. To identify new sources of resistance to WSMV, eight resistant wheat lines that were selected based on the results fr...

  12. Evolutionary Genomics of Wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat is the world’s largest and most important food crop for direct human consumption, therefore, continued wheat improvement is paramount for feeding an ever-increasing human population. Wheat improvement is tightly associated with the characterization and understanding of wheat evolution and gene...

  13. Morphological and starch structural characteristics of the Japonica rice mutant variety Seolgaeng for dry-milled flour

    USDA-ARS?s Scientific Manuscript database

    Producing fine, good quality rice flour is more difficult than wheat flour because the rice grain is harder. In this study, we analyzed the relationship between the morphology and starch of kernels from genetically different rice varieties that can be used to make dry-milled flour. The non-glutinous...

  14. Influence of low-molecular-weight glutenin subunit haplotypes on dough rheology and baking quality in elite common wheat varieties

    USDA-ARS?s Scientific Manuscript database

    The low molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins directly involved in the formation of gluten. Depending on the first amino acid residue of the mature proteins, the LMW-GSs are divided into methionine, serine or isoleucine type. These proteins are encod...

  15. Genetic relationships and structure among open pollinated maize varieties adapted to eastern and southern Africa using microsatellite markers

    USDA-ARS?s Scientific Manuscript database

    The International Maize and Wheat Improvement Center (CIMMYT), in collaboration with the national agricultural systems (NARS) in sub-Saharan Africa (SSA), have developed various stress-tolerant and more nutritious open-pollinated varieties (OPVs) of maize that are suitable for smallholder farmers’ g...

  16. Detection of greenbug infestation on wheat using ground-based radiometry

    NASA Astrophysics Data System (ADS)

    Yang, Zhiming

    Scope of methods of study. The purpose of this greenhouse study was to characterize stress in wheat caused by greenbugs using ground-based radiometry. Experiments were conducted to (a) identify spectral bands and vegetation indices sensitive to greenbug infestation; (b) differentiate stress caused due to greenbugs from water stress; (c) examine the impacts of plant growth stage on detection of greenbug infestation; and (d) compare infestations due to greenbug and Russian wheat aphid. Wheat (variety-TAM 107) was planted (seed spacing 1 in. x 3 in.) in plastic flats with dimension 24 in. x 16 in. x 8.75 in. Fifteen days after sowing, wheat seedlings were infested with greenbugs (biotype-E). Nadir measurement of canopy reflectance started the day after infestation and lasted until most infested plants were dead. Using a 16-band Cropscan radiometer, spectral reflectance data were collected daily (between 13:00--14:00 hours) and 128 vegetation indices were derived in addition to greenbug counts per tiller. Using SAS PROC MIXED, sensitivity of band and vegetation indices was identified based on Threshold Day. Subsequent to Threshold Day there was a consistent significant spectral difference between control and infested plants. Sensitivity of band and vegetation indices was further examined using correlation and relative sensitivity analyses. Findings and conclusions. Results show that it is possible to detect greenbug-induced stress on wheat using hand-held radiometers, such as Cropscan. Band 694 nm and the ratio-based vegetation index (RVI) derived from the band 694 nm and 800 nm were identified as most sensitive to greenbug infestation. Landsat TM bands and their derived vegetation indices also show potential for detecting wheat stress caused by greenbug infestation. Also, RVIs particularly derived using spectral band 694 nm and 800 nm were found useful in differentiating greenbug infestation from water stress. Furthermore, vegetation indices such as Normalized total

  17. No adverse effect of genetically modified antifungal wheat on decomposition dynamics and the soil fauna community--a field study.

    PubMed

    Duc, Caroline; Nentwig, Wolfgang; Lindfeld, Andreas

    2011-01-01

    The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the

  18. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool.

    PubMed

    Winfield, Mark O; Allen, Alexandra M; Burridge, Amanda J; Barker, Gary L A; Benbow, Harriet R; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; King, Julie; West, Claire; Griffiths, Simon; King, Ian; Bentley, Alison R; Edwards, Keith J

    2016-05-01

    In wheat, a lack of genetic diversity between breeding lines has been recognized as a significant block to future yield increases. Species belonging to bread wheat's secondary and tertiary gene pools harbour a much greater level of genetic variability, and are an important source of genes to broaden its genetic base. Introgression of novel genes from progenitors and related species has been widely employed to improve the agronomic characteristics of hexaploid wheat, but this approach has been hampered by a lack of markers that can be used to track introduced chromosome segments. Here, we describe the identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources. We have validated these markers using an ultra-high-density Axiom(®) genotyping array to characterize a range of diploid, tetraploid and hexaploid wheat accessions and wheat relatives. To facilitate the use of these, both the markers and the associated sequence and genotype information have been made available through an interactive web site. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Localization and distribution of Zn and Fe in grains of biofortified bread wheat lines through micro- and triaxial-X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Cardoso, P.; Mateus, T. C.; Velu, G.; Singh, R. P.; Santos, J. P.; Carvalho, M. L.; Lourenço, V. M.; Lidon, F.; Reboredo, F.; Guerra, M.

    2018-03-01

    X-ray fluorescence analysis has been performed in wheat grains from a field trial where some biofortified and non-biofortified wheat varieties were subjected to Zn biofortification through soil fertilizer application. A set of ten biofortified and non-biofortified wheat varieties developed at the International Maize and Wheat Improvement Center, Mexico, were used for this study. Two analytical methods were employed to investigate the contents and localization of the trace metals Zn and Fe within the grains, one with polarized monochromatic X-rays for lower limits of detection, and another featuring polycapillary lenses for micrometric beam size (μ-EDXRF). Elemental maps were obtained with μ-EDXRF allowing for the study of Zn and Fe localization in plants grown in normal and Zn-enriched soil. It is acknowledged that the biofortification procedures result in around 30% average increase in overall Zn concentration when compared to other high Zn genotypes grown in normal soil. A genotypic ranking was performed taking into account the influence of the measurement methods and field conditions and the obtained results show that two of the top three varieties regarding zinc contents also rank among the top three in terms of Fe concentration. Elemental mapping analysis seems to favor the use of integral flour for the manufacture of bread and pasta products, as the bran retains most of the minerals.

  20. Alterations in wheat pollen lipidome during high day and night temperature stress.

    PubMed

    Narayanan, Sruthi; Prasad, P V Vara; Welti, Ruth

    2018-01-26

    Understanding the adaptive changes in wheat pollen lipidome under high temperature (HT) stress is critical to improving seed set and developing HT tolerant wheat varieties. We measured 89 pollen lipid species under optimum and high day and/or night temperatures using electrospray ionization-tandem mass spectrometry in wheat plants. The pollen lipidome had a distinct composition compared with that of leaves. Unlike in leaves, 34:3 and 36:6 species dominated the composition of extraplastidic phospholipids in pollen under optimum and HT conditions. The most HT-responsive lipids were extraplastidic phospholipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol, phosphatidic acid, and phosphatidylserine. The unsaturation levels of the extraplastidic phospholipids decreased through the decreases in the levels of 18:3 and increases in the levels of 16:0, 18:0, 18:1, and 18:2 acyl chains. PC and PE were negatively correlated. Higher PC:PE at HT indicated possible PE-to-PC conversion, lower PE formation, or increased PE degradation, relative to PC. Correlation analysis revealed lipids experiencing coordinated metabolism under HT and confirmed the HT responsiveness of extraplastidic phospholipids. Comparison of the present results on wheat pollen with results of our previous research on wheat leaves suggests that similar lipid changes contribute to HT adaptation in both leaves and pollen, though the lipidomes have inherently distinct compositions. © 2018 John Wiley & Sons Ltd.

  1. Eighteen cases of wheat allergy and wheat-dependent exercise-induced urticaria/anaphylaxis sensitized by hydrolyzed wheat protein in soap.

    PubMed

    Kobayashi, Tomoko; Ito, Tomonobu; Kawakami, Hiroshi; Fuzishiro, Kanzan; Hirano, Hirofumi; Okubo, Yukari; Tsuboi, Ryoji

    2015-08-01

    Glupearl 19S, an acid-hydrolyzed wheat protein (HWP), is used widely in Japan as a moisturizing ingredient in facial soaps. Since 2010, there has been an increasing number of reports of contact urticaria and wheat allergy resulting from the use of products containing this substance. Sixty-one patients who had used HWP-containing facial soap visited our hospital. Thirty-five of these experienced urticaria or anaphylaxis after consuming wheat-containing food. Eighteen of the 35 patients tested positive to 0.01% Glupearl 19S solution. Wheat-specific IgE and serum gluten-specific IgE were higher in the patients with HWP allergy than in non-HWP allergy patients. Among the patients who tested positive to Glupearl 19S on the skin prick test, nine experienced HWP-wheat-dependent exercise-induced anaphylaxis, and four experienced food-dependent anaphylaxis. Moreover, four of these patients not only experienced food-dependent anaphylaxis but also a worsening of the symptoms during exercise. The clinical symptomology was so variable that the patients were classified into six groups. We found that patients with HWP allergy tended to manifest symptoms of both HWP-wheat-dependent exercise-induced anaphylaxis and contact urticaria. The etiology of hydrolyzed wheat protein allergy is unknown. Patients with a history of these symptoms need to be informed about the risk of consuming wheat-containing foods and the importance of excluding such items from their diet. © 2015 The International Society of Dermatology.

  2. [Molecular-genetic analysis of wheat (T. aestivum L.) genome with introgression of Ae. cylindrica Host genetic elements].

    PubMed

    Galaev, A V; Sivolap, Iu M

    2005-01-01

    Wheat-aegilops hybrid plants Triticum aestivum L. (2n = 42) x Aegilops cylindrica Host (2n = 28) were investigated with using microsatellite markers. In two BC1F9 lines some genome modifications connected with losing DNA fragments of initial variety or appearing of Aegilops genome elements were detected. In some investigated hybrids new amplicons lacking in parental plants were found. Substitution of wheat chromosomes for aegilops chromosomes was not revealed. Analysis of microsatellite loci in BC2F5 plants showed stable introgression of aegilops genetic elements into wheat; elimination of some transferred aegilops DNA fragments in the course of backcrossing; decreasing size of introgressive elements after backcrossing. Introgressive lines were classified according to genome changes.

  3. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b

    PubMed Central

    Giroux, Michael J.; Morris, Craig F.

    1998-01-01

    “Soft” and “hard” are the two main market classes of wheat (Triticum aestivum L.) and are distinguished by expression of the Hardness gene. Friabilin, a marker protein for grain softness (Ha), consists of two proteins, puroindoline a and b (pinA and pinB, respectively). We previously demonstrated that a glycine to serine mutation in pinB is linked inseparably to grain hardness. Here, we report that the pinB serine mutation is present in 9 of 13 additional randomly selected hard wheats and in none of 10 soft wheats. The four exceptional hard wheats not containing the serine mutation in pinB express no pinA, the remaining component of the marker protein friabilin. The absence of pinA protein was linked inseparably to grain hardness among 44 near-isogenic lines created between the soft variety Heron and the hard variety Falcon. Both pinA and pinB apparently are required for the expression of grain softness. The absence of pinA protein and transcript and a glycine-to-serine mutation in pinB are two highly conserved mutations associated with grain hardness, and these friabilin genes are the suggested tightly linked components of the Hardness gene. A previously described grain hardness related gene termed “GSP-1” (grain softness protein) is not controlled by chromosome 5D and is apparently not involved in grain hardness. The association of grain hardness with mutations in both pinA or pinB indicates that these two proteins alone may function together to effect grain softness. Elucidation of the molecular basis for grain hardness opens the way to understanding and eventually manipulating this wheat endosperm property. PMID:9600953

  4. No Adverse Effect of Genetically Modified Antifungal Wheat on Decomposition Dynamics and the Soil Fauna Community – A Field Study

    PubMed Central

    Duc, Caroline; Nentwig, Wolfgang; Lindfeld, Andreas

    2011-01-01

    The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the

  5. Optimization of soaking stage in technological process of wheat germination by hydroponic method when objective function is defined implicitly

    NASA Astrophysics Data System (ADS)

    Koneva, M. S.; Rudenko, O. V.; Usatikov, S. V.; Bugayets, N. A.; Tamova, M. Yu; Fedorova, M. A.

    2018-05-01

    The increase in the efficiency of the "numerical" technology for solving computational problems of parametric optimization of the technological process of hydroponic germination of wheat grains is considered. In this situation, the quality criteria are contradictory and a part of them is given by implicit functions of many variables. One of the main stages, soaking, determining the time and quality of germinated wheat grain is studied, when grain receives the required amount of moisture and air oxygen for germination and subsequently accumulates enzymes. A solution algorithm for this problem is suggested implemented by means of software packages Statistica v.10 and MathCAD v.15. The use of the proposed mathematical models describing the processes of hydroponic soaking of spring soft wheat varieties made it possible to determine optimal conditions of germination. The results of investigations show that the type of aquatic environment used for soaking has a great influence on the process of water absorption, especially the chemical composition of the germinated material. The use of the anolyte of electrochemically activated water (ECHA-water) intensifies the process from 5.83 to 4 hours for wheat variety «Altayskaya 105» and from 13 to 8.8 hours - for «Pobla Runo».

  6. Elemental mapping of biofortified wheat grains using micro X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Ramos, I.; Pataco, I. M.; Mourinho, M. P.; Lidon, F.; Reboredo, F.; Pessoa, M. F.; Carvalho, M. L.; Santos, J. P.; Guerra, M.

    2016-06-01

    Micro X-ray fluorescence has been used to obtain elemental maps of biofortified wheat grains. Two varieties of wheat were used in the study, Triticum aestivum L. and Triticum durum desf. Two treatments, with different nutrient concentration, were applied to the plants during the whole plant growth cycle. From the obtained elemental maps it was possible to extract information regarding the plant's physiological processes under the biofortification procedures. Both macro and micronutrients were mapped, providing useful insight into the posterior food processing mechanisms of this biofortified staple food. We have also shown that these kind of studies can now be performed with laboratory benchtop apparatus, rather than using synchrotron radiation, increasing the overall attractiveness of micro X-ray fluorescence in the study of highly heterogeneous biological samples.

  7. Glutamine synthetase in durum wheat: Genotypic variation and relationship with grain protein content

    USDA-ARS?s Scientific Manuscript database

    Nitrogen Use Efficiency (NUE), one of the most valuable indicators for nitrogen use in crops, both in terms of yield and final grain protein content (GPC), is a very complex trait. The identification of wheat varieties with high NUE, as well as the characterization of central enzymes involved in th...

  8. Response of Russian wheat aphid resistance in wheat and barley to four Diuraphis (Hemiptera: Aphididae) species.

    PubMed

    Puterka, Gary J; Scott, J Nicholson; Brown, Michael J; Hammon, R W

    2013-04-01

    Three Diuraphis species, Diuraphis frequens (Walker), Diuraphis mexicana (McVicar Baker), and Diuraphis tritici (Gillette), were known to exist in the United States before the 1986 appearance of the Russian wheat aphid, Diuraphis noxia Kurdjumov. The Russian wheat aphid soon became a significant pest of wheat although other endemic Diuraphis species were known to infest wheat. Wheat and barley entries resistant and susceptible to Russian wheat aphid biotype 2 were evaluated against all four Diuraphis species to determine their host interrelationships. Leaf chlorosis, leaf roll, leaf number, plant height, and infestation levels were assessed 21 d after the plants were infested by aphids in a no-choice caged environment. D. mexicana was unable to survive on wheat by 21 d after infestation and effects on the plant damage variables were negligible. D. frequens survived at low levels on resistant and susceptible plant entries and had a low impact on plant damage and growth. Russian wheat aphid biotype 2 and D. tritici were damaged most wheat and barley lines except the Russian wheat aphid biotype 2-resistant wheat lines containing genes from Dn7, STARS 2414-11, and CI2401; and resistant barley containing genes from STARS 9577B and 9301B. Russian wheat aphid biotype 2 and D. tritici reduced the growth of resistant plants by 25-50% and susceptible entries by 65-75%. Reductions at this level are typical under no-choice studies but resistant cultivars do not have these reductions under field conditions. The Russian wheat aphid biotype 2 resistant wheat lines would be effective in managing both wheat pest species.

  9. Quantitative proteomics reveals the central changes of wheat in response to powdery mildew.

    PubMed

    Fu, Ying; Zhang, Hong; Mandal, Siddikun Nabi; Wang, Changyou; Chen, Chunhuan; Ji, Wanquan

    2016-01-01

    Powdery mildew (Pm), caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most important crop diseases, causing severe economic losses to wheat production worldwide. However, there are few reports about the proteomic response to Bgt infection in resistant wheat. Hence, quantitative proteomic analysis of N9134, a resistant wheat line, was performed to explore the molecular mechanism of wheat in defense against Bgt. Comparing the leaf proteins of Bgt-inoculated N9134 with that of mock-inoculated controls, a total of 2182 protein-species were quantified by iTRAQ at 24, 48 and 72h postinoculation (hpi) with Bgt, of which 394 showed differential accumulation. These differentially accumulated protein-species (DAPs) mainly included pathogenesis-related (PR) polypeptides, oxidative stress responsive proteins and components involved in primary metabolic pathways. KEGG enrichment analysis showed that phenylpropanoid biosynthesis, phenylalanine metabolism and photosynthesis-antenna proteins were the key pathways in response to Bgt infection. InterProScan 5 and the Gibbs Motif Sampler cluster 394 DAPs into eight conserved motifs, which shared leucine repeats and histidine sites in the sequence motifs. Moreover, eight separate protein-protein interaction (PPI) networks were predicted from STRING database. This study provides a powerful platform for further exploration of the molecular mechanism underlying resistant wheat responding to Bgt. Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive pathogenic disease in wheat-producing regions worldwide, resulting in severe yield reductions. Although many resistant wheat varieties have been cultivated, there are few reports about the proteomic response to Bgt infection in resistant wheat. Therefore, an iTRAQ-based quantitative proteomic analysis of a resistant wheat line (N9134) in response to Bgt infection has been performed. This paper provides new insights into the underlying molecular

  10. Evaluation and reselection of wheat resistance to Russian wheat aphid biotype 2

    USDA-ARS?s Scientific Manuscript database

    Russian wheat aphid (RWA, Diuraphis noxia, Mordvilko) biotype 2 (RWA2) is virulent to most known RWA resistance genes and severely threatens wheat production in the hard winter wheat area of the US western Great Plains. We determined RWA2 reactions of 386 cultivars from China, 227 advanced breeding...

  11. Functional characterization of GPC-1 genes in hexaploid wheat.

    PubMed

    Avni, Raz; Zhao, Rongrong; Pearce, Stephen; Jun, Yan; Uauy, Cristobal; Tabbita, Facundo; Fahima, Tzion; Slade, Ann; Dubcovsky, Jorge; Distelfeld, Assaf

    2014-02-01

    In wheat, monocarpic senescence is a tightly regulated process during which nitrogen (N) and micronutrients stored pre-anthesis are remobilized from vegetative tissues to the developing grains. Recently, a close connection between senescence and remobilization was shown through the map-based cloning of the GPC (grain protein content) gene in wheat. GPC-B1 encodes a NAC transcription factor associated with earlier senescence and increased grain protein, iron and zinc content, and is deleted or non-functional in most commercial wheat varieties. In the current research, we identified 'loss of function' ethyl methanesulfonate mutants for the two GPC-B1 homoeologous genes; GPC-A1 and GPC-D1, in a hexaploid wheat mutant population. The single gpc-a1 and gpc-d1 mutants, the double gpc-1 mutant and control lines were grown under field conditions at four locations and were characterized for senescence, GPC, micronutrients and yield parameters. Our results show a significant delay in senescence in both the gpc-a1 and gpc-d1 single mutants and an even stronger effect in the gpc-1 double mutant in all the environments tested in this study. The accumulation of total N in the developing grains showed a similar increase in the control and gpc-1 plants until 25 days after anthesis (DAA) but at 41 and 60 DAA the control plants had higher grain N content than the gpc-1 mutants. At maturity, GPC in all mutants was significantly lower than in control plants while grain weight was unaffected. These results demonstrate that the GPC-A1 and GPC-D1 genes have a redundant function and play a major role in the regulation of monocarpic senescence and nutrient remobilization in wheat.

  12. Functional characterization of GPC-1 genes in hexaploid wheat

    PubMed Central

    Pearce, Stephen; Jun, Yan; Uauy, Cristobal; Tabbita, Facundo; Fahima, Tzion; Slade, Ann; Dubcovsky, Jorge; Distelfeld, Assaf

    2016-01-01

    In wheat, monocarpic senescence is a tightly regulated process during which nitrogen (N) and micronutrients stored pre-anthesis are remobilized from vegetative tissues to the developing grains. Recently, a close connection between senescence and remobilization was shown through the map-based cloning of the GPC (Grain Protein Content) gene in wheat. GPC-B1 encodes a NAC transcription factor associated with earlier senescence and increased grain protein, iron and zinc content, and is deleted or non-functional in most commercial wheat varieties. In the current research, we identified 'loss of function' ethyl methane sulphonate mutants for the two GPC-B1 homoeologous genes; GPC-A1 and GPC-D1, in a hexaploid wheat mutant population. The single gpc-a1 and gpc-d1 mutants, the double gpc-1 mutant and control lines were grown under field conditions at four locations and were characterized for senescence, GPC, micronutrients and yield parameters. Our results show a significant delay in senescence in both the gpc-a1 and gpc-d1 single mutants and an even stronger effect in the gpc-1 double mutant in all the environments tested in this study. The accumulation of total N in the developing grains showed a similar increase in the control and gpc-1 plants until 25 days after anthesis (DAA) but at 41 and 60 DAA the control plants had higher Grain N content than the gpc-1 mutants. At maturity, GPC in all mutants was significantly lower than in control plants while grain weight was unaffected. These results demonstrate that theGPC-A1 and GPC-D1 genes have a redundant function and play a major role in the regulation of monocarpic senescence and nutrient remobilization in wheat. PMID:24170335

  13. Establishing an efficient way to utilize the drought resistance germplasm population in wheat.

    PubMed

    Wang, Jiancheng; Guan, Yajing; Wang, Yang; Zhu, Liwei; Wang, Qitian; Hu, Qijuan; Hu, Jin

    2013-01-01

    Drought resistance breeding provides a hopeful way to improve yield and quality of wheat in arid and semiarid regions. Constructing core collection is an efficient way to evaluate and utilize drought-resistant germplasm resources in wheat. In the present research, 1,683 wheat varieties were divided into five germplasm groups (high resistant, HR; resistant, R; moderate resistant, MR; susceptible, S; and high susceptible, HS). The least distance stepwise sampling (LDSS) method was adopted to select core accessions. Six commonly used genetic distances (Euclidean distance, Euclid; Standardized Euclidean distance, Seuclid; Mahalanobis distance, Mahal; Manhattan distance, Manhat; Cosine distance, Cosine; and Correlation distance, Correlation) were used to assess genetic distances among accessions. Unweighted pair-group average (UPGMA) method was used to perform hierarchical cluster analysis. Coincidence rate of range (CR) and variable rate of coefficient of variation (VR) were adopted to evaluate the representativeness of the core collection. A method for selecting the ideal constructing strategy was suggested in the present research. A wheat core collection for the drought resistance breeding programs was constructed by the strategy selected in the present research. The principal component analysis showed that the genetic diversity was well preserved in that core collection.

  14. Genomic regions associated with the nitrogen limitation response revealed in a global wheat core collection.

    PubMed

    Bordes, Jacques; Ravel, C; Jaubertie, J P; Duperrier, B; Gardet, O; Heumez, E; Pissavy, A L; Charmet, G; Le Gouis, J; Balfourier, F

    2013-03-01

    Modern wheat (Triticum aestivum L.) varieties in Western Europe have mainly been bred, and selected in conditions where high levels of nitrogen-rich fertilizer are applied. However, high input crop management has greatly increased the risk of nitrates leaching into groundwater with negative impacts on the environment. To investigate wheat nitrogen tolerance characteristics that could be adapted to low input crop management, we supplied 196 accessions of a wheat core collection of old and modern cultivars with high or moderate amounts of nitrogen fertilizer in an experimental network consisting of three sites and 2 years. The main breeding traits were assessed including grain yield and grain protein content. The response to nitrogen level was estimated for grain yield and grain number per m(2) using both the difference and the ratio between performance at the two input levels and the slope of joint regression. A large variability was observed for all the traits studied and the response to nitrogen level. Whole genome association mapping was carried out using 899 molecular markers taking into account the five ancestral group structure of the collection. We identified 54 main regions involving almost all chromosomes that influence yield and its components, plant height, heading date and grain protein concentration. Twenty-three regions, including several genes, spread over 16 chromosomes were involved in the response to nitrogen level. These chromosomal regions may be good candidates to be used in breeding programs to improve the performance of wheat varieties at moderate nitrogen input levels.

  15. Genome Wide Association Study of Seedling and Adult Plant Leaf Rust Resistance in Elite Spring Wheat Breeding Lines.

    PubMed

    Gao, Liangliang; Turner, M Kathryn; Chao, Shiaoman; Kolmer, James; Anderson, James A

    2016-01-01

    Leaf rust is an important disease, threatening wheat production annually. Identification of resistance genes or QTLs for effective field resistance could greatly enhance our ability to breed durably resistant varieties. We applied a genome wide association study (GWAS) approach to identify resistance genes or QTLs in 338 spring wheat breeding lines from public and private sectors that were predominately developed in the Americas. A total of 46 QTLs were identified for field and seedling traits and approximately 20-30 confer field resistance in varying degrees. The 10 QTLs accounting for the most variation in field resistance explained 26-30% of the total variation (depending on traits: percent severity, coefficient of infection or response type). Similarly, the 10 QTLs accounting for most of the variation in seedling resistance to different races explained 24-34% of the variation, after correcting for population structure. Two potentially novel QTLs (QLr.umn-1AL, QLr.umn-4AS) were identified. Identification of novel genes or QTLs and validation of previously identified genes or QTLs for seedling and especially adult plant resistance will enhance understanding of leaf rust resistance and assist breeding for resistant wheat varieties. We also developed computer programs to automate field and seedling rust phenotype data conversions. This is the first GWAS study of leaf rust resistance in elite wheat breeding lines genotyped with high density 90K SNP arrays.

  16. Population density and distribution of wheat bugs infesting durum wheat in Sardinia, Italy.

    PubMed

    Salis, Luigi; Goula, Marta; Izquierdo, Jordi; Gordún, Elena

    2013-01-01

    Wheat is a very important crop in Italy, and is infested by wheat bugs belonging to the genera Eurygaster (Hemiptera: Scutellaridae) and Aelia (Hemiptera: Pentatomidae). Many wheat bug infestations have been reported in the north, south, and center of Italy, both in the past as well as recently. The present study was carried out in Sardinia, Italy, during two years (2007 and 2008). The objective of this study was to determine the species and distribution of wheat bugs in durum wheat fields in Sardinia, and to estimate their population density in order to know the incidence of the pest on the island. Sampling took place twice a year (May and June) in three zones, representative of durum wheat cropping in the island. Four species of wheat bugs were found; the predominant species was Eurygaster austriaca (Schrank), followed by Aelia germari (Kuster), Eurygaster maura L., and Aelia acuminata L. The average density of wheat bugs was low (1.1 individuals/m²), but in certain areas it was above the damage threshold (4 individuals/m²). For this reason, the conclusion of the study is that this pest should be monitored in order to control outbreaks and prevent their further spread.

  17. Population Density and Distribution of Wheat Bugs Infesting Durum Wheat in Sardinia, Italy

    PubMed Central

    Salis, Luigi; Goula, Marta; Izquierdo, Jordi; Gordún, Elena

    2013-01-01

    Wheat is a very important crop in Italy, and is infested by wheat bugs belonging to the genera Eurygaster (Hemiptera: Scutellaridae) and Aelia (Hemiptera: Pentatomidae). Many wheat bug infestations have been reported in the north, south, and center of Italy, both in the past as well as recently. The present study was carried out in Sardinia, Italy, during two years (2007 and 2008). The objective of this study was to determine the species and distribution of wheat bugs in durum wheat fields in Sardinia, and to estimate their population density in order to know the incidence of the pest on the island. Sampling took place twice a year (May and June) in three zones, representative of durum wheat cropping in the island. Four species of wheat bugs were found; the predominant species was Eurygaster austriaca (Schrank), followed by Aelia germari (Kuster), Eurygaster maura L., and Aelia acuminata L. The average density of wheat bugs was low (1.1 individuals/m2), but in certain areas it was above the damage threshold (4 individuals/m2). For this reason, the conclusion of the study is that this pest should be monitored in order to control outbreaks and prevent their further spread. PMID:23906035

  18. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene.

    PubMed

    Guo, Zhiai; Song, Yanxia; Zhou, Ronghua; Ren, Zhenglong; Jia, Jizeng

    2010-02-01

    Ppd-D1 is one of the most potent genes affecting the photoperiod response of wheat (Triticum aestivum). Only two alleles, insensitive Ppd-D1a and sensitive Ppd-D1b, were known previously, and these did not adequately explain the broad adaptation of wheat to photoperiod variation. In this study, five diagnostic molecular markers were employed to identify Ppd-D1 haplotypes in 492 wheat varieties from diverse geographic locations and 55 accessions of Aegilops tauschii, the D genome donor species of wheat. Six Ppd-D1 haplotypes, designated I-VI, were identified. Types II, V and VI were considered to be more ancient and types I, III and IV were considered to be derived from type II. The transcript abundances of the Ppd-D1 haplotypes showed continuous variation, being highest for haplotype I, lowest for haplotype III, and correlating negatively with varietal differences in heading time. These haplotypes also significantly affected other agronomic traits. The distribution frequency of Ppd-D1 haplotypes showed partial correlations with both latitudes and altitudes of wheat cultivation regions. The evolution, expression and distribution of Ppd-D1 haplotypes were consistent evidentially with each other. What was regarded as a pair of alleles in the past can now be considered a series of alleles leading to continuous variation.

  19. Relationship of gliadin protein components to chromosomes in hexaploid wheats (Triticum aestivum L.)

    PubMed Central

    Kasarda, Donald D.; Bernardin, John E.; Qualset, Calvin O.

    1976-01-01

    The synthesis of the A-gliadin protein fraction derived from the endosperm of the grain of hexaploid bread wheats (Triticum aestivum L.), which is toxic in celiac disease, was associated with the α arm of the 6A chromosome through use of the substitution lines of “Cheyenne” chromosomes in “Chinese Spring”. The association was made through the use of ditelocentric stocks of Chinese Spring. The synthesis of many other gliadin components in the gel electrophoretic patterns of these two varieties could be associated with particular chromosomes as well. All genes detected were located in the chromosomes of homoeologous groups 1 and 6. It is possible to remove some of the proteins toxic to people with celiac disease from wheat (flour) by chromosome manipulation. If the toxic factor is not widely distributed among the storage protein components, it may be possible to produce a wheat that would be safe for celiac patients to eat. Images PMID:16592355

  20. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis.

    PubMed

    Li, Zhao; Zhou, Miaoping; Zhang, Zengyan; Ren, Lijuan; Du, Lipu; Zhang, Boqiao; Xu, Huijun; Xin, Zhiyong

    2011-03-01

    Fusarium head blight (scab), primarily caused by Fusarium graminearum, is a devastating disease of wheat (Triticum aestivum L.) worldwide. Wheat sharp eyespot, mainly caused by Rhizoctonia cerealis, is one of the major diseases of wheat in China. The defensin RsAFP2, a small cyteine-rich antifungal protein from radish (Raphanus sativus), was shown to inhibit growth in vitro of agronomically important fungal pathogens, such as F. graminearum and R. cerealis. The RsAFP2 gene was transformed into Chinese wheat variety Yangmai 12 via biolistic bombardment to assess the effectiveness of the defensin in protecting wheat from the fungal pathogens in multiple locations and years. The genomic PCR and Southern blot analyses indicated that RsAFP2 was integrated into the genomes of the transgenic wheat lines and heritable. RT-PCR and Western blot proved that the RsAFP2 was expressed in these transgenic wheat lines. Disease tests showed that four RsAFP2 transgenic lines (RA1-RA4) displayed enhanced resistance to F. graminearum compared to the untransformed Yangmai 12 and the null-segregated plants. Assays on Q-RT-PCR and disease severity showed that the express level of RsAFP2 was associated with the enhanced resistance degree. Two of these transgenic lines (RA1 and RA2) also exhibited enhanced resistance to R. cerealis. These results indicated that the expression of RsAFP2 conferred increased resistance to F. graminearum and R. cerealis in transgenic wheat.

  1. Variation in Susceptibility to Wheat dwarf virus among Wild and Domesticated Wheat

    PubMed Central

    Nygren, Jim; Shad, Nadeem; Kvarnheden, Anders; Westerbergh, Anna

    2015-01-01

    We investigated the variation in plant response in host-pathogen interactions between wild (Aegilops spp., Triticum spp.) and domesticated wheat (Triticum spp.) and Wheat dwarf virus (WDV). The distribution of WDV and its wild host species overlaps in Western Asia in the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from a natural hybridization between wild emmer wheat (carrying the A and B genomes) and the wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We studied whether the strong selection during these evolutionary processes, leading to genetic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition, we investigated whether putative fluctuations in intensity of selection imposed on the host-pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hypotheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis, different growth traits and WDV content. The plants were exposed to viruliferous leafhoppers (Psammotettix alienus) in a greenhouse trial and evaluated at two time points. We found three different plant response patterns: i) continuous reduction in growth over time, ii) weak response at an early stage of plant development but a much stronger response at a later stage, and iii) remission of symptoms over time. Variation in susceptibility may be explained by differences in the intensity of natural selection, shaping the coevolutionary interaction between WDV and the wild relatives. However, genetic bottlenecks during wheat evolution have not had a strong impact on WDV resistance. Further, this study indicates that the variation in susceptibility may be associated with the genome type and that the ancestor Ae. tauschii may be useful as genetic resource for the improvement of WDV resistance in wheat. PMID

  2. Acceptability of wheat-sorghum composite flour products: an assessment.

    PubMed

    Keregero, M M; Mtebe, K

    1994-12-01

    The acceptability of sorghum as human food has been a problem in Tanzania even in regions showing promising potential for its production and utilization. Reasons given for low acceptability of sorghum products as human foods include unpleasant colour, aroma, mouthfeel, taste, unpleasant aftertaste and stomachfeel. An acceptability test of selected sorghum products was, therefore, conducted in the Department of Food Science and Technology, Sokoine University of Agriculture, Morogoro, Tanzania. The objective of the test was to determine consumers' preference for the following wheat-sorghum composite flour products: bread and buns or 'maandazi'. The products were prepared using sorghum flour composited with wheat flour in the following proportions: 100% brown sorghum flour (standard products); and 80:20%; 60:40%; 40:60% and 20:80% for wheat/sorghum (white and brown) composite flours. Results indicated that in the case of composite flour bread, preference for the product improved as the amount of sorghum flour decreased. In the case of buns or 'maandazi' the 100% sorghum flour products of both white and brown were equally preferred. Buns prepared from 100% sorghum flour of white and brown varieties showed promising potential in the improvement of the acceptability of sorghum products. Taking advantage of such products, especially in villages, could enhance sorghum utilization in rural communities.

  3. Induction of glutathione synthesis and glutathione reductase activity by abiotic stresses in maize and wheat.

    PubMed

    Kocsy, Gábor; Szalai, Gabriella; Galiba, Gábor

    2002-06-21

    The effect of different abiotic stresses (extreme temperatures and osmotic stress) on the synthesis of glutathione and hydroxymethylglutathione, on the ratio of the reduced to oxidised forms of these thiols (GSH/GSSG, hmGSH/hmGSSG), and on the glutathione reductase (GR) activity was studied in maize and wheat genotypes having different sensitivity to low temperature stress. Cold treatment induced a greater increase in total glutathione (TG) content and in GR activity in tolerant genotypes of both species than in sensitive ones. The GSH/GSSG and hmGSH/hmGSSG ratios were increased by this treatment only in the frost-tolerant wheat variety. High-temperature stress increased the TG content and the GSH/GSSG ratio only in the chilling-sensitive maize genotype, but GR activity was greater after this treatment in both maize genotypes. Osmotic stress resulted in a great increase in the TG content in wheat and the GR activity in maize. The amount of total hydroxymethylglutathione increased following all stress treatments. These results indicate the involvement of these antioxidants in the stress responses of wheat and maize.

  4. Effects of imidacloprid and clothianidin seed treatments on wheat aphids and their natural enemies on winter wheat.

    PubMed

    Zhang, Peng; Zhang, Xuefeng; Zhao, Yunhe; Wei, Yan; Mu, Wei; Liu, Feng

    2016-06-01

    Wheat aphid (Hemiptera: Aphididae) is one of the major pests of winter wheat and has posed a significant threat to winter wheat production in China. Although neonicotinoid insecticidal seed treatments have been suggested to be a control method, the season-long efficacy on pests and the impact on their natural enemies are still uncertain. Experiments were conducted to determine the efficacy of imidacloprid and clothianidin on the control of aphids, the number of their natural enemies and the emergence rate and yield of wheat during 2011-2014. Imidacloprid and clothianidin seed treatments had no effect on the emergence rate of winter wheat and could prevent yield losses and wheat aphid infestations throughout the winter wheat growing season. Furthermore, their active ingredients were detected in winter wheat leaves up to 200 days after sowing. Imidacloprid and clothianidin seed treatments had no adverse effects on ladybirds, hoverflies or parasitoids, and instead increased the spider-aphid ratios. Wheat seeds treated with imidacloprid and clothianidin were effective against wheat aphids throughout the winter wheat growing season and reduced the yield loss under field conditions. Imidacloprid and clothianidin seed treatments may be an important component of the integrated management of wheat aphids on winter wheat. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. The Danish Youth Cohort: characteristics of participants and non-participants and determinants of attrition.

    PubMed

    Vinther-Larsen, Mathilde; Riegels, Mette; Rod, Morten Hulvej; Schiøtz, Michaela; Curtis, Tine; Grønbaek, Morten

    2010-08-01

    The aim of this paper is to describe the design and methods used in the Danish Youth Cohort and to give a description of the study participants with special attention to a comparison between participants and non-participants regarding sociodemographic characteristics. A total of 1,945 schools were invited, out of which 506 participated. The participating 7th grades comprised a total of 12,498 responding adolescents. The response rate for the Danish Youth Cohort established in 2005 was 63%. The sample of 12,498 adolescents represents 18.2% of all pupils (n = 68,764) in the 7th grade (mean age: 13.4 years) in Danish schools in 2005. The cohort was followed up in spring 2006 and spring 2007, where the adolescents were in the 8th (mean age: 14.4 years) and 9th (mean age: 15.3 years) grades, respectively. We found that compared with non-participants the participants were significantly more likely to be girls, to be of Danish ethnicity, and to live in one-family houses. Furthermore, participants more often came from families with two or three children, were more likely to have parents with a high occupational status, parents who were married and parents with a higher total income. Loss to follow-up was only associated with adolescents' higher probability of drinking and use of tobacco, and none of the other factors were associated with attrition. The participants in the Danish Youth Cohort represent a great variety of different groups of socio-demographic factors, although they differ from non-participants as regards a range of socio-demographic factors. This should be taken into account in future analyses.

  6. Binary mixtures of waxy wheat and conventional wheat as measured by nir reflectance

    USDA-ARS?s Scientific Manuscript database

    Waxy wheat contains very low concentration (generally <2%) of amylose in endosperm starch, in contrast to conventional wheat whose starch is typically 20% amylose, with the balance being the branched macromolecule, amylopectin. With the release of a commercial hard winter waxy wheat cultivar in the ...

  7. An endogenous reference gene of common and durum wheat for detection of genetically modified wheat.

    PubMed

    Imai, Shinjiro; Tanaka, Keiko; Nishitsuji, Yasuyuki; Kikuchi, Yosuke; Matsuoka, Yasuyuki; Arami, Shin-Ichiro; Sato, Megumi; Haraguchi, Hiroyuki; Kurimoto, Youichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2012-01-01

    To develop a method for detecting GM wheat that may be marketed in the near future, we evaluated the proline-rich protein (PRP) gene as an endogenous reference gene of common wheat (Triticum aestivum L.) and durum wheat (Triticum durum L.). Real-time PCR analysis showed that only DNA of wheat was amplified and no amplification product was observed for phylogenetically related cereals, indicating that the PRP detection system is specific to wheat. The intensities of the amplification products and Ct values among all wheat samples used in this study were very similar, with no nonspecific or additional amplification, indicating that the PRP detection system has high sequence stability. The limit of detection was estimated at 5 haploid genome copies. The PRP region was demonstrated to be present as a single or double copy in the common wheat haploid genome. Furthermore, the PRP detection system showed a highly linear relationship between Ct values and the amount of plasmid DNA, indicating that an appropriate calibration curve could be constructed for quantitative detection of GM wheat. All these results indicate that the PRP gene is a suitable endogenous reference gene for PCR-based detection of GM wheat.

  8. Predicting rheological behavior and baking quality of wheat flour using a GlutoPeak test.

    PubMed

    Rakita, Slađana; Dokić, Ljubica; Dapčević Hadnađev, Tamara; Hadnađev, Miroslav; Torbica, Aleksandra

    2018-06-01

    The purpose of this research was to gain an insight into the ability of the GlutoPeak instrument to predict flour functionality for bread making, as well as to determine which of the GlutoPeak parameters show the best potential in predicting dough rheological behavior and baking performance. Obtained results showed that GlutoPeak parameters correlated better with the indices of extensional rheological tests which consider constant dough hydration than with those which were performed at constant dough consistency. The GlutoPeak test showed that it is suitable for discriminating wheat varieties of good quality from those of poor quality, while the most discriminating index was maximum torque (MT). Moreover, MT value of 50 BU and aggregation energy value of 1,300 GPU were set as limits of wheat flour quality. The backward stepwise regression analysis revealed that a high-level prediction of indices which are highly affected by protein content (gluten content, flour water absorption, and dough tenacity) was achieved by using the GlutoPeak indices. Concerning bread quality, a moderate prediction of specific loaf volume and an intense level prediction of breadcrumb textural properties were accomplished by using the GlutoPeak parameters. The presented results indicated that the application of this quick test in wheat transformation chain for the assessment of baking quality would be useful. Baking test is considered as the most reliable method for assessing wheat-baking quality. However, baking test requires trained stuff, time, and large sample amount. These disadvantages have led to a growing demand to develop new rapid tests which would enable prediction of baked product quality with a limited flour size. Therefore, we tested the possibility of using a GlutoPeak tester to predict loaf volume and breadcrumb textural properties. Discrimination of wheat varieties according to quality with a restricted flour amount was also examined. Furthermore, we proposed the limit

  9. Mutations in Durum Wheat SBEII Genes affect Grain Yield Components, Quality, and Fermentation Responses in Rats

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Hamilton, M. Kristina; Rust, Bret; Raybould, Helen E.; Newman, John W.; Martin, Roy; Dubcovsky, Jorge

    2016-01-01

    Increased amylose in wheat (Triticum ssp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that are associated with human health benefits. Since wheat foods are an important component of the human diet, increases in amylose and resistant starch in wheat grains have the potential to deliver health benefits to a large number of people. In three replicated field trials we found that mutations in starch branching enzyme II genes (SBEIIa and SBEIIb) in both A and B genomes (SBEIIa/b-AB) of durum wheat [T. turgidum L. subsp. durum (Desf.) Husn.] resulted in large increases of amylose and resistant starch content. The presence of these four mutations was also associated with an average 5% reduction in kernel weight (P = 0.0007) and 15% reduction in grain yield (P = 0.06) compared to the wild type. Complete milling and pasta quality analysis showed that the mutant lines have an acceptable quality with positive effects on pasta firmness and negative effects on semolina extraction and pasta color. Positive fermentation responses were detected in rats (Rattus spp.) fed with diets incorporating mutant wheat flour. This study quantifies benefits and limitations associated with the deployment of the SBEIIa/b-AB mutations in durum wheat and provides the information required to develop realistic strategies to deploy durum wheat varieties with increased levels of amylose and resistant starch. PMID:27134286

  10. [Wheat anaphylaxis or wheat-dependent exercise-induced anaphylaxis caused by use of a soap product which contains hydrolyzed wheat proteins. -a report of 12 cases-].

    PubMed

    Sugiyama, Akiko; Kishikawa, Reiko; Nishie, Haruko; Takeuchi, Satoshi; Shimoda, Terufumi; Iwanaga, Tomoaki; Nishima, Sankei; Furue, Masutaka

    2011-11-01

    Recently, it has become a social problem that hydrolyzed wheat protein in facial soap can induce wheat allergy including wheat-dependent exercise-induced anaphylaxis (WDEIA). We described the clinical characteristics of the patients related. We collected 12 cases who had had a medical examination from January to October in 2010. All the patients were female and mean age was 36.0± 9.9 years. All of them had had no prior symptoms history of wheat allergy, they gradually developed wheat anaphylaxis or WDEIA in an average of 2 years after they started to use a soap product in question which contains hydrolyzed wheat proteins. Most patients suffered immediate contact allergic reactions after or at the time of washing their face with the soap product. 10 of 12 patients showed a low level of IgE to CAP-recombinant ω-5-gliadin. Episodes of anaphylaxis were prevented by avoiding both intake of wheat-containing foods and usage of the soap product. We concluded that their wheat anaphylaxis is likely to be caused by epicutaneous sensitization of the hydrolyzed wheat proteins in the soap product. It was important that physicians should know the possibility of sensitization from non-dietary antigen.

  11. Reinforcement Effect of Alkali-Hydrolyzed Wheat Gluten and Shear-Degraded Wheat Starch in Carboxylated Styrene-Butadiene Composites

    USDA-ARS?s Scientific Manuscript database

    Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...

  12. Study of wheat protein based materials

    NASA Astrophysics Data System (ADS)

    Ye, Peng

    Wheat gluten is a naturally occurring protein polymer. It is produced in abundance by the agricultural industry, is biodegradable and very inexpensive (less than $0.50/lb). It has unique viscoelastic properties, which makes it a promising alternative to synthetic plastics. The unplasticized wheat gluten is, however, brittle. Plasticizers such as glycerol are commonly used to give flexibility to the articles made of wheat gluten but with the penalty of greatly reduced stiffness. Former work showed that the brittleness of wheat gluten can also be improved by modifying it with a tri-thiol additive with no penalty of reduced stiffness. However, the cost of the customer designed tri-thiol additive was very high and it was unlikely to make a cost effective material from such an expensive additive. Here we designed a new, inexpensive thiol additive called SHPVA. It was synthesized from polyvinyl alcohol (PVA) through a simple esterification reaction. The mechanical data of the molded wheat gluten/SHPVA material indicated that wheat gluten was toughened by SHPVA. As a control, the wheat gluten/PVA material showed no improvement compared with wheat gluten itself. Several techniques have been used to characterize this novel protein/polymer blend. Differential scanning calorimetric (DSC) study showed two phases in both wheat gluten/PVA and wheat gluten/SHPVA material. However, scanning electron microscope (SEM) pictures indicated that PVA was macroscopically separated from wheat gluten, while wheat gluten/SHPVA had a homogeneous look. The phase image from the atomic force microscope (AFM) gave interesting contrast based on the difference in the mechanical properties of these two phases. The biodegradation behavior of these protein/polymer blends was examined in soil. SHPVA was not degraded in the time period of the experiment. Wheat gluten/SHPVA degraded slower than wheat gluten. We also developed some other interesting material systems based on wheat gluten, including the

  13. Spatially discriminating Russian wheat aphid induced plant stress from other wheat stressing factors

    USDA-ARS?s Scientific Manuscript database

    The Russian wheat aphid (RWA) Diuraphis noxia (Mordvilko) is a major pest of winter wheat and barley in the United States. RWA induces stress to the wheat crop by damaging plant foliage, lowering the greenness of plants, and affecting productivity. Multispectral remote sensing is effective at dete...

  14. Fusarium head blight control and prevention of mycotoxin contamination in wheat with botanicals and tannic acid.

    PubMed

    Forrer, Hans-Rudolf; Musa, Tomke; Schwab, Fabienne; Jenny, Eveline; Bucheli, Thomas D; Wettstein, Felix E; Vogelgsang, Susanne

    2014-02-26

    Suspensions or solutions with 1% of Chinese galls (Galla chinensis, GC) or 1% of tannic acid (TA), inhibited germination of conidia or mycelium growth of Fusarium graminearum (FG) by 98%-100% or by 75%-80%, respectively, whereas dried bark from buckthorn (Frangula alnus, FA) showed no effect at this concentration. In climate chamber experiments where the wheat variety "Apogee" was artificially inoculated with FG and F. crookwellense (FCr) and treated with 5% suspensions of TA, GC and FA, the deoxynivalenol (DON) content in grains was reduced by 81%, 67% and 33%, respectively. In field experiments with two commercial wheat varieties and artificial or semi-natural inoculations, mean DON reductions of 66% (TA) and 58% (FA), respectively, were obtained. Antifungal toxicity can explain the high efficacies of TA and GC but not those of FA. The Fusarium head blight (FHB) and mycotoxin reducing effect of FA is probably due to elicitation of resistance in wheat plants. With semi-natural inoculation, a single FA application in the first half of the flowering period performed best. However, we assume that applications of FA at the end of ear emergence and a treatment, triggered by an infection period, with TA or GC during flowering, might perform better than synthetic fungicides.

  15. Fusarium Head Blight Control and Prevention of Mycotoxin Contamination in Wheat with Botanicals and Tannic Acid

    PubMed Central

    Forrer, Hans-Rudolf; Musa, Tomke; Schwab, Fabienne; Jenny, Eveline; Bucheli, Thomas D.; Wettstein, Felix E.; Vogelgsang, Susanne

    2014-01-01

    Suspensions or solutions with 1% of Chinese galls (Galla chinensis, GC) or 1% of tannic acid (TA), inhibited germination of conidia or mycelium growth of Fusarium graminearum (FG) by 98%–100% or by 75%–80%, respectively, whereas dried bark from buckthorn (Frangula alnus, FA) showed no effect at this concentration. In climate chamber experiments where the wheat variety “Apogee” was artificially inoculated with FG and F. crookwellense (FCr) and treated with 5% suspensions of TA, GC and FA, the deoxynivalenol (DON) content in grains was reduced by 81%, 67% and 33%, respectively. In field experiments with two commercial wheat varieties and artificial or semi-natural inoculations, mean DON reductions of 66% (TA) and 58% (FA), respectively, were obtained. Antifungal toxicity can explain the high efficacies of TA and GC but not those of FA. The Fusarium head blight (FHB) and mycotoxin reducing effect of FA is probably due to elicitation of resistance in wheat plants. With semi-natural inoculation, a single FA application in the first half of the flowering period performed best. However, we assume that applications of FA at the end of ear emergence and a treatment, triggered by an infection period, with TA or GC during flowering, might perform better than synthetic fungicides. PMID:24577585

  16. Biolistic Transformation of Wheat.

    PubMed

    Tassy, Caroline; Barret, Pierre

    2017-01-01

    The wheat genome encodes some 100,000 genes. To understand how the expression of these genes is regulated it will be necessary to carry out many genetic transformation experiments. Robust protocols that allow scientists to transform a wide range of wheat genotypes are therefore required. In this chapter, we describe a protocol for biolistic transformation of wheat that uses immature embryos and small quantities of DNA cassettes. An original method for DNA cassette purification is also described. This protocol can be used to transform a wide range of wheat genotypes and other related species.

  17. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting... such wheat, other than moisture, remain unaltered. Cracked wheat contains not more than 15 percent of...

  18. Selection and hydroponic growth of bread wheat cultivars for bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Page, V.; Feller, U.

    2013-08-01

    As part of the ESA-funded MELiSSA program, the suitability, the growth and the development of four bread wheat cultivars were investigated in hydroponic culture with the aim to incorporate such a cultivation system in an Environmental Control and Life Support System (ECLSS). Wheat plants can fulfill three major functions in space: (a) fixation of CO2 and production of O2, (b) production of grains for human nutrition and (c) production of cleaned water after condensation of the water vapor released from the plants by transpiration. Four spring wheat cultivars (Aletsch, Fiorina, Greina and CH Rubli) were grown hydroponically and compared with respect to growth and grain maturation properties. The height of the plants, the culture duration from germination to harvest, the quantity of water used, the number of fertile and non-fertile tillers as well as the quantity and quality of the grains harvested were considered. Mature grains could be harvested after around 160 days depending on the varieties. It became evident that the nutrient supply is crucial in this context and strongly affects leaf senescence and grain maturation. After a first experiment, the culture conditions were improved for the second experiment (stepwise decrease of EC after flowering, pH adjusted twice a week, less plants per m2) leading to a more favorable harvest (higher grain yield and harvest index). Considerably less green tillers without mature grains were present at harvest time in experiment 2 than in experiment 1. The harvest index for dry matter (including roots) ranged from 0.13 to 0.35 in experiment 1 and from 0.23 to 0.41 in experiment 2 with modified culture conditions. The thousand-grain weight for the four varieties ranged from 30.4 to 36.7 g in experiment 1 and from 33.2 to 39.1 g in experiment 2, while market samples were in the range of 39.4-46.9 g. Calcium levels in grains of the hydroponically grown wheat were similar to those from field-grown wheat, while potassium, magnesium

  19. Assessment of breadmaking performance of wheat flour dough by means of frequency dependent ultrasound

    NASA Astrophysics Data System (ADS)

    Braunstein, D.; Page, J. H.; Strybulevych, A.; Peressini, D.; Scanlon, M. G.

    2012-12-01

    Technological performance of wheat flour varies among different wheat varieties. Gluten plays a key role within the solid phase of dough in the formation and the retention of gas bubbles during breadmaking. Rheological tests are usually performed to predict breadmaking potential. The aim here was to investigate the ability of ultrasound to discriminate wheat doughs based on breadmaking qualities. The ultimate goal is the development of an online quality control system currently unavailable in the baked goods industry, rendering this work innovative. Samples were prepared from a strong wheat flour, with one control sample and one added with inulin and distilled monoglycerides, producing doughs of distinct breadmaking quality. Doughs were subjected to density determination, elongation tests, and ultrasound analysis. The ultrasound tests were performed in the frequency range of 300 kHz - 6 MHz. Ultrasonic phase velocity increased with increasing frequency to about 2 MHz, becoming constant and then decreasing from 3 MHz for the control sample. Distinct differences in attenuation coefficient between the fibre-enriched and control doughs were observed. Ultrasound can potentially add to a better understanding of dough quality and can discriminate between doughs of contrasting properties.

  20. Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes.

    PubMed

    Wu, Huixia; Doherty, Angela; Jones, Huw D

    2008-06-01

    Genetic transformation of wheat, using biolistics or Agrobacterium, underpins a range of specific research methods for identifying genes and studying their function in planta. Transgenic approaches to study and modify traits in durum wheat have lagged behind those for bread wheat. Here we report the use of Agrobacterium strain AGL1, with additional vir genes housed in a helper plasmid, to transform and regenerate the durum wheat variety Ofanto. The use of the basic pSoup helper plasmid with no additional vir genes failed to generate transformants, whereas the presence of either virG542 or the 15 kb Komari fragment containing virB, virC and virG542 produced transformation efficiencies of between 0.6 and 9.7%. Of the 42 transgenic plants made, all but one (which set very few seeds) appeared morphologically normal and produced between 100 and 300 viable seeds. The transgene copy number and the segregation ratios were found to be very similar to those previously reported for bread wheat. We believe that this is the first report describing successful genetic transformation of tetraploid durum wheat (Triticum turgidum L. var. durum) mediated by Agrobacterium tumefaciens using immature embryos as the explant.

  1. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production.

    PubMed

    Whitford, Ryan; Fleury, Delphine; Reif, Jochen C; Garcia, Melissa; Okada, Takashi; Korzun, Viktor; Langridge, Peter

    2013-12-01

    Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.

  2. Genetic control of plant height in European winter wheat cultivars.

    PubMed

    Würschum, Tobias; Langer, Simon M; Longin, C Friedrich H

    2015-05-01

    Plant height variation in European winter wheat cultivars is mainly controlled by the Rht - D1 and Rht - B1 semi-dwarfing genes, but also by other medium- or small-effect QTL and potentially epistatic QTL enabling fine adjustments of plant height. Plant height is an important goal in wheat (Triticum aestivum L.) breeding as it affects crop performance and thus yield and quality. The aim of this study was to investigate the genetic control of plant height in European winter wheat cultivars. To this end, a panel of 410 winter wheat varieties from across Europe was evaluated for plant height in multi-location field trials and genotyped for the candidate loci Rht-B1, Rht-D1, Rht8, Ppd-B1 copy number variation and Ppd-D1 as well as by a genotyping-by-sequencing approach yielding 23,371 markers with known map position. We found that Rht-D1 and Rht-B1 had the largest effects on plant height in this cultivar collection explaining 40.9 and 15.5% of the genotypic variance, respectively, while Ppd-D1 and Rht8 accounted for 3.0 and 2.0% of the variance, respectively. A genome-wide scan for marker-trait associations yielded two additional medium-effect QTL located on chromosomes 6A and 5B explaining 11.0 and 5.7% of the genotypic variance after the effects of the candidate loci were accounted for. In addition, we identified several small-effect QTL as well as epistatic QTL contributing to the genetic architecture of plant height. Taken together, our results show that the two Rht-1 semi-dwarfing genes are the major sources of variation in European winter wheat cultivars and that other small- or medium-effect QTL and potentially epistatic QTL enable fine adjustments in plant height.

  3. Developing and Evaluating a Multimodal Course Format: Danish for Knowledge Workers--Labour Market-Related Danish

    ERIC Educational Resources Information Center

    Frederiksen, Karen-Margrete; Laursen, Katja Årosin

    2015-01-01

    This paper presents our reflections on developing the Computer-Assisted Language Learning (CALL) course "Danish for knowledge workers--labour market-related Danish." As defined by Laursen and Frederiksen (2015), knowledge workers are "highly educated people who typically work at universities, at other institutions of higher…

  4. Wheat-specific gene, ribosomal protein l21, used as the endogenous reference gene for qualitative and real-time quantitative polymerase chain reaction detection of transgenes.

    PubMed

    Liu, Yi-Ke; Li, He-Ping; Huang, Tao; Cheng, Wei; Gao, Chun-Sheng; Zuo, Dong-Yun; Zhao, Zheng-Xi; Liao, Yu-Cai

    2014-10-29

    Wheat-specific ribosomal protein L21 (RPL21) is an endogenous reference gene suitable for genetically modified (GM) wheat identification. This taxon-specific RPL21 sequence displayed high homogeneity in different wheat varieties. Southern blots revealed 1 or 3 copies, and sequence analyses showed one amplicon in common wheat. Combined analyses with sequences from common wheat (AABBDD) and three diploid ancestral species, Triticum urartu (AA), Aegilops speltoides (BB), and Aegilops tauschii (DD), demonstrated the presence of this amplicon in the AA genome. Using conventional qualitative polymerase chain reaction (PCR), the limit of detection was 2 copies of wheat haploid genome per reaction. In the quantitative real-time PCR assay, limits of detection and quantification were about 2 and 8 haploid genome copies, respectively, the latter of which is 2.5-4-fold lower than other reported wheat endogenous reference genes. Construct-specific PCR assays were developed using RPL21 as an endogenous reference gene, and as little as 0.5% of GM wheat contents containing Arabidopsis NPR1 were properly quantified.

  5. Using Satellite Data to Unpack Causes of Yield Gaps in India's Wheat Belt

    NASA Astrophysics Data System (ADS)

    Jain, M.; Singh, B.; Srivastava, A.; Malik, R. K.; McDonald, A.; Lobell, D. B.

    2016-12-01

    India will face significant food security challenges in the coming decades due to climate change, natural resource degradation, and population growth. Yields of wheat, one of India's staple crops, are already stagnating and will be significantly impacted by warming temperatures. Despite these challenges, wheat yields can be enhanced by implementing improved management in regions with existing yield gaps. To identify the magnitude and causes of current yield gaps, we produced 30 m resolution yield maps across India's main wheat belt, the Indo-Gangetic Plains (IGP), from 2000 to 2015. Yield maps were derived using a new method that translates satellite vegetation indices to yield estimates using crop model simulations, bypassing the need for ground calibration data that rarely exist in smallholder systems. We find that yields can be increased by 5% on average and up to 16% in the eastern IGP by improving management to current best practices within a given district. However, if policies and technologies are put in place to improve management to current best practices in Punjab, the highest yielding state, yields can be increased by 29% in the eastern IGP. Considering which factors most influence wheat yields, we find that later sow dates and warmer temperatures are most associated with low yields across the IGP. This suggests that strategies that reduce the negative effects of heat stress, like earlier sowing and planting heat-tolerant wheat varieties, are critical to India's current and future food security.

  6. Effects of grown origin, genotype, harvest year, and their interactions of wheat kernels on near infrared spectral fingerprints for geographical traceability.

    PubMed

    Zhao, Haiyan; Guo, Boli; Wei, Yimin; Zhang, Bo

    2014-01-01

    The effects of origin, genotype, harvest year, and their interactions on wheat near infrared (NIR) spectra were studied to find the reasons for differences in NIR fingerprints of wheat from different geographical origins and the stability of NIR fingerprints among different years. Ten varieties were grown in three regions of China for 2 years. 180 kernel samples were analysed by NIR. The spectra after pre-treatment were analysed by principal component analysis, multi-way analysis of variance, and discriminant partial least-squares. The results showed that origin, genotype, year, and their interactions all had significant effects on wheat NIR fingerprints. The second overtones of N-H and C-H stretching vibrations and a combination of stretch and deformation of C-H group in wheat were mainly influenced by the geographical origin. The wavelength ranges 975-990 nm, 1200 nm, and 1355-1380 nm contained plenty of origin information to build robust discriminant models of wheat geographical origin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Genome Wide Association Study of Seedling and Adult Plant Leaf Rust Resistance in Elite Spring Wheat Breeding Lines

    PubMed Central

    Gao, Liangliang; Turner, M. Kathryn; Chao, Shiaoman; Kolmer, James; Anderson, James A.

    2016-01-01

    Leaf rust is an important disease, threatening wheat production annually. Identification of resistance genes or QTLs for effective field resistance could greatly enhance our ability to breed durably resistant varieties. We applied a genome wide association study (GWAS) approach to identify resistance genes or QTLs in 338 spring wheat breeding lines from public and private sectors that were predominately developed in the Americas. A total of 46 QTLs were identified for field and seedling traits and approximately 20–30 confer field resistance in varying degrees. The 10 QTLs accounting for the most variation in field resistance explained 26–30% of the total variation (depending on traits: percent severity, coefficient of infection or response type). Similarly, the 10 QTLs accounting for most of the variation in seedling resistance to different races explained 24–34% of the variation, after correcting for population structure. Two potentially novel QTLs (QLr.umn-1AL, QLr.umn-4AS) were identified. Identification of novel genes or QTLs and validation of previously identified genes or QTLs for seedling and especially adult plant resistance will enhance understanding of leaf rust resistance and assist breeding for resistant wheat varieties. We also developed computer programs to automate field and seedling rust phenotype data conversions. This is the first GWAS study of leaf rust resistance in elite wheat breeding lines genotyped with high density 90K SNP arrays. PMID:26849364

  8. Relationship between Russian wheat aphid abundance and edaphic and topographic characteristics of wheat fields

    USDA-ARS?s Scientific Manuscript database

    This study explores the spatial relationship between Russian wheat aphid population density and variation in edaphic or topographic factors within wheat fields. Multiple regression analysis was applied to data collected from six wheat fields located in three States, Colorado, Wyoming, and Nebraska....

  9. QTL mapping of selenium content using a RIL population in wheat

    PubMed Central

    Wang, Pei; Wang, Huinan; Liu, Qing; Tian, Xia; Shi, Yanxi

    2017-01-01

    Selenium (Se) is an essential trace element that plays various roles in human health. Understanding the genetic control of Se content and quantitative trait loci (QTL) mapping provide a basis for Se biofortification of wheat to enhance grain Se content. In the present study, a set of recombinant inbred lines (RILs) derived from two Chinese winter wheat varieties (Tainong18 and Linmai6) was used to detect QTLs for Se content in hydroponic and field trials. In total, 16 QTLs for six Se content-related traits were detected on eight chromosomes, 1B, 2B, 4B, 5A, 5B, 5D, 6A, and 7D. Of these, seven QTLs were detected at the seedling stage and nine at the adult stage. The contribution of each QTL to Se content ranged from 7.37% to 20.22%. QSsece-7D.2, located between marker loci D-3033829 and D-1668160, had the highest contribution (20.22%). This study helps in understanding the genetic basis for Se contents and will provide a basis for gene mapping of Se content in wheat. PMID:28880898

  10. 19 CFR 19.32 - Wheat manipulation; reconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Wheat manipulation; reconditioning. 19.32 Section... Bonded for the Storage of Wheat § 19.32 Wheat manipulation; reconditioning. (a) The mixing, blending, or commingling of imported wheat and domestic wheat, or of imported wheat of different classes and grades, as an...

  11. Eat Wheat!

    ERIC Educational Resources Information Center

    Idaho Wheat Commission, Boise.

    This pamphlet contains puzzles, games, and a recipe designed to teach elementary school pupils about wheat. It includes word games based on the U.S. Department of Agriculture Food Guide Pyramid and on foods made from wheat. The Food Guide Pyramid can be cut out of the pamphlet and assembled as a three-dimensional information source and food guide.…

  12. Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112

    USDA-ARS?s Scientific Manuscript database

    Hard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Among popular commercial varieties, TAM 111 and TAM 112 showed a superior adaptation to water-deficit c...

  13. The impact of sea surface temperature on winter wheat in Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Capa-Morocho, Mirian; Rodríguez-Fonseca, Belen; Ruiz-Ramos, Margarita

    2016-04-01

    Climate variability is the main driver of changes in crops yield, especially for rainfed production systems. This is also the case of Iberian Peninsula (IP) (Capa-Morocho et al., 2014), where wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. Previous works have shown that large-scale oceanic patterns have a significant impact on precipitation over IP (Rodriguez-Fonseca and de Castro, 2002; Rodríguez-Fonseca et al., 2006). The existence of some predictability of precipitation has encouraged us to analyze the possible predictability of the wheat yield in the IP using sea surface temperature (SST) anomalies as predictor. For this purpose, a crop model site specific calibrated for the Northeast of IP and several reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that wheat yield anomalies are associated with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) SST. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures and precipitation experienced by the crop during flowering and grain filling. Results from this study could have important implications for predictability issues in agricultural planning and management, such as insurance coverage, changes in sowing dates and choice of species and varieties.

  14. Mapping QTLs for Fusarium Head Blight Resistance in an Interspecific Wheat Population

    PubMed Central

    Giancaspro, Angelica; Giove, Stefania L.; Zito, Daniela; Blanco, A.; Gadaleta, Agata

    2016-01-01

    Fusarium head blight (scab) is one of the most widespread and damaging diseases of wheat, causing grain yield and quality losses and production of harmful mycotoxins. Development of resistant varieties is hampered by lack of effective resistance sources in the tetraploid wheat primary gene pool. Here we dissected the genetic basis of resistance in a new durum wheat (Triticum turgidum ssp. durum) Recombinant inbred lines (RILs) population obtained by crossing an hexaploid resistant line and a durum susceptible cultivar. A total of 135 RILs were used for constituting a genetic linkage map and mapping loci for head blight incidence, severity, and disease-related plant morphological traits (plant height, spike compactness, and awn length). The new genetic map accounted for 4,366 single nucleotide polymorphism markers assembled in 52 linkage groups covering a total length of 4,227.37 cM. Major quantitative trait loci (QTL) for scab incidence and severity were mapped on chromosomes 2AS, 3AL, and 2AS, 2BS, 4BL, respectively. Plant height loci were identified on 3A, 3B, and 4B, while major QTL for ear compactness were found on 4A, 5A, 5B, 6A, and 7A. In this work, resistance to Fusarium was transferred from hexaploid to durum wheat, and correlations between the disease and morphological traits were assessed. PMID:27746787

  15. Hyperspectral imaging to identify salt-tolerant wheat lines

    NASA Astrophysics Data System (ADS)

    Moghimi, Ali; Yang, Ce; Miller, Marisa E.; Kianian, Shahryar; Marchetto, Peter

    2017-05-01

    In order to address the worldwide growing demand for food, agriculture is facing certain challenges and limitations. One of the important threats limiting crop productivity is salinity. Identifying salt tolerate varieties is crucial to mitigate the negative effects of this abiotic stress in agricultural production systems. Traditional measurement methods of this stress, such as biomass retention, are labor intensive, environmentally influenced, and often poorly correlated to salinity stress alone. In this study, hyperspectral imaging, as a non-destructive and rapid method, was utilized to expedite the process of identifying relatively the most salt tolerant line among four wheat lines including Triticum aestivum var. Kharchia, T. aestivum var. Chinese Spring, (Ae. columnaris) T. aestivum var. Chinese Spring, and (Ae. speltoides) T. aestivum var. Chinese Spring. To examine the possibility of early detection of a salt tolerant line, image acquisition was started one day after stress induction and continued on three, seven, and 12 days after adding salt. Simplex volume maximization (SiVM) method was deployed to detect superior wheat lines in response to salt stress. The results of analyzing images taken as soon as one day after salt induction revealed that Kharchia and (columnaris)Chinese Spring are the most tolerant wheat lines, while (speltoides) Chinese Spring was a moderately susceptible, and Chinese Spring was a relatively susceptible line to salt stress. These results were confirmed with the measuring biomass performed several weeks later.

  16. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landrace and cultivars

    USDA-ARS?s Scientific Manuscript database

    Domesticated crops have experienced strong human-driven selection aimed at the development of improved varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated DNA m...

  17. Molecular cytogenetic identification of a novel wheat-Agropyron elongatum chromosome translocation line with powdery mildew resistance.

    PubMed

    Li, Xiaojun; Jiang, Xiaoling; Chen, Xiangdong; Song, Jie; Ren, Cuicui; Xiao, Yajuan; Gao, Xiaohui; Ru, Zhengang

    2017-01-01

    Agropyron elongatum (Host.) Neviski (synonym, Thinopyrum ponticum Podp., 2n = 70) has been used extensively as a valuable source for wheat breeding. Numerous chromosome fragments containing valuable genes have been successfully translocated into wheat from A. elongatum. However, reports on the transfer of powdery mildew resistance from A. elongatum to wheat are rare. In this study, a novel wheat-A. elongatum translocation line, 11-20-1, developed and selected from the progenies of a sequential cross between wheat varieties (Lankaoaizaoba, Keyu 818 and BainongAK 58) and A. elongatum, was evaluated for disease resistance and characterized using molecular cytogenetic methods. Cytological observations indicated that 11-20-1 had 42 chromosomes and formed 21 bivalents at meiotic metaphase I. Genomic in situ hybridization analysis using whole genomic DNA from A. elongatum as a probe showed that the short arms of a pair of wheat chromosomes were replaced by a pair of A. elongatum chromosome arms. Fluorescence in situ hybridization, using wheat D chromosome specific sequence pAs1 as a probe, suggested that the replaced chromosome arms of 11-20-1 were 5DS. This was further confirmed by wheat SSR markers specific for 5DS. EST-SSR and EST-STS multiple loci markers confirmed that the introduced A. elongatum chromosome arms belonged to homoeologous group 5. Therefore, it was deduced that 11-20-1 was a wheat-A. elongatum T5DL∙5AgS translocation line. Both resistance observation and molecular marker analyses using two specific markers (BE443538 and CD452608) of A. elongatum in a F2 population from a cross between line 11-20-1 and a susceptible cultivar Yannong 19 verified that the A. elongatum chromosomes were responsible for the powdery mildew resistance. This work suggests that 11-20-1 likely contains a novel resistance gene against powdery mildew. We expect this line to be useful for the genetic improvement of wheat.

  18. Molecular cytogenetic identification of a novel wheat-Agropyron elongatum chromosome translocation line with powdery mildew resistance

    PubMed Central

    Jiang, Xiaoling; Chen, Xiangdong; Song, Jie; Ren, Cuicui; Xiao, Yajuan; Gao, Xiaohui; Ru, Zhengang

    2017-01-01

    Agropyron elongatum (Host.) Neviski (synonym, Thinopyrum ponticum Podp., 2n = 70) has been used extensively as a valuable source for wheat breeding. Numerous chromosome fragments containing valuable genes have been successfully translocated into wheat from A. elongatum. However, reports on the transfer of powdery mildew resistance from A. elongatum to wheat are rare. In this study, a novel wheat-A. elongatum translocation line, 11-20-1, developed and selected from the progenies of a sequential cross between wheat varieties (Lankaoaizaoba, Keyu 818 and BainongAK 58) and A. elongatum, was evaluated for disease resistance and characterized using molecular cytogenetic methods. Cytological observations indicated that 11-20-1 had 42 chromosomes and formed 21 bivalents at meiotic metaphase I. Genomic in situ hybridization analysis using whole genomic DNA from A. elongatum as a probe showed that the short arms of a pair of wheat chromosomes were replaced by a pair of A. elongatum chromosome arms. Fluorescence in situ hybridization, using wheat D chromosome specific sequence pAs1 as a probe, suggested that the replaced chromosome arms of 11-20-1 were 5DS. This was further confirmed by wheat SSR markers specific for 5DS. EST-SSR and EST-STS multiple loci markers confirmed that the introduced A. elongatum chromosome arms belonged to homoeologous group 5. Therefore, it was deduced that 11-20-1 was a wheat-A. elongatum T5DL∙5AgS translocation line. Both resistance observation and molecular marker analyses using two specific markers (BE443538 and CD452608) of A. elongatum in a F2 population from a cross between line 11-20-1 and a susceptible cultivar Yannong 19 verified that the A. elongatum chromosomes were responsible for the powdery mildew resistance. This work suggests that 11-20-1 likely contains a novel resistance gene against powdery mildew. We expect this line to be useful for the genetic improvement of wheat. PMID:28886152

  19. Are Danish doctors comfortable teaching in English?

    PubMed

    Nilas, L; Løkkegaard, E C; Laursen, J B; Kling, J; Cortes, D

    2016-08-27

    From 2012-2015, the Departments of Obstetrics and Gynecology and of Pediatrics at the University of Copenhagen conducted a project, "Internationalization at Home ", offering clinical teaching in English. The project allowed international students to work with Danish speaking students in a clinical setting. Using semi-quantitative questionnaires to 89 clinicians about use of English and need for training, this paper considers if Danish clinical doctors are prepared to teach in English. The majority self-assessed their English proficiency between seven and eight on a 10 unit visual analogue scale, with 10 equivalent to working in Danish, while 15 % rated five or less. However, one-fourth found teaching and writing in English to be twice as difficult than in Danish, and 12 % rated all teaching tasks in English at four or less compared to Danish. The self-assessed need for additional English skills was perceived low. Teaching in English was rated as 30 % more difficult than in Danish, and a significant subgroup of doctors had difficulties in all forms of communication in English, resulting in challenges when introducing international students in non-native English speaking medical departments.

  20. Growth of Pleurotus ostreatus on wheat straw and wheat-grain-based media: Biochemical aspects and preparation of mushroom inoculum.

    PubMed

    Sainos, E; Díaz-Godínez, G; Loera, O; Montiel-González, A M; Sánchez, C

    2006-10-01

    Mycelial growth, intracellular activity of proteases, laccases and beta-1,3-glucanases, and cytoplasmic protein were evaluated in the vegetative phase of Pleurotus ostreatus grown on wheat straw and in wheat-grain-based media in Petri dishes and in bottles. The productivity of the wheat straw and wheat-grain-based spawn in cylindrical polyethylene bags containing 5 kg of chopped straw was also determined. We observed high activity of proteases and high content of intracellular protein in cultures grown on wheat straw. This suggests that the proteases are not secreted into the medium and that the protein is an important cellular reserve. On the contrary, cultures grown on wheat straw secreted laccases into the medium, which could be induced by this substrate. P. ostreatus grown on media prepared with a combination of wheat straw and wheat grain showed a high radial growth rate in Petri dishes and a high level of mycelial growth in bottles. The productivities of wheat straw and wheat-grain-based spawn were similar. Our results show that cheaper and more productive mushroom spawn can be prepared by developing the mycelium on wheat straw and wheat-grain-based substrates.

  1. Utilization of a maltotetraose-producing amylase as a whole wheat bread improver: dough rheology and baking performance.

    PubMed

    Bae, Woosung; Lee, Sung Ho; Yoo, Sang-Ho; Lee, Suyong

    2014-08-01

    A maltotetraose-producing enzyme (G4-amylase) was utilized to improve the baking performance of whole-grain wheat flour. Whole-grain bread dough prepared with G4-amylase showed reduced water absorption and increased development time, while the dough stability was not affected. Also, the G4-amylase-treated samples exhibited lower Mixolab torque values than the control upon heating and cooling. Rheological measurements showed the decreased ratio of Rmax /E and increased tan δ, clearly demonstrating that the viscous characteristics of whole-grain bread dough became dominant with increasing levels of G4-amylase. The use of G4-amylase produced whole-grain wheat breads with a variety of maltooligosaccharides, primarily maltotetraose that positively contributed to the bread volume (1.2-fold higher than the control). Moreover, G4-amylase delayed the crumb firming of whole-grain wheat bread during a 7-d storage period, showing that it can function as an antiretrogradation agent to enhance the quality attributes of whole-grain wheat bread. © 2014 Institute of Food Technologists®

  2. Genetic divergence for high-molecular weight glutenin subunits (HMW-GS) in indigenous landraces and commercial cultivars of bread wheat of Pakistan.

    PubMed

    Yasmeen, F; Khurshid, H; Ghafoor, A

    2015-05-11

    Wheat flour quality is an important consideration in the breeding and development of new cultivars. A strong association between high-molecular weight glutenin subunits (HMW-GS) and bread making quality has resulted in the widespread utilization of HMW-GS in wheat breeding. In this study, we analyzed 242 lines of wheat, including landraces from the provinces of Punjab and Baluchistan, as well as the commercial varieties of Pakistan, to determine allelic variation in the Glu-A1, Glu-B1, and Glu-D1 loci encoding HMW-GS. Higher genetic diversity was observed for HMW-GS in landraces from Baluchistan, followed by landraces collected from Punjab and then commercial varieties. Rare and uncommon subunits were observed in Glu-B1, whereas Glu-A1 was less polymorphic. However, Glu-B1 was the highest contributor to overall diversity (78%), with a total of 31 rare alleles, followed by Glu-D1 (20%) with the high quality 5+10 allele and other variants. Commercial cultivars possessed favorable alleles, potentially from indirect selection for wheat flour quality by the breeders; however, this indirect selection has decreased the pedigree base of commercial cultivars. The allelic combinations, including 2*, 5+10, and 17+18, showing high quality scores were frequent among landraces, indicating their usefulness in future crop improvement and breeding programs.

  3. The Danish Nonmelanoma Skin Cancer Dermatology Database.

    PubMed

    Lamberg, Anna Lei; Sølvsten, Henrik; Lei, Ulrikke; Vinding, Gabrielle Randskov; Stender, Ida Marie; Jemec, Gregor Borut Ernst; Vestergaard, Tine; Thormann, Henrik; Hædersdal, Merete; Dam, Tomas Norman; Olesen, Anne Braae

    2016-01-01

    The Danish Nonmelanoma Skin Cancer Dermatology Database was established in 2008. The aim of this database was to collect data on nonmelanoma skin cancer (NMSC) treatment and improve its treatment in Denmark. NMSC is the most common malignancy in the western countries and represents a significant challenge in terms of public health management and health care costs. However, high-quality epidemiological and treatment data on NMSC are sparse. The NMSC database includes patients with the following skin tumors: basal cell carcinoma (BCC), squamous cell carcinoma, Bowen's disease, and keratoacanthoma diagnosed by the participating office-based dermatologists in Denmark. Clinical and histological diagnoses, BCC subtype, localization, size, skin cancer history, skin phototype, and evidence of metastases and treatment modality are the main variables in the NMSC database. Information on recurrence, cosmetic results, and complications are registered at two follow-up visits at 3 months (between 0 and 6 months) and 12 months (between 6 and 15 months) after treatment. In 2014, 11,522 patients with 17,575 tumors were registered in the database. Of tumors with a histological diagnosis, 13,571 were BCCs, 840 squamous cell carcinomas, 504 Bowen's disease, and 173 keratoakanthomas. The NMSC database encompasses detailed information on the type of tumor, a variety of prognostic factors, treatment modalities, and outcomes after treatment. The database has revealed that overall, the quality of care of NMSC in Danish dermatological clinics is high, and the database provides the necessary data for continuous quality assurance.

  4. View angle effects on relationships between leaf area index in wheat and vegetation indices

    NASA Astrophysics Data System (ADS)

    Chen, H.; Li, W.; Huang, W.; Niu, Z.

    2016-12-01

    The effects of plant types and view angles on the canopy-reflected spectrum can not be ignored in the estimation of leaf area index (LAI) using remote sensing vegetation indices. While vegetation indices derived from nadir-viewing remote sensors are insufficient in leaf area index (LAI) estimation because of its misinterpretation of structural characteristecs, vegetation indices derived from multi-angular remote sensors have potential to improve detection of LAI. However, view angle effects on relationships between these indices and LAI for low standing crops (i.e. wheat) has not been fully evaluated and thus limits them to applied for consistent and accurate monitoring of vegetation. View angles effects of two types of winter wheat (wheat 411, erectophile; and wheat 9507, planophile) on relationship between LAI and spectral reflectance are assessed and compared in this study. An evaluation is conducted with in-situ measurements of LAI and bidirectional reflectance in the principal plane from -60° (back-scattering direction ) ot 60° (forward scattering direction) in the growth cycle of winter wheat. A variety of vegetation indices (VIs) published are calculated by BRDF. Additionally, all combinations of the bands are used in order to calculate Normalized difference Spectral Indices (NDSI) and Simple Subtraction Indices (SSI). The performance of the above indices along with raw reflectance and reflectance derivatives on LAI estimation are examined based on a linearity comparison. The results will be helpful in further developing multi-angle remote sensing models for accurate LAI evaluation.

  5. Nitric oxide alleviates wheat yield reduction by protecting photosynthetic system from oxidation of ozone pollution.

    PubMed

    Li, Caihong; Song, Yanjie; Guo, Liyue; Gu, Xian; Muminov, Mahmud A; Wang, Tianzuo

    2018-05-01

    Accelerated industrialization has been increasing releases of chemical precursors of ozone. Ozone concentration has risen nowadays, and it's predicted that this trend will continue in the next few decades. The yield of many ozone-sensitive crops suffers seriously from ozone pollution, and there are abundant reports exploring the damage mechanisms of ozone to these crops, such as winter wheat. However, little is known on how to alleviate these negative impacts to increase grain production under elevated ozone. Nitric oxide, as a bioactive gaseous, mediates a variety of physiological processes and plays a central role in response to biotic and abiotic stresses. In the present study, the accumulation of endogenous nitric oxide in wheat leaves was found to increase in response to ozone. To study the functions of nitric oxide, its precursor sodium nitroprusside was spayed to wheat leaves under ozone pollution. Wheat leaves spayed with sodium nitroprusside accumulated less hydrogen peroxide, malondialdehyde and electrolyte leakage under ozone pollution, which can be accounted for by the higher activities of superoxide dismutase and peroxidase than in leaves treated without sodium nitroprusside. Consequently, net photosynthetic rate of wheat treated using sodium nitroprusside was much higher, and yield reduction was alleviated under ozone fumigation. These findings are important for our understanding of the potential roles of nitric oxide in responses of crops in general and wheat in particular to ozone pollution, and provide a viable method to mitigate the detrimental effects on crop production induced by ozone pollution, which is valuable for keeping food security worldwide. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. 75 FR 41963 - Wheat and Oilseed Programs; Durum Wheat Quality Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... Programs; Durum Wheat Quality Program AGENCY: Farm Service Agency and Commodity Credit Corporation, USDA. ACTION: Final rule. SUMMARY: This rule implements specific requirements for the Durum Wheat Quality... of the Council on Environmental Quality (40 CFR parts 1500-1508), and FSA regulations for compliance...

  7. 21 CFR 137.195 - Crushed wheat.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Crushed wheat. 137.195 Section 137.195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Related Products § 137.195 Crushed wheat. Crushed wheat, coarse ground wheat, is the food prepared by so...

  8. The wheat chloroplastic proteome.

    PubMed

    Kamal, Abu Hena Mostafa; Cho, Kun; Choi, Jong-Soon; Bae, Kwang-Hee; Komatsu, Setsuko; Uozumi, Nobuyuki; Woo, Sun Hee

    2013-11-20

    With the availability of plant genome sequencing, analysis of plant proteins with mass spectrometry has become promising and admired. Determining the proteome of a cell is still a challenging assignment, which is convoluted by proteome dynamics and convolution. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. In this review, an overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. In recent years, we and other groups have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during vegetative stage. Those studies provide interesting results leading to better understanding of the photosynthesis and identifying the stress-responsive proteins. Indeed, recent studies aimed at resolving the photosynthesis pathway in wheat. Proteomic analysis combining two complementary approaches such as 2-DE and shotgun methods couple to high through put mass spectrometry (LTQ-FTICR and MALDI-TOF/TOF) in order to better understand the responsible proteins in photosynthesis and abiotic stress (salt and water) in wheat chloroplast will be focused. In this review we discussed the identification of the most abundant protein in wheat chloroplast and stress-responsive under salt and water stress in chloroplast of wheat seedlings, thus providing the proteomic view of the events during the development of this seedling under stress conditions. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. An overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. We have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during seedling stage. Those studies

  9. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.).

    PubMed

    Beales, James; Turner, Adrian; Griffiths, Simon; Snape, John W; Laurie, David A

    2007-09-01

    Ppd-D1 on chromosome 2D is the major photoperiod response locus in hexaploid wheat (Triticum aestivum). A semi-dominant mutation widely used in the "green revolution" converts wheat from a long day (LD) to a photoperiod insensitive (day neutral) plant, providing adaptation to a broad range of environments. Comparative mapping shows Ppd-D1 to be colinear with the Ppd-H1 gene of barley (Hordeum vulgare) which is a member of the pseudo-response regulator (PRR) gene family. To investigate the relationship between wheat and barley photoperiod genes we isolated homologues of Ppd-H1 from a 'Chinese Spring' wheat BAC library and compared them to sequences from other wheat varieties with known Ppd alleles. Varieties with the photoperiod insensitive Ppd-D1a allele which causes early flowering in short (SD) or LDs had a 2 kb deletion upstream of the coding region. This was associated with misexpression of the 2D PRR gene and expression of the key floral regulator FT in SDs, showing that photoperiod insensitivity is due to activation of a known photoperiod pathway irrespective of day length. Five Ppd-D1 alleles were found but only the 2 kb deletion was associated with photoperiod insensitivity. Photoperiod insensitivity can also be conferred by mutation at a homoeologous locus on chromosome 2B (Ppd-B1). No candidate mutation was found in the 2B PRR gene but polymorphism within the 2B PRR gene cosegregated with the Ppd-B1 locus in a doubled haploid population, suggesting that insensitivity on 2B is due to a mutation outside the sequenced region or to a closely linked gene.

  10. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Definition of wheat. 810.2201 Section 810.2201... GRAIN United States Standards for Wheat Terms Defined § 810.2201 Definition of wheat. Grain that, before the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club wheat...

  11. Effects on performance of ground wheat with or without insoluble fiber or whole wheat in sequential feeding for laying hens.

    PubMed

    Traineau, M; Bouvarel, I; Mulsant, C; Roffidal, L; Launay, C; Lescoat, P

    2013-09-01

    Sequential feeding (SF) is an innovative system for laying hens consisting of nutrients separating energy, protein, and calcium supplies to fulfill nutrient requirements at the relevant time of day. In previous studies, hens received whole wheat in the morning and a balancer diet (rich in protein and calcium) in the afternoon. To improve SF utilization, the aim was to substitute whole wheat in the morning by an alternative energy supply: ground wheat and ground corn, with or without a proportion of whole wheat and insoluble fiber. The goal was to obtain the advantages observed in previous experiments with whole wheat [bigger gizzard, thinner hens, reduced feed conversion ratio (FCR)]. Four hundred thirty-two ISA Brown hens were housed in collective cages from 20 to 35 wk of age divided into 8 different treatments: a continuous control diet, a sequential diet with whole wheat in the morning, 3 wheat-based diets (ground wheat, ground wheat and 20% whole wheat, and ground wheat with 5% insoluble fiber) and 3 ground corn-based (ground corn, ground corn and 20% whole wheat, and ground corn with 5% insoluble fiber) provided in the morning. All sequential regimens received the same balancer diet rich in protein and calcium in the afternoon. Whole wheat SF gave the best results with an improved FCR compared with continuous control and all other SF diets. Wheat- and corn-based diets showed intermediate results between whole wheat SF and continuous feeding. Gizzard weight was higher and hens were lighter than with conventional continuous feeding, leading to an average FCR improvement of 3.2% compared with a continuous control. Thus, it is possible in SF diets to substitute, at least partially, whole wheat by ground wheat or ground corn with added insoluble fiber or some whole wheat, allowing more flexibility and economic optimization.

  12. Association Mapping in Scandinavian Winter Wheat for Yield, Plant Height, and Traits Important for Second-Generation Bioethanol Production

    PubMed Central

    Bellucci, Andrea; Torp, Anna Maria; Bruun, Sander; Magid, Jakob; Andersen, Sven B.; Rasmussen, Søren K.

    2015-01-01

    A collection of 100 wheat varieties representing more than 100 years of wheat-breeding history in Scandinavia was established in order to identify marker-trait associations for plant height (PH), grain yield (GY), and biomass potential for bioethanol production. The field-grown material showed variations in PH from 54 to 122 cm and in GY from 2 to 6.61 t ha-1. The release of monomeric sugars was determined by high-throughput enzymatic treatment of ligno-cellulosic material and varied between 0.169 and 0.312 g/g dm for glucose (GLU) and 0.146 and 0.283 g/g dm for xylose (XYL). As expected, PH and GY showed to be highly influenced by genetic factors with repeatability (R) equal to 0.75 and 0.53, respectively, while this was reduced for GLU and XYL (R = 0.09 for both). The study of trait correlations showed how old, low-yielding, tall varieties released higher amounts of monomeric sugars after straw enzymatic hydrolysis, showing reduced recalcitrance to bioconversion compared to modern varieties. Ninety-three lines from the collection were genotyped with the DArTseq® genotypic platform and 5525 markers were used for genome-wide association mapping. Six quantitative trait loci (QTLs) for GY, PH, and GLU released from straw were mapped. One QTL for PH was previously reported, while the remaining QTLs constituted new genomic regions linked to trait variation. This paper is one of the first studies in wheat to identify QTLs that are important for bioethanol production based on a genome-wide association approach. PMID:26635859

  13. Polymorphic Homoeolog of Key Gene of RdDM Pathway, ARGONAUTE4_9 class Is Associated with Pre-Harvest Sprouting in Wheat (Triticum aestivum L.)

    PubMed Central

    Singh, Manjit; Singh, Surinder; Randhawa, Harpinder; Singh, Jaswinder

    2013-01-01

    Resistance to pre-harvest sprouting (PHS) is an important objective for the genetic improvement of many cereal crops, including wheat. Resistance, or susceptibility, to PHS is mainly influenced by seed dormancy, a complex trait. Reduced seed dormancy is the most important aspect of seed germination on a spike prior to harvesting, but it is influenced by various environmental factors including light, temperature and abiotic stresses. The basic genetic framework of seed dormancy depends on the antagonistic action of abscisic acid (ABA) and gibberellic acid (GA) to promote dormancy and germination. Recent studies have revealed a role for epigenetic changes, predominantly histone modifications, in controlling seed dormancy. To investigate the role of DNA methylation in seed dormancy, we explored the role of ARGONAUTE4_9 class genes in seed development and dormancy in wheat. Our results indicate that the two wheat AGO4_9 class genes i.e. AGO802 and AGO804 map to chromosomes 3S and 1S are preferentially expressed in the embryos of developing seeds. Differential expressions of AGO802-B in the embryos of PHS resistant and susceptible varieties also relates with DNA polymorphism in various wheat varieties due to an insertion of a SINE-like element into this gene. DNA methylation patterns of the embryonic tissue from six PHS resistant and susceptible varieties demonstrate a correlation with this polymorphism. These results suggest a possible role for AGO802-B in seed dormancy and PHS resistance through the modulation of DNA methylation. PMID:24130825

  14. Two members of TaRLK family confer powdery mildew resistance in common wheat.

    PubMed

    Chen, Tingting; Xiao, Jin; Xu, Jun; Wan, Wentao; Qin, Bi; Cao, Aizhong; Chen, Wei; Xing, Liping; Du, Chen; Gao, Xiquan; Zhang, Shouzhong; Zhang, Ruiqi; Shen, Wenbiao; Wang, Haiyan; Wang, Xiue

    2016-01-25

    Powdery mildew, caused by Blumeria graminearum f.sp. tritici (Bgt), is one of the most severe fungal diseases of wheat. The exploration and utilization of new gene resources is the most effective approach for the powdery mildew control. We report the cloning and functional analysis of two wheat LRR-RLKs from T. aestivum c.v. Prins- T. timopheevii introgression line IGV1-465, named TaRLK1 and TaRLK2, which play positive roles in regulating powdery mildew resistance in wheat. The two LRR-RLKs contain an ORF of 3,045 nucleotides, encoding a peptide of 1014 amino acids, with seven amino acids difference. Their predicted proteins possess a signal peptide, several LRRs, a trans-membrane domain, and a Ser/Thr protein kinase domain. In response to Bgt infection, the TaRLK1/2 expression is up-regulated in a developmental-stage-dependent manner. Single-cell transient over-expression and gene-silencing assays indicate that both genes positively regulate the resistance to mixed Bgt inoculums. Transgenic lines over-expressing TaRLK1 or TaRLK2 in a moderate powdery mildew susceptible wheat variety Yangmai 158 led to significantly enhanced powdery mildew resistance. Exogenous applied salicylic acid (SA) or hydrogen peroxide (H2O2) induced the expression of both genes, and H2O2 had a higher accumulation at the Bgt penetration sites in RLK over-expression transgenic plants, suggesting a possible involvement of SA and altered ROS homeostasis in the defense response to Bgt infection. The two LRR-RLKs are located in the long arm of wheat chromosome 2B, in which the powdery mildew resistance gene Pm6 is located, but in different regions. Two members of TaRLK family were cloned from IGV1-465. TaRLK1 and TaRLK2 contribute to powdery mildew resistance of wheat, providing new resistance gene resources for wheat breeding.

  15. QTL mapping of pre-harvest sprouting resistance in a white wheat cultivar Danby.

    PubMed

    Shao, Mingqin; Bai, Guihua; Rife, Trevor W; Poland, Jesse; Lin, Meng; Liu, Shubing; Chen, Hui; Kumssa, Tadele; Fritz, Allan; Trick, Harold; Li, Yan; Zhang, Guorong

    2018-06-02

    One major and three minor QTLs for resistance to pre-harvest sprouting (PHS) were identified from a white wheat variety "Danby." The major QTL on chromosome 3A is TaPHS1, and the sequence variation in its promoter region was responsible for the PHS resistance. Additive × additive effects were detected between two minor QTLs on chromosomes 3B and 5A, which can greatly enhance the PHS resistance. Pre-harvest sprouting (PHS) causes significant losses in yield and quality in wheat. White wheat is usually more susceptible to PHS than red wheat. Therefore, the use of none grain color-related PHS resistance quantitative trait loci (QTLs) is essential for the improvement in PHS resistance in white wheat. To identify PHS resistance QTLs in the white wheat cultivar "Danby" and determine their effects, a doubled haploid population derived from a cross of Danby × "Tiger" was genotyped using genotyping-by-sequencing markers and phenotyped for PHS resistance in two greenhouse and one field experiments. One major QTL corresponding to a previously cloned gene, TaPHS1, was consistently detected on the chromosome arm 3AS in all three experiments and explained 21.6-41.0% of the phenotypic variations. A SNP (SNP-222) in the promoter of TaPHS1 co-segregated with PHS in this mapping population and was also significantly associated with PHS in an association panel. Gene sequence comparison and gene expression analysis further confirmed that SNP-222 is most likely the causal mutation in TaPHS1 for PHS resistance in Danby in this study. In addition, two stable minor QTLs on chromosome arms 3BS and 5AL were detected in two experiments with allele effects consistently contributed by Danby, while one minor QTL on 2AS was detected in two environments with contradicted allelic effects. The two stable minor QTLs showed significant additive × additive effects. The results demonstrated that pyramiding those three QTLs using breeder-friendly KASP markers developed in this study could

  16. Safeguarding world wheat and barley production against Russian wheat aphid: An international pre-breeding initiative

    USDA-ARS?s Scientific Manuscript database

    The Russian wheat aphid (RWA), Diuraphis noxia, is one of the most damaging insect pests of wheat and barley throughout the World. This aphid, although is not yet present in Australia, is extremely damaging with up to 70% yield loses in wheat and barley producing lands, causing significant financia...

  17. Resistance among U.S. wheat Triticum aestivum cultivars to the wheat pathotype of Magnaporthe oryzae

    USDA-ARS?s Scientific Manuscript database

    Magnaporthe oryzae is the causal agent of blast on several graminaceous plants. The M. oryzae population causing wheat blast has not been found outside South America. U.S. wheat production is at risk to this pathogen if introduced and established. Proactive testing of US wheat cultivars for their re...

  18. A Whole Genome DArTseq and SNP Analysis for Genetic Diversity Assessment in Durum Wheat from Central Fertile Crescent

    PubMed Central

    Shahid, Muhammad Qasim; Çiftçi, Vahdettin; E. Sáenz de Miera, Luis; Aasim, Muhammad; Nadeem, Muhammad Azhar; Aktaş, Husnu; Özkan, Hakan; Hatipoğlu, Rüştü

    2017-01-01

    Until now, little attention has been paid to the geographic distribution and evaluation of genetic diversity of durum wheat from the Central Fertile Crescent (modern-day Turkey and Syria). Turkey and Syria are considered as primary centers of wheat diversity, and thousands of locally adapted wheat landraces are still present in the farmers’ small fields. We planned this study to evaluate the genetic diversity of durum wheat landraces from the Central Fertile Crescent by genotyping based on DArTseq and SNP analysis. A total of 39,568 DArTseq and 20,661 SNP markers were used to characterize the genetic characteristic of 91 durum wheat land races. Clustering based on Neighbor joining analysis, principal coordinate as well as Bayesian model implemented in structure, clearly showed that the grouping pattern is not associated with the geographical distribution of the durum wheat due to the mixing of the Turkish and Syrian landraces. Significant correlation between DArTseq and SNP markers was observed in the Mantel test. However, we detected a non-significant relationship between geographical coordinates and DArTseq (r = -0.085) and SNP (r = -0.039) loci. These results showed that unconscious farmer selection and lack of the commercial varieties might have resulted in the exchange of genetic material and this was apparent in the genetic structure of durum wheat in Turkey and Syria. The genomic characterization presented here is an essential step towards a future exploitation of the available durum wheat genetic resources in genomic and breeding programs. The results of this study have also depicted a clear insight about the genetic diversity of wheat accessions from the Central Fertile Crescent. PMID:28099442

  19. DNA microsatellite region for a reliable quantification of soft wheat adulteration in durum wheat-based foodstuffs by real-time PCR.

    PubMed

    Sonnante, Gabriella; Montemurro, Cinzia; Morgese, Anita; Sabetta, Wilma; Blanco, Antonio; Pasqualone, Antonella

    2009-11-11

    Italian industrial pasta and durum wheat typical breads must be prepared using exclusively durum wheat semolina. Previously, a microsatellite sequence specific of the wheat D-genome had been chosen for traceability of soft wheat in semolina and bread samples, using qualitative and quantitative Sybr green-based real-time experiments. In this work, we describe an improved method based on the same soft wheat genomic region by means of a quantitative real-time PCR using a dual-labeled probe. Standard curves based on dilutions of 100% soft wheat flour, pasta, or bread were constructed. Durum wheat semolina, pasta, and bread samples were prepared with increasing amounts of soft wheat to verify the accuracy of the method. Results show that reliable quantifications were obtained especially for the samples containing a lower amount of soft wheat DNA, fulfilling the need to verify labeling of pasta and typical durum wheat breads.

  20. Impact of future climate change on wheat production in relation to plant-available water capacity in a semiaridenvironment

    NASA Astrophysics Data System (ADS)

    Yang, Yanmin; Liu, De Li; Anwar, Muhuddin Rajin; Zuo, Heping; Yang, Yonghui

    2014-02-01

    early sowing wheat varieties with longer growing duration will be a desirable adaptation strategy for mitigating the impact of changing climate on wheat yield.

  1. The identification of QTL controlling ergot sclerotia size in hexaploid wheat implicates a role for the Rht dwarfing alleles.

    PubMed

    Gordon, Anna; Basler, Ryan; Bansept-Basler, Pauline; Fanstone, Vicky; Harinarayan, Lakshmi; Grant, Paul K; Birchmore, Richard; Bayles, Rosemary A; Boyd, Lesley A; O'Sullivan, Donal M

    2015-12-01

    Four QTL conferring resistance to ergot were identified in the UK winter wheat varieties 'Robigus' and 'Solstice'. Two QTL co-located with semi-dwarfing alleles at the Rht loci Rht - 1B and Rht - 1D implicating a role of these DELLA proteins in infection success of Claviceps purpurea. The fungal pathogen Claviceps purpurea infects ovaries of a broad range of temperate grasses and cereals, including hexaploid wheat, causing a disease commonly known as ergot. Sclerotia produced in place of seed carry a cocktail of harmful alkaloid compounds that result in a range of symptoms in humans and animals, causing ergotism. Following a field assessment of C. purpurea infection in winter wheat, two varieties 'Robigus' and 'Solstice' were selected which consistently produced the largest differential effect on ergot sclerotia weights. They were crossed to produce a doubled haploid mapping population, and a marker map, consisting of 714 genetic loci and a total length of 2895 cM was produced. Four ergot reducing QTL were identified using both sclerotia weight and size as phenotypic parameters; QCp.niab.2A and QCp.niab.4B being detected in the wheat variety 'Robigus', and QCp.niab.6A and QCp.niab.4D in the variety 'Solstice'. The ergot resistance QTL QCp.niab.4B and QCp.niab.4D peaks mapped to the same markers as the known reduced height (Rht) loci on chromosomes 4B and 4D, Rht-B1 and Rht-D1, respectively. In both cases, the reduction in sclerotia weight and size was associated with the semi-dwarfing alleles, Rht-B1b from 'Robigus' and Rht-D1b from 'Solstice'. Two-dimensional, two-QTL scans identified significant additive interactions between QTL QCp.niab.4B and QCp.niab.4D, and between QCp.niab.2A and QCp.niab.4B when looking at sclerotia size, but not between QCp.niab.2A and QCp.niab.4D. The two plant height QTL, QPh.niab.4B and QPh.niab.4D, which mapped to the same locations as QCp.niab.4B and QCp.niab.4D, also displayed significant genetic interactions.

  2. DNA methylation pattern of Photoperiod-B1 is associated with photoperiod insensitivity in wheat (Triticum aestivum).

    PubMed

    Sun, Han; Guo, Zhiai; Gao, Lifeng; Zhao, Guangyao; Zhang, Wenping; Zhou, Ronghua; Wu, Yongzhen; Wang, Haiyang; An, Hailong; Jia, Jizeng

    2014-11-01

    As one of the three key components of the 'Green Revolution', photoperiod insensitivity is vital for improved adaptation of wheat (Triticum aestivum) cultivars to a wider geographical range. Photoperiod-B1a (Ppd-B1a) is one of the major genes that confers photoperiod insensitivity in 'Green Revolution' varieties, and has made a significant contribution to wheat yield improvement. In this study, we investigated the mechanisms underlying the photoperiod insensitivity of Ppd-B1a alleles from an epigenetic perspective using a combination of bisulfite genomic sequencing, orthologous comparative analysis, association analysis, linkage analysis and gene expression analysis. Based on the study of a large collection of wheat germplasm, we report two methylation haplotypes of Ppd-B1 and demonstrate that the higher methylation haplotype (haplotype a) was associated with increased copy numbers and higher expression levels of the Ppd-B1 gene, earlier heading and photoperiod insensitivity. Furthermore, assessment of the distribution frequency of the different methylation haplotypes suggested that the methylation patterns have undergone selection during the wheat breeding process. Our study suggests that DNA methylation in the regulatory region of the Ppd-B1 alleles, which is closely related to copy number variation, plays a significant role in wheat breeding, to confer photoperiod insensitivity and better adaptation to a wider geographical range. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  3. A resource of large-scale molecular markers for monitoring Agropyron cristatum chromatin introgression in wheat background based on transcriptome sequences.

    PubMed

    Zhang, Jinpeng; Liu, Weihua; Lu, Yuqing; Liu, Qunxing; Yang, Xinming; Li, Xiuquan; Li, Lihui

    2017-09-20

    Agropyron cristatum is a wild grass of the tribe Triticeae and serves as a gene donor for wheat improvement. However, very few markers can be used to monitor A. cristatum chromatin introgressions in wheat. Here, we reported a resource of large-scale molecular markers for tracking alien introgressions in wheat based on transcriptome sequences. By aligning A. cristatum unigenes with the Chinese Spring reference genome sequences, we designed 9602 A. cristatum expressed sequence tag-sequence-tagged site (EST-STS) markers for PCR amplification and experimental screening. As a result, 6063 polymorphic EST-STS markers were specific for the A. cristatum P genome in the single-receipt wheat background. A total of 4956 randomly selected polymorphic EST-STS markers were further tested in eight wheat variety backgrounds, and 3070 markers displaying stable and polymorphic amplification were validated. These markers covered more than 98% of the A. cristatum genome, and the marker distribution density was approximately 1.28 cM. An application case of all EST-STS markers was validated on the A. cristatum 6 P chromosome. These markers were successfully applied in the tracking of alien A. cristatum chromatin. Altogether, this study provided a universal method of large-scale molecular marker development to monitor wild relative chromatin in wheat.

  4. Inhibition of protein synthesis in maize and wheat by trichothecene mycotoxins and hybridoma-based enzyme immunoassay for deoxynivalenol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casale, W.L.

    1987-01-01

    The 12,13-epoxytrichothecene mycotoxins deoxynivalenol (DON, vomitoxin) and T-2 toxin inhibited protein synthesis in vivo and in cell-free systems from wheat and maize, host plants of trichothecene-producing Fusarium spp.Protein synthesis in tissue (leaf discs and kernel sections) was measured by incorporation of /sup 3/H-leucine into acetone:ethanol insoluble material, and in cell-free translation systems from wheat embryos and maize seedling plumules by incorporation of /sup 3/H-leucine into trichloroacetic acid-insoluble material. The toxin concentration inhibiting 50% of /sup 3/H-leucine incorporation (ID/sub 50/) by several maize varieties were 0.9 ..mu..M (T-2 toxin) and 9-22 ..mu..M (DON). ID/sub 50/ values for wheat were 0.25 ..mu..Mmore » (T-2 toxin) and 4.5 ..mu..M (DON).« less

  5. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI

    PubMed Central

    Wang, Cheng; Zeng, Jian; Li, Yin; Yang, Guangxiao; He, Guangyuan

    2014-01-01

    Carotenoid content is a primary determinant of wheat nutritional value and affects its end-use quality. Wheat grains contain very low carotenoid levels and trace amounts of provitamin A content. In order to enrich the carotenoid content in wheat grains, the bacterial phytoene synthase gene (CrtB) and carotene desaturase gene (CrtI) were transformed into the common wheat cultivar Bobwhite. Expression of CrtB or CrtI alone slightly increased the carotenoid content in the grains of transgenic wheat, while co-expression of both genes resulted in a darker red/yellow grain phenotype, accompanied by a total carotenoid content increase of approximately 8-fold achieving 4.76 μg g–1 of seed dry weight, a β-carotene increase of 65-fold to 3.21 μg g–1 of seed dry weight, and a provitamin A content (sum of α-carotene, β-carotene, and β-cryptoxanthin) increase of 76-fold to 3.82 μg g–1 of seed dry weight. The high provitamin A content in the transgenic wheat was stably inherited over four generations. Quantitative PCR analysis revealed that enhancement of provitamin A content in transgenic wheat was also a result of the highly coordinated regulation of endogenous carotenoid biosynthetic genes, suggesting a metabolic feedback regulation in the wheat carotenoid biosynthetic pathway. These transgenic wheat lines are not only valuable for breeding wheat varieties with nutritional benefits for human health but also for understanding the mechanism regulating carotenoid biosynthesis in wheat endosperm. PMID:24692648

  6. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI.

    PubMed

    Wang, Cheng; Zeng, Jian; Li, Yin; Hu, Wei; Chen, Ling; Miao, Yingjie; Deng, Pengyi; Yuan, Cuihong; Ma, Cheng; Chen, Xi; Zang, Mingli; Wang, Qiong; Li, Kexiu; Chang, Junli; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan

    2014-06-01

    Carotenoid content is a primary determinant of wheat nutritional value and affects its end-use quality. Wheat grains contain very low carotenoid levels and trace amounts of provitamin A content. In order to enrich the carotenoid content in wheat grains, the bacterial phytoene synthase gene (CrtB) and carotene desaturase gene (CrtI) were transformed into the common wheat cultivar Bobwhite. Expression of CrtB or CrtI alone slightly increased the carotenoid content in the grains of transgenic wheat, while co-expression of both genes resulted in a darker red/yellow grain phenotype, accompanied by a total carotenoid content increase of approximately 8-fold achieving 4.76 μg g(-1) of seed dry weight, a β-carotene increase of 65-fold to 3.21 μg g(-1) of seed dry weight, and a provitamin A content (sum of α-carotene, β-carotene, and β-cryptoxanthin) increase of 76-fold to 3.82 μg g(-1) of seed dry weight. The high provitamin A content in the transgenic wheat was stably inherited over four generations. Quantitative PCR analysis revealed that enhancement of provitamin A content in transgenic wheat was also a result of the highly coordinated regulation of endogenous carotenoid biosynthetic genes, suggesting a metabolic feedback regulation in the wheat carotenoid biosynthetic pathway. These transgenic wheat lines are not only valuable for breeding wheat varieties with nutritional benefits for human health but also for understanding the mechanism regulating carotenoid biosynthesis in wheat endosperm. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Testing and validating the CERES-wheat (Crop Estimation through Resource and Environment Synthesis-wheat) model in diverse environments

    NASA Technical Reports Server (NTRS)

    Otter-Nacke, S.; Godwin, D. C.; Ritchie, J. T.

    1986-01-01

    CERES-Wheat is a computer simulation model of the growth, development, and yield of spring and winter wheat. It was designed to be used in any location throughout the world where wheat can be grown. The model is written in Fortran 77, operates on a daily time stop, and runs on a range of computer systems from microcomputers to mainframes. Two versions of the model were developed: one, CERES-Wheat, assumes nitrogen to be nonlimiting; in the other, CERES-Wheat-N, the effects of nitrogen deficiency are simulated. The report provides the comparisons of simulations and measurements of about 350 wheat data sets collected from throughout the world.

  8. [Glycemic index of two varieties of pasta and two varieties of rice].

    PubMed

    Ridner, Edgardo; Di Sibio, Antonio

    2015-06-01

    The IG has been extensively studied as an indicator of the physiological effects of a carbohydrate meal with applications in the management and prevention of diabetes, dyslipidemia and obesity. A standard assay was performed to measure the glycemic index (GI) of two significant sources of carbohydrates following the World Health Organization (WHO) recommended methodology, determining the incremental area under the blood glucose response curve of a 50g carbohydrate portion of the test food compared to the same amount of carbohydrate from a glucose solution by the same subject measured in capillary whole blood before and 15, 30, 45, 60, 90 and 120 minutes after ingestion in a total of 9 subjects. The following results were obtained: Parboil rice: 73, Long Grain White Rice: 59; Pasta of durum wheat (Triticum durum): 71, Pasta of regular flour (Triticum aestivium): 38. This test confirms the low glycemic index of pasta made from durum wheat, and is the first measurement for pasta of common wheat flour properly characterized. It also indicates the values of the prevailing presentations of rice in the region, adding a reference for professionals and authorities.

  9. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm: I. Grain, milling, and soft wheat quality

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture is used in part to define U.S. wheat market class due to its importance in end-use quality and utilization. Durum wheat (Triticum turgidum subsp. durum) has lower demand and fewer culinary end-uses compared to bread wheat because of its extremely hard kernel texture, which precl...

  10. Addition of Aegilops U and M Chromosomes Affects Protein and Dietary Fiber Content of Wholemeal Wheat Flour.

    PubMed

    Rakszegi, Marianna; Molnár, István; Lovegrove, Alison; Darkó, Éva; Farkas, András; Láng, László; Bedő, Zoltán; Doležel, Jaroslav; Molnár-Láng, Márta; Shewry, Peter

    2017-01-01

    Cereal grain fiber is an important health-promoting component in the human diet. One option to improve dietary fiber content and composition in wheat is to introduce genes from its wild relatives Aegilops biuncialis and Aegilops geniculata . This study showed that the addition of chromosomes 2U g , 4U g , 5U g , 7U g , 2M g , 5M g , and 7M g of Ae. geniculata and 3U b , 2M b , 3M b , and 7M b of Ae. biuncialis into bread wheat increased the seed protein content. Chromosomes 1U g and 1M g increased the proportion of polymeric glutenin proteins, while the addition of chromosomes 1U b and 6U b led to its decrease. Both Aegilops species had higher proportions of β-glucan compared to arabinoxylan (AX) than wheat lines, and elevated β-glucan content was also observed in wheat chromosome addition lines 5U, 7U, and 7M. The AX content in wheat was increased by the addition of chromosomes 5U g , 7U g , and 1U b while water-soluble AX was increased by the addition of chromosomes 5U, 5M, and 7M, and to a lesser extent by chromosomes 3, 4, 6U g , and 2M b . Chromosomes 5U g and 7M b also affected the structure of wheat AX, as shown by the pattern of oligosaccharides released by digestion with endoxylanase. These results will help to map genomic regions responsible for edible fiber content in Aegilops and will contribute to the efficient transfer of wild alleles in introgression breeding programs to obtain wheat varieties with improved health benefits. Key Message: Addition of Aegilops U- and M-genome chromosomes 5 and 7 improves seed protein and fiber content and composition in wheat.

  11. Ecological impacts of wheat seeding after a Sierra Nevada wildfire

    USGS Publications Warehouse

    Keeley, Jon E.

    2004-01-01

    The Highway Fire burned 1680 ha of mixed ponderosa pine–oak–chaparral in the newly created Giant Sequoia National Monument and the adjacent Sequoia National Forest of Fresno County, California in August 2001. The USDA Forest Service Burned Area Emergency Rehabilitation (BAER) program recommended that portions of the burned forest be seeded with a non-persistent variety of wheat at a density of 157 kg ha–1 (140 lb/ac). The present study compared the vascular plant diversity and cover in seeded and unseeded parts of this burn to evaluate the ecological impact of seeding an alien grass. In the first post-fire growing season, the natural regeneration of unseeded control sites averaged ~55% ground surface covered. Wheat seeding enhanced the ground cover, averaging 95% ground surface cover. Wheat was the dominant species on the seeded sites, comprising 67% of the total cover. Dominance–diversity curves were markedly affected by the seeding and indicated a disruption in the natural ecological structure of these communities. On seeded sites, wheat dominated and all other species were poorly represented whereas, on unseeded control sites, there was a more equitable distribution of species. Correlated with the wheat cover was a significant decrease in species richness at all scales examined. Total species richness was reduced from 152 species across all unseeded sites to 104 species on all seeded sites. Average species richness, at scales from 1 to 1000 m2, was 30–40% lower on seeded sites. Species most strongly inhibited were post-fire endemics whose lifecycle is restricted to immediate post-fire environments. Seeded sites had fewer alien species than unseeded sites; however, this may not have any lasting effect since other studies show the primary alien threat is not in the first post-fire year. Seeding was also associated with an order of magnitude drop in Pinus ponderosa seedling recruitment and, coupled with the massive thatch still remaining on the site, it

  12. Infestation of transgenic powdery mildew-resistant wheat by naturally occurring insect herbivores under different environmental conditions.

    PubMed

    Álvarez-Alfageme, Fernando; von Burg, Simone; Romeis, Jörg

    2011-01-01

    A concern associated with the growing of genetically modified (GM) crops is that they could adversely affect non-target organisms. We assessed the impact of several transgenic powdery mildew-resistant spring wheat lines on insect herbivores. The GM lines carried either the Pm3b gene from hexaploid wheat, which confers race-specific resistance to powdery mildew, or the less specific anti-fungal barley seed chitinase and β-1,3-glucanase. In addition to the non-transformed control lines, several conventional spring wheat varieties and barley and triticale were included for comparison. During two consecutive growing seasons, powdery mildew infection and the abundance of and damage by naturally occurring herbivores were estimated under semi-field conditions in a convertible glasshouse and in the field. Mildew was reduced on the Pm3b-transgenic lines but not on the chitinase/glucanase-expressing lines. Abundance of aphids was negatively correlated with powdery mildew in the convertible glasshouse, with Pm3b wheat plants hosting significantly more aphids than their mildew-susceptible controls. In contrast, aphid densities did not differ between GM plants and their non-transformed controls in the field, probably because of low mildew and aphid pressure at this location. Likewise, the GM wheat lines did not affect the abundance of or damage by the herbivores Oulema melanopus (L.) and Chlorops pumilionis Bjerk. Although a previous study has revealed that some of the GM wheat lines show pleiotropic effects under field conditions, their effect on herbivorous insects appears to be low.

  13. Infestation of Transgenic Powdery Mildew-Resistant Wheat by Naturally Occurring Insect Herbivores under Different Environmental Conditions

    PubMed Central

    Álvarez-Alfageme, Fernando; von Burg, Simone; Romeis, Jörg

    2011-01-01

    A concern associated with the growing of genetically modified (GM) crops is that they could adversely affect non-target organisms. We assessed the impact of several transgenic powdery mildew-resistant spring wheat lines on insect herbivores. The GM lines carried either the Pm3b gene from hexaploid wheat, which confers race-specific resistance to powdery mildew, or the less specific anti-fungal barley seed chitinase and β-1,3-glucanase. In addition to the non-transformed control lines, several conventional spring wheat varieties and barley and triticale were included for comparison. During two consecutive growing seasons, powdery mildew infection and the abundance of and damage by naturally occurring herbivores were estimated under semi-field conditions in a convertible glasshouse and in the field. Mildew was reduced on the Pm3b-transgenic lines but not on the chitinase/glucanase-expressing lines. Abundance of aphids was negatively correlated with powdery mildew in the convertible glasshouse, with Pm3b wheat plants hosting significantly more aphids than their mildew-susceptible controls. In contrast, aphid densities did not differ between GM plants and their non-transformed controls in the field, probably because of low mildew and aphid pressure at this location. Likewise, the GM wheat lines did not affect the abundance of or damage by the herbivores Oulema melanopus (L.) and Chlorops pumilionis Bjerk. Although a previous study has revealed that some of the GM wheat lines show pleiotropic effects under field conditions, their effect on herbivorous insects appears to be low. PMID:21829479

  14. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach.

    PubMed

    Acevedo-Garcia, Johanna; Spencer, David; Thieron, Hannah; Reinstädler, Anja; Hammond-Kosack, Kim; Phillips, Andrew L; Panstruga, Ralph

    2017-03-01

    Wheat is one of the most widely grown cereal crops in the world and is an important food grain source for humans. However, wheat yields can be reduced by many abiotic and biotic stress factors, including powdery mildew disease caused by Blumeria graminis f.sp. tritici (Bgt). Generating resistant varieties is thus a major effort in plant breeding. Here, we took advantage of the non-transgenic Targeting Induced Lesions IN Genomes (TILLING) technology to select partial loss-of-function alleles of TaMlo, the orthologue of the barley Mlo (Mildew resistance locus o) gene. Natural and induced loss-of-function alleles (mlo) of barley Mlo are known to confer durable broad-spectrum powdery mildew resistance, typically at the expense of pleiotropic phenotypes such as premature leaf senescence. We identified 16 missense mutations in the three wheat TaMlo homoeologues, TaMlo-A1, TaMlo-B1 and TaMlo-D1 that each lead to single amino acid exchanges. Using transient gene expression assays in barley single cells, we functionally analysed the different missense mutants and identified the most promising candidates affecting powdery mildew susceptibility. By stacking of selected mutant alleles we generated four independent lines with non-conservative mutations in each of the three TaMlo homoeologues. Homozygous triple mutant lines and surprisingly also some of the homozygous double mutant lines showed enhanced, yet incomplete, Bgt resistance without the occurrence of discernible pleiotropic phenotypes. These lines thus represent an important step towards the production of commercial non-transgenic, powdery mildew-resistant bread wheat varieties. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Isolation and molecular characterization of ERF1, an ethylene response factor gene from durum wheat (Triticum turgidum L. subsp. durum), potentially involved in salt-stress responses.

    PubMed

    Makhloufi, Emna; Yousfi, Fatma-Ezzahra; Marande, William; Mila, Isabelle; Hanana, Mohsen; Bergès, Hélène; Mzid, Rim; Bouzayen, Mondher

    2014-12-01

    As food crop, wheat is of prime importance for human society. Nevertheless, our understanding of the genetic and molecular mechanisms controlling wheat productivity conditions has been, so far, hampered by the lack of sufficient genomic resources. The present work describes the isolation and characterization of TdERF1, an ERF gene from durum wheat (Triticum turgidum L. subsp. durum). The structural features of TdERF1 supported the hypothesis that it is a novel member of the ERF family in durum wheat and, considering its close similarity to TaERF1 of Triticum aestivum, it probably plays a similar role in mediating responses to environmental stresses. TdERF1 displayed an expression pattern that discriminated between two durum wheat genotypes contrasted with regard to salt-stress tolerance. The high number of cis-regulatory elements related to stress responses present in the TdERF1 promoter and the ability of TdERF1 to regulate the transcription of ethylene and drought-responsive promoters clearly indicated its potential role in mediating plant responses to a wide variety of environmental constrains. TdERF1 was also regulated by abscisic acid, ethylene, auxin, and salicylic acid, suggesting that it may be at the crossroads of multiple hormone signalling pathways. Four TdERF1 allelic variants have been identified in durum wheat genome, all shown to be transcriptionally active. Interestingly, the expression of one allelic form is specific to the tolerant genotype, further supporting the hypothesis that this gene is probably associated with the susceptibility/tolerance mechanism to salt stress. In this regard, the TdERF1 gene may provide a discriminating marker between tolerant and sensitive wheat varieties. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Effects of high temperatures and drought during anthesis and grain filling period on wheat processing quality and underlying gluten structural changes.

    PubMed

    Mastilović, Jasna; Živančev, Dragan; Lončar, Eva; Malbaša, Radomir; Hristov, Nikola; Kevrešan, Žarko

    2018-06-01

    Climate changes do not only affect wheat yield, but also its quality. Information on this topic gathered so far is somewhat contradictory and insufficient. Climate changes also affect wheat indirectly through their influence on the ecosystem, including insects and fungi that affect wheat technological quality. The aim of this study was to examine trends in structural and technological changes of wheat quality under conditions typical of climate changes. With this in mind, three groups of wheat varieties with the same Glu-score were examined in three production years, characterized by different production conditions. A production season characterized by climate change conditions results in lower activity of amylolytic enzymes. What is more, it results in lower content of gluten, higher gluten index value, its decrease after 1 h to 37 °C, lower number of free SH groups and higher content of free amino groups, which result in lower alveograph W, lower farinograph WA and higher extensograph dough resistance. Variability in wheat quality produced under different climatic conditions is mainly influenced by the production conditions, including their influence on ecosystem factors. The influence of wheat cultivar genetic predisposition is much less expressed. This indicates that differences among cultivars with different Glu-score might be diminished under the influence of altered production conditions, as a consequence of climate change. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Inheritance and genetic mapping of Russian Wheat Aphid Resistance in Iranian wheat landrace accession PI 626580

    USDA-ARS?s Scientific Manuscript database

    Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), is a significant insect pest of wheat (Triticum aestivum L.) and has had a major economic impact worldwide, especially on winter wheat in the western United States. Development of resistant cultivars remains the most viable method for RWA contr...

  18. A Catalog of Regulatory Sequences for Trait Gene for the Genome Editing of Wheat.

    PubMed

    Makai, Szabolcs; Tamás, László; Juhász, Angéla

    2016-01-01

    Wheat has been cultivated for 10000 years and ever since the origin of hexaploid wheat it has been exempt from natural selection. Instead, it was under the constant selective pressure of human agriculture from harvest to sowing during every year, producing a vast array of varieties. Wheat has been adopted globally, accumulating variation for genes involved in yield traits, environmental adaptation and resistance. However, one small but important part of the wheat genome has hardly changed: the regulatory regions of both the x- and y-type high molecular weight glutenin subunit (HMW-GS) genes, which are alone responsible for approximately 12% of the grain protein content. The phylogeny of the HMW-GS regulatory regions of the Triticeae demonstrates that a genetic bottleneck may have led to its decreased diversity during domestication and the subsequent cultivation. It has also highlighted the fact that the wild relatives of wheat may offer an unexploited genetic resource for the regulatory region of these genes. Significant research efforts have been made in the public sector and by international agencies, using wild crosses to exploit the available genetic variation, and as a result synthetic hexaploids are now being utilized by a number of breeding companies. However, a newly emerging tool of genome editing provides significantly improved efficiency in exploiting the natural variation in HMW-GS genes and incorporating this into elite cultivars and breeding lines. Recent advancement in the understanding of the regulation of these genes underlines the needs for an overview of the regulatory elements for genome editing purposes.

  19. Danish auroral science history

    NASA Astrophysics Data System (ADS)

    Stauning, P.

    2011-01-01

    Danish auroral science history begins with the early auroral observations made by the Danish astronomer Tycho Brahe during the years from 1582 to 1601 preceding the Maunder minimum in solar activity. Included are also the brilliant observations made by another astronomer, Ole Rømer, from Copenhagen in 1707, as well as the early auroral observations made from Greenland by missionaries during the 18th and 19th centuries. The relations between auroras and geomagnetic variations were analysed by H. C. Ørsted, who also played a vital role in the development of Danish meteorology that came to include comprehensive auroral observations from Denmark, Iceland and Greenland as well as auroral and geomagnetic research. The very important auroral investigations made by Sophus Tromholt are outlined. His analysis from 1880 of auroral observations from Greenland prepared for the significant contributions from the Danish Meteorological Institute, DMI, (founded in 1872) to the first International Polar Year 1882/83, where an expedition headed by Adam Paulsen was sent to Greenland to conduct auroral and geomagnetic observations. Paulsen's analyses of the collected data gave many important results but also raised many new questions that gave rise to auroral expeditions to Iceland in 1899 to 1900 and to Finland in 1900 to 1901. Among the results from these expeditions were 26 unique paintings of the auroras made by the artist painter, Harald Moltke. The expedition to Finland was headed by Dan la Cour, who later as director of the DMI came to be in charge of the comprehensive international geomagnetic and auroral observations made during the Second International Polar Year in 1932/33. Finally, the article describes the important investigations made by Knud Lassen during, among others, the International Geophysical Year 1957/58 and during the International Quiet Sun Year (IQSY) in 1964/65. With his leadership the auroral and geomagnetic research at DMI reached a high international

  20. Definition of the low molecular weight glutenin subunit gene family members in a set of standard bread wheat (Triticum aestivum L.) varieties

    USDA-ARS?s Scientific Manuscript database

    Low-molecular-weight glutenin subunits (LMW-GS) are a class of seed storage proteins that play a major role in the determination of the viscoelastic properties of wheat dough. Most of the LMW-GSs are encoded by a multi-gene family located on the short arms of the homoeologous group 1 chromosomes, at...

  1. Evaluation of the safety of ancient strains of wheat in coeliac disease reveals heterogeneous small intestinal T cell responses suggestive of coeliac toxicity.

    PubMed

    Šuligoj, Tanja; Gregorini, Armando; Colomba, Mariastella; Ellis, H Julia; Ciclitira, Paul J

    2013-12-01

    Coeliac disease is a chronic small intestinal immune-mediated enteropathy triggered by dietary gluten in genetically predisposed individuals. Since it is unknown if all wheat varieties are equally toxic to coeliac patients seven Triticum accessions showing different origin (ancient/modern) and ploidy (di-, tetra- hexaploid) were studied. Selected strains of wheat were ancient Triticum monococcum precoce (AA genome) and Triticum speltoides (BB genome), accessions of Triticum turgidum durum (AABB genome) including two ancient (Graziella Ra and Kamut) and two modern (Senatore Cappelli and Svevo) durum strains of wheat and Triticum aestivum compactum (AABBDD genome). Small intestinal gluten-specific T-cell lines generated from 13 coeliac patients were tested with wheat accessions by proliferation assays. All strains of wheat independent of ploidy or ancient/modern origin triggered heterogeneous responses covering wide ranges of stimulation indices. Ancient strains of wheat, although previously suggested to be low or devoid of coeliac toxicity, should be tested for immunogenicity using gluten-specific T-cell lines from multiple coeliac patients rather than gluten-specific clones to assess their potential toxicity. Our findings provide further evidence for the need for a strict gluten-free diet in coeliac patients, including avoidance of ancient strains of wheat. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  2. Mapping QTL for resistance to stripe rust in spring wheat PI 192252 and winter wheat Druchamp

    USDA-ARS?s Scientific Manuscript database

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. High-temperature adult-plant (HTAP) resistance has proven to be durable, but may not be adequate. Spring wheat PI 192252 and winter wheat Druchamp have high-levels of HTAP resistance. To elucidate...

  3. Abiotic Stress Signaling in Wheat – An Inclusive Overview of Hormonal Interactions During Abiotic Stress Responses in Wheat

    PubMed Central

    Abhinandan, Kumar; Skori, Logan; Stanic, Matija; Hickerson, Neil M. N.; Jamshed, Muhammad; Samuel, Marcus A.

    2018-01-01

    Rapid global warming directly impacts agricultural productivity and poses a major challenge to the present-day agriculture. Recent climate change models predict severe losses in crop production worldwide due to the changing environment, and in wheat, this can be as large as 42 Mt/°C rise in temperature. Although wheat occupies the largest total harvested area (38.8%) among the cereals including rice and maize, its total productivity remains the lowest. The major production losses in wheat are caused more by abiotic stresses such as drought, salinity, and high temperature than by biotic insults. Thus, understanding the effects of these stresses becomes indispensable for wheat improvement programs which have depended mainly on the genetic variations present in the wheat genome through conventional breeding. Notably, recent biotechnological breakthroughs in the understanding of gene functions and access to whole genome sequences have opened new avenues for crop improvement. Despite the availability of such resources in wheat, progress is still limited to the understanding of the stress signaling mechanisms using model plants such as Arabidopsis, rice and Brachypodium and not directly using wheat as the model organism. This review presents an inclusive overview of the phenotypic and physiological changes in wheat due to various abiotic stresses followed by the current state of knowledge on the identified mechanisms of perception and signal transduction in wheat. Specifically, this review provides an in-depth analysis of different hormonal interactions and signaling observed during abiotic stress signaling in wheat. PMID:29942321

  4. Effect of temperature on wheat streak mosaic disease development in winter wheat

    USDA-ARS?s Scientific Manuscript database

    Temperature is one of the key factors that influence viral disease development in plants. In this study, temperature effect on Wheat streak mosaic virus (WSMV) replication and in planta movement was determined using a green fluorescent protein (GFP)-tagged virus in two winter wheat cultivars. Virus-...

  5. Response of winter and spring wheat grain yields to meteorological variation

    NASA Technical Reports Server (NTRS)

    Feyerherm, A. M.; Kanemasu, E. T.; Paulsen, G. M.

    1977-01-01

    Mathematical models which quantify the relation of wheat yield to selected weather-related variables are presented. Other sources of variation (amount of applied nitrogen, improved varieties, cultural practices) have been incorporated in the models to explain yield variation both singly and in combination with weather-related variables. Separate models were developed for fall-planted (winter) and spring-planted (spring) wheats. Meteorological variation is observed, basically, by daily measurements of minimum and maximum temperatures, precipitation, and tabled values of solar radiation at the edge of the atmosphere and daylength. Two different soil moisture budgets are suggested to compute simulated values of evapotranspiration; one uses the above-mentioned inputs, the other uses the measured temperatures and precipitation but replaces the tabled values (solar radiation and daylength) by measured solar radiation and satellite-derived multispectral scanner data to estimate leaf area index. Weather-related variables are defined by phenological stages, rather than calendar periods, to make the models more universally applicable.

  6. Pollen-mediated gene flow in wheat (Triticum aestivum L.) in a semiarid field environment in Spain.

    PubMed

    Loureiro, Iñigo; Escorial, María-Concepción; González, Águeda; Chueca, María-Cristina

    2012-12-01

    Transgenic wheat (Triticum aestivum L.) varieties are being developed and field-tested in various countries. Concerns regarding gene flow from genetically modified (GM) crops to non-GM crops have stimulated research to estimate outcrossing in wheat prior to the release and commercialization of any transgenic cultivars. The aim is to ensure that coexistence of all types of wheat with GM wheat is feasible in accordance with current regulations. The present study describes the result of a field experiment under the semi-arid climate conditions of Madrid, Spain, at two locations ("La Canaleja" and "El Encin" experimental stations) in Madrid over a 3-year period, from 2005 to 2007. The experimental design consisted of a 50 × 50 m wheat pollen source sown with wheat cultivars resistant to the herbicide chlortoluron ('Deganit' and 'Castan' respectively) and three susceptible receptor cultivars ('Abental', 'Altria' and 'Recital') sown in replicated 1 × 1 m plots at different distances (0, 1, 3, 5, 10, 20, 40, 80 and 100 m) and four directions. Outcrossing rates were measured as a percentage of herbicide-resistant hybrids using an herbicide-screening assay. Outcrossing was greatest near the pollen source, averaging 0.029% at 0 m distance at "La Canaleja" and 0.337% at "El Encin", both below the 0.9% European Union regulated threshold, although a maximum outcrossing rate of 3.5% was detected in one recipient plot. These percentages declined rapidly as the distance increased, but hybrids were detected at different rates at distances of up to 100 m, the maximum distance of the experiment. Environmental conditions, as drought in 2004-2005 and 2005-2006, may have influenced the extent of outcrossing. These assays carried out in wheat under semi-arid conditions in Europe provide a more complete assessment of pollen-mediated gene flow in this crop.

  7. Using multispectral imagery to compare the spatial pattern of injury to wheat caused by Russian wheat aphid and greenbug

    USDA-ARS?s Scientific Manuscript database

    The Russian wheat aphid, Diuraphis noxia (Mordvilko), and greenbug, Schizaphis graminum (Rondani), are important aphid pests of wheat. Outbreaks of both pests in commercial wheat fields occur almost every year in the Great Plains of the United States. Infestations of both pests in wheat fields are...

  8. Ethiopian Wheat Yield and Yield Gap Estimation: A Spatial Small Area Integrated Data Approach

    NASA Astrophysics Data System (ADS)

    Mann, M.; Warner, J.

    2015-12-01

    Despite the collection of routine annual agricultural surveys and significant advances in GIS and remote sensing products, little econometric research has been undertaken in predicting developing nation's agricultural yields. In this paper, we explore the determinants of wheat output per hectare in Ethiopia during the 2011-2013 Meher crop seasons aggregated to the woreda administrative area. Using a panel data approach, combining national agricultural field surveys with relevant GIS and remote sensing products, the model explains nearly 40% of the total variation in wheat output per hectare across the country. The model also identifies specific contributors to wheat yields that include farm management techniques (eg. area planted, improved seed, fertilizer, irrigation), weather (eg. rainfall), water availability (vegetation and moisture deficit indexes) and policy intervention. Our findings suggest that woredas produce between 9.8 and 86.5% of their potential wheat output per hectare given their altitude, weather conditions, terrain, and plant health. At the median, Amhara, Oromiya, SNNP, and Tigray produce 48.6, 51.5, 49.7, and 61.3% of their local attainable yields, respectively. This research has a broad range of applications, especially from a public policy perspective: identifying causes of yield fluctuations, remotely evaluating larger agricultural intervention packages, and analyzing relative yield potential. Overall, the combination of field surveys with spatial data can be used to identify management priorities for improving production at a variety of administrative levels.

  9. Genetic Diversity and Linkage Disequilibrium in Chinese Bread Wheat (Triticum aestivum L.) Revealed by SSR Markers

    PubMed Central

    Hao, Chenyang; Wang, Lanfen; Ge, Hongmei; Dong, Yuchen; Zhang, Xueyong

    2011-01-01

    Two hundred and fifty bread wheat lines, mainly Chinese mini core accessions, were assayed for polymorphism and linkage disequilibrium (LD) based on 512 whole-genome microsatellite loci representing a mean marker density of 5.1 cM. A total of 6,724 alleles ranging from 1 to 49 per locus were identified in all collections. The mean PIC value was 0.650, ranging from 0 to 0.965. Population structure and principal coordinate analysis revealed that landraces and modern varieties were two relatively independent genetic sub-groups. Landraces had a higher allelic diversity than modern varieties with respect to both genomes and chromosomes in terms of total number of alleles and allelic richness. 3,833 (57.0%) and 2,788 (41.5%) rare alleles with frequencies of <5% were found in the landrace and modern variety gene pools, respectively, indicating greater numbers of rare variants, or likely new alleles, in landraces. Analysis of molecular variance (AMOVA) showed that A genome had the largest genetic differentiation and D genome the lowest. In contrast to genetic diversity, modern varieties displayed a wider average LD decay across the whole genome for locus pairs with r2>0.05 (P<0.001) than the landraces. Mean LD decay distance for the landraces at the whole genome level was <5 cM, while a higher LD decay distance of 5–10 cM in modern varieties. LD decay distances were also somewhat different for each of the 21 chromosomes, being higher for most of the chromosomes in modern varieties (<5∼25 cM) compared to landraces (<5∼15 cM), presumably indicating the influences of domestication and breeding. This study facilitates predicting the marker density required to effectively associate genotypes with traits in Chinese wheat genetic resources. PMID:21365016

  10. Association study of resistance to soil-borne wheat mosaic virus (SBWMV) in U.S. winter wheat

    USDA-ARS?s Scientific Manuscript database

    Soil-borne wheat mosaic virus (SBWMV) is one of the most important winter wheat pathogens worldwide. To identify genes for resistance to the virus in U.S. winter wheat, association study was conducted using a selected panel of 205 elite experimental lines and cultivars from U.S. hard and soft winter...

  11. Epistatic determinism of durum wheat resistance to the wheat spindle streak mosaic virus.

    PubMed

    Holtz, Yan; Bonnefoy, Michel; Viader, Véronique; Ardisson, Morgane; Rode, Nicolas O; Poux, Gérard; Roumet, Pierre; Marie-Jeanne, Véronique; Ranwez, Vincent; Santoni, Sylvain; Gouache, David; David, Jacques L

    2017-07-01

    The resistance of durum wheat to the Wheat spindle streak mosaic virus (WSSMV) is controlled by two main QTLs on chromosomes 7A and 7B, with a huge epistatic effect. Wheat spindle streak mosaic virus (WSSMV) is a major disease of durum wheat in Europe and North America. Breeding WSSMV-resistant cultivars is currently the only way to control the virus since no treatment is available. This paper reports studies of the inheritance of WSSMV resistance using two related durum wheat populations obtained by crossing two elite cultivars with a WSSMV-resistant emmer cultivar. In 2012 and 2015, 354 recombinant inbred lines (RIL) were phenotyped using visual notations, ELISA and qPCR and genotyped using locus targeted capture and sequencing. This allowed us to build a consensus genetic map of 8568 markers and identify three chromosomal regions involved in WSSMV resistance. Two major regions (located on chromosomes 7A and 7B) jointly explain, on the basis of epistatic interactions, up to 43% of the phenotypic variation. Flanking sequences of our genetic markers are provided to facilitate future marker-assisted selection of WSSMV-resistant cultivars.

  12. Pilot Study: Comparison of Sourdough Wheat Bread and Yeast-Fermented Wheat Bread in Individuals with Wheat Sensitivity and Irritable Bowel Syndrome.

    PubMed

    Laatikainen, Reijo; Koskenpato, Jari; Hongisto, Sanna-Maria; Loponen, Jussi; Poussa, Tuija; Huang, Xin; Sontag-Strohm, Tuula; Salmenkari, Hanne; Korpela, Riitta

    2017-11-04

    Many patients suspect wheat as being a major trigger of their irritable bowel syndrome (IBS) symptoms. Our aim was to evaluate whether sourdough wheat bread baked without baking improvers and using a long dough fermentation time (>12 h), would result in lower quantities of alpha-amylase/trypsin inhibitors (ATIs) and Fermentable, Oligo-, Di-, Mono-saccharides and Polyols (FODMAPs), and would be better tolerated than yeast-fermented wheat bread for subjects with IBS who have a poor subjective tolerance to wheat. The study was conducted as a randomised double-blind controlled 7-day study ( n = 26). Tetrameric ATI structures were unravelled in both breads vs. baking flour, but the overall reduction in ATIs to their monomeric form was higher in the sourdough bread group. Sourdough bread was also lower in FODMAPs. However, no significant differences in gastrointestinal symptoms and markers of low-grade inflammation were found between the study breads. There were significantly more feelings of tiredness, joint symptoms, and decreased alertness when the participants ate the sourdough bread ( p ≤ 0.03), but these results should be interpreted with caution. Our novel finding was that sourdough baking reduces the quantities of both ATIs and FODMAPs found in wheat. Nonetheless, the sourdough bread was not tolerated better than the yeast-fermented bread.

  13. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat.

    PubMed

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation.

  14. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat

    PubMed Central

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  15. Computer vision-based method for classification of wheat grains using artificial neural network.

    PubMed

    Sabanci, Kadir; Kayabasi, Ahmet; Toktas, Abdurrahim

    2017-06-01

    A simplified computer vision-based application using artificial neural network (ANN) depending on multilayer perceptron (MLP) for accurately classifying wheat grains into bread or durum is presented. The images of 100 bread and 100 durum wheat grains are taken via a high-resolution camera and subjected to pre-processing. The main visual features of four dimensions, three colors and five textures are acquired using image-processing techniques (IPTs). A total of 21 visual features are reproduced from the 12 main features to diversify the input population for training and testing the ANN model. The data sets of visual features are considered as input parameters of the ANN model. The ANN with four different input data subsets is modelled to classify the wheat grains into bread or durum. The ANN model is trained with 180 grains and its accuracy tested with 20 grains from a total of 200 wheat grains. Seven input parameters that are most effective on the classifying results are determined using the correlation-based CfsSubsetEval algorithm to simplify the ANN model. The results of the ANN model are compared in terms of accuracy rate. The best result is achieved with a mean absolute error (MAE) of 9.8 × 10 -6 by the simplified ANN model. This shows that the proposed classifier based on computer vision can be successfully exploited to automatically classify a variety of grains. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Genome-wide association mapping of resistance to eyespot disease (Pseudocercosporella herpotrichoides) in European winter wheat (Triticum aestivum L.) and fine-mapping of Pch1.

    PubMed

    Zanke, Christine D; Rodemann, Bernd; Ling, Jie; Muqaddasi, Quddoos H; Plieske, Jörg; Polley, Andreas; Kollers, Sonja; Ebmeyer, Erhard; Korzun, Viktor; Argillier, Odile; Stiewe, Gunther; Zschäckel, Thomas; Ganal, Martin W; Röder, Marion S

    2017-03-01

    Genotypes with recombination events in the Triticum ventricosum introgression on chromosome 7D allowed to fine-map resistance gene Pch1, the main source of eyespot resistance in European winter wheat cultivars. Eyespot (also called Strawbreaker) is a common and serious fungal disease of winter wheat caused by the necrotrophic fungi Oculimacula yallundae and Oculimacula acuformis (former name Pseudocercosporella herpotrichoides). A genome-wide association study (GWAS) for eyespot was performed with 732 microsatellite markers (SSR) and 7761 mapped SNP markers derived from the 90 K iSELECT wheat array using a panel of 168 European winter wheat varieties as well as three spring wheat varieties and phenotypic evaluation of eyespot in field tests in three environments. Best linear unbiased estimations (BLUEs) were calculated across all trials and ranged from 1.20 (most resistant) to 5.73 (most susceptible) with an average value of 4.24 and a heritability of H 2  = 0.91. A total of 108 SSR and 235 SNP marker-trait associations (MTAs) were identified by considering associations with a -log 10 (P value) ≥3.0. Significant MTAs for eyespot-score BLUEs were found on chromosomes 1D, 2A, 2D, 3D, 5A, 5D, 6A, 7A and 7D for the SSR markers and chromosomes 1B, 2A, 2B, 2D, 3B and 7D for the SNP markers. For 18 varieties (10.5%), a highly resistant phenotype was detected that was linked to the presence of the resistance gene Pch1 on chromosome 7D. The identification of genotypes with recombination events in the introgressed genomic segment from Triticum ventricosum harboring the Pch1 resistance gene on chromosome 7DL allowed the fine-mapping of this gene using additional SNP markers and a potential candidate gene Traes_7DL_973A33763 coding for a CC-NBS-LRR class protein was identified.

  17. Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat.

    PubMed

    Zhu, Jie; Pearce, Stephen; Burke, Adrienne; See, Deven Robert; Skinner, Daniel Z; Dubcovsky, Jorge; Garland-Campbell, Kimberly

    2014-05-01

    The interaction between VRN - A1 and FR - A2 largely affect the frost tolerance of hexaploid wheat. Frost tolerance is critical for wheat survival during cold winters. Natural variation for this trait is mainly associated with allelic differences at the VERNALIZATION 1 (VRN1) and FROST RESISTANCE 2 (FR2) loci. VRN1 regulates the transition between vegetative and reproductive stages and FR2, a locus including several tandemly duplicated C-REPEAT BINDING FACTOR (CBF) transcription factors, regulates the expression of Cold-regulated genes. We identified sequence and copy number variation at these two loci among winter and spring wheat varieties and characterized their association with frost tolerance. We identified two FR-A2 haplotypes-'FR-A2-S' and 'FR-A2-T'-distinguished by two insertion/deletions and ten single nucleotide polymorphisms within the CBF-A12 and CBF-A15 genes. Increased copy number of CBF-A14 was frequently associated with the FR-A2-T haplotype and with higher CBF14 transcript levels in response to cold. Factorial ANOVAs revealed significant interactions between VRN1 and FR-A2 for frost tolerance in both winter and spring panels suggesting a crosstalk between vernalization and cold acclimation pathways. The model including these two loci and their interaction explained 32.0 and 20.7 % of the variation in frost tolerance in the winter and spring panels, respectively. The interaction was validated in a winter wheat F 4:5 population segregating for both genes. Increased VRN-A1 copy number was associated with improved frost tolerance among varieties carrying the FR-A2-T allele but not among those carrying the FR-A2-S allele. These results suggest that selection of varieties carrying the FR-A2-T allele and three copies of the recessive vrn-A1 allele would be a good strategy to improve frost tolerance in wheat.

  18. Wheat Rusts in the United States in 2007

    USDA-ARS?s Scientific Manuscript database

    In 2007 90% of wheat stem rust races were QFC and 10% were RCRS Both races are relatively avirulent to wheat cultiars grown in the U.S. Wheat stem rust occurred in scattered locations on research plots of susceptible wheat cultivars in 2007, and did not cause yield loss. Wheat leaf rust was widespr...

  19. Differences in gluten protein composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy.

    PubMed

    De Santis, Michele A; Giuliani, Marcella M; Giuzio, Luigia; De Vita, Pasquale; Lovegrove, Alison; Shewry, Peter R; Flagella, Zina

    2017-07-01

    The impact of breeding on grain yields of wheat varieties released during the 20th century has been extensively studied, whereas less information is available on the changes in gluten quality associated with effects on the amount and composition of glutenins and gliadins. In order to explore the effects of breeding during the 20th century on gluten quality of durum wheat for processing and health we have compared a set of old and modern Italian genotypes grown under Mediterranean conditions. The better technological performance observed for the modern varieties was found to be due not only to the introgression of superior alleles of high (HMW-GS) and low molecular weight (LMW-GS) glutenin subunits encoded at Glu-B1 and Glu-B3 loci , but also to differential expression of specific storage proteins. In particular, the higher gluten index observed in modern genotypes was correlated with an increased glutenin/gliadin ratio and the expression of B-type LMW-GS which was, on average, two times higher in the modern than in the old group of durum wheat genotypes. By contrast, no significant differences were found between old and modern durum wheat genotypes in relation to the expression of α-type and γ-type gliadins which are major fractions that trigger coeliac disease (CD) in susceptible individuals. Furthermore, a drastic decrease was observed in the expression of ω-type gliadins in the modern genotypes, mainly ω-5 gliadin (also known as Tri a 19) which is a major allergen in wheat dependent exercise induced anaphylaxis (WDEIA). Immunological and 2DE SDS-PAGE analyses indicated that these differences could be related either to a general down-regulation or to differences in numbers of isoforms. Lower rainfall during grain filling period was related to overall higher expression of HMW-GS and ω-gliadins. In conclusion, breeding activity carried out in Italy during the 20th century appears to have improved durum wheat gluten quality, both in relation to technological

  20. Row width influences wheat yield, but has little effect on wheat quality

    USDA-ARS?s Scientific Manuscript database

    Growers are interested in wide-row wheat production due to reductions in equipment inventory (lack of grain drill) and to allow intercropping of soybean into wheat. A trial was established during the 2012-2013 and 2013-2014 growing seasons in Wayne County and Wood County, Ohio to evaluate the effec...

  1. Soft durum wheat - a paradigm shift

    USDA-ARS?s Scientific Manuscript database

    Two traits define most aspects of wheat quality and utilization: kernel texture (hardness) and gluten. The former is far simpler genetically and is controlled by two genes, Puroindoline a and Puroindoline b. Durum wheat lacks puroindolines and has very hard kernels. As such, durum wheat when milled ...

  2. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as the...

  3. A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat

    PubMed Central

    2013-01-01

    Background As for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexities of the large, highly repetitive and hexaploid wheat genome, the International Wheat Genome Sequencing Consortium established a chromosome-based strategy that was validated by the construction of the physical map of chromosome 3B. Here, we present improved strategies for the construction of highly integrated and ordered wheat physical maps, using chromosome 1BL as a template, and illustrate their potential for evolutionary studies and map-based cloning. Results Using a combination of novel high throughput marker assays and an assembly program, we developed a high quality physical map representing 93% of wheat chromosome 1BL, anchored and ordered with 5,489 markers including 1,161 genes. Analysis of the gene space organization and evolution revealed that gene distribution and conservation along the chromosome results from the superimposition of the ancestral grass and recent wheat evolutionary patterns, leading to a peak of synteny in the central part of the chromosome arm and an increased density of non-collinear genes towards the telomere. With a density of about 11 markers per Mb, the 1BL physical map provides 916 markers, including 193 genes, for fine mapping the 40 QTLs mapped on this chromosome. Conclusions Here, we demonstrate that high marker density physical maps can be developed in complex genomes such as wheat to accelerate map-based cloning, gain new insights into genome evolution, and provide a foundation for reference sequencing. PMID:23800011

  4. Registration of 'UI Stone' spring wheat

    USDA-ARS?s Scientific Manuscript database

    Soft white spring wheat (Triticum aestivumL.) is an important wheat class being used in domestic and international markets, especially in Idaho and Pacific Northwest (PNW). The objective of this study was to develop a SWS wheat cultivar with high grain yield, desirable end-use quality, and resistanc...

  5. Exogenous Nitric Oxide (NO) Interferes with Lead (Pb)-Induced Toxicity by Detoxifying Reactive Oxygen Species in Hydroponically Grown Wheat (Triticum aestivum) Roots

    PubMed Central

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy R.; Mahajan, Priyanka; Kohli, Ravinder Kumar; Rishi, Valbha

    2015-01-01

    Nitric Oxide (NO) is a bioactive signaling molecule that mediates a variety of biotic and abiotic stresses. The present study investigated the role of NO (as SNP [sodium nitroprusside]) in ameliorating lead (Pb)-toxicity in Triticum aestivum (wheat) roots. Pb (50 and 250 μM) alone and in combination with SNP (100 μM) was given to hydroponically grown wheat roots for a period of 0–8 h. NO supplementation reduced the accumulation of oxidative stress markers (malondialdehyde, conjugated dienes, hydroxyl ions and superoxide anion) and decreased the antioxidant enzyme activity in wheat roots particularly up to 6 h, thereby suggesting its role as an antioxidant. NO ameliorated Pb-induced membrane damage in wheat roots as evidenced by decreased ion-leakage and in situ histochemical localization. Pb-exposure significantly decreased in vivo NO level. The study concludes that exogenous NO partially ameliorates Pb-toxicity, but could not restore the plant growth on prolonged Pb-exposure. PMID:26402793

  6. The Danish contribution to the European DEMOCOPHES project: A description of cadmium, cotinine and mercury levels in Danish mother-child pairs and the perspectives of supplementary sampling and measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mørck, Thit A.; Nielsen, Flemming; Nielsen, Jeanette K.S.

    Human biomonitoring (HBM) is an important tool, increasingly used for measuring true levels of the body burdens of environmental chemicals in the general population. In Europe, a harmonized HBM program was needed to open the possibility to compare levels across borders. To explore the prospect of a harmonized European HBM project, DEMOCOPHES (DEMOnstration of a study to COordinate and Perform Human biomonitoring on a European Scale) was completed in 17 European countries. The basic measurements performed in all implemented countries of DEMOCOPHES included cadmium, cotinine and phthalate metabolites in urine and mercury in hair. In the Danish participants, significant correlationsmore » between mothers and children for mercury in hair and cotinine in urine were found. Mercury in hair was further significantly associated with intake of fish and area of residence. Cadmium was positively associated with BMI in mothers and an association between cadmium and cotinine was also found. As expected high cotinine levels were found in smoking mothers. For both mercury and cadmium significantly higher concentrations were found in the mothers compared to their children. In Denmark, the DEMOCOPHES project was co-financed by the Danish ministries of health, environment and food safety. The co-financing ministries agreed to finance a number of supplementary measurements of substances of current toxicological, public and regulatory interest. This also included blood sampling from the participants. The collected urine and blood samples were analyzed for a range of other persistent and non-persistent environmental chemicals as well as two biomarkers of effect. The variety of supplementary measurements gives the researchers further information on the exposure status of the participants and creates a basis for valuable knowledge on the pattern of exposure to various chemicals. - Highlights: • Levels of cadmium, mercury and cotinine in the Danish subpopulation are comparable to

  7. Wheat streak mosaic virus coat protein is a determinant for vector transmission by the wheat curl mite

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae), is transmitted by the wheat curl mite (Aceria tosichella Keifer). The requirement of coat protein (CP) for WSMV transmission by the wheat curl mite was examined using a series of viable deletion and point mutations. Mite trans...

  8. Dissection of the multigenic wheat stem rust resistance present in the Montenegrin spring wheat accession PI 362698

    USDA-ARS?s Scientific Manuscript database

    Research to identify and characterize stem rust resistance genes in common wheat, Triticum aestivum, has been stimulated by the emergence of Ug99-lineage races of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), in Eastern Africa. The Montenegrin spring wheat landrace PI 362698 ...

  9. Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality.

    PubMed

    Tamás, Cecília; Kisgyörgy, Boglárka N; Rakszegi, Mariann; Wilkinson, Mark D; Yang, Moon-Sik; Láng, László; Tamás, László; Bedo, Zoltán

    2009-07-01

    An amaranth (Amaranthus hypochondriacus) albumin gene, encoding the 35-kDa AmA1 protein of the seed, with a high content of essential amino acids, was used in the biolistic transformation of bread wheat (Triticum aestivum L.) variety Cadenza. The transformation cassette carried the ama1 gene under the control of a powerful wheat endosperm-specific promoter (1Bx17 HMW-GS). Southern-blot analysis of T(1) lines confirmed the integration of the foreign gene, while RT-PCR and Western-blot analyses of the samples confirmed the transcription and translation of the transgene. The effects of the extra albumin protein on the properties of flour, produced from bulked T(2) seeds, were calculated using total protein and essential amino acid content analysis, polymeric/monomeric protein and HMW/LMW glutenin subunit ratio measurements. The results indicated that not only can essential amino acid content be increased, but some parameters associated with functional quality may also be improved because of the expression of the AmA1 protein.

  10. Danish-Swedish windpower company founded in Denmark

    NASA Astrophysics Data System (ADS)

    Holmstrom, M.

    1982-04-01

    The Swedish General Electric Co. (ASEA) has founded a windpower company in cooperation with the Danish state and a Danish company. They expect to build 250 windpower plants through 1984. If a Swedish market opens a similar partner company is planned in Sweden.

  11. Quantitative Proteomic Analysis of Wheat Cultivars with Differing Drought Stress Tolerance

    PubMed Central

    Ford, Kristina L.; Cassin, Andrew; Bacic, Antony

    2011-01-01

    Using a series of multiplexed experiments we studied the quantitative changes in protein abundance of three Australian bread wheat cultivars (Triticum aestivum L.) in response to a drought stress. Three cultivars differing in their ability to maintain grain yield during drought, Kukri (intolerant), Excalibur (tolerant), and RAC875 (tolerant), were grown in the glasshouse with cyclic drought treatment that mimicked conditions in the field. Proteins were isolated from leaves of mature plants and isobaric tags were used to follow changes in the relative protein abundance of 159 proteins. This is the first shotgun proteomics study in wheat, providing important insights into protein responses to drought as well as identifying the largest number of wheat proteins (1,299) in a single study. The changes in the three cultivars at the different time points reflected their differing physiological responses to drought, with the two drought tolerant varieties (Excalibur and RAC875) differing in their protein responses. Excalibur lacked significant changes in proteins during the initial onset of the water deficit in contrast to RAC875 that had a large number of significant changes. All three cultivars had changes consistent with an increase in oxidative stress metabolism and reactive O2 species (ROS) scavenging capacity seen through increases in superoxide dismutases and catalases as well as ROS avoidance through the decreases in proteins involved in photosynthesis and the Calvin cycle. PMID:22639595

  12. Registration of 'Antero' Wheat

    USDA-ARS?s Scientific Manuscript database

    ’Antero’ (Reg. No. CV-XXXX, PI 667743) hard white winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2012 through a marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado State Univ...

  13. The action of ultrasounds on Bezostaia 1 winter wheat grown in sand pots treated with Knop solution

    NASA Technical Reports Server (NTRS)

    Albu, N.

    1974-01-01

    The results of 3 years of research are presented concerning the increase in length and weight of the aerial biomass as compared with the underground biomass, as well as the productivity indexes of Bezostaia 1 winter wheat. The experiment involved two varieties, each of them with nine repetitions. Sterile sifted sand treated several times with a Knop solution during the vegetative period was used as a seed bed. The seeds were kept in water for 2 hours before treatment. Biometric and statistical measurements showed significant responses in the treated varieties.

  14. Ancestral QTL Alleles from Wild Emmer Wheat Improve Drought Resistance and Productivity in Modern Wheat Cultivars

    PubMed Central

    Merchuk-Ovnat, Lianne; Barak, Vered; Fahima, Tzion; Ordon, Frank; Lidzbarsky, Gabriel A.; Krugman, Tamar; Saranga, Yehoshua

    2016-01-01

    Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs) from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum) and bread (T. aestivum) wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4) were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690–710 mm) and water-limited (290–320 mm) conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS), and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS). In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass—specifically under drought (7AS QTL in cv. Bar Nir background), under both treatments (2BS QTL), and a greater stability across treatments (1BL QTL). The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance. PMID:27148287

  15. The dissection and SSR mapping of a high-temperature adult-plant stripe rust resistance gene in American spring wheat cultivar Alturas

    USDA-ARS?s Scientific Manuscript database

    Stripe rust is one of major diseases in wheat production worldwide. The best economic and efficient method is to utilize resistant varieties. Alturas has high-temperature adult-plant resistance. In order to determine stripe rust resistance characteristics, resistance gene combination and molecular m...

  16. The value of wheat landraces (Editorial)

    USDA-ARS?s Scientific Manuscript database

    Whether man was domesticated by wheat, or wheat was domesticated by man is but two faces of the same coin; both incidents marked a turning point in human history and led to the emergence of human civilization in the Fertile Crescent of the Old World. The complex history of wheat domestication from i...

  17. Improving the baking quality of bread wheat by genomic selection in early generations.

    PubMed

    Michel, Sebastian; Kummer, Christian; Gallee, Martin; Hellinger, Jakob; Ametz, Christian; Akgöl, Batuhan; Epure, Doru; Güngör, Huseyin; Löschenberger, Franziska; Buerstmayr, Hermann

    2018-02-01

    Genomic selection shows great promise for pre-selecting lines with superior bread baking quality in early generations, 3 years ahead of labour-intensive, time-consuming, and costly quality analysis. The genetic improvement of baking quality is one of the grand challenges in wheat breeding as the assessment of the associated traits often involves time-consuming, labour-intensive, and costly testing forcing breeders to postpone sophisticated quality tests to the very last phases of variety development. The prospect of genomic selection for complex traits like grain yield has been shown in numerous studies, and might thus be also an interesting method to select for baking quality traits. Hence, we focused in this study on the accuracy of genomic selection for laborious and expensive to phenotype quality traits as well as its selection response in comparison with phenotypic selection. More than 400 genotyped wheat lines were, therefore, phenotyped for protein content, dough viscoelastic and mixing properties related to baking quality in multi-environment trials 2009-2016. The average prediction accuracy across three independent validation populations was r = 0.39 and could be increased to r = 0.47 by modelling major QTL as fixed effects as well as employing multi-trait prediction models, which resulted in an acceptable prediction accuracy for all dough rheological traits (r = 0.38-0.63). Genomic selection can furthermore be applied 2-3 years earlier than direct phenotypic selection, and the estimated selection response was nearly twice as high in comparison with indirect selection by protein content for baking quality related traits. This considerable advantage of genomic selection could accordingly support breeders in their selection decisions and aid in efficiently combining superior baking quality with grain yield in newly developed wheat varieties.

  18. Interference of allelopathic wheat with different weeds.

    PubMed

    Zhang, Song-Zhu; Li, Yong-Hua; Kong, Chui-Hua; Xu, Xiao-Hua

    2016-01-01

    Interference of allelopathic wheat with weeds involves a broad spectrum of species either independently or synergistically with competitive factors. This study examined the interference of allelopathic wheat with 38 weeds in relation to the production of allelochemical 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in wheat with and without root-root interactions. There were substantial differences in weed biomass and DIMBOA concentration in wheat-weed coexisting systems. Among 38 weeds, nine weeds were inhibited significantly by allelopathic wheat but the other 29 weeds were not. DIMBOA levels in wheat varied greatly with weed species. There was no significant relationship between DIMBOA levels and weed suppression effects. Root segregation led to great changes in weed inhibition and DIMBOA level. Compared with root contact, the inhibition of eight weeds was lowered significantly, while significantly increased inhibition occurred in 11 weeds with an increased DIMBOA concentration under root segregation. Furthermore, the production of DIMBOA in wheat was induced by the root exudates from weeds. Interference of allelopathic wheat with weeds not only is determined by the specificity of the weeds but also depends on root-root interactions. In particular, allelopathic wheat may detect certain weeds through the root exudates and respond by increasing the allelochemical, resulting in weed identity recognition. © 2015 Society of Chemical Industry.

  19. Mortality in a cohort of Danish firefighters; 1970-2014.

    PubMed

    Petersen, Kajsa Ugelvig; Pedersen, Julie Elbæk; Bonde, Jens Peter; Ebbehøj, Niels Erik; Hansen, Johnni

    2018-05-28

    Occupational exposure of firefighters involves a complex range of potential health threats from toxic chemicals, shift work, extreme heat, physical and emotional strain. The aim of this study is to examine overall and disease-specific mortality among Danish firefighters. Through systematic collection of personnel and membership records from employers and trade unions, past and present male Danish firefighters were identified (n = 11,775). Using the unique Danish personal identification number, information on additional employment, vital status and cause of death was linked to each member of the cohort from the Supplementary Pension Fund Register, the Danish Civil Registration System and the Danish Register of Causes of Death. Standardized mortality ratios (SMRs) were calculated for specific causes of death using rates for two reference groups, a random sample of the male working population (n = 262,168) and the military (n = 396,739), respectively. Overall mortality was significantly reduced among the firefighters compared to both the sample of the working population and the military (SMR 0.74, 95% CI 0.69-0.78 and SMR 0.88, 95% CI 0.83-0.93). Further, the SMRs for endocrine diseases, mental disorders, non-traffic related accidents and other external causes were significantly lower against both reference groups. Death from stomach cancer was significantly increased among the full time firefighters, while part time/volunteer workers shared a significant increase in prostate cancer death compared to both references. Despite potential exposure to several occupational hazards, male Danish firefighters have a lower mortality than both the Danish working population in general and Danish military employees.

  20. Multiply to conquer: Copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat.

    PubMed

    Würschum, Tobias; Boeven, Philipp H G; Langer, Simon M; Longin, C Friedrich H; Leiser, Willmar L

    2015-07-29

    Copy number variation was found to be a frequent type of DNA polymorphism in the human genome often associated with diseases but its importance in crops and the effects on agronomic traits are still largely unknown. Here, we employed a large worldwide panel of 1110 winter wheat varieties to assess the frequency and the geographic distribution of copy number variants at the Photoperiod-B1 (Ppd-B1) and the Vernalization-A1 (Vrn-A1) loci as well as their effects on flowering time under field conditions. We identified a novel four copy variant of Vrn-A1 and based on the phylogenetic relationships among the lines show that the higher copy variants at both loci are likely to have arisen independently multiple times. In addition, we found that the frequency of the different copy number variants at both loci reflects the environmental conditions in the varieties' region of origin and based on multi-location field trials show that Ppd-B1 copy number has a substantial effect on the fine-tuning of flowering time. In conclusion, our results show the importance of copy number variation at Ppd-B1 and Vrn-A1 for the global adaptation of wheat making it a key factor for wheat success in a broad range of environments and in a wider context substantiate the significant role of copy number variation in crops.

  1. Alterations and Abnormal Mitosis of Wheat Chromosomes Induced by Wheat-Rye Monosomic Addition Lines

    PubMed Central

    Fu, Shulan; Yang, Manyu; Fei, Yunyan; Tan, Feiquan; Ren, Zhenglong; Yan, Benju; Zhang, Huaiyu; Tang, Zongxiang

    2013-01-01

    Background Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. Methodology/Principal Findings Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. Conclusions/Significance These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat. PMID:23936213

  2. Wheat signature modeling and analysis for improved training statistics: Supplement. Simulated LANDSAT wheat radiances and radiance components

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Cicone, R. C.; Gleason, J. M.

    1976-01-01

    Simulated scanner system data values generated in support of LACIE (Large Area Crop Inventory Experiment) research and development efforts are presented. Synthetic inband (LANDSAT) wheat radiances and radiance components were computed and are presented for various wheat canopy and atmospheric conditions and scanner view geometries. Values include: (1) inband bidirectional reflectances for seven stages of wheat crop growth; (2) inband atmospheric features; and (3) inband radiances corresponding to the various combinations of wheat canopy and atmospheric conditions. Analyses of these data values are presented in the main report.

  3. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting...

  4. Cellulase production using different streams of wheat grain- and wheat straw-based ethanol processes.

    PubMed

    Gyalai-Korpos, Miklós; Mangel, Réka; Alvira, Pablo; Dienes, Dóra; Ballesteros, Mercedes; Réczey, Kati

    2011-07-01

    Pretreatment is a necessary step in the biomass-to-ethanol conversion process. The side stream of the pretreatment step is the liquid fraction, also referred to as the hydrolyzate, which arises after the separation of the pretreated solid and is composed of valuable carbohydrates along with compounds that are potentially toxic to microbes (mainly furfural, acetic acid, and formic acid). The aim of our study was to utilize the liquid fraction from steam-exploded wheat straw as a carbon source for cellulase production by Trichoderma reesei RUT C30. Results showed that without detoxification, the fungus failed to utilize any dilution of the hydrolyzate; however, after a two-step detoxification process, it was able to grow on a fourfold dilution of the treated liquid fraction. Supplementation of the fourfold-diluted, treated liquid fraction with washed pretreated wheat straw or ground wheat grain led to enhanced cellulase (filter paper) activity. Produced enzymes were tested in hydrolysis of washed pretreated wheat straw. Supplementation with ground wheat grain provided a more efficient enzyme mixture for the hydrolysis by means of the near-doubled β-glucosidase activity obtained.

  5. Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat.

    PubMed

    Liu, Gang; Jia, Lijia; Lu, Lahu; Qin, Dandan; Zhang, Jinping; Guan, Panfeng; Ni, Zhongfu; Yao, Yingyin; Sun, Qixin; Peng, Huiru

    2014-11-01

    QTLs controlling yield-related traits were mapped using a population derived from common wheat and Tibetan semi-wild wheat and they provided valuable information for using Tibetan semi-wild wheat in future wheat molecular breeding. Tibetan semi-wild wheat (Triticum aestivum ssp tibetanum Shao) is a kind of primitive hexaploid wheat and harbors several beneficial traits, such as tolerance to biotic and abiotic stresses. And as a wild relative of common wheat, heterosis of yield of the progeny between them was significant. This study focused on mapping QTLs controlling yield-related traits using a recombined inbred lines (RILs) population derived from a hybrid between a common wheat line NongDa3331 (ND3331) and the Tibetan semi-wild wheat accession Zang 1817. In nine location-year environments, a total of 148 putative QTLs controlling nine traits were detected, distributed on 19 chromosomes except for 1A and 2D. Single QTL explained the phenotypic variation ranging from 3.12 to 49.95%. Of these QTLs, 56 were contributed by Zang 1817. Some stable QTLs contributed by Zang 1817 were also detected in more than four environments, such as QPh-3A1, QPh-4B1 and QPh-4D for plant height, QSl-7A1 for spike length, QEp-4B2 for ears per plant, QGws-4D for grain weight per spike, and QTgw-4D for thousand grain weight. Several QTL-rich Regions were also identified, especially on the homoeologous group 4. The TaANT gene involved in floral organ development was mapped on chromosome 4A between Xksm71 and Xcfd6 with 0.8 cM interval, and co-segregated with the QTLs controlling floret number per spikelet, explaining 4.96-11.84% of the phenotypic variation. The current study broadens our understanding of the genetic characterization of Tibetan semi-wild wheat, which will enlarge the genetic diversity of yield-related traits in modern wheat breeding program.

  6. Substrate specificity and pH dependence of homogeneous wheat germ acid phosphatase.

    PubMed

    Van Etten, R L; Waymack, P P

    1991-08-01

    The broad substrate specificity of a homogeneous isoenzyme of wheat germ acid phosphatase (WGAP) was extensively investigated by chromatographic, electrophoretic, NMR, and kinetic procedures. WGAP exhibited no divalent metal ion requirement and was unaffected upon incubation with EDTA or o-phenanthroline. A comparison of two catalytically homogeneous isoenzymes revealed little difference in substrate specificity. The specificity of WGAP was established by determining the Michaelis constants for a wide variety of substrates. p-Nitrophenyl phosphate, pyrophosphate, tripolyphosphate, and ATP were preferred substrates while lesser activities were seen toward sugar phosphates, trimetaphosphate, phosphoproteins, and (much less) phosphodiesters. An extensive table of Km and Vmax values is given. The pathway for the hydrolysis of trimetaphosphate was examined by colorimetric and 31P NMR methods and it was found that linear tripolyphosphate is not a free intermediate in the enzymatic reaction. In contrast to literature reports, homogeneous wheat germ acid phosphatase exhibits no measurable carboxylesterase activity, nor does it hydrolyze phenyl phosphonothioate esters or phytic acid at significant rates.

  7. Environment and genotype effects on the content of dietary fiber and its components in wheat in the HEALTHGRAIN diversity screen.

    PubMed

    Gebruers, Kurt; Dornez, Emmie; Bedõ, Zoltan; Rakszegi, Mariann; Frás, Anna; Boros, Danuta; Courtin, Christophe M; Delcour, Jan A

    2010-09-08

    Within the HEALTHGRAIN diversity screen, the variability of the contents of dietary fiber (DF) and components thereof was studied in wheat. Furthermore, the contribution of genotype and environment to this variability was estimated. The levels of total DF (TDF), total nonstarch polysaccharide (TOTNSP), water-extractable nonstarch polysaccharide (WENSP), total arabinoxylan (TOTAX), lignin, and beta-glucan in whole meal, flour, and/or bran varied approximately 1.8-fold. The highest variability was observed for the water-extractable arabinoxylan (WEAX) level in flour and bran (approximately 3.7-fold). Genotype and environment contributed to a similar extent to the variability in TDF, TOTNSP, and TOTAX content in wheat. The observed relatively high impact of genotype-environment interaction suggests that the levels of these constituents are weak breeding parameters. The WENSP level is a more stable parameter as the effect of the interaction term was much less than the impact of genotype. For TOTAX and WEAX in flour, WEAX in bran, beta-glucan in whole meal, and extract viscosity, wheat genotype determined approximately 50% or higher of the variation observed, whereas the impact of the genotype-environment interaction was relatively low. These findings suggest that the health-related and technological functionality of wheat can be directed to a certain extent by selection of appropriate wheat varieties.

  8. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Wheat gluten. 184.1322 Section 184.1322 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the...

  9. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Wheat gluten. 184.1322 Section 184.1322 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the...

  10. Growing Wheat. People on the Farm.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC. Office of Governmental and Public Affairs.

    This booklet, one in a series about life on modern farms, describes the daily life of the Don Riffel family, wheat farmers in Kansas. Beginning with early morning, the booklet traces the family's activities through a typical harvesting day in July, while explaining how a wheat farm is run. The booklet also briefly describes the wheat growing…

  11. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Wheat gluten. 184.1322 Section 184.1322 Food and....1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of... purity suitable for its intended use. (c) In accordance with § 184.1(b)(1), the ingredient is used in...

  12. Registration of Durum Wheat Germplasm Lines with Combined Mutations in SBEIIa and SBEIIb Genes Conferring Increased Amylose and Resistant Starch

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Dubcovsky, Jorge

    2016-01-01

    Durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.], used in pasta, couscous, and flatbread production, is an important source of starch food products worldwide. The amylose portion of the starch forms resistant starch complexes that resist digestion and contribute to dietary fiber. Increasing the amount of amylose and resistant starch in wheat by mutating the STARCH BRANCHING ENZYME II (SBEII) genes has potential to provide human health benefits. Ethyl methane sulfonate mutations in the linked SBEIIa and SBEIIb paralogs were combined on chromosomes 2A (SBEIIa/b-A; Reg. No. GP-968, PI 670159), 2B (SBEIIa/b-B; Reg. No. GP-970, PI 670161), and on both chromosomes (SBEIIa/b-AB; Reg. No. GP-969, PI 670160) in the tetraploid wheat cultivar Kronos, a semidwarf durum wheat cultivar that has high yield potential and excellent pasta quality. These three double and quadruple SBEII-mutant lines were compared with a control sib line with no SBEII mutations in two field locations in California. The SBEIIa/b-AB line with four mutations showed dramatic increases in amylose (average 66%) and resistant starch (average 753%) relative to the control. However, the SBEIIa/b-AB line also showed an average 7% decrease in total starch and an 8% decrease in kernel weight. The release by the University of California–Davis of the durum wheat germplasm combining four SBEIIa and SBEIIb mutations will accelerate the deployment of these mutations in durum wheat breeding programs and the development of durum wheat varieties with increased resistant starch. PMID:27110322

  13. Registration of Durum Wheat Germplasm Lines with Combined Mutations in SBEIIa and SBEIIb Genes Conferring Increased Amylose and Resistant Starch.

    PubMed

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Dubcovsky, Jorge

    2014-08-25

    Durum wheat [ Triticum turgidum L. subsp. durum (Desf.) Husn.], used in pasta, couscous, and flatbread production, is an important source of starch food products worldwide. The amylose portion of the starch forms resistant starch complexes that resist digestion and contribute to dietary fiber. Increasing the amount of amylose and resistant starch in wheat by mutating the STARCH BRANCHING ENZYME II ( SBEII ) genes has potential to provide human health benefits. Ethyl methane sulfonate mutations in the linked SBEIIa and SBEIIb paralogs were combined on chromosomes 2A ( SBEIIa/b -A; Reg. No. GP-968, PI 670159), 2B ( SBEIIa/b -B; Reg. No. GP-970, PI 670161), and on both chromosomes ( SBEIIa/b -AB; Reg. No. GP-969, PI 670160) in the tetraploid wheat cultivar Kronos, a semidwarf durum wheat cultivar that has high yield potential and excellent pasta quality. These three double and quadruple SBEII- mutant lines were compared with a control sib line with no SBEII mutations in two field locations in California. The SBEIIa/b -AB line with four mutations showed dramatic increases in amylose (average 66%) and resistant starch (average 753%) relative to the control. However, the SBEIIa/b -AB line also showed an average 7% decrease in total starch and an 8% decrease in kernel weight. The release by the University of California-Davis of the durum wheat germplasm combining four SBEIIa and SBEIIb mutations will accelerate the deployment of these mutations in durum wheat breeding programs and the development of durum wheat varieties with increased resistant starch.

  14. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops.

    PubMed

    Wasson, A P; Richards, R A; Chatrath, R; Misra, S C; Prasad, S V Sai; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Watt, M

    2012-05-01

    Wheat yields globally will depend increasingly on good management to conserve rainfall and new varieties that use water efficiently for grain production. Here we propose an approach for developing new varieties to make better use of deep stored water. We focus on water-limited wheat production in the summer-dominant rainfall regions of India and Australia, but the approach is generally applicable to other environments and root-based constraints. Use of stored deep water is valuable because it is more predictable than variable in-season rainfall and can be measured prior to sowing. Further, this moisture is converted into grain with twice the efficiently of in-season rainfall since it is taken up later in crop growth during the grain-filling period when the roots reach deeper layers. We propose that wheat varieties with a deeper root system, a redistribution of branch root density from the surface to depth, and with greater radial hydraulic conductivity at depth would have higher yields in rainfed systems where crops rely on deep water for grain fill. Developing selection systems for mature root system traits is challenging as there are limited high-throughput phenotyping methods for roots in the field, and there is a risk that traits selected in the lab on young plants will not translate into mature root system traits in the field. We give an example of a breeding programme that combines laboratory and field phenotyping with proof of concept evaluation of the trait at the beginning of the selection programme. This would greatly enhance confidence in a high-throughput laboratory or field screen, and avoid investment in screens without yield value. This approach requires careful selection of field sites and years that allow expression of deep roots and increased yield. It also requires careful selection and crossing of germplasm to allow comparison of root expression among genotypes that are similar for other traits, especially flowering time and disease and toxicity

  15. Unravelling mycorrhiza-induced wheat susceptibility to the English grain aphid Sitobion avenae

    PubMed Central

    Simon, Amma L.; Wellham, Peter A. D.; Aradottir, Gudbjorg I.; Gange, Alan C.

    2017-01-01

    Arbuscular mycorrhizal (AM) fungi are root symbionts that can increase or decrease aphid growth rates and reproduction, but the reason by which this happens is unknown. To investigate the underlying mechanisms of this interaction, we examined the effect of AM fungi on the English Grain aphid (Sitobion avenae) development, reproduction, attraction, settlement and feeding behaviour on two naturally susceptible varieties Triticum aestivum (L.) variety Solstice and T. monococcum MDR037, and two naturally resistant lines, T. monococcum MDR045 and MDR049. Mycorrhizal colonisation increased the attractiveness of T. aestivum var. Solstice to aphids, but there was no effect on aphid development on this variety. Using the Electrical Penetration Graph (EPG) technique, we found that mycorrhizal colonisation increased aphid phloem feeding on T. monococcum MDR037 and MDR045, colonisation also increased growth rate and reproductive success of S. avenae on these varieties. Mycorrhizas increased vascular bundle size, demonstrating that these fungi can influence plant anatomy. We discuss if and how this could be related to an enhanced success rate in phloem feeding in two varieties. Overall, we present and discuss how mycorrhizal fungi can affect the feeding behaviour of S. avenae in wheat, inducing susceptibility in a resistant variety. PMID:28406246

  16. Unravelling mycorrhiza-induced wheat susceptibility to the English grain aphid Sitobion avenae

    NASA Astrophysics Data System (ADS)

    Simon, Amma L.; Wellham, Peter A. D.; Aradottir, Gudbjorg I.; Gange, Alan C.

    2017-04-01

    Arbuscular mycorrhizal (AM) fungi are root symbionts that can increase or decrease aphid growth rates and reproduction, but the reason by which this happens is unknown. To investigate the underlying mechanisms of this interaction, we examined the effect of AM fungi on the English Grain aphid (Sitobion avenae) development, reproduction, attraction, settlement and feeding behaviour on two naturally susceptible varieties Triticum aestivum (L.) variety Solstice and T. monococcum MDR037, and two naturally resistant lines, T. monococcum MDR045 and MDR049. Mycorrhizal colonisation increased the attractiveness of T. aestivum var. Solstice to aphids, but there was no effect on aphid development on this variety. Using the Electrical Penetration Graph (EPG) technique, we found that mycorrhizal colonisation increased aphid phloem feeding on T. monococcum MDR037 and MDR045, colonisation also increased growth rate and reproductive success of S. avenae on these varieties. Mycorrhizas increased vascular bundle size, demonstrating that these fungi can influence plant anatomy. We discuss if and how this could be related to an enhanced success rate in phloem feeding in two varieties. Overall, we present and discuss how mycorrhizal fungi can affect the feeding behaviour of S. avenae in wheat, inducing susceptibility in a resistant variety.

  17. A Review of the Interactions between Wheat and Wheat Pathogens: Zymoseptoria tritici, Fusarium spp. and Parastagonospora nodorum

    PubMed Central

    Duba, Adrian; Goriewa-Duba, Klaudia; Wachowska, Urszula

    2018-01-01

    Zymoseptoria tritici is a hemibiotrophic pathogen which causes Septoria leaf blotch in wheat. The pathogenesis of the disease consists of a biotrophic phase and a necrotrophic phase. The pathogen infects the host plant by suppressing its immune response in the first stage of infection. Hemibiotrophic pathogens of the genus Fusarium cause Fusarium head blight, and the necrotrophic Parastagonospora nodorum is responsible for Septoria nodorum blotch in wheat. Cell wall-degrading enzymes in plants promote infections by necrotrophic and hemibiotrophic pathogens, and trichothecenes, secondary fungal metabolites, facilitate infections caused by fungi of the genus Fusarium. There are no sources of complete resistance to the above pathogens in wheat. Defense mechanisms in wheat are controlled by many genes encoding resistance traits. In the wheat genome, the characteristic features of loci responsible for resistance to pathogenic infections indicate that at least several dozen genes encode resistance to pathogens. The molecular interactions between wheat and Z. tritici, P. nodorum and Fusarium spp. pathogens have been insufficiently investigated. Most studies focus on the mechanisms by which the hemibiotrophic Z. tritici suppresses immune responses in plants and the role of mycotoxins and effector proteins in infections caused by P. nodorum and Fusarium spp. fungi. Trichothecene glycosylation and effector proteins, which are involved in defense responses in wheat, have been described at the molecular level. Recent advances in molecular biology have produced interesting findings which should be further elucidated in studies of molecular interactions between wheat and fungal pathogens. The Clustered Regularly-Interspaced Short Palindromic Repeats/ CRISPR associated (CRISPR/Cas) system can be used to introduce targeted mutations into the wheat genome and confer resistance to selected fungal diseases. Host-induced gene silencing and spray-induced gene silencing are also useful

  18. Using Synchrotron Radiation-Based Infrared Microspectroscopy to Reveal Microchemical Structure Characterization: Frost Damaged Wheat vs. Normal Wheat

    PubMed Central

    Xin, Hangshu; Zhang, Xuewei; Yu, Peiqiang

    2013-01-01

    This study was conducted to compare: (1) protein chemical characteristics, including the amide I and II region, as well as protein secondary structure; and (2) carbohydrate internal structure and functional groups spectral intensities between the frost damaged wheat and normal wheat using synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIRM). Fingerprint regions of specific interest in our study involved protein and carbohydrate functional group band assignments, including protein amide I and II (ca. 1774–1475 cm−1), structural carbohydrates (SCHO, ca. 1498–1176 cm−1), cellulosic compounds (CELC, ca. 1295–1176 cm−1), total carbohydrates (CHO, ca. 1191–906 cm−1) and non-structural carbohydrates (NSCHO, ca. 954–809 cm−1). The results showed that frost did cause variations in spectral profiles in wheat grains. Compared with healthy wheat grains, frost damaged wheat had significantly lower (p < 0.05) spectral intensities in height and area ratios of amide I to II and almost all the spectral parameters of carbohydrate-related functional groups, including SCHO, CHO and NSCHO. Furthermore, the height ratio of protein amide I to the third peak of CHO and the area ratios of protein amide (amide I + II) to carbohydrate compounds (CHO and SCHO) were also changed (p < 0.05) in damaged wheat grains. It was concluded that the SR-FTIR microspectroscopic technique was able to examine inherent molecular structure features at an ultra-spatial resolution (10 × 10 μm) between different wheat grains samples. The structural characterization of wheat was influenced by climate conditions, such as frost damage, and these structural variations might be a major reason for the decreases in nutritive values, nutrients availability and milling and baking quality in wheat grains. PMID:23949633

  19. 21 CFR 136.180 - Whole wheat bread, rolls, and buns.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Whole wheat bread, rolls, and buns. 136.180... § 136.180 Whole wheat bread, rolls, and buns. (a) Each of the foods whole wheat bread, graham bread, entire wheat bread, whole wheat rolls, graham rolls, entire wheat rolls, whole wheat buns, graham buns...

  20. Pentaploid Wheat Hybrids: Applications, Characterisation, and Challenges

    PubMed Central

    Padmanaban, Sriram; Zhang, Peng; Hare, Ray A.; Sutherland, Mark W.; Martin, Anke

    2017-01-01

    Interspecific hybridisation between hexaploid and tetraploid wheat species leads to the development of F1 pentaploid hybrids with unique chromosomal constitutions. Pentaploid hybrids derived from bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum spp. durum Desf.) crosses can improve the genetic background of either parent by transferring traits of interest. The genetic variability derived from bread and durum wheat and transferred into pentaploid hybrids has the potential to improve disease resistance, abiotic tolerance, and grain quality, and to enhance agronomic characters. Nonetheless, pentaploid wheat hybrids have not been fully exploited in breeding programs aimed at improving crops. There are several potential barriers for efficient pentaploid wheat production, such as low pollen compatibility, poor seed set, failed seedling establishment, and frequent sterility in F1 hybrids. However, most of the barriers can be overcome by careful selection of the parental genotypes and by employing the higher ploidy level genotype as the maternal parent. In this review, we summarize the current research on pentaploid wheat hybrids and analyze the advantages and pitfalls of current methods used to assess pentaploid-derived lines. Furthermore, we discuss current and potential applications in commercial breeding programs and future directions for research into pentaploid wheat. PMID:28367153

  1. Intraspecific differences in effects of co-contamination of cadmium and arsenate on early seedling growth and metal uptake by wheat.

    PubMed

    Liu, Xiao-li; Zhang, Shu-zhen

    2007-01-01

    A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd) (0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination, biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.

  2. Diseases Which Challenge Global Wheat Production - The Cereal Rusts

    USDA-ARS?s Scientific Manuscript database

    The rusts of wheat are common and widespread diseases in the US and throughout the world. Wheat rusts have been important throughout the history of wheat cultivation and are currently important diseases that are responsible for regularly occurring yield losses in wheat. The wheat rust fungi are obli...

  3. AN INDUCED MULTIPLE CARPEL MUTATION IN BREAD WHEAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, C.R.; Swaminathan, M.S.

    >Mutants showing partical or complete transformation of stamens into carpels or carpet-like structures were recorded in M/sub 2/ progenies, following irradiation of dry seeds with 16 R rads of x rays and following treatment with BETA particles from S/sup 35/, in bread wheat variety H 167. The multiple carpel mutation has a low and variable expression. It appears to be recessive to normal. Seed setting was poor in bagged spikes of the mutant plants but reasonably good seed set was obtained under conditions of open pollination. Not more than one functional carpel was found in any flower and this wasmore » always the normal carpel. (auth)« less

  4. Absence of individual chromosomes and radiation sensitivity of bread wheat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagathesan, D.; Swaminathan, M. S.

    Seeds of twenty different monosomics of bread wheat of the variety Chinese Spring were treated with different doses of x rays to determine LD-50. Dormant seeds with an embryo moisture content of 4 to 5% were irradiated with doses from 5000 to 50000 r. The seeds were sown immediately after irradiation. Germination and survival counts were made 15 days after sowing. The LD-50 rates found are tabulated and show that the monosomics are more radiosensitive than the disonics. Monosomtics for D genome chromosomes have generally a higher LD-50 dosage in comparison with A and B genomes. (J.S.R.)

  5. Comparison of Enzyme-Linked Immunosorbent Assay, Surface Plasmon Resonance and Biolayer Interferometry for Screening of Deoxynivalenol in Wheat and Wheat Dust.

    PubMed

    Sanders, Melanie; McPartlin, Daniel; Moran, Kara; Guo, Yirong; Eeckhout, Mia; O'Kennedy, Richard; De Saeger, Sarah; Maragos, Chris

    2016-04-11

    A sample preparation method was developed for the screening of deoxynivalenol (DON) in wheat and wheat dust. Extraction was carried out with water and was successful due to the polar character of DON. For detection, an enzyme-linked immunosorbent assay (ELISA) was compared to the sensor-based techniques of surface plasmon resonance (SPR) and biolayer interferometry (BLI) in terms of sensitivity, affinity and matrix effect. The matrix effects from wheat and wheat dust using SPR were too high to further use this screenings method. The preferred ELISA and BLI methods were validated according to the criteria established in Commission Regulation 519/2014/EC and Commission Decision 2002/657/EC. A small survey was executed on 16 wheat lots and their corresponding dust samples using the validated ELISA method. A linear correlation (r = 0.889) was found for the DON concentration in dust versus the DON concentration in wheat (LOD wheat: 233 μg/kg, LOD wheat dust: 458 μg/kg).

  6. Comparison of Enzyme-Linked Immunosorbent Assay, Surface Plasmon Resonance and Biolayer Interferometry for Screening of Deoxynivalenol in Wheat and Wheat Dust

    PubMed Central

    Sanders, Melanie; McPartlin, Daniel; Moran, Kara; Guo, Yirong; Eeckhout, Mia; O’Kennedy, Richard; De Saeger, Sarah; Maragos, Chris

    2016-01-01

    A sample preparation method was developed for the screening of deoxynivalenol (DON) in wheat and wheat dust. Extraction was carried out with water and was successful due to the polar character of DON. For detection, an enzyme-linked immunosorbent assay (ELISA) was compared to the sensor-based techniques of surface plasmon resonance (SPR) and biolayer interferometry (BLI) in terms of sensitivity, affinity and matrix effect. The matrix effects from wheat and wheat dust using SPR were too high to further use this screenings method. The preferred ELISA and BLI methods were validated according to the criteria established in Commission Regulation 519/2014/EC and Commission Decision 2002/657/EC. A small survey was executed on 16 wheat lots and their corresponding dust samples using the validated ELISA method. A linear correlation (r = 0.889) was found for the DON concentration in dust versus the DON concentration in wheat (LOD wheat: 233 μg/kg, LOD wheat dust: 458 μg/kg). PMID:27077883

  7. End-use quality of soft kernel durum wheat

    USDA-ARS?s Scientific Manuscript database

    Kernel texture is a major determinant of end-use quality of wheat. Durum wheat has very hard kernels. We developed soft kernel durum wheat via Ph1b-mediated homoeologous recombination. The Hardness locus was transferred from Chinese Spring to Svevo durum wheat via back-crossing. ‘Soft Svevo’ had SKC...

  8. Genetically divergent types of the wheat leaf fungus Puccinia triticina in Ethiopia, a center of tetraploid wheat diversity

    USDA-ARS?s Scientific Manuscript database

    Collections of Puccinia triticina, the wheat leaf rust fungus, were obtained from tetraploid and hexaploid wheat in the central highlands of Ethiopia, and a smaller number from Kenya from 2011 to 2013, in order to determine the genetic diversity of this wheat pathogen in a center of host diversity. ...

  9. 77 FR 21685 - United States Standards for Wheat

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... will help to facilitate the marketing of wheat. DATES: Comments must be received on or before June 11... marketing of wheat and define U.S. wheat quality and commonly used industry terms in the domestic and global marketplace; contain basic principles governing the application of the wheat standards, such as the type of...

  10. 21 CFR 137.205 - Bromated whole wheat flour.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Bromated whole wheat flour. 137.205 Section 137... Cereal Flours and Related Products § 137.205 Bromated whole wheat flour. Bromated whole wheat flour... of ingredients, prescribed for whole wheat flour by § 137.200, except that potassium bromate is added...

  11. Wheat yield dynamics: a structural econometric analysis.

    PubMed

    Sahin, Afsin; Akdi, Yilmaz; Arslan, Fahrettin

    2007-10-15

    In this study we initially have tried to explore the wheat situation in Turkey, which has a small-open economy and in the member countries of European Union (EU). We have observed that increasing the wheat yield is fundamental to obtain comparative advantage among countries by depressing domestic prices. Also the changing structure of supporting schemes in Turkey makes it necessary to increase its wheat yield level. For this purpose, we have used available data to determine the dynamics of wheat yield by Ordinary Least Square Regression methods. In order to find out whether there is a linear relationship among these series we have checked each series whether they are integrated at the same order or not. Consequently, we have pointed out that fertilizer usage and precipitation level are substantial inputs for producing high wheat yield. Furthermore, in respect for our model, fertilizer usage affects wheat yield more than precipitation level.

  12. Mapping a large number of QTL for durable resistance to stripe rust in winter wheat Druchamp using SSR and SNP markers

    USDA-ARS?s Scientific Manuscript database

    Winter wheat Druchamp has both high-temperature adult-plant (HTAP) resistance and all-stage resistance to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). The HTAP resistance in Druchamp is durable as the variety has been resistant in adult-plant stage since it was introduced ...

  13. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    USDA-ARS?s Scientific Manuscript database

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during...

  14. Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.).

    PubMed

    Jan, Amin Ullah; Hadi, Fazal; Midrarullah; Nawaz, Muhammad Asif; Rahman, Khaista

    2017-07-01

    Potassium and zinc are essential elements in plant growth and metabolism and plays a vital role in salt stress tolerance. To investigate the physiological mechanism of salt stress tolerance, a pot experiment was conducted. Potassium and zinc significantly minimize the oxidative stress and increase root, shoot and spike length in wheat varieties. Fresh and dry biomass were significantly increased by potassium followed by zinc as compared to control C. The photosynthetic pigment and osmolyte regulator (proline, total phenolic, and total carbohydrate) were significantly enhanced by potassium and zinc. Salt stress increases MDA content in wheat varieties while potassium and zinc counteract the adverse effect of salinity and significantly increased membrane stability index. Salt stress decreases the activities of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) while the exogenous application of potassium and zinc significantly enhanced the activities of these enzymes. A significant positive correlation was found of spike length with proline (R 2  = 0.966 ∗∗∗ ), phenolic (R 2  = 0.741 ∗ ) and chlorophyll (R 2  = 0.853 ∗∗ ). The MDA content showed significant negative correlation (R 2  = 0.983 ∗∗∗ ) with MSI. It is concluded that potassium and zinc reduced toxic effect of salinity while its combine application showed synergetic effect and significantly enhanced salt tolerance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. The Danish Adoption Register.

    PubMed

    Petersen, Liselotte; Sørensen, Thorkild I A

    2011-07-01

    The Danish Adoption Register was established in 1963-1964 to explore the genetic and environmental contribution to familial aggregation of schizophrenia. The register encompass information on all 14,425 non-familial adoptions of Danish children legally granted in Denmark 1924-1947. It includes name and date of birth of each adoptee and his or her biological and adoptive parents, date of transfer to adoptive parents and date of formal adoption. The linkage to biological and adoptive parents is close to complete, even biological fathers are registered for 91.4% of the adoptees. Adoption registers are a unique source allowing disentangling of genetic and familial environmental influences on traits, risk of diseases, and mortality.

  16. 7 CFR 782.17 - Wheat purchased for resale.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Wheat purchased for resale. 782.17 Section 782.17... § 782.17 Wheat purchased for resale. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of reselling the wheat. (b) The importer or...

  17. Variation in asparagine concentration in Nebraska wheat

    USDA-ARS?s Scientific Manuscript database

    The concentration of asparagine in wheat grain depends on both genetics and environmental factors, therefore study of different wheat cultivars, growing locations and crops years is needed for proper evaluation of potential risks of acrylamide formation in baked products made from Nebraska wheats. T...

  18. Enrichment of Bread with Nutraceutical-Rich Mushrooms: Impact of Auricularia auricula (Mushroom) Flour Upon Quality Attributes of Wheat Dough and Bread.

    PubMed

    Yuan, Biao; Zhao, Liyan; Yang, Wenjian; McClements, David Julian; Hu, Qiuhui

    2017-09-01

    Edible mushrooms contain a variety of bioactive molecules that may enhance human health and wellbeing. Consequently, there is increasing interest in fortifying functional foods with these nutraceutical-rich substances. However, incorporation of mushroom-based ingredients into foods should not adversely affect the quality attributes of the final product. In this study, the impact of incorporating powdered Auricularia auricula, a widely consumed edible mushroom, into bread products was examined. The rheological and structural properties of wheat dough and bread supplemented with 0% to 10% (w/w) A. auricula flour were measured. Supplementation of wheat doughs with A. auricula flour increased the peak viscosity and enhanced their water holding capacity. Rapid viscosity analysis showed that peak and final viscosities of the blended flour (wheat flour with A. auricula flour) were higher than wheat flour alone. However, dough stability and elastic modulus were reduced by blending wheat flour with A. auricula flour. SEM observation showed that doughs with up to 5% (w/w) A. auricula flour had acceptable gluten network microstructure. Characterization of the quality attributes of bread indicated that incorporation of A. auricula flour at levels >5% negatively impacted bread volume, height, texture, and appearance. © 2017 Institute of Food Technologists®.

  19. Detection and validation of genomic regions associated with resistance to rust diseases in a worldwide hexaploid wheat landrace collection using BayesR and mixed linear model approaches.

    PubMed

    Pasam, Raj K; Bansal, Urmil; Daetwyler, Hans D; Forrest, Kerrie L; Wong, Debbie; Petkowski, Joanna; Willey, Nicholas; Randhawa, Mandeep; Chhetri, Mumta; Miah, Hanif; Tibbits, Josquin; Bariana, Harbans; Hayden, Matthew J

    2017-04-01

    BayesR and MLM association mapping approaches in common wheat landraces were used to identify genomic regions conferring resistance to Yr, Lr, and Sr diseases. Deployment of rust resistant cultivars is the most economically effective and environmentally friendly strategy to control rust diseases in wheat. However, the highly evolving nature of wheat rust pathogens demands continued identification, characterization, and transfer of new resistance alleles into new varieties to achieve durable rust control. In this study, we undertook genome-wide association studies (GWAS) using a mixed linear model (MLM) and the Bayesian multilocus method (BayesR) to identify QTL contributing to leaf rust (Lr), stem rust (Sr), and stripe rust (Yr) resistance. Our study included 676 pre-Green Revolution common wheat landrace accessions collected in the 1920-1930s by A.E. Watkins. We show that both methods produce similar results, although BayesR had reduced background signals, enabling clearer definition of QTL positions. For the three rust diseases, we found 5 (Lr), 14 (Yr), and 11 (Sr) SNPs significant in both methods above stringent false-discovery rate thresholds. Validation of marker-trait associations with known rust QTL from the literature and additional genotypic and phenotypic characterisation of biparental populations showed that the landraces harbour both previously mapped and potentially new genes for resistance to rust diseases. Our results demonstrate that pre-Green Revolution landraces provide a rich source of genes to increase genetic diversity for rust resistance to facilitate the development of wheat varieties with more durable rust resistance.

  20. Separability study of wheat and small grains

    NASA Technical Reports Server (NTRS)

    Lennington, R. K.; Marquina, N. E. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Barley showed significant separability from spring wheat, both multitemporally and on a single date chosen near the turning time for barley. Oats showed occasional multitemporal separability from barley and spring wheat; however, the cause of this separability was not well understood. Oats showed no significant separability from spring wheat on any single date during the growing season. By pooling data from segments having an acquisition near the turning time for barley, a fixed unitemporal projection for aiding in the labeling of barley versus spring wheat and oats was constructed. This projection has about the same separability of barley from spring wheat and oats as the unitemporal greeness versus brightness plot. The new fixed projection has the advantage that barley occurs consistently in the same general location on the plot with respect to spring wheat and oats. Attempts to construct a fixed multitemporal or a segment-dependent multitemporal projection for aiding in the labeling of spring wheat versus other small grains were unsuccessful due to segment availability and the fact that each segment has a unique acquisition history.

  1. Using satellite data to identify the causes of and potential solutions for yield gaps in India’s Wheat Belt

    NASA Astrophysics Data System (ADS)

    Jain, M.; Singh, Balwinder; Srivastava, A. A. K.; Malik, R. K.; McDonald, A. J.; Lobell, D. B.

    2017-09-01

    Food security will be increasingly challenged by climate change, natural resource degradation, and population growth. Wheat yields, in particular, have already stagnated in many regions and will be further affected by warming temperatures. Despite these challenges, wheat yields can be increased by improving management practices in regions with existing yield gaps. To identify the magnitude and causes of current yield gaps in India, one of the largest wheat producers globally, we produced 30 meter resolution yield maps from 2001 to 2015 across the Indo-Gangetic Plains (IGP), the nation’s main wheat belt. Yield maps were derived using a new method that translates satellite vegetation indices to yield estimates using crop model simulations, bypassing the need for ground calibration data. This is one of the first attempts to apply this method to a smallholder agriculture system, where ground calibration data are rarely available. We find that yields can be increased by 11% on average and up to 32% in the eastern IGP by improving management to current best practices within a given district. Additionally, if current best practices from the highest-yielding state of Punjab are implemented in the eastern IGP, yields could increase by almost 110%. Considering the factors that most influence yields, later sow dates and warmer temperatures are most associated with low yields across the IGP. This suggests that strategies to reduce the negative effects of heat stress, like earlier sowing and planting heat-tolerant wheat varieties, are critical to increasing wheat yields in this globally-important agricultural region.

  2. Health risk assessment of heavy metals in wheat using different water qualities: implication for human health.

    PubMed

    Khan, Zafar Iqbal; Ahmad, Kafeel; Rehman, Sidrah; Siddique, Samra; Bashir, Humayun; Zafar, Asma; Sohail, Muhammad; Ali, Salem Alhajj; Cazzato, Eugenio; De Mastro, Giuseppe

    2017-01-01

    In the recent years, the use of sewage water for irrigation has attracted the attention of arid and semi-arid countries where the availability of fresh water is poor. Despite the potential use of sewage water in crop irrigation as effective and sustainable strategy, the environmental and human risks behind this use need to be deeply investigated. In this regard, an experiment was carried out under field conditions in Nursery, University College of Agriculture Sargodha, to evaluate the possible health risks of undesirable metals in wheat grains. Wheat variety Sarang was cultivated and irrigated with different combinations of ground (GW) and sewage water (SW). The concentrations of heavy metals (Cr, Cd, Ni, and Pb) and trace elements (Cu, Zn, and Fe) in wheat grains as well as in soil were determined. Moreover, the pollution load index (PLI), accumulation factor (AF), daily intake of metals (DIM), and health risk index (HRI) were calculated. Results showed that the concentration trend of heavy metals was Pbwheat, respectively. Among metals, Cd concentration in wheat exceeded the permissible limits regardless water quality, whereas Pb concentration in grain was within the acceptable levels as suggested by World Health Organization, when 100 % of SW was used for irrigation. Similar observation was reported for Cd concentration in the soil when wheat was irrigated with 100 % SW. In comparison to soil, the edible part of wheat presented lower concentration of all studied metals, except for Zn which was much higher compared to the tested soil samples. The higher concentration of Zn was responsible for increasing the DIM of Zn where, in average, the highest value was reported, particularly in 75 % SW treatment. This was reflected also in HRI where the maximum value was reported for Zinc under the same treatment. Higher value of HRI for wheat cultivated on polluted soils suggested that appropriate management of

  3. Avoiding Low Falling Numbers Problems in Wheat

    USDA-ARS?s Scientific Manuscript database

    The Hagberg-Perten Falling Number (FN) method is used to detect starch degradation due to ''-amylase enzyme activity in wheat meal. Wheat can be severely discounted when the FN is below 300 seconds. Farmers in the northwest wheat-growing states suffered serious economic losses due to widespread pro...

  4. Establishing the A. E. Watkins landrace cultivar collection as a resource for systematic gene discovery in bread wheat.

    PubMed

    Wingen, Luzie U; Orford, Simon; Goram, Richard; Leverington-Waite, Michelle; Bilham, Lorelei; Patsiou, Theofania S; Ambrose, Mike; Dicks, Jo; Griffiths, Simon

    2014-08-01

    A high level of genetic diversity was found in the A. E. Watkins bread wheat landrace collection. Genotypic information was used to determine the population structure and to develop germplasm resources. In the 1930s A. E. Watkins acquired landrace cultivars of bread wheat (Triticum aestivum L.) from official channels of the board of Trade in London, many of which originated from local markets in 32 countries. The geographic distribution of the 826 landrace cultivars of the current collection, here called the Watkins collection, covers many Asian and European countries and some from Africa. The cultivars were genotyped with 41 microsatellite markers in order to investigate the genetic diversity and population structure of the collection. A high level of genetic diversity was found, higher than in a collection of modern European winter bread wheat varieties from 1945 to 2000. Furthermore, although weak, the population structure of the Watkins collection reveals nine ancestral geographical groupings. An exchange of genetic material between ancestral groups before commercial wheat-breeding started would be a possible explanation for this. The increased knowledge regarding the diversity of the Watkins collection was used to develop resources for wheat research and breeding, one of them a core set, which captures the majority of the genetic diversity detected. The understanding of genetic diversity and population structure together with the availability of breeding resources should help to accelerate the detection of new alleles in the Watkins collection.

  5. [Effects of different fertilization regimes on weed communities in wheat fields under rice-wheat cropping system].

    PubMed

    Yuan, Fang; Li, Yong; Li, Fen-hua; Sun, Guo-jun; Han, Min; Zhang, Hai-yan; Ji, Zhong; Wu, Chen-yu

    2016-01-01

    To reveal the effects of different fertilization regimes on weed communities in wheat fields under a rice-wheat rotation system, a survey was conducted before wheat harvest in 2014 after a 4-year long-term recurrent fertilization scheme. Weed species types, density, height and diversity index under different fertilization and straw-returning schemes in wheat fields were studied and complemented with a canonical correspondence analysis on weed community distribution and soil nutrient factors. Twenty weed species were recorded among 36 wheat fields belonging to 19 genera and 11 families. Beckmannia syzigachne, Hemistepta lyrata, Malachium aquaticum and Cnidium monnieri were widely distributed throughout the sampled area. Long-term fertilization appeared to reduce weed species richness and density, particularly for broadleaf weeds, but increased weed height. Diversity and evenness indices of weed communities were lower and dominance indices were higher in fields where chemical fertilizers were applied alone or combined with organic fertilizers, especially, where organic-inorganic compound fertilizer was used, in which it readily caused the outbreak of a dominant species and severe damage. Conversely, diversity and evenness indices of weed communities were higher and dominance indices were lower when the straw was returned to the field combined with chemical or organic fertilizers, in which weed community structures were complex and stable with lower weed density. Under these conditions weeds only caused slight reduction of wheat growth.

  6. Biofortification with Iron and Zinc Improves Nutritional and Nutraceutical Properties of Common Wheat Flour and Bread.

    PubMed

    Ciccolini, Valentina; Pellegrino, Elisa; Coccina, Antonio; Fiaschi, Anna Ida; Cerretani, Daniela; Sgherri, Cristina; Quartacci, Mike Frank; Ercoli, Laura

    2017-07-12

    The effect of field foliar Fe and Zn biofortification on concentration and potential bioavailability of Fe and Zn and health-promoting compounds was studied in wholemeal flour of two common wheat varieties (old vs modern). Moreover, the effect of milling and bread making was studied. Biofortification increased the concentration of Zn (+78%) and its bioavailability (+48%) in the flour of the old variety, whereas it was ineffective in increasing Fe concentration in both varieties. However, the old variety showed higher concentration (+41%) and bioavailability (+26%) of Fe than the modern one. As regard milling, wholemeal flour had higher Fe, Zn concentration and health-promoting compounds compared to white flour. Bread making slightly change Fe and Zn concentration but greatly increased their bioavailability (77 and 70%, respectively). All these results are of great support for developing a production chain of enriched functional bread having a protective role against chronic cardio-vascular diseases.

  7. Evaluation of alternative planting strategies to reduce wheat stem sawfly (Hymenoptera: Cephidae) damage to spring wheat in the northern Great Plains.

    PubMed

    Beres, B L; Cárcamo, H A; Bremer, E

    2009-12-01

    Wheat, Triticum aestivum L., producers are often reluctant to use solid-stemmed wheat cultivars resistant to wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), due to concerns regarding yield, efficacy or market opportunities. We evaluated the impact of several planting strategies on wheat yield and quality and wheat stem sawfly infestation at two locations over a three-year period. Experimental units consisted of large plots (50 by 200 m) located on commercial farms adjacent to wheat stem sawfly-infested fields. Compared with a monoculture of a hollow-stemmed cultivar ('AC Barrie'), planting a monoculture of a solid-stemmed cultivar ('AC Eatonia') increased yield by an average of 16% (0.4 mg ha(-1)) and increased the grade of wheat by one unit at the two most heavily infested site-years. Planting a 1:1 blend of AC Eatonia and AC Barrie increased yield by an average of 11%, whereas planting 20- or 40-m plot margins to AC Eatonia increased yield by an average of 8%. High wheat stem sawfly pressure limited the effectiveness of using resistant cultivars in field margins because plants were often infested beyond the plot margin, with uniform infestation down the length of the plots at the two most heavily infested site-years. The effectiveness of AC Eatonia to reduce wheat stem sawfly survivorship was modest in this study, probably due to weather-related factors influencing pith expression and to the high abundance of wheat stem sawfly. Greater benefits from planting field margins to resistant cultivars or planting a blend of resistant and susceptible cultivars might be achievable under lower wheat stem sawfly pressure.

  8. Energy assessment of second generation (2G) ethanol production from wheat straw in Indian scenario.

    PubMed

    Mishra, Archana; Kumar, Akash; Ghosh, Sanjoy

    2018-03-01

    Impact of second-generation ethanol (2G) use in transportation sector mainly depends upon energy efficiency of entire production process. The objective of present study was to determine energy efficiency of a potential lignocellulosic feedstock; wheat straw and its conversion into cellulosic ethanol in Indian scenario. Energy efficiency was determined by calculating Net energy ratio (NER), i.e. ratio of output energy obtained by ethanol and input energy used in ethanol production. Energy consumption and generation at each step is calculated briefly (11,837.35 MJ/ha during Indian dwarf irrigated variety of wheat crop production and 7.1148 MJ/kg straw during ethanol production stage). Total energy consumption is calculated as 8.2988 MJ/kg straw whereas energy generation from ethanol is 15.082 MJ/kg straw; resulting into NER > 1. Major portion of agricultural energy input is contributed by diesel and fertilisers whereas refining process of wheat straw feedstock to ethanol and by-products require mainly in the form of steam and electricity. On an average, 1671.8 kg water free ethanol, 930 kg lignin rich biomass (for combustion), and 561 kg C5-molasses (for fodder) per hectare are produced. Findings of this study, net energy ratio (1.81) and figure of merit (14.8028 MJ/nil kg carbon) proves wheat straw as highest energy efficient lignocellulosic feedstock for the country.

  9. Sequence diversity of wheat mosaic virus isolates

    USDA-ARS?s Scientific Manuscript database

    High Plains disease of wheat and maize emerged in the United States in 1993 and its distribution has expanded in subsequent years. Wheat mosaic virus (WMoV), transmitted by eriophyid wheat curl mites (Aceria tosichella) is the causal agent of disease. WMoV and other members of the genus Emaravirus...

  10. Wheat pests: Rodents, nematodes, insects and mites

    USDA-ARS?s Scientific Manuscript database

    Wheat is one of the most important cereal crops in the world and its production is constantly under threat from various pests and diseases. While wheat diseases were overviewed in other chapter of this book, the major wheat pests, which differ from diseases and weeds in being animals, were reviewed ...

  11. [Population dynamics of ground carabid beetles and spiders in a wheat field along the wheat-alfalfa interface and their response to alfalfa mowing].

    PubMed

    Liu, Wen-Hui; Hu, Yi-Jun; Hu, Wen-Chao; Hong, Bo; Guan, Xiao-Qing; Ma, Shi-Yu; He, Da-Han

    2014-09-01

    Taking the wheat-alfalfa and wheat-wheat interfaces as model systems, sampling points were set by the method of pitfall trapping in the wheat field at the distances of 3 m, 6 m, 9 m, 12 m, 15 m, 18 m, 21 m, 24 m, and 27 m from the interface. The species composition and abundance of ground carabid beetles and spiders captured in pitfalls were investigated. The results showed that, to some extent there was an edge effect on species diversity and abundance of ground carabid beetles and spiders along the two interfaces. A marked edge effect was observed between 15 m and 18 m along the alfalfa-wheat interface, while no edge effect was found at a distance over 20 m. The edge effect along the wheat-wheat interface was weaker in comparison to the alfalfa-wheat interface. Alfalfa mowing resulted in the migration of a large number of ground carabid beetles and spiders to the adjacent wheat filed. During ten days since mowing, both species and abundance of ground carabid beetles and spiders increased in wheat filed within the distance of 20 m along the alfalfa-wheat interface. The spatial distribution of species diversity of ground beetles and spiders, together with the population abundance of the dominant Chlaenius pallipes and Pardosa astrigera, were depicted, which could directly indicate the migrating process of natural enemy from alfalfa to wheat field.

  12. Wheat landraces: A mini review

    USDA-ARS?s Scientific Manuscript database

    Farmers developed and utilized diverse wheat landraces to meet the complexity of a multitude of spatio-temporal, agro-ecological systems and to provide reliable sustenance and a sustainable food source to local communities. The genetic structure of wheat landraces is an evolutionary approach to surv...

  13. Registration of 'Bill Brown' wheat

    USDA-ARS?s Scientific Manuscript database

    'Bill Brown’ (Reg. No. CV-133, PI 653260) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2007 through an exclusive marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorad...

  14. Registration of 'Thunder CL' Wheat

    USDA-ARS?s Scientific Manuscript database

    'Thunder CL' (Reg. No. CV- , PI XXXXXX) hard white winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2008 through a marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado State Uni...

  15. The pangenome of hexaploid bread wheat.

    PubMed

    Montenegro, Juan D; Golicz, Agnieszka A; Bayer, Philipp E; Hurgobin, Bhavna; Lee, HueyTyng; Chan, Chon-Kit Kenneth; Visendi, Paul; Lai, Kaitao; Doležel, Jaroslav; Batley, Jacqueline; Edwards, David

    2017-06-01

    There is an increasing understanding that variation in gene presence-absence plays an important role in the heritability of agronomic traits; however, there have been relatively few studies on variation in gene presence-absence in crop species. Hexaploid wheat is one of the most important food crops in the world and intensive breeding has reduced the genetic diversity of elite cultivars. Major efforts have produced draft genome assemblies for the cultivar Chinese Spring, but it is unknown how well this represents the genome diversity found in current modern elite cultivars. In this study we build an improved reference for Chinese Spring and explore gene diversity across 18 wheat cultivars. We predict a pangenome size of 140 500 ± 102 genes, a core genome of 81 070 ± 1631 genes and an average of 128 656 genes in each cultivar. Functional annotation of the variable gene set suggests that it is enriched for genes that may be associated with important agronomic traits. In addition to variation in gene presence, more than 36 million intervarietal single nucleotide polymorphisms were identified across the pangenome. This study of the wheat pangenome provides insight into genome diversity in elite wheat as a basis for genomics-based improvement of this important crop. A wheat pangenome, GBrowse, is available at http://appliedbioinformatics.com.au/cgi-bin/gb2/gbrowse/WheatPan/, and data are available to download from http://wheatgenome.info/wheat_genome_databases.php. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  16. Wheat products as acceptable substitutes for rice.

    PubMed

    Yu, B H; Kies, C

    1993-07-01

    The objective of the study was to compare the acceptability to semi-trained US American and Asian palatability panelist, of four wheat products processed to be possible replacers of rice in human diets. Products evaluated using rice as the control standard of excellence were steamed whole wheat, couscous (steamed, extracted wheat flour semolina), rosamarina (rice shaped, extracted wheat flour pasta), and bulgar (steamed, pre-cooked partly debranned, cracked wheat). Using a ten point hedonic rating scale, both groups of panelists gave rosamarina closely followed by couscous, most favorable ratings although these ratings were somewhat lower than that of the positive control, steamed polished rice. Bulgar wheat was given the lowest evaluation and was, in general, found to be an unacceptable replacement for rice by both American and Asian judges because of its dark, 'greasy' color and distinctive flavor. In their personal dietaries, judges included rice from 0.25 to 18 times per week with the Asian judges consuming rice significantly more times per week than did the American judges (10.8 +/- 4.71 vs 1.75 +/- 1.65, p < 0.01). However, rice consumption patterns, nationality, race, or sex of the judges was not demonstrated to affect scoring of the wheat products as rice replacers.

  17. Micromilling enhances iron bioaccessibility from wholegrain wheat.

    PubMed

    Latunde-Dada, G O; Li, X; Parodi, A; Edwards, C H; Ellis, P R; Sharp, P A

    2014-11-19

    Cereals constitute important sources of iron in human diet; however, much of the iron in wheat is lost during processing for the production of white flour. This study employed novel food processing techniques to increase the bioaccessibility of naturally occurring iron in wheat. Iron was localized in wheat by Perl's Prussian blue staining. Soluble iron from digested wheat flour was measured by a ferrozine spectrophotometric assay. Iron bioaccessibility was determined using an in vitro simulated peptic-pancreatic digestion, followed by measurement of ferritin (a surrogate marker for iron absorption) in Caco-2 cells. Light microscopy revealed that iron in wheat was encapsulated in cells of the aleurone layer and remained intact after in vivo digestion and passage through the gastrointestinal tract. The solubility of iron in wholegrain wheat and in purified wheat aleurone increased significantly after enzymatic digestion with Driselase, and following mechanical disruption using micromilling. Furthermore, following in vitro simulated peptic-pancreatic digestion, iron bioaccessibility, measured as ferritin formation in Caco-2 cells, from micromilled aleurone flour was significantly higher (52%) than from whole aleurone flour. Taken together our data show that disruption of aleurone cell walls could increase iron bioaccessibility. Micromilled aleurone could provide an alternative strategy for iron fortification of cereal products.

  18. Viscoelastic Properties of Rubber Composites Reinforced by Wheat Gluten and Wheat Starch Co-filler

    USDA-ARS?s Scientific Manuscript database

    Due to different abilities of wheat gluten (WG) and wheat starch (WS) to increase the modulus of rubber composites, the composite properties can be adjusted by varying the ratio of WG to WS as a co-filler. This study shows that the co-filler composites became more temperature dependent as the WG co...

  19. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars.

    PubMed

    Cavanagh, Colin R; Chao, Shiaoman; Wang, Shichen; Huang, Bevan Emma; Stephen, Stuart; Kiani, Seifollah; Forrest, Kerrie; Saintenac, Cyrille; Brown-Guedira, Gina L; Akhunova, Alina; See, Deven; Bai, Guihua; Pumphrey, Michael; Tomar, Luxmi; Wong, Debbie; Kong, Stephan; Reynolds, Matthew; da Silva, Marta Lopez; Bockelman, Harold; Talbert, Luther; Anderson, James A; Dreisigacker, Susanne; Baenziger, Stephen; Carter, Arron; Korzun, Viktor; Morrell, Peter Laurent; Dubcovsky, Jorge; Morell, Matthew K; Sorrells, Mark E; Hayden, Matthew J; Akhunov, Eduard

    2013-05-14

    Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat.

  20. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars

    PubMed Central

    Cavanagh, Colin R.; Chao, Shiaoman; Wang, Shichen; Huang, Bevan Emma; Stephen, Stuart; Kiani, Seifollah; Forrest, Kerrie; Saintenac, Cyrille; Brown-Guedira, Gina L.; Akhunova, Alina; See, Deven; Bai, Guihua; Pumphrey, Michael; Tomar, Luxmi; Wong, Debbie; Kong, Stephan; Reynolds, Matthew; da Silva, Marta Lopez; Bockelman, Harold; Talbert, Luther; Anderson, James A.; Dreisigacker, Susanne; Baenziger, Stephen; Carter, Arron; Korzun, Viktor; Morrell, Peter Laurent; Dubcovsky, Jorge; Morell, Matthew K.; Sorrells, Mark E.; Hayden, Matthew J.; Akhunov, Eduard

    2013-01-01

    Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat. PMID:23630259

  1. Modelling predicts that tolerance to drought during reproductive development will be required for high yield potential and stability of wheat in Europe

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail A.; Stratonovitch, Pierre; Paul, Matthew J.

    2017-04-01

    Short periods of extreme weather, such as a spell of high temperature or drought during a sensitive stage of development, could result in substantial yield losses due to reduction in grain number and grain size. In a modelling study (Stratonovitch & Semenov 2015), heat tolerance around flowering in wheat was identified as a key trait for increased yield potential in Europe under climate change. Ji et all (Ji et al. 2010) demonstrated cultivar specific responses of yield to drought stress around flowering in wheat. They hypothesised that carbohydrate supply to anthers may be the key in maintaining pollen fertility and grain number in wheat. It was shown in (Nuccio et al. 2015) that genetically modified varieties of maize that increase the concentration of sucrose in ear spikelets, performed better under non-drought and drought conditions in field experiments. The objective of this modelling study was to assess potential benefits of tolerance to drought during reproductive development for wheat yield potential and yield stability across Europe. We used the Sirius wheat model to optimise wheat ideotypes for 2050 (HadGEM2, RCP8.5) climate scenarios at selected European sites. Eight cultivar parameters were optimised to maximise mean yields, including parameters controlling phenology, canopy growth and water limitation. At those sites where water could be limited, ideotypes sensitive to drought produced substantially lower mean yields and higher yield variability compare with tolerant ideotypes. Therefore, tolerance to drought during reproductive development is likely to be required for wheat cultivars optimised for the future climate in Europe in order to achieve high yield potential and yield stability.

  2. Registration of 'Bill Brown' Wheat

    USDA-ARS?s Scientific Manuscript database

    ‘Bill Brown’ (Reg. No. CV-133, PI 653260) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2007 through an exclusive marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorad...

  3. Registration of 'Rollag' spring wheat

    USDA-ARS?s Scientific Manuscript database

    Fusarium head blight (FHB) (caused primarily by Fusarium graminearum Schwabe) is a disease that annually threatens wheat (Triticum aestivum L.) grown in the northern plains of the United States. Resistance to this disease is a high priority trait in the University of Minnesota’s spring wheat breedi...

  4. Registration of ‘Ripper’ Wheat

    USDA-ARS?s Scientific Manuscript database

    ‘Ripper’ (Reg. No. CV-1016, PI 644222) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2006 through an exclusive marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado S...

  5. [The detection of nonallelic to known genes of resistance to Tilletia caries (DC) Tul. in wheat strains from interspecific hybridization (Triticum aestivum x Aegilops cylindrica)].

    PubMed

    Babaiants, L T; Dubinina, L A; Iushchenko, G M

    2000-01-01

    It was established by hybridological analysis that winter bread wheat lines 1/74-91, 3/36-91, 5/55-91 possess single dominant gene of resistance to bunt (Tilletia caries (DC) Tul.), but lines 8/2-91, 5/43-91, 4/11-91 and 8/16-91 have two independent dominant genes for this character. These genes originated from Aegilops cylindrica are not identical to Bt1-Bt17 genes and are unknown to date. The lines were obtained from crosses between winter bread wheat variety Odeskaya polukarlikovaya and Aegilops cylindrica.

  6. Biomechanics of Wheat/Barley Straw and Corn Stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher T. Wright; Peter A. Pryfogle; Nathan A. Stevens

    2005-03-01

    The lack of understanding of the mechanical characteristics of cellulosic feedstocks is a limiting factor in economically collecting and processing crop residues, primarily wheat and barley stems and corn stover. Several testing methods, including compression, tension, and bend have been investigated to increase our understanding of the biomechanical behavior of cellulosic feedstocks. Biomechanical data from these tests can provide required input to numerical models and help advance harvesting, handling, and processing techniques. In addition, integrating the models with the complete data set from this study can identify potential tools for manipulating the biomechanical properties of plant varieties in such amore » manner as to optimize their physical characteristics to produce higher value biomass and more energy efficient harvesting practices.« less

  7. Educational Ambassadors in the Danish Trade Union Movement

    ERIC Educational Resources Information Center

    Keil, Michael

    2008-01-01

    The concept of Educational Ambassadors is embedded within the so-called "Danish model" of industrial relations. The Danish industrial relations system is characterised by strong collective organisations with national coverage, which conclude the collective agreements for various industries or sectors and which are mostly grouped under…

  8. Coproduction of xylose, lignosulfonate and ethanol from wheat straw.

    PubMed

    Zhu, Shengdong; Huang, Wangxiang; Huang, Wenjing; Wang, Ke; Chen, Qiming; Wu, Yuanxin

    2015-06-01

    A novel integrated process to coproduce xylose, lignosulfonate and ethanol from wheat straw was investigated. Firstly, wheat straw was treated by dilute sulfuric acid and xylose was recovered from its hydrolyzate. Its optimal conditions were 1.0wt% sulfuric acid, 10% (w/v) wheat straw loading, 100°C, and 2h. Then the acid treated wheat straw was treated by sulfomethylation reagent and its hydrolyzate containing lignosulfonate was directly recovered. Its optimal conditions were 150°C, 15% (w/v) acid treated wheat straw loading, and 5h. Finally, the two-step treated wheat straw was converted to ethanol through enzymatic hydrolysis and microbial fermentation. Under optimal conditions, 1kg wheat straw could produce 0.225kg xylose with 95% purity, 4.16kg hydrolyzate of sulfomethylation treatment containing 5.5% lignosulfonate, 0.183kg ethanol and 0.05kg lignin residue. Compared to present technology, this process is a potential economically profitable wheat straw biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Independent assessment and improvement of wheat genome sequence assemblies using Fosill jumping libraries.

    PubMed

    Lu, Fu-Hao; McKenzie, Neil; Kettleborough, George; Heavens, Darren; Clark, Matthew D; Bevan, Michael W

    2018-05-01

    The accurate sequencing and assembly of very large, often polyploid, genomes remains a challenging task, limiting long-range sequence information and phased sequence variation for applications such as plant breeding. The 15-Gb hexaploid bread wheat (Triticum aestivum) genome has been particularly challenging to sequence, and several different approaches have recently generated long-range assemblies. Mapping and understanding the types of assembly errors are important for optimising future sequencing and assembly approaches and for comparative genomics. Here we use a Fosill 38-kb jumping library to assess medium and longer-range order of different publicly available wheat genome assemblies. Modifications to the Fosill protocol generated longer Illumina sequences and enabled comprehensive genome coverage. Analyses of two independent Bacterial Artificial Chromosome (BAC)-based chromosome-scale assemblies, two independent Illumina whole genome shotgun assemblies, and a hybrid Single Molecule Real Time (SMRT-PacBio) and short read (Illumina) assembly were carried out. We revealed a surprising scale and variety of discrepancies using Fosill mate-pair mapping and validated several of each class. In addition, Fosill mate-pairs were used to scaffold a whole genome Illumina assembly, leading to a 3-fold increase in N50 values. Our analyses, using an independent means to validate different wheat genome assemblies, show that whole genome shotgun assemblies based solely on Illumina sequences are significantly more accurate by all measures compared to BAC-based chromosome-scale assemblies and hybrid SMRT-Illumina approaches. Although current whole genome assemblies are reasonably accurate and useful, additional improvements will be needed to generate complete assemblies of wheat genomes using open-source, computationally efficient, and cost-effective methods.

  10. Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations.

    PubMed

    Narayanan, Sruthi; Tamura, Pamela J; Roth, Mary R; Prasad, P V Vara; Welti, Ruth

    2016-04-01

    Understanding how wheat (Triticum aestivum L.) plants under high temperature (HT) regulate lipid composition is critical to developing climate-resilient varieties. We measured 165 glycerolipids and sterol derivatives under optimum and high day and night temperatures in wheat leaves using electrospray ionization-tandem mass spectrometry. Levels of polar lipid fatty acyl chain unsaturation were lower in both heat-tolerant genotype Ventnor and susceptible genotype Karl 92 under HT, compared with optimum temperature. The lower unsaturation was predominantly because of lower levels of 18:3 acyl chains and higher levels of 18:1 and 16:0 acyl chains. Levels of 18:3-containing triacylglycerols increased threefold/more under HT, consistent with their possible role in sequestering fatty acids during membrane lipid remodelling. Phospholipids containing odd-numbered or oxidized acyl chains accumulated in leaves under HT. Sterol glycosides (SG) and 16:0-acylated sterol glycosides (ASG) were higher under HT than optimum temperatures. Ventnor had lower amounts of phospholipids with oxidized acyl chains under HT and higher amounts of SG and 16:0-ASG than Karl 92. Taken together, the data demonstrate that wheat leaf lipid composition is altered by HT, in which some lipids are particularly responsive to HT, and that two wheat genotypes, chosen for their differing physiological responses to HT, differ in lipid profile under HT. © 2015 John Wiley & Sons Ltd.

  11. Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations

    PubMed Central

    Narayanan, Sruthi; Tamura, Pamela J.; Roth, Mary R.; Vara Prasad, P.V.; Welti, Ruth

    2016-01-01

    Understanding how wheat (Triticum aestivum L.) plants under high temperature (HT) regulate lipid composition is critical to developing climate-resilient varieties. We measured 165 glycerolipids and sterol derivatives under optimum and high day and night temperatures in wheat leaves using electrospray ionization-tandem mass spectrometry. Levels of polar lipid fatty acyl chain unsaturation were lower in both heat-tolerant genotype Ventnor and susceptible genotype Karl 92 under HT, compared to optimum temperature. The lower unsaturation was predominantly due to lower levels of 18:3 and higher levels of 18:1 and 16:0 acyl chains. Levels of 18:3-containing triacylglycerols increased 3-fold/more under HT, consistent with their possible role in sequestering fatty acids during membrane lipid remodeling. Phospholipids containing odd-numbered or oxidized acyl chains accumulated in leaves under HT. Sterol glycosides (SG) and 16:0-acylated sterol glycosides (ASG) were higher under HT than optimum temperatures. Ventnor had lower amounts of phospholipids with oxidized acyl chains under HT and higher amounts of SG and 16:0-ASG than Karl 92. Taken together, the data demonstrate that wheat leaf lipid composition is altered by HT, that some lipids are particularly responsive to HT, and that two wheat genotypes, chosen for their differing physiological responses to HT, differ in lipid profile under HT. PMID:26436679

  12. New alleles of the wheat domestication gene Q reveal multiple roles in growth and reproductive development.

    PubMed

    Greenwood, Julian R; Finnegan, E Jean; Watanabe, Nobuyoshi; Trevaskis, Ben; Swain, Steve M

    2017-06-01

    The advantages of free threshing in wheat led to the selection of the domesticated Q allele, which is now present in almost all modern wheat varieties. Q and the pre-domestication allele, q , encode an AP2 transcription factor, with the domesticated allele conferring a free-threshing character and a subcompact (i.e. partially compact) inflorescence (spike). We demonstrate that mutations in the miR172 binding site of the Q gene are sufficient to increase transcript levels via a reduction in miRNA-dependent degradation, consistent with the conclusion that a single nucleotide polymorphism in the miRNA binding site of Q relative to q was essential in defining the modern Q allele. We describe novel gain- and loss-of-function alleles of Q and use these to define new roles for this gene in spike development. Q is required for the suppression of 'sham ramification', and increased Q expression can lead to the formation of ectopic florets and spikelets (specialized inflorescence branches that bear florets and grains), resulting in a deviation from the canonical spike and spikelet structures of domesticated wheat. © 2017. Published by The Company of Biologists Ltd.

  13. Adverse Effects of Wheat Gluten.

    PubMed

    Koning, Frits

    2015-01-01

    Man began to consume cereals approximately 10,000 years ago when hunter-gatherers settled in the fertile golden crescent in the Middle East. Gluten has been an integral part of the Western type of diet ever since, and wheat consumption is also common in the Middle East, parts of India and China as well as Australia and Africa. In fact, the food supply in the world heavily depends on the availability of cereal-based food products, with wheat being one of the largest crops in the world. Part of this is due to the unique properties of wheat gluten, which has a high nutritional value and is crucial for the preparation of high-quality dough. In the last 10 years, however, wheat and gluten have received much negative attention. Many believe that it is inherently bad for our health and try to avoid consumption of gluten-containing cereals; a gluten-low lifestyle so to speak. This is fueled by a series of popular publications like Wheat Belly; Lose the Wheat, Lose the Weight, and Find Your Path Back to Health. However, in reality, there is only one condition where gluten is definitively the culprit: celiac disease (CD), affecting approximately 1% of the population in the Western world. Here, I describe the complexity of the cereals from which gluten is derived, the special properties of gluten which make it so widely used in the food industry, the basis for its toxicity in CD patients and the potential for the development of safe gluten and alternatives to the gluten-free diet. © 2015 S. Karger AG, Basel.

  14. A latent-period duration model for wheat stem rust

    USDA-ARS?s Scientific Manuscript database

    Wheat stem rust caused by Puccinia graminis subsp. graminis (Pgg) is a highly destructive disease of wheat and other small grains. The discovery of a Pgg race (Ug99) that overcomes durable resistance in wheat raises concerns for global wheat production and food security. There is currently no mat...

  15. Role of Fungicides, Application of Nozzle Types, and the Resistance Level of Wheat Varieties in the Control of Fusarium Head Blight and Deoxynivalenol

    PubMed Central

    Mesterházy, Ákos; Tóth, Beáta; Varga, Monika; Bartók, Tibor; Szabó-Hevér, Ágnes; Farády, László; Lehoczki-Krsjak, Szabolcs

    2011-01-01

    Fungicide application is a key factor in the control of mycotoxin contamination in the harvested wheat grain. However, the practical results are often disappointing. In 2000-2004, 2006-2008 and 2007 and 2008, three experiments were made to test the efficacy of fungicide control on Fusarium Head Blight (FHB) in wheat and to find ways to improve control of the disease and toxin contamination. In a testing system we have used for 20 years, tebuconazole and tebuconazole + prothioconazole fungicides regularly reduced symptoms by about 80% with a correlating reduction in toxin contamination. Averages across the years normally show a correlation of r = 0.90 or higher. The stability differences (measured by the stability index) between the poorest and the best fungicides are about 10 or more times, differing slightly in mycotoxin accumulation, FHB index (severity) and Fusarium damaged kernels (FDK). The weak fungicides, like carbendazim, were effective only when no epidemic occurred or epidemic severity was at a very low level. Similar fungicide effects were seen on wheat cultivars which varied in FHB resistance. In this study, we found three fold differences in susceptibility to FHB between highly susceptible and moderately resistant cultivars when treated with fungicides. In the moderately resistant cultivars, about 50% of the fungicide treatments lowered the DON level below the regulatory limit. In the most susceptible cultivars, all fungicides failed to reduce mycotoxin levels low enough for grain acceptance, in spite of the fact that disease was significantly reduced. The results correlated well with the results of the large-scale field tests of fungicide application at the time of natural infection. The Turbo FloodJet nozzle reduced FHB incidence and DON contamination when compared to the TeeJet XR nozzle. Overall, the data suggest that significant decreases in FHB incidence and deoxynivalenol contamination in field situations are possible with proper fungicide

  16. [Estimation of optimum normalized difference spectral index for nitrogen accumulation in wheat leaf based on reduced precise sampling method].

    PubMed

    Yao, Xia; Liu, Xiao-jun; Wang, Wei; Tian, Yong-chao; Cao, Wei-xing; Zhu, Yan

    2010-12-01

    Four independent field experiments with 6 wheat varieties and 5 nitrogen application levels were conducted, and time-course measurements were taken on the canopy hyperspectral reflectance and leaf N accumulation per unit soil area (LNA, g N x m(-2)). By adopting reduced precise sampling method, all possible normalized difference spectral indices [NDSI(i,j)] within the spectral range of 350-2500 nm were constructed, and the relationships of LNA to the NDSI(i,j) were quantified, aimed to explore the new sensitive spectral bands and key index from precise analysis of ground-based hyperspectral information, and to develop prediction models for wheat LNA. The results showed that the sensitive spectral bands for LNA were located in visible light and near infrared regions, especially at 860 nm and 720 nm for wheat LNA. The monitoring model based on the NDSI(860,720) was formulated as LNA = 26.34 x [NDSI(860,720)](1.887), with R2 = 0.900 and SE = 1.327. The fitness test of the derived equations with independent datasets showed that for wheat LNA, the model gave the estimation accuracy of 0.823 and the RMSE of 0.991 g N x m(-2), indicating a good fitness between the measured and estimated LNA. The present normalized hyperspectral parameter of NDSI(860,720) and its derived regression model could be reliably used for the estimation of winter wheat LNA.

  17. Work assignments, delegation of tasks and job satisfaction among Danish dental hygienists.

    PubMed

    Hach, M; Aaberg, K B; Lempert, S M; Danielsen, B

    2017-08-01

    Recent legislation in Denmark has made it possible for dentists to delegate their tasks to dental hygienists. Previous studies have shown that Danish dental hygienists primarily were performing assignments within their own work field. These assignments include prophylaxis or instructing patients in oral health care. However, studies have also shown that Danish dental hygienists performed dental nurse assignments such as chair-side assistance, unit cleaning and disinfection of instruments. The objectives of this study were to investigate (i) the range of work assignments performed by Danish dental hygienists, (ii) the types of dentist tasks performed by Danish dental hygienists and (iii) job satisfaction among Danish dental hygienists. Dental hygienists graduating in 2004-2007 were invited to participate in this study. Participants answered an email-distributed questionnaire. The questionnaire consisted of questions regarding job satisfaction, assignments performed, postgraduate course attendance, receiving assistance from a dental nurse and which work assignments Danish dental hygienists wish to perform in the future. The results of this study showed that 90% of Danish dental hygienists were satisfied with their job and 52% were performing dentists' tasks. Among dentists' tasks performed by Danish dental hygienists, invasive caries therapy was the most frequently performed task. The type of assignments performed by Danish dental hygienists today appears to be changing compared to previous studies. From initially performing prophylaxis and chair-side assistance for the dentist, Danish dental hygienists today are performing a wider range of tasks which includes dentists' tasks. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. [Winter wheat yield gap between field blocks based on comparative performance analysis].

    PubMed

    Chen, Jian; Wang, Zhong-Yi; Li, Liang-Tao; Zhang, Ke-Feng; Yu, Zhen-Rong

    2008-09-01

    Based on a two-year household survey data, the yield gap of winter wheat in Quzhou County of Hebei Province, China in 2003-2004 was studied through comparative performance analysis (CPA). The results showed that there was a greater yield gap (from 4.2 to 7.9 t x hm(-2)) between field blocks, with a variation coefficient of 0.14. Through stepwise forward linear multiple regression, it was found that the yield model with 8 selected variables could explain 63% variability of winter wheat yield. Among the variables selected, soil salinity, soil fertility, and irrigation water quality were the most important limiting factors, accounting for 52% of the total yield gap. Crop variety was another important limiting factor, accounting for 14%; while planting date, fertilizer type, disease and pest, and water press accounted for 7%, 14%, 10%, and 3%, respectively. Therefore, besides soil and climate conditions, management practices occupied the majority of yield variability in Quzhou County, suggesting that the yield gap could be reduced significantly through optimum field management.

  19. Wheat leaf lipids during heat stress: II. Lipids experiencing coordinated metabolism are detected by analysis of lipid co-occurrence

    PubMed Central

    Narayanan, Sruthi; Prasad, P.V. Vara; Welti, Ruth

    2016-01-01

    Identifying lipids that experience coordinated metabolism during heat stress would provide information regarding lipid dynamics under stress conditions and assist in developing heat-tolerant wheat varieties. We hypothesized that co-occurring lipids, which are up-or-down-regulated together through time during heat stress, represent groups that can be explained by coordinated metabolism. Wheat plants (Triticum aestivum L.) were subjected to 12 days of high day and/or night temperature stress, followed by a 4-day recovery period. Leaves were sampled at four time points, and 165 lipids were measured by electrospray ionization-tandem mass spectrometry. Correlation analysis of lipid levels in 160 leaf samples from each of two wheat genotypes revealed 13 groups of lipids. Lipids within each group co-occurred through the high day and night temperature stress treatments. The lipid groups can be broadly classified as groups containing: extraplastidic phospholipids, plastidic glycerolipids, oxidized glycerolipids, triacylglycerols, acylated sterol glycosides, and sterol glycosides. Current knowledge of lipid metabolism suggests that the lipids in each group co-occur because they are regulated by the same enzyme(s). The results suggest that increases in activities of desaturating, oxidizing, glycosylating, and acylating enzymes lead to simultaneous changes in levels of multiple lipid species during high day and night temperature stress in wheat. PMID:26436445

  20. The Danish Inguinal Hernia database.

    PubMed

    Friis-Andersen, Hans; Bisgaard, Thue

    2016-01-01

    To monitor and improve nation-wide surgical outcome after groin hernia repair based on scientific evidence-based surgical strategies for the national and international surgical community. Patients ≥18 years operated for groin hernia. Type and size of hernia, primary or recurrent, type of surgical repair procedure, mesh and mesh fixation methods. According to the Danish National Health Act, surgeons are obliged to register all hernia repairs immediately after surgery (3 minute registration time). All institutions have continuous access to their own data stratified on individual surgeons. Registrations are based on a closed, protected Internet system requiring personal codes also identifying the operating institution. A national steering committee consisting of 13 voluntary and dedicated surgeons, 11 of whom are unpaid, handles the medical management of the database. The Danish Inguinal Hernia Database comprises intraoperative data from >130,000 repairs (May 2015). A total of 49 peer-reviewed national and international publications have been published from the database (June 2015). The Danish Inguinal Hernia Database is fully active monitoring surgical quality and contributes to the national and international surgical society to improve outcome after groin hernia repair.

  1. Effects of the Danish saturated fat tax on the demand for meat and dairy products.

    PubMed

    Jensen, Jørgen Dejgaard; Smed, Sinne; Aarup, Lars; Nielsen, Erhard

    2016-12-01

    Taxation of unhealthy food is considered a regulation tool to improve diets. In 2011 Denmark introduced a tax on saturated fat in food products, the first country in the world to do so. The objective of the present paper is to investigate the effects of the tax on consumers' intake of saturated fat within three different types of food product group: minced beef, regular cream and sour cream. We use an augmented version of the Linearized Almost Ideal Demand System (LAIDS) functional form for econometric analysis, allowing for tax-induced structural breaks. Data originate from one of the largest retail chains in Denmark (Coop Danmark) and cover January 2010 to October 2012, with monthly records of sales volume, sales revenue and information about specific campaigns from 1293 stores. The Danish fat tax had an insignificant or small negative effect on the price for low- and medium-fat varieties, and led to a 13-16 % price increase for high-fat varieties of minced beef and cream products. The tax induced substitution effects, budget effects and preference change effects on consumption, yielding a total decrease of 4-6 % in the intake of saturated fat from minced beef and regular cream, and a negligible effect on the intake from sour cream. The Danish introduction of a tax on saturated fat in food in October 2011 had statistically significant effects on the sales of fat in minced beef and cream products, but the tax seems to have reduced the beyond-recommendation saturated fat intake to only a limited extent.

  2. LACIE: Wheat yield models for the USSR

    NASA Technical Reports Server (NTRS)

    Sakamoto, C. M.; Leduc, S. K.

    1977-01-01

    A quantitative model determining the relationship between weather conditions and wheat yield in the U.S.S.R. was studied to provide early reliable forecasts on the size of the U.S.S.R. wheat harvest. Separate models are developed for spring wheat and for winter. Differences in yield potential and responses to stress conditions and cultural improvements necessitate models for each class.

  3. Catering Gluten-Free When Simultaneously Using Wheat Flour.

    PubMed

    Miller, Kathryn; McGough, Norma; Urwin, Heidi

    2016-02-01

    A European law on gluten-free (GF) labeling came into force in 2012, covering foods sold prepacked and in food service establishments, and a similar U.S. Food and Drug Administration (FDA) regulation covers GF labeling from August 2014. Gluten is found in the grains wheat, rye, and barley. A common source of gluten in the kitchen is wheat flour. This research aimed to determine variables that have a significant effect on gluten contamination in commercial kitchens when wheat flour is in use and to establish controls necessary to assure GF production. A pilot study was used to test the following hypotheses: (i) increasing duration of exposure to wheat flour would increase gluten contamination, (ii) increasing distance between the site of preparation and the site of wheat flour would reduce gluten contamination, (iii) the use of a ventilation hood would decrease gluten contamination, and (iv) the use of a barrier segregating the site of preparation of a GF meal and the use of wheat flour would decrease gluten contamination. Petri dishes containing GF rice pudding were placed in three directions at increasing distances (0.5 to 2 m) from a site of wheat flour use. A barrier was in place between a third of samples and the site of wheat flour. After wheat flour was handled for 0.5 and 4.0 h, petri dishes were sealed and the contents were analyzed for gluten. The experiment was duplicated with the ventilation hood on and off. The pilot study revealed that a distance of 2 m from the use of wheat flour was required to control gluten contamination at ≤20 ppm if wheat flour had been in use for 4.0 h. The identified control of distance was tested in five different study sites. In each of the study sites, a test meal was prepared a minimum of 2 m away from the site of wheat flour use. Although kitchens vary and must be considered individually, the established control of a minimum 2 m distance, along with good hygiene practices, was found to be effective in preparing GF meals

  4. Registration of “Pritchett” soft white winter club wheat

    USDA-ARS?s Scientific Manuscript database

    Soft white club winter wheat (Triticium aestivum L. ssp. compactum) is a unique component of the wheat production in the PNW, comprising 6-10% of the wheat crop. It is valued for milling and baking functionality and marketed for export in a 20-30% blend with soft white wheat as Western White. Our g...

  5. Domestication and Crop Physiology: Roots of Green-Revolution Wheat

    PubMed Central

    Waines, J. Giles; Ehdaie, Bahman

    2007-01-01

    Background and Aims Most plant scientists, in contrast to animal scientists, study only half the organism, namely above-ground stems, leaves, flowers and fruits, and neglect below-ground roots. Yet all acknowledge roots are important for anchorage, water and nutrient uptake, and presumably components of yield. This paper investigates the relationship between domestication, and the root systems of landraces, and the parents of early, mid- and late green-revolution bread wheat cultivars. It compares the root system of bread wheat and ‘Veery’-type wheat containing the 1RS translocation from rye. Methods Wheat germplasm was grown in large pots in sand culture in replicated experiments. This allowed roots to be washed free to study root characters. Key Results The three bread wheat parents of early green-revolution wheats have root biomass less than two-thirds the mean of some landrace wheats. Crossing early green-revolution wheat to an F2 of ‘Norin 10’ and ‘Brevor’, further reduced root biomass in mid-generation semi-dwarf and dwarf wheats. Later-generation semi-dwarf wheats show genetic variation for root biomass, but some exhibit further reduction in root size. This is so for some California and UK wheats. The wheat–rye translocation in ‘Kavkaz’ for the short arm of chromosome 1 (1RS) increased root biomass and branching in cultivars that contained it. Conclusions Root size of modern cultivars is small compared with that of landraces. Their root system may be too small for optimum uptake of water and nutrients and maximum grain yield. Optimum root size for grain yield has not been investigated in wheat or most crop plants. Use of 1RS and similar alien translocations may increase root biomass and grain yield significantly in irrigated and rain-fed conditions. Root characters may be integrated into components of yield analysis in wheat. Plant breeders may need to select directly for root characters. PMID:17940075

  6. Identification of winter wheat from ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Williams, D. L.; Morain, S. A.; Barker, B.; Coiner, J. C.

    1973-01-01

    Continuing interpretation of the test area in Finney County, Kansas, has revealed that winter wheat can be successfully identified. This successful identification is based on human recognition of tonal signatures on MSS images. Several different but highly successful interpretation strategies have been employed. These strategies involve the use of both spectral and temporal inputs. Good results have been obtained from a single MSS-5 image acquired at a critical time in the crop cycle (planting). On a test sample of 54,612 acres, 89 percent of the acreage was correctly classified as wheat or non-wheat and the estimated wheat acreage (19,516 acres) was 99 percent of the actual acreage of wheat in the sample area.

  7. Transfer factor of (90)Sr and (137)Cs to lettuce and winter wheat at different growth stage applications.

    PubMed

    Al Attar, Lina; Al-Oudat, Mohammad; Safia, Bassam; Ghani, Basem Abdul

    2015-12-01

    The effect of clay soil contamination time on the transfer factors (Fvs) of (137)Cs and (90)Sr was investigated in four different growth stages of winter wheat and lettuce crops. The experiment was performed in an open field using lysimeters. The Fvs were the ratio of the activity concentrations of the radionuclides in crops to those in soil, both as dry weight (Bq kg(-1)). Significant difference of log-Fvs was evaluated using one-way Analysis of Variance (ANOVA). Basically, Fvs of (90)Sr were higher than those of (137)Cs, despite of the application stage or crop' variety. Higher Fvs for both radionuclides were observed for lettuce in comparison to winter wheat. Fvs of (90)Sr showed comparable trends for both crops with enhanced Fvs obtained when contamination occurred in early stages, i.e. 1.20 for lettuce and 0.88 and 0.02 for winter wheat, straw and grains, respectively. Despite the fluctuation noted in the pattern of Fvs for (137)Cs, soil contaminated at the second stage gave the highest Fvs for lettuce and grains, with geometric means of 0.21 and 0.01, respectively. However, wheat-straw showed remarkable increase in Fv for the latest contamination (ripening stage), about 0.06. It could be concluded that soil contamination at early growth stages would represent high radiological risk for the scenarios studied with an exception to (137)Cs in winter wheat-straw which reflected greater hazard at the latest application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Wheat rusts in the United States in 2011

    USDA-ARS?s Scientific Manuscript database

    Wheat stem rust (Puccinia graminis tritici) was found in Texas, Louisiana, Oklahoma, Kansas, Nebraska, North Dakota, Minnesota, Arkansas, Missouri, Kentucky, Illinois, Indiana, Wisconsin and Michigan in 2011. Nationally, wheat only incurred a trace loss due to wheat stem rust. Race QFCS was the most...

  9. 21 CFR 139.140 - Wheat and soy macaroni products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Wheat and soy macaroni products. 139.140 Section... Macaroni and Noodle Products § 139.140 Wheat and soy macaroni products. (a) Wheat and soy macaroni products... percent of the combined weight of the wheat and soy ingredients used (the soy flour used is made from heat...

  10. 21 CFR 139.180 - Wheat and soy noodle products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Wheat and soy noodle products. 139.180 Section 139... and Noodle Products § 139.180 Wheat and soy noodle products. (a) Wheat and soy noodle products are the... wheat and soy ingredients used (the soy flour used is made from heat-processed, dehulled soybeans, with...

  11. Identification of novel QTL for sawfly resistance in wheat

    Treesearch

    J. D. Sherman; D. K. Weaver; M. L. Hofland; S. E. Sing; M. Buteler; S. P. Lanning; Y. Naruoka; F. Crutcher; N. K. Blake; J. M. Martin; P. F. Lamb; G. R. Carlson; L. E. Talbert

    2010-01-01

    The wheat stem sawfly (WSS) (Cephus cinctus Nort.) is an important pest of wheat (Triticum aestivum L. em. Thell.) in the Northern Great Plains. This paper reports the genetic analysis of antixenosis for egg-laying WSS females in recombinant inbred lines (RIL) of hard red spring wheat. Female WSS preferentially choose certain wheat genotypes for egg-laying, with the...

  12. Rheological and nuclear magnetic resonance (NMR) study of the hydration and heating of undeveloped wheat doughs.

    PubMed

    Lopes-da-Silva, J A; Santos, Dora M J; Freitas, Andreia; Brites, Carla; Gil, Ana M

    2007-07-11

    The undeveloped doughs of two wheat flours differing in technological performance were characterized at the supramolecular level, by fundamental small-deformation oscillatory rheology and shear viscometry, and at the molecular level, by nuclear magnetic resonance (NMR) spectroscopy. For the harder variety, the higher storage moduli indicated lower mobility of the protein/water matrix in the 0.001-100 s range. Conversely, 1H NMR indicated higher molecular mobility in the sub-microsecond range for protein/water, whereas starch was found to be generally more hindered. It is suggested that faster protein/water motions are at the basis of the higher structural rearrangement indicated by tan delta for the harder variety. Rheological effects of heating-cooling reflect mainly starch behavior, whereas 1H NMR spectra and relaxation times give additional information on component mixing and molecular mobility. The heated softer variety dough formed a rigid lattice and, although a similar tendency was seen for the hard variety, all of its components remained more mobile. About 60% of starch crystallizes in both varieties, which may explain their similar rheological behaviors upon cooling.

  13. A distribution benefits model for improved information on worldwide crop production. Volume 1: Model structure and application to wheat

    NASA Technical Reports Server (NTRS)

    Andrews, J.

    1976-01-01

    The improved model is suitable for the study of benefits of worldwide information on a variety of crops. Application to the previously studied case of worldwide wheat production shows that about $108 million per year of distribution benefits to the United States would be achieved by a satellite-based wheat information system meeting the goals of LACIE. The model also indicates that improved information alone will not change world stock levels unless production itself is stabilized. The United States benefits mentioned above are associated with the reduction of price fluctuations within the year and the more effective use of international trade to balance supply and demand. Price fluctuations from year to year would be reduced only if production variability were itself reduced.

  14. Effect of wheat and Miscanthus straw biochars on soil enzymatic activity, ecotoxicity, and plant yield

    NASA Astrophysics Data System (ADS)

    Mierzwa-Hersztek, Monika; Gondek, Krzysztof; Klimkowicz-Pawlas, Agnieszka; Baran, Agnieszka

    2017-07-01

    The variety of technological conditions and raw materials from which biochar is produced is the reason why its soil application may have different effects on soil properties and plant growth. The aim of this study was to evaluate the effect of the addition of wheat straw and Miscanthus giganteus straw (5 t DM ha-1) and biochar obtained from this materials in doses of 2.25 and 5 t DM ha-1 on soil enzymatic activity, soil ecotoxicity, and plant yield (perennial grass mixture with red clover). The research was carried out under field conditions on soil with the granulometric composition of loamy sand. No significant effect of biochar amendment on soil enzymatic activity was observed. The biochar-amended soil was toxic to Vibrio fischeri and exhibited low toxicity to Heterocypris incongruens. Application of wheat straw biochar and M. giganteus straw biochar in a dose of 5 t DM ha-1 contributed to an increase in plant biomass production by 2 and 14%, respectively, compared to the soil with mineral fertilisation. Biochars had a more adverse effect on soil enzymatic activity and soil ecotoxicity to H. incongruens and V. fischeri than non-converted wheat straw and M. giganteus straw, but significantly increased the grass crop yield.

  15. Effect of levels of wheat residue on the severity of stagonospora nodorum blotch in winter wheat

    USDA-ARS?s Scientific Manuscript database

    Stagonospora nodorum blotch (SNB), caused by the ascomycete fungus Stagonospora nodorum, is a major disease of wheat. Wheat residue can be an important source of inoculum, but the effect of different densities of infected debris on disease severity has not been previously determined. Experiments wer...

  16. High speed sorting of Fusarium-damaged wheat kernels

    USDA-ARS?s Scientific Manuscript database

    Recent studies have found that resistance to Fusarium fungal infection can be inherited in wheat from one generation to another. However, there is not yet available a cost effective method to separate Fusarium-damaged wheat kernels from undamaged kernels so that wheat breeders can take advantage of...

  17. Pricing behavior of USA exporter in wheat international market

    NASA Astrophysics Data System (ADS)

    Wibowo, R. P.; Sumono; Iddrisu, Y.; Darus, M.; Sihombing, L. P.; Jufri

    2018-02-01

    The number of wheat producing countries is changing over time. It is expected the change in wheat supply will lead world wheat market become more competitive and reduce market power of major exporter country. This paper tries to identify and examined the degree of market power on wheat international market for USA by using the Pricing to Market (PTM) method. USA is the biggest producer and exporter in wheat market. The PTM method found that USA impose noncompetitive strategy by applying price discrimination and apply market power to their importer country.

  18. Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat

    PubMed Central

    Chao, Shiaoman; Singh, Ravi P.; Sorrells, Mark E.

    2017-01-01

    Wheat stem rust (Puccinia graminis f. sp. tritici Eriks. and E. Henn.) is one of the most destructive diseases world-wide. Races belonging to Ug99 (or TTKSK) continue to cause crop losses in East Africa and threaten global wheat production. Developing and deploying wheat varieties with multiple race-specific genes or complex adult plant resistance is necessary to achieve durability. In the present study, we applied genome-wide association studies (GWAS) for identifying loci associated with the Ug99 stem rust resistance (SR) in a panel of wheat lines developed at the International Maize and Wheat Improvement Center (CIMMYT). Genotyping was carried out using the wheat 9K iSelect single nucleotide polymorphism (SNP) chip. Phenotyping was done in the field in Kenya by infection of Puccinia graminis f. sp. tritici race TTKST, the Sr24-virulent variant of Ug99. Marker-trait association identified 12 SNP markers significantly associated with resistance. Among them, 7 were mapped on five chromosomes. Markers located on chromosomes 4A and 4B overlapped with the location of the Ug99 resistance genes SrND643 and Sr37, respectively. Markers identified on 7DL were collocated with Sr25. Additional significant markers were located in the regions where no Sr gene has been reported. The chromosome location for five of the SNP markers was unknown. A BLASTN search of the NCBI database using the flanking sequences of the SNPs associated with Ug99 resistance revealed that several markers were linked to plant disease resistance analogues, while others were linked to regulatory factors or metabolic enzymes. A KASP (Kompetitive Allele Specific PCR) assay was used for validating six marker loci linked to genes with resistance to Ug99. Of those, four co-segregated with the Sr25-pathotypes while the rest identified unknown resistance genes. With further investigation, these markers can be used for marker-assisted selection in breeding for Ug99 stem rust resistance in wheat. PMID:28241006

  19. Reanalyses of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time.

    PubMed

    Mackay, I; Horwell, A; Garner, J; White, J; McKee, J; Philpott, H

    2011-01-01

    Historical datasets have much to offer. We analyse data from winter wheat, spring and winter barley, oil seed rape, sugar beet and forage maize from the UK National List and Recommended List trials over the period 1948-2007. We find that since 1982, for the cereal crops and oil seed rape, at least 88% of the improvement in yield is attributable to genetic improvement, with little evidence that changes in agronomy have improved yields. In contrast, in the same time period, plant breeding and changes in agronomy have contributed almost equally to increased yields of forage maize and sugar beet. For the cereals prior to 1982, contributions from plant breeding were 42, 60 and 86% for winter barley, winter wheat and spring barley, respectively. These results demonstrate the overwhelming importance of plant breeding in increasing crop productivity in the UK. Winter wheat data are analysed in more detail to exemplify the use of historical data series to study and detect disease resistance breakdown, sensitivity of varieties to climatic factors, and also to test methods of genomic selection. We show that breakdown of disease resistance can cause biased estimates of variety and year effects, but that comparison of results between fungicide treated and untreated trials over years may be a means to screen for durable resistance. We find the greatest sensitivities of the winter wheat germplasm to seasonal differences in rainfall and temperature are to summer rainfall and winter temperature. Finally, for genomic selection, correlations between observed and predicted yield ranged from 0.17 to 0.83. The high correlation resulted from markers predicting kinship amongst lines rather than tagging multiple QTL. We believe the full value of these data will come from exploiting links with other experiments and experimental populations. However, not to exploit such valuable historical datasets is wasteful.

  20. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria.

    PubMed

    Chakraborty, U; Chakraborty, B N; Chakraborty, A P; Dey, P L

    2013-05-01

    Soil microorganisms with potential for alleviation of abiotic stresses in combination with plant growth promotion would be extremely useful tools in sustainable agriculture. To this end, the present study was initiated where forty-five salt tolerant bacterial isolates with ability to grow in high salt medium were obtained from the rhizosphere of Triticum aestivum and Imperata cylindrica. These bacteria were tested for plant-growth-promoting rhizobacteria traits in vitro such as phosphate solubilization, siderophore, ACC deaminase and IAA production. Of the forty-five isolates, W10 from wheat rhizosphere and IP8 from blady grass rhizosphere, which tested positive in all the tests were identified by morpholological, biochemical and 16SrDNA sequencing as Bacillus safensis and Ochrobactrum pseudogregnonense respectively and selected for in vivo studies. Both the bacteria could promote growth in six varieties of wheat tested in terms of increase in root and shoot biomass, height of plants, yield, as well as increase in chlorophyll content. Besides, the wheat plants could withstand water stress more efficiently in presence of the bacteria as indicated by delay in appearance of wilting symptoms increases in relative water content of treated water stressed plants in comparison to untreated stressed ones, and elevated antioxidant responses. Enhanced antioxidant responses were evident as elevated activities of enzymes such as catalase, peroxidase, ascorbate peroxidase, superoxide dismutase and glutathione reductase as well as increased accumulation of antioxidants such as carotenoids and ascorbate. Results clearly indicate that the ability of wheat plants to withstand water stress is enhanced by application of these bacteria which also function as plant growth promoting rhizobacteria.

  1. Relay cropping of wheat (Triticum aestivum L.) in cotton (Gossypium hirsutum L.) improves the profitability of cotton-wheat cropping system in Punjab, Pakistan.

    PubMed

    Sajjad, Aamer; Anjum, Shakeel Ahmad; Ahmad, Riaz; Waraich, Ejaz Ahmad

    2018-01-01

    Delayed sowing of wheat (Triticum aestivum L.) in cotton-based system reduces the productivity and profitability of the cotton-wheat cropping system. In this scenario, relay cropping of wheat in standing cotton might be a viable option to ensure the timely wheat sowing with simultaneous improvement in wheat yields and system profitability. This 2-year study (2012-2013 and 2013-2014) aimed to evaluate the influence of sowing dates and relay cropping combined with different management techniques of cotton sticks on the wheat yield, soil physical properties, and the profitability of the cotton-wheat system. The experiment consisted of five treatments viz. (S1) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, (S2) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator, (S3) sowing of wheat at the 7th of November as relay crop in standing cotton with broadcast method, (S4) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, and (S5) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator. The highest seed cotton yield was observed in the S5 treatment which was statistically similar with the S3 and S4 treatments; seed cotton yield in the S1 and S2 treatments has been the lowest in both years of experimentation. However, the S2 treatment produced substantially higher root length, biological yield, and grain yield of wheat than the other treatments. The lower soil bulk density at 0-10-cm depth was recorded in the S2 treatment which was statistically similar with the S5 treatment during both years of experimentation. The volumetric water contents, net

  2. High spectral and spatial resolution hyperspectral imagery for quantifying Russian wheat aphid infestation in wheat using the constrained energy minimization classifier

    NASA Astrophysics Data System (ADS)

    Mirik, Mustafa; Ansley, R. James; Steddom, Karl; Rush, Charles M.; Michels, Gerald J.; Workneh, Fekede; Cui, Song; Elliott, Norman C.

    2014-01-01

    The effects of insect infestation in agricultural crops are of major ecological and economic interest because of reduced yield, increased cost of pest control and increased risk of environmental contamination from insecticide application. The Russian wheat aphid (RWA, Diuraphis noxia) is an insect pest that causes damage to wheat (Triticum aestivum L.). We proposed that concentrated RWA feeding areas, referred to as "hot spots," could be identified and isolated from uninfested areas within a field for site specific aphid management using remotely sensed data. Our objectives were to (1) investigate the reflectance characteristics of infested and uninfested wheat by RWA and (2) evaluate utility of airborne hyperspectral imagery with 1-m spatial resolution for detecting, quantifying, and mapping RWA infested areas in commercial winter wheat fields using the constrained energy minimization classifier. Percent surface reflectance from uninfested wheat was lower in the visible and higher in the near infrared portions of the spectrum when compared with RWA-infested wheat. The overall classification accuracies of >89% for damage detection were achieved. These results indicate that hyperspectral imagery can be effectively used for accurate detection and quantification of RWA infestation in wheat for site-specific aphid management.

  3. P and Ca digestibility is increased in broiler diets supplemented with the high-phytase HIGHPHY wheat.

    PubMed

    Scholey, D; Burton, E; Morgan, N; Sanni, C; Madsen, C K; Dionisio, G; Brinch-Pedersen, H

    2017-09-01

    Around 70% of total seed phosphorus is represented by phytate which must be hydrolysed to be bioavailable in non-ruminant diets. The limited endogenous phytase activity in non-ruminant animals make it common practice to add an exogenous phytase source to most poultry and pig feeds. The mature grain phytase activity (MGPA) of cereal seeds provides a route for the seeds themselves to contribute to phytate digestion, but MGPA varies considerably between species and most varieties in current use make negligible contributions. Currently, all phytases used for feed supplementation and transgenic improvement of MGPA are derived from microbial enzymes belonging to the group of histidine acid phosphatases (HAP). Cereals contain HAP phytases, but the bulk of MGPA can be attributed to phytases belonging to a completely different group of phosphatases, the purple acid phosphatases (PAPhy). In recent years, increased MGPAs were achieved in cisgenic barley holding extra copies of barley PAPhy and in the wheat HIGHPHY mutant, where MGPA was increased to ~6200 FTU/kg. In the present study, the effect of replacing 33%, 66% and 100% of a standard wheat with HIGHPHY wheat was compared with a control diet with and without 500 FTU of supplemental phytase. Diets were compared by evaluating broiler performance, ileal Ca and P digestibility and tibia development, using nine replicate pens of four birds per diet over 3 weeks from hatch. There were no differences between treatments in any tibia or bird performance parameters, indicating the control diet did not contain sufficiently low levels of phosphorus to distinguish effect of phytase addition. However, in a comparison of the two wheats, the ileal Ca and P digestibility coefficients for the 100% HIGHPHY wheat diets are 22.9% and 35.6% higher, respectively, than for the control diet, indicating the wheat PAPhy is functional in the broiler digestive tract. Furthermore, 33% HIGHPHY replacement of conventional wheat, significantly improved

  4. Molecular and cytogenetic characterization of a durum wheat-Aegilops speltoides chromosome translocation conferring resistance to stem rust.

    PubMed

    Faris, Justin D; Xu, Steven S; Cai, Xiwen; Friesen, Timothy L; Jin, Yue

    2008-01-01

    Stem rust is a serious disease of wheat that has caused historical epidemics, but it has not been a threat in recent decades in North America owing to the eradication of the alternative host and deployment of resistant cultivars. However, the recent emergence of Ug99 (or race TTKS) poses a threat to global wheat production because most currently grown wheat varieties are susceptible. In this study, we evaluated a durum wheat-Aegilops speltoides chromosome translocation line (DAS15) for reaction to Ug99 and six other races of stem rust, and used molecular and cytogenetic tools to characterize the translocation. DAS15 was resistant to all seven races of stem rust. Two durum-Ae. speltoides translocated chromosomes were detected in DAS15. One translocation involved the short arm, centromere, and a major portion of the long arm of Ae. speltoides chromosome 2S and a small terminal segment from durum chromosome arm 2BL. Thus, this translocated chromosome is designated T2BL-2SL*2SS. Cytogenetic mapping assigned the resistance gene(s) in DAS15 to the Ae. speltoides segment in T2BL-2SL*2SS. The Ae. speltoides segment in the other translocated chromosome did not harbour stem rust resistance. A comparison of DAS15 and the wheat stocks carrying the Ae. speltoides-derived resistance genes Sr32 and Sr39 indicated that stem rust resistance gene present in DAS15 is likely novel and will be useful for developing germplasm with resistance to Ug99. Efforts to reduce Ae. speltoides chromatin in T2BL-2SL*2SS are currently in progress.

  5. Variation to cause host injury between Russian wheat aphid (Homoptera: Aphididae) clones virulent to Dn4 wheat.

    PubMed

    Shufran, K A; Mornhinweg, D W; Baker, C A; Porter, D R

    2007-10-01

    Biotypes are infraspecific classifications based on biological rather than morphological characteristics. Cereal aphids are managed primarily by host plant resistance, and they often develop biotypes that injure or kill previously resistant plants. Although molecular genetic variation within aphid biotypes has been well documented, little is known about phenotypic variation, especially virulence or the biotype's ability to cause injury to cultivars with specific resistance genes. Five clones (single maternal lineages) of Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), determined to be injurious to wheat, Triticum aestivum L., with the Dn4 gene, were evaluated on resistant and susceptible wheat and barley, Hordeum vulgare L., for their ability to cause chlorosis, reduction in plant height, and reduction in shoot dry weight. Variation to cause injury on resistant 'Halt' wheat, susceptible 'Jagger' wheat, and resistant 'STARS-9301B' barley was found among the Dn4 virulent clones. One clone caused up to 30.0 and 59.5% more reduction in plant height and shoot dry weight, respectively, on resistant Halt than other clones. It also caused up to 29.9 and 55.5% more reduction in plant height and shoot dry weight, respectively, on susceptible Jagger wheat. Although STARS-9301B barley exhibited an equal resistant response to feeding by all five clones based on chlorosis, two clones caused approximately 20% more reduction in plant height and shoot dry weight than three other clones. The most injurious clones on wheat were not the most injurious clones on barley. This is the first report of variation to cause varying degrees of plant damage within an aphid biotype virulent to a single host resistance gene. A single aphid clone may not accurately represent the true virulent nature of a biotype population in the field.

  6. The Danish Testicular Cancer database.

    PubMed

    Daugaard, Gedske; Kier, Maria Gry Gundgaard; Bandak, Mikkel; Mortensen, Mette Saksø; Larsson, Heidi; Søgaard, Mette; Toft, Birgitte Groenkaer; Engvad, Birte; Agerbæk, Mads; Holm, Niels Vilstrup; Lauritsen, Jakob

    2016-01-01

    The nationwide Danish Testicular Cancer database consists of a retrospective research database (DaTeCa database) and a prospective clinical database (Danish Multidisciplinary Cancer Group [DMCG] DaTeCa database). The aim is to improve the quality of care for patients with testicular cancer (TC) in Denmark, that is, by identifying risk factors for relapse, toxicity related to treatment, and focusing on late effects. All Danish male patients with a histologically verified germ cell cancer diagnosis in the Danish Pathology Registry are included in the DaTeCa databases. Data collection has been performed from 1984 to 2007 and from 2013 onward, respectively. The retrospective DaTeCa database contains detailed information with more than 300 variables related to histology, stage, treatment, relapses, pathology, tumor markers, kidney function, lung function, etc. A questionnaire related to late effects has been conducted, which includes questions regarding social relationships, life situation, general health status, family background, diseases, symptoms, use of medication, marital status, psychosocial issues, fertility, and sexuality. TC survivors alive on October 2014 were invited to fill in this questionnaire including 160 validated questions. Collection of questionnaires is still ongoing. A biobank including blood/sputum samples for future genetic analyses has been established. Both samples related to DaTeCa and DMCG DaTeCa database are included. The prospective DMCG DaTeCa database includes variables regarding histology, stage, prognostic group, and treatment. The DMCG DaTeCa database has existed since 2013 and is a young clinical database. It is necessary to extend the data collection in the prospective database in order to answer quality-related questions. Data from the retrospective database will be added to the prospective data. This will result in a large and very comprehensive database for future studies on TC patients.

  7. Pathogenicity of three isolates of Rhizoctonia sp. from wheat and peanut on hard red winter wheat

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia-induced root diseases can significantly affect wheat and peanut production where these two field crops are grown in rotation. Hence, this study characterized two isolates of Rhizoctonia spp. from wheat [R. cerealis (RC) and R. solani (RSW)] and one from peanut [R. solani (RSP) ] for cul...

  8. Wheat Allergy

    MedlinePlus

    ... of wheat-free flours usually works best for baking. Experiment with different blends to find one that ... look like beef, pork and shrimp. Baked goods Baking mixes Batter-fried foods Beer Breaded foods Breakfast ...

  9. Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada.

    PubMed

    Singh, A K; Hamel, C; Depauw, R M; Knox, R E

    2012-03-01

    Crop nutrient- and water-use efficiency could be improved by using crop varieties highly compatible with arbuscular mycorrhizal fungi (AMF). Two greenhouse experiments demonstrated the presence of genetic variability for this trait in modern durum wheat ( Triticum turgidum L. var. durum Desf.) germplasm. Among the five cultivars tested, 'AC Morse' had consistently low levels of AM root colonization and DT710 had consistently high levels of AM root colonization, whereas 'Commander', which had the highest colonization levels under low soil fertility conditions, developed poor colonization levels under medium fertility level. The presence of genetic variability in durum wheat compatibility with AMF was further evidenced by significant genotype × inoculation interaction effects in grain and straw biomass production; grain P, straw P, and straw K concentrations under medium soil fertility level; and straw K and grain Fe concentrations at low soil fertility. Mycorrhizal dependency was an undesirable trait of 'Mongibello', which showed poor growth and nutrient balance in the absence of AMF. An AMF-mediated reduction in grain Cd under low soil fertility indicated that breeding durum wheat for compatibility with AMF could help reduce grain Cd concentration in durum wheat. Durum wheat genotypes should be selected for compatibility with AMF rather than for mycorrhizal dependency.

  10. Water dynamics and retrogradation of ultrahigh pressurized wheat starch.

    PubMed

    Doona, Christopher J; Feeherry, Florence E; Baik, Moo-Yeol

    2006-09-06

    The water dynamics and retrogradation kinetics behavior of gelatinized wheat starch by either ultrahigh pressure (UHP) processing or heat are investigated. Wheat starch completely gelatinized in the condition of 90, 000 psi at 25 degrees C for 30 min (pressurized gel) or 100 degrees C for 30 min (heated gel). The physical properties of the wheat starches were characterized in terms of proton relaxation times (T2 times) measured using time-domain nuclear magnetic resonance spectroscopy and evaluated using commercially available continuous distribution modeling software. Different T2 distributions in both micro- and millisecond ranges between pressurized and heated wheat starch gels suggest distinctively different water dynamics between pressurized and heated wheat starch gels. Smaller water self-diffusion coefficients were observed for pressurized wheat starch gels and are indicative of more restricted translational proton mobility than is observed with heated wheat starch gels. The physical characteristics associated with changes taking place during retrogradation were evaluated using melting curves obtained with differential scanning calorimetry. Less retrogradation was observed in pressurized wheat starch, and it may be related to a smaller quantity of freezable water in pressurized wheat starch. Starches comprise a major constituent of many foods proposed for commercial potential using UHP, and the present results furnish insight into the effect of UHP on starch gelatinization and the mechanism of retrogradation during storage.

  11. Spatial X-ray fluorescence micro-imaging of minerals in grain tissues of wheat and related genotypes.

    PubMed

    Singh, Sudhir P; Vogel-Mikuš, Katarina; Vavpetič, Primož; Jeromel, Luka; Pelicon, Primož; Kumar, Jitendra; Tuli, Rakesh

    2014-08-01

    Wheat and its related genotypes show distinct distribution patterns for mineral nutrients in maternal and filial tissues in grains. X-ray-based imaging techniques are very informative to identify genotypes with contrasting tissue-specific localization of different elements. This can help in the selection of suitable genotypes for nutritional improvement of food grain crops. Understanding mineral localization in cereal grains is important for their nutritional improvement. Spatial distribution of mineral nutrients (Mg, P, S, K, Ca, Fe, Zn, Mn and Cu) was investigated between and within the maternal and filial tissues in grains of two wheat cultivars (Triticum aestivum Cv. WH291 and WL711), a landrace (T. aestivum L. IITR26) and a related wild species Aegilops kotschyi, using micro-proton-induced X-ray emission (µ-PIXE) and micro-X-ray fluorescence (µ-XRF). Aleurone and scutellum were major storage tissues for macro (P, K, Ca and Mg) as well as micro (Fe, Zn, Cu and Mn) nutrients. Distinct elemental distribution patterns were observed in each of the four genotypes. A. kotschyi, the wild relative of wheat and the landrace, T. aestivum L. IITR26, accumulated more Zn and Fe in scutellum and aleurone than the cultivated wheat varieties, WH291 and WL711. The landrace IITR26, accumulated far more S in grains, Mn in scutellum, aleurone and embryo region, Ca and Cu in aleurone and scutellum, and Mg, K and P in scutellum than the other genotypes. Unlike wheat, lower Mn and higher Fe, Cu and Zn concentrations were noticed in the pigment strand of A. kotschyi. Multivariate statistical analysis, performed on mineral distribution in major grain tissues (aleurone, scutellum, endosperm and embryo region) resolved the four genotypes into distinct clusters.

  12. Diversification of the celiac disease α-gliadin complex in wheat: a 33-mer peptide with six overlapping epitopes, evolved following polyploidization.

    PubMed

    Ozuna, Carmen V; Iehisa, Julio C M; Giménez, María J; Alvarez, Juan B; Sousa, Carolina; Barro, Francisco

    2015-06-01

    The gluten proteins from wheat, barley and rye are responsible both for celiac disease (CD) and for non-celiac gluten sensitivity, two pathologies affecting up to 6-8% of the human population worldwide. The wheat α-gliadin proteins contain three major CD immunogenic peptides: p31-43, which induces the innate immune response; the 33-mer, formed by six overlapping copies of three highly stimulatory epitopes; and an additional DQ2.5-glia-α3 epitope which partially overlaps with the 33-mer. Next-generation sequencing (NGS) and Sanger sequencing of α-gliadin genes from diploid and polyploid wheat provided six types of α-gliadins (named 1-6) with strong differences in their frequencies in diploid and polyploid wheat, and in the presence and abundance of these CD immunogenic peptides. Immunogenic variants of the p31-43 peptide were found in most of the α-gliadins. Variants of the DQ2.5-glia-α3 epitope were associated with specific types of α-gliadins. Remarkably, only type 1 α-gliadins contained 33-mer epitopes. Moreover, the full immunodominant 33-mer fragment was only present in hexaploid wheat at low abundance, probably as the result of allohexaploidization events from subtype 1.2 α-gliadins found only in Aegilops tauschii, the D-genome donor of hexaploid wheat. Type 3 α-gliadins seem to be the ancestral type as they are found in most of the α-gliadin-expressing Triticeae species. These findings are important for reducing the incidence of CD by the breeding/selection of wheat varieties with low stimulatory capacity of T cells. Moreover, advanced genome-editing techniques (TALENs, CRISPR) will be easier to implement on the small group of α-gliadins containing only immunogenic peptides. © 2015 Society for Experimental Biology and John Wiley & Sons Ltd.

  13. Breeding value of primary synthetic wheat genotypes for grain yield

    USDA-ARS?s Scientific Manuscript database

    To introduce new genetic diversity into the bread wheat gene pool from its progenitor, Aegilops tauschii (Coss.) Schmalh, 33 primary synthetic hexaploid wheat genotypes (SYN) were crossed to 20 spring bread wheat (BW) cultivars at the International Wheat and Maize Improvement Center. Modified single...

  14. Advances in control of wheat rusts

    USDA-ARS?s Scientific Manuscript database

    This chapter provides a summary of recent advances in wheat rust research. Although the emphasis is on recent developments, some historical context is provided. Critical concepts in studying the wheat rusts are pathogen and host genetics, host-pathogen interactions, epidemiology and management strat...

  15. Intake of macro- and micronutrients in Danish vegans.

    PubMed

    Kristensen, Nadja B; Madsen, Mia L; Hansen, Tue H; Allin, Kristine H; Hoppe, Camilla; Fagt, Sisse; Lausten, Mia S; Gøbel, Rikke J; Vestergaard, Henrik; Hansen, Torben; Pedersen, Oluf

    2015-10-30

    Since information about macro- and micronutrient intake among vegans is limited we aimed to determine and evaluate their dietary and supplementary intake. Seventy 18-61 years old Danish vegans completed a four-day weighed food record from which their daily intake of macro- and micronutrients was assessed and subsequently compared to an age-range-matched group of 1,257 omnivorous individuals from the general Danish population. Moreover, the vegan dietary and supplementary intake was compared to the 2012 Nordic Nutrition Recommendations (NNR). Dietary intake differed significantly between vegans and the general Danish population in all measured macro- and micronutrients (p < 0.05), except for energy intake among women and intake of carbohydrates among men. For vegans the intake of macro- and micronutrients (including supplements) did not reach the NNR for protein, vitamin D, iodine and selenium. Among vegan women vitamin A intake also failed to reach the recommendations. With reference to the NNR, the dietary content of added sugar, sodium and fatty acids, including the ratio of PUFA to SFA, was more favorable among vegans. At the macronutrient level, the diet of Danish vegans is in better accordance with the NNR than the diet of the general Danish population. At the micronutrient level, considering both diet and supplements, the vegan diet falls short in certain nutrients, suggesting a need for greater attention toward ensuring recommended daily intake of specific vitamins and minerals.

  16. Assessment of the nutritional values of genetically modified wheat, corn, and tomato crops.

    PubMed

    Venneria, Eugenia; Fanasca, Simone; Monastra, Giovanni; Finotti, Enrico; Ambra, Roberto; Azzini, Elena; Durazzo, Alessandra; Foddai, Maria Stella; Maiani, Giuseppe

    2008-10-08

    The genetic modification in fruit and vegetables could lead to changes in metabolic pathways and, therefore, to the variation of the molecular pattern, with particular attention to antioxidant compounds not well-described in the literature. The aim of the present study was to compare the quality composition of transgenic wheat ( Triticum durum L.), corn ( Zea mays L.), and tomato ( Lycopersicum esculentum Mill.) to the nontransgenic control with a similar genetic background. In the first experiment, Ofanto wheat cultivar containing the tobacco rab1 gene and nontransgenic Ofanto were used. The second experiment compared two transgenic lines of corn containing Bacillus thuringiensis "Cry toxin" gene (PR33P67 and Pegaso Bt) to their nontransgenic forms. The third experiment was conducted on transgenic tomato ( Lycopersicum esculentum Mill.) containing the Agrobacterium rhizogenes rolD gene and its nontransgenic control (cv. Tondino). Conventional and genetically modified crops were compared in terms of fatty acids content, unsaponifiable fraction of antioxidants, total phenols, polyphenols, carotenoids, vitamin C, total antioxidant activity, and mineral composition. No significant differences were observed for qualitative traits analyzed in wheat and corn samples. In tomato samples, the total antioxidant activity (TAA), measured by FRAP assay, and the naringenin content showed a lower value in genetically modified organism (GMO) samples (0.35 mmol of Fe (2+) 100 g (-1) and 2.82 mg 100 g (-1), respectively), in comparison to its nontransgenic control (0.41 mmol of Fe (2+) 100 g (-1) and 4.17 mg 100 g (-1), respectively). On the basis of the principle of substantial equivalence, as articulated by the World Health Organization, the Organization for Economic Cooperation and Development, and the United Nations Food and Agriculture Organization, these data support the conclusion that GM events are nutritionally similar to conventional varieties of wheat, corn, and tomato on

  17. Isolation, Characterization, and Transfer of Cryptic Gene-Mobilizing Plasmids in the Wheat Rhizosphere

    PubMed Central

    van Elsas, Jan Dirk; McSpadden Gardener, Brian B.; Wolters, Anneke C.; Smit, Eric

    1998-01-01

    A set of self-transmissible plasmids with IncQ plasmid-mobilizing capacity was isolated by triparental exogenous isolation from the wheat rhizosphere with an Escherichia coli IncQ plasmid host and a Ralstonia eutropha recipient. Three plasmids of 38 to 45 kb, denoted pIPO1, pIPO2, and pIPO3, were selected for further study. No selectable traits (antibiotic or heavy-metal resistance) were identified in these plasmids. The plasmids were characterized by replicon typing via PCR and hybridization with replicon-specific probes and other hybridizations. pIPO1 and pIPO3 were similar to each other, whereas pIPO2 was different. None of these plasmids belonged to any known incompatibility group. pIPO2 was selected for further work, and a mini-Tn5-tet transposon was inserted to confer selectability. Plasmid pIPO2 had a broad IncQ plasmid mobilization and self-transfer range among the alpha, beta, and gamma subclasses of the Proteobacteria but did not show productive transfer to gram-positive bacteria. Plasmid pIPO2 mobilized IncQ plasmid pIE723 from Pseudomonas fluorescens to diverse indigenous proteobacteria in the rhizosphere of field-grown wheat. Transfer of pIE723 to indigenous bacteria was not observed in the absence of added pIPO2. A specific PCR primer system and a probe were developed for the detection of pIPO2-type plasmids in soil and rhizosphere. Analysis of soil DNA provided evidence for the presence of pIPO2 in inoculated wheat rhizosphere soil in the field study, as well as in the rhizosphere of uninoculated wheat plants growing in soil microcosms. The system failed to identify major reservoirs of pIPO2 in a variety of other soils. PMID:9501428

  18. [Three-dimensional morphological modeling and visualization of wheat root system].

    PubMed

    Tan, Feng; Tang, Liang; Hu, Jun-Cheng; Jiang, Hai-Yan; Cao, Wei-Xing; Zhu, Yan

    2011-01-01

    Crop three-dimensional (3D) morphological modeling and visualization is an important part of digital plant study. This paper aimed to develop a 3D morphological model of wheat root system based on the parameters of wheat root morphological features, and to realize the visualization of wheat root growth. According to the framework of visualization technology for wheat root growth, a 3D visualization model of wheat root axis, including root axis growth model, branch geometric model, and root axis curve model, was developed firstly. Then, by integrating root topology, the corresponding pixel was determined, and the whole wheat root system was three-dimensionally re-constructed by using the morphological feature parameters in the root morphological model. Finally, based on the platform of OpenGL, and by integrating the technologies of texture mapping, lighting rendering, and collision detection, the 3D visualization of wheat root growth was realized. The 3D output of wheat root system from the model was vivid, which could realize the 3D root system visualization of different wheat cultivars under different water regimes and nitrogen application rates. This study could lay a technical foundation for further development of an integral visualization system of wheat plant.

  19. Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement

    PubMed Central

    Chatzav, Merav; Peleg, Zvi; Ozturk, Levent; Yazici, Atilla; Fahima, Tzion; Cakmak, Ismail; Saranga, Yehoshua

    2010-01-01

    Background and Aims Micronutrient malnutrition, particularly zinc and iron deficiency, afflicts over three billion people worldwide due to low dietary intake. In the current study, wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of domesticated wheat, was tested for (1) genetic diversity in grain nutrient concentrations, (2) associations among grain nutrients and their relationships with plant productivity, and (3) the association of grain nutrients with the eco-geographical origin of wild emmer accessions. Methods A total of 154 genotypes, including wild emmer accessions from across the Near Eastern Fertile Crescent and diverse wheat cultivars, were characterized in this 2-year field study for grain protein, micronutrient (zinc, iron, copper and manganese) and macronutrient (calcium, magnesium, potassium, phosphorus and sulphur) concentrations. Key Results Wide genetic diversity was found among the wild emmer accessions for all grain nutrients. The concentrations of grain zinc, iron and protein in wild accessions were about two-fold greater than in the domesticated genotypes. Concentrations of these compounds were positively correlated with one another, with no clear association with plant productivity, suggesting that all three nutrients can be improved concurrently with no yield penalty. A subset of 12 populations revealed significant genetic variation between and within populations for all minerals. Association between soil characteristics at the site of collection and grain nutrient concentrations showed negative associations between soil clay content and grain protein and between soil-extractable zinc and grain zinc, the latter suggesting that the greatest potential for grain nutrient minerals lies in populations from micronutrient-deficient soils. Conclusions Wild emmer wheat germplasm offers unique opportunities to exploit favourable alleles for grain nutrient properties that were excluded from the domesticated wheat gene pool. PMID

  20. Plant growth promoting rhizobacteria reduce aphid population and enhance the productivity of bread wheat.

    PubMed

    Naeem, Muhammad; Aslam, Zubair; Khaliq, Abdul; Ahmed, Jam Nazir; Nawaz, Ahmad; Hussain, Mubshar

    2018-04-24

    Plant growth promoting rhizobacteria increase plant growth and give protection against insect pests and pathogens. Due to the negative impact of chemical pesticides on environment, alternatives to these chemicals are needed. In this scenario, the biological methods of pest control offer an eco-friendly and an attractive option. In this study, the effect of two plant growth promoting rhizobacterial strains (Bacillus sp. strain 6 and Pseudomonas sp. strain 6K) on aphid population and wheat productivity was evaluated in an aphid susceptible (Pasban-90) and resistant (Inqlab-91) wheat cultivar. The seeds were inoculated with each PGPR strain, separately or the combination of both. The lowest aphid population (2.1tiller -1 ), and highest plant height (85.8cm), number of spikelets per spike (18), grains per spike (44), productive tillers (320m -2 ), straw yield (8.6Mgha -1 ), and grain yield (4.8Mgha -1 ) were achieved when seeds were inoculated with Bacillus sp. strain 6+Pseudomonas sp. strain 6K. The grain yield of both varieties was enhanced by 35.5-38.9% with seed inoculation with both bacterial strains. Thus, the combine use of both PGPR strains viz. Bacillus sp. strain 6+Pseudomonas sp. strain 6K offers an attractive option to reduce aphid population tied with better wheat productivity. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions.

    PubMed

    Singh, Anuradha; Mantri, Shrikant; Sharma, Monica; Chaudhury, Ashok; Tuli, Rakesh; Roy, Joy

    2014-01-16

    The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT-PCR. Therefore, this study

  2. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions

    PubMed Central

    2014-01-01

    Background The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. Results Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT

  3. 7 CFR 782.18 - Wheat purchased for export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Wheat purchased for export. 782.18 Section 782.18... § 782.18 Wheat purchased for export. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of export to a foreign country or...

  4. End-use quality of soft kernel durum wheat

    USDA-ARS?s Scientific Manuscript database

    Kernel texture is a major determinant of end-use quality of wheat. Durum wheat is known for its very hard texture, which influences how it is milled and for what products it is well suited. We developed soft kernel durum wheat lines via Ph1b-mediated homoeologous recombination with Dr. Leonard Joppa...

  5. Argentina wheat yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    Five models based on multiple regression were developed to estimate wheat yields for the five wheat growing provinces of Argentina. Meteorological data sets were obtained for each province by averaging data for stations within each province. Predictor variables for the models were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. Buenos Aires was the only province for which a trend variable was included because of increasing trend in yield due to technology from 1950 to 1963.

  6. Dataset on the mean, standard deviation, broad-sense heritability and stability of wheat quality bred in three different ways and grown under organic and low-input conventional systems.

    PubMed

    Rakszegi, Marianna; Löschenberger, Franziska; Hiltbrunner, Jürg; Vida, Gyula; Mikó, Péter

    2016-06-01

    An assessment was previously made of the effects of organic and low-input field management systems on the physical, grain compositional and processing quality of wheat and on the performance of varieties developed using different breeding methods ("Comparison of quality parameters of wheat varieties with different breeding origin under organic and low-input conventional conditions" [1]). Here, accompanying data are provided on the performance and stability analysis of the genotypes using the coefficient of variation and the 'ranking' and 'which-won-where' plots of GGE biplot analysis for the most important quality traits. Broad-sense heritability was also evaluated and is given for the most important physical and quality properties of the seed in organic and low-input management systems, while mean values and standard deviation of the studied properties are presented separately for organic and low-input fields.

  7. LUCAS(™)2 in Danish Search and Rescue Helicopters.

    PubMed

    Winther, Kasper; Bleeg, René Christian

    2016-01-01

    Prehospital resuscitation is often challenging. Giving uninterrupted and effective compressions is relatively impossible during transportation. In 2012, The Royal Danish Air Force received a donation of 8 mechanical chest compression devices (LUCAS(™)2; Physio-Control/Jolife AB, Lund, Sweden) to be used onboard the Danish search and rescue (SAR) helicopters. The scope of this investigation was to establish whether or not mechanical chest compression devices should be considered a necessity onboard the Danish SAR helicopters. Data were compiled from SAR medical journals. From the data collected, observations were made as to when LUCAS(™)2 was used and what diagnosis the SAR physician made. One thousand ninety missions were registered in the 24-month research period, and LUCAS(™)2 was used in 25 missions. Cardiac emergencies amounted for 25% of the missions. The Danish SAR helicopters retrieved 33 drowned/hypothermic patients during the research period, and the LUCAS(™)2 was used in 11 of the patients requiring resuscitation. The LUCAS(™)2 was frequently used during other emergencies like sudden cardiac arrest. Cardiac emergencies were the predominant type of mission. LUCAS(™)2 is now considered mandatory on Danish SAR helicopters. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  8. Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron.

    PubMed

    Singh, Sudhir P; Vogel-Mikuš, Katarina; Arčon, Iztok; Vavpetič, Primož; Jeromel, Luka; Pelicon, Primož; Kumar, Jitendra; Tuli, Rakesh

    2013-08-01

    Iron insufficiency is a worldwide problem in human diets. In cereals like wheat, the bran layer of the grains is an important source of iron. However, the dietary availability of iron in wheat flour is limited due to the loss of the iron-rich bran during milling and processing and the presence of anti-nutrients like phytic acid that keep iron strongly chelated in the grain. The present study investigated the localization of iron and phosphorus in grain tissues of wheat genotypes with contrasting grain iron content using synchrotron-based micro-X-ray fluorescence (micro-XRF) and micro-proton-induced X-ray emission (micro-PIXE). X-ray absorption near-edge spectroscopy (XANES) was employed to determine the proportion of divalent and trivalent forms of Fe in the grains. It revealed the abundance of oxygen, phosphorus, and sulphur in the local chemical environment of Fe in grains, as Fe-O-P-R and Fe-O-S-R coordination. Contrasting differences were noticed in tissue-specific relative localization of Fe, P, and S among the different genotypes, suggesting a possible effect of localization pattern on iron bioavailability. The current study reports the shift in iron distribution from maternal to filial tissues of grains during the evolution of wheat from its wild relatives to the present-day cultivated varieties, and thus suggests the value of detailed physical localization studies in varietal improvement programmes for food crops.

  9. Use of indigenous technology for the production of high quality cassava flour with similar food qualities as wheat flour.

    PubMed

    Eleazu, Ogbonnaya Chinedum; Eleazu, Kate Chinedum; Kolawole, Segun

    2014-01-01

    The aim of the paper was to compare the food qualities of 2 varieties (SME 1 and 2) of high quality cassava flour (HQCF) produced from indigenous technology and that of some commercially sold wheat/HQCF samples. The pH, proximate, phytochemical, antioxidant, functional properties and starch yield of the flours were carried out using standard techniques. The wheat flours had higher bulk densities and lipids than the HQCF samples while the oil absorption capacity of the HQCF (SME 2) was higher than other fl our samples investigated. The antioxidant assays of the flours showed that they contained considerable levels of antioxidants with the HQCF sample from DAT having higher antioxidants than other flour samples studied. The HQCF (SME 1) had significantly higher (P < 0.05) starch content among the flour samples. The bacteria counts of the HQCF samples ranged from 0 to 1.4 × 10(4) cfu/ml while the fungal count ranged from 0 to 2 × 10(-3) with the unbranded wheat fl our having the highest microbial load compared with other flour samples studied. The use of this indigenous technology produces HQCF with lower lipids, microbial contamination but higher flavour retaining ability, flavonoids and starch contents than wheat flour. The significant positive correlation (R2 = 0.872) between reducing power of the samples and their DPPH antioxidant activity indicate that either could be used to assay for the total antioxidant activity of cassava and wheat flour. The study underscores the need to buy flour from branded companies to reduce the risks of microbial contamination.

  10. Association between nationality and occupational injury risk on Danish non-passenger merchant ships.

    PubMed

    Ádám, Balázs

    2013-01-01

    Maritime occupational accidents can be determined by several factors, among which human characteristics play a crucial role. Worker's safety behaviour depends on individual physical and mental characteristics as well as on his/her social and cultural background. The aim of this study is to investigate the frequency of workplace injuries in the Danish merchant fleet in the period 2010-2012, and to characterise its nationality dependence. Occupational injuries data reported from ships registered in the Danish International Ship Register to the Danish Maritime Authority were collected. Publicly available employment data were used to calculate the cumulative incidence rates for Danish, non-Danish European Union (EU) and non-EU employees working on non-passenger ships. Crude injury rates and rates adjusted for occupational status were statistically compared. The majority of accidents happened to Danish and non-EU workers on non-passenger ships. The injury rate varied around 70 per 1000 among Danish seafarers, while the rate for non-Danish employees was about 30 per 1000. Crude and adjusted relative risk was found significantly lower for EU (0.33-0.46;0.26-0.39) and for non-EU (0.41-0.53; 0.54-0.65) workers compared to Danish seafarers. The difference decreased, but remained significant in most cases for serious injuries. Occupational injury rates show considerable nationality differences as reported from non-passenger ships registered under the Danish flag. The differences can only be partly explained by varying reporting practices. The findings confirm the results of previous studies and point out the need for effective interventions in the high-risk groups.

  11. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR... the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club wheat...

  12. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR... the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club wheat...

  13. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR... the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club wheat...

  14. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR... the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club wheat...

  15. Evaluation of water binding, seed coat permeability and germination characteristics of wheat seeds equilibrated at different relative humidities.

    PubMed

    Chatterjee, Nabamita; Nagarajan, Shantha

    2006-08-01

    The relative binding of seed water and seed coat membrane stability were measured in two contrasting wheat (Triticum aestivum L) varieties, HDR 77 (drought-tolerant) and HD 2009 (susceptible) using seed water sorption isotherms, electrical conductivity (EC) of leachates and desorption-absorption isotherms. Analysis of sorption isotherm at 25 degrees C showed that the seeds of HDR 77 had significantly higher number of strong binding sites, with correspondingly greater amount of seed water as strongly bound water, as compared to HD 2009. Total number of binding sites was also higher in HDR 77 than HD 2009, which explained the better desiccation tolerance and higher capacity to bind water in seeds of HDR 77. EC of seed leachate in both varieties did not change with respect to change in equilibrium relative humidity (RII), indicating the general seed coat membrane stability of wheat seeds. However, absolute conductivity values were higher for HD 2009. showing its relatively porous seed coat membrane. Significantly lower area enclosed by the desorption-absorption isotherm loop in HDR 77, as compared to HD 2009 also indicated the greater membrane integrity of HDR 77. Germination and seedling vigour of HD 2009 were reduced when equilibrated over very low and very high RH. In contrast, germination and vigour in HDR 77 were maintained high, except at very high RH, indicating again its desiccation tolerance. Thus, the study demonstrated the relative drought tolerance of HDR 77, on the basis of seed water-binding characteristics and seed membrane stability. Seed membrane stability as measured by seed leachate conductivity or as area under dehydration-rehydration loop may be used as a preliminary screening test for drought tolerance in wheat.

  16. Comparative Analysis of U.S. and Danish Army Leader Development Strategies

    DTIC Science & Technology

    2012-06-08

    Individualism (vs. Collectivism). (74) Is the society’s emphasis on the group ( collectivist ) or on the individual ( individualist ). Low characteristics...and tools to draw lessons learned for the Danish Armed Forces and the Danish Army in particular. Subsequently, the thesis applies a cultural ... cultural applicability test to assess whether the identified lessons learned from the U.S. Army Leader Development Strategy are applicable in a Danish

  17. Chapter 6: Floral Transformation of Wheat

    USDA-ARS?s Scientific Manuscript database

    Hexaploid wheat is one of the world’s most important staple crops but genetic transformation is still challenging. We are developing a floral transformation protocol for wheat that does not require tissue culture. Several T-DNA transformants have been produced in the high quality, hard red germpla...

  18. Quantifying the effects of wheat residue on severity of Stagonospora nodorum blotch and yield in winter wheat

    USDA-ARS?s Scientific Manuscript database

    Stagonospora nodorum blotch (SNB), caused by the ascomycete fungus Stagonospora nodorum, is a major disease of wheat. Wheat residue can be an important source of inoculum, but the effect of different densities of infected debris on disease severity has not been previously determined. Experiments wer...

  19. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress

    PubMed Central

    Trittermann, Christine; Berger, Bettina; Roy, Stuart J.; Seki, Motoaki; Shinozaki, Kazuo; Tester, Mark

    2015-01-01

    Salinity stress has significant negative effects on plant biomass production and crop yield. Salinity tolerance is controlled by complex systems of gene expression and ion transport. The relationship between specific features of mild salinity stress adaptation and gene expression was analyzed using four commercial varieties of bread wheat (Triticum aestivum) that have different levels of salinity tolerance. The high-throughput phenotyping system in The Plant Accelerator at the Australian Plant Phenomics Facility revealed variation in shoot relative growth rate and salinity tolerance among the four cultivars. Comparative analysis of gene expression in the leaf sheaths identified genes whose functions are potentially linked to shoot biomass development and salinity tolerance. Early responses to mild salinity stress through changes in gene expression have an influence on the acquisition of stress tolerance and improvement in biomass accumulation during the early “osmotic” phase of salinity stress. In addition, results revealed transcript profiles for the wheat cultivars that were different from those of usual stress-inducible genes, but were related to those of plant growth. These findings suggest that, in the process of breeding, selection of specific traits with various salinity stress-inducible genes in commercial bread wheat has led to adaptation to mild salinity conditions. PMID:26244554

  20. Bird predation on cutworms (Lepidoptera: Noctuidae) in wheat fields and chlorpyrifos effects on brain cholinesterase activity

    USGS Publications Warehouse

    McEwen, L.C.; DeWeese, L.R.; Schladweiler, P.

    1986-01-01

    Horned larks, Eremophila alpestris (L.), and McCown's longspurs, Calcarius mccownii (Lawrence), were collected at intervals from two winter wheat fields in Montana [USA] after aerial application of chlorpyrifos to control cutworms. Both bird species had a high (95-100%) incidence of Lepidoptera, mostly pale western cutworms, Agrotis orthogonia Morrison, in their stomachs at 3 days postspray. Incidence of cutworms and other insects in stomachs of birds from sprayed fields was lower at 9 and 16 days postspray than in control birds, presumably due to insecticide-caused reduction of insects. Effects of birds on population dynamics of insect pests in wheat are unknown, but birds do contribute to cutworm mortality. Predation is one of the limiting factors to cutworm increase and can supplement insecticidal control. Brain cholinesterase activity in horned larks collected from the sprayed fields at 3 and 9 days postspray was significantly lower than in unexposed larks, but at 16 days the difference was not significant. Although nontarget birds clearly were exposed to chlorpyrifos and manifested a sublethal physiological response, toxic effects were less severe than those resulting from endrin application for cutworm control in wheat. More study is needed of larger chlorpyrifos-treated fields under a variety of conditions to fully assess effects on nontarget life.