Nonlinear time dependence of dark current in charge-coupled devices
NASA Astrophysics Data System (ADS)
Dunlap, Justin C.; Bodegom, Erik; Widenhorn, Ralf
2011-03-01
It is generally assumed that charge-coupled device (CCD) imagers produce a linear response of dark current versus exposure time except near saturation. We found a large number of pixels with nonlinear dark current response to exposure time to be present in two scientific CCD imagers. These pixels are found to exhibit distinguishable behavior with other analogous pixels and therefore can be characterized in groupings. Data from two Kodak CCD sensors are presented for exposure times from a few seconds up to two hours. Linear behavior is traditionally taken for granted when carrying out dark current correction and as a result, pixels with nonlinear behavior will be corrected inaccurately.
Signatures of dark radiation in neutrino and dark matter detectors
NASA Astrophysics Data System (ADS)
Cui, Yanou; Pospelov, Maxim; Pradler, Josef
2018-05-01
We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In particular, for interacting dark radiation carrying a typical momentum of ˜30 MeV /c , both types of experiments provide competitive constraints. This study also demonstrates that non-standard sources of neutrino emission (e.g., via dark matter decay) are capable of creating a "neutrino floor" for dark matter direct detection that is closer to current bounds than is expected from standard neutrino sources.
NASA Astrophysics Data System (ADS)
Liu, Ming Xiong
2017-03-01
In this review, we present the current status and prospects of the dark sector physics search program of the SeaQuest/E1067 fixed target dimuon experiment at Fermilab Main Injector. There has been tremendous excitement and progress in searching for new physics in the dark sector in recent years. Dark sector refers to a collection of currently unknown particles that do not directly couple with the Standard Model (SM) strong and electroweak (EW) interactions but assumed to carry gravitational force, thus could be candidates of the missing Dark Matter (DM). Such particles may interact with the SM particles through “portal” interactions. Two of the simple possibilities are being investigated in our initial search: (1) dark photon and (2) dark Higgs. They could be within immediate reach of current or near future experimental search. We show there is a unique opportunity today at Fermilab to directly search for these particles in a highly motivated but uncharted parameter space in high-energy proton-nucleus collisions in the beam-dump mode using the 120 GeV proton beam from the Main Injector. Our current search window covers the mass range 0.2-10 GeV/c2, and in the near future, by adding an electromagnetic calorimeter (EMCal) to the spectrometer, we can further explore the lower mass region down to about ˜1 MeV/c2 through the di-electron channel. If dark photons (and/or dark Higgs) were observed, they would revolutionize our understanding of the fundamental structures and interactions of our universe.
Fundamentalist physics: why Dark Energy is bad for astronomy
NASA Astrophysics Data System (ADS)
White, Simon D. M.
2007-06-01
Astronomers carry out observations to explore the diverse processes and objects which populate our Universe. High-energy physicists carry out experiments to approach the Fundamental Theory underlying space, time and matter. Dark Energy is a unique link between them, reflecting deep aspects of the Fundamental Theory, yet apparently accessible only through astronomical observation. Large sections of the two communities have therefore converged in support of astronomical projects to constrain Dark Energy. In this essay I argue that this convergence can be damaging for astronomy. The two communities have different methodologies and different scientific cultures. By uncritically adopting the values of an alien system, astronomers risk undermining the foundations of their own current success and endangering the future vitality of their field. Dark Energy is undeniably an interesting problem to tackle through astronomical observation, but it is one of many and not necessarily the one where significant progress is most likely to follow a major investment of resources.
Mechanisms of the passage of dark currents through Cd(Zn)Te semi-insulating crystals
NASA Astrophysics Data System (ADS)
Sklyarchuk, V.; Fochuk, P.; Rarenko, I.; Zakharuk, Z.; Sklyarchuk, O.; Nykoniuk, Ye.; Rybka, A.; Kutny, V.; Bolotnikov, A. E.; James, R. B.
2014-09-01
We investigated the passage of dark currents through semi-insulating crystals of Cd(Zn)Te with weak n-type conductivity that are used widely as detectors of ionizing radiation. The crystals were grown from a tellurium solution melt at 800 оС by the zone-melting method, in which a polycrystalline rod in a quartz ampoule was moved through a zone heater at a rate of 2 mm per day. The synthesis of the rod was carried out at ~1150 оС. We determined the important electro-physical parameters of this semiconductor, using techniques based on a parallel study of the temperature dependence of current-voltage characteristics in both the ohmic and the space-charge-limited current regions. We established in these crystals the relationship between the energy levels and the concentrations of deep-level impurity states, responsible for dark conductivity and their usefulness as detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ming Xiong
In this study, we present the current status and prospects of the dark sector physics search program of the SeaQuest/E1067 fixed target dimuon experiment at Fermilab Main Injector. There has been tremendous excitement and progress in searching for new physics in the dark sector in recent years. Dark sector refers to a collection of currently unknown particles that do not directly couple with the Standard Model (SM) strong and electroweak (EW) interactions but assumed to carry gravitational force, thus could be candidates of the missing Dark Matter (DM). Such particles may interact with the SM particles through “portal” interactions. Twomore » of the simple possibilities are being investigated in our initial search: (1) dark photon and (2) dark Higgs. They could be within immediate reach of current or near future experimental search. We show there is a unique opportunity today at Fermilab to directly search for these particles in a highly motivated but uncharted parameter space in high-energy proton–nucleus collisions in the beam-dump mode using the 120 GeV proton beam from the Main Injector. Our current search window covers the mass range 0.2–10 GeV/c 2, and in the near future, by adding an electromagnetic calorimeter (EMCal) to the spectrometer, we can further explore the lower mass region down to about ~1 MeV/c 2 through the di-electron channel. If dark photons (and/or dark Higgs) were observed, they would revolutionize our understanding of the fundamental structures and interactions of our universe.« less
Liu, Ming Xiong
2017-03-14
In this study, we present the current status and prospects of the dark sector physics search program of the SeaQuest/E1067 fixed target dimuon experiment at Fermilab Main Injector. There has been tremendous excitement and progress in searching for new physics in the dark sector in recent years. Dark sector refers to a collection of currently unknown particles that do not directly couple with the Standard Model (SM) strong and electroweak (EW) interactions but assumed to carry gravitational force, thus could be candidates of the missing Dark Matter (DM). Such particles may interact with the SM particles through “portal” interactions. Twomore » of the simple possibilities are being investigated in our initial search: (1) dark photon and (2) dark Higgs. They could be within immediate reach of current or near future experimental search. We show there is a unique opportunity today at Fermilab to directly search for these particles in a highly motivated but uncharted parameter space in high-energy proton–nucleus collisions in the beam-dump mode using the 120 GeV proton beam from the Main Injector. Our current search window covers the mass range 0.2–10 GeV/c 2, and in the near future, by adding an electromagnetic calorimeter (EMCal) to the spectrometer, we can further explore the lower mass region down to about ~1 MeV/c 2 through the di-electron channel. If dark photons (and/or dark Higgs) were observed, they would revolutionize our understanding of the fundamental structures and interactions of our universe.« less
Proton effects on low noise and high responsivity silicon-based photodiodes for space environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedroza, Guillaume; Gilard, Olivier; Bourqui, Marie-Lise
A series of proton irradiations has been carried out on p-n silicon photodiodes for the purpose of assessing the suitability of these devices for the European Galileo space mission. The irradiations were performed at energies of 60, 100, and 150 MeV with proton fluences ranging from 1.7x10{sup 10} to 1x10{sup 11} protons/cm{sup 2}. Dark current, spectral responsivity, and dark current noise were measured before and after each irradiation step. We observed an increase in both dark current, dark current noise, and noise equivalent power and a drop of the spectral responsivity with increasing displacement damage dose. An analytical model hasmore » been developed to investigate proton damage effects through the modeling of the electro-optical characteristics of the photodiode. Experimental degradations were successfully explained taking into account the degradation of the minority carrier diffusion length in the N-region of the photodiode. The degradation model was then applied to assess the end-of-life performance of these devices in the framework of the Galileo mission.« less
Searching for a dark photon with DarkLight
Corliss, R.
2016-07-30
Here, we describe the current status of the DarkLight experiment at Jefferson Laboratory. DarkLight is motivated by the possibility that a dark photon in the mass range 10 to 100 MeV/c 2 could couple the dark sector to the Standard Model. DarkLight will precisely measure electron proton scattering using the 100 MeV electron beam of intensity 5 mA at the Jefferson Laboratory energy recovering linac incident on a windowless gas target of molecular hydrogen. We will detect the complete final state including scattered electron, recoil proton, and e +e - pair. A phase-I experiment has been funded and is expectedmore » to take data in the next eighteen months. The complete phase-II experiment is under final design and could run within two years after phase-I is completed. The DarkLight experiment drives development of new technology for beam, target, and detector and provides a new means to carry out electron scattering experiments at low momentum transfers.« less
Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates
NASA Astrophysics Data System (ADS)
Wang, Zujun; Ma, Yingwu; Liu, Jing; Xue, Yuan; He, Baoping; Yao, Zhibin; Huang, Shaoyan; Liu, Minbo; Sheng, Jiangkun
2016-06-01
The degradation and annealing studies on Colbalt-60 gamma-rays irradiated commercial-off-the-shelf (COTS) pinned photodiode (PPD) CMOS image sensors (CISs) at the various dose rates are presented. The irradiation experiments of COTS PPD CISs are carried out at 0.3, 3.0 and 30.0 rad(Si)/s. The COTS PPD CISs are manufactured using a standard 0.18-μm CMOS technology with four-transistor pixel PPD architecture. The behavior of the tested CISs shows a remarkable degradation after irradiation and differs in the dose rates. The dark current, dark signal non-uniformity (DSNU), random noise, saturation output, signal to noise ratio (SNR), and dynamic range (DR) versus the total ionizing dose (TID) at the various dose rates are investigated. The tendency of dark current, DSNU, and random noise increase and saturation output, SNR, and DR to decrease at 3.0 rad(Si)/s are far greater than those at 0.3 and 30.0 rad(Si)/s. The damage mechanisms caused by TID irradiation at the various dose rates are also analyzed. The annealing tests are carried out at room temperature with unbiased conditions after irradiation.
Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures.
Jiang, Liyong; Yin, Tingting; Dong, Zhaogang; Liao, Mingyi; Tan, Shawn J; Goh, Xiao Ming; Allioux, David; Hu, Hailong; Li, Xiangyin; Yang, Joel K W; Shen, Zexiang
2015-10-27
Dark-field microscopy is a widely used tool for measuring the optical resonance of plasmonic nanostructures. However, current numerical methods for simulating the dark-field scattering spectra were carried out with plane wave illumination either at normal incidence or at an oblique angle from one direction. In actual experiments, light is focused onto the sample through an annular ring within a range of glancing angles. In this paper, we present a theoretical model capable of accurately simulating the dark-field light source with an annular ring. Simulations correctly reproduce a counterintuitive blue shift in the scattering spectra from gold nanodisks with a diameter beyond 140 nm. We believe that our proposed simulation method can be potentially applied as a general tool capable of simulating the dark-field scattering spectra of plasmonic nanostructures as well as other dielectric nanostructures with sizes beyond the quasi-static limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atanov, N.; et al.
The Mu2e experiment at Fermilab will search for the coherentmore » $$\\mu \\to e$$ conversion on aluminum atoms. The detector system consists of a straw tube tracker and a crystal calorimeter. A pre-production of 150 Silicon Photomultiplier arrays for the Mu2e calorimeter has been procured. A detailed quality assur- ance has been carried out on each SiPM for the determination of its own operation voltage, gain, dark current and PDE. The measurement of the mean-time-to-failure for a small random sample of the pro-production group has been also completed as well as the determination of the dark current increase as a function of the ioninizing and non-ioninizing dose.« less
Low dark current MCT-based focal plane detector arrays for the LWIR and VLWIR developed at AIM
NASA Astrophysics Data System (ADS)
Gassmann, Kai Uwe; Eich, Detlef; Fick, Wolfgang; Figgemeier, Heinrich; Hanna, Stefan; Thöt, Richard
2015-10-01
For nearly 40 years AIM develops, manufactures and delivers photo-voltaic and photo-conductive infrared sensors and associated cryogenic coolers which are mainly used for military applications like pilotage, weapon sights, UAVs or vehicle platforms. In 2005 AIM started to provide the competences also for space applications like IR detector units for the SLSTR instrument on board of the Sentinel 3 satellite, the hyperspectral SWIR Imager for EnMAP or pushbroom detectors for high resolution Earth observation satellites. Meanwhile AIM delivered more than 25 Flight Models for several customers. The first European pulse-tube cooler ever operating on-board of a satellite is made by AIM. AIM homes the required infrared core capabilities such as design and manufacturing of focal plane assemblies, detector housing technologies, development and manufacturing of cryocoolers and also data processing for thermal IR cameras under one roof which enables high flexibility to react to customer needs and assures economical solutions. Cryogenically cooled Hg(1-x)CdxTe (MCT) quantum detectors are unequalled for applications requiring high imaging as well as high radiometric performance in the infrared spectral range. Compared with other technologies, they provide several advantages, such as the highest quantum efficiency, lower power dissipation compared to photoconductive devices and fast response times, hence outperforming micro-bolometer arrays. However, achieving an excellent MCT detector performance at long (LWIR) and very long (VLWIR) infrared wavelengths is challenging due to the exponential increase in the thermally generated photodiode dark current with increasing cut-off wavelength and / or operating temperature. Dark current is a critical design driver, especially for LWIR / VLWIR multi-spectral imagers with moderate signal levels or hyper-spectral Fourier spectrometers operating deep into the VLWIR spectral region. Consequently, low dark current (LDC) technologies are the prerequisite for future scientific space and earth observation missions. Aiming, for example at exoplanet or earth atmospheric spectral analysis, significant improvement in LWIR / VLWIR detector material performance is mandatory. LDC material optimization can target different directions of impact: (i) reduction of dark current for a given operational temperature to increase SNR and reduce thermally induced signal offset variations. (ii) operation at elevated temperatures at a given dark current level to reduce mass and power budget of the required cryocooler and to reduce cryostat complexity. (iii) increase the accessible cut-off wavelength at constant detector temperature and dark current level. This paper presents AIM's latest results on n-on-p as well as p-on-n low dark current planar MCT photodiode focal plane detector arrays at cut-off wavelengths >11 μm at 80 K. Dark current densities below Tennant's `Rule07'1 have been demonstrated for n-on-p and p-on-n devices. This work has been carried out under ESA contract ESTEC 4000107414/13/NL/SFe².
High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems.
Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long
2016-12-23
This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance R SS = 10 kΩ and environmental temperatures from 25 °C to 85 °C.
High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems
Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long
2016-01-01
This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance RSS = 10 kΩ and environmental temperatures from 25 °C to 85 °C. PMID:28025530
Computation of dark frames in digital imagers
NASA Astrophysics Data System (ADS)
Widenhorn, Ralf; Rest, Armin; Blouke, Morley M.; Berry, Richard L.; Bodegom, Erik
2007-02-01
Dark current is caused by electrons that are thermally exited into the conduction band. These electrons are collected by the well of the CCD and add a false signal to the chip. We will present an algorithm that automatically corrects for dark current. It uses a calibration protocol to characterize the image sensor for different temperatures. For a given exposure time, the dark current of every pixel is characteristic of a specific temperature. The dark current of every pixel can therefore be used as an indicator of the temperature. Hot pixels have the highest signal-to-noise ratio and are the best temperature sensors. We use the dark current of a several hundred hot pixels to sense the chip temperature and predict the dark current of all pixels on the chip. Dark current computation is not a new concept, but our approach is unique. Some advantages of our method include applicability for poorly temperature-controlled camera systems and the possibility of ex post facto dark current correction.
NASA Astrophysics Data System (ADS)
Shmal'ko, A. V.; Lamekin, V. F.; Smirnov, V. L.; Polyantsev, A. S.; Kogan, Yu I.; Babushkina, T. S.; Kuntsevich, T. S.; Peshkovskaya, O. G.
1990-08-01
Photodetector waveguide structures made of epitaxial InxGa1 - xAs solid-solution films were developed and investigated. These structures were intended for optical integrated circuits manufactured from III-V semiconductor compounds for operation in the wavelength range 1.0-1.5 μm. Two types of photodetector waveguide p-i-n structures were developed. They consisted of a composite waveguide and tunnel-coupled waveguides, respectively. A study was made of structural parameters, responsivity, spectral and time characteristics, and dark currents in photodetectors made of the waveguide structures. This investigation was carried out in the wavelength range 1.0-1.3 μm. The maximum spectral responsivity of one of the types of the waveguide photodetector was ~ 0.5 ± 0.1 A/W and the dark current did not exceed 10 - 7-10 - 8 A.
Tidal Debris from High-Velocity Collisions as Fake Dark Galaxies: A Numerical Model of VIRGOHI 21
NASA Astrophysics Data System (ADS)
Duc, Pierre-Alain; Bournaud, Frederic
2008-02-01
High-speed collisions, although current in clusters of galaxies, have long been neglected, as they are believed to cause little damages to galaxies except when they are repeated, a process called "harassment." In fact, they are able to produce faint but extended gaseous tails. Such low-mass, starless, tidal debris may become detached and appear as free-floating clouds in the very deep H I surveys that are currently being carried out. We show in this paper that these debris possess the same apparent properties as the so-called dark galaxies, objects originally detected in H I, with no optical counterpart, and presumably dark matter-dominated. We present a numerical model of the prototype of such dark galaxies—VIRGOHI 21—that is able to reproduce its main characteristics: the one-sided tail linking it to the spiral galaxy NGC 4254, the absence of stars, and above all the reversal of the velocity gradient along the tail originally attributed to rotation motions caused by a massive dark matter halo, which we find to be consistent with simple streaming motions plus projection effects. According to our numerical simulations, this tidal debris was expelled 750 Myr ago during a flyby at 1100 km s-1 of NGC 4254 by a massive companion that should now lie at a projected distance of about 400 kpc. A candidate for the intruder is discussed. The existence of galaxies that have never been able to form stars had already been challenged on the basis of theoretical and observational grounds. Tidal collisions, in particular those occurring at high speed, provide a much more simple explanation for the origin of such putative dark galaxies.
A Dark Asteroid Family in the Phocaea Region
NASA Astrophysics Data System (ADS)
Novaković, Bojan; Tsirvoulis, Georgios; Granvik, Mikael; Todović, Ana
2017-06-01
We report the discovery of a new asteroid family among the dark asteroids residing in the Phocaea region the Tamara family. We make use of available physical data to separate asteroids in the region according to their surface reflectance properties, and establish the membership of the family. We determine the slope of the cumulative magnitude distribution of the family, and find it to be significantly steeper than the corresponding slope of all the asteroids in the Phocaea region. This implies that subkilometer dark Phocaeas are comparable in number to bright S-type objects, shedding light on an entirely new aspect of the composition of small Phocaea asteroids. We then use the Yarkovsky V-shape based method and estimate the age of the family to be 264 ± 43 Myr. Finally, we carry out numerical simulations of the dynamical evolution of the Tamara family. The results suggest that up to 50 Tamara members with absolute magnitude H< 19.4 may currently be found in the near-Earth region. Despite their relatively small number in the near-Earth space, the rate of Earth impacts by small, dark Phocaeas is non-negligible.
Dark matter directionality revisited with a high pressure xenon gas detector
Mohlabeng, Gopolang; Kong, Kyoungchul; Li, Jin; ...
2015-07-20
An observation of the anisotropy of dark matter interactions in a direction-sensitive detector would provide decisive evidence for the discovery of galactic dark matter. Directional information would also provide a crucial input to understanding its distribution in the local Universe. Most of the existing directional dark matter detectors utilize particle tracking methods in a low-pressure gas time projection chamber. These low pressure detectors require excessively large volumes in order to be competitive in the search for physics beyond the current limit. In order to avoid these volume limitations, we consider a novel proposal, which exploits a columnar recombination effect inmore » a high-pressure gas time projection chamber. The ratio of scintillation to ionization signals observed in the detector carries the angular information of the particle interactions. In this paper, we investigate the sensitivity of a future directional detector focused on the proposed high-pressure Xenon gas time projection chamber. We study the prospect of detecting an anisotropy in the dark matter velocity distribution. We find that tens of events are needed to exclude an isotropic distribution of dark matter interactions at 95% confidence level in the most optimistic case with head-to-tail information. However, one needs at least 10-20 times more events without head-to-tail information for light dark matter below ~50 GeV. For an intermediate mass range, we find it challenging to observe an anisotropy of the dark matter distribution. Our results also show that the directional information significantly improves precision measurements of dark matter mass and the elastic scattering cross section for a heavy dark matter.« less
Dark Current Degradation of Near Infrared Avalanche Photodiodes from Proton Irradiation
NASA Technical Reports Server (NTRS)
Becker, Heidi N.; Johnston, Allan H.
2004-01-01
InGaAs and Ge avalanche photodiodes (APDs) are examined for the effects of 63-MeV protons on dark current. Dark current increases were large and similar to prior results for silicon APDs, despite the smaller size of InGaAs and Ge devices. Bulk dark current increases from displacement damage in the depletion regions appeared to be the dominant contributor to overall dark current degradation. Differences in displacement damage factors are discussed as they relate to structural and material differences between devices.
Lower-Dark-Current, Higher-Blue-Response CMOS Imagers
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Cunningham, Thomas; Hancock, Bruce
2008-01-01
Several improved designs for complementary metal oxide/semiconductor (CMOS) integrated-circuit image detectors have been developed, primarily to reduce dark currents (leakage currents) and secondarily to increase responses to blue light and increase signal-handling capacities, relative to those of prior CMOS imagers. The main conclusion that can be drawn from a study of the causes of dark currents in prior CMOS imagers is that dark currents could be reduced by relocating p/n junctions away from Si/SiO2 interfaces. In addition to reflecting this conclusion, the improved designs include several other features to counteract dark-current mechanisms and enhance performance.
Low-dark current 1024×1280 InGaAs PIN arrays
NASA Astrophysics Data System (ADS)
Yuan, Ping; Chang, James; Boisvert, Joseph C.; Karam, Nasser
2014-06-01
Photon counting imaging applications requires low noise from both detector and readout integrated circuit (ROIC) arrays. In order to retain the photon-counting-level sensitivity, a long integration time has to be employed and the dark current has to be minimized. It is well known that the PIN dark current is sensitive to temperature and a dark current density of 0.5 nA/cm2 was demonstrated at 7 °C previously. In order to restrain the size, weight, and power consumption (SWaP) of cameras for persistent large-area surveillance on small platforms, it is critical to develop large format PIN arrays with small pitch and low dark current density at higher operation temperatures. Recently Spectrolab has grown, fabricated and tested 1024x1280 InGaAs PIN arrays with 12.5 μm pitch and achieved 0.7 nA/cm2 dark current density at 15 °C. Based on our previous low-dark-current PIN designs, the improvements were focused on 1) the epitaxial material design and growth control; and 2) PIN device structure to minimize the perimeter leakage current and junction diffusion current. We will present characterization data and analyses that illustrate the contribution of various dark current mechanisms.
NASA Technical Reports Server (NTRS)
Mendenhall, J. A.
2001-01-01
The stability of the EO-1 Advanced Land Imager dark current levels over the period of one-half orbit is investigated. A series of two-second dark current collections, over the course of 40 minutes, was performed during the first sixty days the instrument was in orbit. Analysis of this data indicates only two dark current reference periods, obtained entering and exiting eclipse, are required to remove ALI dark current offsets for 99.9% of the focal plane to within 1.5 digital numbers for any observation on the solar illuminated portion of the orbit.
NASA Astrophysics Data System (ADS)
Subashchandran, Shanthi; Okamoto, Ryo; Zhang, Labao; Tanaka, Akira; Okano, Masayuki; Kang, Lin; Chen, Jian; Wu, Peiheng; Takeuchi, Shigeki
2013-10-01
The realization of an ultralow-dark-count rate (DCR) along with the conservation of high detection efficiency (DE) is critical for many applications using single photon detectors in quantum information technologies, material sciences, and biological sensing. For this purpose, a fiber-coupled superconducting nanowire single-photon detector (SNSPD) with a meander-type niobium nitride nanowire (width: 50 nm) is studied. Precise measurements of the bias current dependence of DE are carried out for a wide spectral range (from 500 to 1650 nm in steps of 50 nm) using a white light source and a laser line Bragg tunable band-pass filter. An ultralow DCR (0.0015 cps) and high DE (32%) are simultaneously achieved by the SNSPD at a wavelength of 500 nm.
Development of Low Parasitic Light Sensitivity and Low Dark Current 2.8 μm Global Shutter Pixel †
Yokoyama, Toshifumi; Tsutsui, Masafumi; Suzuki, Masakatsu; Nishi, Yoshiaki; Mizuno, Ikuo; Lahav, Assaf
2018-01-01
We developed a low parasitic light sensitivity (PLS) and low dark current 2.8 μm global shutter pixel. We propose a new inner lens design concept to realize both low PLS and high quantum efficiency (QE). 1/PLS is 7700 and QE is 62% at a wavelength of 530 nm. We also propose a new storage-gate based memory node for low dark current. P-type implants and negative gate biasing are introduced to suppress dark current at the surface of the memory node. This memory node structure shows the world smallest dark current of 9.5 e−/s at 60 °C. PMID:29370146
Development of Low Parasitic Light Sensitivity and Low Dark Current 2.8 μm Global Shutter Pixel.
Yokoyama, Toshifumi; Tsutsui, Masafumi; Suzuki, Masakatsu; Nishi, Yoshiaki; Mizuno, Ikuo; Lahav, Assaf
2018-01-25
Abstract : We developed a low parasitic light sensitivity (PLS) and low dark current 2.8 μm global shutter pixel. We propose a new inner lens design concept to realize both low PLS and high quantum efficiency (QE). 1/PLS is 7700 and QE is 62% at a wavelength of 530 nm. We also propose a new storage-gate based memory node for low dark current. P-type implants and negative gate biasing are introduced to suppress dark current at the surface of the memory node. This memory node structure shows the world smallest dark current of 9.5 e - /s at 60 °C.
Dark current of organic heterostructure devices with insulating spacer layers
NASA Astrophysics Data System (ADS)
Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; Saxena, Avadh; Smith, Darryl L.; Ruden, P. Paul
2015-03-01
The dark current density at fixed voltage bias in donor/acceptor organic planar heterostructure devices can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of an interfacial exciplex state. If the exciplex formation rate limits current flow, the insulating interface layer can increase dark current whereas, if the exciplex recombination rate limits current flow, the insulating interface layer decreases dark current. We present a device model to describe this behavior and illustrate it experimentally for various donor/acceptor systems, e.g. P3HT/LiF/C60.
Dark Currents and Their Effect on the Primary Beam in an X-band Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bane, K.L.F.; Dolgashev, V.A.; Raubenheimer, T.
2005-05-27
We numerically study properties of primary dark currents in an X-band accelerating structure. For the H60VG3 structure considered for the Next Linear Collider (NLC) we first perform a fairly complete (with some approximations) calculation of dark current trajectories. These results are used to study properties of the dark current leaving the structure. For example, at accelerating gradient of 65 MV/m, considering two very different assumptions about dark current emission around the irises, we find that the fraction of emitted current leaving the structure to be a consistent {approx} 1%. Considering that {approx} 1 mA outgoing dark current is seen inmore » measurement, this implies that {approx} 100 mA (or 10 pC per period) is emitted within the structure itself. Using the formalism of the Lienard-Wiechert potentials, we then perform a systematic calculation of the transverse kick of dark currents on a primary linac bunch. The result is {approx} 1 V kick per mA (or per 0.1 pC per period) dark current emitted from an iris. For an entire structure we estimate the total kick on a primary bunch to be {approx} 15 V. For the NLC linac this translates to a ratio of (final) vertical beam offset to beam size of about 0.2. However, with the assumptions that needed to be made--particularly the number of emitters and their distribution within a structure--the accuracy of this result may be limited to the order of magnitude.« less
NASA Technical Reports Server (NTRS)
Mendenhall, J. A.
2001-01-01
The dark current and noise characteristics of the Earth Observing-1 Advanced Land Imager measured during ground calibration at MIT Lincoln Laboratory are presented. Data were collected for the nominal focal plane operating temperature of 220 K as well as supplemental operating temperatures (215 and 225 K). Dark current baseline values are provided, and noise characterization includes the evaluation of white, coherent, low frequency, and high frequency components. Finally, anomalous detectors, characterized by unusual dark current, noise, gain, or cross-talk properties are investigated.
Studies of the Effects of Control Bandwidth and Dark-Hole Size on the HCIT Contrast Performance
NASA Technical Reports Server (NTRS)
Sidick, Erkin; Shaklan, Stuart; Balasubramanian, Kunjithapatha; Cady, Eric
2015-01-01
We have carried out both theoretical and experimental studies of the sensitivity of dark hole contrast to the control bandwidth and dark-hole dimensions in high-contrast broadband stellar coronagraphy. We have evaluated the performance of DM actuator solutions in the presence of occulting mask defects using one to five 2% -wide bands spanning a 10% bandpass. We have also investigated the dependence of the HCIT contrast performance on the size of dark -hole area including large dark holes formed at the Nyquist limit of the DM.
Studies of the effects of control bandwidth and dark-hole size on the HCIT contrast performance
NASA Astrophysics Data System (ADS)
Sidick, Erkin; Shaklan, Stuart; Balasubramanian, Kunjithapatham; Cady, Eric
2015-09-01
We have carried out both theoretical and experimental studies of the sensitivity of dark hole contrast to the control bandwidth and dark-hole dimensions in high-contrast broadband stellar coronagraphy. We have evaluated the performance of DM actuator solutions in the presence of occulting mask defects using one to five 2%-wide bands spanning a 10% bandpass. We have also investigated the dependence of the HCIT contrast performance on the size of dark-hole area including large dark holes formed at the Nyquist limit of the DM.
Accounting for Dark Current Accumulated during Readout of Hubble's ACS/WFC Detectors
NASA Astrophysics Data System (ADS)
Ryon, Jenna E.; Grogin, Norman A.; Coe, Dan A.; ACS Team
2018-06-01
We investigate the properties of excess dark current accumulated during the 100-second full-frame readout of the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) detectors. This excess dark current, called "readout dark", gives rise to ambient background gradients and hot columns in each ACS/WFC image. While readout dark signal is removed from science images during the bias correction step in CALACS, the additional noise from the readout dark is currently not taken into account. We develop a method to estimate the readout dark noise properties in ACS/WFC observations. We update the error (ERR) extensions of superbias images to include the appropriate noise from the ambient readout dark gradient and stable hot columns. In recent data, this amounts to about 5 e-/pixel added variance in the rows farthest from the WFC serial registers, and about 7 to 30 e-/pixel added variance along the stable hot columns. We also flag unstable hot columns in the superbias data quality (DQ) extensions. The new reference file pipeline for ACS/WFC implements these updates to our superbias creation process.
Cosmology and fundamental physics with the Euclid satellite.
Amendola, Luca; Appleby, Stephen; Avgoustidis, Anastasios; Bacon, David; Baker, Tessa; Baldi, Marco; Bartolo, Nicola; Blanchard, Alain; Bonvin, Camille; Borgani, Stefano; Branchini, Enzo; Burrage, Clare; Camera, Stefano; Carbone, Carmelita; Casarini, Luciano; Cropper, Mark; de Rham, Claudia; Dietrich, Jörg P; Di Porto, Cinzia; Durrer, Ruth; Ealet, Anne; Ferreira, Pedro G; Finelli, Fabio; García-Bellido, Juan; Giannantonio, Tommaso; Guzzo, Luigi; Heavens, Alan; Heisenberg, Lavinia; Heymans, Catherine; Hoekstra, Henk; Hollenstein, Lukas; Holmes, Rory; Hwang, Zhiqi; Jahnke, Knud; Kitching, Thomas D; Koivisto, Tomi; Kunz, Martin; La Vacca, Giuseppe; Linder, Eric; March, Marisa; Marra, Valerio; Martins, Carlos; Majerotto, Elisabetta; Markovic, Dida; Marsh, David; Marulli, Federico; Massey, Richard; Mellier, Yannick; Montanari, Francesco; Mota, David F; Nunes, Nelson J; Percival, Will; Pettorino, Valeria; Porciani, Cristiano; Quercellini, Claudia; Read, Justin; Rinaldi, Massimiliano; Sapone, Domenico; Sawicki, Ignacy; Scaramella, Roberto; Skordis, Constantinos; Simpson, Fergus; Taylor, Andy; Thomas, Shaun; Trotta, Roberto; Verde, Licia; Vernizzi, Filippo; Vollmer, Adrian; Wang, Yun; Weller, Jochen; Zlosnik, Tom
2018-01-01
Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.
Cosmology and fundamental physics with the Euclid satellite
NASA Astrophysics Data System (ADS)
Amendola, Luca; Appleby, Stephen; Avgoustidis, Anastasios; Bacon, David; Baker, Tessa; Baldi, Marco; Bartolo, Nicola; Blanchard, Alain; Bonvin, Camille; Borgani, Stefano; Branchini, Enzo; Burrage, Clare; Camera, Stefano; Carbone, Carmelita; Casarini, Luciano; Cropper, Mark; de Rham, Claudia; Dietrich, Jörg P.; Di Porto, Cinzia; Durrer, Ruth; Ealet, Anne; Ferreira, Pedro G.; Finelli, Fabio; García-Bellido, Juan; Giannantonio, Tommaso; Guzzo, Luigi; Heavens, Alan; Heisenberg, Lavinia; Heymans, Catherine; Hoekstra, Henk; Hollenstein, Lukas; Holmes, Rory; Hwang, Zhiqi; Jahnke, Knud; Kitching, Thomas D.; Koivisto, Tomi; Kunz, Martin; La Vacca, Giuseppe; Linder, Eric; March, Marisa; Marra, Valerio; Martins, Carlos; Majerotto, Elisabetta; Markovic, Dida; Marsh, David; Marulli, Federico; Massey, Richard; Mellier, Yannick; Montanari, Francesco; Mota, David F.; Nunes, Nelson J.; Percival, Will; Pettorino, Valeria; Porciani, Cristiano; Quercellini, Claudia; Read, Justin; Rinaldi, Massimiliano; Sapone, Domenico; Sawicki, Ignacy; Scaramella, Roberto; Skordis, Constantinos; Simpson, Fergus; Taylor, Andy; Thomas, Shaun; Trotta, Roberto; Verde, Licia; Vernizzi, Filippo; Vollmer, Adrian; Wang, Yun; Weller, Jochen; Zlosnik, Tom
2018-04-01
Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.
Cosmology and Fundamental Physics with the Euclid Satellite.
Amendola, Luca; Appleby, Stephen; Bacon, David; Baker, Tessa; Baldi, Marco; Bartolo, Nicola; Blanchard, Alain; Bonvin, Camille; Borgani, Stefano; Branchini, Enzo; Burrage, Clare; Camera, Stefano; Carbone, Carmelita; Casarini, Luciano; Cropper, Mark; de Rham, Claudia; Di Porto, Cinzia; Ealet, Anne; Ferreira, Pedro G; Finelli, Fabio; García-Bellido, Juan; Giannantonio, Tommaso; Guzzo, Luigi; Heavens, Alan; Heisenberg, Lavinia; Heymans, Catherine; Hoekstra, Henk; Hollenstein, Lukas; Holmes, Rory; Horst, Ole; Jahnke, Knud; Kitching, Thomas D; Koivisto, Tomi; Kunz, Martin; La Vacca, Giuseppe; March, Marisa; Majerotto, Elisabetta; Markovic, Katarina; Marsh, David; Marulli, Federico; Massey, Richard; Mellier, Yannick; Mota, David F; Nunes, Nelson J; Percival, Will; Pettorino, Valeria; Porciani, Cristiano; Quercellini, Claudia; Read, Justin; Rinaldi, Massimiliano; Sapone, Domenico; Scaramella, Roberto; Skordis, Constantinos; Simpson, Fergus; Taylor, Andy; Thomas, Shaun; Trotta, Roberto; Verde, Licia; Vernizzi, Filippo; Vollmer, Adrian; Wang, Yun; Weller, Jochen; Zlosnik, Tom
2013-01-01
Euclid is a European Space Agency medium-class mission selected for launch in 2019 within the Cosmic Vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.
An Exploration of WFC3/IR Dark Current Variation
NASA Astrophysics Data System (ADS)
Sunnquist, B.; Baggett, S.; Long, K. S.
2017-02-01
We use a collection of darks spanning September 2009 to June 2016 to study variations in the dark current in the IR detector on WFC3. Although the darks possess a similar signal pattern across the detector, we find that their median dark rates vary by as much as 0.014 DN/s (0.032 e-/s). The distribution of these median values has a triangular shape with a mean and standard deviation of 0.021 ± 0.0029 DN/s (0.049 ± 0.0069 e-/s). We observe a long term time-dependence in the inboard vertical reference pixel and zeroth read signals; however, these differences do not noticeably affect the calibrated dark signals, and we conclude that the WFC3/IR dark current levels continue to remain stable since launch. The inboard reference pixel signals exhibit a unique, but consistent, pattern around the detector, but this pattern does not evolve noticeably with the median of the science pixels, and a quadrant or row-based reference pixel subtraction strategy does not reduce the spread between the median dark rates. We notice a slight drift in the inboard reference pixel signals up the dark ramps, and the intensity of this drift is related to the median dark current in the science pixels. This holds true using either the horizontal or vertical reference pixels and for darks with a variety of sample sequences.
Dark current reduction of Ge photodetector by GeO₂ surface passivation and gas-phase doping.
Takenaka, Mitsuru; Morii, Kiyohito; Sugiyama, Masakazu; Nakano, Yoshiaki; Takagi, Shinichi
2012-04-09
We have investigated the dark current of a germanium (Ge) photodetector (PD) with a GeO₂ surface passivation layer and a gas-phase-doped n+/p junction. The gas-phase-doped PN diodes exhibited a dark current of approximately two orders of magnitude lower than that of the diodes formed by a conventional ion implantation process, indicating that gas-phase doping is suitable for low-damage PN junction formation. The bulk leakage (Jbulk) and surface leakage (Jsurf) components of the dark current were also investigated. We have found that GeO₂ surface passivation can effectively suppress the dark current of a Ge PD in conjunction with gas-phase doping, and we have obtained extremely low values of Jbulk of 0.032 mA/cm² and Jsurf of 0.27 μA/cm.
Hot spots and dark current in advanced plasma wakefield accelerators
Manahan, G. G.; Deng, A.; Karger, O.; ...
2016-01-29
Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. Likewise, these electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. The strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.
Dark Current Reduction of IR Detectors
2017-10-19
demonstrating a novel dark current reduction approach for dense infrared detector arrays. This technique is based on the diffusion control junction (DCJ...fabricate and test detector arrays with and without DCJs on the same wafer and demonstrate the effectiveness of the DCJ approach in reducing dark current...subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE
On The Missing Dwarf Problem In Clusters And Around The Nearby Galaxy M33
NASA Astrophysics Data System (ADS)
Keenan, Olivia Charlotte
2017-08-01
This thesis explores possible solutions to the dwarf galaxy problem. This is a discrepancy between the number of dwarf galaxies we observe, and the number predicted from cosmological computer simulations. Simulations predict around ten times more dwarf galaxy satellites than are currently observed. I have investigated two possible solutions: dark galaxies and the low surface brightness universe. Dark galaxies are dark matter halos which contain gas, but few or no stars, hence are optically dark. As part of the Arecibo Galaxy Environment Survey I surveyed the neutral hydrogen gas around the nearby galaxy M33. I found 32 gas clouds, 11 of which are new detections. Amongst these there was one particularly interesting cloud. AGESM33-32 is ring shaped and larger than M33 itself, if at the same distance. It has a velocity width which is similar to the velocity dispersion of gas in a disk galaxy, as well as having a clear velocity gradient across it which may be due to rotation. The fact that it also currently has no observed associated stars means it is a dark galaxy candidate. Optically, dwarf galaxies may be out there, but too faint for us to detect. This means that with newer, deeper, images we may be able to unveil a large, low surface brightness, population of dwarf galaxies. However, the question remains as to how these can be distinguished from background galaxies. I have used Next Generation Virgo Survey (NGVS) data to carry out photometry on 852 Virgo galaxies in four bands. I also measured the photometric properties of galaxies on a background (non-cluster) NGVS frame. I discovered that a combination of colour, magnitude and surface brightness information could be used to identify cluster dwarf galaxies from background field galaxies. The most effective method is to use the surface brightness-magnitude relation.
Dark current in multilayer stabilized amorphous selenium based photoconductive x-ray detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frey, Joel B.; Belev, George; Kasap, Safa O.
2012-07-01
We report on experimental results which show that the dark current in n-i-p structured, amorphous selenium films is independent of i-layer thickness in samples with consistently thick blocking layers. We have observed, however, a strong dependence on the n-layer thickness and positive contact metal chosen. These results indicate that the dominant source of the dark current is carrier injection from the contacts and any contribution from carriers thermally generated in the bulk of the photoconductive layer is negligible. This conclusion is supported by a description of the dark current transients at different applied fields by a model which assumes onlymore » carrier emission over a Schottky barrier. This model also predicts that while hole injection is initially dominant, some time after the application of the bias, electron injection may become the dominant source of dark current.« less
NASA Astrophysics Data System (ADS)
Gunawan, R.; Sugiarti, E.; Isnaeni; Purawiardi, R. I.; Widodo, H.; Muslimin, A. N.; Yuliasari; Ronaldus, C. E.; Prastomo, N.; Hastuty, S.
2018-03-01
The optical, electrical and structural characteristics of InGaN-based blue light-emitting diodes (LEDs) were investigated to identify the degradation of LED before and after current injection. The sample was injected by high current of 200 A/cm2 for 5 and 20 minutes. It was observed that injection of current shifts light intensity and wavelength characteristics that indicated defect generation. Transmission Electron Microscopy (TEM) characterization was carried out in order to clarify the structure degradation caused by defect in active layer which consisted of 14 quantum well with thickness of about 5 nm and confined with barrier layer with thickness of about 12 nm. TEM results showed pre-existing defect in LED before injection with high current. Furthermore, discontinue and edge defect was found in dark spot region of LED after injection with high current.
Low dark current InGaAs detector arrays for night vision and astronomy
NASA Astrophysics Data System (ADS)
MacDougal, Michael; Geske, Jon; Wang, Chad; Liao, Shirong; Getty, Jonathan; Holmes, Alan
2009-05-01
Aerius Photonics has developed large InGaAs arrays (1K x 1K and greater) with low dark currents for use in night vision applications in the SWIR regime. Aerius will present results of experiments to reduce the dark current density of their InGaAs detector arrays. By varying device designs and passivations, Aerius has achieved a dark current density below 1.0 nA/cm2 at 280K on small-pixel, detector arrays. Data is shown for both test structures and focal plane arrays. In addition, data from cryogenically cooled InGaAs arrays will be shown for astronomy applications.
Ultra-Fast Image Sensor Using Ge on Insulator MIS/Schottky Detectors
2008-05-28
electronic system. The noise equivalent power is defined as in /R, where in is the current noise and R is the responsivity. At 1 V, the current noise ...is limited by the dark current and can be approximated as the shot noise 2eIdf1/2, where Id is the measured dark current. At 0 V, the dark current...approaches zero, and the current noise should be approximated as Johnson noise 4kTGf1/2, where G is the measured conductance. Therefore, D* can be
Cosmology with interaction in the dark sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, F. E. M.; Barboza, E. M. Jr.; Alcaniz, J. S.
2009-06-15
Unless some unknown symmetry in nature prevents or suppresses a nonminimal coupling in the dark sector, the dark energy field may interact with the pressureless component of dark matter. In this paper, we investigate some cosmological consequences of a general model of interacting dark matter-dark energy characterized by a dimensionless parameter {epsilon}. We derive a coupled scalar field version for this general class of scenarios and carry out a joint statistical analysis involving type Ia supernovae data (Legacy and Constitution sets), measurements of baryon acoustic oscillation peaks at z=0.20 (2dFGRS) and z=0.35 (SDSS), and measurements of the Hubble evolution H(z).more » For the specific case of vacuum decay (w=-1), we find that, although physically forbidden, a transfer of energy from dark matter to dark energy is favored by the data.« less
In Situ observation of dark current emission in a high gradient rf photocathode gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.
Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (~100 μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. Finally, the postexaminations with scanning electron microscopy and white light interferometry reveal the origins ofmore » ~75% strong emission areas overlap with the spots where rf breakdown has occurred.« less
In Situ observation of dark current emission in a high gradient rf photocathode gun
Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.; ...
2016-08-15
Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (~100 μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. Finally, the postexaminations with scanning electron microscopy and white light interferometry reveal the origins ofmore » ~75% strong emission areas overlap with the spots where rf breakdown has occurred.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asubay, Sezai; Durap, Feyyaz; Aydemir, Murat
An organic-inorganic junction was fabricated by forming [Ru(Cy{sub 2}PNHCH{sub 2}-C{sub 4}H{sub 3}O)(η{sup 6}-p-cymene)Cl{sub 2}] complex thin film using spin coating technique on n-Si and evaporating Au metal on the film. It was seen that the structure had perfect rectification property. Current-voltage (I-V) measurements were carried out in dark and under various illumination conditions (between 50-100 mW/cm{sup 2}) and with the temperature range from 303 to 380 K. The structure showed unusually forward and reverse bias temperature and light sensing behaviors. It was seen that the current both in forward and reverse bias increased with the increase in light intensity and temperature.
WFC3/UVIS Dark Calibration: Monitoring Results and Improvements to Dark Reference Files
NASA Astrophysics Data System (ADS)
Bourque, M.; Baggett, S.
2016-04-01
The Wide Field Camera 3 (WFC3) UVIS detector possesses an intrinsic signal during exposures, even in the absence of light, known as dark current. A daily monitor program is employed every HST cycle to characterize and measure this current as well as to create calibration files which serve to subtract the dark current from science data. We summarize the results of the daily monitor program for all on-orbit data. We also introduce a new algorithm for generating the dark reference files that provides several improvements to their overall quality. Key features to the new algorithm include correcting the dark frames for Charge Transfer Efficiency (CTE) losses, using an anneal-cycle average value to measure the dark current, and generating reference files on a daily basis. This new algorithm is part of the release of the CALWF3 v3.3 calibration pipeline on February 23, 2016 (also known as "UVIS 2.0"). Improved dark reference files have been regenerated and re-delivered to the Calibration Reference Data System (CRDS) for all on-orbit data. Observers with science data taken prior to the release of CALWF3 v3.3 may request their data through the Mikulski Archive for Space Telescopes (MAST) to obtain the improved products.
Radiometric and Radiation Response of Visible FPAs
NASA Technical Reports Server (NTRS)
Hubbs, John
2007-01-01
The readout integrated circuit (ROIC) used in these devices was originally developed for use in space based infrared systems operating at deep cryogenic temperatures and was selected because of its proven tolerance to total ionizing radiation? The detectors are a 128 x 128 array of 60 pm x 60 pm pixel elements that have been anti-reflection (AR) coated to improve the response at very short wavelengths. These visible focal plane arrays were operated at -40 C (233 K). Two focal planes were characterized using cobalt-60 radiation to produce ionizing total dose damage in the VFPAs. Both operational and performance data were obtained as functions of total dose. The first device tested showed no appreciable change in responsivity or noise up to 300 krad(Si). However, at the next dose level of 600 krad(Si), the readout was non-operational due to failure in the digital circuitry. The second device was characterized to a total dose of 750 krad(Si) with no observed change in responsivity. An increase dark current was observed in both devices, and in the second device, the dark current caused an increase in noise at low irradiance at 400 krad(Si) and above. The increase in dark current was somewhat un-expected for visible PIN detectors. The median dark current increased more than two orders of magnitude at 300 krad(Si) for the first device and a factor of 350 at 750 krad(Si) for pixels near the edge for the second device. The dark current was found to be a strong function of detector bias, with pixels near the edge of the array showing a greater increase in dark current with bias than those near the center. Since the optical response was not a function of bias, it is hypothesized that the dark current is a surface effect and that the variation in dark current with location is due to a variation in pixel bias, caused by a voltage drop across the pixel common lead. As the total dose increased, the dark current and the voltage drop increased
NASA Astrophysics Data System (ADS)
Ha, JaeUn; Yoon, Seongwon; Lee, Jong-Soo; Chung, Dae Sung
2016-03-01
In this study, the strategy of using an organic-inorganic hybrid planar heterojunction consisting of polymeric semiconductors and inorganic nanocrystals is introduced to realize a high-performance hybrid photodiode (HPD) with low dark current and high detectivity. To prevent undesired charge injection under the reverse bias condition, which is the major dark current source of the photodiode, a well-defined planar heterojunction is strategically constructed via smart solution process techniques. The optimized HPD renders a low dark current of ˜10-5 mA cm-2 at -5 V and ˜10-6 mA cm-2 at -1 V, as well as a high detectivity ˜1012 Jones across the entire visible wavelength range. Furthermore, excellent photocurrent stability is demonstrated under continuous light exposure. We believe that the solution-processed planar heterojunction with inverted structure can be an attractive alternative diode structure for fabricating high-performance HPDs, which usually suffer from high dark current issues.
NASA Astrophysics Data System (ADS)
Song, P. Y.; Ye, Z. H.; Huang, A. B.; Chen, H. L.; Hu, X. N.; Ding, R. J.; He, L.
2016-09-01
The dark currents of two short wave (SW) HgCdTe infrared focal plane arrays (IRFPA) detectors hybridized with direct injection (DI) readout and capacitance transimpedance amplifier (CTIA) with long time integration were investigated. The cutoff wavelength of the two SW IRFPAs is about 2.6 μm at 84 K. The dark current densities of DI and CTIA samples are approximately 8.0 × 10-12 A/cm2 and 7.2 × 10-10 A/cm2 at 110 K, respectively. The large divergence of the dark current density might arise from the injection efficiency difference of the two readouts. The low injection efficiency of the DI readout, compared with the high injection efficiency of the CTIA readout at low temperature, makes the dark current density of the DI sample much lower than that of the CTIA sample. The experimental value of injection efficiency of the DI sample was evaluated as 1.1% which is consistent with its theoretical value.
NASA Astrophysics Data System (ADS)
Ejrnaes, M.; Parlato, L.; Arpaia, R.; Bauch, T.; Lombardi, F.; Cristiano, R.; Tafuri, F.; Pepe, G. P.
2017-12-01
We have fabricated several 10 nm thick and 65 nm wide YBa2Cu3O7-δ (YBCO) nanostrips. The nanostrips with the highest critical current densities are characterized by hysteretic current voltage characteristics (IVCs) with a direct bistable switch from the zero-voltage to the finite voltage state. The presence of hysteretic IVCs allowed the observation of dark pulses due to fluctuations phenomena. The key role of the bistable behavior is its ability to transform a small disturbance (e.g. an intrinsic fluctuation) into a measurable transient signal, i.e. a dark pulse. On the contrary, in devices characterized by lower critical current density values, the IVCs are non-hysteretic and dark pulses have not been observed. To investigate the physical origin of the dark pulses, we have measured the bias current dependence of the dark pulse rate: the observed exponential increase with the bias current is compatible with mechanisms based on thermal activation of magnetic vortices in the nanostrip. We believe that the successful amplification of small fluctuation events into measurable signals in nanostrips of ultrathin YBCO is a milestone for further investigation of YBCO nanostrips for superconducting nanostrip single photon detectors and other quantum detectors for operation at higher temperatures.
Jahromi, Hamed Dehdashti; Mahmoodi, Ali; Sheikhi, Mohammad Hossein; Zarifkar, Abbas
2016-10-20
Reduction of dark current at high-temperature operation is a great challenge in conventional quantum dot infrared photodetectors, as the rate of thermal excitations resulting in the dark current increases exponentially with temperature. A resonant tunneling barrier is the best candidate for suppression of dark current, enhancement in signal-to-noise ratio, and selective extraction of different wavelength response. In this paper, we use a physical model developed by the authors recently to design a proper resonant tunneling barrier for quantum infrared photodetectors and to study and analyze the spectral response of these devices. The calculated transmission coefficient of electrons by this model and its dependency on bias voltage are in agreement with experimental results. Furthermore, based on the calculated transmission coefficient, the dark current of a quantum dot infrared photodetector with a resonant tunneling barrier is calculated and compared with the experimental data. The validity of our model is proven through this comparison. Theoretical dark current by our model shows better agreement with the experimental data and is more accurate than the previously developed model. Moreover, noise in the device is calculated. Finally, the effect of different parameters, such as temperature, size of quantum dots, and bias voltage, on the performance of the device is simulated and studied.
García-Rodríguez, Rodrigo; Villanueva-Cab, Julio; Anta, Juan A.; Oskam, Gerko
2016-01-01
The influence of the thickness of the nanostructured, mesoporous TiO2 film on several parameters determining the performance of a dye-sensitized solar cell is investigated both experimentally and theoretically. We pay special attention to the effect of the exchange current density in the dark, and we compare the values obtained by steady state measurements with values extracted from small perturbation techniques. We also evaluate the influence of exchange current density, the solar cell ideality factor, and the effective absorption coefficient of the cell on the optimal film thickness. The results show that the exchange current density in the dark is proportional to the TiO2 film thickness, however, the effective absorption coefficient is the parameter that ultimately defines the ideal thickness. We illustrate the importance of the exchange current density in the dark on the determination of the current–voltage characteristics and we show how an important improvement of the cell performance can be achieved by decreasing values of the total series resistance and the exchange current density in the dark. PMID:28787833
Defect Related Dark Currents in III-V MWIR nBn Detectors
2014-01-01
theory indicates a thermal activation energy of half the bandgap, and a direct proportionality between dark current density and defect density. 2.2...density due to defects maintains a full bandgap thermal activation energy , and is proportional to the square root of the defect density. Although neutral...photodiodes, and cooling is more efficient in reducing nBn’s dark current due to the full bandgap activation energy . Downloaded From: http
WIMP dark matter candidates and searches-current status and future prospects.
Roszkowski, Leszek; Sessolo, Enrico Maria; Trojanowski, Sebastian
2018-06-01
We review several current aspects of dark matter theory and experiment. We overview the present experimental status, which includes current bounds and recent claims and hints of a possible signal in a wide range of experiments: direct detection in underground laboratories, gamma-ray, cosmic ray, x-ray, neutrino telescopes, and the LHC. We briefly review several possible particle candidates for a weakly interactive massive particle (WIMP) and dark matter that have recently been considered in the literature. We pay particular attention to the lightest neutralino of supersymmetry as it remains the best motivated candidate for dark matter and also shows excellent detection prospects. Finally we briefly review some alternative scenarios that can considerably alter properties and prospects for the detection of dark matter obtained within the standard thermal WIMP paradigm.
WIMP dark matter candidates and searches—current status and future prospects
NASA Astrophysics Data System (ADS)
Roszkowski, Leszek; Sessolo, Enrico Maria; Trojanowski, Sebastian
2018-06-01
We review several current aspects of dark matter theory and experiment. We overview the present experimental status, which includes current bounds and recent claims and hints of a possible signal in a wide range of experiments: direct detection in underground laboratories, gamma-ray, cosmic ray, x-ray, neutrino telescopes, and the LHC. We briefly review several possible particle candidates for a weakly interactive massive particle (WIMP) and dark matter that have recently been considered in the literature. We pay particular attention to the lightest neutralino of supersymmetry as it remains the best motivated candidate for dark matter and also shows excellent detection prospects. Finally we briefly review some alternative scenarios that can considerably alter properties and prospects for the detection of dark matter obtained within the standard thermal WIMP paradigm.
NASA Astrophysics Data System (ADS)
Kumar, Suresh; Xu, Lixin
2014-10-01
In this paper, we study a cosmological model in general relativity within the framework of spatially flat Friedmann-Robertson-Walker space-time filled with ordinary matter (baryonic), radiation, dark matter and dark energy, where the latter two components are described by Chevallier-Polarski-Linder equation of state parameters. We utilize the observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements of matter power spectrum to constrain the model parameters. We find that the current observational data offer tight constraints on the equation of state parameter of dark matter. We consider the perturbations and study the behavior of dark matter by observing its effects on CMB and matter power spectra. We find that the current observational data favor the cold dark matter scenario with the cosmological constant type dark energy at the present epoch.
Olson, B. V.; Kim, J. K.; Kadlec, E. A.; ...
2015-11-03
Carrier lifetime and dark current measurements are reported for a mid-wavelength infrared InAs 0.91Sb 0.09 alloy nBn photodetector. Minority carrier lifetimes are measured using a non-contact time-resolved microwave technique on unprocessed portions of the nBn wafer and the Auger recombination Bloch function parameter is determined to be |F 1F 2|=0.292. Moreover, the measured lifetimes are also used to calculate the expected diffusion dark current of the nBn devices and are compared with the experimental dark current measured in processed photodetector pixels from the same wafer. As a result, excellent agreement is found between the two, highlighting the important relationship betweenmore » lifetimes and diffusion currents in nBn photodetectors.« less
Experimental observation of the effect of generic singularities in polychromatic dark hollow beams.
Yadav, Bharat Kumar; Joshi, Stuti; Kandpal, Hem Chandra
2014-08-15
This Letter presents the essence of our recent experimental study on generic singularities carrying spatially partially coherent, polychromatic dark hollow beams (PDHBs). To the best of our knowledge, this is the first experimental demonstration of generic singularities-induced wavefront tearing in focused polychromatic beams.
Searching for a dark photon with DarkLight
NASA Astrophysics Data System (ADS)
Corliss, R.; DarkLight Collaboration
2017-09-01
Despite compelling astrophysical evidence for the existence of dark matter in the universe, we have yet to positively identify it in any terrestrial experiment. If such matter is indeed particle in nature, it may have a new interaction as well, carried by a dark counterpart to the photon. The DarkLight experiment proposes to search for such a beyond-the-standard-model dark photon through complete reconstruction of the final states of electron-proton collisions. In order to accomplish this, the experiment requires a moderate-density target and a very high intensity, low energy electron beam. I describe DarkLight's approach and focus on the implications this has for the design of the experiment, which centers on the use of an internal gas target in Jefferson Lab's Low Energy Recirculating Facility. I also discuss upcoming beam tests, where we will place our target and solenoidal magnet in the beam for the first time.
Belloir, Jean-Marc; Goiffon, Vincent; Virmontois, Cédric; Raine, Mélanie; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Molina, Romain; Magnan, Pierre; Gilard, Olivier
2016-02-22
The dark current produced by neutron irradiation in CMOS Image Sensors (CIS) is investigated. Several CIS with different photodiode types and pixel pitches are irradiated with various neutron energies and fluences to study the influence of each of these optical detector and irradiation parameters on the dark current distribution. An empirical model is tested on the experimental data and validated on all the irradiated optical imagers. This model is able to describe all the presented dark current distributions with no parameter variation for neutron energies of 14 MeV or higher, regardless of the optical detector and irradiation characteristics. For energies below 1 MeV, it is shown that a single parameter has to be adjusted because of the lower mean damage energy per nuclear interaction. This model and these conclusions can be transposed to any silicon based solid-state optical imagers such as CIS or Charged Coupled Devices (CCD). This work can also be used when designing an optical imager instrument, to anticipate the dark current increase or to choose a mitigation technique.
Waveguide-integrated vertical pin photodiodes of Ge fabricated on p+ and n+ Si-on-insulator layers
NASA Astrophysics Data System (ADS)
Ito, Kazuki; Hiraki, Tatsurou; Tsuchizawa, Tai; Ishikawa, Yasuhiko
2017-04-01
Vertical pin structures of Ge photodiodes (PDs) integrated with Si optical waveguides are fabricated by depositing Ge epitaxial layers on Si-on-insulator (SOI) layers, and the performances of n+-Ge/i-Ge/p+-SOI PDs are compared with those of p+-Ge/i-Ge/n+-SOI PDs. Both types of PDs show responsivities as high as 1.0 A/W at 1.55 µm, while the dark leakage current is different, which is consistent with previous reports on free-space PDs formed on bulk Si wafers. The dark current of the p+-Ge/i-Ge/n+-SOI PDs is higher by more than one order of magnitude. Taking into account the activation energies for dark current as well as the dependence on PD area, the dark current of the n+-Ge/i-Ge/p+-SOI PDs is dominated by the thermal generation of carriers via mid-gap defect levels in Ge, while for the p+-Ge/i-Ge/n+-SOI PDs, the dark current is ascribed to not only thermal generation but also other mechanisms such as locally formed conduction paths.
Wang, B; Abdalla, E; Atrio-Barandela, F; Pavón, D
2016-09-01
Models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. We review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations. We test models using the most recent observational data and we find that the interaction is compatible with the current astronomical and cosmological data. Finally, we describe the forthcoming data sets from current and future facilities that are being constructed or designed that will allow a clearer understanding of the physics of the dark sector.
Exposing the dark sector with future Z factories
NASA Astrophysics Data System (ADS)
Liu, Jia; Wang, Lian-Tao; Wang, Xiao-Ping; Xue, Wei
2018-05-01
We investigate the prospects of searching dark sector models via exotic Z -boson decay at future e+e- colliders with Giga Z and Tera Z options. Four general categories of dark sector models, Higgs portal dark matter, vector-portal dark matter, inelastic dark matter, and axionlike particles, are considered. Focusing on channels motivated by the dark sector models, we carry out a model-independent study of the sensitivities of Z factories in probing exotic decays. The limits on branching ratios of the exotic Z decay are typically O (10-6- 10-8.5) for the Giga Z and O (10-7.5- 10-11) for the Tera Z , and they are compared with the projection for the high luminosity LHC. We demonstrate that future Z factories can provide its unique and leading sensitivity and highlight the complementarity with other experiments, including the indirect and direct dark matter search limits and the existing collider limits. Future Z factories will play a leading role in uncovering the hidden sector of the Universe in the future.
Current–voltage characteristics of organic heterostructure devices with insulating spacer layers
Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; ...
2015-05-14
The dark current density in donor/acceptor organic planar heterostructure devices at a given forward voltage bias can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of interfacial exciplex states. If the exciplex recombination rate limits current flow, an insulating interface layer decreases the dark current. However, if the exciplex formation rate limits the current, an insulating interface layer may increase the dark current. As a result, we present a device model to describe this behavior, and wemore » discuss relevant experimental data.« less
Large Synoptic Survey Telescope: From Science Drivers to Reference Design
2008-01-01
faint time domain. The LSST design is driven by four main science themes: constraining dark energy and dark matter , taking an inventory of the Solar...Energy and Dark Matter (2) Taking an Inventory of the Solar System (3) Exploring the Transient Optical Sky (4) Mapping the Milky Way Each of these four...Constraining Dark Energy and Dark Matter Current models of cosmology require the exis- tence of both dark matter and dark energy to match observational
Analyzing the Discovery Potential for Light Dark Matter.
Izaguirre, Eder; Krnjaic, Gordan; Schuster, Philip; Toro, Natalia
2015-12-18
In this Letter, we determine the present status of sub-GeV thermal dark matter annihilating through standard model mixing, with special emphasis on interactions through the vector portal. Within representative simple models, we carry out a complete and precise calculation of the dark matter abundance and of all available constraints. We also introduce a concise framework for comparing different experimental approaches, and use this comparison to identify important ranges of dark matter mass and couplings to better explore in future experiments. The requirement that dark matter be a thermal relic sets a sharp sensitivity target for terrestrial experiments, and so we highlight complementary experimental approaches that can decisively reach this milestone sensitivity over the entire sub-GeV mass range.
Detection of sub-MeV dark matter with three-dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Zurek, Kathryn M.; Grushin, Adolfo G.; Ilan, Roni; Griffin, Sinéad M.; Liu, Zhen-Fei; Weber, Sophie F.; Neaton, Jeffrey B.
2018-01-01
We propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of O (meV ) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculate the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.
GeV-scale dark matter: Production at the main injector
Dobrescu, Bogdan A.; Frugiuele, Claudia
2015-02-03
In this study, assuming that dark matter particles interact with quarks via a GeV-scale mediator, we study dark matter production in fixed target collisions. The ensuing signal in a neutrino near detector consists of neutral-current events with an energy distribution peaked at higher values than the neutrino background. We find that for a Z' boson of mass around a few GeV that decays to dark matter particles, the dark matter beam produced by the Main Injector at Fermilab allows the exploration of a range of values for the gauge coupling that currently satisfy all experimental constraints. The NOνA near detectormore » is well positioned for probing the presence of a dark matter beam, and future LBNF near detectors would provide more sensitive probes.« less
Characterization of total ionizing dose damage in COTS pinned photodiode CMOS image sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zujun, E-mail: wangzujun@nint.ac.cn; Ma, Wuying; Huang, Shaoyan
The characterization of total ionizing dose (TID) damage in COTS pinned photodiode (PPD) CMOS image sensors (CISs) is investigated. The radiation experiments are carried out at a {sup 60}Co γ-ray source. The CISs are produced by 0.18-μm CMOS technology and the pixel architecture is 8T global shutter pixel with correlated double sampling (CDS) based on a 4T PPD front end. The parameters of CISs such as temporal domain, spatial domain, and spectral domain are measured at the CIS test system as the EMVA 1288 standard before and after irradiation. The dark current, random noise, dark signal non-uniformity (DSNU), photo responsemore » non-uniformity (PRNU), overall system gain, saturation output, dynamic range (DR), signal to noise ratio (SNR), quantum efficiency (QE), and responsivity versus the TID are reported. The behaviors of the tested CISs show remarkable degradations after radiation. The degradation mechanisms of CISs induced by TID damage are also analyzed.« less
Characterization of elliptic dark hollow beams
NASA Astrophysics Data System (ADS)
Gutiérrez-Vega, Julio C.
2008-08-01
A dark hollow beam (DHB) is designed in general as a ringed shaped light beam with a null intensity center on the beam axis. DHBs have interesting physical properties such as a helical wavefront, a center vortex singularity, doughnut-shaped transverse intensity distribution, they may carry and transfer orbital and spin angular momentum, and may also exhibit a nondiffracting behavior upon propagation. Most of the known theoretical models to describe DHBs consider axially symmetric transverse intensity distributions. However, in recent years there has been an increasing interest in developing models to describe DHBs with elliptic symmetry. DHBs with elliptic symmetry can be regarded as transition beams between circular and rectangular DHBs. For example, the high-order modes emitted from resonators with neither completely rectangular nor completely circular symmetry, but in between them, cannot be described by the known HermiteGaussian or LaguerreGaussian beams. In this work, we review the current state of research on elliptic DHBs, with particular emphasis in Mathieu and Ince-Gauss beams.
Characterization of total ionizing dose damage in COTS pinned photodiode CMOS image sensors
NASA Astrophysics Data System (ADS)
Wang, Zujun; Ma, Wuying; Huang, Shaoyan; Yao, Zhibin; Liu, Minbo; He, Baoping; Liu, Jing; Sheng, Jiangkun; Xue, Yuan
2016-03-01
The characterization of total ionizing dose (TID) damage in COTS pinned photodiode (PPD) CMOS image sensors (CISs) is investigated. The radiation experiments are carried out at a 60Co γ-ray source. The CISs are produced by 0.18-μm CMOS technology and the pixel architecture is 8T global shutter pixel with correlated double sampling (CDS) based on a 4T PPD front end. The parameters of CISs such as temporal domain, spatial domain, and spectral domain are measured at the CIS test system as the EMVA 1288 standard before and after irradiation. The dark current, random noise, dark signal non-uniformity (DSNU), photo response non-uniformity (PRNU), overall system gain, saturation output, dynamic range (DR), signal to noise ratio (SNR), quantum efficiency (QE), and responsivity versus the TID are reported. The behaviors of the tested CISs show remarkable degradations after radiation. The degradation mechanisms of CISs induced by TID damage are also analyzed.
Comparison of dark energy models after Planck 2015
NASA Astrophysics Data System (ADS)
Xu, Yue-Yao; Zhang, Xin
2016-11-01
We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant w model, and the α dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear-Polarski-Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali-Gabadadze-Porrati model, and the Ricci dark energy model are excluded by the current observations.
Wang, Ping; Zheng, Qinghong; Tang, Qing; Yang, Yintang; Guo, Lixin; Huang, Feng; Song, Zhenjie; Zhang, Zhiyong
2014-01-15
The application of asymmetric Schottky barrier and electrode area in an MgZnO metal-semiconductor-metal (MSM) solar-blind ultraviolet photodetector has been investigated by a physical-based numerical model in which the electron mobility is obtained by an ensemble Monte Carlo simulation combined with first principle calculations using the density functional theory. Compared with the experimental data of symmetric and asymmetric MSM structures based on ZnO substrate, the validity of this model is verified. The asymmetric Schottky barrier and electrode area devices exhibit reductions of 20 times and 1.3 times on dark current, respectively, without apparent photocurrent scarification. The plots of photo-to-dark current ratio (PDR) indicate that the asymmetric MgZnO MSM structure has better dark current characteristic than that of the symmetric one.
Using dark current data to estimate AVIRIS noise covariance and improve spectral analyses
NASA Technical Reports Server (NTRS)
Boardman, Joseph W.
1995-01-01
Starting in 1994, all AVIRIS data distributions include a new product useful for quantification and modeling of the noise in the reported radiance data. The 'postcal' file contains approximately 100 lines of dark current data collected at the end of each data acquisition run. In essence this is a regular spectral-image cube, with 614 samples, 100 lines and 224 channels, collected with a closed shutter. Since there is no incident radiance signal, the recorded DN measure only the DC signal level and the noise in the system. Similar dark current measurements, made at the end of each line are used, with a 100 line moving average, to remove the DC signal offset. Therefore, the pixel-by-pixel fluctuations about the mean of this dark current image provide an excellent model for the additive noise that is present in AVIRIS reported radiance data. The 61,400 dark current spectra can be used to calculate the noise levels in each channel and the noise covariance matrix. Both of these noise parameters should be used to improve spectral processing techniques. Some processing techniques, such as spectral curve fitting, will benefit from a robust estimate of the channel-dependent noise levels. Other techniques, such as automated unmixing and classification, will be improved by the stable and scene-independence noise covariance estimate. Future imaging spectrometry systems should have a similar ability to record dark current data, permitting this noise characterization and modeling.
Unified origin for baryonic visible matter and antibaryonic dark matter.
Davoudiasl, Hooman; Morrissey, David E; Sigurdson, Kris; Tulin, Sean
2010-11-19
We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.
HACC: Simulating sky surveys on state-of-the-art supercomputing architectures
NASA Astrophysics Data System (ADS)
Habib, Salman; Pope, Adrian; Finkel, Hal; Frontiere, Nicholas; Heitmann, Katrin; Daniel, David; Fasel, Patricia; Morozov, Vitali; Zagaris, George; Peterka, Tom; Vishwanath, Venkatram; Lukić, Zarija; Sehrish, Saba; Liao, Wei-keng
2016-01-01
Current and future surveys of large-scale cosmic structure are associated with a massive and complex datastream to study, characterize, and ultimately understand the physics behind the two major components of the 'Dark Universe', dark energy and dark matter. In addition, the surveys also probe primordial perturbations and carry out fundamental measurements, such as determining the sum of neutrino masses. Large-scale simulations of structure formation in the Universe play a critical role in the interpretation of the data and extraction of the physics of interest. Just as survey instruments continue to grow in size and complexity, so do the supercomputers that enable these simulations. Here we report on HACC (Hardware/Hybrid Accelerated Cosmology Code), a recently developed and evolving cosmology N-body code framework, designed to run efficiently on diverse computing architectures and to scale to millions of cores and beyond. HACC can run on all current supercomputer architectures and supports a variety of programming models and algorithms. It has been demonstrated at scale on Cell- and GPU-accelerated systems, standard multi-core node clusters, and Blue Gene systems. HACC's design allows for ease of portability, and at the same time, high levels of sustained performance on the fastest supercomputers available. We present a description of the design philosophy of HACC, the underlying algorithms and code structure, and outline implementation details for several specific architectures. We show selected accuracy and performance results from some of the largest high resolution cosmological simulations so far performed, including benchmarks evolving more than 3.6 trillion particles.
HACC: Simulating sky surveys on state-of-the-art supercomputing architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, Salman; Pope, Adrian; Finkel, Hal
2016-01-01
Current and future surveys of large-scale cosmic structure are associated with a massive and complex datastream to study, characterize, and ultimately understand the physics behind the two major components of the ‘Dark Universe’, dark energy and dark matter. In addition, the surveys also probe primordial perturbations and carry out fundamental measurements, such as determining the sum of neutrino masses. Large-scale simulations of structure formation in the Universe play a critical role in the interpretation of the data and extraction of the physics of interest. Just as survey instruments continue to grow in size and complexity, so do the supercomputers thatmore » enable these simulations. Here we report on HACC (Hardware/Hybrid Accelerated Cosmology Code), a recently developed and evolving cosmology N-body code framework, designed to run efficiently on diverse computing architectures and to scale to millions of cores and beyond. HACC can run on all current supercomputer architectures and supports a variety of programming models and algorithms. It has been demonstrated at scale on Cell- and GPU-accelerated systems, standard multi-core node clusters, and Blue Gene systems. HACC’s design allows for ease of portability, and at the same time, high levels of sustained performance on the fastest supercomputers available. We present a description of the design philosophy of HACC, the underlying algorithms and code structure, and outline implementation details for several specific architectures. We show selected accuracy and performance results from some of the largest high resolution cosmological simulations so far performed, including benchmarks evolving more than 3.6 trillion particles.« less
Pixelated Geiger-Mode Avalanche Photo-Diode Characterization Through Dark Current Measurement
NASA Astrophysics Data System (ADS)
Amaudruz, Pierre-Andre; Bishop, Daryl; Gilhully, Colleen; Goertzen, Andrew; James, Lloyd; Kozlowski, Piotr; Retiere, Fabrice; Shams, Ehsan; Sossi, Vesna; Stortz, Greg; Thiessen, Jonathan D.; Thompson, Christopher J.
2014-06-01
PIXELATED geiger-mode avalanche photodiodes (PPDs), often called silicon photomultipliers (SiPMs) are emerging as an excellent replacement for traditional photomultiplier tubes (PMTs) in a variety of detectors, especially those for subatomic physics experiments, which requires extensive test and operation procedures in order to achieve uniform responses from all the devices. In this paper, we show for two PPD brands, Hamamatsu MPPC and SensL SPM, that at room temperature, the dark noise rate, breakdown voltage and rate of correlated avalanches can be inferred from the sole measure of dark current as a function of operating voltage, hence greatly simplifying the characterization procedure. We introduce a custom electronics system that allows measurement for many devices concurrently, hence allowing rapid testing and monitoring of many devices at low cost. Finally, we show that the dark current of Hamamastu Multi-Pixel Photon Counter (MPPC) is rather independent of temperature at constant operating voltage, hence the current measure cannot be used to probe temperature variations. On the other hand, the MPPC current can be used to monitor light source conditions in DC mode without requiring strong temperature stability, as long as the integrated source brightness is comparable to the dark noise rate.
Performance Simulation of Unipolar InAs/InAs1-x Sb x Type-II Superlattice Photodetector
NASA Astrophysics Data System (ADS)
Singh, Anand; Pal, Ravinder
2018-05-01
This paper reports performance simulation of a unipolar tunable band gap InAs-InAsSb type-II superlattice (T2SL) infrared photodetector. The generation-recombination and surface leakage currents limit the performance of T2SL photodiodes. Unipolar nBn device design incorporating a suitable barrier layer in the diode structure is taken to suppress the Auger recombination and tunneling currents. At low reverse bias, the generation-recombination current is negligible in the absence of a depletion region, but the dark current is dominated by the diffusion current at higher operation temperatures. The composition, band alignment, barrier width, doping level and thickness of the absorber region are optimized here to achieve low dark current and high quantum efficiency at elevated operating temperatures. Thin unipolar T2SL absorbers are placed in a resonant cavity to enhance photon-material interaction, thus allowing complete absorption in a thinner detector element. It leads to the reduction in the detector volume for lower dark current without affecting the quantum efficiency. It shows an improvement in the quantum efficiency and reduction in the dark current. Dark current density ˜ 10-5 A/cm2 is achievable with low absorber thickness of 2 μm and effective lifetime of 250 ns in the InAs/InAs0.6Sb0.4/B-AlAs1-x Sb x long wave length T2SL detector at 110 K.
Dark Signal Characterization of 1.7 micron cutoff devices for SNAP
NASA Astrophysics Data System (ADS)
Smith, R. M.; SNAP Collaboration
2004-12-01
We report initial progress characterizing non-photometric sources of error -- dark current, noise, and zero point drift -- for 1.7 micron cutoff HgCdTe and InGaAs detectors under development by Raytheon, Rockwell, and Sensors Unlimited for SNAP. Dark current specifications can already be met with several detector types. Changes to the manufacturing process are being explored to improve the noise reduction available through multiple sampling. In some cases, a significant number of pixels suffer from popcorn noise, with a few percent of all pixels exhibiting a ten fold noise increase. A careful study of zero point drifts is also under way, since these errors can dominate dark current, and may contribute to the noise degradation seen in long exposures.
Electronic transport in a long wavelength infrared quantum cascade detector under dark condition
NASA Astrophysics Data System (ADS)
Li, L.; Zhou, X. H.; Lin, T.; Li, N.; Zhu, Z. Q.; Liu, F. Q.
2016-09-01
We present a joint experimental and theoretical investigation on a long wavelength infrared quantum cascade detector to reveal its dark current paths. The temperature dependence of the dark current is measured. It is shown that there are two different transport mechanisms, namely resonant tunneling at low temperatures and thermal excitation at higher temperature, dominate the carrier flow, respectively. Moreover, the experimental intersubband transition energies obtained by the magneto-transport measurements matches the theoretical predictions well. With the aid of the calculated band structures, we can explain the observed oscillation phenomena of the dark current under the magnetic field very well. The obtained results provide insight into the transport properties of quantum cascade detectors thus providing a useful tool for device optimization.
NASA Astrophysics Data System (ADS)
Frey, Joel Brandon
Recently, the world of diagnostic radiography has seen the integration of digital flat panel x-ray image detectors into x-ray imaging systems, replacing analog film screens. These flat panel x-ray imagers (FPXIs) have been shown to produce high quality x-ray images and provide many advantages that are inherent to a fully digital technology. Direct conversion FPXIs based on a photoconductive layer of stabilized amorphous selenium (a-Se) have been commercialized and have proven particularly effective in the field of mammography. In the operation of these detectors, incident x-ray photons are converted directly to charge carriers in the a-Se layer and drifted to electrodes on either side of the layer by a large applied field (10 V/microm). The applied field causes a dark current to flow which is not due to the incident radiation and this becomes a source of noise which can reduce the dynamic range of the detector. The level of dark current in commercialized detectors has been reduced by the deposition of thin n- and p- type blocking layers between the electrodes and the bulk of the a-Se. Despite recent research into the dark current in metal/a-Se/metal sandwich structures, much is still unknown about the true cause and nature of this phenomenon. The work in this Ph.D. thesis describes an experimental and theoretical study of the dark current in these structures. Experiments have been performed on five separate sets of a-Se samples which approximate the photoconductive layer in an FPXI. The dark current has been measured as a function of time, sample structure, applied field, sample thickness and contact metal used. This work has conclusively shown that the dark current is almost entirely due to the injection of charge carriers from the contacts and the contribution of Poole-Frenkel enhanced bulk thermal generation is negligible. There is also evidence that while the dark current is initially controlled by the injection of holes from the positive contact, several minutes after the application of the bias, the dark current due to hole injection may decay to the point where the electron current becomes significant and even dominant. These conclusions are supported by numerical calculations of the dark current transients which have been calibrated to match experimental results. Work detailed in this Ph.D. thesis also focuses on Monte Carlo modeling of the x-ray sensitivity of a-Se FPXIs. The higher the x-ray sensitivity of a detector, the lower the radiation dose required to acquire an acceptable image. FPXIs can experience a decrease in the x-ray sensitivity of the photoconductive layer with accumulating exposure, leading to a phenomenon known as "ghosting". Modeling this decrease in sensitivity can uncover the reasons behind it. The Monte Carlo model described in this thesis is a continuation of a previous model which now considers the effects of the n- and p-like blocking layers and the flow of dark current between x-ray exposures. The simulation results explain how deep trapping of photogenerated charge carriers, and the resulting effect on the electric field distribution, contribute to sensitivity loss. The model has shown excellent agreement with experimental data and has accurately predicted a sensitivity recovery once exposure has ceased which is due to primarily to the relaxation of metastable x-ray-induced carrier trap states.
NICMOS Temperature-specific Darks
NASA Astrophysics Data System (ADS)
Monroe, B.; Bergeron, E.
1999-11-01
The various components of NICMOS dark images have been modeled and combined to make synthetic dark calibration files which are intended for use with observations in a temperature range from 61 to ~75 K, currently available only for camera 2, with cameras 1 and 3 to follow in a few months. The amplifier glow and the true linear dark current have been constructed as temperature-independent quantities, while the “shading” component of the darks has been modeled as temperature-dependent. The data used to construct these models was taken with NIC 2, in a temperature range of 61 to 80 K during the recent warm-up of NICMOS due to cryogen exhaustion. The resulting synthetic darks are available through a web-based tool on the STScI NICMOS website http://www.stsci.edu/instruments/nicmos/NICMOS_tools/syndark.html.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.
We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less
Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.; ...
2016-05-10
We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less
Effects of 1- and 2-MeV electrons on photomultiplier tubes
NASA Technical Reports Server (NTRS)
Beatty, M. E., III; Debnam, W. J., Jr.; Meredith, B. D.
1976-01-01
Various types of photomultiplier tubes useful for space applications were irradiated with 1- and 2-MeV electrons at Van Allen radiation belt fluxes of 100,000 to 10 millions electrons/sq cm-sec. The increase in the dark current due to electron irradiation was observed at various bias voltages under worst-case conditions (no shielding). Results were presented in the form of dark current plotted against electron flux. All the tubes tested showed extremely large increases in dark current. Tube types 541A, 6217, 6199, and 6903 exhibited the largest increases under irradiation, whereas type 1P22 was affected the least. All the damage observed was transient. The luminescence produced in the optical window probably accounts for a large part of the dark-current increases, but there were some effects possibly due to direct irradiation of the photocathode and dynode chain.
Bai, Yang; Carena, Marcela; Lykken, Joseph
2009-12-31
A dilaton could be the dominant messenger between standard model fields and dark matter. The measured dark matter relic abundance relates the dark matter mass and spin to the conformal breaking scale. The dark matter-nucleon spin-independent cross section is predicted in terms of the dilaton mass. We compute the current constraints on the dilaton from LEP and Tevatron experiments, and the gamma-ray signal from dark matter annihilation to dilatons that could be observed by Fermi Large Area Telescope.
Weak mixing below the weak scale in dark-matter direct detection
NASA Astrophysics Data System (ADS)
Brod, Joachim; Grinstein, Benjamin; Stamou, Emmanuel; Zupan, Jure
2018-02-01
If dark matter couples predominantly to the axial-vector currents with heavy quarks, the leading contribution to dark-matter scattering on nuclei is either due to one-loop weak corrections or due to the heavy-quark axial charges of the nucleons. We calculate the effects of Higgs and weak gauge-boson exchanges for dark matter coupling to heavy-quark axial-vector currents in an effective theory below the weak scale. By explicit computation, we show that the leading-logarithmic QCD corrections are important, and thus resum them to all orders using the renormalization group.
Global limits and interference patterns in dark matter direct detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catena, Riccardo; Gondolo, Paolo
2015-08-13
We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less
Global limits and interference patterns in dark matter direct detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catena, Riccardo; Gondolo, Paolo, E-mail: riccardo.catena@theorie.physik.uni-goettingen.de, E-mail: paolo.gondolo@utah.edu
2015-08-01
We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less
Detection of sub-MeV dark matter with three-dimensional Dirac materials
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; ...
2018-01-08
Here, we propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of Ο(meV) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculatemore » the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.« less
Detection of sub-MeV dark matter with three-dimensional Dirac materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela
Here, we propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of Ο(meV) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculatemore » the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.« less
Dirac dark matter and b →s ℓ+ℓ- with U(1) gauge symmetry
NASA Astrophysics Data System (ADS)
Celis, Alejandro; Feng, Wan-Zhe; Vollmann, Martin
2017-02-01
We revisit the possibility of a Dirac fermion dark matter candidate in the light of current b →s ℓ+ℓ- anomalies by investigating a minimal extension of the Standard Model with a horizontal U(1 ) ' local symmetry. Dark matter stability is protected by a remnant Z2 symmetry arising after spontaneous symmetry breaking of U(1 ) '. The associated Z' gauge boson can accommodate current hints of new physics in b →s ℓ+ℓ- decays, and acts as a vector portal between dark matter and the visible sector. We find that the model is severely constrained by a combination of precision measurements at flavor factories, LHC searches for dilepton resonances, as well as direct and indirect dark matter searches. Despite this, viable regions of the parameter space accommodating the observed dark matter relic abundance and the b →s ℓ+ℓ-anomalies still persist for dark matter and Z ' masses in the TeV range.
Dynamics of domain coverage of the protein sequence universe.
Rekapalli, Bhanu; Wuichet, Kristin; Peterson, Gregory D; Zhulin, Igor B
2012-11-16
The currently known protein sequence space consists of millions of sequences in public databases and is rapidly expanding. Assigning sequences to families leads to a better understanding of protein function and the nature of the protein universe. However, a large portion of the current protein space remains unassigned and is referred to as its "dark matter". Here we suggest that true size of "dark matter" is much larger than stated by current definitions. We propose an approach to reducing the size of "dark matter" by identifying and subtracting regions in protein sequences that are not likely to contain any domain. Recent improvements in computational domain modeling result in a decrease, albeit slowly, in the relative size of "dark matter"; however, its absolute size increases substantially with the growth of sequence data.
Exploring the effects of overburden on the sublimation and transport of H2O on Iapetus
NASA Astrophysics Data System (ADS)
Rivera-Valentin, Edgard G.; Blackburn, David G.; Ulrich, Richard K.
2012-08-01
It has been shown through both measurements and simulations that there exists a measurable ice-free, porous, overburden overlaying water ice on Cassini Regio. Mass transfer through this porous media in a vacuum would occur in the Knudsen regime, which provides sublimation rates orders of magnitude smaller than Hertz-Langmuir sublimation. The availability of water ice for transport from this region is thus currently controlled by mass transfer through the dark material overburden. Thermal segregation suggests that Iapetus' polar regions have been brightened via ballistic transport of water and its subsequent cold trapping since exogenic deposition models predict dark high latitudes on the leading hemisphere. The limiting effect of the dark material on transport of water ice may thus greatly impact the current mass balance at the poles. The effects of the overburden on the global stability and transport of H2O is addressed in order to gain insight into its influence on the polar albedo distribution and current state of thermal segregation within the dark terrain. Results indicate that thermal segregation is currently an inactive or weak process within Cassini Regio, though it is an ongoing process at the inter-terrain regions. Modeling of polar accumulation suggests that even accounting for the current dark material cover within Cassini Regio there exists sufficient ballistically inbound water to overcome exogenic darkening mechanisms. Topographic effects on local albedo differences are also simulated to provide a more complete water stability study of Iapetus. Results suggest that topographically induced changes in heat flux may be sufficient to create the observed local albedo contrasts and also support ongoing dark exogenic deposition within Cassini Regio to explain the lack of bright slopes deep within the dark terrain.
Evolution of separate screening soliton pairs in a biased series photorefractive crystal circuit.
Liu, Jinsong; Hao, Zhonghua
2002-06-01
This paper presents calculations for an idea in photorefractive spatial soliton, namely, screening solitons form in a biased series photorefractive crystal circuit consisting of two photorefractive crystals connected electronically by electrode leads in a chain with a voltage source. A system of two coupled equations is derived under appropriate conditions for two-beam propagation in the crystal circuit. The possibility of obtaining steady-state bright and dark screening soliton solutions is investigated in one dimension and, the existence of dark-dark, bright-dark, and bright-bright separate screening soliton pairs in such a circuit is proved. The numerical results show that the two solitons in a soliton pair can affect each other by the light-induced current and their coupling can affect their spatial profiles, dynamical evolutions, stabilities, and self-deflection. Under the limit in which the optical wave has a spatial extent much less than the width of the crystal, only the dark soliton can affect the other soliton by the light-induced current, but the bright soliton cannot. For a bright-dark or dark-dark soliton pair, the dark soliton in a weak input intensity can be obtained for a larger nonlinearity than for a stronger input intensity. For a bright-dark soliton pair, increasing the input intensity of the dark soliton can increase the bending angle of the bright soliton. Some potential applications are discussed.
1984-05-10
overgrowth from a spoke 90 pattern of radial stripe openings at 1 intervals on an Si0 2 coated (110) surface. Bright regions are GaAs and dark regions are Si0...the dark current for such an ideal device is given by Idark - Io[exp(eVbi/AokT) - 1] , (11-l) where Io is a proportionality constant describing the...recombination and leakage currents which contribute to an increased dark current. The value of Voc is determined by the built-in junction barrier height and the
Stressed Ge:Ga photoconductors for space-based astronomy. (Is there life beyond 120 micron)
NASA Technical Reports Server (NTRS)
Beeman, J. W.; Haller, E. E.; Hansen, W. L.; Luke, P. N.; Richards, P. L.
1989-01-01
Information is given in viewgraph form. Information is given on the characteristics of stressed Ge:Ga, a spring type stress cavity, mounting hardware, materials parameters affecting dark current, and the behavior of low dark current stressed Ge:Ga. It is concluded that detectors exist today for background-limited detection at 200 microns, that researchers are narrowing in on the significant parameters that effect dark current in stressed photoconductors, that these findings may be applied to other photoconductor materials, and that some creative problem solving for an ionizing effect reset mechanism is needed.
Theoretical analysis of nBn infrared photodetectors
NASA Astrophysics Data System (ADS)
Ting, David Z.; Soibel, Alexander; Khoshakhlagh, Arezou; Gunapala, Sarath D.
2017-09-01
The depletion and surface leakage dark current suppression properties of unipolar barrier device architectures such as the nBn have been highly beneficial for III-V semiconductor-based infrared detectors. Using a one-dimensional drift-diffusion model, we theoretically examine the effects of contact doping, minority carrier lifetime, and absorber doping on the dark current characteristics of nBn detectors to explore some basic aspects of their operation. We found that in a properly designed nBn detector with highly doped excluding contacts the minority carriers are extracted to nonequilibrium levels under reverse bias in the same manner as the high operating temperature (HOT) detector structure. Longer absorber Shockley-Read-Hall (SRH) lifetimes result in lower diffusion and depletion dark currents. Higher absorber doping can also lead to lower diffusion and depletion dark currents, but the benefit should be weighted against the possibility of reduced diffusion length due to shortened SRH lifetime. We also briefly examined nBn structures with unintended minority carrier blocking barriers due to excessive n-doping in the unipolar electron barrier, or due to a positive valence band offset between the barrier and the absorber. Both types of hole blocking structures lead to higher turn-on bias, although barrier n-doping could help suppress depletion dark current.
UV detector based on InAlN/GaN-on-Si HEMT stack with photo-to-dark current ratio > 107
NASA Astrophysics Data System (ADS)
kumar, Sandeep; Pratiyush, Anamika Singh; Dolmanan, Surani B.; Tripathy, Sudhiranjan; Muralidharan, Rangarajan; Nath, Digbijoy N.
2017-12-01
We demonstrate an InAlN/GaN-on-Si high electron mobility transistor based UV detector with a photo-to-dark current ratio of >107. The Ti/Al/Ni/Au metal stack was evaporated and thermal annealed rapidly for Ohmic contacts to the 2D electron gas (2DEG) at the InAlN/GaN interface, while the channel + barrier was recess etched to a depth of 20 nm to pinch-off the 2DEG between Source-Drain pads. A spectral responsivity (SR) of 32.9 A/W at 367 nm was measured at 5 V. A very high photo-to-dark current ratio of >107 was measured at a bias of 20 V. The photo-to-dark current ratio at a fixed bias was found to be decreasing with an increase in the recess length of photodetectors. The fabricated devices were found to exhibit a UV-to-visible rejection ratio of >103 with a low dark current of < 32 pA at 5 V. Transient measurements showed rise and fall times in the range of 3-4 ms. The gain mechanism was investigated, and carrier lifetimes were estimated which matched well with those reported elsewhere.
NASA Technical Reports Server (NTRS)
Marshall, C. J.; Marshall, P. W.; Howe, C. L.; Reed, R. A.; Weller, R. A.; Mendenhall, M.; Waczynski, A.; Ladbury, R.; Jordan, T. M.
2007-01-01
This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distributions were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [1]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Carlo code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. While the nuclear elastic component (also calculated using the MCNPX) contributes only a small fraction of the total nonionizing damage energy, its inclusion in the shape of the damage across the array is significant. The Coulombic contribution was calculated using MRED [3-5], a Geant4 [4,6] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.
NASA Astrophysics Data System (ADS)
Chang, Cheng-Yi; Pan, Fu-Ming; Lin, Jian-Siang; Yu, Tung-Yuan; Li, Yi-Ming; Chen, Chieh-Yang
2016-12-01
We fabricated amorphous selenium (a-Se) photodetectors with a lateral metal-insulator-semiconductor-insulator-metal (MISIM) device structure. Thermal aluminum oxide, plasma-enhanced chemical vapor deposited silicon nitride, and thermal atomic layer deposited (ALD) aluminum oxide and hafnium oxide (ALD-HfO2) were used as the electron and hole blocking layers of the MISIM photodetectors for dark current suppression. A reduction in the dark current by three orders of magnitude can be achieved at electric fields between 10 and 30 V/μm. The effective dark current suppression is primarily ascribed to electric field lowering in the dielectric layers as a result of charge trapping in deep levels. Photogenerated carriers in the a-Se layer can be transported across the blocking layers to the Al electrodes via Fowler-Nordheim tunneling because a high electric field develops in the ultrathin dielectric layers under illumination. Since the a-Se MISIM photodetectors have a very low dark current without significant degradation in the photoresponse, the signal contrast is greatly improved. The MISIM photodetector with the ALD-HfO2 blocking layer has an optimal signal contrast more than 500 times the contrast of the photodetector without a blocking layer at 15 V/μm.
Origin of large dark current increase in InGaAs/InP avalanche photodiode
NASA Astrophysics Data System (ADS)
Wen, J.; Wang, W. J.; Chen, X. R.; Li, N.; Chen, X. S.; Lu, W.
2018-04-01
The large dark current increase near the breakdown voltage of an InGaAs/InP avalanche photodiode is observed and analyzed from the aspect of bulk defects in the device materials. The trap level information is extracted from the temperature-dependent electrical characteristics of the device and the low temperature photoluminescence spectrum of the materials. Simulation results with the extracted trap level taken into consideration show that the trap is in the InP multiplication layer and the trap assisted tunneling current induced by the trap is the main cause of the large dark current increase with the bias from the punch-through voltage to 95% breakdown voltage.
Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soibel, Alexander; Rafol, Sir B.; Khoshakhlagh, Arezou
In this work, we investigated the effect of proton irradiation on the performance of long wavelength infrared InAs/GaSb photodiodes (λ{sub c} = 10.2 μm), based on the complementary barrier infrared detector design. We found that irradiation with 68 MeV protons causes a significant increase of the dark current from j{sub d} = 5 × 10{sup −5} A/cm{sup 2} to j{sub d} = 6 × 10{sup −3} A/cm{sup 2}, at V{sub b} = 0.1 V, T = 80 K and fluence 19.2 × 10{sup 11 }H{sup +}/cm{sup 2}. Analysis of the dark current as a function of temperature and bias showed that the dominant contributor to the dark current in these devices changes from diffusion current to tunneling current after proton irradiation.more » This change in the dark current mechanism can be attributed to the onset of surface leakage current, generated by trap-assisted tunneling processes in proton displacement damage areas located near the device sidewalls.« less
A 4MP high-dynamic-range, low-noise CMOS image sensor
NASA Astrophysics Data System (ADS)
Ma, Cheng; Liu, Yang; Li, Jing; Zhou, Quan; Chang, Yuchun; Wang, Xinyang
2015-03-01
In this paper we present a 4 Megapixel high dynamic range, low dark noise and dark current CMOS image sensor, which is ideal for high-end scientific and surveillance applications. The pixel design is based on a 4-T PPD structure. During the readout of the pixel array, signals are first amplified, and then feed to a low- power column-parallel ADC array which is already presented in [1]. Measurement results show that the sensor achieves a dynamic range of 96dB, a dark noise of 1.47e- at 24fps speed. The dark current is 0.15e-/pixel/s at -20oC.
Figures of merit for present and future dark energy probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortonson, Michael J.; Huterer, Dragan; Hu, Wayne
2010-09-15
We compare current and forecasted constraints on dynamical dark energy models from Type Ia supernovae and the cosmic microwave background using figures of merit based on the volume of the allowed dark energy parameter space. For a two-parameter dark energy equation of state that varies linearly with the scale factor, and assuming a flat universe, the area of the error ellipse can be reduced by a factor of {approx}10 relative to current constraints by future space-based supernova data and CMB measurements from the Planck satellite. If the dark energy equation of state is described by a more general basis ofmore » principal components, the expected improvement in volume-based figures of merit is much greater. While the forecasted precision for any single parameter is only a factor of 2-5 smaller than current uncertainties, the constraints on dark energy models bounded by -1{<=}w{<=}1 improve for approximately 6 independent dark energy parameters resulting in a reduction of the total allowed volume of principal component parameter space by a factor of {approx}100. Typical quintessence models can be adequately described by just 2-3 of these parameters even given the precision of future data, leading to a more modest but still significant improvement. In addition to advances in supernova and CMB data, percent-level measurement of absolute distance and/or the expansion rate is required to ensure that dark energy constraints remain robust to variations in spatial curvature.« less
Nonlocal Models of Cosmic Acceleration
NASA Astrophysics Data System (ADS)
Woodard, R. P.
2014-02-01
I review a class of nonlocally modified gravity models which were proposed to explain the current phase of cosmic acceleration without dark energy. Among the topics considered are deriving causal and conserved field equations, adjusting the model to make it support a given expansion history, why these models do not require an elaborate screening mechanism to evade solar system tests, degrees of freedom and kinetic stability, and the negative verdict of structure formation. Although these simple models are not consistent with data on the growth of cosmic structures many of their features are likely to carry over to more complicated models which are in better agreement with the data.
Dynamics of domain coverage of the protein sequence universe
2012-01-01
Background The currently known protein sequence space consists of millions of sequences in public databases and is rapidly expanding. Assigning sequences to families leads to a better understanding of protein function and the nature of the protein universe. However, a large portion of the current protein space remains unassigned and is referred to as its “dark matter”. Results Here we suggest that true size of “dark matter” is much larger than stated by current definitions. We propose an approach to reducing the size of “dark matter” by identifying and subtracting regions in protein sequences that are not likely to contain any domain. Conclusions Recent improvements in computational domain modeling result in a decrease, albeit slowly, in the relative size of “dark matter”; however, its absolute size increases substantially with the growth of sequence data. PMID:23157439
Katz, Michael J; Vermeer, Michael J D; Farha, Omar K; Pellin, Michael J; Hupp, Joseph T
2013-01-15
Both the adsorption of t-butylpyridine and the atomic-layer deposition of ultrathin conformal coatings of insulators (such as alumina) are known to boost open-circuit photovoltages substantially for dye-sensitized solar cells. One attractive interpretation is that these modifiers significantly shift the conduction-edge energy of the electrode, thereby shifting the onset potential for dark current arising from the interception of injected electrons by solution-phase redox shuttle components such as Co(phenanthroline)(3)(3+) and triiodide. For standard, high-area, nanoporous photoelectrodes, band-edge energies are difficult to measure directly. In contrast, for flat electrodes they are readily accessible from Mott-Schottky analyses of impedance data. Using such electrodes (specifically TiO(2)), we find that neither organic nor inorganic electrode-surface modifiers shift the conduction-band-edge energy sufficiently to account fully for the beneficial effects on electrode behavior (i.e., the suppression of dark current). Additional experiments reveal that the efficacy of ultrathin coatings of Al(2)O(3) arises chiefly from the passivation of redox-catalytic surface states. In contrast, adsorbed t-butylpyridine appears to suppress dark currents mainly by physically blocking access of shuttle molecules to the electrode surface. Studies with other derivatives of pyridine, including sterically and/or electronically diverse derivatives, show that heterocycle adsorption and the concomitant suppression of dark current does not require the coordination of surface Ti(IV) or Al(III) atoms. Notably, the favorable (i.e., negative) shifts in onset potential for the flow of dark current engendered by organic and inorganic surface modifiers are additive. Furthermore, they appear to be largely insensitive to the identity of shuttle molecules.
Quantifying riverine surface currents from time sequences of thermal infrared imagery
Puleo, J.A.; McKenna, T.E.; Holland, K.T.; Calantoni, J.
2012-01-01
River surface currents are quantified from thermal and visible band imagery using two methods. One method utilizes time stacks of pixel intensity to estimate the streamwise velocity at multiple locations. The other method uses particle image velocimetry to solve for optimal two-dimensional pixel displacements between successive frames. Field validation was carried out on the Wolf River, a small coastal plain river near Landon, Mississippi, United States, on 26-27 May 2010 by collecting imagery in association with in situ velocities sampled using electromagnetic current meters deployed 0.1 m below the river surface. Comparisons are made between mean in situ velocities and image-derived velocities from 23 thermal and 6 visible-band image sequences (5 min length) during daylight and darkness conditions. The thermal signal was a small apparent temperature contrast induced by turbulent mixing of a thin layer of cooler water near the river surface with underlying warmer water. The visible-band signal was foam on the water surface. For thermal imagery, streamwise velocities derived from the pixel time stack and particle image velocimetry technique were generally highly correlated to mean streamwise current meter velocities during darkness (r 2 typically greater than 0.9) and early morning daylight (r 2 typically greater than 0.83). Streamwise velocities from the pixel time stack technique had high correlation for visible-band imagery during early morning daylight hours with respect to mean current meter velocities (r 2 > 0.86). Streamwise velocities for the particle image velocimetry technique for visible-band imagery had weaker correlations with only three out of six correlations performed having an r 2 exceeding 0.6. Copyright 2012 by the American Geophysical Union.
Numerical Device Modeling, Analysis, and Optimization of Extended-SWIR HgCdTe Infrared Detectors
NASA Astrophysics Data System (ADS)
Schuster, J.; DeWames, R. E.; DeCuir, E. A.; Bellotti, E.; Dhar, N.; Wijewarnasuriya, P. S.
2016-09-01
Imaging in the extended short-wavelength infrared (eSWIR) spectral band (1.7-3.0 μm) for astronomy applications is an area of significant interest. However, these applications require infrared detectors with extremely low dark current (less than 0.01 electrons per pixel per second for certain applications). In these detectors, sources of dark current that may limit the overall system performance are fundamental and/or defect-related mechanisms. Non-optimized growth/device processing may present material point defects within the HgCdTe bandgap leading to Shockley-Read-Hall dominated dark current. While realizing contributions to the dark current from only fundamental mechanisms should be the goal for attaining optimal device performance, it may not be readily feasible with current technology and/or resources. In this regard, the U.S. Army Research Laboratory performed physics-based, two- and three-dimensional numerical modeling of HgCdTe photovoltaic infrared detectors designed for operation in the eSWIR spectral band. The underlying impetus for this capability and study originates with a desire to reach fundamental performance limits via intelligent device design.
Searching for dark matter-dark energy interactions: Going beyond the conformal case
NASA Astrophysics Data System (ADS)
van de Bruck, Carsten; Mifsud, Jurgen
2018-01-01
We consider several cosmological models which allow for nongravitational direct couplings between dark matter and dark energy. The distinguishing cosmological features of these couplings can be probed by current cosmological observations, thus enabling us to place constraints on these specific interactions which are composed of the conformal and disformal coupling functions. We perform a global analysis in order to independently constrain the conformal, disformal, and mixed interactions between dark matter and dark energy by combining current data from: Planck observations of the cosmic microwave background radiation anisotropies, a combination of measurements of baryon acoustic oscillations, a supernova type Ia sample, a compilation of Hubble parameter measurements estimated from the cosmic chronometers approach, direct measurements of the expansion rate of the Universe today, and a compilation of growth of structure measurements. We find that in these coupled dark-energy models, the influence of the local value of the Hubble constant does not significantly alter the inferred constraints when we consider joint analyses that include all cosmological probes. Moreover, the parameter constraints are remarkably improved with the inclusion of the growth of structure data set measurements. We find no compelling evidence for an interaction within the dark sector of the Universe.
Continuous Flavor Symmetries and the Stability of Asymmetric Dark Matter
Bishara, Fady; Zupan, Jure
2015-01-19
Generically, the asymmetric interactions in asymmetric dark matter (ADM) models could lead to decaying DM. We show that, for ADM that carries nonzero baryon number, continuous flavor symmetries that generate the flavor structure in the quark sector also imply a looser lower bound on the mass scale of the asymmetric mediators between the dark and visible sectors. Furthermore, the mediators for B = 2 ADM that can produce a signal in the future indirect dark matter searches can thus also be searched for at the LHC. For two examples of the mediator models, with either the MFV or Froggatt-Nielsen flavormore » breaking pattern, we derive the FCNC constraints and discuss the search strategies at the LHC.« less
Continuous Flavor Symmetries and the Stability of Asymmetric Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishara, Fady; Zupan, Jure
Generically, the asymmetric interactions in asymmetric dark matter (ADM) models could lead to decaying DM. We show that, for ADM that carries nonzero baryon number, continuous flavor symmetries that generate the flavor structure in the quark sector also imply a looser lower bound on the mass scale of the asymmetric mediators between the dark and visible sectors. Furthermore, the mediators for B = 2 ADM that can produce a signal in the future indirect dark matter searches can thus also be searched for at the LHC. For two examples of the mediator models, with either the MFV or Froggatt-Nielsen flavormore » breaking pattern, we derive the FCNC constraints and discuss the search strategies at the LHC.« less
Limits on Momentum-Dependent Asymmetric Dark Matter with CRESST-II.
Angloher, G; Bento, A; Bucci, C; Canonica, L; Defay, X; Erb, A; Feilitzsch, F V; Ferreiro Iachellini, N; Gorla, P; Gütlein, A; Hauff, D; Jochum, J; Kiefer, M; Kluck, H; Kraus, H; Lanfranchi, J-C; Loebell, J; Münster, A; Pagliarone, C; Petricca, F; Potzel, W; Pröbst, F; Reindl, F; Schäffner, K; Schieck, J; Schönert, S; Seidel, W; Stodolsky, L; Strandhagen, C; Strauss, R; Tanzke, A; Trinh Thi, H H; Türkoğlu, C; Uffinger, M; Ulrich, A; Usherov, I; Wawoczny, S; Willers, M; Wüstrich, M; Zöller, A
2016-07-08
The usual assumption in direct dark matter searches is to consider only the spin-dependent or spin-independent scattering of dark matter particles. However, especially in models with light dark matter particles O(GeV/c^{2}), operators which carry additional powers of the momentum transfer q^{2} can become dominant. One such model based on asymmetric dark matter has been invoked to overcome discrepancies in helioseismology and an indication was found for a particle with a preferred mass of 3 GeV/c^{2} and a cross section of 10^{-37} cm^{2}. Recent data from the CRESST-II experiment, which uses cryogenic detectors based on CaWO_{4} to search for nuclear recoils induced by dark matter particles, are used to constrain these momentum-dependent models. The low energy threshold of 307 eV for nuclear recoils of the detector used, allows us to rule out the proposed best fit value above.
Proposal for Axion Dark Matter Detection Using an L C Circuit
Sikivie, P.; Sullivan, N.; Tanner, D. B.
2014-03-01
Here, we show that dark matter axions cause an oscillating electric current to flow along magnetic field lines. The oscillating current induced in a strong magnetic field B → 0 produces a small magnetic field B → a. We propose to amplify and detect B → a using a cooled LC circuit and a very sensitive magnetometer. This appears to be a suitable approach to searching for axion dark matter in the 10 –7 to 10 –9 eV mass range.
Comparison of dark energy models: A perspective from the latest observational data
NASA Astrophysics Data System (ADS)
Li, Miao; Li, Xiaodong; Zhang, Xin
2010-09-01
We compare some popular dark energy models under the assumption of a flat universe by using the latest observational data including the type Ia supernovae Constitution compilation, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, the cosmic microwave background measurement given by the seven-year Wilkinson Microwave Anisotropy Probe observations and the determination of H 0 from the Hubble Space Telescope. Model comparison statistics such as the Bayesian and Akaike information criteria are applied to assess the worth of the models. These statistics favor models that give a good fit with fewer parameters. Based on this analysis, we find that the simplest cosmological constant model that has only one free parameter is still preferred by the current data. For other dynamical dark energy models, we find that some of them, such as the α dark energy, constant w, generalized Chaplygin gas, Chevalliear-Polarski-Linder parametrization, and holographic dark energy models, can provide good fits to the current data, and three of them, namely, the Ricci dark energy, agegraphic dark energy, and Dvali-Gabadadze-Porrati models, are clearly disfavored by the data.
Probes for dark matter physics
NASA Astrophysics Data System (ADS)
Khlopov, Maxim Yu.
The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and consists of new stable particles. Weakly Interacting Massive Particle (WIMP) miracle appeals to search for neutral stable weakly interacting particles in underground experiments by their nuclear recoil and at colliders by missing energy and momentum, which they carry out. However, the lack of WIMP effects in their direct underground searches and at colliders can appeal to other forms of dark matter candidates. These candidates may be weakly interacting slim particles, superweakly interacting particles, or composite dark matter, in which new particles are bound. Their existence should lead to cosmological effects that can find probes in the astrophysical data. However, if composite dark matter contains stable electrically charged leptons and quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. The models, predicting stable particles with charge ‑ 2 without stable particles with charges + 1 and ‑ 1 can avoid severe constraints on anomalous isotopes of light elements and provide solution for the puzzles of dark matter searches. In such models, the excessive ‑ 2 charged particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-interacting form of the dark matter. The successful development of composite dark matter scenarios appeals for experimental search for doubly charged constituents of dark atoms, making experimental search for exotic stable double charged particles experimentum crucis for dark atoms of composite dark matter.
The Angular Momentum of Baryons and Dark Matter Halos Revisited
NASA Technical Reports Server (NTRS)
Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan
2011-01-01
Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated by large-scale structure motions deep inside dark matter halos, redistributing it only in the vicinity of the disc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Zhenyu, E-mail: jiangzhenyu1201@hotmail.com, E-mail: jianxu@engr.psu.edu; Liu, Yan; Mo, Chen
In an attempt to suppress the dark current, the barrier layer engineer for solution-processed PbSe colloidal quantum-dot (CQD) photodetectors has been investigated in the present study. It was found that the dark current can be significantly suppressed by implementing two types of carrier blocking layers, namely, hole blocking layer and electron blocking layer, sandwiched in between two active PbSe CQD layers. Meanwhile no adverse impact has been observed for the photo current. Our study suggests that this improvement resides on the transport pathway created via carrier recombination at intermediate layer, which provides wide implications for the suppression of dark currentmore » for infrared photodetectors.« less
Novel Drift Structures for Silicon and Compound Semiconductor X-Ray and Gamma-Ray Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley E. Patt; Jan S. Iwanczyk
Recently developed silicon- and compound-semiconductor-based drift detector structures have produced excellent performance for charged particles, X rays, and gamma rays and for low-signal visible light detection. The silicon drift detector (SDD) structures that we discuss relate to direct X-ray detectors and scintillation photon detectors coupled with scintillators for gamma rays. Recent designs include several novel features that ensure very low dark current (both bulk silicon dark current and surface dark current) and hence low noise. In addition, application of thin window technology ensures a very high quantum efficiency entrance window on the drift photodetector.
NASA Technical Reports Server (NTRS)
Laird, Jamie S.; Onoda, Shinobu; Hirao, Toshio; Becker, Heidi; Johnston, Allan; Laird, Jamie S.; Itoh, Hisayoshi
2006-01-01
Effects of displacement damage and ionization damage induced by gamma irradiation on the dark current and impulse response of a high-bandwidth low breakdown voltage Si Avalanche Photodiode has been investigated using picosecond laser microscopy. At doses as high as 10Mrad (Si) minimal alteration in the impulse response and bandwidth were observed. However, dark current measurements also performed with and without biased irradiation exhibit anomalously large damage factors for applied biases close to breakdown. The absence of any degradation in the impulse response is discussed as are possible mechanisms for higher dark current damage factors observed for biased irradiation.
Direct Search for Dark Matter with DarkSide
NASA Astrophysics Data System (ADS)
Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Hungerford, E. V.; Ianni, Al; Ianni, An; Jollet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.
2015-11-01
The DarkSide experiment is designed for the direct detection of Dark Matter with a double phase liquid Argon TPC operating underground at Laboratori Nazionali del Gran Sasso. The TPC is placed inside a 30 tons liquid organic scintillator sphere, acting as a neutron veto, which is in turn installed inside a 1 kt water Cherenkov detector. The current detector is running since November 2013 with a 50 kg atmospheric Argon fill and we report here the first null results of a Dark Matter search for a (1422 ± 67) kg.d exposure. This result correspond to a 90% CL upper limit on the WIMP-nucleon cross section of 6.1 × 10-44 cm2 (for a WIMP mass of 100 GeV/c2) and it's currently the most sensitive limit obtained with an Argon target.
The DarkSide direct dark matter search with liquid argon
NASA Astrophysics Data System (ADS)
Edkins, E.; Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Keeter, K.; Kendziora, C.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.
2017-11-01
The DarkSide-50 direct dark matter detector is a liquid argon time projection chamber (TPC) surrounded by a liquid scintillator neutron veto (LSV) and a water Cerenkov muon veto (WCV). Located under 3800 m.w.e. at the Laboratori Nazionali del Gran Sasso, Italy, it is the only direct dark matter experiment currently operating background free. The atmospheric argon target was replaced with argon from underground sources in April, 2015. The level of 39Ar, a β emitter present in atmospheric argon (AAr), has been shown to have been reduced by a factor of (1.4 ± 0.2) x 103. The combined spin-independent WIMP exclusion limit of 2.0 x 10-44 cm2 (mχ = 100 GeV/c2) is currently the best limit on a liquid argon target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capozzi, D.; et al.
We present the first study of the evolution of the galaxy luminosity and stellar-mass functions (GLF and GSMF) carried out by the Dark Energy Survey (DES). We describe the COMMODORE galaxy catalogue selected from Science Verification images. This catalogue is made ofmore » $$\\sim 4\\times 10^{6}$$ galaxies at $$0« less
Searching for dark photon with positrons at Jefferson lab
NASA Astrophysics Data System (ADS)
Marsicano, Luca
2018-05-01
The interest in the Dark Photon (A' or U) has recently grown, since it could act as a light mediator to a new sector of Dark Matter particles. In this paradigm, the electron-positron annihilation can rarely produce a γA' pair. Various experiments (e.g. PADME@LNF [1], VEPP-3 [2]) have been proposed to detect this process using positron beams impinging on fixed targets. In such experiments, the energy of the photon from the e+e-→ γA' process is measured with an electromagnetic calorimeter and the missing mass is computed (the A' interacts weakly with Standard Model matter so it can't be detected). However, the A' mass range that can be explored with this technique is limited by the accessible energy in the center of mass frame, which goes as the square root of the beam energy. The realization of a 11 GeV positron beam at Jefferson Lab would allow to search for A' masses up to ˜ 100 MeV, reaching unexplored regions of the A' parameter space. A preliminary study on the feasibility of a PADME-like experiment at Jefferson Lab has been carried out, assuming a 11 GeV positron beam with a ˜ 100 nA current. The achievable sensitivity was estimated, studying the main sources of background (positron bremsstrahlung, annihilation into 2 gammas) using CALCHEP [3] and GEANT4 [4] simulations.
Photojunction field-effect transistor based on a colloidal quantum dot absorber channel layer.
Adinolfi, Valerio; Kramer, Illan J; Labelle, André J; Sutherland, Brandon R; Hoogland, S; Sargent, Edward H
2015-01-27
The performance of photodetectors is judged via high responsivity, fast speed of response, and low background current. Many previously reported photodetectors based on size-tuned colloidal quantum dots (CQDs) have relied either on photodiodes, which, since they are primary photocarrier devices, lack gain; or photoconductors, which provide gain but at the expense of slow response (due to delayed charge carrier escape from sensitizing centers) and an inherent dark current vs responsivity trade-off. Here we report a photojunction field-effect transistor (photoJFET), which provides gain while breaking prior photoconductors' response/speed/dark current trade-off. This is achieved by ensuring that, in the dark, the channel is fully depleted due to a rectifying junction between a deep-work-function transparent conductive top contact (MoO3) and a moderately n-type CQD film (iodine treated PbS CQDs). We characterize the rectifying behavior of the junction and the linearity of the channel characteristics under illumination, and we observe a 10 μs rise time, a record for a gain-providing, low-dark-current CQD photodetector. We prove, using an analytical model validated using experimental measurements, that for a given response time the device provides a two-orders-of-magnitude improvement in photocurrent-to-dark-current ratio compared to photoconductors. The photoJFET, which relies on a junction gate-effect, enriches the growing family of CQD photosensitive transistors.
Dark-field imaging in coronary atherosclerosis.
Hetterich, Holger; Webber, Nicole; Willner, Marian; Herzen, Julia; Birnbacher, Lorenz; Auweter, Sigrid; Schüller, Ulrich; Bamberg, Fabian; Notohamiprodjo, Susan; Bartsch, Harald; Wolf, Johannes; Marschner, Mathias; Pfeiffer, Franz; Reiser, Maximilian; Saam, Tobias
2017-09-01
Dark-field imaging based on small angle X-ray scattering has been shown to be highly sensitive for microcalcifications, e.g. in breast tissue. We hypothesized (i) that high signal areas in dark-field imaging of atherosclerotic plaque are associated with microcalcifications and (ii) that dark-field imaging is more sensitive for microcalcifications than attenuation-based imaging. Fifteen coronary artery specimens were examined at an experimental set-up consisting of X-ray tube (40kV), grating-interferometer and detector. Tomographic dark-field-, attenuation-, and phase-contrast data were simultaneously acquired. Histopathology served as standard of reference. To explore the potential of dark field imaging in a full-body CT system, simulations were carried out with spherical calcifications of different sizes to simulate small and intermediate microcalcifications. Microcalcifications were present in 10/10 (100%) cross-sections with high dark-field signal and without evidence of calcifications in attenuation- or phase contrast. In positive controls with high signal areas in all three modalities, 10/10 (100%) cross-sections showed macrocalcifications. In negative controls without high signal areas, no calcifications were detected. Simulations showed that the microcalcifications generate substantially higher dark-field than attenuation signal. Dark-field imaging is highly sensitive for microcalcifications in coronary atherosclerotic plaque and might provide complementary information in the assessment of plaque instability. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantum Dot Detector Enhancement for Narrow Band Multispectral Applications
2012-10-01
19 2.4.3 Dark Current and Noise Current Measurement of QDIPs.................................21 3 References...20 Figure 19: Dark Current of QDIPs Measured by Source Meter…………………………………………21 Figure 20: Schematic View of Noise Current Setup...temperature, higher photoconductive gain, carrier lifetimes 10-100 times longer than Quantum Well Infrared Photodetectors ( QWIPs ), and giving rise to a
Ma, Chao; Zhang, Yan-Bo; Ho, Shih-Hsin; Xing, De-Feng; Ren, Nan-Qi; Liu, Bing-Feng
2017-01-01
The light/dark cycle is one of the most important factors affecting the microalgal growth and lipid accumulation. Biomass concentration and lipid productivity could be enhanced by optimization of light/dark cycles, and this is considered an effective control strategy for microalgal cultivation. Currently, most research on effects of light/dark cycles on algae is carried out under autotrophic conditions and little information is about the effects under mixotrophic cultivation. At the same time, many studies related to mixotrophic cultivation of microalgal strains, even at large scale, have been performed to obtain satisfactory biomass and lipid production. Therefore, it is necessary to investigate cellular metabolism under autotrophic and mixotrophic conditions at different light/dark cycles. Even though microalgal lipid production under optimal environmental factors has been reported by some researchers, the light/dark cycle and temperature are regarded as separate parameters in their studies. In practical cases, light/dark cycling and temperature variation during the day occur simultaneously. Therefore, studies about the combined effects of light/dark cycles and temperature variation on microalgal lipid production are of practical value, potentially providing significant guidelines for large-scale microalgal cultivation under natural conditions. In this work, cell growth and lipid accumulation of an oleaginous microalgal mutant, Scenedesmus sp. Z-4, were investigated at five light/dark cycles (0 h/24 h, 8 h/16 h, 12 h/12 h, 16 h/8 h, and 24 h/0 h) in batch culture. The results showed that the optimal light/dark cycle was 12 h/12 h, when maximum lipid productivity rates of 56.8 and 182.6 mg L -1 day -1 were obtained under autotrophic and mixotrophic cultivation, respectively. Poor microalgal growth and lipid accumulation appeared in the light/dark cycles of 0 h/24 h and 24 h/0 h under autotrophic condition. Prolonging the light duration was unfavorable to the production of chlorophyll a and b, which was mainly due to photooxidation effect. Polysaccharide was converted into lipid and protein when the light irradiation time increased from 0 to 12 h; however, further increasing irradiation time had a negative effect on lipid accumulation. Due to the dependence of autotrophically cultured cells on light energy, the light/dark cycle has a more remarkable influence on cellular metabolism under autotrophic conditions. Furthermore, the combined effects of temperature variation and light/dark cycle of 12 h/12 h on cell growth and lipid accumulation of microalgal mutant Z-4 were investigated under mixotrophic cultivation, and the results showed that biomass was mainly produced at higher temperatures during the day, and a portion of biomass was converted into lipid under dark condition. The extension of irradiation time was beneficial to biomass accumulation, but not in favor of lipid production. Even though effects of light/dark cycles on autotrophic and mixotrophic cells were not exactly the same, the optimal lipid productivities of Scenedesmus sp. Z-4 under both cultivation conditions were achieved at the light/dark of 12 h/12 h. This may be attributed to its long-term acclimation in natural environment. By combining temperature variation with optimal light/dark cycle of 12 h/12 h, this study will be of great significance for practical microalgae-biodiesel production in the outdoor conditions.
Broadband and Resonant Approaches to Axion Dark Matter Detection.
Kahn, Yonatan; Safdi, Benjamin R; Thaler, Jesse
2016-09-30
When ultralight axion dark matter encounters a static magnetic field, it sources an effective electric current that follows the magnetic field lines and oscillates at the axion Compton frequency. We propose a new experiment to detect this axion effective current. In the presence of axion dark matter, a large toroidal magnet will act like an oscillating current ring, whose induced magnetic flux can be measured by an external pickup loop inductively coupled to a SQUID magnetometer. We consider both resonant and broadband readout circuits and show that a broadband approach has advantages at small axion masses. We estimate the reach of this design, taking into account the irreducible sources of noise, and demonstrate potential sensitivity to axionlike dark matter with masses in the range of 10^{-14}-10^{-6} eV. In particular, both the broadband and resonant strategies can probe the QCD axion with a GUT-scale decay constant.
One dark matter mystery: halos in the cosmic web
NASA Astrophysics Data System (ADS)
Gaite, Jose
2015-01-01
The current cold dark matter cosmological model explains the large scale cosmic web structure but is challenged by the observation of a relatively smooth distribution of matter in galactic clusters. We consider various aspects of modeling the dark matter around galaxies as distributed in smooth halos and, especially, the smoothness of the dark matter halos seen in N-body cosmological simulations. We conclude that the problems of the cold dark matter cosmology on small scales are more serious than normally admitted.
Quantum field theory of interacting dark matter and dark energy: Dark monodromies
D’Amico, Guido; Hamill, Teresa; Kaloper, Nemanja
2016-11-28
We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory.more » Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations« less
Quantum field theory of interacting dark matter and dark energy: Dark monodromies
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Amico, Guido; Hamill, Teresa; Kaloper, Nemanja
We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory.more » Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations« less
Gravitational Waves from Binary Mergers of Subsolar Mass Dark Black Holes
NASA Astrophysics Data System (ADS)
Shandera, Sarah; Jeong, Donghui; Gebhardt, Henry S. Grasshorn
2018-06-01
We explore the possible spectrum of binary mergers of subsolar mass black holes formed out of dark matter particles interacting via a dark electromagnetism. We estimate the properties of these dark black holes by assuming that their formation process is parallel to Population-III star formation, except that dark molecular cooling can yield a smaller opacity limit. We estimate the binary coalescence rates for the Advanced LIGO and Einstein telescope, and find that scenarios compatible with all current constraints could produce dark black holes at rates high enough for detection by Advanced LIGO.
Dark sequential Z ' portal: Collider and direct detection experiments
NASA Astrophysics Data System (ADS)
Arcadi, Giorgio; Campos, Miguel D.; Lindner, Manfred; Masiero, Antonio; Queiroz, Farinaldo S.
2018-02-01
We revisit the status of a Majorana fermion as a dark matter candidate when a sequential Z' gauge boson dictates the dark matter phenomenology. Direct dark matter detection signatures rise from dark matter-nucleus scatterings at bubble chamber and liquid xenon detectors, and from the flux of neutrinos from the Sun measured by the IceCube experiment, which is governed by the spin-dependent dark matter-nucleus scattering. On the collider side, LHC searches for dilepton and monojet + missing energy signals play an important role. The relic density and perturbativity requirements are also addressed. By exploiting the dark matter complementarity we outline the region of parameter space where one can successfully have a Majorana dark matter particle in light of current and planned experimental sensitivities.
Status and perspective of the DarkSide experiment at LNGS
Agnes, P.
2018-09-01
The DarkSide experiment aims to perform a background-free direct search for dark matter with a dual-phase argon TPC. The current phase of the experiment, DarkSide-50, is acquiring data at Laboratori Nazionali del Gran Sasso and produced the most sensitive limit on the WIMP-nucleon cross section ever obtained with a liquid argon target (2.0 × 10 -44 cm2 for a WIMP mass of 100 GeV/c 2). The future phase of the experiment will be a 20 t fiducial mass detector, designed to reach a sensitivity of ~1 × 10 -47 cm2 (at 1 TeV/c 2 WIMP mass) with a background-free exposuremore » of 100 ty. Here, this work contains a discussion of the current status of the DarkSide-50 WIMP search and of the results which are more relevant for the construction of the future detector.« less
Direct search for dark matter with DarkSide
Agnes, P.
2015-11-16
Here, the DarkSide experiment is designed for the direct detection of Dark Matter with a double phase liquid Argon TPC operating underground at Laboratori Nazionali del Gran Sasso. The TPC is placed inside a 30 tons liquid organic scintillator sphere, acting as a neutron veto, which is in turn installed inside a 1 kt water Cherenkov detector. The current detector is running since November 2013 with a 50 kg atmospheric Argon fill and we report here the first null results of a Dark Matter search for a (1422 ± 67) kg.d exposure. This result correspond to a 90% CL uppermore » limit on the WIMP-nucleon cross section of 6.1 × 10 -44 cm 2 (for a WIMP mass of 100 GeV/c 2) and it's currently the most sensitive limit obtained with an Argon target.« less
Status and perspective of the DarkSide experiment at LNGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.
The DarkSide experiment aims to perform a background-free direct search for dark matter with a dual-phase argon TPC. The current phase of the experiment, DarkSide-50, is acquiring data at Laboratori Nazionali del Gran Sasso and produced the most sensitive limit on the WIMP-nucleon cross section ever obtained with a liquid argon target (2.0 × 10 -44 cm2 for a WIMP mass of 100 GeV/c 2). The future phase of the experiment will be a 20 t fiducial mass detector, designed to reach a sensitivity of ~1 × 10 -47 cm2 (at 1 TeV/c 2 WIMP mass) with a background-free exposuremore » of 100 ty. Here, this work contains a discussion of the current status of the DarkSide-50 WIMP search and of the results which are more relevant for the construction of the future detector.« less
Genome Features of “Dark-Fly”, a Drosophila Line Reared Long-Term in a Dark Environment
Zhou, Jun; Sugiyama, Yuzo; Nishimura, Osamu; Aizu, Tomoyuki; Toyoda, Atsushi; Fujiyama, Asao; Agata, Kiyokazu
2012-01-01
Organisms are remarkably adapted to diverse environments by specialized metabolisms, morphology, or behaviors. To address the molecular mechanisms underlying environmental adaptation, we have utilized a Drosophila melanogaster line, termed “Dark-fly”, which has been maintained in constant dark conditions for 57 years (1400 generations). We found that Dark-fly exhibited higher fecundity in dark than in light conditions, indicating that Dark-fly possesses some traits advantageous in darkness. Using next-generation sequencing technology, we determined the whole genome sequence of Dark-fly and identified approximately 220,000 single nucleotide polymorphisms (SNPs) and 4,700 insertions or deletions (InDels) in the Dark-fly genome compared to the genome of the Oregon-R-S strain, a control strain. 1.8% of SNPs were classified as non-synonymous SNPs (nsSNPs: i.e., they alter the amino acid sequence of gene products). Among them, we detected 28 nonsense mutations (i.e., they produce a stop codon in the protein sequence) in the Dark-fly genome. These included genes encoding an olfactory receptor and a light receptor. We also searched runs of homozygosity (ROH) regions as putative regions selected during the population history, and found 21 ROH regions in the Dark-fly genome. We identified 241 genes carrying nsSNPs or InDels in the ROH regions. These include a cluster of alpha-esterase genes that are involved in detoxification processes. Furthermore, analysis of structural variants in the Dark-fly genome showed the deletion of a gene related to fatty acid metabolism. Our results revealed unique features of the Dark-fly genome and provided a list of potential candidate genes involved in environmental adaptation. PMID:22432011
NASA Astrophysics Data System (ADS)
Maddox, S. J.; Sun, W.; Lu, Z.; Nair, H. P.; Campbell, J. C.; Bank, S. R.
2012-10-01
We reduced the room temperature dark current in an InAs avalanche photodiode by increasing the p-type contact doping, resulting in an increased energetic barrier to minority electron injection into the p-region, which is a significant source of dark current at room temperature. In addition, by improving the molecular beam epitaxy growth conditions, we reduced the background doping concentration and realized depletion widths as wide as 5 μm at reverse biases as low as 1.5 V. These improvements culminated in low-noise InAs avalanche photodiodes exhibiting a room temperature multiplication gain of ˜80, at a record low reverse bias of 12 V.
DarkBit: a GAMBIT module for computing dark matter observables and likelihoods
NASA Astrophysics Data System (ADS)
Bringmann, Torsten; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Kahlhoefer, Felix; Kvellestad, Anders; Putze, Antje; Savage, Christopher; Scott, Pat; Weniger, Christoph; White, Martin; Wild, Sebastian
2017-12-01
We introduce DarkBit, an advanced software code for computing dark matter constraints on various extensions to the Standard Model of particle physics, comprising both new native code and interfaces to external packages. This release includes a dedicated signal yield calculator for gamma-ray observations, which significantly extends current tools by implementing a cascade-decay Monte Carlo, as well as a dedicated likelihood calculator for current and future experiments ( gamLike). This provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states. We also supply a direct detection package that models a large range of direct detection experiments ( DDCalc), and that provides the corresponding likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes. Finally, we provide custom relic density routines along with interfaces to DarkSUSY, micrOMEGAs, and the neutrino telescope likelihood package nulike. DarkBit is written in the framework of the Global And Modular Beyond the Standard Model Inference Tool ( GAMBIT), providing seamless integration into a comprehensive statistical fitting framework that allows users to explore new models with both particle and astrophysics constraints, and a consistent treatment of systematic uncertainties. In this paper we describe its main functionality, provide a guide to getting started quickly, and show illustrative examples for results obtained with DarkBit (both as a stand-alone tool and as a GAMBIT module). This includes a quantitative comparison between two of the main dark matter codes ( DarkSUSY and micrOMEGAs), and application of DarkBit 's advanced direct and indirect detection routines to a simple effective dark matter model.
NASA Technical Reports Server (NTRS)
Marshall, C. J.; Ladbury, R.; Marshall, P. W.; Reed, R. A.; Howe, C.; Weller, B.; Mendenhall, M.; Waczynski, A.; Jordan, T. M.; Fodness, B.
2006-01-01
This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distribution were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [I]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Car10 code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. The nuclear elastic component (also calculated using the MCNPX) has a negligible effect on the shape of the damage distribution. The Coulombic contribution was calculated using MRED [3,4], a Geant4 [4,5] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chau, Alice; Mayer, Lucio; Governato, Fabio
Λ warm dark matter (ΛWDM), realized by collisionless particles of 1–3 keV, has been proposed as an alternative scenario to Λ-Cold-Dark Matter (ΛCDM) for the dwarf galaxy scale discrepancies. We present an approach to test the viability of such WDM models using star-formation histories (SFHs) of the dwarf spheroidal galaxies (dSphs) in the Local Group. We compare their high-time-resolution SFHs with the collapse redshift of their dark halos in CDM and WDM. Collapse redshift is inferred after determining the subhalo infall mass. This is based on the dwarf current mass inferred from stellar kinematics, combined with cosmological simulation results onmore » subhalo evolution. WDM subhalos close to the filtering mass scale, forming significantly later than CDM, are the most difficult to reconcile with early truncation of star formation ( z ≥ 3). The ultra-faint dwarfs (UFDs) provide the most stringent constraints. Using six UFDs and eight classical dSphs, we show that a 1 keV particle is strongly disfavored, consistently with other reported methods. Excluding other models is only hinted for a few UFDs. Other UFDs for which the lack of robust constraints on halo mass prevents us from carrying out our analysis rigorously, show a very early onset of star formation that will strengthen the constraints delivered by our method in the future. We discuss the various caveats, notably the low number of dwarfs with accurately determined SFHs and the uncertainties when determining the subhalo infall mass, most notably the baryonic physics. Our preliminary analysis may serve as a pathfinder for future investigations that will combine accurate SFHs for local dwarfs with direct analysis of WDM simulations with baryons.« less
NASA Astrophysics Data System (ADS)
Nord, Brian
2017-01-01
Strong gravitational lenses have potential as very powerful probes of dark energy and cosmic structure. However, efficiently finding lenses poses a significant challenge—especially in the era of large-scale cosmological surveys. I will present a new application of deep machine learning algorithms to find strong lenses, as well as the strong lens discovery program of the Dark Energy Survey (DES).Strong lenses provide unique information about the evolution of distant galaxies, the nature of dark energy, and the shapes of dark matter haloes. Current and future surveys, like DES and the Large Synoptic Survey Telescope, present an opportunity to find many thousands of strong lenses, far more than have ever been discovered. By and large, searches have heretofore relied on the time-consuming effort of human scanners. Deep machine learning frameworks, like convolutional neural nets, have revolutionized the task of image recognition, and have a natural place in the processing of astronomical images, including the search for strong lenses.Over five observing seasons, which started in August 2013, DES will carry out a wide-field survey of 5000 square degrees of the Southern Galactic Cap. DES has identified nearly 200 strong lensing candidates in the first two seasons of data. We have performed spectroscopic follow-up on a subsample of these candidates at Gemini South, confirming over a dozen new strong lenses. I will present this DES discovery program, including searches and spectroscopic follow-up of galaxy-scale, cluster-scale and time-delay lensing systems.I will focus, however, on a discussion of the successful search for strong lenses using deep learning methods. In particular, we show that convolutional neural nets present a new set of tools for efficiently finding lenses, and accelerating advancements in strong lensing science.
Dark sector shining through 750 GeV dark Higgs boson at the LHC
NASA Astrophysics Data System (ADS)
Ko, P.; Nomura, Takaaki
2016-07-01
We consider a dark sector with SU(3)C × U(1)Y × U(1)X and three families of dark fermions that are chiral under dark U(1)X gauge symmetry, whereas scalar dark matter X is the SM singlet. U(1)X dark symmetry is spontaneously broken by nonzero VEV of dark Higgs field 〈 Φ 〉, generating the masses of dark fermions and dark photon Z‧. The resulting dark Higgs boson ϕ can be produced at the LHC by dark quark loop (involving 3 generations) and will decay into a pair of photon through charged dark fermion loop. Its decay width can be easily ∼ 45 GeV due to its possible decays into a pair of dark photon, which is not strongly constrained by the current LHC searches pp → ϕ →Z‧Z‧ followed by Z‧ decays into the SM fermion pairs. The scalar DM can achieve thermal relic density without conflict with direct detection bound or the invisible ϕ decay into a pair of DM.
Halo mass and weak galaxy-galaxy lensing profiles in rescaled cosmological N-body simulations
NASA Astrophysics Data System (ADS)
Renneby, Malin; Hilbert, Stefan; Angulo, Raúl E.
2018-05-01
We investigate 3D density and weak lensing profiles of dark matter haloes predicted by a cosmology-rescaling algorithm for N-body simulations. We extend the rescaling method of Angulo & White (2010) and Angulo & Hilbert (2015) to improve its performance on intra-halo scales by using models for the concentration-mass-redshift relation based on excursion set theory. The accuracy of the method is tested with numerical simulations carried out with different cosmological parameters. We find that predictions for median density profiles are more accurate than ˜5 % for haloes with masses of 1012.0 - 1014.5h-1 M⊙ for radii 0.05 < r/r200m < 0.5, and for cosmologies with Ωm ∈ [0.15, 0.40] and σ8 ∈ [0.6, 1.0]. For larger radii, 0.5 < r/r200m < 5, the accuracy degrades to ˜20 %, due to inaccurate modelling of the cosmological and redshift dependence of the splashback radius. For changes in cosmology allowed by current data, the residuals decrease to ≲ 2 % up to scales twice the virial radius. We illustrate the usefulness of the method by estimating the mean halo mass of a mock galaxy group sample. We find that the algorithm's accuracy is sufficient for current data. Improvements in the algorithm, particularly in the modelling of baryons, are likely required for interpreting future (dark energy task force stage IV) experiments.
Near IR observations of Quiet Chromosphere
NASA Astrophysics Data System (ADS)
Prasad Choudhary, Debi; Deng, N.; Tejamoortula, U.; Penn, M. J.
2009-05-01
We have carried out the observations of quiet solar limb during April 29 to May 1, 2008, March 9-13, 2009 using the vertical spectrograph at the focal plane of McMath-Pierce telescope at Kitt Peak National Observatory. The solar limb was mostly featureless during the observations. The New Infrared Array (NAC) at the exit port of the spectrograph has been used to record the limb spectrum at HeI 1083.0 nm, Hydrogen Paschen beta at 1281.8 nm and Brackett gamma 2165.5 nm wavelength regions. The NAC is a 1024 x 1024 InSb Alladin III Detector operating over 1-5 micron range with high density sampling at 0.018 arc second/pixel. The all-reflective optical train minimizes number of surfaces and eliminates ghosts leading to low scatter, ghost-free optics. The close-cycle cryogenic provides a stable cooling environment over six hour period with an accuracy of about 0.01K leading to low dark current. The low read out noise combined with low scattered light and dark current makes NAC an ideal detector for making high quality infrared spectral observations of solar limb. In this presentation, we shall compare the line parameters of these lines around the solar disk. Acknowledgements: This work is supported by NSF under grant ATM 05-48952 and by NASA under grant NNX08AQ32G.
Analysis of Dark Current in BRITE Nanostellite CCD Sensors †
Popowicz, Adam
2018-01-01
The BRightest Target Explorer (BRITE) is the pioneering nanosatellite mission dedicated for photometric observations of the brightest stars in the sky. The BRITE charge coupled device (CCD) sensors are poorly shielded against extensive flux of energetic particles which constantly induce defects in the silicon lattice. In this paper we investigate the temporal evolution of the generation of the dark current in the BRITE CCDs over almost four years after launch. Utilizing several steps of image processing and employing normalization of the results, it was possible to obtain useful information about the progress of thermal activity in the sensors. The outcomes show a clear and consistent linear increase of induced damage despite the fact that only about 0.14% of CCD pixels were probed. By performing the analysis of temperature dependencies of the dark current, we identified the observed defects as phosphorus-vacancy (PV) pairs, which are common in proton irradiated CCD matrices. Moreover, the Meyer-Neldel empirical rule was confirmed in our dark current data, yielding EMN=24.8 meV for proton-induced PV defects. PMID:29415471
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domengie, F., E-mail: florian.domengie@st.com; Morin, P.; Bauza, D.
We propose a model for dark current induced by metallic contamination in a CMOS image sensor. Based on Shockley-Read-Hall kinetics, the expression of dark current proposed accounts for the electric field enhanced emission factor due to the Poole-Frenkel barrier lowering and phonon-assisted tunneling mechanisms. To that aim, we considered the distribution of the electric field magnitude and metal atoms in the depth of the pixel. Poisson statistics were used to estimate the random distribution of metal atoms in each pixel for a given contamination dose. Then, we performed a Monte-Carlo-based simulation for each pixel to set the number of metalmore » atoms the pixel contained and the enhancement factor each atom underwent, and obtained a histogram of the number of pixels versus dark current for the full sensor. Excellent agreement with the dark current histogram measured on an ion-implanted gold-contaminated imager has been achieved, in particular, for the description of the distribution tails due to the pixel regions in which the contaminant atoms undergo a large electric field. The agreement remains very good when increasing the temperature by 15 °C. We demonstrated that the amplification of the dark current generated for the typical electric fields encountered in the CMOS image sensors, which depends on the nature of the metal contaminant, may become very large at high electric field. The electron and hole emissions and the resulting enhancement factor are described as a function of the trap characteristics, electric field, and temperature.« less
Detection of Alpha Particles and Low Energy Gamma Rays by Thermo-Bonded Micromegas in Xenon Gas
NASA Astrophysics Data System (ADS)
Wei, Yuehuan; Guan, Liang; Zhang, Zhiyong; Lin, Qing; Wang, Xiaolian; Ni, Kaixuan; Zhao, Tianchi
2013-08-01
Micromegas is a type of micro-pattern gaseous detector currently under R&D for applications in rare event search experiments. Here we report the performance of a Micromegas structure constructed with a micromesh thermo-bonded to a readout plane, motivated by its potential application in two-phase xenon detectors for dark matter and neutrinoless double beta decay experiments. The study is carried out in pure xenon at room temperature. Measurements with alpha particles from the Americium-241 source showed that gas gains larger than 200 can be obtained at xenon pressure up to 3 atm. Gamma rays down to 8 keV were observed with such a device.
Direct detection with dark mediators
Curtin, David; Surujon, Ze'ev; Tsai, Yuhsin
2014-10-16
We introduce dark mediator Dark Matter (dmDM) where the dark and visible sectors are connected by at least one light mediator Φ carrying the same dark charge that stabilizes DM. Φ is coupled to the Standard Model via an operator q¯qΦΦ*/Λ, and to dark matter via a Yukawa coupling y χX¯ cXΦ. Direct detection is realized as the 2 → 3 process χN → χ¯NΦ at tree-level for m Φ≲10 keV and small Yukawa coupling, or alternatively as a loop-induced 2 → 2 process χN → χN. We explore the direct-detection consequences of this scenario and find that a heavymore » O(100 GeV) dmDM candidate fakes different O(10 GeV) standard WIMPs in different experiments. Large portions of the dmDM parameter space are detectable above the irreducible neutrino background and not yet excluded by any bounds. Interestingly, for the m Φ range leading to novel direct detection phenomenology, dmDM is also a form of Self-Interacting Dark Matter (SIDM), which resolves inconsistencies between dwarf galaxy observations and numerical simulations.« less
SU-F-T-554: Dark Current Effect On CyberKnife Beam Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Chang, A
Purpose: All RF linear accelerators produce dark current to varying degrees when an accelerating voltage and RF input is applied in the absence of electron gun injection. This study is to evaluate how dark current from the linear accelerator of CyberKnife affect the dose in the reference dosimetry. Methods: The G4 CyberKnife system with 6MV photon beam was used in this study. Using the ion chamber and the diode detector, the dose was measured in water with varying time delay between acquiring charges and staring beam-on after applying high-voltage into the linear accelerator. The dose was measured after the timemore » delay with over the range of 0 to 120 seconds in the accelerating high-voltage mode without beam-on, applying 0, 10, 50, 100, and 200 MUs. For the measurements, the collimator of 60 mm was used and the detectors were placed at the depths of 10 cm with the source-to-surface distance of 80 cm. Results: The dark current was constant over time regardless of MU. The dose due to the dark current increased over time linearly with the R-squared value of 0.9983 up to 4.4 cGy for the time 120 seconds. In the dose rate setting of 720 MU/min, the relative dose when applying the accelerating voltage without beam-on was increased over time up to 0.6% but it was less than the leakage radiation resulted from the accelerated head. As the reference dosimetry condition, when 100 MU was delivered after 10 seconds time delay, the relative dose increased by 0.7% but 6.7% for the low MU (10 MU). Conclusion: In the dosimetry using CyberKnife system, the constant dark current affected to the dose. Although the time delay in the accelerating high-voltage mode without beam-on is within 10 seconds, the dose less than 100 cGy can be overestimated more than 1%.« less
Dark gauge bosons: LHC signatures of non-abelian kinetic mixing
Argüelles, Carlos A.; He, Xiao-Gang; Ovanesyan, Grigory; ...
2017-04-20
We consider non-abelian kinetic mixing between the Standard Model and a dark sector gauge group associated with the presence of a scalar triplet. The magnitude of the resulting dark photon coupling ϵ is determined by the ratio of the triplet vacuum expectation value, constrained to by by electroweak precision tests, to the scale Λ of the effective theory. The corresponding effective operator Wilson coefficient can be while accommodating null results for dark photon searches, allowing for a distinctive LHC dark photon phenomenology. After outlining the possible LHC signatures, we illustrate by recasting current ATLAS dark photon results into the non-abelianmore » mixing context.« less
Dark matter and the equivalence principle
NASA Technical Reports Server (NTRS)
Frieman, Joshua A.; Gradwohl, Ben-Ami
1993-01-01
A survey is presented of the current understanding of dark matter invoked by astrophysical theory and cosmology. Einstein's equivalence principle asserts that local measurements cannot distinguish a system at rest in a gravitational field from one that is in uniform acceleration in empty space. Recent test-methods for the equivalence principle are presently discussed as bases for testing of dark matter scenarios involving the long-range forces between either baryonic or nonbaryonic dark matter and ordinary matter.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-10
... concern about dark pools and their potential impact on the fairness and transparency of the national market system.\\12\\ One of these commenters suggested that dark pools be prohibited entirely.\\13\\ FINRA... transparency that currently exists.\\14\\ FINRA stated that all trades executed on an ATS, including a dark pool...
Directly detecting isospin-violating dark matter
NASA Astrophysics Data System (ADS)
Kelso, Chris; Kumar, Jason; Marfatia, Danny; Sandick, Pearl
2018-03-01
We consider the prospects for multiple dark matter direct detection experiments to determine if the interactions of a dark matter candidate are isospin-violating. We focus on theoretically well-motivated examples of isospin-violating dark matter (IVDM), including models in which dark matter interactions with nuclei are mediated by a dark photon, a Z , or a squark. We determine that the best prospects for distinguishing IVDM from the isospin-invariant scenario arise in the cases of dark photon-or Z -mediated interactions, and that the ideal experimental scenario would consist of large exposure xenon- and neon-based detectors. If such models just evade current direct detection limits, then one could distinguish such models from the standard isospin-invariant case with two detectors with of order 100 ton-year exposure.
n-B-pi-p Superlattice Infrared Detector
NASA Technical Reports Server (NTRS)
Ting, David Z.; Bandara, Sumith V.; Hill, Cory J.; Gunapala, Sarath D.
2011-01-01
A specially designed barrier (B) is inserted at the n-pi junction [where most GR (generation-recombination) processes take place] in the standard n-pi-p structure to substantially reduce generation-recombination dark currents. The resulting n-Bpi- p structure also has reduced tunneling dark currents, thereby solving some of the limitations to which current type II strained layer superlattice infrared detectors are prone. This innovation is compatible with common read-out integrated circuits (ROICs).
Antimatter cosmic rays from dark matter annihilation: First results from an N-body experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavalle, J.; Nezri, E.; Athanassoula, E.
2008-11-15
While the particle hypothesis for dark matter may be very soon investigated at the LHC, and as the PAMELA and GLAST satellites are currently taking new data on charged and gamma cosmic rays, the need of controlling the theoretical uncertainties affecting the possible indirect signatures of dark matter annihilation is of paramount importance. The uncertainties which originate from the dark matter distribution are difficult to estimate because current astrophysical observations provide rather weak dynamical constraints and because, according to cosmological N-body simulations, dark matter is neither smoothly nor spherically distributed in galactic halos. Some previous studies made use of N-bodymore » simulations to compute the {gamma}-ray flux from dark matter annihilation, but such a work has never been performed for the antimatter (positron and antiproton) primary fluxes, for which transport processes complicate the calculations. We take advantage of the galaxylike 3D dark matter map extracted from the Horizon Project results to calculate the positron and antiproton fluxes from dark matter annihilation, in a model-independent approach as well as for dark matter particle benchmarks relevant at the LHC scale (from supersymmetric and extradimensional theories). We find that the flux uncertainties arise mainly from fluctuations of the local dark matter density, and are of {approx}1 order of magnitude. We compare our results to analytic descriptions of the dark matter halo, showing how the latter can well reproduce the former. The overall antimatter predictions associated with our benchmark models are shown to lie far below the existing measurements and, in particular, that of the positron fraction recently reported by PAMELA, and far below the background predictions as well. Finally, we stress the limits of the use of an N-body framework in this context.« less
Electrical transport properties of thermally evaporated phthalocyanine (H 2Pc) thin films
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Farid, A. M.; Attia, A. A.; Ali, H. A. M.
2006-08-01
Thin films of H 2Pc of various thicknesses have been deposited onto glass substrates using thermal evaporation technique at room temperature. The dark electrical resistivity measurements were carried out at different temperatures in the range 298-473 K. An estimation of mean free path ( lo) of charge carriers in H 2Pc thin films was attempted. Measurements of thermoelectric power confirm that H 2Pc thin films behave as a p-type semiconductor. The current density-voltage characteristics of Au/H 2Pc/Au at room temperature showed ohmic conduction mechanism at low voltages. At higher voltages the space-charge-limited conduction (SCLC) accompanied by an exponential trap distribution was dominant. The temperature dependence of current density allows the determination of some essential parameters such as the hole mobility ( μh), the total trap concentration ( Nt), the characteristic temperature ( Tt) and the trap density P( E).
NASA Astrophysics Data System (ADS)
Guo, Juan-Juan; Zhang, Jing-Fei; Li, Yun-He; He, Dong-Ze; Zhang, Xin
2018-03-01
We consider the models of vacuum energy interacting with cold dark matter in this study, in which the coupling can change sigh during the cosmological evolution. We parameterize the running coupling b by the form b( a) = b 0 a+ b e(1- a), where at the early-time the coupling is given by a constant b e and today the coupling is described by another constant b 0. We explore six specific models with (i) Q = b( a) H 0 ρ 0, (ii) Q = b( a) H 0 ρ de, (iii) Q = b( a) H 0 ρ c, (iv) Q = b( a) Hρ 0, (v) Q = b( a) H ρ de, and (vi) Q = b( a) Hρ c. The current observational data sets we use to constrain the models include the JLA compilation of type Ia supernova data, the Planck 2015 distance priors data of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the Hubble constant direct measurement. We find that, for all the models, we have b 0 < 0 and b e > 0 at around the 1 σ level, and b 0 and b e are in extremely strong anti-correlation. Our results show that the coupling changes sign during the evolution at about the 1 σ level, i.e., the energy transfer is from dark matter to dark energy when dark matter dominates the universe and the energy transfer is from dark energy to dark matter when dark energy dominates the universe.
Solar terrestrial relationships related to thunderstorms and BUV dark current and ozone data
NASA Technical Reports Server (NTRS)
Herman, J. R.
1980-01-01
Solar terrestrial interactions as they affect Nimbus 4 BUV dark current and possibly affect thunderstorm occurrence are investigated. A solar wind index is calculated for 1970 to 1971. Dark current enhancements appear to be associated in some way with solar proton events and the solar wind index, but additional investigations by GSFC are required before conclusions can be drawn. Superposed epoch analysis of an index of North American thunderstorm occurrence reveals a discernible increase in the index magnitude on days 1 and 2 following solar proton events. There appears to be little or no 27 day recurrence tendency in thunderstorm occurrence frequency and no association with vorticity area index on a day to day basis.
Probing leptophilic dark sectors with hadronic processes
NASA Astrophysics Data System (ADS)
D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo
2017-08-01
We study vector portal dark matter models where the mediator couples only to leptons. In spite of the lack of tree-level couplings to colored states, radiative effects generate interactions with quark fields that could give rise to a signal in current and future experiments. We identify such experimental signatures: scattering of nuclei in dark matter direct detection; resonant production of lepton-antilepton pairs at the Large Hadron Collider; and hadronic final states in dark matter indirect searches. Furthermore, radiative effects also generate an irreducible mass mixing between the vector mediator and the Z boson, severely bounded by ElectroWeak Precision Tests. We use current experimental results to put bounds on this class of models, accounting for both radiatively induced and tree-level processes. Remarkably, the former often overwhelm the latter.
Probing leptophilic dark sectors with hadronic processes
D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo
2017-05-29
We study vector portal dark matter models where the mediator couples only to leptons. In spite of the lack of tree-level couplings to colored states, radiative effects generate interactions with quark fields that could give rise to a signal in current and future experiments. We identify such experimental signatures: scattering of nuclei in dark matter direct detection; resonant production of lepton–antilepton pairs at the Large Hadron Collider; and hadronic final states in dark matter indirect searches. Furthermore, radiative effects also generate an irreducible mass mixing between the vector mediator and the Z boson, severely bounded by ElectroWeak Precision Tests. Wemore » use current experimental results to put bounds on this class of models, accounting for both radiatively induced and tree-level processes. Remarkably, the former often overwhelm the latter.« less
Searching for dark absorption with direct detection experiments
Bloch, Itay M.; Essig, Rouven; Tobioka, Kohsaku; ...
2017-06-16
We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experiments to disfavor previously allowed parameter space. Moreover, we derive sensitivity projections for SuperCDMS at SNOLAB formore » silicon and germanium targets, as well as for various possible experiments with scintillating targets (cesium iodide, sodium iodide, and gallium arsenide). The projected sensitivity can probe large new regions of parameter space. For axion-like particles, the same current direction detection data improves on previously known direct-detection constraints but does not bound new parameter space beyond known stellar cooling bounds. However, projected sensitivities of the upcoming SuperCDMS SNOLAB using germanium can go beyond these and even probe parameter space consistent with possible hints from the white dwarf luminosity function. We find similar results for dark photons from the sun. For all cases, direct-detection experiments can have unprecedented sensitivity to dark-sector particles.« less
Searching for dark absorption with direct detection experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloch, Itay M.; Essig, Rouven; Tobioka, Kohsaku
We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experiments to disfavor previously allowed parameter space. Moreover, we derive sensitivity projections for SuperCDMS at SNOLAB formore » silicon and germanium targets, as well as for various possible experiments with scintillating targets (cesium iodide, sodium iodide, and gallium arsenide). The projected sensitivity can probe large new regions of parameter space. For axion-like particles, the same current direction detection data improves on previously known direct-detection constraints but does not bound new parameter space beyond known stellar cooling bounds. However, projected sensitivities of the upcoming SuperCDMS SNOLAB using germanium can go beyond these and even probe parameter space consistent with possible hints from the white dwarf luminosity function. We find similar results for dark photons from the sun. For all cases, direct-detection experiments can have unprecedented sensitivity to dark-sector particles.« less
Revealing the nonadiabatic nature of dark energy perturbations from galaxy clustering data
NASA Astrophysics Data System (ADS)
Velten, Hermano; Fazolo, Raquel
2017-10-01
We study structure formation using relativistic cosmological linear perturbation theory in the presence of intrinsic and relative (with respect to matter) nonadiabatic dark energy perturbations. For different dark energy models we assess the impact of nonadiabaticity on the matter growth promoting a comparison with growth rate data. The dark energy models studied lead to peculiar signatures of the (non)adiabatic nature of dark energy perturbations in the evolution of the f σ8(z ) observable. We show that nonadiabatic dark energy models become close to be degenerated with respect to the Λ CDM model at first order in linear perturbations. This would avoid the identification of the nonadiabatic nature of dark energy using current available data. Therefore, such evidence indicates that new probes are necessary to reveal the nonadiabatic features in the dark energy sector.
Near-Infrared Photon-Counting Camera for High-Sensitivity Observations
NASA Technical Reports Server (NTRS)
Jurkovic, Michael
2012-01-01
The dark current of a transferred-electron photocathode with an InGaAs absorber, responsive over the 0.9-to-1.7- micron range, must be reduced to an ultralow level suitable for low signal spectral astrophysical measurements by lowering the temperature of the sensor incorporating the cathode. However, photocathode quantum efficiency (QE) is known to reduce to zero at such low temperatures. Moreover, it has not been demonstrated that the target dark current can be reached at any temperature using existing photocathodes. Changes in the transferred-electron photocathode epistructure (with an In- GaAs absorber lattice-matched to InP and exhibiting responsivity over the 0.9- to-1.7- m range) and fabrication processes were developed and implemented that resulted in a demonstrated >13x reduction in dark current at -40 C while retaining >95% of the approximately equal to 25% saturated room-temperature QE. Further testing at lower temperature is needed to confirm a >25 C predicted reduction in cooling required to achieve an ultralow dark-current target suitable for faint spectral astronomical observations that are not otherwise possible. This reduction in dark current makes it possible to increase the integration time of the imaging sensor, thus enabling a much higher near-infrared (NIR) sensitivity than is possible with current technology. As a result, extremely faint phenomena and NIR signals emitted from distant celestial objects can be now observed and imaged (such as the dynamics of redshifting galaxies, and spectral measurements on extra-solar planets in search of water and bio-markers) that were not previously possible. In addition, the enhanced NIR sensitivity also directly benefits other NIR imaging applications, including drug and bomb detection, stand-off detection of improvised explosive devices (IED's), Raman spectroscopy and microscopy for life/physical science applications, and semiconductor product defect detection.
Exponential Potential versus Dark Matter
1993-10-15
scale of the solar system. Galaxy, Dark matter , Galaxy cluster, Gravitation, Quantum gravity...A two parameter exponential potential explains the anomalous kinematics of galaxies and galaxy clusters without need for the myriad ad hoc dark ... matter models currently in vogue. It also explains much about the scales and structures of galaxies and galaxy clusters while being quite negligible on the
Search for Muonic Dark Forces at BABAR
NASA Astrophysics Data System (ADS)
Godang, Romulus
2017-04-01
Many models of physics beyond Standard Model predict the existence of light Higgs states, dark photons, and new gauge bosons mediating interactions between dark sectors and the Standard Model. Using a full data sample collected with the BABAR detector at the PEP-II e+e- collider, we report searches for a light non-Standard Model Higgs boson, dark photon, and a new muonic dark force mediated by a gauge boson (Z') coupling only to the second and third lepton families. Our results significantly improve upon the current bounds and further constrain the remaining region of the allowed parameter space.
Warm dark matter effects in a spherical collapse model with shear and angular momentum
NASA Astrophysics Data System (ADS)
Marciu, Mihai
2016-03-01
This paper investigates the nonlinear structure formation in a spherical top-hat collapse model based on the pseudo-Newtonian approximation. The system is composed of warm dark matter and dark energy and the dynamical properties of the collapsing region are analyzed for various parametrizations of the dark matter equation of state which are in agreement with current observations. Concerning dark energy, observational constraints of the Chevallier-Polarski-Linder model and the Jassal-Bagla-Padmanabhan equation of state have been considered. During the collapse, the positive dark matter pressure leads to an increase of growth for dark matter and dark energy perturbations and an accelerated expansion for the spherical region. Hence, in the warm dark matter hypothesis, the structure formation is accelerated and the inconsistencies of the Λ CDM model at the galactic scales could be solved. The results obtained are applicable only to adiabatic warm dark matter physical models which are compatible with the pseudo-Newtonian approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blennow, Mattias; Clementz, Stefan, E-mail: emb@kth.se, E-mail: scl@kth.se
Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles andmore » anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models.« less
New LUX result constrains exotic quark mediators with the vector dark matter
NASA Astrophysics Data System (ADS)
Chen, Chuan-Ren; Li, Ming-Jie
2016-12-01
The scenario of the compressed mass spectrum between heavy quark and dark matter is a challenge for LHC searches. However, the elastic scattering cross-section between dark matter and nuclei in dark matter direct detection experiments can be enhanced with nearly degenerate masses between heavy quarks and dark matter. In this paper, we illustrate such scenario with a vector dark matter, using the latest result from LUX 2016. The mass constraints on heavy quarks can be more stringent than current limits from LHC, unless the coupling strength is very small. However, the compress mass spectrum with allowed tiny coupling strength makes the decay lifetime of heavy quarks longer than the timescale of QCD hadronization.
High Detectivity Graphene-Silicon Heterojunction Photodetector.
Li, Xinming; Zhu, Miao; Du, Mingde; Lv, Zheng; Zhang, Li; Li, Yuanchang; Yang, Yao; Yang, Tingting; Li, Xiao; Wang, Kunlin; Zhu, Hongwei; Fang, Ying
2016-02-03
A graphene/n-type silicon (n-Si) heterojunction has been demonstrated to exhibit strong rectifying behavior and high photoresponsivity, which can be utilized for the development of high-performance photodetectors. However, graphene/n-Si heterojunction photodetectors reported previously suffer from relatively low specific detectivity due to large dark current. Here, by introducing a thin interfacial oxide layer, the dark current of graphene/n-Si heterojunction has been reduced by two orders of magnitude at zero bias. At room temperature, the graphene/n-Si photodetector with interfacial oxide exhibits a specific detectivity up to 5.77 × 10(13) cm Hz(1/2) W(-1) at the peak wavelength of 890 nm in vacuum, which is highest reported detectivity at room temperature for planar graphene/Si heterojunction photodetectors. In addition, the improved graphene/n-Si heterojunction photodetectors possess high responsivity of 0.73 A W(-1) and high photo-to-dark current ratio of ≈10(7) . The current noise spectral density of the graphene/n-Si photodetector has been characterized under ambient and vacuum conditions, which shows that the dark current can be further suppressed in vacuum. These results demonstrate that graphene/Si heterojunction with interfacial oxide is promising for the development of high detectivity photodetectors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cosmology from cosmic shear with Dark Energy Survey Science Verification data
Becker, M. R.
2016-07-06
We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find σ 8(m=0.3) 0.5 = 0:81 ± 0:06 (68% confidence), after marginalising over 7 systematics parameters and 3 other cosmological parameters. Furthermore, we examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About 20% ofmore » our error bar comes from marginalising over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data. Our results are consistent with both datasets. Our uncertainties are ~30% larger than those from CFHTLenS when we carry out a comparable analysis of the two datasets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of σ 8(Ω m=0.3) 0.5 is present regardless of the value of w.« less
Cosmology from cosmic shear with Dark Energy Survey Science Verification data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, M. R.
We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find σ 8(m=0.3) 0.5 = 0:81 ± 0:06 (68% confidence), after marginalising over 7 systematics parameters and 3 other cosmological parameters. Furthermore, we examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About 20% ofmore » our error bar comes from marginalising over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data. Our results are consistent with both datasets. Our uncertainties are ~30% larger than those from CFHTLenS when we carry out a comparable analysis of the two datasets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of σ 8(Ω m=0.3) 0.5 is present regardless of the value of w.« less
Simultaneous wood and metal particle detection on dark-field radiography.
Braig, Eva-Maria; Birnbacher, Lorenz; Schaff, Florian; Gromann, Lukas; Fingerle, Alexander; Herzen, Julia; Rummeny, Ernst; Noël, Peter; Pfeiffer, Franz; Muenzel, Daniela
2018-01-01
Currently, the detection of retained wood is a frequent but challenging task in emergency care. The purpose of this study is to demonstrate improved foreign-body detection with the novel approach of preclinical X-ray dark-field radiography. At a preclinical dark-field x-ray radiography, setup resolution and sensitivity for simultaneous detection of wooden and metallic particles have been evaluated in a phantom study. A clinical setting has been simulated with a formalin fixated human hand where different typical foreign-body materials have been inserted. Signal-to-noise ratios (SNR) have been determined for all test objects. On the phantom, the SNR value for wood in the dark-field channel was strongly improved by a factor 6 compared to conventional radiography and even compared to the SNR of an aluminium structure of the same size in conventional radiography. Splinters of wood < 300 μm in diameter were clearly detected on the dark-field radiography. Dark-field radiography of the formalin-fixated human hand showed a clear signal for wooden particles that could not be identified on conventional radiography. x-ray dark-field radiography enables the simultaneous detection of wooden and metallic particles in the extremities. It has the potential to improve and simplify the current state-of-the-art foreign-body detection.
Long-term monitoring of blazars - the DWARF network
NASA Astrophysics Data System (ADS)
Backes, Michael; Biland, Adrian; Boller, Andrea; Braun, Isabel; Bretz, Thomas; Commichau, Sebastian; Commichau, Volker; Dorner, Daniela; von Gunten, Hanspeter; Gendotti, Adamo; Grimm, Oliver; Hildebrand, Dorothée; Horisberger, Urs; Krähenbühl, Thomas; Kranich, Daniel; Lustermann, Werner; Mannheim, Karl; Neise, Dominik; Pauss, Felicitas; Renker, Dieter; Rhode, Wolfgang; Rissi, Michael; Rollke, Sebastian; Röser, Ulf; Stark, Luisa Sabrina; Stucki, Jean-Pierre; Viertel, Gert; Vogler, Patrick; Weitzel, Quirin
The variability of the very high energy (VHE) emission from blazars seems to be connected with the feeding and propagation of relativistic jets and with their origin in supermassive black hole binaries. The key to understanding their properties is measuring well-sampled gamma-ray lightcurves, revealing the typical source behavior unbiased by prior knowledge from other wavebands. Using ground-based gamma-ray observatories with exposures limited by dark-time, a global network of several telescopes is needed to carry out fulltime measurements. Obviously, such observations are time-consuming and, therefore, cannot be carried out with the present state of the art instruments. The DWARF telescope on the Canary Island of La Palma is dedicated to monitoring observations. It is currently being set up, employing a costefï¬cient and robotic design. Part of this project is the future construction of a distributed network of small telescopes. The physical motivation of VHE long-term monitoring will be outlined in detail and the perspective for a network for 24/7 observations will be presented.
DarkSide search for dark matter
NASA Astrophysics Data System (ADS)
Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Bussino, S.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chepurnov, A.; Chidzik, S.; Cocco, A. G.; Condon, C.; D'Angelo, D.; Davini, S.; De Vincenzi, M.; De Haas, E.; Derbin, A.; Di Pietro, G.; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Franco, D.; Fomenko, K.; Forster, G.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al; Ianni, An; Joliet, C.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Klemmer, R.; Kobychev, V.; Koh, G.; Komor, M.; Korablev, D.; Korga, G.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P.; Mohayai, T.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perasso, S.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Randle, K.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvarov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Thompson, J.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.
2013-11-01
The DarkSide staged program utilizes a two-phase time projection chamber (TPC) with liquid argon as the target material for the scattering of dark matter particles. Efficient background reduction is achieved using low radioactivity underground argon as well as several experimental handles such as pulse shape, ratio of ionization over scintillation signal, 3D event reconstruction, and active neutron and muon vetos. The DarkSide-10 prototype detector has proven high scintillation light yield, which is a particularly important parameter as it sets the energy threshold for the pulse shape discrimination technique. The DarkSide-50 detector system, currently in commissioning phase at the Gran Sasso Underground Laboratory, will reach a sensitivity to dark matter spin-independent scattering cross section of 10-45 cm2 within 3 years of operation.
NASA Astrophysics Data System (ADS)
Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David
2011-06-01
We describe the factors that go into the component choices for a short wavelength IR (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7 °C. In addition, we have mated our InGaAs detector arrays to 640×512 readout integrated integrated circuits to make focal plane arrays (FPAs). The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 μm at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0 °C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling. In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, and provide artifact-free imagery versus conventional laser illuminators.
NASA Astrophysics Data System (ADS)
Curciarello, Francesca
2016-04-01
e+e- collider experiments at the intensity frontier are naturally suited to probe the existence of a force beyond the Standard Model between WIMPs, the most viable dark matter candidates. The mediator of this new force, known as dark photon, should be a new vector gauge boson very weakly coupled to the Standard Model photon. No significant signal has been observed so far. I will report on current limits set on the coupling factor ɛ2 between the photon and the dark photon by e+e- collider experiments.
Dark matter in the coming decade: Complementary paths to discovery and beyond
Bauer, Daniel; Buckley, James; Cahill-Rowley, Matthew; ...
2015-05-27
Here, we summarize the many dark matter searches currently being pursued through four complementary approaches: direct detection, indirect detection, collider experiments, and astrophysical probes. The essential features of broad classes of experiments are described, each with their own strengths and weaknesses. Furthermore, we discuss the complementarity of the different dark matter searches qualitatively and illustrated quantitatively in two simple theoretical frameworks. Our primary conclusion is that the diversity of possible dark matter candidates requires a balanced program drawing from all four approaches.
Millicharged dark matter in quantum gravity and string theory.
Shiu, Gary; Soler, Pablo; Ye, Fang
2013-06-14
We examine the millicharged dark matter scenario from a string theory perspective. In this scenario, kinetic and mass mixings of the photon with extra U(1) bosons are claimed to give rise to small electric charges, carried by dark matter particles, whose values are determined by continuous parameters of the theory. This seems to contradict folk theorems of quantum gravity that forbid the existence of irrational charges in theories with a single massless gauge field. By considering the underlying structure of the U(1) mass matrix that appears in type II string compactifications, we show that millicharges arise exclusively through kinetic mixing, and require the existence of at least two exactly massless gauge bosons.
Chilly dark sectors and asymmetric reheating
NASA Astrophysics Data System (ADS)
Adshead, Peter; Cui, Yanou; Shelton, Jessie
2016-06-01
In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N eff , we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.
Asymmetric capture of Dirac dark matter by the Sun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blennow, Mattias; Clementz, Stefan
2015-08-18
Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles andmore » anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models.« less
Scafaro, Andrew P; Negrini, A Clarissa A; O'Leary, Brendan; Rashid, F Azzahra Ahmad; Hayes, Lucy; Fan, Yuzhen; Zhang, You; Chochois, Vincent; Badger, Murray R; Millar, A Harvey; Atkin, Owen K
2017-01-01
Mitochondrial respiration in the dark ( R dark ) is a critical plant physiological process, and hence a reliable, efficient and high-throughput method of measuring variation in rates of R dark is essential for agronomic and ecological studies. However, currently methods used to measure R dark in plant tissues are typically low throughput. We assessed a high-throughput automated fluorophore system of detecting multiple O 2 consumption rates. The fluorophore technique was compared with O 2 -electrodes, infrared gas analysers (IRGA), and membrane inlet mass spectrometry, to determine accuracy and speed of detecting respiratory fluxes. The high-throughput fluorophore system provided stable measurements of R dark in detached leaf and root tissues over many hours. High-throughput potential was evident in that the fluorophore system was 10 to 26-fold faster per sample measurement than other conventional methods. The versatility of the technique was evident in its enabling: (1) rapid screening of R dark in 138 genotypes of wheat; and, (2) quantification of rarely-assessed whole-plant R dark through dissection and simultaneous measurements of above- and below-ground organs. Variation in absolute R dark was observed between techniques, likely due to variation in sample conditions (i.e. liquid vs. gas-phase, open vs. closed systems), indicating that comparisons between studies using different measuring apparatus may not be feasible. However, the high-throughput protocol we present provided similar values of R dark to the most commonly used IRGA instrument currently employed by plant scientists. Together with the greater than tenfold increase in sample processing speed, we conclude that the high-throughput protocol enables reliable, stable and reproducible measurements of R dark on multiple samples simultaneously, irrespective of plant or tissue type.
Direct detection of sub-GeV dark matter with semiconductor targets
Essig, Rouven; Fernández-Serra, Marivi; Mardon, Jeremy; ...
2016-05-09
Dark matter in the sub-GeV mass range is a theoretically motivated but largely unexplored paradigm. Such light masses are out of reach for conventional nuclear recoil direct detection experiments, but may be detected through the small ionization signals caused by dark matter-electron scattering. Semiconductors are well-studied and are particularly promising target materials because their O(1 eV) band gaps allow for ionization signals from dark matter particles as light as a few hundred keV. Current direct detection technologies are being adapted for dark matter-electron scattering. In this paper, we provide the theoretical calculations for dark matter-electron scattering rate in semiconductors, overcomingmore » several complications that stem from the many-body nature of the problem. We use density functional theory to numerically calculate the rates for dark matter-electron scattering in silicon and germanium, and estimate the sensitivity for upcoming experiments such as DAMIC and SuperCDMS. We find that the reach for these upcoming experiments has the potential to be orders of magnitude beyond current direct detection constraints and that sub-GeV dark matter has a sizable modulation signal. We also give the first direct detection limits on sub-GeV dark matter from its scattering off electrons in a semiconductor target (silicon) based on published results from DAMIC. We make available publicly our code, QEdark, with which we calculate our results. Our results can be used by experimental collaborations to calculate their own sensitivities based on their specific setup. In conclusion, the searches we propose will probe vast new regions of unexplored dark matter model and parameter space.« less
Toward (finally!) ruling out Z and Higgs mediated dark matter models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escudero, Miguel; Berlin, Asher; Hooper, Dan
2016-12-01
In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Zmore » mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance ( m {sub DM} ≅ m {sub Z} /2) or greater than 200 GeV, or with a vector coupling and with m {sub DM} > 6 TeV . Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole ( m {sub DM} ≅ m {sub H} /2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. With the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.« less
Toward (finally!) ruling out Z and Higgs mediated dark matter models
Escudero, Miguel; Fermi National Accelerator Lab.; Berlin, Asher; ...
2016-12-15
In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Zmore » mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance (m DM ≃ m Z/2) or greater than 200 GeV, or with a vector coupling and with m DM > 6 TeV . Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole (m DM ≃ m H/2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. Furthermore, with the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.« less
Toward (finally!) ruling out Z and Higgs mediated dark matter models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escudero, Miguel; Fermi National Accelerator Lab.; Berlin, Asher
In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Zmore » mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance (m DM ≃ m Z/2) or greater than 200 GeV, or with a vector coupling and with m DM > 6 TeV . Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole (m DM ≃ m H/2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. Furthermore, with the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.« less
Analytic study of the effect of dark energy-dark matter interaction on the growth of structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcondes, Rafael J.F.; Landim, Ricardo C.G.; Costa, André A.
2016-12-01
Large-scale structure has been shown as a promising cosmic probe for distinguishing and constraining dark energy models. Using the growth index parametrization, we obtain an analytic formula for the growth rate of structures in a coupled dark energy model in which the exchange of energy-momentum is proportional to the dark energy density. We find that the evolution of f σ{sub 8} can be determined analytically once we know the coupling, the dark energy equation of state, the present value of the dark energy density parameter and the current mean amplitude of dark matter fluctuations. After correcting the growth function formore » the correspondence with the velocity field through the continuity equation in the interacting model, we use our analytic result to compare the model's predictions with large-scale structure observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callewaert, F.; Hoang, A. M.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu
2014-02-03
A long wavelength infrared minority electron unipolar photodetector based on InAs/GaSb type-II superlattices is demonstrated. At 77 K, a dark current of 3 × 10{sup −5} A/cm{sup 2} and a differential resistance-area of 3700 Ω.cm{sup 2} are achieved at the turn-on bias, with a 50%-cutoff of 10.0 μm and a specific detectivity of 6.2 × 10{sup 11} Jones. The dark current is fitted as a function of bias and temperature using a model combining generation-recombination and trap-assisted tunneling. Good agreement was observed between the theory and the experimental dark current.
NASA Astrophysics Data System (ADS)
Da Rocha, Roldão; Bernardini, Alex E.; da Silva, J. M. Hoff
2011-04-01
Exotic dark spinor fields are introduced and investigated in the context of inequivalent spin structures on arbitrary curved spacetimes, which induces an additional term on the associated Dirac operator, related to a Čech cohomology class. For the most kinds of spinor fields, any exotic term in the Dirac operator can be absorbed and encoded as a shift of the electromagnetic vector potential representing an element of the cohomology group {H^1}( {M,{{Z}_2}} ) . The possibility of concealing such an exotic term does not exist in case of dark (ELKO) spinor fields, as they cannot carry electromagnetic charge, so that the full topological analysis must be evaluated. Since exotic dark spinor fields also satisfy Klein-Gordon propagators, the dynamical constraints related to the exotic term in the Dirac equation can be explicitly calculated. It forthwith implies that the non-trivial topology associated to the spacetime can drastically engender — from the dynamics of dark spinor fields — constraints in the spacetime metric structure. Meanwhile, such constraints may be alleviated, at the cost of constraining the exotic spacetime topology. Besides being prime candidates to the dark matter problem, dark spinor fields are shown to be potential candidates to probe non-trivial topologies in spacetime, as well as probe the spacetime metric structure.
Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability.
Appelquist, T; Berkowitz, E; Brower, R C; Buchoff, M I; Fleming, G T; Jin, X-Y; Kiskis, J; Kribs, G D; Neil, E T; Osborn, J C; Rebbi, C; Rinaldi, E; Schaich, D; Schroeder, C; Syritsyn, S; Vranas, P; Weinberg, E; Witzel, O
2015-10-23
We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar "stealth baryon" dark matter candidate, arising from a dark SU(4) confining gauge theory-"stealth dark matter." In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest "baryon" states in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be potentially detectable in the dark matter mass range of about 200-700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m(B)(6), suggests the observable dark matter mass range is not appreciably modified. We briefly highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.
Bahcall, Neta A
2015-10-06
Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.
Bahcall, Neta A.
2015-01-01
Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091
75 FR 10740 - New Car Assessment Program (NCAP); Safety Labeling
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-09
... separated from each other by a dark line that is a minimum of 3 points in width. Also as is currently required, the entire safety rating label would be required to be surrounded by a solid dark line that is a... dark background. \\4\\ The full study report is available at http://www.regulations.gov in Docket No...
NASA Astrophysics Data System (ADS)
Rhodes, Jason
2014-03-01
Dark energy, the name given to the cause of the accelerating expansion of the Universe, is one of the most profound mysteries in modern science. Current cosmological models hold that dark energy is currently the dominant component of the Universe, but the exact nature of dark energy remains poorly understood. There are ambitious ground-based surveys underway that seek to understand dark energy and NASA is participating in the development of significantly more ambitious space-based surveys planned for the next decade. NASA has provided mission enabling technology to the European Space Agency's (ESA) Euclid mission in exchange for US scientists to participate in the Euclid mission. NASA is also developing the Wide Field Infrared Survey Telescope-Astrophysics Focused Telescope Asset (WFIRST-AFTA) mission for possible launch in ~2023. WFIRST was the highest ranked space mission in the Astro2010 Decadal Survey and the AFTA incarnation of the WFIRST design uses a 2.4 m space telescope to go beyond what the Decadal Survey envisioned for WFIRST. Understanding dark energy is one of the primary science goals of WFIRST-AFTA. I'll discuss the status of Euclid and WFIRST and comment on the complementarity of the two missions.
Redshift drift constraints on holographic dark energy
NASA Astrophysics Data System (ADS)
He, Dong-Ze; Zhang, Jing-Fei; Zhang, Xin
2017-03-01
The Sandage-Loeb (SL) test is a promising method for probing dark energy because it measures the redshift drift in the spectra of Lyman- α forest of distant quasars, covering the "redshift desert" of 2 ≲ z ≲ 5, which is not covered by existing cosmological observations. Therefore, it could provide an important supplement to current cosmological observations. In this paper, we explore the impact of SL test on the precision of cosmological constraints for two typical holographic dark energy models, i.e., the original holographic dark energy (HDE) model and the Ricci holographic dark energy (RDE) model. To avoid data inconsistency, we use the best-fit models based on current combined observational data as the fiducial models to simulate 30 mock SL test data. The results show that SL test can effectively break the existing strong degeneracy between the present-day matter density Ωm0 and the Hubble constant H 0 in other cosmological observations. For the considered two typical dark energy models, not only can a 30-year observation of SL test improve the constraint precision of Ωm0 and h dramatically, but can also enhance the constraint precision of the model parameters c and α significantly.
Extraordinary plasticity of an inorganic semiconductor in darkness.
Oshima, Yu; Nakamura, Atsutomo; Matsunaga, Katsuyuki
2018-05-18
Inorganic semiconductors generally tend to fail in a brittle manner. Here, we report that extraordinary "plasticity" can take place in an inorganic semiconductor if the deformation is carried out "in complete darkness." Room-temperature deformation tests of zinc sulfide (ZnS) were performed under varying light conditions. ZnS crystals immediately fractured when they deformed under light irradiation. In contrast, it was found that ZnS crystals can be plastically deformed up to a deformation strain of ε t = 45% in complete darkness. In addition, the optical bandgap of the deformed ZnS crystals was distinctly decreased after deformation. These results suggest that dislocations in ZnS become mobile in complete darkness and that multiplied dislocations can affect the optical bandgap over the whole crystal. Inorganic semiconductors are not necessarily intrinsically brittle. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Black holes are neither particle accelerators nor dark matter probes.
McWilliams, Sean T
2013-01-04
It has been suggested that maximally spinning black holes can serve as particle accelerators, reaching arbitrarily high center-of-mass energies. Despite several objections regarding the practical achievability of such high energies, and demonstrations past and present that such large energies could never reach a distant observer, interest in this problem has remained substantial. We show that, unfortunately, a maximally spinning black hole can never serve as a probe of high energy collisions, even in principle and despite the correctness of the original diverging energy calculation. Black holes can indeed facilitate dark matter annihilation, but the most energetic photons can carry little more than the rest energy of the dark matter particles to a distant observer, and those photons are actually generated relatively far from the black hole where relativistic effects are negligible. Therefore, any strong gravitational potential could probe dark matter equally well, and an appeal to black holes for facilitating such collisions is unnecessary.
Measuring Dark Energy with CHIME
NASA Astrophysics Data System (ADS)
Newburgh, Laura; Chime Collaboration
2015-04-01
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a new radio transit interferometer currently being built at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC, Canada. We will use the 21 cm emission line of neutral hydrogen to map baryon acoustic oscillations between 400-800 MHz across 3/4 of the sky. These measurements will yield sensitive constraints on the dark energy equation of state between redshifts 0.8 - 2.5, a fascinating but poorly probed era corresponding to when dark energy began to impact the expansion history of the Universe. I will describe theCHIME instrument, the analysis challenges, the calibration requirements, and current status.
Make dark matter charged again
NASA Astrophysics Data System (ADS)
Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub
2017-05-01
We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.
Dark matter haloes: a multistream view
NASA Astrophysics Data System (ADS)
Ramachandra, Nesar S.; Shandarin, Sergei F.
2017-09-01
Mysterious dark matter constitutes about 85 per cent of all masses in the Universe. Clustering of dark matter plays a dominant role in the formation of all observed structures on scales from a fraction to a few hundreds of Mega-parsecs. Galaxies play a role of lights illuminating these structures so they can be observed. The observations in the last several decades have unveiled opulent geometry of these structures currently known as the cosmic web. Haloes are the highest concentrations of dark matter and host luminous galaxies. Currently the most accurate modelling of dark matter haloes is achieved in cosmological N-body simulations. Identifying the haloes from the distribution of particles in N-body simulations is one of the problems attracting both considerable interest and efforts. We propose a novel framework for detecting potential dark matter haloes using the field unique for dark matter-multistream field. The multistream field emerges at the non-linear stage of the growth of perturbations because the dark matter is collisionless. Counting the number of velocity streams in gravitational collapses supplements our knowledge of spatial clustering. We assume that the virialized haloes have convex boundaries. Closed and convex regions of the multistream field are hence isolated by imposing a positivity condition on all three eigenvalues of the Hessian estimated on the smoothed multistream field. In a single-scale analysis of high multistream field resolution and low softening length, the halo substructures with local multistream maxima are isolated as individual halo sites.
Constraining the interaction between dark sectors with future HI intensity mapping observations
NASA Astrophysics Data System (ADS)
Xu, Xiaodong; Ma, Yin-Zhe; Weltman, Amanda
2018-04-01
We study a model of interacting dark matter and dark energy, in which the two components are coupled. We calculate the predictions for the 21-cm intensity mapping power spectra, and forecast the detectability with future single-dish intensity mapping surveys (BINGO, FAST and SKA-I). Since dark energy is turned on at z ˜1 , which falls into the sensitivity range of these radio surveys, the HI intensity mapping technique is an efficient tool to constrain the interaction. By comparing with current constraints on dark sector interactions, we find that future radio surveys will produce tight and reliable constraints on the coupling parameters.
Characterization and Analysis of Integrated Silicon Photonic Detectors for High-Speed Communications
2015-03-26
17 2.2.1.1 Depletion Region and Dark Current . . . . . . . . . . . . . . . . . 18 2.2.1.2 Photocurrent, Quantum ...facilitate a greater consciousness for the RF spectrum from MHz to ∼1 THz demonstrating an advantage over any purely electronic approach. Electronic... Quantum Efficiency and Responsivity. Extrapolating the established model from the dark current section provides the photodiode’s response when light
The dark side of cosmology: dark matter and dark energy.
Spergel, David N
2015-03-06
A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. Copyright © 2015, American Association for the Advancement of Science.
Novel dark matter phenomenology at colliders
NASA Astrophysics Data System (ADS)
Wardlow, Kyle Patrick
While a suitable candidate particle for dark matter (DM) has yet to be discovered, it is possible one will be found by experiments currently investigating physics on the weak scale. If discovered on that energy scale, the dark matter will likely be producible in significant quantities at colliders like the LHC, allowing the properties of and underlying physical model characterizing the dark matter to be precisely determined. I assume that the dark matter will be produced as one of the decay products of a new massive resonance related to physics beyond the Standard Model, and using the energy distributions of the associated visible decay products, develop techniques for determining the symmetry protecting these potential dark matter candidates from decaying into lighter Standard Model (SM) particles and to simultaneously measure the masses of both the dark matter candidate and the particle from which it decays.
Weak lensing magnification in the Dark Energy Survey Science Verification data
NASA Astrophysics Data System (ADS)
Garcia-Fernandez, M.; Sanchez, E.; Sevilla-Noarbe, I.; Suchyta, E.; Huff, E. M.; Gaztanaga, E.; Aleksić, J.; Ponce, R.; Castander, F. J.; Hoyle, B.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Eifler, T. F.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Jarvis, M.; Kirk, D.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; MacCrann, N.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Miquel, R.; Mohr, J. J.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Scarpine, V.; Schubnell, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Tarle, G.; Thomas, D.; Walker, A. R.; Wester, W.; DES Collaboration
2018-05-01
In this paper, the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using the Dark Energy Survey Science Verification data set. This analysis is carried out for galaxies that are selected only by its photometric redshift. An extensive analysis of the systematic effects, using new methods based on simulations is performed, including a Monte Carlo sampling of the selection function of the survey.
Theoretical Investigation of Dual Tuning of Solitonic Processes in Multiferroic Structures
NASA Astrophysics Data System (ADS)
Cherkasskii, M. A.; Nikitin, A. A.; Ustinov, A. B.; Stashkevich, A.; Kalinikos, B. A.
2016-11-01
. The solitonic wave processes in a multiferroic structure based on ferroelectric and ferrite layers are studied. The influence of external electric and magnetic fields on frequency and wave-number ranges, where bright and dark solitons can exist, are analysed. The investigation was carried out with the nonlinear Schrodinger equation. Results show that an increase of the electric field shifts the boundary between bright and dark solitons to long-wave region. An increase in magnetic field results in the opposite effect.
Dark matter and the baryon asymmetry of the universe.
Farrar, Glennys R; Zaharijas, Gabrijela
2006-02-03
We present a mechanism to generate the baryon asymmetry of the Universe which preserves the net baryon number created in the big bang. If dark matter particles carry baryon number Bx, and sigmaxannih
NASA Astrophysics Data System (ADS)
Girolamo, Paolo Di; Scoccione, Andrea; Cacciani, Marco; Summa, Donato; Schween, Jan H.
2018-04-01
This paper illustrates measurements carried out by the Raman lidar BASIL in the frame of HOPE, revealing the presence of a clear-air dark band phenomenon (i.e. the appearance of a minimum in lidar backscatter echoes) in the upper portion of the convective boundary layer. The phenomenon is clearly distinguishable in the lidar backscatter echoes at 1064 nm. This phenomenon is attributed to the presence of lignite aerosol particles advected from the surrounding open pit mines in the vicinity of the measuring site.
Cheng, Chee-Wai; Das, Indra J; Ndlovu, Alois M
2002-09-01
The effect of the initial pulse forming network (IPFN) on the suppression of dark current is investigated for a Siemens Primus accelerator. The dark current produces a spurious radiation, which is referred to as dark current radiation (DCR) in this study. In the step-and-shoot delivery of an intensity modulated radiation therapy (IMRT), the DCR could be of some concern for whole body dose along with leakage radiation through collimator jaws or multileaf collimator. By adjusting the IPFN-to-PFN ratio to >0.8, the DCR can be measured with an ion chamber during the "PAUSE" state of the accelerator in the IMRT mode. For 15 MV x rays, the magnitude of the DCR is approximately equal to 0.7% of the dose at dmax for a 10 x 10 cm2 field. The DCR has a similar central axis depth dose as a 15 MV beam as determined from a water phantom scan. When the IPFN-to-PFN ratio is lowered to <0.8, no DCR is detected. For low energy x rays (6 MV), no DCR is detected regardless of the IPFN-to-PFN ratio. Although the DCR is studied only for the Siemens Primus model accelerator, the same precaution applies to other models of modern accelerators from other vendors. Due to the large number of field segments used in a step-and-shoot IMRT, it is imperative therefore, that dark current evaluation be part of machine commissioning and annual calibration for high-energy photon beams. Should DCR be detected, the medical physicist should work with a service engineer to rectify the problem. In view of DCR and whole body dose, low-energy photon beams are advisable for IMRT.
Cosmic history of chameleonic dark matter in F (R ) gravity
NASA Astrophysics Data System (ADS)
Katsuragawa, Taishi; Matsuzaki, Shinya
2018-03-01
We study the cosmic history of the scalaron in F (R ) gravity with constructing the time evolution of the cosmic environment and discuss the chameleonic dark matter based on the chameleon mechanism in the early and current Universe. We then find that the scalaron can be a dark matter. We also propose an interesting possibility that the F (R ) gravity can address the coincidence problem.
Dark Chocolate Intake Acutely Enhances Neutrophil Count in Peripheral Venous Blood.
Montagnana, Martina; Danese, Elisa; Lima-Oliveira, Gabriel; Salvagno, Gian Luca; Lippi, Giuseppe
2017-01-01
Beside the well-established impact on decreasing the risk of cardiovascular diseases (1), recent attention has been paid to the relationship between cocoa-containing foods and the immune system (2), showing that dark chocolate consumption enhances the systemic defense against bacterial (3) and viral (4) infections. Hence, the current study aimed at investigating the acute effect of dark chocolate intake on peripheral blood leukocytes.
Study on the performance of 2.6 μm In0.83Ga0.17As detector with different etch gases
NASA Astrophysics Data System (ADS)
Li, Ping; Tang, Hengjing; Li, Tao; Li, Xue; Shao, Xiumei; Ma, Yingjie; Gong, Haimei
2017-09-01
In order to obtain a low-damage recipe in the ICP processing, ICP-induced damage using Cl2/CH4 etch gases in extended wavelength In0.83Ga0.17As detector materials was studied in this paper. The effect of ICP etching on In0.83Ga0.17As samples was characterized qualitatively by the photoluminescence (PL) technology. The etch damage of In0.83Ga0.17As samples was characterized quantitatively by the Transmission Line Model (TLM), current voltage (IV) measurement, signal and noise testing and the Fourier Transform Infrared Spectroscopy (FTIR) technologies. The results showed that the Cl2/CH4 etching processing could lead better detector performance than that Cl2/N2, such as a larger square resistance, a lower dark current, a lower noise voltage and a higher peak detectivity. The lower PL signal intensity and lower dark current could be attributed to the hydrogen decomposed by the CH4 etch gases in the plasma etching process. These hydrogen particles generated non-radiative recombination centers in inner materials to weaken the PL intensity and passivated dangling bond at the surface to reduce the dark current. The larger square resistance resulted from the lower etch damage. The lower dark current meant that the detectors have less dangling bonds and leakage channels.
Neutrino Oscillations as a Probe of Light Scalar Dark Matter.
Berlin, Asher
2016-12-02
We consider a class of models involving interactions between ultralight scalar dark matter and standard model neutrinos. Such couplings modify the neutrino mass splittings and mixing angles to include additional components that vary in time periodically with a frequency and amplitude set by the mass and energy density of the dark matter. Null results from recent searches for anomalous periodicities in the solar neutrino flux strongly constrain the dark matter-neutrino coupling to be orders of magnitude below current and projected limits derived from observations of the cosmic microwave background.
Probing light nonthermal dark matter at the LHC
NASA Astrophysics Data System (ADS)
Dutta, Bhaskar; Gao, Yu; Kamon, Teruki
2014-05-01
This paper investigates the collider phenomenology of a minimal nonthermal dark matter model with a 1-GeV dark matter candidate, which naturally explains baryogenesis. Since the light dark matter is not parity protected, it can be singly produced at the LHC. This leads to large missing energy associated with an energetic jet whose transverse momentum distribution is featured by a Jacobian-like shape. The monojet, dijet, paired dijet, and two jets + missing energy channels are studied. Currently existing data at the Tevatron and LHC offer significant bounds on our model.
NASA Astrophysics Data System (ADS)
Xu, Lixin
2012-06-01
In this paper, the holographic dark energy model, where the future event horizon is taken as an IR cutoff, is confronted by using currently available cosmic observational data sets which include type Ia supernovae, baryon acoustic oscillation, and cosmic microwave background radiation from full information of WMAP 7-yr data. Via the Markov chain Monte Carlo method, we obtain the values of model parameter c=0.696-0.0737-0.132-0.190+0.0736+0.159+0.264 with 1, 2, 3σ regions. Therefore, one can conclude that at at least 3σ level the future Universe will be dominated by phantom-like dark energy. It is not consistent with positive energy condition, however this condition must be satisfied to derive the holographic bound. It implies that the current cosmic observational data points disfavor the holographic dark energy model.
[Does dark field microscopy according to Enderlein allow for cancer diagnosis? A prospective study].
El-Safadi, Samer; Tinneberg, Hans-Rudolf; von Georgi, Richard; Münstedt, Karsten; Brück, Friede
2005-06-01
Dark field microscopy according to Enderlin claims to be able to detect forthcoming or beginning cancer at an early stage through minute abnormalities in the blood. In Germany and the USA, this method is used by an increasing number of physicians and health practitioners (non-medically qualified complementary practitioners), because this easy test seems to give important information about patients' health status. Can dark field microscopy reliably detect cancer? In the course of a prospective study on iridology, blood samples were drawn for dark field microscopy in 110 patients. A health practitioner with several years of training in the field carried out the examination without prior information about the patients. Out of 12 patients with present tumor metastasis as confirmed by radiological methods (CT, MRI or ultra-sound) 3 were correctly identified. Analysis of sensitivity (0.25), specificity (0.64), positive (0.09) and negative (0.85) predictive values revealed unsatisfactory results. Dark field micoroscopy does not seem to reliably detect the presence of cancer. Clinical use of the method can therefore not be recommended until future studies are conducted.
Extra-high short-circuit current for bifacial solar cells in sunny and dark-light conditions.
Duan, Jialong; Duan, Yanyan; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei
2017-09-05
We present here a symmetrically structured bifacial solar cell tailored by two fluorescent photoanodes and a platinum/titanium/platinum counter electrode, yielding extra-high short-circuit current densities as high as 28.59 mA cm -2 and 119.9 μA cm -2 in simulated sunlight irradiation (100 mW cm -2 , AM1.5) and dark-light conditions, respectively.
NASA Technical Reports Server (NTRS)
Lord, Kenneth; Woodyard, James R.
2002-01-01
The effect of 40 keV electron irradiation on a-Si:H p-i-n single-junction solar cells was investigated using measured and simulated dark J-V characteristics. EPRI-AMPS and PC-1D simulators were explored for use in the studies. The EPRI-AMPS simulator was employed and simulator parameters selected to produce agreement with measured J-V characteristics. Three current mechanisms were evident in the measured dark J-V characteristics after electron irradiation, namely, injection, shunting and a term of the form CV(sup m). Using a single discrete defect state level at the center of the band gap, good agreement was achieved between measured and simulated J-V characteristics in the forward-bias voltage region where the dark current density was dominated by injection. The current mechanism of the form CV(sup m) was removed by annealing for two hours at 140 C. Subsequent irradiation restored the CV(sup m) current mechanism and it was removed by a second anneal. Some evidence of the CV(sup m) term is present in device simulations with a higher level of discrete density of states located at the center of the bandgap.
Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability
Appelquist, T.; Berkowitz, E.; Brower, R. C.; ...
2015-10-23
We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar “stealth baryon” dark matter candidate, arising from a dark SU(4) confining gauge theory—“stealth dark matter.” In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest “baryon” states in SU(3) and SU(4) gauge theories using themore » background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be possibly detectable in the dark matter mass range of about 200–700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m 6 B, suggests the observable dark matter mass range is not appreciably modified. We highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.« less
Origins and challenges of viral dark matter.
Krishnamurthy, Siddharth R; Wang, David
2017-07-15
The accurate classification of viral dark matter - metagenomic sequences that originate from viruses but do not align to any reference virus sequences - is one of the major obstacles in comprehensively defining the virome. Depending on the sample, viral dark matter can make up from anywhere between 40 and 90% of sequences. This review focuses on the specific nature of dark matter as it relates to viral sequences. We identify three factors that contribute to the existence of viral dark matter: the divergence and length of virus sequences, the limitations of alignment based classification, and limited representation of viruses in reference sequence databases. We then discuss current methods that have been developed to at least partially circumvent these limitations and thereby reduce the extent of viral dark matter. Copyright © 2017 Elsevier B.V. All rights reserved.
A Regional, Multi-Stakeholder Collaboration for Dark-Sky Protection in Flagstaff, Arizona
NASA Astrophysics Data System (ADS)
Hall, Jeffrey C.
2018-01-01
Flagstaff, Arizona is home to almost $200M in astronomical assets, including Lowell Observatory's 4.3-meter Discovery Channel Telescope and the Navy Precision Optical Interferometer, a partnership of Lowell, the U. S. Naval Observatory, and the Naval Research Laboratory. The City of Flagstaff and surrounding Coconino County have comprehensive and effective dark-sky ordinances, but continued regional growth has the potential to degrade the area's dark skies to a level at which observatory missions could be compromised. As a result, a wide array of stakeholders (the observatories, the City, the County, local dark-sky advocates, the business and tourism communities, the national parks and monuments, the Navajo Nation, the U. S. Navy, and others) have engaged in three complementary efforts to ensure that Flagstaff and Coconino County protect the area's dark skies while meeting the needs of the various communities and providing for continued growth and development. In this poster, I will present the status of Flagstaff's conversion to LED outdoor lighting, the Mission Compatibility Study carried out by the Navy to evaluate the dark-sky effects of buildout in Flagstaff, and the Joint Land Use Study (JLUS) presently underway among all the aforementioned stakeholders. Taken in sum, the efforts represent a comprehensive and constructive approach to dark-sky preservation region-wide, and they show what can be achieved when a culture of dark-sky protection is present and deliberate efforts are undertaken to maintain it for decades to come.
Davini, S.; Agnes, P.; Agostino, L.; ...
2016-06-09
Here, the DarkSide program at LNGS aims to perform background-free WIMP searches using two phase liquid argon time projection chambers, with the ultimate goal of covering all parameters down to the so-called neutrino floor. One of the distinct features of the program is the use of underground argon with has a reduced content of the radioactive 39Ar compared to atmospheric argon. The DarkSide Collaboration is currently operating the DarkSide-50 experiment, the first such WIMP detector using underground argon. Operations with underground argon indicate a suppression of 39Ar by a factor (1.4 ± 0.2) × 10 3 relative to atmospheric argon.more » The new results obtained with DarkSide-50 and the plans for the next steps of the DarkSide program, the 20t fiducial mass DarkSide-20k detector and the 200 t fiducial Argo, are reviewed in this proceedings.« less
Genome research elucidating environmental adaptation: Dark-fly project as a case study.
Fuse, Naoyuki
2017-08-01
Organisms have the capacity to adapt to diverse environments, and environmental adaptation is a substantial driving force of evolution. Recent progress of genome science has addressed the genetic mechanisms underlying environmental adaptation. Whole genome sequencing has identified adaptive genes selected under particular environments. Genome editing technology enables us to directly test the role(s) of a gene in environmental adaptation. Genome science has also shed light on a unique organism, Dark-fly, which has been reared long-term in the dark. We determined the whole genome sequence of Dark-fly and reenacted environmental selections of the Dark-fly genome to identify the genes related to dark-adaptation. Here I will give an overview of current progress in genome science and summarize our study using Dark-fly, as a case study for environmental adaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Davini, S.; Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Ianni, Aldo; Ianni, Andrea; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.
2016-05-01
The DarkSide program at LNGS aims to perform background-free WIMP searches using two phase liquid argon time projection chambers, with the ultimate goal of covering all parameters down to the so-called neutrino floor. One of the distinct features of the program is the use of underground argon with has a reduced content of the radioactive 39Ar compared to atmospheric argon. The DarkSide Collaboration is currently operating the DarkSide-50 experiment, the first such WIMP detector using underground argon. Operations with underground argon indicate a suppression of 39Ar by a factor (1.4 ± 0.2) × 103 relative to atmospheric argon. The new results obtained with DarkSide-50 and the plans for the next steps of the DarkSide program, the 20t fiducial mass DarkSide-20k detector and the 200 t fiducial Argo, are reviewed in this proceedings.
Craig, Nathaniel; Katz, Andrey
2015-10-27
We identify and analyze thermal dark matter candidates in the fraternal twin Higgs model and its generalizations. The relic abundance of fraternal twin dark matter is set by twin weak interactions, with a scale tightly tied to the weak scale of the Standard Model by naturalness considerations. As such, the dark matter candidates benefit from a "fraternal WIMP miracle'', reproducing the observed dark matter abundance for dark matter masses between 50 and 150 GeV . However, the couplings dominantly responsible for dark matter annihilation do not lead to interactions with the visible sector. The direct detection rate is instead setmore » via fermionic Higgs portal interactions, which are likewise constrained by naturalness considerations but parametrically weaker than those leading to dark matter annihilation. Finally, the predicted direct detection cross section is close to current LUX bounds and presents an opportunity for the next generation of direct detection experiments.« less
Review of indirect detection of dark matter with neutrinos
NASA Astrophysics Data System (ADS)
Danninger, Matthias
2017-09-01
Dark Matter could be detected indirectly through the observation of neutrinos produced in dark matter self-annihilations or decays. Searches for such neutrino signals have resulted in stringent constraints on the dark matter self-annihilation cross section and the scattering cross section with matter. In recent years these searches have made significant progress in sensitivity through new search methodologies, new detection channels, and through the availability of rich datasets from neutrino telescopes and detectors, like IceCube, ANTARES, Super-Kamiokande, etc. We review recent experimental results and put them in context with respect to other direct and indirect dark matter searches. We also discuss prospects for discoveries at current and next generation neutrino detectors.
Absorption of light dark matter in semiconductors
Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.
2017-01-01
Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multiphonon excitations enable absorption of dark matter in the 0.01 eV to eV mass range. Energetic dark matter particles emitted from the sun can also be probed for masses below an eV. We derivemore » the reach for absorption of a relic kinetically mixed dark photon or pseudoscalar in germanium and silicon, and show that existing direct detection results already probe new parameter space. Finally, with only a moderate exposure, low-threshold semiconductor target experiments can exceed current astrophysical and terrestrial constraints on sub-keV bosonic dark matter.« less
Dark Chocolate Intake Acutely Enhances Neutrophil Count in Peripheral Venous Blood
Montagnana, Martina; Danese, Elisa; Lima-Oliveira, Gabriel; Salvagno, Gian Luca; Lippi, Giuseppe
2017-01-01
Beside the well-established impact on decreasing the risk of cardiovascular diseases (1), recent attention has been paid to the relationship between cocoa-containing foods and the immune system (2), showing that dark chocolate consumption enhances the systemic defense against bacterial (3) and viral (4) infections. Hence, the current study aimed at investigating the acute effect of dark chocolate intake on peripheral blood leukocytes. PMID:29531561
Current status of direct dark matter detection experiments
NASA Astrophysics Data System (ADS)
Liu, Jianglai; Chen, Xun; Ji, Xiangdong
2017-03-01
Much like ordinary matter, dark matter might consist of elementary particles, and weakly interacting massive particles are one of the prime suspects. During the past decade, the sensitivity of experiments trying to directly detect them has improved by three to four orders of magnitude, but solid evidence for their existence is yet to come. We overview the recent progress in direct dark matter detection experiments and discuss future directions.
Performance of the STIS CCD Dark Rate Temperature Correction
NASA Astrophysics Data System (ADS)
Branton, Doug; STScI STIS Team
2018-06-01
Since July 2001, the Space Telescope Imaging Spectrograph (STIS) onboard Hubble has operated on its Side-2 electronics due to a failure in the primary Side-1 electronics. While nearly identical, Side-2 lacks a functioning temperature sensor for the CCD, introducing a variability in the CCD operating temperature. Previous analysis utilized the CCD housing temperature telemetry to characterize the relationship between the housing temperature and the dark rate. It was found that a first-order 7%/°C uniform dark correction demonstrated a considerable improvement in the quality of dark subtraction on Side-2 era CCD data, and that value has been used on all Side-2 CCD darks since. In this report, we show how this temperature correction has performed historically. We compare the current 7%/°C value against the ideal first-order correction at a given time (which can vary between ~6%/°C and ~10%/°C) as well as against a more complex second-order correction that applies a unique slope to each pixel as a function of dark rate and time. At worst, the current correction has performed ~1% worse than the second-order correction. Additionally, we present initial evidence suggesting that the variability in pixel temperature-sensitivity is significant enough to warrant a temperature correction that considers pixels individually rather than correcting them uniformly.
Basic corrections to predictions of solar cell performance required by nonlinearities
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Fossum, J. G.; Burgess, E. L.
1976-01-01
The superposition principle is used to derive the approximation that the current-voltage characteristic of an illuminated solar cell is the dark current-voltage characteristic shifted by the short-circuit photocurrent. The derivation requires the linearity of the boundary value problems that underlie the electrical characteristics. The shifting approximation is invalid if considerable photocurrent and considerable dark current both occur within the junction space-charge region; it is invalid also if sizable series resistance is present or if high-injection concentrations of holes and electrons exist within the quasi-neutral regions.
Dark Matter Decays from Nonminimal Coupling to Gravity.
Catà, Oscar; Ibarra, Alejandro; Ingenhütt, Sebastian
2016-07-08
We consider the standard model extended with a dark matter particle in curved spacetime, motivated by the fact that the only current evidence for dark matter is through its gravitational interactions, and we investigate the impact on the dark matter stability of terms in the Lagrangian linear in the dark matter field and proportional to the Ricci scalar. We show that this "gravity portal" induces decay even if the dark matter particle only has gravitational interactions, and that the decay branching ratios into standard model particles only depend on one free parameter: the dark matter mass. We study in detail the case of a singlet scalar as a dark matter candidate, which is assumed to be absolutely stable in flat spacetime due to a discrete Z_{2} symmetry, but which may decay in curved spacetimes due to a Z_{2}-breaking nonminimal coupling to gravity. We calculate the dark matter decay widths and we set conservative limits on the nonminimal coupling parameter from experiments. The limits are very stringent and suggest that there must exist an additional mechanism protecting the singlet scalar from decaying via this gravity portal.
Make dark matter charged again
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa
2017-05-01
We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large,more » a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.« less
Giant Primeval Magnetic Dipoles
NASA Astrophysics Data System (ADS)
Thompson, Christopher
2017-07-01
Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.
Dark matter and neutrino mass from the smallest non-Abelian chiral dark sector
NASA Astrophysics Data System (ADS)
Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Zhang, Yue
2017-10-01
All pieces of concrete evidence for phenomena outside the standard model (SM)—neutrino masses and dark matter—are consistent with the existence of new degrees of freedom that interact very weakly, if at all, with those in the SM. We propose that these new degrees of freedom organize themselves into a simple dark sector, a chiral S U (3 )×S U (2 ) gauge theory with the smallest nontrivial fermion content. Similar to the SM, the dark S U (2 ) is spontaneously broken while the dark S U (3 ) confines at low energies. At the renormalizable level, the dark sector contains massless fermions—dark leptons—and stable massive particles—dark protons. We find that dark protons with masses between 10 and 100 TeV satisfy all current cosmological and astrophysical observations concerning dark matter even if dark protons are a symmetric thermal relic. The dark leptons play the role of right-handed neutrinos and allow simple realizations of the seesaw mechanism or the possibility that neutrinos are Dirac fermions. In the latter case, neutrino masses are also parametrically different from charged-fermion masses and the lightest neutrino is predicted to be massless. Since the new "neutrino" and "dark-matter" degrees of freedom interact with one another, these two new-physics phenomena are intertwined. Dark leptons play a nontrivial role in early Universe cosmology while indirect searches for dark matter involve, decisively, dark-matter annihilations into dark leptons. These, in turn, may lead to observable signatures at high-energy neutrino and gamma-ray observatories, especially once one accounts for the potential Sommerfeld enhancement of the annihilation cross section, derived from the low-energy dark-sector effective theory, a possibility we explore quantitatively in some detail.
Laser damage tests on InSb photodiodes at 1.064 micron and 0.532 micron
NASA Technical Reports Server (NTRS)
Bearman, G. H.; Staller, C.; Mahoney, C.
1992-01-01
InSb photodiodes were examined for performance degradation after pulsed laser illumination at 0.532 micron and 1.064 micron. Incident laser powers ranged from 6 x 10 exp-18 micron-watts to 16 micron-watts in a 50 pm diameter spot. Dark current and spectral response were both measured before and after illumination. Dark current measurements were taken with the diode blanked off and viewing only 77 K surfaces. Long term stability tests demonstrated that the blackbody did not exhibit long term drifts. Other tests showed that room temperature variations did not affect the diode signal chain or the digitization electronics used in data acquisition. Results of the experiment show that the diodes did not exhibit changes in dark current or spectral response performance as a result of the laser illumination. A typical change in diode spectral response (before/after laser exposure) was about 0.2 percent +/- 0.2 percent.
New Models and Methods for the Electroweak Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Linda
2017-09-26
This is the Final Technical Report to the US Department of Energy for grant DE-SC0013529, New Models and Methods for the Electroweak Scale, covering the time period April 1, 2015 to March 31, 2017. The goal of this project was to maximize the understanding of fundamental weak scale physics in light of current experiments, mainly the ongoing run of the Large Hadron Collider and the space based satellite experiements searching for signals Dark Matter annihilation or decay. This research program focused on the phenomenology of supersymmetry, Higgs physics, and Dark Matter. The properties of the Higgs boson are currently beingmore » measured by the Large Hadron collider, and could be a sensitive window into new physics at the weak scale. Supersymmetry is the leading theoretical candidate to explain the natural nessof the electroweak theory, however new model space must be explored as the Large Hadron collider has disfavored much minimal model parameter space. In addition the nature of Dark Matter, the mysterious particle that makes up 25% of the mass of the universe is still unknown. This project sought to address measurements of the Higgs boson couplings to the Standard Model particles, new LHC discovery scenarios for supersymmetric particles, and new measurements of Dark Matter interactions with the Standard Model both in collider production and annihilation in space. Accomplishments include new creating tools for analyses of Dark Matter models in Dark Matter which annihilates into multiple Standard Model particles, including new visualizations of bounds for models with various Dark Matter branching ratios; benchmark studies for new discovery scenarios of Dark Matter at the Large Hardon Collider for Higgs-Dark Matter and gauge boson-Dark Matter interactions; New target analyses to detect direct decays of the Higgs boson into challenging final states like pairs of light jets, and new phenomenological analysis of non-minimal supersymmetric models, namely the set of Dirac Gaugino Models.« less
Radial oscillations of strange quark stars admixed with condensed dark matter
NASA Astrophysics Data System (ADS)
Panotopoulos, G.; Lopes, Ilídio
2017-10-01
We compute the 20 lowest frequency radial oscillation modes of strange stars admixed with condensed dark matter. We assume a self-interacting bosonic dark matter, and we model dark matter inside the star as a Bose-Einstein condensate. In this case the equation of state is a polytropic one with index 1 +1 /n =2 and a constant K that is computed in terms of the mass of the dark matter particle and the scattering length. Assuming a mass and a scattering length compatible with current observational bounds for self-interacting dark matter, we have integrated numerically first the Tolman-Oppenheimer-Volkoff equations for the hydrostatic equilibrium, and then the equations for the perturbations ξ =Δ r /r and η =Δ P /P . For a compact object with certain mass and radius we have considered here three cases, namely no dark matter at all and two different dark matter scenarios. Our results show that (i) the separation between consecutive modes increases with the amount of dark matter, and (ii) the effect is more pronounced for higher order modes. These effects are relevant even for a strange star made of 5% dark matter.
Morozova, M V; Kulikov, A V
2010-01-01
The light-dark box (LDB) and the open-field (OF) tests are widespread experimental models for studying locomotion and anxiety in laboratory rats and mice. The fact that rodents are nocturnal animals and more active at night raises a critical question of whether behavioral experiments carried out in the light phase are methodologically correct. Parameters of behavior of four mouse strains (C57BL/6J, DBA2/J, AKR/J and CBA/LacJ) in the light-dark box and open-field tests in the light and dark phases were compared. No significant influence of the phase of testing on anxiety in LDB and OF tests was revealed. In the OF test CBA mice showed increased locomotor activity, whereas AKR and C57BL/6 mice showed increased defecation in the dark phase. It was concluded that: 1) the phase of testing is not crucial for the expression of anxiety in LDB and OF; 2) the sensitivity to the phase of testing depends on the genotype; 3) the indices of behavior in the genotypes sensitive to the phase of testing (locomotion in the CBA and defecation in the AKR and C57BL/6 mouse strains) are increased in the dark phase.
On the Generation of the Hubble Sequence Through an Internal Secular Dynamical Process
2004-01-01
is apparently brought about by the fact that spiral galaxies still have varying reserves of baryonic dark matter to form stars, therefore as the...central baryonic dark matter supply, thus the ellipticals in more advanced stage of evolution (which also generally have larger L) will experi- ence...This view is particularly favored by the currently popular hierarchical clustering/cold dark matter (CDM) paradigm of structure formation and evolution
The maximal-density mass function for primordial black hole dark matter
NASA Astrophysics Data System (ADS)
Lehmann, Benjamin V.; Profumo, Stefano; Yant, Jackson
2018-04-01
The advent of gravitational wave astronomy has rekindled interest in primordial black holes (PBH) as a dark matter candidate. As there are many different observational probes of the PBH density across different masses, constraints on PBH models are dependent on the functional form of the PBH mass function. This complicates general statements about the mass functions allowed by current data, and, in particular, about the maximum total density of PBH. Numerical studies suggest that some forms of extended mass functions face tighter constraints than monochromatic mass functions, but they do not preclude the existence of a functional form for which constraints are relaxed. We use analytical arguments to show that the mass function which maximizes the fraction of the matter density in PBH subject to all constraints is a finite linear combination of monochromatic mass functions. We explicitly compute the maximum fraction of dark matter in PBH for different combinations of current constraints, allowing for total freedom of the mass function. Our framework elucidates the dependence of the maximum PBH density on the form of observational constraints, and we discuss the implications of current and future constraints for the viability of the PBH dark matter paradigm.
Probing dark energy dynamics from current and future cosmological observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Gongbo; Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6; Zhang Xinmin
2010-02-15
We report the constraints on the dark energy equation-of-state w(z) using the latest 'Constitution' SNe sample combined with the WMAP5 and Sloan Digital Sky Survey data. Assuming a flat Universe, and utilizing the localized principal component analysis and the model selection criteria, we find that the {Lambda}CDM model is generally consistent with the current data, yet there exists a weak hint of the possible dynamics of dark energy. In particular, a model predicting w(z)<-1 at z is an element of [0.25,0.5) and w(z)>-1 at z is an element of [0.5,0.75), which means that w(z) crosses -1 in the range ofmore » z is an element of [0.25,0.75), is mildly favored at 95% confidence level. Given the best fit model for current data as a fiducial model, we make future forecast from the joint data sets of Joint Dark Energy Mission, Planck, and Large Synoptic Survey Telescope, and we find that the future surveys can reduce the error bars on the w bins by roughly a factor of 10 for a 5-w-bin model.« less
VDM: a model for vector dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farzan, Yasaman; RezaeiAkbarieh, Amin, E-mail: yasaman@theory.ipm.ac.ir, E-mail: am_rezaei@physics.sharif.ir
2012-10-01
We construct a model based on a new U(1){sub X} gauge symmetry and a discrete Z{sub 2} symmetry under which the new gauge boson is odd. The model contains new complex scalars which carry U(1){sub X} charge but are singlets of the Standard Model. The U(1){sub X} symmetry is spontaneously broken but the Z{sub 2} symmetry is maintained, making the new gauge boson a dark matter candidate. In the minimal version there is only one complex scalar field but by extending the number of scalars to two, the model will enjoy rich phenomenology which comes in various phases. In onemore » phase, CP is spontaneously broken. In the other phase, an accidental Z{sub 2} symmetry appears which makes one of the scalars stable and therefore a dark matter candidate along with the vector boson. We discuss the discovery potential of the model by colliders as well as the direct dark matter searches.« less
Dark matter admixed strange quark stars in the Starobinsky model
NASA Astrophysics Data System (ADS)
Lopes, Ilídio; Panotopoulos, Grigoris
2018-01-01
We compute the mass-to-radius profiles for dark matter admixed strange quark stars in the Starobinsky model of modified gravity. For quark matter, we assume the MIT bag model, while self-interacting dark matter inside the star is modeled as a Bose-Einstein condensate with a polytropic equation of state. We numerically integrate the structure equations in the Einstein frame, adopting the two-fluid formalism, and we treat the curvature correction term nonperturbatively. The effects on the properties of the stars of the amount of dark matter as well as the higher curvature term are investigated. We find that strange quark stars (in agreement with current observational constraints) with the highest masses are equally affected by dark matter and modified gravity.
Characterization of the rod photoresponse isolated from the dark-adapted primate ERG.
Jamison, J A; Bush, R A; Lei, B; Sieving, P A
2001-01-01
The a-wave of the human dark-adapted ERG is thought to derive from activity of rod photoreceptors. However, other sources within the retina could potentially perturb this simple equation. We investigated the extent to which the short-latency dark-adapted rod a-wave of the primate ERG is dominated by the rod photoresponse and the applicability of the phototransduction model to fit the rod a-wave. Dark-adapted Ganzfeld ERGs were elicited over a 5-log-unit intensity range using short bright xenon flashes, and the light-adapted cone responses were subtracted to isolate the rod ERG a-wave. Intravitreal 4-phosphono-butyric acid (APB) and cis-2,3-piperidine-dicarboxylic acid (PDA) were applied to isolate the photoreceptor response. The Hood and Birch version of the phototransduction model, Rmax[1 - e(-I x S x (t-t(eff)))2], was fitted to the a-wave data while allowing Rmax and S to vary. Three principle observations were made: (1) At flash intensities > or =0.77 log sc-td-s the leading edge of the normalized rod ERG a-wave tracks the isolated photoreceptor response across the first 20 ms or up to the point of b-wave intrusion. The rod ERG a-wave was essentially identical to the isolated receptor response for all intensities that produce peak responses within 14 ms after the flash. (2) The best fit of sensitivity (S) was not affected by APB and/or PDA, suggesting that the inner retina contributes very little to the dark-adapted a-wave. (3) APB always reduced the maximum dark-adapted a-wave amplitude (by 15-30%), and PDA always increased it (by 7-15%). Using the phototransduction model, both events can be interpreted as a scaling of the photoreceptor dark current. This suggests that activity of postreceptor cells somehow influences the rod dark current, possibly by feedback through horizontal cells (although currently not demonstrated for the rod system), or by altering the ionic concentrations near the photoreceptors, or by neuromodulator effects mediated by dopamine or melatonin.
NASA Astrophysics Data System (ADS)
Xiang, Qian-Fei; Bi, Xiao-Jun; Yin, Peng-Fei; Yu, Zhao-Huan
2018-03-01
We study the impact of fermionic dark matter (DM) on projected Higgs precision measurements at the Circular Electron Positron Collider (CEPC), including the one-loop effects on the e+e-→Z h cross section and the Higgs boson diphoton decay, as well as the tree-level effects on the Higgs boson invisible decay. As illuminating examples, we discuss two UV-complete DM models, whose dark sector contains electroweak multiplets that interact with the Higgs boson via Yukawa couplings. The CEPC sensitivity to these models and current constraints from DM detection and collider experiments are investigated. We find that there exist some parameter regions where the Higgs measurements at the CEPC will be complementary to current DM searches.
NASA Astrophysics Data System (ADS)
El Radaf, I. M.; Nasr, Mahmoud; Mansour, A. M.
2018-01-01
Au/p-CoS/n-Si/Al heterojunction device was fabricated by spray pyrolysis technique. The structural and morphological features were examined by x-ray diffraction, scanning electron microscope and energy dispersive x-ray analysis. The capacitance-voltage characteristics of the prepared heterojunction were analyzed at room temperature in the dark. The current-voltage characteristics were examined under dark and different incident light intensities 20-100 mW cm-2. The rectification ratio, series resistance, shunt resistance, diode ideality factor and the effective barrier height were determined at dark and illumination conditions. The photovoltaic parameters such as short circuit current density, open circuit voltage, fill factor and power conversion efficiency were calculated at different incident light intensities.
Concrete Embedded Dye-Synthesized Photovoltaic Solar Cell
Hosseini, T.; Flores-Vivian, I.; Sobolev, K.; Kouklin, N.
2013-01-01
This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190 mV and ISC of ~9 μA, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46 mW confirmed the generation of electrical power of ~0.64 μW with almost half generated via battery effect. This work presents a first step towards realizing the additional pathways to low-cost electrical power production in urban environments based on a combined use of organic dyes, nanotitania and concrete technology. PMID:24067664
Charting the Unknown: A Hunt in the Dark
NASA Astrophysics Data System (ADS)
Mohlabeng, Gopolang Mokoka
Astrophysical and cosmological observations have pointed strongly to the existence of dark matter in the Universe, yet its nature remains elusive. It may be hidden in a vast unknown parameter space in which exhaustively searching for a signal is not feasible. We are, therefore, compelled to consider a robust program based on a wide range of new theoretical ideas and complementary strategies for detection. The aim of this dissertation is to investigate the phenomenology of diverse dark sectors with the objective of understanding and characterizing dark matter. We do so by exploring dark matter phenomenology under three main frameworks of study: (I) the model dependent approach, (II) model independent approach and (III) considering simplified models. In each framework we focus on unexplored and well motivated dark matter scenarios as well as their prospects of detection at current and future experiments. First, we concentrate on the model dependent method where we consider minimal dark matter in the form of mixed fermionic stable states in a gauge extension of the standard model. In particular, we incorporate the fermion mixings governed by gauge invariant interactions with the heavier degrees of freedom. We find that the manner of mixing has an impact on the detectability of the dark matter at experiments. Pursuing this model dependent direction, we explore a space-time extension of the standard model which houses a vector dark matter candidate. We incorporate boundary terms arising from the topology of the model and find that these control the way dark matter may interact with baryonic matter. Next we investigate the model independent approach in which we examine a non-minimal dark sector in the form of boosted dark matter. In this study, we consider an effective field theory involving two stable fermionic states. We probe the sensitivity of this type of dark matter coming from the galactic center and the center of the Sun, and investigate its detection prospects at current and future large volume experiments. Finally, we explore an intermediate approach in the form of a simplified model. Here we analyze a different non-minimal dark sector in which its interactions with the standard model sector are mediated primarily by the Higgs Boson. We discuss for the first time a vector and fermion dark matter preserved under the same stabilization symmetry. We find that the presence of both species in the early Universe results in rare processes contributing to the dark matter relic abundance. We conclude that connecting these three frameworks under one main dark matter program, instead of concentrating on them individually, could help us understand what we are missing, and may assist us to produce ground breaking ideas which lead to the discovery of a signal in the near future.
Astrand, Annika; Bohlooly-Y, Mohammad; Larsdotter, Sara; Mahlapuu, Margit; Andersén, Harriet; Tornell, Jan; Ohlsson, Claes; Snaith, Mike; Morgan, David G A
2004-10-01
Melanin-concentrating hormone (MCH) plays an important role in energy balance. The current studies were carried out on a new line of mice lacking the rodent MCH receptor (MCHR1(-/-) mice). These mice confirmed the previously reported lean phenotype characterized by increased energy expenditure and modestly increased caloric intake. Because MCH is expressed in the lateral hypothalamic area, which also has an important role in the regulation of the autonomic nervous system, heart rate and blood pressure were measured by a telemetric method to investigate whether the increased energy expenditure in these mice might be due to altered autonomic nervous system activity. Male MCHR1(-/-) mice demonstrated a significantly increased heart rate [24-h period: wild type 495 +/- 4 vs. MCHR1(-/-) 561 +/- 8 beats/min (P < 0.001); dark phase: wild type 506 +/- 8 vs. MCHR1(-/-) 582 +/- 9 beats/min (P < 0.001); light phase: wild type 484 +/- 13 vs. MCHR1(-/-) 539 +/- 9 beats/min (P < 0.005)] with no significant difference in mean arterial pressure [wild type 110 +/- 0.3 vs. MCHR1(-/-) 113 +/- 0.4 mmHg (P > 0.05)]. Locomotor activity and core body temperature were higher in the MCHR1(-/-) mice during the dark phase only and thus temporally dissociated from heart rate differences. On fasting, wild-type animals rapidly downregulated body temperature and heart rate. MCHR1(-/-) mice displayed a distinct delay in the onset of this downregulation. To investigate the mechanism underlying these differences, autonomic blockade experiments were carried out. Administration of the adrenergic antagonist metoprolol completely reversed the tachycardia seen in MCHR1(-/-) mice, suggesting an increased sympathetic tone.
SiC-based Photo-detectors for UV, VUV, EUV and Soft X-ray Detection
NASA Technical Reports Server (NTRS)
Yan, Feng
2006-01-01
A viewgraph presentation describing an ideal Silicon Carbide detector for ultraviolet, vacuum ultraviolet, extreme ultraviolet and soft x-ray detection is shown. The topics include: 1) An ideal photo-detector; 2) Dark current density of SiC photodiodes at room temperature; 3) Dark current in SiC detectors; 4) Resistive and capacitive feedback trans-impedance amplifier; 5) Avalanche gain; 6) Excess noise; 7) SNR in single photon counting mode; 8) Structure of SiC single photon counting APD and testing structure; 9) Single photon counting waveform and testing circuit; 10) Amplitude of SiC single photon counter; 11) Dark count of SiC APD photon counters; 12) Temperature-dependence of dark count rate; 13) Reduce the dark count rate by reducing the breakdown electric field; 14) Spectrum range for SiC detectors; 15) QE curves of Pt/4H-SiC photodiodes; 16) QE curve of SiC; 17) QE curves of SiC photodiode vs. penetration depth; 18) Visible rejection of SiC photodiodes; 19) Advantages of SiC photodiodes; 20) Competitors of SiC detectors; 21) Extraterrestrial solar spectra; 22) Visible-blind EUV detection; 23) Terrestrial solar spectra; and 24) Less than 1KeV soft x-ray detection.
Top-philic dark matter within and beyond the WIMP paradigm
NASA Astrophysics Data System (ADS)
Garny, Mathias; Heisig, Jan; Hufnagel, Marco; Lülf, Benedikt
2018-04-01
We present a comprehensive analysis of top-philic Majorana dark matter that interacts via a colored t -channel mediator. Despite the simplicity of the model—introducing three parameters only—it provides an extremely rich phenomenology allowing us to accommodate the relic density for a large range of coupling strengths spanning over 6 orders of magnitude. This model features all "exceptional" mechanisms for dark matter freeze-out, including the recently discovered conversion-driven freeze-out mode, with interesting signatures of long-lived colored particles at colliders. We constrain the cosmologically allowed parameter space with current experimental limits from direct, indirect and collider searches, with special emphasis on light dark matter below the top mass. In particular, we explore the interplay between limits from Xenon1T, Fermi-LAT and AMS-02 as well as limits from stop, monojet and Higgs invisible decay searches at the LHC. We find that several blind spots for light dark matter evade current constraints. The region in parameter space where the relic density is set by the mechanism of conversion-driven freeze-out can be conclusively tested by R -hadron searches at the LHC with 300 fb-1 .
Dark-matter QCD-axion searches.
Rosenberg, Leslie J
2015-10-06
In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments are discussed, but I hope to give a sense of the current experimental landscape of the search for dark-matter axions.
Dark-matter QCD-axion searches
Rosenberg, Leslie J
2015-01-01
In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10−(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments are discussed, but I hope to give a sense of the current experimental landscape of the search for dark-matter axions. PMID:25583487
HgCdTe APD-based linear-mode photon counting components and ladar receivers
NASA Astrophysics Data System (ADS)
Jack, Michael; Wehner, Justin; Edwards, John; Chapman, George; Hall, Donald N. B.; Jacobson, Shane M.
2011-05-01
Linear mode photon counting (LMPC) provides significant advantages in comparison with Geiger Mode (GM) Photon Counting including absence of after-pulsing, nanosecond pulse to pulse temporal resolution and robust operation in the present of high density obscurants or variable reflectivity objects. For this reason Raytheon has developed and previously reported on unique linear mode photon counting components and modules based on combining advanced APDs and advanced high gain circuits. By using HgCdTe APDs we enable Poisson number preserving photon counting. A metric of photon counting technology is dark count rate and detection probability. In this paper we report on a performance breakthrough resulting from improvement in design, process and readout operation enabling >10x reduction in dark counts rate to ~10,000 cps and >104x reduction in surface dark current enabling long 10 ms integration times. Our analysis of key dark current contributors suggest that substantial further reduction in DCR to ~ 1/sec or less can be achieved by optimizing wavelength, operating voltage and temperature.
X-ray bright points and He I lambda 10830 dark points
NASA Technical Reports Server (NTRS)
Golub, L.; Harvey, K. L.; Herant, M.; Webb, D. F.
1989-01-01
Using near-simultaneous full disk Solar X-ray images and He I 10830 lambda, spectroheliograms from three recent rocket flights, dark points identified on the He I maps were compared with X-ray bright points identified on the X-ray images. It was found that for the largest and most obvious features there is a strong correlation: most He I dark points correspond to X-ray bright points. However, about 2/3 of the X-ray bright points were not identified on the basis of the helium data alone. Once an X-ray feature is identified it is almost always possible to find an underlying dark patch of enhanced He I absorption which, however, would not a priori have been selected as a dark point. Therefore, the He I dark points, using current selection criteria, cannot be used as a one-to-one proxy for the X-ray data. He I dark points do, however, identify the locations of the stronger X-ray bright points.
X-ray bright points and He I lambda 10830 dark points
NASA Technical Reports Server (NTRS)
Golub, L.; Harvey, K. L.; Herant, M.; Webb, D. F.
1989-01-01
Using near-simultaneous full disk Solar X-ray images and He I 10830 lambda, spectroheliograms from three recent rocket flights, dark points identified on the He I maps were compared with x-ray bright points identified on the X-ray images. It was found that for the largest and most obvious features there is a strong correlation: most He I dark points correspond to X-ray bright points. However, about 2/3 of the X-ray bright points were not identified on the basis of the helium data alone. Once an X-ray feature is identified it is almost always possible to find an underlying dark patch of enhanced He I absorption which, however, would not a priori have been selected as a dark point. Therefore, the He I dark points, using current selection criteria, cannot be used as a one-to-one proxy for the X-ray data. He I dark points do, however, identify the locations of the stronger X-ray bright points.
Dark energy two decades after: observables, probes, consistency tests.
Huterer, Dragan; Shafer, Daniel L
2018-01-01
The discovery of the accelerating universe in the late 1990s was a watershed moment in modern cosmology, as it indicated the presence of a fundamentally new, dominant contribution to the energy budget of the universe. Evidence for dark energy, the new component that causes the acceleration, has since become extremely strong, owing to an impressive variety of increasingly precise measurements of the expansion history and the growth of structure in the universe. Still, one of the central challenges of modern cosmology is to shed light on the physical mechanism behind the accelerating universe. In this review, we briefly summarize the developments that led to the discovery of dark energy. Next, we discuss the parametric descriptions of dark energy and the cosmological tests that allow us to better understand its nature. We then review the cosmological probes of dark energy. For each probe, we briefly discuss the physics behind it and its prospects for measuring dark energy properties. We end with a summary of the current status of dark energy research.
Explaining dark matter and B decay anomalies with an L μ - L τ model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altmannshofer, Wolfgang; Gori, Stefania; Profumo, Stefano
We present a dark sector model based on gauging the L μ - L τ symmetry that addresses anomalies in b→ sμ +μ - decays and that features a particle dark matter candidate. The dark matter particle candidate is a vector-like Dirac fermion coupled to the Z' gauge boson of the L μ - L τ symmetry. We compute the dark matter thermal relic density, its pair-annihilation cross section, and the loop-suppressed dark matter-nucleon scattering cross section, and compare our predictions with current and future experimental results. We demonstrate that after taking into account bounds from Bs meson oscillations, darkmore » matter direct detection, and the CMB, the model is highly predictive: B physics anomalies and a viable particle dark matter candidate, with a mass of ~ (5 - 23) GeV, can be accommodated only in a tightly-constrained region of parameter space, with sharp predictions for future experimental tests. The viable region of parameter space expands if the dark matter is allowed to have L μ - L τ charges that are smaller than those of the SM leptons.« less
Explaining dark matter and B decay anomalies with an L μ - L τ model
Altmannshofer, Wolfgang; Gori, Stefania; Profumo, Stefano; ...
2016-12-20
We present a dark sector model based on gauging the L μ - L τ symmetry that addresses anomalies in b→ sμ +μ - decays and that features a particle dark matter candidate. The dark matter particle candidate is a vector-like Dirac fermion coupled to the Z' gauge boson of the L μ - L τ symmetry. We compute the dark matter thermal relic density, its pair-annihilation cross section, and the loop-suppressed dark matter-nucleon scattering cross section, and compare our predictions with current and future experimental results. We demonstrate that after taking into account bounds from Bs meson oscillations, darkmore » matter direct detection, and the CMB, the model is highly predictive: B physics anomalies and a viable particle dark matter candidate, with a mass of ~ (5 - 23) GeV, can be accommodated only in a tightly-constrained region of parameter space, with sharp predictions for future experimental tests. The viable region of parameter space expands if the dark matter is allowed to have L μ - L τ charges that are smaller than those of the SM leptons.« less
NASA Astrophysics Data System (ADS)
Eckhardt, Donald H.; Garrido Pestaña, José Luis
2014-06-01
The nineteenth century's quest for the missing matter (Vulcan) ended with the publication of Einstein's General Theory of Relativity. We contend that the current quest for the missing matter is parallel in its perseverance and in its ultimate futility. After setting the search for dark matter in its historic perspective, we critique extant dark matter models and offer alternative explanations -- derived from a Lorentz-invariant Lagrangian -- that will, at the very least, sow seeds of doubt about the existence of dark matter.
NASA Astrophysics Data System (ADS)
Espinosa, J. R.; Racco, D.; Riotto, A.
2018-03-01
For the current central values of the Higgs boson and top quark masses, the standard model Higgs potential develops an instability at a scale of the order of 1 011 GeV . We show that a cosmological signature of such instability could be dark matter in the form of primordial black holes seeded by Higgs fluctuations during inflation. The existence of dark matter might not require physics beyond the standard model.
Gravitational vacuum energy in our recently accelerating universe
NASA Astrophysics Data System (ADS)
Bludman, Sidney
2009-04-01
We review current observations of the homogeneous cosmological expansion which, because they measure only kinematic variables, cannot determine the dynamics driving the recent accelerated expansion. The minimal fit to the data, the flat ACDM model, consisting of cold dark matter and a cosmological constant, interprets 4? geometrically as a classical spacetime curvature constant of nature, avoiding any reference to quantum vacuum energy. (The observed Uehling and Casimir effects measure forces due to QED vacuum polarization, but not any quantum material vacuum energies.) An Extended Anthropic Principle, that Dark Energy and Dark Gravity be indistinguishable, selects out flat ACDM. Prospective cosmic shear and galaxy clustering observations of the growth of fluctuations are intended to test whether the 'dark energy' driving the recent cosmological acceleration is static or moderately dynamic. Even if dynamic, observational differences between an additional negative-pressure material component within general relativity (Dark Energy) and low-curvature modifications of general relativity (Dark Gravity) will be extremely small.
Gravity-mediated dark matter annihilation in the Randall-Sundrum model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rueter, T. D.; Rizzo, T. G.; Hewett, J. L.
Observational evidence for dark matter stems from its gravitational interactions, and as of yet there has been no evidence for dark matter interacting via other means. We examine models where dark matter interactions are purely gravitational in a Randall-Sundrum background. In particular, the Kaluza-Klein tower of gravitons which result from the warped fifth dimension can provide viable annihilation channels into Standard Model final states, and we find that we can achieve values of the annihilation cross section, < σv >, which are consistent with the observed relic abundance in the case of spin-1 dark matter. As a result, we examinemore » constraints on these models employing both the current photon line and continuum indirect dark matter searches, and assess the prospects of hunting for the signals of such models in future direct and indirect detection experiments.« less
Gravity-mediated dark matter annihilation in the Randall-Sundrum model
Rueter, T. D.; Rizzo, T. G.; Hewett, J. L.
2017-10-13
Observational evidence for dark matter stems from its gravitational interactions, and as of yet there has been no evidence for dark matter interacting via other means. We examine models where dark matter interactions are purely gravitational in a Randall-Sundrum background. In particular, the Kaluza-Klein tower of gravitons which result from the warped fifth dimension can provide viable annihilation channels into Standard Model final states, and we find that we can achieve values of the annihilation cross section, < σv >, which are consistent with the observed relic abundance in the case of spin-1 dark matter. As a result, we examinemore » constraints on these models employing both the current photon line and continuum indirect dark matter searches, and assess the prospects of hunting for the signals of such models in future direct and indirect detection experiments.« less
Advances in the characterization of InAs/GaSb superlattice infrared photodetectors
NASA Astrophysics Data System (ADS)
Wörl, A.; Daumer, V.; Hugger, T.; Kohn, N.; Luppold, W.; Müller, R.; Niemasz, J.; Rehm, R.; Rutz, F.; Schmidt, J.; Schmitz, J.; Stadelmann, T.; Wauro, M.
2016-10-01
This paper reports on advances in the electro-optical characterization of InAs/GaSb short-period superlattice infrared photodetectors with cut-off wavelengths in the mid-wavelength and long-wavelength infrared ranges. To facilitate in-line monitoring of the electro-optical device performance at different processing stages we have integrated a semi-automated cryogenic wafer prober in our process line. The prober is configured for measuring current-voltage characteristics of individual photodiodes at 77 K. We employ it to compile a spatial map of the dark current density of a superlattice sample with a cut-off wavelength around 5 μm patterned into a regular array of 1760 quadratic mesa diodes with a pitch of 370 μm and side lengths varying from 60 to 350 μm. The different perimeter-to-area ratios make it possible to separate bulk current from sidewall current contributions. We find a sidewall contribution to the dark current of 1.2×10-11 A/cm and a corrected bulk dark current density of 1.1×10-7 A/cm2, both at 200 mV reverse bias voltage. An automated data analysis framework can extract bulk and sidewall current contributions for various subsets of the test device grid. With a suitable periodic arrangement of test diode sizes, the spatial distribution of the individual contributions can thus be investigated. We found a relatively homogeneous distribution of both bulk dark current density and sidewall current contribution across the sample. With the help of an improved capacitance-voltage measurement setup developed to complement this technique a residual carrier concentration of 1.3×1015 cm-3 is obtained. The work is motivated by research into high performance superlattice array sensors with demanding processing requirements. A novel long-wavelength infrared imager based on a heterojunction concept is presented as an example for this work. It achieves a noise equivalent temperature difference below 30 mK for realistic operating conditions.
Algorithm for Detecting a Bright Spot in an Image
NASA Technical Reports Server (NTRS)
2009-01-01
An algorithm processes the pixel intensities of a digitized image to detect and locate a circular bright spot, the approximate size of which is known in advance. The algorithm is used to find images of the Sun in cameras aboard the Mars Exploration Rovers. (The images are used in estimating orientations of the Rovers relative to the direction to the Sun.) The algorithm can also be adapted to tracking of circular shaped bright targets in other diverse applications. The first step in the algorithm is to calculate a dark-current ramp a correction necessitated by the scheme that governs the readout of pixel charges in the charge-coupled-device camera in the original Mars Exploration Rover application. In this scheme, the fraction of each frame period during which dark current is accumulated in a given pixel (and, hence, the dark-current contribution to the pixel image-intensity reading) is proportional to the pixel row number. For the purpose of the algorithm, the dark-current contribution to the intensity reading from each pixel is assumed to equal the average of intensity readings from all pixels in the same row, and the factor of proportionality is estimated on the basis of this assumption. Then the product of the row number and the factor of proportionality is subtracted from the reading from each pixel to obtain a dark-current-corrected intensity reading. The next step in the algorithm is to determine the best location, within the overall image, for a window of N N pixels (where N is an odd number) large enough to contain the bright spot of interest plus a small margin. (In the original application, the overall image contains 1,024 by 1,024 pixels, the image of the Sun is about 22 pixels in diameter, and N is chosen to be 29.)
Developmental pathways of childhood dark traits.
De Clercq, Barbara; Hofmans, Joeri; Vergauwe, Jasmine; De Fruyt, Filip; Sharp, Carla
2017-10-01
The dark triad of personality has traditionally been defined by 3 interrelated constructs, defined as Narcissism, Machiavellianism, and Psychopathy. Although the content of each of these constructs is clearly represented in childhood maladaptive trait measures, no studies have jointly addressed the prospective developmental course of this core set of maladaptive characteristics throughout childhood and adolescence. The current study uses latent growth modeling to explore how early dark traits develop over time, relying on a selected set of 6 childhood maladaptive traits that conceptually cover the adult dark triad. Across a 5-wave multi-informant design spanning 10 years of childhood, adolescence, and emerging adulthood (Nwave 1 = 717, 54.4% girls, age range T1 = 8-14.7 years, mean age = 10.73), results indicate that childhood dark traits show to some extent shared growth across time, although notable unique growth variance was also observed. Early dark traits further demonstrate significant association patterns with an adult dark triad measure across informants and are increasingly able to discriminate among more and less prototypical profiles of adult dark triad scores. Findings are discussed from a developmental psychopathology framework, underscoring that the proposed set of childhood dark traits represents a meaningful developmental precursor of the adult dark triad. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Illuminated to dark ratio improvement in lateral SOI PIN photodiodes at high temperatures
NASA Astrophysics Data System (ADS)
Novo, C.; Giacomini, R.; Doria, R.; Afzalian, A.; Flandre, D.
2014-07-01
This work presents a study of the illuminated to dark ratio (IDR) of lateral SOI PIN photodiodes. Measurements performed on fabricated devices show a fivefold improvement of the IDR when the devices are biased in accumulation mode and under high temperatures of operation, independently of the anode voltage. The obtained results show that the doping concentration of the intrinsic region has influence on the sensitivity of the diodes: the larger the doping concentration, the smaller the IDR. Furthermore, the photocurrent and dark current present lower values as the silicon film thickness is decreased, resulting in a further increase in the illuminated to dark ratio.
NASA Astrophysics Data System (ADS)
Youssef, Sarah; El-Batawy, Yasser M.; Abouelsaood, Ahmed A.
2016-09-01
A theoretical method for calculating the electron mobility in quantum dot infrared photodetectors is developed. The mobility calculation is based on a time-dependent, finite-difference solution of the Boltzmann transport equation in a bulk semiconductor material with randomly positioned conical quantum dots. The quantum dots act as scatterers of current carriers (conduction-band electrons in our case), resulting in limiting their mobility. In fact, carrier scattering by quantum dots is typically the dominant factor in determining the mobility in the active region of the quantum dot device. The calculated values of the mobility are used in a recently developed generalized drift-diffusion model for the dark current of the device [Ameen et al., J. Appl. Phys. 115, 063703 (2014)] in order to fix the overall current scale. The results of the model are verified by comparing the predicted dark current characteristics to those experimentally measured and reported for actual InAs/GaAs quantum dot infrared photodetectors. Finally, the effect of the several relevant device parameters, including the operating temperature and the quantum dot average density, is studied.
NASA Astrophysics Data System (ADS)
Kipp, Dylan; Ganesan, Venkat
2013-06-01
We develop a kinetic Monte Carlo model for photocurrent generation in organic solar cells that demonstrates improved agreement with experimental illuminated and dark current-voltage curves. In our model, we introduce a charge injection rate prefactor to correct for the electrode grid-size and electrode charge density biases apparent in the coarse-grained approximation of the electrode as a grid of single occupancy, charge-injecting reservoirs. We use the charge injection rate prefactor to control the portion of dark current attributed to each of four kinds of charge injection. By shifting the dark current between electrode-polymer pairs, we align the injection timescales and expand the applicability of the method to accommodate ohmic energy barriers. We consider the device characteristics of the ITO/PEDOT/PSS:PPDI:PBTT:Al system and demonstrate the manner in which our model captures the device charge densities unique to systems with small injection energy barriers. To elucidate the defining characteristics of our model, we first demonstrate the manner in which charge accumulation and band bending affect the shape and placement of the various current-voltage regimes. We then discuss the influence of various model parameters upon the current-voltage characteristics.
X-ray detection with zinc-blende (cubic) GaN Schottky diodes
NASA Astrophysics Data System (ADS)
Gohil, T.; Whale, J.; Lioliou, G.; Novikov, S. V.; Foxon, C. T.; Kent, A. J.; Barnett, A. M.
2016-07-01
The room temperature X-ray responses as functions of time of two n type cubic GaN Schottky diodes (200 μm and 400 μm diameters) are reported. The current densities as functions of time for both diodes showed fast turn-on transients and increases in current density when illuminated with X-ray photons of energy up to 35 keV. The diodes were also electrically characterized: capacitance, implied depletion width and dark current measurements as functions of applied bias at room temperature are presented. At -5 V reverse bias, the capacitances of the diodes were measured to be (84.05 ± 0.01) pF and (121.67 ± 0.02) pF, respectively. At -5 V reverse bias, the dark current densities of the diodes were measured to be (347.2 ± 0.4) mA cm-2 and (189.0 ± 0.2) mA cm-2, respectively. The Schottky barrier heights of the devices (0.52 ± 0.07) eV and (0.63 ± 0.09) eV, respectively, were extracted from the forward dark current characteristics.
Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current.
DeRose, Christopher T; Trotter, Douglas C; Zortman, William A; Starbuck, Andrew L; Fisher, Moz; Watts, Michael R; Davids, Paul S
2011-12-05
We present a compact 1.3 × 4 μm2 Germanium waveguide photodiode, integrated in a CMOS compatible silicon photonics process flow. This photodiode has a best-in-class 3 dB cutoff frequency of 45 GHz, responsivity of 0.8 A/W and dark current of 3 nA. The low intrinsic capacitance of this device may enable the elimination of transimpedance amplifiers in future optical data communication receivers, creating ultra low power consumption optical communications.
Could Mars be dark and altered?
Calvin, Wendy M.
1998-01-01
There is a long known dichotomy in the martian albedo, with an associated, but mostly assumed, mineralogical split as well. The bright red regions are inferred to be weathered, oxidized dust and the dark grey regions unaltered volcanic material. A number of recent analyses suggest this division is unnaturally simplistic and the association of many dark regions with the former presence of water requires a re‐examination of the spectra in light of potential alteration minerals. I present an alternate interpretation of the reflectance spectral characteristics of some dark regions on Mars that includes dark layer silicates. If their presence is confirmed on Mars this will have implications for sequestration of current and past volatile inventories, clues to the extent and type of geochemical weathering, and potential zones where bacterial life forms may have emerged.
Significant gamma lines from inert Higgs dark matter.
Gustafsson, Michael; Lundström, Erik; Bergström, Lars; Edsjö, Joakim
2007-07-27
One way to unambiguously confirm the existence of particle dark matter and determine its mass would be to detect its annihilation into monochromatic gamma-rays in upcoming telescopes. One of the most minimal models for dark matter is the inert doublet model, obtained by adding another Higgs doublet with no direct coupling to fermions. For a mass between 40 and 80 GeV, the lightest of the new inert Higgs particles can give the correct cosmic abundance of cold dark matter in agreement with current observations. We show that for this scalar dark matter candidate, the annihilation signal of monochromatic gammagamma and Zgamma final states would be exceptionally strong. The energy range and rates for these gamma-ray line signals make them ideal to search for with the soon upcoming GLAST satellite.
Distributed Control of a Swarm of Autonomous Unmanned Aerial Vehicles
2003-03-01
wisdom, and love have provided a firm anchor in rough times, and a light in the darkness . “Come to me, all you who are weary and burdened, and I will...time. The light-gray trails represent the area that has been covered in the past 50 timesteps. The dark -gray areas are overlapping areas calculated...during the current timestep. The dark line encloses the total contigu- ous sensor area for this example. Note that while agent 1’s footprint does not
Espinosa, J R; Racco, D; Riotto, A
2018-03-23
For the current central values of the Higgs boson and top quark masses, the standard model Higgs potential develops an instability at a scale of the order of 10^{11} GeV. We show that a cosmological signature of such instability could be dark matter in the form of primordial black holes seeded by Higgs fluctuations during inflation. The existence of dark matter might not require physics beyond the standard model.
Cold dark matter plus not-so-clumpy dark relics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph
Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions,more » covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f {sub ncdm} of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f {sub ncdm}≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f {sub ncdm}≤0.43 (0.45), respectively.« less
Weighted image de-fogging using luminance dark prior
NASA Astrophysics Data System (ADS)
Kansal, Isha; Kasana, Singara Singh
2017-10-01
In this work, the weighted image de-fogging process based upon dark channel prior is modified by using luminance dark prior. Dark channel prior estimates the transmission by using three colour channels whereas luminance dark prior does the same by making use of only Y component of YUV colour space. For each pixel in a patch of ? size, the luminance dark prior uses ? pixels, rather than ? pixels used in DCP technique, which speeds up the de-fogging process. To estimate the transmission map, weighted approach based upon difference prior is used which mitigates halo artefacts at the time of transmission estimation. The major drawback of weighted technique is that it does not maintain the constancy of the transmission in a local patch even if there are no significant depth disruptions, due to which the de-fogged image looks over smooth and has low contrast. Apart from this, in some images, weighted transmission still carries less visible halo artefacts. Therefore, Gaussian filter is used to blur the estimated weighted transmission map which enhances the contrast of de-fogged images. In addition to this, a novel approach is proposed to remove the pixels belonging to bright light source(s) during the atmospheric light estimation process based upon histogram of YUV colour space. To show the effectiveness, the proposed technique is compared with existing techniques. This comparison shows that the proposed technique performs better than the existing techniques.
Development of an Electromagnetic Microscope for Eddy Current Evaluation of Materials
1991-08-01
headed a laboratory investigating cryogenic detectors for astro-particle physics applications including the search for dark matter candidates and weakly...and L. Stodolsky, Studies of single superconducting grains for a neutrino and dark matter detector, Nucl. Inst. and Meth. A287, 583, 1990. Frank, M
Experimental High Energy Physics Research: Direct Detection of Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witherell, Michael S.
2014-10-02
The grant supported research on an experimental search for evidence of dark matter interactions with normal matter. The PI carried out the research as a member of the LUX and LZ collaborations. The LUX research team collected a first data set with the LUX experiment, a large liquid xenon detector installed in the Sanford Underground Research Facility (SURF). The first results were published in Physical Review Letters on March 4, 2014. The journal Nature named the LUX result a scientific highlight of the year for 2013. In addition, the LZ collaboration submitted the full proposal for the Lux Zeplin experiment,more » which has since been approved by DOE-HEP as a second-generation dark matter experiment. Witherell is the Level 2 manager for the Outer Detector System on the LUX-Zeplin experiment.« less
He, Zhiyang; Liu, Qiao; Hou, Huilin; Gao, Fengmei; Tang, Bin; Yang, Weiyou
2015-05-27
In this work, polycrystalline WO3 nanobelts were fabricated via an electrospinning process combined with subsequent air calcination. The resultant products were characterized by X-ray diffraction, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy in regard to the structures. It has been found that the applied voltage during the electrospinning process played the determined role in the formation of the WO3 nanobelts, allowing the controlled growth of the nanobelts. The ultraviolet (UV) photodetector assembled by an individual WO3 nanobelt exhibits a high sensitivity and a precise selectivity to the different wavelength lights, with a very low dark current and typical photo-dark current ratio up to 1000, which was the highest for any WO3 photodectectors ever reported. This work could not only push forward the facile preparation of WO3 nanobelts but also represent, for the first time, the possibility that the polycrystalline WO3 nanobelts could be a promising building block for the highly efficient UV photodetectors.
Low dark current photovoltaic multiquantum well long wavelength infrared detectors
NASA Technical Reports Server (NTRS)
Wu, C. S.; Wen, Cheng P.; Sato, R. N.; Hu, M.
1990-01-01
The authors have, for the first time, demonstrated photovoltaic detection for an multiple quantum well (MQW) detector. With a blocking layer, the MQW detector exhibits Schottky I-V characteristics with extremely low dark current and excellent ideality factor. The dark current is 5 times 10(exp -14) A for an 100x100 square micron 10 micron detector at 40 K, 8 to 9 orders of magnitude lower than that of a similar 10 micron MQW detector without blocking layer. The ideality factor is about 1.01 to 1.05 at T = 40 to 80 K. The measured barrier height is consistent with the energy difference between first excited states and ground states, or the peak of spectral response. The authors also, for the first time, report the measured effective Richardson constant (A asterisk asterisk) for the GaAs/AlGaAs heterojunction using this blocking layer structure. The A asterisk asterisk is low approx. 2.3 A/sq cm/K(exp 2).
Dark-matter QCD-axion searches
Rosenberg, Leslie J.
2015-01-12
In the late 20th century, cosmology became a precision science. At the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the darkmore » matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10 -(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. But, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. Our paper is a selective overview of the current generation of sensitive axion searches. Finally, not all techniques and experiments are discussed, but I hope to give a sense of the current experimental landscape of the search for dark-matter axions.« less
Searching for dark matter with single phase liquid argon
NASA Astrophysics Data System (ADS)
Caldwell, Thomas S., Jr.
The first hint that we fail to understand the nature of a large fraction of the gravitating matter in the universe came from Fritz Zwicky's measurements of the velocity distribution of the Coma cluster in 1933. Using the Virial theorem, Zwicky found that galaxies in the cluster were orbiting far too fast to remain gravitationally bound when their mass was estimated by the brightness of the visible matter. This led to the postulation that some form of non-luminous dark matter is present in galaxies comprising a large fraction of the galactic mass. The nature of this dark matter remains yet unknown over 80 years after Zwicky's measurements despite the efforts of many experiments. Dark matter is widely believed to be a beyond the Standard Model particle which brings the dark matter problem into the realm of particle physics. Supersymmetry is one widely explored extension of the Standard model, from which particles meeting the constraints on dark matter properties can naturally arise. These particles are generically termed weakly interacting massive particles (WIMPs), and are a currently favored dark matter candidate. A variety of experimental efforts are underway aimed towards direct detection of dark matter through observation of rare scattering of WIMPs in terrestrial detectors. Single phase liquid argon detectors are an appealing WIMP detection technique due to the scintillation properties of liquid argon and the scalability of the single phase approach. The MiniCLEAN dark matter detector is a single phase liquid argon scintillation scintillation detector with a 500 kg active mass. The modular design offers 4pi coverage with 92 optical cassettes, each containing TPB coated acrylic and a cryogenic photomultiplier tube. The MiniCLEAN detector has recently completed construction at SNOLAB. The detector is currently being commissioned, and will soon begin operation with the liquid argon target. Utilizing advanced pulse-shape discrimination techniques, MiniCLEAN will probe the WIMP-nucleon cross section parameter space to the level of 10--44 cm2 and demonstrate the pulse-shape discrimination required for next generation experiments capable of further probing the WIMP parameter space in search of WIMP dark matter.
NASA Technical Reports Server (NTRS)
2005-01-01
3 October 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark, defrosting spots formed on a polygon-cracked plain in the south polar region of Mars. The surface was covered with carbon dioxide frost during the previous winter. In spring, the material begins to sublime away, creating a pattern of dark spots that sometimes have wind streaks emanating from them, as wind carries away or erodes the frost. Location near: 87.2oS, 28.4oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SpringOn the effective operators for Dark Matter annihilations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simone, Andrea De; Thamm, Andrea; Monin, Alexander
2013-02-01
We consider effective operators describing Dark Matter (DM) interactions with Standard Model fermions. In the non-relativistic limit of the DM field, the operators can be organized according to their mass dimension and their velocity behaviour, i.e. whether they describe s- or p-wave annihilations. The analysis is carried out for self-conjugate DM (real scalar or Majorana fermion). In this case, the helicity suppression at work in the annihilation into fermions is lifted by electroweak bremsstrahlung. We construct and study all dimension-8 operators encoding such an effect. These results are of interest in indirect DM searches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillioz, M.; von Manteuffel, A.; Schwaller, P.
We study skyrmions in the littlest Higgs model and discuss their possible role as dark matter candidates. Stable massive skyrmions can exist in the littlest Higgs model also in absence of an exact parity symmetry, since they carry a conserved topological charge due to the non-trivial third homotopy group of the SU(5)/SO(5) coset. We find a spherically symmetric skyrmion solution in this coset. The effects of gauge fields on the skyrmion solutions are analyzed and found to lead to an upper bound on the skyrmion mass. The relic abundance is in agreement with the observed dark matter density for reasonablemore » parameter choices.« less
Radiatively induced neutrino mass model with flavor dependent gauge symmetry
NASA Astrophysics Data System (ADS)
Lee, SangJong; Nomura, Takaaki; Okada, Hiroshi
2018-06-01
We study a radiative seesaw model at one-loop level with a flavor dependent gauge symmetry U(1) μ - τ, in which we consider bosonic dark matter. We also analyze the constraints from lepton flavor violations, muon g - 2, relic density of dark matter, and collider physics, and carry out numerical analysis to search for allowed parameter region which satisfy all the constraints and to investigate some predictions. Furthermore we find that a simple but adhoc hypothesis induces specific two zero texture with inverse mass matrix, which provides us several predictions such as a specific pattern of Dirac CP phase.
Gravitational collapse of dark energy field configurations and supermassive black hole formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com
Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-timemore » and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.« less
MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM
NASA Astrophysics Data System (ADS)
Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.; Wendler, J.; Figgemeier, H.
2016-09-01
We present our latest results on n-on- p as well as on p-on- n low dark current planar mercury cadmium telluride (MCT) photodiode technology long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) two-dimensional focal plane arrays (FPAs) with quantum efficiency (QE) cut-off wavelength >11 μm at 80 K and a 512 × 640 pixel format FPA at 20 μm pitch stitched from two 512 × 320 pixel photodiode arrays. Significantly reduced dark currents as compared with Tennant's "Rule 07" are demonstrated in both polarities while retaining good detection efficiency ≥60% for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at 20 K higher operating temperature than with previous AIM INFRAROT-MODULE GmbH (AIM) technology. For p-on- n LWIR MCT FPAs, broadband photoresponse nonuniformity of only about 1.2% is achieved at 55 K with low defective pixel numbers. For an n-on- p VLWIR MCT FPA with 13.6 μm cut-off at 55 K, excellent photoresponse nonuniformity of about 3.1% is achieved at moderate defective pixel numbers. This advancement in detector technology paves the way for outstanding signal-to-noise ratio performance infrared detection, enabling cutting-edge next-generation LWIR/VLWIR detectors for space instruments and devices with higher operating temperature and low size, weight, and power for field applications.
Progress of MCT Detector Technology at AIM Towards Smaller Pitch and Lower Dark Current
NASA Astrophysics Data System (ADS)
Eich, D.; Schirmacher, W.; Hanna, S.; Mahlein, K. M.; Fries, P.; Figgemeier, H.
2017-09-01
We present our latest results on cooled p-on- n planar mercury cadmium telluride (MCT) photodiode technology. Along with a reduction in dark current for raising the operating temperature ( T op), AIM INFRAROT-MODULE GmbH (AIM) has devoted its development efforts to shrinking the pixel size. Both are essential requirements to meet the market demands for reduced size, weight and power and high-operating temperature applications. Detectors based on the p-on- n technology developed at AIM now span the spectrum from the mid-wavelength infrared (MWIR) to the very long wavelength infrared (VLWIR) with cut-off wavelengths from 5 μm to about 13.5 μm at 80 K. The development of the p-on- n technology for VLWIR as well as for MWIR is mainly implemented in a planar photodetector design with a 20- μm pixel pitch. For the VLWIR, dark currents significantly reduced as compared to `Tennant's Rule 07' are demonstrated for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at a 20 K higher operating temperature than with previous AIM technology. For MWIR detectors with a 20- μm pitch, noise equivalent temperature differences of less than 30 mK are obtained up to 170 K. This technology has been transferred to our small pixel pitch high resolution (XGA) MWIR detector with 1024 × 768 pixels at a 10- μm pitch. Excellent performance at an operating temperature of 160 K is demonstrated.
XENON100 Dark Matter Search: Scintillation Response of Liquid Xenon to Electronic Recoils
NASA Astrophysics Data System (ADS)
Lim, Kyungeun Elizabeth
Dark matter is one of the missing pieces necessary to complete the puzzle of the universe. Numerous astrophysical observations at all scales suggest that 23 % of the universe is made of nonluminous, cold, collisionless, nonbaryonic, yet undiscovered dark matter. Weakly Interacting Massive Particles (WIMPs) are the most well-motivated dark matter candidates and significant efforts have been made to search for WIMPs. The XENON100 dark matter experiment is currently the most sensitive experiment in the global race for the first direct detection of WIMP dark matter. XENON100 is a dual-phase (liquid-gas) time projection chamber containing a total of 161 kg of liquid xenon (LXe) with a 62kg WIMP target mass. It has been built with radiopure materials to achieve an ultra-low electromagnetic background and operated at the Laboratori Nazionali del Gran Sasso in Italy. WIMPs are expected to scatter off xenon nuclei in the target volume. Simultaneous measurement of ionization and scintillation produced by nuclear recoils allows for the detection of WIMPs in XENON100. Data from the XENON100 experiment have resulted in the most stringent limits on the spin-independent elastic WIMP-nucleon scattering cross sections for most of the significant WIMP masses. As the experimental precision increases, a better understanding of the scintillation and ionization response of LXe to low energy (< 10 keV) particles is crucial for the interpretation of data from LXe based WIMP searches. A setup has been built and operated at Columbia University to measure the scintillation response of LXe to both electronic and nuclear recoils down to energies of a few keV, in particular for the XENON100 experiment. In this thesis, I present the research carried out in the context of the XENON100 dark matter search experiment. For the theoretical foundation of the XENON100 experiment, the first two chapters are dedicated to the motivation for and detection medium choice of the XENON100 experiment, respectively. A general review about dark matter focusing on WIMPs and their direct detection with liquid noble gas detectors is presented in Chap. 1. LXe as an attractive WIMP detection medium is explained in Chap. 2. The XENON100 detector design, the detector, and its subsystems are detailed in Chap. 3. The calibration of the detector and the characterized detector response used for the discrimination of a WIMP-like signal against background are explained in Chap. 4. In an effort to understand the background, anomalous electronic recoils were studied extensively and are described in Chap. 5. In order to obtain a better understanding of the electronic recoil background of XENON100, including an estimation of the electronic recoil background contribution, as well as to interpret dark matter results such as annual modulation, measurement of the scintillation yield of low-energy electrons in LXe was performed in 2011, with the dedicated setup mentioned above. The results from this measurement are discussed in Chap. 6. Finally, the results for the latest science data from XENON100 to search for WIMPs, comprising 225 live-days taken over 13 months during 2011 and 2012 are explained in Chap. 7.
Radio for hidden-photon dark matter detection
Chaudhuri, Saptarshi; Graham, Peter W.; Irwin, Kent; ...
2015-10-08
We propose a resonant electromagnetic detector to search for hidden-photon dark matter over an extensive range of masses. Hidden-photon dark matter can be described as a weakly coupled “hidden electric field,” oscillating at a frequency fixed by the mass, and able to penetrate any shielding. At low frequencies (compared to the inverse size of the shielding), we find that the observable effect of the hidden photon inside any shielding is a real, oscillating magnetic field. We outline experimental setups designed to search for hidden-photon dark matter, using a tunable, resonant LC circuit designed to couple to this magnetic field. Ourmore » “straw man” setups take into consideration resonator design, readout architecture and noise estimates. At high frequencies, there is an upper limit to the useful size of a single resonator set by 1/ν. However, many resonators may be multiplexed within a hidden-photon coherence length to increase the sensitivity in this regime. Hidden-photon dark matter has an enormous range of possible frequencies, but current experiments search only over a few narrow pieces of that range. As a result, we find the potential sensitivity of our proposal is many orders of magnitude beyond current limits over an extensive range of frequencies, from 100 Hz up to 700 GHz and potentially higher.« less
NASA Astrophysics Data System (ADS)
Zhao, Ming-Ming; He, Dong-Ze; Zhang, Jing-Fei; Zhang, Xin
2017-08-01
We search for sterile neutrinos in the holographic dark energy cosmology by using the latest observational data. To perform the analysis, we employ the current cosmological observations, including the cosmic microwave background temperature power spectrum data from the Planck mission, the baryon acoustic oscillation measurements, the type Ia supernova data, the redshift space distortion measurements, the shear data of weak lensing observation, the Planck lensing measurement, and the latest direct measurement of H0 as well. We show that, compared to the Λ CDM cosmology, the holographic dark energy cosmology with sterile neutrinos can relieve the tension between the Planck observation and the direct measurement of H0 much better. Once we include the H0 measurement in the global fit, we find that the hint of the existence of sterile neutrinos in the holographic dark energy cosmology can be given. Under the constraint of the all-data combination, we obtain Neff=3.76 ±0.26 and mν,sterile eff<0.215 eV , indicating that the detection of Δ Neff>0 in the holographic dark energy cosmology is at the 2.75 σ level and the massless or very light sterile neutrino is favored by the current observations.
Last electroweak WIMP standing: pseudo-dirac higgsino status and compact stars as future probes
NASA Astrophysics Data System (ADS)
Krall, Rebecca; Reece, Matthew
2018-04-01
Electroweak WIMPs are under intense scrutiny from direct detection, indirect detection, and collider experiments. Nonetheless the pure (pseudo-Dirac) higgsino, one of the simplest such WIMPs, remains elusive. We present an up-to-date assessment of current experimental constraints on neutralino dark matter. The strongest bound on pure higgsino dark matter currently may arise from AMS-02 measurements of antiprotons, though the interpretation of these results has sizable uncertainty. We discuss whether future astrophysical observations could offer novel ways to test higgsino dark matter, especially in the challenging regime with order MeV mass splitting between the two neutral higgsinos. We find that heating of white dwarfs by annihilation of higgsinos captured via inelastic scattering could be one useful probe, although it will require challenging observations of distant dwarf galaxies or a convincing case to be made for substantial dark matter content in ω Cen, a globular cluster that may be a remnant of a disrupted dwarf galaxy. White dwarfs and neutron stars give a target for astronomical observations that could eventually help to close the last, most difficult corner of parameter space for dark matter with weak interactions. Supported by NSF (PHY-1415548) and NASA ATP (NNX16AI12G)
Sub-MeV bosonic dark matter, misalignment mechanism, and galactic dark matter halo luminosities
NASA Astrophysics Data System (ADS)
Yang, Qiaoli; Di, Haoran
2017-04-01
We explore a scenario that dark matter is a boson condensate created by the misalignment mechanism, in which a spin 0 boson (an axionlike particle) and a spin 1 boson (the dark photon) are considered, respectively. We find that although the sub-MeV dark matter boson is extremely stable, the huge number of dark matter particles in a galaxy halo makes the decaying signal detectable. A galaxy halo is a large structure bounded by gravity with a typical ˜1 012 solar mass, and the majority of its components are made of dark matter. For the axionlike particle case, it decays via ϕ →γ γ , therefore the photon spectrum is monochromatic. For the dark photon case, it is a three body decay A'→γ γ γ . However, we find that the photon spectrum is heavily peaked at M /2 and thus can facilitate observation. We also suggest a physical explanation for the three body decay spectrum by comparing the physics in the decay of orthopositronium. In addition, for both cases, the decaying photon flux can be measured for some regions of parameter space using current technologies.
An ecological approach to problems of Dark Energy, Dark Matter, MOND and Neutrinos
NASA Astrophysics Data System (ADS)
Zhao, Hong Sheng
2008-11-01
Modern astronomical data on galaxy and cosmological scales have revealed powerfully the existence of certain dark sectors of fundamental physics, i.e., existence of particles and fields outside the standard models and inaccessible by current experiments. Various approaches are taken to modify/extend the standard models. Generic theories introduce multiple de-coupled fields A, B, C, each responsible for the effects of DM (cold supersymmetric particles), DE (Dark Energy) effect, and MG (Modified Gravity) effect respectively. Some theories use adopt vanilla combinations like AB, BC, or CA, and assume A, B, C belong to decoupled sectors of physics. MOND-like MG and Cold DM are often taken as antagnising frameworks, e.g. in the muddled debate around the Bullet Cluster. Here we argue that these ad hoc divisions of sectors miss important clues from the data. The data actually suggest that the physics of all dark sectors is likely linked together by a self-interacting oscillating field, which governs a chameleon-like dark fluid, appearing as DM, DE and MG in different settings. It is timely to consider an interdisciplinary approach across all semantic boundaries of dark sectors, treating the dark stress as one identity, hence accounts for several "coincidences" naturally.
Search for right-handed neutrinos from dark matter annihilation with gamma-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos, Miguel D.; Queiroz, Farinaldo S.; Yaguna, Carlos E.
Several extensions of the Standard Model contain right-handed (sterile) neutrinos in the GeV-TeV mass range. Due to their mixing with the active neutrinos, they may give rise to novel effects in cosmology, neutrino physics, and collider searches. In addition, right-handed neutrinos can also appear as final states from dark matter annihilations, with important implications for dark matter indirect detection searches. In this paper, we use current data from the Fermi Large Area Telescope (6-year observation of dwarf spheroidal galaxies) and H.E.S.S. (10-year observation of the Galactic center) to constrain the annihilation of dark matter into right-handed neutrinos. We consider right-handedmore » neutrino with masses between 10 GeV and 1 TeV, including both two-body and three-body decays, to derive bounds on the dark matter annihilation rate, ( σ v ), as a function of the dark matter mass. Our results show, in particular, that the thermal dark matter annihilation cross section, 3× 10{sup −26} cm{sup 3} s {sup −1} , into right-handed neutrinos is excluded for dark matter masses smaller than 200 GeV.« less
Non-thermal production of minimal dark matter via right-handed neutrino decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Mayumi; Toma, Takashi; Vicente, Avelino
2015-09-29
Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2){sub L} quintuplet and a scalar SU(2){sub L} septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermalmore » equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.« less
Non-thermal production of minimal dark matter via right-handed neutrino decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Mayumi; Toma, Takashi; Vicente, Avelino, E-mail: mayumi@hep.s.kanazawa-u.ac.jp, E-mail: takashi.toma@th.u-psud.fr, E-mail: Avelino.Vicente@ulg.ac.be
2015-09-01
Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2){sub L} quintuplet and a scalar SU(2){sub L} septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermalmore » equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.« less
Searching for light dark matter with the SLAC millicharge experiment.
Diamond, M; Schuster, P
2013-11-27
New sub-GeV gauge forces ("dark photons") that kinetically mix with the photon provide a promising scenario for MeV-GeV dark matter and are the subject of a program of searches at fixed-target and collider facilities around the world. In such models, dark photons produced in collisions may decay invisibly into dark-matter states, thereby evading current searches. We reexamine results of the SLAC mQ electron beam dump experiment designed to search for millicharged particles and find that it was strongly sensitive to any secondary beam of dark matter produced by electron-nucleus collisions in the target. The constraints are competitive for dark photon masses in the ~1-30 MeV range, covering part of the parameter space that can reconcile the apparent (g-2)(μ) anomaly. Simple adjustments to the original SLAC search for millicharges may extend sensitivity to cover a sizable portion of the remaining (g-2)(μ) anomaly-motivated region. The mQ sensitivity is therefore complementary to ongoing searches for visible decays of dark photons. Compared to existing direct-detection searches, mQ sensitivity to electron-dark-matter scattering cross sections is more than an order of magnitude better for a significant range of masses and couplings in simple models.
Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica
2016-06-01
Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures ∼10 000 K) objects. We follow the evolution of dark stars from their inception at ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses >[Formula: see text] and luminosities >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.
NASA Astrophysics Data System (ADS)
Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica
2016-06-01
Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures ˜10 000 K) objects. We follow the evolution of dark stars from their inception at ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses >{{10}6}{{M}⊙} and luminosities >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.
NASA Astrophysics Data System (ADS)
Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene
2018-06-01
We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.
Testing for Dark Matter Trapped in the Solar System
NASA Technical Reports Server (NTRS)
Krisher, Timothy P.
1996-01-01
We consider the possibility of dark matter trapped in the solar system in bound solar orbits. If there exist mechanisms for dissipating excess kinetic energy by an amount sufficient for generating bound solar orbits, then trapping of galactic dark matter might have taken place during formation of the solar system, or could be an ongoing process. Possible locations for acumulation of trapped dark matter are orbital resonances with the planets or regions in the outer solar system. It is posible to test for the presence of unseen matter by detecting its gravitational effects. Current results for dynamical limits obtained from analyses of planetary ephemeris data and spacecraft tracking data are presented. Possible future improvements are discussed.
Dark Higgs bosons at the ForwArd Search ExpeRiment
NASA Astrophysics Data System (ADS)
Feng, Jonathan L.; Galon, Iftah; Kling, Felix; Trojanowski, Sebastian
2018-03-01
FASER, ForwArd Search ExpeRiment at the LHC, has been proposed as a small, very far forward detector to discover new, light, weakly-coupled particles. Previous work showed that with a total volume of just ˜0.1 - 1 m3 , FASER can discover dark photons in a large swath of currently unconstrained parameter space, extending the discovery reach of the LHC program. Here we explore FASER's discovery prospects for dark Higgs bosons. These scalar particles are an interesting foil for dark photons, as they probe a different renormalizable portal interaction and are produced dominantly through B and K meson decays, rather than pion decays, leading to less collimated signals. Nevertheless, we find that FASER is also a highly sensitive probe of dark Higgs bosons with significant discovery prospects that are comparable to, and complementary to, much larger proposed experiments.
Probing sub-GeV dark matter-baryon scattering with cosmological observables
NASA Astrophysics Data System (ADS)
Xu, Weishuang Linda; Dvorkin, Cora; Chael, Andrew
2018-05-01
We derive new limits on the elastic scattering cross section between baryons and dark matter using cosmic microwave background data from the Planck satellite and measurements of the Lyman-alpha forest flux power spectrum from the Sloan Digital Sky Survey. Our analysis addresses generic cross sections of the form σ ∝vn , where v is the dark matter-baryon relative velocity, allowing for constraints on the cross section independent of specific particle physics models. We include high-ℓ polarization data from Planck in our analysis, improving over previous constraints. We apply a more careful treatment of dark matter thermal evolution than previously done, allowing us to extend our constraints down to dark matter masses of ˜MeV . We show in this work that cosmological probes are complementary to current direct detection and astrophysical searches.
Enlightening Students about Dark Matter
NASA Astrophysics Data System (ADS)
Hamilton, Kathleen; Barr, Alex; Eidelman, Dave
2018-01-01
Dark matter pervades the universe. While it is invisible to us, we can detect its influence on matter we can see. To illuminate this concept, we have created an interactive javascript program illustrating predictions made by six different models for dark matter distributions in galaxies. Students are able to match the predicted data with actual experimental results, drawn from several astronomy papers discussing dark matter’s impact on galactic rotation curves. Programming each new model requires integration of density equations with parameters determined by nonlinear curve-fitting using MATLAB scripts we developed. Using our javascript simulation, students can determine the most plausible dark matter models as well as the average percentage of dark matter lurking in galaxies, areas where the scientific community is still continuing to research. In that light, we strive to use the most up-to-date and accepted concepts: two of our dark matter models are the pseudo-isothermal halo and Navarro-Frenk-White, and we integrate out to each galaxy’s virial radius. Currently, our simulation includes NGC3198, NGC2403, and our own Milky Way.
Ricci-Gauss-Bonnet holographic dark energy
NASA Astrophysics Data System (ADS)
Saridakis, Emmanuel N.
2018-03-01
We present a model of holographic dark energy in which the infrared cutoff is determined by both the Ricci and the Gauss-Bonnet invariants. Such a construction has the significant advantage that the infrared cutoff, and consequently the holographic dark energy density, does not depend on the future or the past evolution of the universe, but only on its current features, and moreover it is determined by invariants, whose role is fundamental in gravitational theories. We extract analytical solutions for the behavior of the dark energy density and equation-of-state parameters as functions of the redshift. These reveal the usual thermal history of the universe, with the sequence of radiation, matter and dark energy epochs, resulting in the future to a complete dark energy domination. The corresponding dark energy equation-of-state parameter can lie in the quintessence or phantom regime, or experience the phantom-divide crossing during the cosmological evolution, and its asymptotic value can be quintessencelike, phantomlike, or be exactly equal to the cosmological-constant value. Finally, we extract the constraints on the model parameters that arise from big bang nucleosynthesis.
Can tonne-scale direct detection experiments discover nuclear dark matter?
NASA Astrophysics Data System (ADS)
Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn; West, Stephen M.
2017-10-01
Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ.
Can tonne-scale direct detection experiments discover nuclear dark matter?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn
Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with amore » decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ .« less
Low Background Assay Results for LZ
NASA Astrophysics Data System (ADS)
Oliver-Mallory, Kelsey; Thomas, Keenan; Lux-Zeplin Collaboration; Berkeley Low Background Facility Team
2016-03-01
The next generation dark matter experiment LUX-ZEPLIN (LZ) requires careful control of intrinsic radioactivity in all critical detector components in order to reach its unprecedented target sensitivity to Weakly Interacting Massive Particles (WIMPs): 2 ×10-48 cm2 at 50 GeV/c2. Appropriate material selection is essential to meeting this goal, and an extensive campaign of low background screening is currently being carried out using assay devices at the Sanford Underground Research Facility and the Boulby Underground Laboratory. We will present results from this work, including measurements for the Ti cryostat, PMT bases, PMT raw materials, PTFE, and other components. This work was partially supported by the U.S. Department of Energy (DOE) under Award Number DE-AC02-05CH11231, and is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1106400.
Geometric calculus-based postulates for the derivation and extension of the Maxwell equations
NASA Astrophysics Data System (ADS)
McClellan, Gene E.
2012-09-01
Clifford analysis, particularly application of the geometric algebra of three-dimensional physical space and its associated geometric calculus, enables a compact formulation of Maxwell's electromagnetic (EM) equations from a set of physically relevant and mathematically pleasing postulates. This formulation results in a natural extension of the Maxwell equations yielding wave solutions in addition to the usual EM waves. These additional solutions do not contradict experiment and have three properties in common with the apparent properties of dark energy. These three properties are that the wave solutions 1) propagate at the speed of light, 2) do not interact with ordinary electric charges or currents, and 3) possess retrograde momentum. By retrograde momentum, we mean that the momentum carried by such a wave is directed oppositely to the direction of energy transport. A "gas" of such waves generates negative pressure.
NASA Astrophysics Data System (ADS)
Smith, Malcolm G.
2016-10-01
This session opened with a crucial explanation by Michel Cotte of how astronomers first need to understand how to apply UNESCO World Heritage Criteria if they want to motivate their government(s) to make the case to UNESCO for World Heritage recognition. UNESCO World Heritage cannot be obtained just to protect dark skies. Much more detail of this and the other presentations in this session, along with many images, can be found at the session website: http://www.noao.edu/education/IAUGA2015FM21. The next speaker, John Hearnshaw, described the Aoraki Mackenzie International Dark Sky Reserve and the work it carries out . This was followed by a wide-ranging summary (by Dan Duriscoe and Nate Ament) of the U.S. National Park Service (NPS) Night Skies Program. The abstract of Cipriano's Marin's paper, ``Developing Starlight connections with UNESCO sites through the Biosphere Smart" was shown in his absence. The final presentation (by Arkadiusz Berlicki, S. Kolomanksi and T. Mrozek) discussed the bi-national Izera Dark Sky Park.
Constraints on supersymmetric dark matter for heavy scalar superpartners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Peisi; Roglans, Roger A.; Spiegel, Daniel D.
2017-05-01
We study the constraints on neutralino dark matter in minimal low energy supersymmetry models and the case of heavy lepton and quark scalar superpartners. For values of the Higgsino and gaugino mass parameters of the order of the weak scale, direct detection experiments are already putting strong bounds on models in which the dominant interactions between the dark matter candidates and nuclei are governed by Higgs boson exchange processes, particularly for positive values of the Higgsino mass parameter mu. For negative values of mu, there can be destructive interference between the amplitudes associated with the exchange of the standard CP-evenmore » Higgs boson and the exchange of the nonstandard one. This leads to specific regions of parameter space which are consistent with the current experimental constraints and a thermal origin of the observed relic density. In this article, we study the current experimental constraints on these scenarios, as well as the future experimental probes, using a combination of direct and indirect dark matter detection and heavy Higgs and electroweakino searches at hadron colliders« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins, C.J.A.P.; Pinho, A.M.M.; Alves, R.F.C.
2015-08-01
Astrophysical tests of the stability of fundamental couplings, such as the fine-structure constant α, are becoming an increasingly powerful probe of new physics. Here we discuss how these measurements, combined with local atomic clock tests and Type Ia supernova and Hubble parameter data, constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, ζ, to the electromagnetic sector) the α variation. Specifically, current data tightly constrains a combination of ζ and the present dark energy equation of state w{sub 0}. Moreover, inmore » these models the new degree of freedom inevitably couples to nucleons (through the α dependence of their masses) and leads to violations of the Weak Equivalence Principle. We obtain indirect bounds on the Eötvös parameter η that are typically stronger than the current direct ones. We discuss the model-dependence of our results and briefly comment on how the forthcoming generation of high-resolution ultra-stable spectrographs will enable significantly tighter constraints.« less
Dark Energy and Dark Matter from Emergent Gravity Picture
NASA Astrophysics Data System (ADS)
Seok Yang, Hyun
2018-01-01
We suggest that dark energy and dark matter may be a cosmic uroboros of quantum gravity due to the coherent vacuum structure of spacetime. We apply the emergent gravity to a large N matrix model by considering the vacuum in the noncommutative (NC) Coulomb branch satisfying the Heisenberg algebra. We observe that UV fluctuations in the NC Coulomb branch are always paired with IR fluctuations and these UV/IR fluctuations can be extended to macroscopic scales. We show that space-like fluctuations give rise to the repulsive gravitational force while time-like fluctuations generate the attractive gravitational force. When considering the fact that the fluctuations are random in nature and we are living in the (3+1)-dimensional spacetime, the ratio of the repulsive and attractive components will end in ¾ : ¼= 75 : 25 and this ratio curiously coincides with the dark composition of our current Universe. If one includes ordinary matters which act as the attractive gravitational force, the emergent gravity may explain the dark sector of our Universe more precisely.
Connecting dark matter annihilation to the vertex functions of Standard Model fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Jason; Light, Christopher, E-mail: jkumar@hawaii.edu, E-mail: lightc@hawaii.edu
We consider scenarios in which dark matter is a Majorana fermion which couples to Standard Model fermions through the exchange of charged mediating particles. The matrix elements for various dark matter annihilation processes are then related to one-loop corrections to the fermion-photon vertex, where dark matter and the charged mediators run in the loop. In particular, in the limit where Standard Model fermion helicity mixing is suppressed, the cross section for dark matter annihilation to various final states is related to corrections to the Standard Model fermion charge form factor. These corrections can be extracted in a gauge-invariant manner frommore » collider cross sections. Although current measurements from colliders are not precise enough to provide useful constraints on dark matter annihilation, improved measurements at future experiments, such as the International Linear Collider, could improve these constraints by several orders of magnitude, allowing them to surpass the limits obtainable by direct observation.« less
NASA Astrophysics Data System (ADS)
de Martino, Ivan; Broadhurst, Tom; Tye, S.-H. Henry; Chiueh, Tzihong; Shive, Hsi-Yu; Lazkoz, Ruth
2018-01-01
The cold dark matter (CDM) paradigm successfully explains the cosmic structure over an enormous span of redshifts. However, it fails when probing the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. Moreover, the lack of experimental detection of Weakly Interacting Massive Particle (WIMP) favors alternative candidates such as light axionic dark matter that naturally arise in string theory. Cosmological N-body simulations have shown that axionic dark matter forms a solitonic core of size of ≃ 150 pc in the innermost region of the galactic halos. The oscillating scalar field associated to the axionic dark matter halo produces an oscillating gravitational potential that induces a time dilation of the pulse arrival time of ≃ 400 ns/(m_B/10^{-22} eV) for pulsar within such a solitonic core. Over the whole galaxy, the averaged predicted signal may be detectable with current and forthcoming pulsar timing array telescopes.
Search for domain wall dark matter with atomic clocks on board global positioning system satellites.
Roberts, Benjamin M; Blewitt, Geoffrey; Dailey, Conner; Murphy, Mac; Pospelov, Maxim; Rollings, Alex; Sherman, Jeff; Williams, Wyatt; Derevianko, Andrei
2017-10-30
Cosmological observations indicate that dark matter makes up 85% of all matter in the universe yet its microscopic composition remains a mystery. Dark matter could arise from ultralight quantum fields that form macroscopic objects. Here we use the global positioning system as a ~ 50,000 km aperture dark matter detector to search for such objects in the form of domain walls. Global positioning system navigation relies on precision timing signals furnished by atomic clocks. As the Earth moves through the galactic dark matter halo, interactions with domain walls could cause a sequence of atomic clock perturbations that propagate through the satellite constellation at galactic velocities ~ 300 km s -1 . Mining 16 years of archival data, we find no evidence for domain walls at our current sensitivity level. This improves the limits on certain quadratic scalar couplings of domain wall dark matter to standard model particles by several orders of magnitude.
Narrowband ultraviolet photodetector based on MgZnO and NPB heterojunction.
Hu, Zuofu; Li, Zhenjun; Zhu, Lu; Liu, Fengjuan; Lv, Yanwu; Zhang, Xiqing; Wang, Yongsheng
2012-08-01
An ultraviolet photodetector was fabricated based on Mg0.07Zn0.93O heterojunction. N, N'-bis (naphthalen-1-y1)-N, N'-bis(pheny) benzidine was selected as the hole transporting layer. I-V characteristic curves of the device were measured in the dark and under the illumination of 340 nm UV light with density of 1.33 mW/cm2. The device showed a low dark current of about 3×10(-10) A and a high photo-dark current ratio of 1×10(5) at -2 V bias. A narrowband photoresponse was observed from 300 to 400 nm and centered at 340 nm with a full width at half-maximum of only 30 nm. The maximum peak response is at 340 nm, which is 0.192 A/W at the bias of -1 V.
Dark Energy from Discrete Spacetime
Trout, Aaron D.
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies. PMID:24312502
NASA Astrophysics Data System (ADS)
Lovell, Mark R.; Bose, Sownak; Boyarsky, Alexey; Crain, Robert A.; Frenk, Carlos S.; Hellwing, Wojciech A.; Ludlow, Aaron D.; Navarro, Julio F.; Ruchayskiy, Oleg; Sawala, Till; Schaller, Matthieu; Schaye, Joop; Theuns, Tom
2017-07-01
We study galaxy formation in sterile neutrino dark matter models that differ significantly from both cold and from 'warm thermal relic' models. We use the eagle code to carry out hydrodynamic simulations of the evolution of pairs of galaxies chosen to resemble the Local Group, as part of the APOSTLE simulations project. We compare cold dark matter (CDM) with two sterile neutrino models with 7 keV mass: one, the warmest among all models of this mass (LA120) and the other, a relatively cold case (LA10). We show that the lower concentration of sterile neutrino subhaloes compared to their CDM counterparts makes the inferred inner dark matter content of galaxies like Fornax (or Magellanic Clouds) less of an outlier in the sterile neutrino cosmologies. In terms of the galaxy number counts, the LA10 simulations are indistinguishable from CDM when one takes into account halo-to-halo (or 'simulation-to-simulation') scatter. In order for the LA120 model to match the number of Local Group dwarf galaxies, a higher fraction of low-mass haloes is required to form galaxies than is predicted by the eagle simulations. As the census of the Local Group galaxies nears completion, this population may provide a strong discriminant between cold and warm dark matter models.
NASA Astrophysics Data System (ADS)
Baldi, Marco; Simpson, Fergus
2017-02-01
Persisting tensions between the cosmological constraints derived from low-redshift probes and the ones obtained from temperature and polarization anisotropies of the cosmic microwave background (CMB) - although not yet providing compelling evidence against the Λcold dark matter model - seem to consistently indicate a slower growth of density perturbations as compared to the predictions of the standard cosmological scenario. Such behaviour is not easily accommodated by the simplest extensions of General Relativity, such as f(R) models, which generically predict an enhanced growth rate. In this work, we present the outcomes of a suite of large N-body simulations carried out in the context of a cosmological model featuring a non-vanishing scattering cross-section between the dark matter and the dark energy fields, for two different parametrizations of the dark energy equation of state. Our results indicate that these dark scattering models have very mild effects on many observables related to large-scale structures formation and evolution, while providing a significant suppression of the amplitude of linear density perturbations and the abundance of massive clusters. Our simulations therefore confirm that these models offer a promising route to alleviate existing tensions between low-redshift measurements and those of the CMB.
Single Particle Damage Events in Candidate Star Camera Sensors
NASA Technical Reports Server (NTRS)
Marshall, Paul; Marshall, Cheryl; Polidan, Elizabeth; Wacyznski, Augustyn; Johnson, Scott
2005-01-01
Si charge coupled devices (CCDs) are currently the preeminent detector in star cameras as well as in the near ultraviolet (uv) to visible wavelength region for astronomical observations in space and in earth-observing space missions. Unfortunately, the performance of CCDs is permanently degraded by total ionizing dose (TID) and displacement damage effects. TID produces threshold voltage shifts on the CCD gates and displacement damage reduces the charge transfer efficiency (CTE), increases the dark current, produces dark current nonuniformities and creates random telegraph noise in individual pixels. In addition to these long term effects, cosmic ray and trapped proton transients also interfere with device operation on orbit. In the present paper, we investigate the dark current behavior of CCDs - in particular the formation and annealing of hot pixels. Such pixels degrade the ability of a CCD to perform science and also can present problems to the performance of star camera functions (especially if their numbers are not correctly anticipated). To date, most dark current radiation studies have been performed by irradiating the CCDs at room temperature but this can result in a significantly optimistic picture of the hot pixel count. We know from the Hubble Space Telescope (HST) that high dark current pixels (so-called hot pixels or hot spikes) accumulate as a function of time on orbit. For example, the HST Advanced Camera for Surveys/Wide Field Camera instrument performs monthly anneals despite the loss of observational time, in order to partially anneal the hot pixels. Note that the fact that significant reduction in hot pixel populations occurs for room temperature anneals is not presently understood since none of the commonly expected defects in Si (e.g. divacancy, E center, and A-center) anneal at such a low temperature. A HST Wide Field Camera 3 (WFC3) CCD manufactured by E2V was irradiated while operating at -83C and the dark current studied as a function of temperature while the CCD was warmed to a sequence of temperatures up to a maximum of +30C. The device was then cooled back down to -83 and re-measured. Hot pixel populations were tracked during the warm-up and cool-down. Hot pixel annealing began below 40C and the anneal process was largely completed before the detector reached +3OC. There was no apparent sharp temperature dependence in the annealing. Although a large fraction of the hot pixels fell below the threshold to be counted as a hot pixel, they nevertheless remained warmer than the remaining population. The details of the mechanism for the formation and annealing of hot pixels is not presently understood, but it appears likely that hot pixels are associated with displacement damage occurring in high electric field regions.
Mechanisms Affecting Performance of the BaBar Resistive Plate Chambers and Searches for Remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Changguo
2003-09-19
The BaBar experiment at PEPII relies on the Instrumentation of the Flux Return (IFR) for both muon identification and KL detection. The active detector is composed of Resistive Plate Chambers (RPC's) operated in streamer mode. Since the start of operation the RPC's have suffered persistent efficiency deterioration and dark current increase problems. The ''autopsy'' of bad BaBar RPC's revealed that in many cases uncured Linseed oil droplets had formed on the inner surface of the Bakelite plates, leading to current paths from oil ''stalagmites'' bridging the 2 mm gap. In this paper a possible model of this ''stalagmite'' formation andmore » its effect on the dark current and efficiency of RPC chambers is presented. Laboratory test results strongly support this model. Based upon this model we are searching for solutions to eliminate the unfavorable effect of the oil stalagmites. The lab tests show that the stalagmite resistivity increases dramatically if exposed to the air, an observation that points to a possible way to remedy the damage and increase the efficiency. We have seen that flowing an oxygen gas mixture into the chamber helps to polymerize the uncured linseed oil. Consequently the resistivity of the bridged oil stalagmites increases, as does that of the oil coating on the frame edges and spacers, significantly reducing the RPC dark currents and low-efficiency regions. We have tested this idea on two chambers removed from BaBar because of their low efficiency and high dark current. These test results are reported in the paper, and two other remediation methods also mentioned. We continue to study this problem, and try to find new treatments with permanent improvement.« less
First experience with x-ray dark-field radiography for human chest imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Noel, Peter B.; Willer, Konstantin; Fingerle, Alexander A.; Gromann, Lukas B.; De Marco, Fabio; Scherer, Kai H.; Herzen, Julia; Achterhold, Klaus; Gleich, Bernhard; Münzel, Daniela; Renz, Martin; Renger, Bernhard C.; Fischer, Florian; Braun, Christian; Auweter, Sigrid; Hellbach, Katharina; Reiser, Maximilian F.; Schröter, Tobias; Mohr, Jürgen; Yaroshenko, Andre; Maack, Hanns-Ingo; Pralow, Thomas; van der Heijden, Hendrik; Proksa, Roland; Köhler, Thomas; Wieberneit, Nataly; Rindt, Karsten; Rummeny, Ernst J.; Pfeiffer, Franz
2017-03-01
Purpose: To evaluate the performance of an experimental X-ray dark-field radiography system for chest imaging in humans and to compare with conventional diagnostic imaging. Materials and Methods: The study was institutional review board (IRB) approved. A single human cadaver (52 years, female, height: 173 cm, weight: 84 kg, chest circumference: 97 cm) was imaged within 24 hours post mortem on the experimental x-ray dark-field system. In addition, the cadaver was imaged on a clinical CT system to obtain a reference scan. The grating-based dark-field radiography setup was equipped with a set of three gratings to enable grating-based dark-field contrast x-ray imaging. The prototype operates at an acceleration voltage of up to 70 kVp and with a field-of-view large enough for clinical chest x-ray (>35 x 35 cm2). Results: It was feasible to extract x-ray dark-field signal of the whole human thorax, clearly demonstrating that human x-ray dark-field chest radiography is feasible. Lung tissue produced strong scattering, reflected in a pronounced x-ray dark-field signal. The ribcage and the backbone are less prominent than the lung but are also distinguishable. Finally, the soft tissue is not present in the dark-field radiography. The regions of the lungs affected by edema, as verified by CT, showed less dark-field signal compared to healthy lung tissue. Conclusion: Our results reveal the current status of translating dark-field imaging from a micro (small animal) scale to a macro (patient) scale. The performance of the experimental x-ray dark-field radiography setup offers, for the first time, obtaining multi-contrast chest x-ray images (attenuation and dark-field signal) from a human cadaver.
Jin, Liang; Feng, Tao; Chai, Jing; Ghazalli, Nadiah; Gao, Dan; Zerda, Ricardo; Li, Zhuo; Hsu, Jasper; Mahdavi, Alborz; Tirrell, David A.; Riggs, Arthur D.; Ku, Hsun Teresa
2014-01-01
In our previous studies, colony-forming progenitor cells isolated from murine embryonic stem cell-derived cultures were differentiated into morphologically distinct insulin-expressing colonies. These colonies were small and not light-reflective when observed by phase-contrast microscopy (therefore termed “Dark” colonies). A single progenitor cell capable of giving rise to a Dark colony was termed a Dark colony-forming unit (CFU-Dark). The goal of the current study was to test whether endogenous pancreas, and its developmentally related liver, harbored CFU-Dark. Here we show that dissociated single cells from liver and pancreas of one-week-old mice give rise to Dark colonies in methylcellulose-based semisolid culture media containing either Matrigel or laminin hydrogel (an artificial extracellular matrix protein). CFU-Dark comprise approximately 0.1% and 0.03% of the postnatal hepatic and pancreatic cells, respectively. Adult liver also contains CFU-Dark, but at a much lower frequency (~0.003%). Microfluidic qRT-PCR, immunostaining, and electron microscopy analyses of individually handpicked colonies reveal the expression of insulin in many, but not all, Dark colonies. Most pancreatic insulin-positive Dark colonies also express glucagon, whereas liver colonies do not. Liver CFU-Dark require Matrigel, but not laminin hydrogel, to become insulin-positive. In contrast, laminin hydrogel is sufficient to support the development of pancreatic Dark colonies that express insulin. Postnatal liver CFU-Dark display a cell surface marker CD133+CD49flowCD107blow phenotype, while pancreatic CFU-Dark are CD133-. Together, these results demonstrate that specific progenitor cells in the postnatal liver and pancreas are capable of developing into insulin-expressing colonies, but they differ in frequency, marker expression, and matrix protein requirements for growth. PMID:25148366
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
2014-04-15
Scientists were shocked in 1998 when the expansion of the universe wasn't slowing down as expected by our best understanding of gravity at the time; the expansion was speeding up! That observation is just mind blowing, and yet it is true. In order to explain the data, physicists had to resurrect an abandoned idea of Einstein's now called dark energy. In this video, Fermilab's Dr. Don Lincoln tells us a little about the observations that led to the hypothesis of dark energy and what is the status of current research on the subject.
Dips in the diffuse supernova neutrino background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farzan, Yasaman; Palomares-Ruiz, Sergio, E-mail: yasaman@theory.ipm.ac.ir, E-mail: Sergio.Palomares.Ruiz@ific.uv.es
2014-06-01
Scalar (fermion) dark matter with mass in the MeV range coupled to ordinary neutrinos and another fermion (scalar) is motivated by scenarios that establish a link between radiatively generated neutrino masses and the dark matter relic density. With such a coupling, cosmic supernova neutrinos, on their way to us, could resonantly interact with the background dark matter particles, giving rise to a dip in their redshift-integrated spectra. Current and future neutrino detectors, such as Super-Kamiokande, LENA and Hyper-Kamiokande, could be able to detect this distortion.
Hunting the Dark Matter with DEAP/CLEAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giuliani, F.
2010-02-10
The potential of the DEAP/CLEAN program for direct Dark Matter detection to test various dark matter models is illustrated. The scintillation pulse of a noble liquid like Argon or Neon has two well distinguished time constants allowing a very reliable correlation between pulse shape and type of event. This pulse shape discrimination already provides the power of rejecting a background10{sup 8}-10{sup 9} times larger than the signal. MiniCLEAN, a 500 kg LAr detector, is currently under construction, and a 3.6 ton detector, DEAP-3600, under development.
Lincoln, Don
2018-01-16
Scientists were shocked in 1998 when the expansion of the universe wasn't slowing down as expected by our best understanding of gravity at the time; the expansion was speeding up! That observation is just mind blowing, and yet it is true. In order to explain the data, physicists had to resurrect an abandoned idea of Einstein's now called dark energy. In this video, Fermilab's Dr. Don Lincoln tells us a little about the observations that led to the hypothesis of dark energy and what is the status of current research on the subject.
NASA Astrophysics Data System (ADS)
Castander, F. J.
The Dark UNiverse Explorer (DUNE) is a wide-field imaging mission concept whose primary goal is the study of dark energy and dark matter with unprecedented precision. To this end, DUNE is optimised for weak gravitational lensing, and also uses complementary cosmological probes, such as baryonic oscillations, the integrated Sachs-Wolf effect, and cluster counts. Besides its observational cosmology goals, the mission capabilities of DUNE allow the study of galaxy evolution, galactic structure and the demographics of Earth-mass planets. DUNE is a medium class mission consisting of a 1.2m telescope designed to carry out an all-sky survey in one visible and three NIR bands. The final data of the DUNE mission will form a unique legacy for the astronomy community. DUNE has been selected jointly with SPACE for an ESA Assessment phase which has led to the Euclid merged mission concept which combines wide-field deep imaging with low resolution multi-object spectroscopy.
History and future of mask making
NASA Astrophysics Data System (ADS)
Levy, Ken L.
1996-12-01
The history of the mask industry has three main periods, which I call the Classical Period, the Dark Ages, and the Renaissance, by analogy with those periods in the history of Western Europe. During the Classical Period, people developed 1X masks and the technology to make them. In the Dark Ages, people exploited the equipment developed during the Classical Period to make 5X reduction reticle, ending the nobility of mask making. In today's Renaissance of mask making, a proliferation of mask types is requiring a rebirth of innovation and creativity. The Renaissance resembles the Classical Period: masks are once again strategic, and technological capability is once again the driver. Meanwhile, the mask industry is carrying forward the productivity and efficiency gains it achieved during the Dark Ages. We must create a new business and economic model to support these changes in the characteristics of the marketplace.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Çalışkan, Deniz, E-mail: dcaliskan@fen.bilkent.edu.tr; Department of Nanotechnology and Nanomedicine, Hacettepe University, 06800 Beytepe, Ankara; Bütün, Bayram
2014-10-20
ZnO thin films are deposited by radio-frequency magnetron sputtering on thermally grown SiO{sub 2} on Si substrates. Pt/Au contacts are fabricated by standard photolithography and lift-off in order to form a metal-semiconductor-metal (MSM) photodetector. The dark current of the photodetector is measured as 1 pA at 100 V bias, corresponding to 100 pA/cm{sup 2} current density. Spectral photoresponse measurement showed the usual spectral behavior and 0.35 A/W responsivity at a 100 V bias. The rise and fall times for the photocurrent are measured as 22 ps and 8 ns, respectively, which are the lowest values to date. Scanning electron microscope image shows high aspect ratio andmore » dense grains indicating high surface area. Low dark current density and high speed response are attributed to high number of recombination centers due to film morphology, deducing from photoluminescence measurements. These results show that as deposited ZnO thin film MSM photodetectors can be used for the applications needed for low light level detection and fast operation.« less
NASA Technical Reports Server (NTRS)
Fahrenbruch, A. L.; Bube, R. H.
1974-01-01
The photovoltaic properties of single-crystal Cu2S-CdS heterojunctions have been investigated as a function of heat treatment by detailed measurements of the dependence of short-circuit current on photon energy, temperature, and the state of optical degradation or enhancement. A coherent picture is formulated for the relationship between enhancement and optical degradation, and their effect on the transport of short-circuit photoexcited current and dark, forward-bias current in the cell. Optical degradation in the Cu2S-CdS cell is shown to be closely identical to optical degradation of lifetime in a homogeneous CdS:Cd:Cu crystal, indicating that the CdS:Cu layer near the junction interface controls carrier transport in the cell. It is proposed that both the photoexcited short-circuit current and the dark, forward-bias current are controlled by a tunneling-recombination process through interface states.
I-V-T analysis of radiation damage in high efficiency Si solar cells
NASA Technical Reports Server (NTRS)
Banerjee, S.; Anderson, W. A.; Rao, B. B.
1985-01-01
A detailed analysis of current-voltage characteristics of N(+)-P/P solar cells indicate that there is a combination of different mechanisms which results in an enhancement in the dark current and in turn deteriorates the photovoltaic performance of the solar cells after 1 MeV e(-) irradiation. The increase in the dark current is due to three effects, i.e., bulk recombination, space charge recombination by deep traps and space charge recombination through shallow traps. It is shown that the increase in bulk recombination current is about 2 to 3 orders of magnitude whereas space charge recombination current due to shallow traps increases only by an order or so and no space charge recombination through deep traps was observed after irradiation. Thus, in order to improve the radiation hardness of these devices, bulk properties should be preserved.
Uda, Ryoko M; Kato, Yutaka; Takei, Michiko
2016-10-01
When working with liposomes analogous to cell membranes, it is important to develop substrates that can regulate interactions with the liposome surface in response to light. We achieved a photo-triggered release from liposomes by using a copolymer of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG). Although PVAMG is a neutral polymer under dark conditions, it is photoionized upon exposure to UV light, resulting in the formation of a cationic site for binding to liposomes with a negatively charged surface. Under UV irradiation, PVAMG showed effective interaction with liposomes, releasing the encapsulated compound; however, this release was negligible under dark conditions. The poly(vinyl alcohol) moiety of PVAMG played an important role in the photo-triggered release. This release was caused by membrane destabilization without lipid solubilization. We also investigated different aspects of liposome/PVAMG interactions, including PVAMG-induced fusion between the liposomes and the change in the liposome morphologies. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of cinnamon powder addition during conching on the flavor of dark chocolate mass.
Albak, F; Tekin, A R
2015-04-01
In the present study, refined dark chocolate mix was conched with the addition of finely powdered cinnamon in a laboratory-style conching machine to evaluate its aroma profile both analytically and sensorially. The analytical determinations were carried out by a combination of solid phase micro extraction (SPME)-gas chromatography (GC)-mass spectroscopy (MS) and-olfactometry(O), while the sensory evaluation was made with trained panelists. The optimum conditions for the SPME were found to be CAR/PDMS as the fiber, 60 °C as the temperature, and 60 min as the time. SPME analyses were carried out at 60 °C for 60 min with toluene as an internal standard. 26 compounds were monitored before and after conching. The unconched sample had a significantly higher fruity odor value than the conched sample. This new product was highly acceptable according to the overall inclination test. However some of textural properties, such as coarseness, and hardness were below the general preference.
Effect of dark matter halo on global spiral modes in a collisionless galactic disk
NASA Astrophysics Data System (ADS)
Ghosh, Soumavo; Saini, Tarun Deep; Jog, Chanda J.
2017-07-01
Low surface brightness (LSB) galaxies are dominated by dark matter halo from the innermost radii; hence they are ideal candidates to investigate the influence of dark matter on different dynamical aspects of spiral galaxies. Here, we study the effect of dark matter halo on grand-design, m = 2 , spiral modes in a galactic disk, treated as a collisionless system, by carrying out a global modal analysis within the WKB approximation. First, we study a superthin, LSB galaxy UGC 7321 and show that it does not support discrete global spiral modes when modeled as a disk-alone system or as a disk plus dark matter system. Even a moderate increase in the stellar central surface density does not yield any global spiral modes. This naturally explains the observed lack of strong large-scale spiral structure in LSBs. An earlier work (Ghosh et al., 2016) where the galactic disk was treated as a fluid system for simplicity had shown that the dominant halo could not arrest global modes. We found that this difference arises due to the different dispersion relation used in the two cases and which plays a crucial role in the search for global spiral modes. Thus the correct treatment of stars as a collisionless system as done here results in the suppression of global spiral modes, in agreement with the observations. We performed a similar modal analysis for the Galaxy, and found that the dark matter halo has a negligible effect on large-scale spiral structure.
Aaltonen, T.; Álvarez González, B.; Amerio, S.; ...
2012-05-23
We present the results of a search for dark matter production in the monojet signature. We analyze a sample of Tevatron pp̄ collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb⁻¹ recorded by the CDF II detector. In events with large missing transverse energy and one energetic jet, we find good agreement between the standard model prediction and the observed data. We set 90% confidence level upper limits on the dark matter production rate. The limits are translated into bounds on nucleon-dark matter scattering rates which are competitive with current direct detection bounds on spin-independent interaction belowmore » a dark matter candidate mass of 5 GeV/c², and on spin-dependent interactions up to masses of 200 GeV/c².« less
Aaltonen, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Bai, Y; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Fox, P J; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harnik, R; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lecompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S
2012-05-25
We present the results of a search for dark matter production in the monojet signature. We analyze a sample of Tevatron pp[over ¯] collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb(-1) recorded by the CDF II detector. In events with large missing transverse energy and one energetic jet, we find good agreement between the standard model prediction and the observed data. We set 90% confidence level upper limits on the dark matter production rate. The limits are translated into bounds on nucleon-dark matter scattering rates which are competitive with current direct detection bounds on spin-independent interaction below a dark matter candidate mass of 5 GeV/c(2), and on spin-dependent interactions up to masses of 200 GeV/c(2).
Updated constraints on the dark matter interpretation of CDMS-II-Si data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, Samuel J.; Gelmini, Graciela B., E-mail: switte@physics.ucla.edu, E-mail: gelmini@physics.ucla.edu
2017-05-01
We present an updated halo-dependent and halo-independent analysis of viable light WIMP dark matter candidates which could account for the excess observed in CDMS-II-Si. We include recent constraints from LUX, PandaX-II, and PICO-60, as well as projected sensitivities for XENON1T, SuperCDMS SNOLAB, LZ, DARWIN, DarkSide-20k, and PICO-250, on candidates with spin-independent isospin conserving and isospin-violating interactions, and either elastic or exothermic scattering. We show that there exist dark matter candidates which can explain the CDMS-II-Si data and remain very marginally consistent with the null results of all current experiments, however such models are highly tuned, making a dark matter interpretationmore » of CDMS-II-Si very unlikely. We find that these models can only be ruled out in the future by an experiment comparable to LZ or PICO-250.« less
Dark interactions and cosmological fine-tuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quartin, Miguel; Calvao, Mauricio O; Joras, Sergio E
2008-05-15
Cosmological models involving an interaction between dark matter and dark energy have been proposed in order to solve the so-called coincidence problem. Different forms of coupling have been studied, but there have been claims that observational data seem to narrow (some of) them down to something annoyingly close to the {Lambda}CDM (CDM: cold dark matter) model, thus greatly reducing their ability to deal with the problem in the first place. The smallness problem of the initial energy density of dark energy has also been a target of cosmological models in recent years. Making use of a moderately general coupling scheme,more » this paper aims to unite these different approaches and shed some light on whether this class of models has any true perspective in suppressing the aforementioned issues that plague our current understanding of the universe, in a quantitative and unambiguous way.« less
Echo of interactions in the dark sector
NASA Astrophysics Data System (ADS)
Kumar, Suresh; Nunes, Rafael C.
2017-11-01
We investigate the observational constraints on an interacting vacuum energy scenario with two different neutrino schemes (with and without a sterile neutrino) using the most recent data from cosmic microwave background (CMB) temperature and polarization anisotropy, baryon acoustic oscillations (BAO), type Ia supernovae from JLA sample and structure growth inferred from cluster counts. We find that inclusion of the galaxy clusters data with the minimal data combination CMB +BAO +JLA suggests an interaction in the dark sector, implying the decay of dark matter particles into dark energy, since the constraints obtained by including the galaxy clusters data yield a non-null and negative coupling parameter between the dark components at 99% confidence level. We deduce that the current tensions on the parameters H0 and σ8 can be alleviated within the framework of the interacting as well as noninteracting vacuum energy models with sterile neutrinos.
Detecting ultralight bosonic dark matter via absorption in superconductors
Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.
2016-07-18
Superconducting targets have recently been proposed for the direct detection of dark matter as light as a keV, via elastic scattering off conduction electrons in Cooper pairs. Detecting such light dark matter requires sensitivity to energies as small as the superconducting gap of O(meV). Here we show that these same superconducting devices can detect much lighter DM, of meV to eV mass, via dark matter absorption on a conduction electron, followed by emission of an athermal phonon. Lastly, we demonstrate the power of this setup for relic kinetically mixed hidden photons, pseudoscalars, and scalars, showing that the reach can exceedmore » current astrophysical and terrestrial constraints with only a moderate exposure.« less
What We Know About Dark Energy From Supernovae
Filippenko, Alex
2018-01-24
The measured distances of type Ia (white dwarf) supernovae as a function of redshift (z) have shown that the expansion of the Universe is currently accelerating, probably due to the presence of dark energy (X) having a negative pressure. Combining all of the data with existing results from large-scale structure surveys, we find a best fit for Omega M and Omega X of 0.28 and 0.72 (respectively), in excellent agreement with the values derived independently from WMAP measurements of the cosmic microwave background radiation. Thus far, the best-fit value for the dark energy equation-of-state parameter is -1, and its first derivative is consistent with zero, suggesting that the dark energy may indeed be Einstein's cosmological constant.
Enlightenment and the "Heart of Darkness": (Neo)Imperialism in the Congo, and Elsewhere
ERIC Educational Resources Information Center
Stronach, Ian
2006-01-01
This article approaches the current state of qualitative inquiry by constructing an allegory of neo-imperialism. It is based substantively on a history and contemporary anthro-politics of the Congo and in particular the city of Kisangani; metaphorically on Conrad's unsettling deployment of that same place as "the heart of darkness"; and…
NASA Astrophysics Data System (ADS)
Hui, Qiao; Weida, Hu; Zhenhua, Ye; Xiangyang, Li; Haimei, Gong
2010-03-01
The influence of hydrogenation on the dark current mechanism of HgCdTe photovoltaic detectors is studied. The hydrogenation is achieved by exposing samples to a H2/Ar plasma atmosphere that was produced during a reactive ion etching process. A set of variable-area photomask was specially designed to evaluate the hydrogenation effect. It was found that the current-voltage characteristics were gradually improved when detectors were hydrogenated by different areas. The fitting results of experimental results at reverse bias conditions sustained that the improvement of current-voltage curves was due to the suppression of trap assisted tunneling current and the enhancement of minority lifetime in the depletion region. It was also found that the dominative forward current was gradually converted from a generation-recombination current to a diffusion current with the enlargement of the hydrogenation area, which was infered from the ideality factors by abstraction of forward resistance-voltage curves of different detectors.
Simplified phenomenology for colored dark sectors
NASA Astrophysics Data System (ADS)
El Hedri, Sonia; Kaminska, Anna; de Vries, Maikel; Zurita, Jose
2017-04-01
We perform a general study of the relic density and LHC constraints on simplified models where the dark matter coannihilates with a strongly interacting particle X. In these models, the dark matter depletion is driven by the self-annihilation of X to pairs of quarks and gluons through the strong interaction. The phenomenology of these scenarios therefore only depends on the dark matter mass and the mass splitting between dark matter and X as well as the quantum numbers of X. In this paper, we consider simplified models where X can be either a scalar, a fermion or a vector, as well as a color triplet, sextet or octet. We compute the dark matter relic density constraints taking into account Sommerfeld corrections and bound state formation. Furthermore, we examine the restrictions from thermal equilibrium, the lifetime of X and the current and future LHC bounds on X pair production. All constraints are comprehensively presented in the mass splitting versus dark matter mass plane. While the relic density constraints can lead to upper bounds on the dark matter mass ranging from 2 TeV to more than 10 TeV across our models, the prospective LHC bounds range from 800 to 1500 GeV. A full coverage of the strongly coannihilating dark matter parameter space would therefore require hadron colliders with significantly higher center-of-mass energies.
Prospects for Dark Matter Measurements with the Advanced Gamma Ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Buckley, James
2009-05-01
AGIS, a concept for a future gamma-ray observatory consisting of an array of 50 atmospheric Cherenkov telescopes, would provide a powerful new tool for determining the nature of dark matter and its role in structure formation in the universe. The advent of more sensitive direct detection experiments, the launch of Fermi and the startup of the LHC make the near future an exciting time for dark matter searches. Indirect measurements of cosmic-ray electrons may already provide a hint of dark matter in our local halo. However, gamma-ray measurements will provide the only means for mapping the dark matter in the halo of our galaxy and other galaxies. In addition, the spectrum of gamma-rays (either direct annihilation to lines or continuum emission from other annihilation channels) will be imprinted with the mass of the dark matter particle, and the particular annihilation channels providing key measurements needed to identify the dark matter particle. While current gamma-ray instruments fall short of the generic sensitivity required to measure the dark matter signal from any sources other than the (confused) region around the Galactic center, we show that the planned AGIS array will have the angular resolution, energy resolution, low threshold energy and large effective area required to detect emission from dark matter annihilation in Galactic substructure or nearby Dwarf spheroidal galaxies.
NASA Astrophysics Data System (ADS)
Firdaus, Yuliar; Vandenplas, Erwin; Justo, Yolanda; Gehlhaar, Robert; Cheyns, David; Hens, Zeger; Van der Auweraer, Mark
2014-09-01
Different approaches of surface modification of the quantum dots (QDs), namely, solution-phase (octylamine, octanethiol) and post-deposition (acetic acid, 1,4-benzenedithiol) ligand exchange were used in the fabrication of hybrid bulk heterojunction solar cell containing poly (3-hexylthiophene) (P3HT) and small (2.4 nm) PbS QDs. We show that replacing oleic acid by shorter chain ligands improves the figures of merit of the solar cells. This can possibly be attributed to a combination of a reduced thickness of the barrier for electron transfer and an optimized phase separation. The best results were obtained for post-deposition ligand exchange by 1,4-benzenedithiol, which improves the power conversion efficiency of solar cells based on a bulk heterojunction of lead sulfide (PbS) QDs and P3HT up to two orders of magnitude over previously reported hybrid cells based on a bulk heterojunction of P3HT:PbS QDs, where the QDs are capped by acetic acid ligands. The optimal performance was obtained for solar cells with 69 wt. % PbS QDs. Besides the ligand effects, the improvement was attributed to the formation of an energetically favorable bulk heterojunction with P3HT, when small size (2.4 nm) PbS QDs were used. Dark current density-voltage (J-V) measurements carried out on the device provided insight into the working mechanism: the comparison between the dark J-V characteristics of the bench mark system P3HT:PCBM and the P3HT:PbS blends allows us to conclude that a larger leakage current and a more efficient recombination are the major factors responsible for the larger losses in the hybrid system.
NASA Astrophysics Data System (ADS)
Wang, Mei-Yu; Peter, Annika H. G.; Strigari, Louis E.; Zentner, Andrew R.; Arant, Bryan; Garrison-Kimmel, Shea; Rocha, Miguel
2014-11-01
We present a set of N-body simulations of a class of models in which an unstable dark matter particle decays into a stable dark matter particle and a non-interacting light particle with decay lifetime comparable to the Hubble time. We study the effects of the recoil kick velocity (Vk) received by the stable dark matter on the structures of dark matter haloes ranging from galaxy-cluster to Milky Way-mass scales. For Milky Way-mass haloes, we use high-resolution, zoom-in simulations to explore the effects of decays on Galactic substructure. In general, haloes with circular velocities comparable to the magnitude of kick velocity are most strongly affected by decays. We show that models with lifetimes Γ-1 ˜ H_0^{-1} and recoil speeds Vk ˜ 20-40 km s-1 can significantly reduce both the abundance of Galactic subhaloes and their internal densities. We find that decaying dark matter models that do not violate current astrophysical constraints can significantly mitigate both the `missing satellites problem' and the more recent `too big to fail problem'. These decaying models predict significant time evolution of haloes, and this implies that at high redshifts decaying models exhibit the similar sequence of structure formation as cold dark matter. Thus, decaying dark matter models are significantly less constrained by high-redshift phenomena than warm dark matter models. We conclude that models of decaying dark matter make predictions that are relevant for the interpretation of small galaxies observations in the Local Group and can be tested as well as by forthcoming large-scale surveys.
Stellar Velocity Dispersion: Linking Quiescent Galaxies to Their Dark Matter Halos
NASA Astrophysics Data System (ADS)
Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.
2018-06-01
We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This proportionality holds even when a line-of-sight aperture dispersion is calculated in analogy to observations. In contrast, at a given stellar velocity dispersion, the dark matter halo mass of satellite galaxies is smaller than virial equilibrium expectations. This deviation from virial equilibrium probably results from tidal stripping of the outer dark matter halo. Stellar velocity dispersion appears insensitive to tidal effects and thus reflects the correlation between stellar velocity dispersion and dark matter halo mass prior to infall. There is a tight relation (≲0.2 dex scatter) between line-of-sight aperture stellar velocity dispersion and dark matter halo mass suggesting that the dark matter halo mass may be estimated from the measured stellar velocity dispersion for both central and satellite galaxies. We evaluate the impact of treating all objects as central galaxies if the relation we derive is applied to a statistical ensemble. A large fraction (≳2/3) of massive quiescent galaxies are central galaxies and systematic uncertainty in the inferred dark matter halo mass is ≲0.1 dex thus simplifying application of the simulation results to currently available observations.
NASA Astrophysics Data System (ADS)
Yaşar, Elif; Yıldırım, Yakup; Yaşar, Emrullah
2018-06-01
This paper devotes to conformable fractional space-time perturbed Gerdjikov-Ivanov (GI) equation which appears in nonlinear fiber optics and photonic crystal fibers (PCF). We consider the model with full nonlinearity in order to give a generalized flavor. The sine-Gordon equation approach is carried out to model equation for retrieving the dark, bright, dark-bright, singular and combined singular optical solitons. The constraint conditions are also reported for guaranteeing the existence of these solitons. We also present some graphical simulations of the solutions for better understanding the physical phenomena of the behind the considered model.
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Scoccione, Andrea; Cacciani, Marco; Summa, Donato; De Rosa, Benedetto; Schween, Jan H.
2018-04-01
This paper illustrates measurements carried out by the Raman lidar BASIL in the frame of the HD(CP)2 Observational Prototype Experiment (HOPE), revealing the presence of a clear-air dark band phenomenon (i.e. a minimum in lidar backscatter echoes) in the upper portion of the convective boundary layer. The phenomenon is clearly distinguishable in the lidar backscatter echoes at 532 and 1064 nm, as well as in the particle depolarisation data. This phenomenon is attributed to the presence of lignite aerosol particles advected from the surrounding open pit mines in the vicinity of the measuring site. The paper provides evidence of the phenomenon and illustrates possible interpretations for its occurrence.
Simulated Milky Way analogues: implications for dark matter direct searches
NASA Astrophysics Data System (ADS)
Bozorgnia, Nassim; Calore, Francesca; Schaller, Matthieu; Lovell, Mark; Bertone, Gianfranco; Frenk, Carlos S.; Crain, Robert A.; Navarro, Julio F.; Schaye, Joop; Theuns, Tom
2016-05-01
We study the implications of galaxy formation on dark matter direct detection using high resolution hydrodynamic simulations of Milky Way-like galaxies simulated within the EAGLE and APOSTLE projects. We identify Milky Way analogues that satisfy observational constraints on the Milky Way rotation curve and total stellar mass. We then extract the dark matter density and velocity distribution in the Solar neighbourhood for this set of Milky Way analogues, and use them to analyse the results of current direct detection experiments. For most Milky Way analogues, the event rates in direct detection experiments obtained from the best fit Maxwellian distribution (with peak speed of 223-289 km/s) are similar to those obtained directly from the simulations. As a consequence, the allowed regions and exclusion limits set by direct detection experiments in the dark matter mass and spin-independent cross section plane shift by a few GeV compared to the Standard Halo Model, at low dark matter masses. For each dark matter mass, the halo-to-halo variation of the local dark matter density results in an overall shift of the allowed regions and exclusion limits for the cross section. However, the compatibility of the possible hints for a dark matter signal from DAMA and CDMS-Si and null results from LUX and SuperCDMS is not improved.
Current Status of the dark matter experiment DarkSide-50
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marini, L.; Pagani, Ioanna; Agnes, P.
2016-07-12
DarkSide-50 is a dark matter direct search experiment at LNGS, searching for rare nuclear recoils possibly induced by WIMPs. It has two nested vetoes and a dual phase liquid argon TPC as dark matter detector. Key features of this experiment are the use of underground argon as radio-pure target and of muon and neutron active vetoes to suppress the background. The first data-taking campaign was running from November 2013 to April 2015 with an atmospheric argon target and a reduced efficiency neutron veto due to internal contamination. However, an upper limit on the WIMP-nucleon cross section of 6.1×10-44 cm2 atmore » 90% CL was obtained for a WIMP mass of 100 GeV/c2 and an exposure of (1422 ± 67) kg·d. At present DarkSide-50 started a 3 years run, intended to be background-free because the neutron veto was successfully recovered and underground argon replaced the atmospheric one. Additionally calibration campaigns for both the TPC and the neutron veto were completed. Thanks to the good performance of the background rejection, the results obtained so far suggest the scalability of DarkSide-50 to a ton-scale detector, which will play a key role into the dark matter search scenario.« less
Current status of the dark matter experiment DarkSide-50
NASA Astrophysics Data System (ADS)
Marini, L.; Pagani, L.; Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.; DarkSide Collaboration
2016-01-01
DarkSide-50 is a dark matter direct search experiment at LNGS, searching for rare nuclear recoils possibly induced by WIMPs. It has two nested vetoes and a dual phase liquid argon TPC as dark matter detector. Key features of this experiment are the use of underground argon as radio-pure target and of muon and neutron active vetoes to suppress the background. The first data-taking campaign was running from November 2013 to April 2015 with an atmospheric argon target and a reduced efficiency neutron veto due to internal contamination. However, an upper limit on the WIMP-nucleon cross section of 6.1×10-44 cm2 at 90% CL was obtained for a WIMP mass of 100 GeV/c2 and an exposure of (1422±67) kg . d . At present DarkSide-50 started a 3 years run, intended to be background-free because the neutron veto was successfully recovered and underground argon replaced the atmospheric one. Additionally calibration campaigns for both the TPC and the neutron veto were completed. Thanks to the good performance of the background rejection, the results obtained so far suggest the scalability of DarkSide-50 to a ton-scale detector, which will play a key role into the dark matter search scenario.
Dark matter direct detection of a fermionic singlet at one loop
NASA Astrophysics Data System (ADS)
Herrero-García, Juan; Molinaro, Emiliano; Schmidt, Michael A.
2018-06-01
The strong direct detection limits could be pointing to dark matter - nucleus scattering at loop level. We study in detail the prototype example of an electroweak singlet (Dirac or Majorana) dark matter fermion coupled to an extended dark sector, which is composed of a new fermion and a new scalar. Given the strong limits on colored particles from direct and indirect searches we assume that the fields of the new dark sector are color singlets. We outline the possible simplified models, including the well-motivated cases in which the extra scalar or fermion is a Standard Model particle, as well as the possible connection to neutrino masses. We compute the contributions to direct detection from the photon, the Z and the Higgs penguins for arbitrary quantum numbers of the dark sector. Furthermore, we derive compact expressions in certain limits, i.e., when all new particles are heavier than the dark matter mass and when the fermion running in the loop is light, like a Standard Model lepton. We study in detail the predicted direct detection rate and how current and future direct detection limits constrain the model parameters. In case dark matter couples directly to Standard Model leptons we find an interesting interplay between lepton flavor violation, direct detection and the observed relic abundance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, K.; Itow, Y.; Rott, C., E-mail: koun@stelab.nagoya-u.ac.jp, E-mail: rott@skku.edu, E-mail: itow@stelab.nagoya-u.ac.jp
Dark matter could be captured in the Sun and self-annihilate, giving rise to an observable neutrino flux. Indirect searches for dark matter looking for this signal with neutrino telescopes have resulted in tight constraints on the interaction cross-section of dark matter with ordinary matter. We investigate how robust limits are against astro-physical uncertainties. We study the effect of the velocity distribution of dark matter in our Galaxy on capture rates in the Sun. We investigate four sources of uncertainties: orbital speed of the Sun, escape velocity of dark matter from the halo, dark matter velocity distribution functions and existence ofmore » a dark disc. We find that even extreme cases currently discussed do not decrease the sensitivity of indirect detection significantly because the capture is achieved over a broad range of the velocity distribution by integration over the velocity distribution. The effect of the uncertainty in the high-velocity tail of dark matter halo is very marginal as the capture process is rather inefficient at this region. The difference in capture rate in the Sun for various scenarios is compared to the expected change in event rates for direct detection. The possibility of co-rotating structure with the Sun can largely boost the signal and hence makes the interpretation of indirect detection conservative compared to direct detection.« less
Microbial Ecology of the Dark Ocean above, at, and below the Seafloor†
Orcutt, Beth N.; Sylvan, Jason B.; Knab, Nina J.; Edwards, Katrina J.
2011-01-01
Summary: The majority of life on Earth—notably, microbial life—occurs in places that do not receive sunlight, with the habitats of the oceans being the largest of these reservoirs. Sunlight penetrates only a few tens to hundreds of meters into the ocean, resulting in large-scale microbial ecosystems that function in the dark. Our knowledge of microbial processes in the dark ocean—the aphotic pelagic ocean, sediments, oceanic crust, hydrothermal vents, etc.—has increased substantially in recent decades. Studies that try to decipher the activity of microorganisms in the dark ocean, where we cannot easily observe them, are yielding paradigm-shifting discoveries that are fundamentally changing our understanding of the role of the dark ocean in the global Earth system and its biogeochemical cycles. New generations of researchers and experimental tools have emerged, in the last decade in particular, owing to dedicated research programs to explore the dark ocean biosphere. This review focuses on our current understanding of microbiology in the dark ocean, outlining salient features of various habitats and discussing known and still unexplored types of microbial metabolism and their consequences in global biogeochemical cycling. We also focus on patterns of microbial diversity in the dark ocean and on processes and communities that are characteristic of the different habitats. PMID:21646433
Beyond Einstein: Exploring the Extreme Universe
NASA Technical Reports Server (NTRS)
Barbier, Louis M.
2005-01-01
This paper will give an overview of the NASA Universe Division Beyond Einstein program. The Beyond Einstein program consists of a series of exploratory missions to investigate some of the most important and pressing problems in modern-day astrophysics - including searches for Dark Energy and studies of the earliest times in the universe, during the inflationary period after the Big Bang. A variety of new technologies are being developed both in the science instrumentation these missions will carry and in the spacecraft that will carry those instruments.
Interacting dark sector and precision cosmology
NASA Astrophysics Data System (ADS)
Buen-Abad, Manuel A.; Schmaltz, Martin; Lesgourgues, Julien; Brinckmann, Thejs
2018-01-01
We consider a recently proposed model in which dark matter interacts with a thermal background of dark radiation. Dark radiation consists of relativistic degrees of freedom which allow larger values of the expansion rate of the universe today to be consistent with CMB data (H0-problem). Scattering between dark matter and radiation suppresses the matter power spectrum at small scales and can explain the apparent discrepancies between ΛCDM predictions of the matter power spectrum and direct measurements of Large Scale Structure LSS (σ8-problem). We go beyond previous work in two ways: 1. we enlarge the parameter space of our previous model and allow for an arbitrary fraction of the dark matter to be interacting and 2. we update the data sets used in our fits, most importantly we include LSS data with full k-dependence to explore the sensitivity of current data to the shape of the matter power spectrum. We find that LSS data prefer models with overall suppressed matter clustering due to dark matter - dark radiation interactions over ΛCDM at 3–4 σ. However recent weak lensing measurements of the power spectrum are not yet precise enough to clearly distinguish two limits of the model with different predicted shapes for the linear matter power spectrum. In two appendices we give a derivation of the coupled dark matter and dark radiation perturbation equations from the Boltzmann equation in order to clarify a confusion in the recent literature, and we derive analytic approximations to the solutions of the perturbation equations in the two physically interesting limits of all dark matter weakly interacting or a small fraction of dark matter strongly interacting.
Construction and Test of a Novel Superconducting RF Electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisognano, Joseph J.
The University of Wisconsin-Madison has completed installation of a superconducting electron gun. Its concept was optimized to be the source for a CW free electron laser facility with multiple megahertz repetition rate end stations. This VHF superconducting configuration holds the promise of the highest performance for CW injectors. Initial commissioning efforts show that the cavity can achieve gradients of 35 MV/m at the cathode position. With the cathode inserted CW operation has been achieved at 20 MV/m with good control of microphonics, negligible dark current, and Q0 > 3×109 at 4 K. Bunch charges of ~100 pC have been delivered,more » and first simple beam measurements made. These preliminary results are very encouraging for production of 100s pC bunches with millimeter-milliradian or smaller normalized emittances. Plans are in place to carry out more definitive studies to establish the full capabilities. However, since the grant was not renewed, the electron gun is currently mothballed, and without supplemental fund the opportunity for further work will be lost.« less
Mobile Bay, Alabama area seen in Skylab 4 Earth Resources Experiment Package
NASA Technical Reports Server (NTRS)
1974-01-01
A near vertical view of the Mobile Bay, Alabama area seen in this Skylab 4 Earth Resources Experiment Package S190-B (five-inch earth terrain camera) photograph taken from the Skylab space station in earth orbit. North of Mobile the Tombigbee and Alabama Rivers join to form the Mobile River. Detailed configuration of the individual stream channels and boundaries can be defined as the Mobile River flows into Mobile Bay and into the Gulf of Mexico. The Mobile River Valley with its numerous stream channels is a distinct light shade in contrast to the dark green shade of the adjacent areas. The red coloration of Mobile Bay reflects the sediment load carried into the bay by the rivers. The westerly movement of the shore currents at the mouth of Mobile Bay is shown by the contrasting light blue of the sediment-laden current the the blue of the Gulf. Agricultural areas east and west of Mobile Bay are characterized by a rectangular pattern in green to white shades. Color variations may reflect
Uncorrelated measurements of the cosmic expansion history and dark energy from supernovae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Yun; Tegmark, Max; Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
We present a method for measuring the cosmic expansion history H(z) in uncorrelated redshift bins, and apply it to current and simulated type Ia supernova data assuming spatial flatness. If the matter density parameter {omega}{sub m} can be accurately measured from other data, then the dark-energy density history X(z)={rho}{sub X}(z)/{rho}{sub X}(0) can trivially be derived from this expansion history H(z). In contrast to customary 'black box' parameter fitting, our method is transparent and easy to interpret: the measurement of H(z){sup -1} in a redshift bin is simply a linear combination of the measured comoving distances for supernovae in that bin,more » making it obvious how systematic errors propagate from input to output. We find the Riess et al. (2004) gold sample to be consistent with the vanilla concordance model where the dark energy is a cosmological constant. We compare two mission concepts for the NASA/DOE Joint Dark-Energy Mission (JDEM), the Joint Efficient Dark-energy Investigation (JEDI), and the Supernova Accelaration Probe (SNAP), using simulated data including the effect of weak lensing (based on numerical simulations) and a systematic bias from K corrections. Estimating H(z) in seven uncorrelated redshift bins, we find that both provide dramatic improvements over current data: JEDI can measure H(z) to about 10% accuracy and SNAP to 30%-40% accuracy.« less
Solution-Processed Flexible Organic Ferroelectric Phototransistor.
Zhao, Qiang; Wang, Hanlin; Jiang, Lang; Zhen, Yonggang; Dong, Huanli; Hu, Wenping
2017-12-20
In this article, we demonstrate ferroelectric insulator, P(VDF-TrFE), can be integrated with red light sensitive polymeric semiconductor, P(DPP-TzBT), toward ferroelectric organic phototransistors (OPTs). This ferroelectricity-modulated phototransistor possesses different nonvolatile and tunable dark current states due to P(VDF-TrFE)'s remnant polarization. As a result, the OPT is endowed with a tunable dark current level ranging from 1 nA to 100 nA. Once the OPT is programmed or electrically polarized, its photo-to-dark (signal-to-noise) ratio can be "flexible" during photodetection process, without gate bias application. This kind of organic ferroelectric phototransistor has great potential in detecting wide ranges of light signals with good linearity. Moreover, its tuning mechanism discussed in this work can be helpful to understand the operation mechanism of organic phototransistor (OPT). It can be promising for novel photodetection application in plastic electronic devices.
Examining the evidence for dynamical dark energy.
Zhao, Gong-Bo; Crittenden, Robert G; Pogosian, Levon; Zhang, Xinmin
2012-10-26
We apply a new nonparametric Bayesian method for reconstructing the evolution history of the equation of state w of dark energy, based on applying a correlated prior for w(z), to a collection of cosmological data. We combine the latest supernova (SNLS 3 year or Union 2.1), cosmic microwave background, redshift space distortion, and the baryonic acoustic oscillation measurements (including BOSS, WiggleZ, and 6dF) and find that the cosmological constant appears consistent with current data, but that a dynamical dark energy model which evolves from w<-1 at z~0.25 to w>-1 at higher redshift is mildly favored. Estimates of the Bayesian evidence show little preference between the cosmological constant model and the dynamical model for a range of correlated prior choices. Looking towards future data, we find that the best fit models for current data could be well distinguished from the ΛCDM model by observations such as Planck and Euclid-like surveys.
Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.
2015-01-01
Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10−19 W/Hz−1/2 range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms. PMID:26061283
Constraints on the dark matter neutralinos from the radio emissions of galaxy clusters
NASA Astrophysics Data System (ADS)
Kiew, Ching-Yee; Hwang, Chorng-Yuan; Zainal Abibin, Zamri
2017-05-01
By assuming the dark matter to be composed of neutralinos, we used the detection of upper limit on diffuse radio emission in a sample of galaxy clusters to put constraint on the properties of neutralinos. We showed the upper limit constraint on <σv>-mχ space with neutralino annihilation through b\\bar{b} and μ+μ- channels. The best constraint is from the galaxy clusters A2199 and A1367. We showed the uncertainty due to the density profile and cluster magnetic field. The largest uncertainty comes from the uncertainty in dark matter spatial distribution. We also investigated the constraints on minimal Supergravity (mSUGRA) and minimal supersymmetric standard model (MSSM) parameter space by scanning the parameters using the darksusy package. By using the current radio observation, we managed to exclude 40 combinations of mSUGRA parameters. On the other hand, 573 combinations of MSSM parameters can be excluded by current observation.
Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N; Korneev, Alexander; Pernice, Wolfram H P
2015-06-10
Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10(-19) W/Hz(-1/2) range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms.
Constraining viscous dark energy models with the latest cosmological data
NASA Astrophysics Data System (ADS)
Wang, Deng; Yan, Yang-Jie; Meng, Xin-He
2017-10-01
Based on the assumption that the dark energy possessing bulk viscosity is homogeneously and isotropically permeated in the universe, we propose three new viscous dark energy (VDE) models to characterize the accelerating universe. By constraining these three models with the latest cosmological observations, we find that they just deviate very slightly from the standard cosmological model and can alleviate effectively the current H_0 tension between the local observation by the Hubble Space Telescope and the global measurement by the Planck Satellite. Interestingly, we conclude that a spatially flat universe in our VDE model with cosmic curvature is still supported by current data, and the scale invariant primordial power spectrum is strongly excluded at least at the 5.5σ confidence level in the three VDE models as the Planck result. We also give the 95% upper limits of the typical bulk viscosity parameter η in the three VDE scenarios.
Dark energy from discrete spacetime.
Trout, Aaron D
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.
SuperCDMS Underground Detector Fabrication Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Platt, M.; Mahapatra, R.; Bunker, Raymond A.
The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discoverymore » of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.« less
Boosted dark matter signals uplifted with self-interaction
Kong, Kyoungchul; Mohlabeng, Gopolang; Park, Jong -Chul
2015-04-01
We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in themore » assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.« less
Boosted dark matter signals uplifted with self-interaction
NASA Astrophysics Data System (ADS)
Kong, Kyoungchul; Mohlabeng, Gopolang; Park, Jong-Chul
2015-04-01
We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in the assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.
NASA Astrophysics Data System (ADS)
Wang, Deng
2018-06-01
To explore whether there is new physics going beyond the standard cosmological model or not, we constrain seven cosmological models by combining the latest and largest Pantheon Type Ia supernovae sample with the data combination of baryonic acoustic oscillations, cosmic microwave background radiation, Planck lensing and cosmic chronometers. We find that a spatially flat universe is preferred in the framework of Λ CDM cosmology, that the constrained equation of state of dark energy is very consistent with the cosmological constant hypothesis in the ω CDM model, that there is no evidence of dynamical dark energy in the dark energy density-parametrization model, that there is no hint of interaction between dark matter and dark energy in the dark sector of the universe in the decaying vacuum model, and that there does not exist the sterile neutrino in the neutrino sector of the universe in the Λ CDM model. We also give the 95% upper limit of the total mass of three active neutrinos Σ mν<0.178 eV under the assumption of Λ CDM scenario. It is clear that there is no any departure from the standard cosmological model based on current observational datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, M. R.
We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find σ 8(m=0.3) 0.5 = 0:81 ± 0:06 (68% confidence), after marginalising over 7 systematics parameters and 3 other cosmological parameters. Furthermore, we examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About 20% ofmore » our error bar comes from marginalising over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data. Our results are consistent with both datasets. Our uncertainties are ~30% larger than those from CFHTLenS when we carry out a comparable analysis of the two datasets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of σ 8(Ω m=0.3) 0.5 is present regardless of the value of w.« less
Barnes, Piers R F; Anderson, Assaf Y; Juozapavicius, Mindaugas; Liu, Lingxuan; Li, Xiaoe; Palomares, Emilio; Forneli, Amparo; O'Regan, Brian C
2011-02-28
A simple and powerful approach for assessing the recombination losses in dye sensitised solar cells (DSSCs) across the current voltage curve (j-V) as a function of TiO(2) electron concentration (n) is demonstrated. The total flux of electrons recombining with iodine species in the electrolyte and oxidised dye molecules can be thought of as a recombination current density, defined as j(rec) = j(inj)-j where j(inj) is the current of electrons injected from optically excited dye states and j is the current density collected at cell voltage (V). The electron concentration at any given operating conditions is determined by charge extraction. This allows comparison of factors influencing electron recombination rates at matched n. We show that j(rec) is typically 2-3 times higher under 1 sun equivalent illumination (j(inj) > 0) relative to dark (j(inj) = 0) conditions. This difference was increased by increasing light intensity, electrolyte iodine concentration and electrolyte solvent viscosity. The difference was reduced by increasing the electrolyte iodide concentration and increasing the temperature. These results allowed us to verify a numerical model of complete operational cells (Barnes et al., Phys. Chem. Chem. Phys., DOI: 10.1039/c0cp01554g) and to relate the differences in j(rec) to physical processes in the devices. The difference between j(rec) in the light and dark can be explained by two factors: (1) an increase in the concentration of electron acceptor species (I(3)(-) and/or I(2)) when current is flowing under illumination relative to dark conditions where the current is flowing in the opposite direction, and (2) a non-trivial contribution from electron recombination to oxidised dye molecules under light conditions. More generally, the technique helps to assign the observed relationship between the components, processing and performance of DSSCs to more fundamental physical processes.
The dark side of monetary incentive: how does extrinsic reward crowd out intrinsic motivation.
Ma, Qingguo; Jin, Jia; Meng, Liang; Shen, Qiang
2014-02-12
It was widely believed that incentives could effectively enhance the motivation of both students and employees. However, psychologists reported that extrinsic reward actually could undermine individuals' intrinsic motivation to a given interesting task, which challenged viewpoints from traditional incentive theories. Numerous studies have been carried out to test and explain the undermining effect; however, the neural basis of this effect is still elusive. Here, we carried out an electrophysiological study with a simple but interesting stopwatch task to explore to what extent the performance-based monetary reward undermines individuals' intrinsic motivation toward the task. The electrophysiological data showed that the differentiated feedback-related negativity amplitude toward intrinsic success failure divergence was prominently reduced once the extrinsic reward was imposed beforehand. However, such a difference was not observed in the control group, in which no extrinsic reward was provided throughout the experiment. Furthermore, such a pattern was not observed for P300 amplitude. Therefore, the current results indicate that extrinsic reward demotivates the intrinsic response of individuals toward success-failure outcome, which was reflected in the corresponding reduced motivational-related differentiated feedback-related negativity, but not in amplitude of P300.
NASA Astrophysics Data System (ADS)
Du, X.; Savich, G. R.; Marozas, B. T.; Wicks, G. W.
2017-02-01
The conventional processing of the III-V nBn photodetectors defines mesa devices by etching the contact n-layer and stopping immediately above the barrier, i.e., a shallow etch. This processing enables great suppression of surface leakage currents without having to explore surface passivation techniques. However, devices that are made with this processing scheme are subject to lateral diffusion currents. To address the lateral diffusion current, we compare the effects of different processing approaches and epitaxial structures of nBn detectors. The conventional solution for eliminating lateral diffusion current, a deep etch through the barrier and the absorber, creates increased dark currents and an increased device failure rate. To avoid deep etch processing, a new device structure is proposed, the inverted-nBn structure. By comparing with the conventional nBn structure, the results show that the lateral diffusion current is effectively eliminated in the inverted-nBn structure without elevating the dark currents.
NASA Astrophysics Data System (ADS)
Roodenko, K.; Choi, K. K.; Clark, K. P.; Fraser, E. D.; Vargason, K. W.; Kuo, J.-M.; Kao, Y.-C.; Pinsukanjana, P. R.
2016-09-01
Performance of quantum well infrared photodetector (QWIP) device parameters such as detector cutoff wavelength and the dark current density depend strongly on the quality and the control of the epitaxy material growth. In this work, we report on a methodology to precisely control these critical material parameters for long wavelength infrared (LWIR) GaAs/AlGaAs QWIP epi wafers grown by multi-wafer production Molecular beam epitaxy (MBE). Critical growth parameters such as quantum well (QW) thickness, AlGaAs composition and QW doping level are discussed.
InGaAs focal plane arrays for low-light-level SWIR imaging
NASA Astrophysics Data System (ADS)
MacDougal, Michael; Hood, Andrew; Geske, Jon; Wang, Jim; Patel, Falgun; Follman, David; Manzo, Juan; Getty, Jonathan
2011-06-01
Aerius Photonics will present their latest developments in large InGaAs focal plane arrays, which are used for low light level imaging in the short wavelength infrared (SWIR) regime. Aerius will present imaging in both 1280x1024 and 640x512 formats. Aerius will present characterization of the FPA including dark current measurements. Aerius will also show the results of development of SWIR FPAs for high temperaures, including imagery and dark current data. Finally, Aerius will show results of using the SWIR camera with Aerius' SWIR illuminators using VCSEL technology.
Dark energy with fine redshift sampling
NASA Astrophysics Data System (ADS)
Linder, Eric V.
2007-03-01
The cosmological constant and many other possible origins for acceleration of the cosmic expansion possess variations in the dark energy properties slow on the Hubble time scale. Given that models with more rapid variation, or even phase transitions, are possible though, we examine the fineness in redshift with which cosmological probes can realistically be employed, and what constraints this could impose on dark energy behavior. In particular, we discuss various aspects of baryon acoustic oscillations, and their use to measure the Hubble parameter H(z). We find that currently considered cosmological probes have an innate resolution no finer than Δz≈0.2 0.3.
Dynamics of Dwarf Galaxies Disfavor Stellar-Mass Black Holes as Dark Matter.
Koushiappas, Savvas M; Loeb, Abraham
2017-07-28
We study the effects of black hole dark matter on the dynamical evolution of stars in dwarf galaxies. We find that mass segregation leads to a depletion of stars in the center of dwarf galaxies and the appearance of a ring in the projected stellar surface density profile. Using Segue 1 as an example we show that current observations of the projected surface stellar density rule out at the 99.9% confidence level the possibility that more than 6% of the dark matter is composed of black holes with a mass of few tens of solar masses.
Minding the MeV gap: The indirect detection of low mass dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boddy, Kimberly K.; Kumar, Jason, E-mail: jkumar@hawaii.edu
2016-06-21
We consider the prospects for the indirect detection of low mass dark matter which couples dominantly to quarks. If the center of mass energy is below about 280 MeV, the kinematically allowed final states will be dominated by photons and neutral pions, producing striking signatures at gamma ray telescopes. In fact, an array of new instruments have been proposed, which would greatly improve sensitivity to photons in this energy range. We find that planned instruments can improve on current sensitivity to dark matter models of this type by up to a few orders of magnitude.
Dark matter maps reveal cosmic scaffolding.
Massey, Richard; Rhodes, Jason; Ellis, Richard; Scoville, Nick; Leauthaud, Alexie; Finoguenov, Alexis; Capak, Peter; Bacon, David; Aussel, Hervé; Kneib, Jean-Paul; Koekemoer, Anton; McCracken, Henry; Mobasher, Bahram; Pires, Sandrine; Refregier, Alexandre; Sasaki, Shunji; Starck, Jean-Luc; Taniguchi, Yoshi; Taylor, Andy; Taylor, James
2007-01-18
Ordinary baryonic particles (such as protons and neutrons) account for only one-sixth of the total matter in the Universe. The remainder is a mysterious 'dark matter' component, which does not interact via electromagnetism and thus neither emits nor reflects light. As dark matter cannot be seen directly using traditional observations, very little is currently known about its properties. It does interact via gravity, and is most effectively probed through gravitational lensing: the deflection of light from distant galaxies by the gravitational attraction of foreground mass concentrations. This is a purely geometrical effect that is free of astrophysical assumptions and sensitive to all matter--whether baryonic or dark. Here we show high-fidelity maps of the large-scale distribution of dark matter, resolved in both angle and depth. We find a loose network of filaments, growing over time, which intersect in massive structures at the locations of clusters of galaxies. Our results are consistent with predictions of gravitationally induced structure formation, in which the initial, smooth distribution of dark matter collapses into filaments then into clusters, forming a gravitational scaffold into which gas can accumulate, and stars can be built.
Search for light scalar dark matter with atomic gravitational wave detectors
NASA Astrophysics Data System (ADS)
Arvanitaki, Asimina; Graham, Peter W.; Hogan, Jason M.; Rajendran, Surjeet; Van Tilburg, Ken
2018-04-01
We show that gravitational wave detectors based on a type of atom interferometry are sensitive to ultralight scalar dark matter. Such dark matter can cause temporal oscillations in fundamental constants with a frequency set by the dark matter mass and amplitude determined by the local dark matter density. The result is a modulation of atomic transition energies. We point out a new time-domain signature of this effect in a type of gravitational wave detector that compares two spatially separated atom interferometers referenced by a common laser. Such a detector can improve on current searches for electron-mass or electric-charge modulus dark matter by up to 10 orders of magnitude in coupling, in a frequency band complementary to that of other proposals. It demonstrates that this class of atomic sensors is qualitatively different from other gravitational wave detectors, including those based on laser interferometry. By using atomic-clock-like interferometers, laser noise is mitigated with only a single baseline. These atomic sensors can thus detect scalar signals in addition to tensor signals.
Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models.
Marsh, M C David
2017-01-06
Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, N_{vac}∼O(10^{272 000}), are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.
Monthly modulation in dark matter direct-detection experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britto, Vivian; Meyers, Joel, E-mail: vivian.britto@mail.utoronto.ca, E-mail: jmeyers@cita.utoronto.ca
2015-11-01
The signals in dark matter direct-detection experiments should exhibit modulation signatures due to the Earth's motion with respect to the Galactic dark matter halo. The annual and daily modulations, due to the Earth's revolution about the Sun and rotation about its own axis, have been explored previously. Monthly modulation is another such feature present in direct detection signals, and provides a nearly model-independent method of distinguishing dark matter signal events from background. We study here monthly modulations in detail for both WIMP and WISP dark matter searches, examining both the effect of the motion of the Earth about the Earth-Moonmore » barycenter and the gravitational focusing due to the Moon. For WIMP searches, we calculate the monthly modulation of the count rate and show the effects are too small to be observed in the foreseeable future. For WISP dark matter experiments, we show that the photons generated by WISP to photon conversion have frequencies which undergo a monthly modulating shift which is detectable with current technology and which cannot in general be neglected in high resolution WISP searches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafari Salim, A., E-mail: ajafaris@uwaterloo.ca; Eftekharian, A.; University of Waterloo, Waterloo, Ontario N2L 3G1
In this paper, we theoretically show that a multi-layer superconducting nanowire single-photon detector (SNSPD) is capable of approaching characteristics of an ideal SNSPD in terms of the quantum efficiency, dark count, and band-width. A multi-layer structure improves the performance in two ways. First, the potential barrier for thermally activated vortex crossing, which is the major source of dark counts and the reduction of the critical current in SNSPDs is elevated. In a multi-layer SNSPD, a vortex is made of 2D-pancake vortices that form a stack. It will be shown that the stack of pancake vortices effectively experiences a larger potentialmore » barrier compared to a vortex in a single-layer SNSPD. This leads to an increase in the experimental critical current as well as significant decrease in the dark count rate. In consequence, an increase in the quantum efficiency for photons of the same energy or an increase in the sensitivity to photons of lower energy is achieved. Second, a multi-layer structure improves the efficiency of single-photon absorption by increasing the effective optical thickness without compromising the single-photon sensitivity.« less
Selective thermal oxidation of hydrocarbons in zeolites by oxygen
Frei, Heinz; Blatter, Fritz; Sun, Hai
2000-01-01
A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.
Al-Nsour, Hind Fahed; Al-Zoubi, Tamara Trad; Al-Rimawi, Ali Salaheddin
2018-03-01
Facial and dental aesthetics are becoming of great concern for patients, especially for the younger generation. Tooth color matching and selection is considered a vital element in order to create an attractive beautiful smile. The importance of tooth color matching is to adjust tooth colors to obtain a good match with adjacent teeth and the skin. This is considered a challenge especially if adjacent teeth were lost or records of patients' teeth color were not available. The aim of this study was to determine the relationship between skin complexion and tooth value in a Jordanian population. A cross-sectional study of 520 individuals who were randomly selected and belonging to different age groups, ranging from 15-65 years, with equal sex distribution. These patients visited the dental clinics at different Jordanian military hospitals. The study was carried out over a period of one year from 2015 to 2016. The randomly selected sample was examined by one researcher. Shade of the middle third of the labial surface of central incisor was determined visually using VITA tooth guide, 3D-MASTER shade guide. Tooth shades were divided into two categories according to their value. The skin complexion was identified using Fitzpatrick skin type test, and was categorized into two categories (fair and dark). Data were statistically analyzed using Epi Info version 6. A statistically significant tooth shade value difference was discovered among subjects of different skin color (p<0.0001). Individuals with dark skin tend to have lighter teeth, while individuals with light skin tend to have darker teeth. Out of the 304 participants that were with dark complexion 274 (90%) have light teeth, and only 30 (10%) were with dark teeth. Out of the 216 participants with light complexion 172 (80%) have dark teeth and only 44 (20%) have light teeth. Within the limitation of this study, there was an inverse relation between skin complexion and tooth value among a Jordanian population. Thus, considering the skin complexion when choosing tooth shades is helpful in achieving a pleasing good-looking smile, yet further investigations in this field must be carried out.
Advanced MCT technologies at LETI for space applications
NASA Astrophysics Data System (ADS)
Durand, A.; Destefanis, G.; Gravrand, O.; Rothmann, J.
This document is a recap of an oral presentation made at Nice during the INSU Astrophysics Detector Workshop 2008. It aims at giving an overview of the achievements and ongoing developments presently carried out at CEA-LETI in the field of Infrared focal plane array. Although most of the research actually performed at LETI is not driven by space oriented application, the excellence and the cutting edge of the outcome is or can be applied to space-dedicated components. This paper focus on features and developments from which astrophysics observation would benefit in the near future on the European market. This encompassed “traditionnal” developments such as format enlargement, low dark current technology such as p/n structure but it also shade light on promising and thrilling development such as avalanche photodiode array. It eventually gives some hints of none MCT technologies processed at LETI.
Monolithic short wave infrared (SWIR) detector array
NASA Technical Reports Server (NTRS)
1983-01-01
A monolithic self-scanned linear detector array was developed for remote sensing in the 1.1- 2.4-micron spectral region. A high-density IRCCD test chip was fabricated to verify new design approaches required for the detector array. The driving factors in the Schottky barrier IRCCD (Pdsub2Si) process development are the attainment of detector yield, uniformity, adequate quantum efficiency, and lowest possible dark current consistent with radiometric accuracy. A dual-band module was designed that consists of two linear detector arrays. The sensor architecture places the floating diffusion output structure in the middle of the chip, away from the butt edges. A focal plane package was conceptualized and includes a polycrystalline silicon substrate carrying a two-layer, thick-film interconnecting conductor pattern and five epoxy-mounted modules. A polycrystalline silicon cover encloses the modules and bond wires, and serves as a radiation and EMI shield, thermal conductor, and contamination seal.
The controlled growth of graphene nanowalls on Si for Schottky photodetector
NASA Astrophysics Data System (ADS)
Zhou, Quan; Liu, Xiangzhi; Zhang, Enliang; Luo, Shi; Shen, Jun; Wang, Yuefeng; Wei, Dapeng
2017-12-01
Schottky diode with directly-grown graphene on silicon substrate has advantage of clean junction interface, promising for photodetectors with high-speed and low noise. In this report, we carefully studied the influence of growth parameters on the junction quality and photoresponse of graphene nanowalls (GNWs)-based Schottky photodetectors. We found that shorter growth time is critical for lower dark current, but at the same time higher photocurrent. The influence of growth parameters was attributed to the defect density of various growth time, which results in different degrees of surface absorption for H2O/O2 molecules and P-type doping level. Raman characterization and vacuum annealing treatment were carried out to confirm the regulation mechanism. Meanwhile, the release of thermal stress also makes the ideality factor η of thinner sample better than the thicker. Our results are important for the response improvement of photodetectors with graphene-Si schottky junction.
Johnson, Matthew P
2016-10-31
Photosynthesis sustains virtually all life on planet Earth providing the oxygen we breathe and the food we eat; it forms the basis of global food chains and meets the majority of humankind's current energy needs through fossilized photosynthetic fuels. The process of photosynthesis in plants is based on two reactions that are carried out by separate parts of the chloroplast. The light reactions occur in the chloroplast thylakoid membrane and involve the splitting of water into oxygen, protons and electrons. The protons and electrons are then transferred through the thylakoid membrane to create the energy storage molecules adenosine triphosphate (ATP) and nicotinomide-adenine dinucleotide phosphate (NADPH). The ATP and NADPH are then utilized by the enzymes of the Calvin-Benson cycle (the dark reactions), which converts CO 2 into carbohydrate in the chloroplast stroma. The basic principles of solar energy capture, energy, electron and proton transfer and the biochemical basis of carbon fixation are explained and their significance is discussed. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Feng, Jie; Zhang, Hong-Hao
2018-05-01
Dark matter searches in space have been carried out for many years. Measurements of cosmic-ray (CR) photons, charged antiparticles, and neutrinos are useful tools for dark matter indirect searches. The antiparticle energy spectra of CRs have several exciting features, such as the unexpected positron excess at E ∼ 10–500 GeV and the remarkably flattening antiproton/proton at E ∼ 60–450 GeV precisely measured by the AMS-02 experiment, which cannot be explained simultaneously by secondary production in the interstellar medium. In this work, we report a combined analysis of CR antiproton and positron spectra arising from dark matter on the top of a secondary production in a spatial-dependent propagation model. We discuss the systematic uncertainties from the antiproton production cross section using the two latest Monte Carlo generators, i.e., EPOS LHC and QGSJET-II-04m. We compare their results. In the case of EPOS LHC, we find that the dark matter pair annihilating into τ leptons channel with a 100% branching ratio and the p-wave annihilation cross section assumption is the only possible one-channel scenario to explain the data. On the other hand, there is not a single possible channel in the case of QGSJET-II-04m. We also propose possible two-channel scenarios based on these two Monte Carlo generators.
Hybrid anomaly and gravity mediation for electroweak supersymmetry
NASA Astrophysics Data System (ADS)
Zhu, Bin; Ding, Ran; Li, Tianjun
2018-03-01
In this paper, we propose a hybrid mediation and hybrid supersymmetry breaking. In particular, the RG-invariant anomaly mediation is considered. Together with additional gravity mediation, the slepton tachyon problem of anomaly mediation is solved automatically. The special properties are that all color sparticles masses fall into several TeV regions due to the large m0 and m32 which are well beyond the scope of current LHC Run II limits. Unlike the gauge mediation, the dark matter candidate is still the lightest neutralino and the correct dark matter relic density can be realized within the framework of mixed axion-Wino dark matter. Due to the existence of multi-component axion-Wino dark matter, the direct detection cross-section is suppressed to evade the tightest LUX, PandaX bound.
NASA Technical Reports Server (NTRS)
Turner, Michael S.
1989-01-01
The types of particles which may provide the nonluminous mass required by big-bang cosmological models are listed and briefly characterized. The observational evidence for the existence of dark matter (outweighing the luminous component by at least a factor of 10) is reviewed; the theoretical arguments favoring mainly nonbaryonic dark matter are summarized; and particular attention is given to weakly interacting massive particles (WIMPs) remaining as relics from the early universe. The WIMPs are classified as thermal relics (heavy stable neutrinos and lighter neutralinos), asymmetric relics (including baryons), nonthermal relics (superheavy magnetic monopoles, axions, and soliton stars), and truly exotic relics (relativistic debris or vacuum energy). Explanations for the current apparent baryon/exotica ratio of about 0.1 in different theoretical scenarios are considered, and the problems of experimental and/or observational dark-matter detection are examined.
Dark matter effective field theory scattering in direct detection experiments
Schneck, K.
2015-05-01
We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implicationsmore » of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less
Dark matter effective field theory scattering in direct detection experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneck, K.; Cabrera, B.; Cerdeño, D. G.
2015-05-18
We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. Here. we demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. In conclusion, we discussmore » the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less
Dark matter effective field theory scattering in direct detection experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneck, K.; Cabrera, B.; Cerdeño, D. G.
2015-05-18
We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implicationsmore » of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less
Triton's geyser-like plumes: Discovery and basic characterization
Soderblom, L.A.; Kieffer, S.W.; Becker, T.L.; Brown, R.H.; Cook, A.F.; Hansen, C.J.; Johnson, T.V.; Kirk, R.L.; Shoemaker, E.M.
1990-01-01
At least four active geyser-like eruptions were discovered in Voyager 2 images of Triton, Neptune's large satellite. The two best documented eruptions occur as columns of dark material rising to an altitude of about 8 kilometers where dark clouds of material are left suspended to drift downwind over 100 kilometers. The radii of the rising columns appear to be in the range of several tens of meters to a kilometer. One model for the mechanism to drive the plumes involves heating of nitrogen ice in a sub-surface greenhouse environment; nitrogen gas pressurized by the solar heating explosively vents to the surface carrying clouds of ice and dark particles into the atmosphere. A temperature increase of less than 4 kelvins above the ambient surface value of 38 ?? 3 kelvins is more than adequate to drive the plumes to an 8-kilometer altitude. The mass flux in the trailing clouds is estimated to consist of up to 10 kilograms of fine dark particles per second or twice as much nitrogen ice and perhaps several hundred or more kilograms of nitrogen gas per second. Each eruption may last a year or more, during which on the order of a tenth of a cubic kilometer of ice is sublimed.
Wandering in the Lyman-alpha forest: a study of dark matter-dark radiation interactions
NASA Astrophysics Data System (ADS)
Krall, Rebecca; Cyr-Racine, Francis-Yan; Dvorkin, Cora
2017-09-01
The amplitude of large-scale matter fluctuations inferred from the observed Sunyaev-Zeldovich (SZ) cluster mass function and from weak gravitational lensing studies, when taken at face value, is in tension with measurements of the cosmic microwave background (CMB) and baryon acoustic oscillation (BAO). In this work, we revisit whether this possible discrepancy can be attributed to new interactions in the dark matter sector. Focusing on a cosmological model where dark matter interacts with a dark radiation species until the epoch of matter-radiation equality, we find that measurements of the Lyman-alpha flux power spectrum from the Sloan Digital Sky Survey provide no support to the hypothesis that new dark matter interactions can resolve the possible tension between CMB and large-scale structure (LSS). Indeed, while the addition of dark matter-dark radiation interactions leads to an improvement of 2Δ ln L=12 with respect to the standard Λ cold dark matter (ΛCDM) model when only CMB, BAO, and LSS data are considered, the inclusion of Lyman-alpha data reduces the improvement of the fit to 2Δ ln L=6 relative to ΛCDM . We thus conclude that the statistical evidence for new dark matter interactions (largely driven by the Planck SZ dataset) is marginal at best, and likely caused by systematics in the data. We also perform a Fisher forecast analysis for the reach of a future dataset composed of a CMB-S4 experiment combined with the Large Synoptic Survey Telescope galaxy survey. We find that the constraint on the effective number of fluid-like dark radiation species, Δ Nfluid, will be improved by an order of magnitude compared to current bounds.
MEST- avoid next extinction by a space-time effect
NASA Astrophysics Data System (ADS)
Cao, Dayong
2013-03-01
Sun's companion-dark hole seasonal took its dark comets belt and much dark matter to impact near our earth. And some of them probability hit on our earth. So this model kept and triggered periodic mass extinctions on our earth every 25 to 27 million years. After every impaction, many dark comets with very special tilted orbits were arrested and lurked in solar system. When the dark hole-Tyche goes near the solar system again, they will impact near planets. The Tyche, dark comet and Oort Cloud have their space-time center. Because the space-time are frequency and amplitude square of wave. Because the wave (space-time) can make a field, and gas has more wave and fluctuate. So they like dense gas ball and a dark dense field. They can absorb the space-time and wave. So they are ``dark'' like the dark matter which can break genetic codes of our lives by a dark space-time effect. So the upcoming next impaction will cause current ``biodiversity loss.'' The dark matter can change dead plants and animals to coal, oil and natural gas which are used as energy, but break our living environment. According to our experiments, which consciousness can use thought waves remotely to change their systemic model between Electron Clouds and electron holes of P-N Junction and can change output voltages of solar cells by a life information technology and a space-time effect, we hope to find a new method to the orbit of the Tyche to avoid next extinction. (see Dayong Cao, BAPS.2011.APR.K1.17 and BAPS.2012.MAR.P33.14) Support by AEEA
Wandering in the Lyman-alpha forest: a study of dark matter-dark radiation interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krall, Rebecca; Cyr-Racine, Francis-Yan; Dvorkin, Cora, E-mail: rkrall@physics.harvard.edu, E-mail: fcyrraci@physics.harvard.edu, E-mail: dvorkin@physics.harvard.edu
The amplitude of large-scale matter fluctuations inferred from the observed Sunyaev-Zeldovich (SZ) cluster mass function and from weak gravitational lensing studies, when taken at face value, is in tension with measurements of the cosmic microwave background (CMB) and baryon acoustic oscillation (BAO). In this work, we revisit whether this possible discrepancy can be attributed to new interactions in the dark matter sector. Focusing on a cosmological model where dark matter interacts with a dark radiation species until the epoch of matter-radiation equality, we find that measurements of the Lyman-alpha flux power spectrum from the Sloan Digital Sky Survey provide nomore » support to the hypothesis that new dark matter interactions can resolve the possible tension between CMB and large-scale structure (LSS). Indeed, while the addition of dark matter-dark radiation interactions leads to an improvement of 2ΔlnL=12 with respect to the standard Λ cold dark matter (ΛCDM) model when only CMB, BAO, and LSS data are considered, the inclusion of Lyman-alpha data reduces the improvement of the fit to 2ΔlnL=6 relative to ΛCDM . We thus conclude that the statistical evidence for new dark matter interactions (largely driven by the Planck SZ dataset) is marginal at best, and likely caused by systematics in the data. We also perform a Fisher forecast analysis for the reach of a future dataset composed of a CMB-S4 experiment combined with the Large Synoptic Survey Telescope galaxy survey. We find that the constraint on the effective number of fluid-like dark radiation species, Δ N {sub fluid}, will be improved by an order of magnitude compared to current bounds.« less
Photosensitivity of p-type black Si field emitter arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mingels, S., E-mail: smingels@uni-wuppertal.de; Porshyn, V.; Lützenkirchen-Hecht, D.
We have investigated the properties of black Si field emitter arrays under strong electric fields and laser illumination. A low onset field of 1.8 MV/m for an emission current of 1 nA was obtained. A pronounced saturation region of the dark and photo-enhanced current was observed, which provided a short-term stability of 0.1% at 0.4 μA and 0.7% at 1.0 μA, respectively. As maximum value for the photosensitivity, an on-off current switching ratio of 43 reaching about 13 μA was achieved at a laser power of 15 mW. Electron spectra in the dark and under laser illumination are presented, showing a current and light-sensitivemore » voltage drop across the emitters as well as hints for hot electron emission.« less
Calcium and magnesium fluxes across the plasma membrane of the toad rod outer segment.
Nakatani, K; Yau, K W
1988-01-01
1. Membrane current was recorded from an isolated, dark-adapted toad rod by sucking either its inner segment or outer segment into a tight-fitting glass pipette containing Ringer solution. The remainder of the cell was exposed to bath solution which could be changed rapidly. 2. In normal Ringer solution the current response of a cell to a saturating flash or step of light showed a small secondary rise at its initial peak. The profile of this secondary rise (i.e. amplitude and time course) was independent of both the intensity and the duration of illumination once the light response had reached a plateau level. 3. This secondary rise disappeared when external Na+ around the outer segment was replaced by Li+ or guanidinium, suggesting that it represented an electrogenic Na+-dependent Ca2+ efflux which was declining after the onset of light. 4. This Na+-Ca2+ exchange activity showed a roughly exponential decline, with a time constant of about 0.5 s. Exponential extrapolation of the exchange current to the time at half-height of the light response gave an initial amplitude of about 2 pA. Using La3+ as a blocker, we did not detect any steady exchange current after the initial exponential decline. 5. An intense flash superposed on a just-saturating steady background light failed to produce any incremental exchange current transient. 6. Our interpretation of the above results is that in darkness there are counterbalancing levels of Ca2+ influx (through the light-sensitive conductance) and efflux (through the Na+-Ca2+ exchange) across the plasma membrane of the rod outer segment. The exchange current transient at the onset of light merely represents the unidirectional Ca2+ efflux which becomes revealed as a result of the stoppage of the Ca2+ influx, rather than a de novo Ca2+ efflux triggered by light. 7. Consistent with this interpretation, a test light delivered soon after a saturating, conditioning light elicited little exchange current, which then gradually recovered to control value with a time course parallel to the restoration of the dark current. Conversely, when the dark current was increased above its physiological level by IBMX (isobutylmethylxanthine) the exchange current transient became larger than control.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 8 PMID:2457685
Plant-environment interactions: Accumulation of hypericin in dark glands of Hypericum perforatum.
Zobayed, S M A; Afreen, F; Goto, E; Kozai, T
2006-10-01
Hypericum perforatum is a perennial herbaceous plant and an extract from this plant has a significant antidepressant effect when administered to humans. The plant is characterized by its secretory glands, also known as dark glands, which are mainly visible on leaves and flowers. The current study evaluates the influence of several environmental factors and developmental stages of the plant on the accumulation and synthesis of hypericin and pseudohypericin (Hy-G), the major bioactive constituents, in H. perforatum plants. The appearance of dark glands on different parts of the plant, under several environmental conditions, was monitored by microscopy. Hy-G concentrations were quantified by high-performance liquid chromatography. A significant presence of dark glands accompanying the highest concentrations of Hy-G was observed in the stamen tissues more than in any other organ of H. perforatum. A linear relationship between the number of dark glands and net photosynthetic rate of the leaf and Hy-G concentration in the leaf tissue was also established. A very high concentration of Hy-G was measured in the dark-gland tissues, but in the tissues without any dark glands it was almost absent. The presence of emodin, a precursor of Hy-G, at a high concentration in the dark-gland tissues, and its absence in the surrounding tissues was also observed, suggesting that the site of biosynthesis of Hy-G is in the dark-gland cells. A significantly low concentration of Hy-G (occasionally non-detectable) was measured in the xylem sap of the stem tissues. The dark-gland tissues collected from leaves, stems or flowers contained similar concentrations of Hy-G. The concentration of Hy-G in various organs of H. perforatum plants is dependent on the number of dark glands, their size or area, not on the location of the dark glands on the plant. The study provides the first experimental evidence that Hy-G is synthesized and accumulates in dark glands.
Palma, F; Roncagliolo, P; Bacigalupo, J; Palacios, A G
2001-01-01
We investigated the photocurrents from isolated rods of the South American anuran, Caudiverbera caudiverbera. Rod outer segments were on average 66.4 +/- 11.2 microm (mean +/- S.D., n = 104) in length and 6.6 +/- 0.9 microm (mean +/- S.D.) in diameter: 40 +/- 22 photoisomerizations (mean +/- S.D., range 10-99, n = 16) were required for eliciting a half-saturating photocurrent response. The time-to-peak was 911 +/- 217 ms (mean +/- S.D., n = 14, 20 degrees C) in the linear range of the response and the integration time of the current response was 1744 +/- 451 ms (mean +/- S.D., n = 14). The time-to-peak appears to be slower and the integration time shorter in Caudiverbera than in Ambystoma tigrinum, Rana pipiens or Xenopus laevis rods under similar experimental conditions. The a-band of rod spectral sensitivity has a lambda(max) at 520 +/- 2.1 nm (mean +/- S.D., range 516-525 nm, n = 24) and the bandwidth fits a porphyropsin visual pigment. The single-event response amplitude ranges from 0.31-0.51 pA, depending on the calculation method. The intrinsic dark current (variance at dark minus variance under bright light) was 0.045 +/- 0.040 pA2 (mean +/- S.D., n = 24). Our results support the presence of a dark-noise component below 1 Hz, with kinetics similar to the single-photon evoked response and a rate of 0.006 events s(-1) (n = 9).
Sensitivity projections for dark matter searches with the Fermi large area telescope
NASA Astrophysics Data System (ADS)
Charles, E.; Sánchez-Conde, M.; Anderson, B.; Caputo, R.; Cuoco, A.; Di Mauro, M.; Drlica-Wagner, A.; Gomez-Vargas, G. A.; Meyer, M.; Tibaldo, L.; Wood, M.; Zaharijas, G.; Zimmer, S.; Ajello, M.; Albert, A.; Baldini, L.; Bechtol, K.; Bloom, E. D.; Ceraudo, F.; Cohen-Tanugi, J.; Digel, S. W.; Gaskins, J.; Gustafsson, M.; Mirabal, N.; Razzano, M.
2016-06-01
The nature of dark matter is a longstanding enigma of physics; it may consist of particles beyond the Standard Model that are still elusive to experiments. Among indirect search techniques, which look for stable products from the annihilation or decay of dark matter particles, or from axions coupling to high-energy photons, observations of the γ-ray sky have come to prominence over the last few years, because of the excellent sensitivity of the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope mission. The LAT energy range from 20 meV to above 300 GeV is particularly well suited for searching for products of the interactions of dark matter particles. In this report we describe methods used to search for evidence of dark matter with the LAT, and review the status of searches performed with up to six years of LAT data. We also discuss the factors that determine the sensitivities of these searches, including the magnitudes of the signals and the relevant backgrounds, considering both statistical and systematic uncertainties. We project the expected sensitivities of each search method for 10 and 15 years of LAT data taking. In particular, we find that the sensitivity of searches targeting dwarf galaxies, which provide the best limits currently, will improve faster than the square root of observing time. Current LAT limits for dwarf galaxies using six years of data reach the thermal relic level for masses up to 120 GeV for the b b ¯ annihilation channel for reasonable dark matter density profiles. With projected discoveries of additional dwarfs, these limits could extend to about 250 GeV. With as much as 15 years of LAT data these searches would be sensitive to dark matter annihilations at the thermal relic cross section for masses to greater than 400 GeV (200 GeV) in the b b ¯ (τ+τ-) annihilation channels.
Sensitivity projections for dark matter dearches with the Fermi large area telescope
Charles, E.; M. Sanchez-Conde; Anderson, B.; ...
2016-05-20
The nature of dark matter is a longstanding enigma of physics; it may consist of particles beyond the Standard Model that are still elusive to experiments. Among indirect search techniques, which look for stable products from the annihilation or decay of dark matter particles, or from axions coupling to high-energy photons, observations of themore » $$\\gamma$$-ray sky have come to prominence over the last few years, because of the excellent sensitivity of the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope mission. The LAT energy range from 20 MeV to above 300 GeV is particularly well suited for searching for products of the interactions of dark matter particles. In this report we describe methods used to search for evidence of dark matter with the LAT, and review the status of searches performed with up to six years of LAT data. We also discuss the factors that determine the sensitivities of these searches, including the magnitudes of the signals and the relevant backgrounds, considering both statistical and systematic uncertainties. We project the expected sensitivities of each search method for 10 and 15 years of LAT data taking. In particular, we find that the sensitivity of searches targeting dwarf galaxies, which provide the best limits currently, will improve faster than the square root of observing time. Current LAT limits for dwarf galaxies using six years of data reach the thermal relic level for masses up to 120 GeV for the $$b\\bar{b}$$ annihilation channel for reasonable dark matter density profiles. With projected discoveries of additional dwarfs, these limits could extend to about 250 GeV. With as much as 15 years of LAT data these searches would be sensitive to dark matter annihilations at the thermal relic cross section for masses to greater than 400 GeV (200 GeV) in the $$b\\bar{b}$$ ($$\\tau^+ \\tau^-$$) annihilation channels.« less
Sensitivity projections for dark matter dearches with the Fermi large area telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles, E.; M. Sanchez-Conde; Anderson, B.
The nature of dark matter is a longstanding enigma of physics; it may consist of particles beyond the Standard Model that are still elusive to experiments. Among indirect search techniques, which look for stable products from the annihilation or decay of dark matter particles, or from axions coupling to high-energy photons, observations of themore » $$\\gamma$$-ray sky have come to prominence over the last few years, because of the excellent sensitivity of the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope mission. The LAT energy range from 20 MeV to above 300 GeV is particularly well suited for searching for products of the interactions of dark matter particles. In this report we describe methods used to search for evidence of dark matter with the LAT, and review the status of searches performed with up to six years of LAT data. We also discuss the factors that determine the sensitivities of these searches, including the magnitudes of the signals and the relevant backgrounds, considering both statistical and systematic uncertainties. We project the expected sensitivities of each search method for 10 and 15 years of LAT data taking. In particular, we find that the sensitivity of searches targeting dwarf galaxies, which provide the best limits currently, will improve faster than the square root of observing time. Current LAT limits for dwarf galaxies using six years of data reach the thermal relic level for masses up to 120 GeV for the $$b\\bar{b}$$ annihilation channel for reasonable dark matter density profiles. With projected discoveries of additional dwarfs, these limits could extend to about 250 GeV. With as much as 15 years of LAT data these searches would be sensitive to dark matter annihilations at the thermal relic cross section for masses to greater than 400 GeV (200 GeV) in the $$b\\bar{b}$$ ($$\\tau^+ \\tau^-$$) annihilation channels.« less
Binary pulsars as probes of a Galactic dark matter disk
NASA Astrophysics Data System (ADS)
Caputo, Andrea; Zavala, Jesús; Blas, Diego
2018-03-01
As a binary pulsar moves through a wind of dark matter particles, the resulting dynamical friction modifies the binary's orbit. We study this effect for the double disk dark matter (DDDM) scenario, where a fraction of the dark matter is dissipative and settles into a thin disk. For binaries within the dark disk, this effect is enhanced due to the higher dark matter density and lower velocity dispersion of the dark disk, and due to its co-rotation with the baryonic disk. We estimate the effect and compare it with observations for two different limits in the Knudsen number (Kn). First, in the case where DDDM is effectively collisionless within the characteristic scale of the binary (Kn ≫ 1) and ignoring the possible interaction between the pair of dark matter wakes. Second, in the fully collisional case (Kn ≪ 1), where a fluid description can be adopted and the interaction of the pair of wakes is taken into account. We find that the change in the orbital period is of the same order of magnitude in both limits. A comparison with observations reveals good prospects to probe currently allowed DDDM models with timing data from binary pulsars in the near future. We finally comment on the possibility of extending the analysis to the intermediate (rarefied gas) case with Kn ∼ 1.
Simulated Milky Way analogues: implications for dark matter direct searches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozorgnia, Nassim; Calore, Francesca; Lovell, Mark
2016-05-01
We study the implications of galaxy formation on dark matter direct detection using high resolution hydrodynamic simulations of Milky Way-like galaxies simulated within the EAGLE and APOSTLE projects. We identify Milky Way analogues that satisfy observational constraints on the Milky Way rotation curve and total stellar mass. We then extract the dark matter density and velocity distribution in the Solar neighbourhood for this set of Milky Way analogues, and use them to analyse the results of current direct detection experiments. For most Milky Way analogues, the event rates in direct detection experiments obtained from the best fit Maxwellian distribution (withmore » peak speed of 223–289 km/s) are similar to those obtained directly from the simulations. As a consequence, the allowed regions and exclusion limits set by direct detection experiments in the dark matter mass and spin-independent cross section plane shift by a few GeV compared to the Standard Halo Model, at low dark matter masses. For each dark matter mass, the halo-to-halo variation of the local dark matter density results in an overall shift of the allowed regions and exclusion limits for the cross section. However, the compatibility of the possible hints for a dark matter signal from DAMA and CDMS-Si and null results from LUX and SuperCDMS is not improved.« less
NASA Astrophysics Data System (ADS)
Liang, Shi-Dong; Harko, Tiberiu
2015-04-01
Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson), respectively. The gravitational field equations are obtained by also assuming the possibility of a nonminimal coupling between the cosmological mass current and the superconducting dark energy. The cosmological implications of the dark energy model are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two particular choices of the electromagnetic type potential, corresponding to a pure electric type field, and to a pure magnetic field, respectively. The time evolutions of the scale factor, matter energy density and deceleration parameter are obtained for both cases, and it is shown that in the presence of the superconducting dark energy the Universe ends its evolution in an exponentially accelerating vacuum de Sitter state. By using the formalism of the irreversible thermodynamic processes for open systems we interpret the generalized conservation equations in the superconducting dark energy model as describing matter creation. The particle production rates, the creation pressure and the entropy evolution are explicitly obtained.
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2010-04-01
The first published Fermi large area telescope (Fermi-LAT) measurement of the isotropic diffuse gamma-ray emission is in good agreement with a single power law, and is not showing any signature of a dominant contribution from dark matter sources in the energy range from 20 to 100 GeV. Here, we use the absolute size and spectral shape of this measured flux to derive cross section limits on three types of generic dark matter candidates: annihilating into quarks, charged leptons and monochromatic photons. Predicted gamma-ray fluxes from annihilating dark matter are strongly affected by the underlying distribution of dark matter, and bymore » using different available results of matter structure formation we assess these uncertainties. We also quantify how the dark matter constraints depend on the assumed conventional backgrounds and on the Universe's transparency to high-energy gamma-rays. In reasonable background and dark matter structure scenarios (but not in all scenarios we consider) it is possible to exclude models proposed to explain the excess of electrons and positrons measured by the Fermi-LAT and PAMELA experiments. Derived limits also start to probe cross sections expected from thermally produced relics (e.g. in minimal supersymmetry models) annihilating predominantly into quarks. Finally, for the monochromatic gamma-ray signature, the current measurement constrains only dark matter scenarios with very strong signals.« less
NASA Technical Reports Server (NTRS)
Aramaki, T.; Boggs, S.; Bufalino, S.; Dal, L.; von Doetinchem, P.; Donato, F.; Fornengo, N.; Fuke, H.; Grefe, M.; Hailey, C.;
2016-01-01
Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches using positrons, antiprotons, or gamma-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This article is based on the first dedicated cosmic-ray antideuteron workshop, which was held at UCLA in June 2014. It reviews broad classes of dark matter candidates that result in detectable cosmic-ray antideuteron fluxes, as well as the status and prospects of current experimental searches. The coalescence model of antideuteron production and the influence of antideuteron measurements at particle colliders are discussed. This is followed by a review of the modeling of antideuteron propagation through the magnetic fields, plasma currents, and molecular material of our Galaxy, the solar system, the Earth's geomagnetic field, and the atmosphere. Finally, the three ongoing or planned experiments that are sensitive to cosmic-ray antideuterons, BESS, AMS-02, and GAPS, are detailed. As cosmic-ray antideuteron detection is a rare event search, multiple experiments with orthogonal techniques and backgrounds are essential. Therefore, the combination of AMS-02 and GAPS antideuteron searches is highly desirable. Many theoretical and experimental groups have contributed to these studies over the last decade, this review aims to provide the first coherent discussion of the relevant dark matter theories that antideuterons probe, the challenges to predictions and interpretations of antideuteron signals, and the experimental efforts toward cosmic antideuteron detection.
Re-examination of globally flat space-time.
Feldman, Michael R
2013-01-01
In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of "dark energy," "dark matter," and "dark flow." Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at "large enough" scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems) and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of "dark energy," "dark matter," and "dark flow." In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems.
Aramaki, T.; Boggs, S.; Bufalino, S.; ...
2016-01-27
Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches using positrons, antiprotons, or γ-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This article is based on the first dedicated cosmic-ray antideuteron workshop, which was held at UCLA in June 2014. It reviews broad classes of dark matter candidates that result in detectablemore » cosmic-ray antideuteron fluxes, as well as the status and prospects of current experimental searches. The coalescence model of antideuteron production and the influence of antideuteron measurements at particle colliders are discussed. This is followed by a review of the modeling of antideuteron propagation through the magnetic fields, plasma currents, and molecular material of our Galaxy, the solar system, the Earth’s geomagnetic field, and the atmosphere. Lastly, the three ongoing or planned experiments that are sensitive to cosmic-ray antideuterons, BESS, AMS-02, and GAPS, are detailed. As cosmic-ray antideuteron detection is a rare event search, multiple experiments with orthogonal techniques and backgrounds are essential. Furthermore, the combination of AMS-02 and GAPS antideuteron searches is highly desirable. Many theoretical and experimental groups have contributed to these studies over the last decade, this review aims to provide the first coherent discussion of the relevant dark matter theories that antideuterons probe, the challenges to predictions and interpretations of antideuteron signals, and the experimental efforts toward cosmic antideuteron detection.« less
Re-Examination of Globally Flat Space-Time
NASA Astrophysics Data System (ADS)
Feldman, Michael R.
2013-11-01
In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of "dark energy," "dark matter," and "dark flow." Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at "large enough" scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems) and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of "dark energy," "dark matter," and "dark flow." In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems.
NASA Astrophysics Data System (ADS)
Gehman, Victor M.
2012-10-01
One of the most important open questions in physics is the fundamental nature of the dark matter. The direct detection of a dark matter particle in a terrestrial experiment would dramatically impact cosmology and particle physics, and would open a window on a new type of observational astrophysics. The LZ collaboration has proposed to construct a 7-ton liquid xenon dark matter detector at the 4850 level of the Sanford Underground Research Facility (SURF) in Lead, South Dakota. The LZ detector will be based upon the well-established liquid xenon TPC technology, and will capitalize upon the existing infrastructure of the LUX experiment to allow for a rapid turn-around after the conclusion of LUX data taking. With a ducial mass of more than 5 tons, the experiment will probe WIMP-nucleon cross sections down to 2x10-48 cm^2 in 3 years of operation. This represents an improvement of approximately 5000 times over current results, covering a substantial range of theoretically-motivated particle dark matter candidates.
Interaction in the dark sector
NASA Astrophysics Data System (ADS)
del Campo, Sergio; Herrera, Ramón; Pavón, Diego
2015-06-01
It may well happen that the two main components of the dark sector of the Universe, dark matter and dark energy, do not evolve separately but interact nongravitationally with one another. However, given our current lack of knowledge of the microscopic nature of these two components, there is no clear theoretical path to determine their interaction. Yet, over the years, phenomenological interaction terms have been proposed on mathematical simplicity and heuristic arguments. In this paper, based on the likely evolution of the ratio between the energy densities of these dark components, we lay down reasonable criteria to obtain phenomenological, useful, expressions of the said term independent of any gravity theory. We illustrate this with different proposals which seem compatible with the known evolution of the Universe at the background level. Likewise, we show that two possible degeneracies with noninteracting models are only apparent as they can be readily broken at the background level. Further, we analyze some interaction terms that appear in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, Albert M; et al.
A search for dark matter is conducted in events with large missing transverse momentum and a hadronically decaying, Lorentz-boosted top quark. This study is performed using proton-proton collisions at a center-of-mass energy of 13 TeV, in data recorded by the CMS detector in 2016 at the LHC, corresponding to an integrated luminosity of 36 fbmore » $$^{-1}$$. New substructure techniques, including the novel use of energy correlation functions, are utilized to identify the decay products of the top quark. With no significant deviations observed from predictions of the standard model, limits are placed on the production of new heavy bosons coupling to dark matter particles. For a scenario with purely vector-like or purely axial-vector-like flavor changing neutral currents, mediator masses between 0.20 and 1.75 TeV are excluded at 95% confidence level, given a sufficiently small dark matter mass. Scalar resonances decaying into a top quark and a dark matter fermion are excluded for masses below 3.4 TeV, assuming a dark matter mass of 100 GeV.« less
Not-so-well-tempered neutralino
NASA Astrophysics Data System (ADS)
Profumo, Stefano; Stefaniak, Tim; Stephenson-Haskins, Laurel
2017-09-01
Light electroweakinos, the neutral and charged fermionic supersymmetric partners of the standard model SU (2 )×U (1 ) gauge bosons and of the two SU(2) Higgs doublets, are an important target for searches for new physics with the Large Hadron Collider (LHC). However, if the lightest neutralino is the dark matter, constraints from direct dark matter detection experiments rule out large swaths of the parameter space accessible to the LHC, including in large part the so-called "well-tempered" neutralinos. We focus on the minimal supersymmetric standard model (MSSM) and explore in detail which regions of parameter space are not excluded by null results from direct dark matter detection, assuming exclusive thermal production of neutralinos in the early universe, and illustrate the complementarity with current and future LHC searches for electroweak gauginos. We consider both bino-Higgsino and bino-wino "not-so-well-tempered" neutralinos, i.e. we include models where the lightest neutralino constitutes only part of the cosmological dark matter, with the consequent suppression of the constraints from direct and indirect dark matter searches.
The Value of Darkness: A Moral Framework for Urban Nighttime Lighting.
Stone, Taylor
2018-04-01
The adverse effects of artificial nighttime lighting, known as light pollution, are emerging as an important environmental issue. To address these effects, current scientific research focuses mainly on identifying what is bad or undesirable about certain types and uses of lighting at night. This paper adopts a value-sensitive approach, focusing instead on what is good about darkness at night. In doing so, it offers a first comprehensive analysis of the environmental value of darkness at night from within applied ethics. A design for values orientation is utilized to conceptualize, define, and categorize the ways in which value is derived from darkness. Nine values are identified and categorized via their type of good, temporal outlook, and spatial characteristics. Furthermore, these nine values are translated into prima facie moral obligations that should be incorporated into future design choices, policy-making, and innovations to nighttime lighting. Thus, the value of darkness is analyzed with the practical goal of informing future decision-making about urban nighttime lighting.
Falsification of dark energy by fluid mechanics
NASA Astrophysics Data System (ADS)
Gibson, Carl H.
2011-11-01
The 2011 Nobel Prize in Physics has been awarded for the discovery from observations of increased supernovae dimness interpreted as distance, so that the Universe expansion rate has changed from a rate decreasing since the big bang to one that is now increasing, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanical considerations falsify both the accelerating expansion and dark energy concepts. Kinematic viscosity is neglected in current stan- dard models of self-gravitational structure formation, which rely on cold dark matter CDM condensations and clusterings that are also falsified by fluid mechanics. Weakly collisional CDM particles do not condense but diffuse away. Photon viscosity predicts su- perclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the plasma fragments into Earth-mass gas planets in trillion planet clumps (proto-globular-star-cluster PGCs). The hydrogen planets freeze to form the dark matter of galaxies and merge to form their stars. Dark energy is a systematic dimming error for Supernovae Ia caused by dark matter planets near hot white dwarf stars at the Chandrasekhar carbon limit. Evaporated planet atmospheres may or may not scatter light from the events depending on the line of sight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caprini, Chiara; Tamanini, Nicola, E-mail: chiara.caprini@cea.fr, E-mail: nicola.tamanini@cea.fr
We perform a forecast analysis of the capability of the eLISA space-based interferometer to constrain models of early and interacting dark energy using gravitational wave standard sirens. We employ simulated catalogues of standard sirens given by merging massive black hole binaries visible by eLISA, with an electromagnetic counterpart detectable by future telescopes. We consider three-arms mission designs with arm length of 1, 2 and 5 million km, 5 years of mission duration and the best-level low frequency noise as recently tested by the LISA Pathfinder. Standard sirens with eLISA give access to an intermediate range of redshift 1 ∼< zmore » ∼< 8, and can therefore provide competitive constraints on models where the onset of the deviation from ΛCDM (i.e. the epoch when early dark energy starts to be non-negligible, or when the interaction with dark matter begins) occurs relatively late, at z ∼< 6. If instead early or interacting dark energy is relevant already in the pre-recombination era, current cosmological probes (especially the cosmic microwave background) are more efficient than eLISA in constraining these models, except possibly in the interacting dark energy model if the energy exchange is proportional to the energy density of dark energy.« less
Quantum Dot Detector Enhancement for Narrow Band Multispectral Applications
2013-12-01
19 2.4.3 Dark Current and Noise Current Measurement of QDIPs ............................ 20 3.0...Current of QDIPs Measured by Source Meter .................................................. 21 Figure 20: Schematic View of Noise Current Setup...Photodetectors, or QWIPs ), reduced dependence of the carrier distribution on the temperature, higher photoconductive gain, carrier lifetimes 10-100 times
The DAFT/FADA Survey status and latest results
NASA Astrophysics Data System (ADS)
Guennou, L.
2011-12-01
We present here the latest results obtained from the American French collaboration called the Dark energy American French Team/French American DArk energy Team (DAFT/FADA). The goal of the DAFT/FADA collaboration is to carry out a weak lensing tomography survey of z = 0.4-0.9 rich clusters of galaxies. Unlike supernovae or other methods such as cluster of galaxy counts, weak lensing tomography is purely based on geometry and does not depend on knowledge of the physics of the objects used as distance indicators. In addition, the reason for analyzing observations in the direction of clusters is that the shear signal is enhanced by about 10 over the field. Our work will eventually contain results obtained on 91 rich clusters from the HST archive combined with ground based work to obtain photo-zs. This combination of photo-z and weak lensing tomography will enable us to constrain the equation of state of dark energy. We present here the latest results obtained so far in this study.
Protecting Dark Skies as a State-Wide Resource
NASA Astrophysics Data System (ADS)
Allen, Lori E.; Walker, Constance E.; Hall, Jeffrey C.; Larson, Steve; Williams, Grant; Falco, Emilio; Hinz, Joannah; Fortin, Pascal; Brocious, Dan; Corbally, Christopher; Gabor, Paul; Veillet, Christian; Shankland, Paul; Jannuzi, Buell; Cotera, Angela; Luginbuhl, Christian
2018-01-01
The state of Arizona contains the highest concentration of research telescopes in the continental United States, contributing more than a quarter of a billion dollars annually to the state's economy. Protecting the dark skies above these observatories is both good for astronomy and good for the state's economy. In this contribution we describe how a coalition of Arizona observatories is working together to protect our dark skies. Efforts date back to the creation of one of the first Outdoor Lighting Codes in the United States and continue today, including educational outreach, public policy engagement, and consensus building. We review some proven strategies, highlight recent successes and look at current threats.
Results from the XENON10 and the Race to Detect Dark Matter with Noble Liquids
Shutt, Tom [Case Western Reserve, Cleveland, Ohio, United States
2017-12-09
Detectors based on liquid noble gases have the potential to revolutionize the direct search for WIMP dark matter. The XENON10 experiment, of which I am a member, has recently announced the results from it's first data run and is now the leading WIMP search experiment. This and other experiments using xenon, argon and neon have the potential to rapidly move from the current kg-scale target mass to the ton scale and well beyond. This should allow a (nearly) definitive test or discovery of dark matter if it is in the form of weakly interacting massive particles.
Dark Energy: A Crisis for Fundamental Physics
Stubbs, Christopher [Harvard University, Cambridge, Massachusetts, USA
2017-12-09
Astrophysical observations provide robust evidence that our current picture of fundamental physics is incomplete. The discovery in 1998 that the expansion of the Universe is accelerating (apparently due to gravitational repulsion between regions of empty space!) presents us with a profound challenge, at the interface between gravity and quantum mechanics. This "Dark Energy" problem is arguably the most pressing open question in modern fundamental physics. The first talk will describe why the Dark Energy problem constitutes a crisis, with wide-reaching ramifications. One consequence is that we should probe our understanding of gravity at all accessible scales, and the second talk will present experiments and observations that are exploring this issue.
SABRE - A test of DAMA with high-purity NaI(Tl) crystals
NASA Astrophysics Data System (ADS)
Xu, Jingke; Calaprice, Frank; Froborg, Francis; Shields, Emily; Suerfu, Burkhant
2015-08-01
The dark matter claim by DAMA is both significant and controversial. Several experiments have claimed to rule out DAMA/LIBRA, but the comparisons are made based on dark matter halo and dark matter-interaction models that are currently unknown. Therefore, an unambiguous test of DAMA/LIBRA is best made using NaI(Tl) crystals with lower residual background than that of DAMA/LIBRA, and the SABRE experiment is designed to achieve this goal. In this paper we will discuss the development of high-purity SABRE NaI(Tl) crystals and detectors, and progress of the SABRE experiment toward testing DAMA/LIBRA.
Analysis of Alpha Backgrounds in DarkSide-50
NASA Astrophysics Data System (ADS)
Monte, Alissa; DarkSide Collaboration
2017-01-01
DarkSide-50 is the current phase of the DarkSide direct dark matter search program, operating underground at the Laboratori Nazionali del Gran Sasso in Italy. The detector is a dual-phase argon Time Projection Chamber (TPC), designed for direct detection of Weakly Interacting Massive Particles, and housed within an active veto system of liquid scintillator and water Cherenkov detectors. Since switching to a target of low radioactivity argon extracted from underground sources in April, 2016, the background is no longer dominated by naturally occurring 39Ar. However, alpha backgrounds from radon and its daughters remain, both from the liquid argon bulk and internal detector surfaces. I will present details of the analysis used to understand and quantify alpha backgrounds, as well as to understand other types of radon contamination that may be present, and our sensitivity to them.
NASA Astrophysics Data System (ADS)
Korsmeier, Michael; Donato, Fiorenza; Fornengo, Nicolao
2018-05-01
Cosmic rays are an important tool to study dark matter (DM) annihilation in our Galaxy. Recently, a possible hint for dark matter annihilation was found in the antiproton spectrum measured by AMS-02, even though the result might be affected by theoretical uncertainties. A complementary way to test its dark matter interpretation would be the observation of low-energy antinuclei in cosmic rays. We determine the chances to observe antideuterons with GAPS and AMS-02 and the implications for the ongoing AMS-02 antihelium searches. We find that the corresponding antideuteron signal is within the GAPS and AMS-02 detection potential. If, more conservatively, the putative signal was considered as an upper limit on DM annihilation, our results would indicate the highest possible fluxes for antideuterons and antihelium compatible with current antiproton data.
Cardiovascular Benefits of Dark Chocolate?
Higginbotham, Erin; Taub, Pam R
2015-12-01
The use of cacao for health benefits dates back at least 3000 years. Our understanding of cacao has evolved with modern science. It is now felt based on extensive research the main health benefits of cacao stem from epicatechin, a flavanol found in cacao. The process of manufacturing dark chocolate retains epicatechin, whereas milk chocolate does not contain significant amounts of epicatechin. Thus, most of the current research studies are focused on dark chocolate. Both epidemiological and clinical studies suggest a beneficial effect of dark chocolate on blood pressure, lipids, and inflammation. Proposed mechanisms underlying these benefits include enhanced nitric oxide bioavailability and improved mitochondrial structure/function. Ultimately, further studies of this promising compound are needed to elucidate its potential for prevention and treatment of cardiovascular and metabolic diseases as well as other diseases that have underlying mechanisms of mitochondrial dysfunction and nitric oxide deficiency.
Higgs exotic decays in general NMSSM with self-interacting dark matter
NASA Astrophysics Data System (ADS)
Wang, Wenyu; Zhang, Mengchao; Zhao, Jun
2018-04-01
Under current LHC and dark matter constraints, the general NMSSM can have self-interacting dark matter to explain the cosmological small structure. In this scenario, the dark matter is the light singlino-like neutralino (χ) which self-interacts through exchanging the light singlet-like scalars (h1,a1). These light scalars and neutralinos inevitably interact with the 125 GeV SM-like Higgs boson (hSM), which cause the Higgs exotic decays hSM → h1h1, a1a1, χχ. We first demonstrate the parameter space required by the explanation of the cosmological small structure and then display the Higgs exotic decays. We find that in such a parameter space the Higgs exotic decays can have branching ratios of a few percent, which should be accessible in the future e+e‑ colliders.
Stern, Ian P.
2014-01-01
We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axionsmore » at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.« less
Higgs seesaw mechanism as a source for dark energy.
Krauss, Lawrence M; Dent, James B
2013-08-09
Motivated by the seesaw mechanism for neutrinos which naturally generates small neutrino masses, we explore how a small grand-unified-theory-scale mixing between the standard model Higgs boson and an otherwise massless hidden sector scalar can naturally generate a small mass and vacuum expectation value for the new scalar which produces a false vacuum energy density contribution comparable to that of the observed dark energy dominating the current expansion of the Universe. This provides a simple and natural mechanism for producing the correct scale for dark energy, even if it does not address the long-standing question of why much larger dark energy contributions are not produced from the visible sector. The new scalar produces no discernible signatures in existing terrestrial experiments so that one may have to rely on other cosmological tests of this idea.
Discussion about photodiode architectures for space applications
NASA Astrophysics Data System (ADS)
Gravrand, O.; Destefanis, G.; Cervera, C.; Zanatta, J.-P.; Baier, N.; Ferron, A.; Boulade, O.
2017-11-01
Detection for space application is very demanding on the IR detector: all wavelengths, from visible-NIR (2- 3um cutoff) to LWIR (10-12.5um cutoff), even sometimes VLWIR (15um cutoff) may be of interest. Moreover, various scenarii are usually considered. Some are imaging applications where the focal plane array (FPA) is used as an optical element to sense an image. However, the FPA may also be used in spectrometric applications where light is triggered on the different pixels depending on its wavelength. In some cases, star pointing is another use of FPAs where the retina is used to sense the position of the satellite. In all those configurations, we might distinguish several categories of applications: • low flux applications where the FPA is staring at space and the detection occurs with only a few number of photons. • high flux applications where the FPA is usually staring at the earth. In this case, the black body emission of the earth and its atmosphere ensures usually a large number of photons to perform the detection. Those two different categories are highly dimensioning for the detector as it usually determines the level of dark current and quantum efficiency (QE) requirements. Indeed, high detection performance usually requires a large number of integrated photons such that high QE is needed for low flux applications, in order to limit the integration time as much as possible. Moreover, dark current requirement is also directly linked to the expected incoming flux, in order to limit as much as possible the SNR degradation due to dark charges vs photocharges. Note that in most cases, this dark current is highly depending on operating temperature which dominates detector consumption. A classical way to mitigate dark current is to cool down the detector to very low temperatures. This paper won't discuss the need for wavefront sensing where the number of detected photons is low because of a very narrow integration window. Rigorously, this kind of configuration is a low flux application but the need for speed distinguishes it from other low flux applications as it usually requires a different ROIC architecture and a photodiode optimized for high response speed.
Photometer for detection of sodium day airglow.
NASA Technical Reports Server (NTRS)
Mcmahon, D. J.; Manring, E. R.; Patty, R. R.
1973-01-01
Description of a photometer for daytime ground-based measurements of sodium airglow emission. The photometer described can be characterized by the following principal features: (1) a narrow (4.5-A) interference filter for initial discrimination; (2) cooled photomultiplier detector to reduce noise from dark current fluctuations and chopping to eliminate the average dark current; (3) a sodium vapor resonance cell to provide an effective bandpass comparable to the Doppler line width; (4) separate detection of all light transmitted by the interference filter to evaluate the Rayleigh and Mie components within the Doppler width of the resonance cell; and (5) temperature quenching of the resonance cell to evaluate and account for instrumental imperfections.
Low temperature performance of a commercially available InGaAs image sensor
NASA Astrophysics Data System (ADS)
Nakaya, Hidehiko; Komiyama, Yutaka; Kashikawa, Nobunari; Uchida, Tomohisa; Nagayama, Takahiro; Yoshida, Michitoshi
2016-08-01
We report the evaluation results of a commercially available InGaAs image sensor manufactured by Hamamatsu Photonics K. K., which has sensitivity between 0.95μm and 1.7μm at a room temperature. The sensor format was 128×128 pixels with 20 μm pitch. It was tested with our original readout electronics and cooled down to 80 K by a mechanical cooler to minimize the dark current. Although the readout noise and dark current were 200 e- and 20 e- /sec/pixel, respectively, we found no serious problems for the linearity, wavelength response, and intra-pixel response.
Bo, Renheng; Nasiri, Noushin; Chen, Hongjun; Caputo, Domenico; Fu, Lan; Tricoli, Antonio
2017-01-25
Accurate detection of UV light by wearable low-power devices has many important applications including environmental monitoring, space to space communication, and defense. Here, we report the structural engineering of ultraporous ZnO nanoparticle networks for fabrication of very low-voltage high-performance UV photodetectors. A record high photo- to dark-current ratio of 3.3 × 10 5 and detectivity of 3.2 × 10 12 Jones at an ultralow operation bias of 2 mV and low UV-light intensity of 86 μW·cm -2 are achieved by controlling the interplay between grain boundaries and surface depletion depth of ZnO nanoscale semiconductors. An optimal window of structural properties is determined by varying the particle size of ultraporous nanoparticle networks from 10 to 42 nm. We find that small electron-depleted nanoparticles (≤40 nm) are necessary to minimize the dark-current; however, the rise in photocurrent is tampered with decreasing particle size due to the increasing density of grain boundaries. These findings reveal that nanoparticles with a size close to twice their Debye length are required for high photo- to dark-current ratio and detectivity, while further decreasing their size decreases the photodetector performance.
Wide-area SWIR arrays and active illuminators
NASA Astrophysics Data System (ADS)
MacDougal, Michael; Hood, Andrew; Geske, Jon; Wang, Chad; Renner, Daniel; Follman, David; Heu, Paula
2012-01-01
We describe the factors that go into the component choices for a short wavelength (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7°C. We have mated our InGaAs detector arrays to 640x512 readout integrated integrated circuits (ROICs) to make focal plane arrays (FPAs). In addition, we have fabricated high definition 1920x1080 FPAs for wide field of view imaging. The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 microns at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0°C. FLIR has also developed a high definition, 1920x1080, 15 um pitch SWIR sensor. In addition, FLIR has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, provide artifact-free imagery versus conventional laser illuminators.
Noise characteristics analysis of short wave infrared InGaAs focal plane arrays
NASA Astrophysics Data System (ADS)
Yu, Chunlei; Li, Xue; Yang, Bo; Huang, Songlei; Shao, Xiumei; Zhang, Yaguang; Gong, Haimei
2017-09-01
The increasing application of InGaAs short wave infrared (SWIR) focal plane arrays (FPAs) in low light level imaging requires ultra-low noise FPAs. This paper presents the theoretical analysis of FPA noise, and point out that both dark current and detector capacitance strongly affect the FPA noise. The impact of dark current and detector capacitance on FPA noise is compared in different situations. In order to obtain low noise performance FPAs, the demand for reducing detector capacitance is higher especially when pixel pitch is smaller, integration time is shorter, and integration capacitance is larger. Several InGaAs FPAs were measured and analyzed, the experiments' results could be well fitted to the calculated results. The study found that the major contributor of FPA noise is coupled noise with shorter integration time. The influence of detector capacitance on FPA noise is more significant than that of dark current. To investigate the effect of detector performance on FPA noise, two kinds of photodiodes with different concentration of the absorption layer were fabricated. The detectors' performance and noise characteristics were measured and analyzed, the results are consistent with that of theoretical analysis.
Ultra-Low Dark Current HgCdTe Detector in SWIR for Space Applications
NASA Astrophysics Data System (ADS)
Cervera, C.; Boulade, O.; Gravrand, O.; Lobre, C.; Guellec, F.; Sanson, E.; Ballet, P.; Santailler, J. L.; Moreau, V.; Zanatta, J. P.; Fieque, B.; Castelein, P.
2017-10-01
This paper presents recent developments at Commissariat à l'Energie atomique, Laboratoire d'Electronique et de Technologie de l'Information infrared laboratory on processing and characterization of p-on- n HgCdTe (MCT) planar infrared focal plane arrays (FPAs) in short-wave infrared (SWIR) spectral band for the astrophysics applications. These FPAs have been grown using both liquid phase epitaxy and molecular beam epitaxy on a lattice-matched CdZnTe substrate. This technology exhibits lower dark current and lower series resistance in comparison with n-on- p vacancy-doped architecture and is well adapted for low flux detection or high operating temperature. This architecture has been evaluated for space applications in long-wave infrared and very-long-wave infrared spectral bands with cut-off wavelengths from 10 μm up to 17 μm at 78 K and is now evaluated for the SWIR range. The metallurgical nature of the absorbing layer is also examined and both molecular beam epitaxy and liquid phase epitaxy have been investigated. Electro-optical characterizations have been performed on individual photodiodes from test arrays, whereas dark current investigation has been performed with a fully functional readout integrated circuit dedicated to low flux operations.
The Dark Cube: dark character profiles and OCEAN.
Garcia, Danilo; González Moraga, Fernando R
2017-01-01
The Big Five traits (i.e., openness, conscientiousness, extraversion, agreeableness, and neuroticism: OCEAN) have been suggested to provide a meaningful taxonomy for studying the Dark Triad: Machiavellianism, narcissism, and psychopathy. Nevertheless, current research consists of mixed and inconsistent associations between the Dark Triad and OCEAN. Here we used the Dark Cube (Garcia & Rosenberg, 2016), a model of malevolent character theoretically based on Cloninger's biopsychosocial model of personality and in the assumption of a ternary structure of malevolent character. We use the dark cube profiles to investigate differences in OCEAN between individuals who differ in one dark character trait while holding the other two constant (i.e., conditional relationships). Participants ( N = 330) responded to the Short Dark Triad Inventory and the Big Five Inventory and were grouped according to the eight possible combinations using their dark trait scores (M, high Machiavellianism; m, low Machiavellianism; N, high narcissism; n, low narcissism; P, high psychopathy; p, low psychopathy): MNP "maleficent", MNp "manipulative narcissistic", MnP "anti-social", Mnp "Machiavellian", mNP "psychopathic narcissistic", mNp "narcissistic", mnP "psychopathic", and mnp "benevolent". High narcissism-high extraversion and high psychopathy-low agreeableness were consistently associated across comparisons. The rest of the comparisons showed a complex interaction. For example, high Machiavellianism-high neuroticism only when both narcissism and psychopathy were low (Mnp vs. mnp), high narcissism-high conscientiousness only when both Machiavellianism and psychopathy were also high (MNP vs. MnP), and high psychopathy-high neuroticism only when Machiavellianism was low and narcissism was high (mNP vs. mNp). We suggest that the Dark Cube is a useful tool in the investigation of a consistent Dark Triad Theory. This approach suggests that the only clear relationships were narcissism-extraversion and psychopathy-agreeableness and that the malevolent character traits were associated to specific OCEAN traits only under certain conditions. Hence, explaining the mixed and inconsistent linear associations in the Dark Triad literature.
The Dark Cube: dark character profiles and OCEAN
González Moraga, Fernando R.
2017-01-01
Background The Big Five traits (i.e., openness, conscientiousness, extraversion, agreeableness, and neuroticism: OCEAN) have been suggested to provide a meaningful taxonomy for studying the Dark Triad: Machiavellianism, narcissism, and psychopathy. Nevertheless, current research consists of mixed and inconsistent associations between the Dark Triad and OCEAN. Here we used the Dark Cube (Garcia & Rosenberg, 2016), a model of malevolent character theoretically based on Cloninger’s biopsychosocial model of personality and in the assumption of a ternary structure of malevolent character. We use the dark cube profiles to investigate differences in OCEAN between individuals who differ in one dark character trait while holding the other two constant (i.e., conditional relationships). Method Participants (N = 330) responded to the Short Dark Triad Inventory and the Big Five Inventory and were grouped according to the eight possible combinations using their dark trait scores (M, high Machiavellianism; m, low Machiavellianism; N, high narcissism; n, low narcissism; P, high psychopathy; p, low psychopathy): MNP “maleficent”, MNp “manipulative narcissistic”, MnP “anti-social”, Mnp “Machiavellian”, mNP “psychopathic narcissistic”, mNp “narcissistic”, mnP “psychopathic”, and mnp “benevolent”. Results High narcissism-high extraversion and high psychopathy-low agreeableness were consistently associated across comparisons. The rest of the comparisons showed a complex interaction. For example, high Machiavellianism-high neuroticism only when both narcissism and psychopathy were low (Mnp vs. mnp), high narcissism-high conscientiousness only when both Machiavellianism and psychopathy were also high (MNP vs. MnP), and high psychopathy-high neuroticism only when Machiavellianism was low and narcissism was high (mNP vs. mNp). Conclusions We suggest that the Dark Cube is a useful tool in the investigation of a consistent Dark Triad Theory. This approach suggests that the only clear relationships were narcissism-extraversion and psychopathy-agreeableness and that the malevolent character traits were associated to specific OCEAN traits only under certain conditions. Hence, explaining the mixed and inconsistent linear associations in the Dark Triad literature. PMID:28951816
Costs of colour change in fish: food intake and behavioural decisions.
Rodgers, Gwendolen M; Gladman, Nicholas W; Corless, Hannah F; Morrell, Lesley J
2013-07-15
Many animals, particularly reptiles, amphibians, fish and cephalopods, have the ability to change their body colour, for functions including thermoregulation, signalling and predator avoidance. Many fish plastically darken their body colouration in response to dark visual backgrounds, and this functions to reduce predation risk. Here, we tested the hypotheses that colour change in fish (1) carries with it an energetic cost and (2) affects subsequent shoal and habitat choice decisions. We demonstrate that guppies (Poecilia reticulata) change colour in response to dark and light visual backgrounds, and that doing so carries an energetic cost in terms of food consumption. By increasing food intake, however, guppies are able to maintain growth rates and meet the energetic costs of changing colour. Following colour change, fish preferentially choose habitats and shoals that match their own body colouration, and maximise crypsis, thus avoiding the need for further colour change but also potentially paying an opportunity cost associated with restriction to particular habitats and social associates. Thus, colour change to match the background is complemented by behavioural strategies, which should act to maximise fitness in variable environments.
Horowitz, Seth S; Cheney, Cheryl A; Simmons, James A
2004-01-01
The big brown bat (Eptesicus fuscus) is an aerial-feeding insectivorous species that relies on echolocation to avoid obstacles and to detect flying insects. Spatial perception in the dark using echolocation challenges the vestibular system to function without substantial visual input for orientation. IR thermal video recordings show the complexity of bat flights in the field and suggest a highly dynamic role for the vestibular system in orientation and flight control. To examine this role, we carried out laboratory studies of flight behavior under illuminated and dark conditions in both static and rotating obstacle tests while administering heavy water (D2O) to impair vestibular inputs. Eptesicus carried out complex maneuvers through both fixed arrays of wires and a rotating obstacle array using both vision and echolocation, or when guided by echolocation alone. When treated with D2O in combination with lack of visual cues, bats showed considerable decrements in performance. These data indicate that big brown bats use both vision and echolocation to provide spatial registration for head position information generated by the vestibular system.
Degradation in perovskite solar cells stored under different environmental conditions
NASA Astrophysics Data System (ADS)
Chauhan, Abhishek K.; Kumar, Pankaj
2017-08-01
Investigations carried out on the degradation of perovskite solar cells (PSCs) stored in different open air environmental conditions are reported here. The solar cells were stored in the open in the dark inside the laboratory (relative humidity 47 ± 5%, temperature 23 ± 4 °C), under compact fluorescent lamp (CFL) illumination (irradiance 10 mW cm2, relative humidity 47 ± 5%, temperature 23 ± 4 °C) and under natural sunlight outside the laboratory. In the outdoor storage situation the surrounding conditions varied from time to time and the environmental conditions during the day (irradiance 100 mW/cm2, relative humidity ~18%, temperature ~45 °C at noon) were entirely different from those at night (irradiance 0 mW/cm2, relative humidity ~66%, temperature ~16 °C at midnight). The photovoltaic parameters were measured from time to time inside the laboratory as per the International Summit on Organic Photovoltaic Stability (ISOS) protocols. All the photovoltaic parameters, such as short circuit current density (J sc), open circuit voltage (V oc), fill factor (FF) and power conversion efficiency (PCE), of the solar cells stored outdoors decayed more rapidly than those stored under CFL or in the dark. The solar cells stored in the dark exhibited maximum stability. While the encapsulated solar cells stored outdoors were completely dead after about 560 h, the solar cells stored under CFL illumination retained >60% of their initial efficiency even after 1100 h. However, the solar cells stored in the dark and tested up to ~1100 h did not show any degradation in PCE but on the contrary exhibited slight improvement, and this improvement was mainly because of improvement in their V oc. Rapid degradation in the open air outside the laboratory under direct sunlight compared with the dark and CFL storage has been attributed to high temperature during the day, high humidity at night, high solar illumination intensity and the presence of ultra-violet and infra-red radiation in incident solar light. Under CFL storage the top Ag electrode decomposed and reacted with the active layer. The decomposition and reaction of Ag electrode was accelerated in the outdoor conditions under direct sunlight. These results suggest that Ag is a good electrode material for efficient PSCs but is not good for their long term stability.
Searching for dark matter with neutron star mergers and quiet kilonovae
NASA Astrophysics Data System (ADS)
Bramante, Joseph; Linden, Tim; Tsai, Yu-Dai
2018-03-01
We identify new astrophysical signatures of dark matter that implodes neutron stars (NSs), which could decisively test whether NS-imploding dark matter is responsible for missing pulsars in the Milky Way galactic center, the source of some r -process elements, and the origin of fast-radio bursts. First, NS-imploding dark matter forms ˜10-10 solar mass or smaller black holes inside neutron stars, which proceed to convert neutron stars into ˜1.5 solar mass black holes (BHs). This decreases the number of neutron star mergers seen by LIGO/Virgo (LV) and associated merger kilonovae seen by telescopes like DES, BlackGEM, and ZTF, instead producing a population of "black mergers" containing ˜1.5 solar mass black holes. Second, dark matter-induced neutron star implosions may create a new kind of kilonovae that lacks a detectable, accompanying gravitational signal, which we call "quiet kilonovae." Using DES data and the Milky Way's r-process abundance, we constrain quiet kilonovae. Third, the spatial distribution of neutron star merger kilonovae and quiet kilonovae in galaxies can be used to detect dark matter. NS-imploding dark matter destroys most neutron stars at the centers of disc galaxies, so that neutron star merger kilonovae would appear mostly in a donut at large radii. We find that as few as ten neutron star merger kilonova events, located to ˜1 kpc precision could validate or exclude dark matter-induced neutron star implosions at 2 σ confidence, exploring dark matter-nucleon cross-sections 4-10 orders of magnitude below current direct detection experimental limits. Similarly, NS-imploding dark matter as the source of fast radio bursts can be tested at 2 σ confidence once 20 bursts are located in host galaxies by radio arrays like CHIME and HIRAX.
Anti-anthropic solutions to the cosmic coincidence problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedrow, Joseph M.; Griest, Kim, E-mail: j.m.fedrow@gmail.com, E-mail: kgriest@ucsd.edu
2014-01-01
A cosmological constant fits all current dark energy data, but requires two extreme fine tunings, both of which are currently explained by anthropic arguments. Here we discuss anti-anthropic solutions to one of these problems: the cosmic coincidence problem- that today the dark energy density is nearly equal to the matter density. We replace the ensemble of Universes used in the anthropic solution with an ensemble of tracking scalar fields that do not require fine-tuning. This not only does away with the coincidence problem, but also allows for a Universe that has a very different future than the one currently predictedmore » by a cosmological constant. These models also allow for transient periods of significant scalar field energy (SSFE) over the history of the Universe that can give very different observational signatures as compared with a cosmological constant, and so can be confirmed or disproved in current and upcoming experiments.« less
Electrical and optical performance of mid-wavelength infrared InAsSb heterostructure detectors
NASA Astrophysics Data System (ADS)
Gomółka, Emilia; Kopytko, Małgorzata; Michalczewski, Krystian; Kubiszyn, Łukasz; Kebłowski, Artur; Gawron, Waldemar; Martyniuk, Piotr; Piotrowski, Józef; Rutkowski, Jarosław
2017-10-01
In this work we investigate the high-operating temperature performance of InAsSb/AlSb heterostructure detectors with cut-off wavelengths near 5 μm at 230 K. The devices have been fabricated with different type of the absorbing layer: nominally undoped absorber, and both n- and p-type doped. The results show that the device performance strongly depends on absorber layer doping. Generally, p-type absorber provides higher values of current responsivity than n-type absorber, but at the same time also higher values of dark current. The device with nominally undoped absorbing layer shows moderate values of both current responsivity and dark current. Resulting detectivities D° of non-immersed devices varies from 2×109 to 7×109 cmHz1/2/W at 230 K, which is easily achievable with a two stage thermoelectric cooler.
Neutron radiation damage and recovery studies of SiPMs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, T.; Rao, T.; Stoll, S.
We characterized the performance of Silicon Photomultipliers (SiPMs) before and after exposure of up to 10 12 neutron/cm 2 dosage. We show that the typical orders of magnitude increase of dark current upon neutron irradiation can be suppressed by operating it at a lower temperature and single-photoelectron detection capability can be restored. The required operating temperature depends on the dosage received. Furthermore, after high temperature thermal annealing, there is compelling evidence that the extrinsic dark current is lowered by orders of magnitude and single-photon detection performance are to some extent recovered at room temperature. Our experimental findings might have widespreadmore » implications for extending the functionality and the useful lifetime of current and future large scale SiPM detectors deployed in ionization radiation environment.« less
3D MHD SIMULATION OF FLARE SUPRA-ARCADE DOWNFLOWS IN A TURBULENT CURRENT SHEET MEDIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cécere, M.; Zurbriggen, E.; Costa, A.
2015-07-01
Supra-arcade downflows (SADs) are sunward, generally dark, plasma density depletions originated above posteruption flare arcades. In this paper, using 3D MHD simulations we investigate whether the SAD cavities can be produced by a direct combination of the tearing mode and Kelvin–Helmholtz instabilities leading to a turbulent current sheet (CS) medium or if the current sheet is merely the background where SADs are produced, triggered by an impulsive deposition of energy. We find that to give an account of the observational dark lane structures an addition of local energy, provided by a reconnection event, is required. We suggest that there maymore » be a closed relation between characteristic SAD sizes and CS widths that must be satisfied to obtain an observable SAD.« less
3D MHD Simulation of Flare Supra-Arcade Downflows in a Turbulent Current Sheet Medium
NASA Astrophysics Data System (ADS)
Cécere, M.; Zurbriggen, E.; Costa, A.; Schneiter, M.
2015-07-01
Supra-arcade downflows (SADs) are sunward, generally dark, plasma density depletions originated above posteruption flare arcades. In this paper, using 3D MHD simulations we investigate whether the SAD cavities can be produced by a direct combination of the tearing mode and Kelvin-Helmholtz instabilities leading to a turbulent current sheet (CS) medium or if the current sheet is merely the background where SADs are produced, triggered by an impulsive deposition of energy. We find that to give an account of the observational dark lane structures an addition of local energy, provided by a reconnection event, is required. We suggest that there may be a closed relation between characteristic SAD sizes and CS widths that must be satisfied to obtain an observable SAD.
Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol’tsman, Gregory; Bezryadin, Alexey
2015-01-01
We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced. PMID:25988591
Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol'tsman, Gregory; Bezryadin, Alexey
2015-05-19
We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Kohei; Chiba, Masashi, E-mail: kohei.hayashi@ipmu.jp, E-mail: chiba@astr.tohoku.ac.jp
We investigate the non-spherical density structure of dark halos of the dwarf spheroidal (dSph) galaxies in the Milky Way and Andromeda galaxies based on revised axisymmetric mass models from our previous work. The models we adopt here fully take into account velocity anisotropy of tracer stars confined within a flattened dark halo. Applying our models to the available kinematic data of the 12 bright dSphs, we find that these galaxies associate with, in general, elongated dark halos, even considering the effect of this velocity anisotropy of stars. We also find that the best-fit parameters, especially for the shapes of darkmore » halos and velocity anisotropy, are susceptible to both the availability of velocity data in the outer regions and the effect of the lack of sample stars in each spatial bin. Thus, to obtain more realistic limits on dark halo structures, we require photometric and kinematic data over much larger areas in the dSphs than previously explored. The results obtained from the currently available data suggest that the shapes of dark halos in the dSphs are more elongated than those of ΛCDM subhalos. This mismatch needs to be solved by theory including baryon components and the associated feedback to dark halos as well as by further observational limits in larger areas of dSphs. It is also found that more diffuse dark halos may have undergone consecutive star formation history, thereby implying that dark-halo structure plays an important role in star formation activity.« less
NASA Astrophysics Data System (ADS)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Marchesini, I.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Carrillo Montoya, C. A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; El-khateeb, E.; Elgammal, S.; Mohamed, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Alexakhin, V.; Bunin, P.; Gavrilenko, M.; Golunov, A.; Golutvin, I.; Gorbounov, N.; Gorbunov, I.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Smirnov, V.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Korneeva, N.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Volkov, P.; Blinov, V.; Shtol, D.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Yzquierdo, A. Pérez-Calero; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bat, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Tok, U. G.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2018-06-01
A search for dark matter is conducted in events with large missing transverse momentum and a hadronically decaying, Lorentz-boosted top quark. This study is performed using proton-proton collisions at a center-of-mass energy of 13 TeV, in data recorded by the CMS detector in 2016 at the LHC, corresponding to an integrated luminosity of 36 fb-1. New substructure techniques, including the novel use of energy correlation functions, are utilized to identify the decay products of the top quark. With no significant deviations observed from predictions of the standard model, limits are placed on the production of new heavy bosons coupling to dark matter particles. For a scenario with purely vector-like or purely axial-vector-like flavor changing neutral currents, mediator masses between 0.20 and 1.75 TeV are excluded at 95% confidence level, given a sufficiently small dark matter mass. Scalar resonances decaying into a top quark and a dark matter fermion are excluded for masses below 3.4 TeV, assuming a dark matter mass of 100 GeV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, Albert M; et al.
A search for dark matter is conducted in events with large missing transverse momentum and a hadronically decaying, Lorentz-boosted top quark. This study is performed using proton-proton collisions at a center-of-mass energy of 13 TeV, in data recorded by the CMS detector in 2016 at the LHC, corresponding to an integrated luminosity of 36 fbmore » $$^{-1}$$. New substructure techniques, including the novel use of energy correlation functions, are utilized to identify the decay products of the top quark. With no significant deviations observed from predictions of the standard model, limits are placed on the production of new heavy bosons coupling to dark matter particles. For a scenario with purely vector-like or purely axial-vector-like flavor changing neutral currents, mediator masses between 0.20 and 1.75 TeV are excluded at 95% confidence level, given a sufficiently small dark matter mass. Scalar resonances decaying into a top quark and a dark matter fermion are excluded for masses below 3.4 TeV, assuming a dark matter mass of 100 GeV.« less
Cosmological effects of scalar-photon couplings: dark energy and varying-α Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avgoustidis, A.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L.
2014-06-01
We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN datamore » one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temperature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation.« less
A White Paper on keV sterile neutrino Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, R.; Agostini, M.; Ky, N. Anh
We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved—cosmology, astrophysics, nuclear, and particle physics—in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arisingmore » from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.« less
A White Paper on keV sterile neutrino Dark Matter
Adhikari, R.
2017-01-13
Here, we present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. First, we review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterilemore » neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. Our paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.« less
Dalai, Swayamprava; Pakrashi, Sunandan; Chandrasekaran, Natarajan; Mukherjee, Amitava
2013-01-01
The ever increasing industrial and consumer applications of titanium dioxide nanoparticles (TiO2 NPs) raise concern over the possible risk associated with their environmental exposure. Still, the knowledge regarding nanoparticle behavior in a freshwater ecosystem is lacking. The current study focuses on the toxicity of TiO2 NPs towards Ceriodaphnia dubia (a dominant daphnid isolated from the freshwater) under two different conditions; (1) light and dark photoperiod (16:8 h) and (2) continuous dark conditions, for a period of 48 h. An increase in toxicity was observed with an increase in the concentration, until a certain threshold level (under both photoperiod and dark conditions), and beyond which, reduction was noted. The decrease in toxicity would have resulted from the aggregation and settling of NPs, making them less bioavailable. The oxidative stress was one of the major contributors towards cytotoxicity under both photoperiod and dark conditions. The slow depuration of TiO2 NPs under the photoperiod conditions confirmed a higher NP bioaccumulation and thus a higher bioconcentration factor (BCF) compared to dark conditions. The transmission electron micrographs confirmed the bioaccumulation of NPs and damage of tissues in the gut lining. PMID:23658658
A White Paper on keV sterile neutrino Dark Matter
NASA Astrophysics Data System (ADS)
Adhikari, R.; Agostini, M.; Ky, N. Anh; Araki, T.; Archidiacono, M.; Bahr, M.; Baur, J.; Behrens, J.; Bezrukov, F.; Bhupal Dev, P. S.; Borah, D.; Boyarsky, A.; de Gouvea, A.; Pires, C. A. de S.; de Vega, H. J.; Dias, A. G.; Di Bari, P.; Djurcic, Z.; Dolde, K.; Dorrer, H.; Durero, M.; Dragoun, O.; Drewes, M.; Drexlin, G.; Düllmann, Ch. E.; Eberhardt, K.; Eliseev, S.; Enss, C.; Evans, N. W.; Faessler, A.; Filianin, P.; Fischer, V.; Fleischmann, A.; Formaggio, J. A.; Franse, J.; Fraenkle, F. M.; Frenk, C. S.; Fuller, G.; Gastaldo, L.; Garzilli, A.; Giunti, C.; Glück, F.; Goodman, M. C.; Gonzalez-Garcia, M. C.; Gorbunov, D.; Hamann, J.; Hannen, V.; Hannestad, S.; Hansen, S. H.; Hassel, C.; Heeck, J.; Hofmann, F.; Houdy, T.; Huber, A.; Iakubovskyi, D.; Ianni, A.; Ibarra, A.; Jacobsson, R.; Jeltema, T.; Jochum, J.; Kempf, S.; Kieck, T.; Korzeczek, M.; Kornoukhov, V.; Lachenmaier, T.; Laine, M.; Langacker, P.; Lasserre, T.; Lesgourgues, J.; Lhuillier, D.; Li, Y. F.; Liao, W.; Long, A. W.; Maltoni, M.; Mangano, G.; Mavromatos, N. E.; Menci, N.; Merle, A.; Mertens, S.; Mirizzi, A.; Monreal, B.; Nozik, A.; Neronov, A.; Niro, V.; Novikov, Y.; Oberauer, L.; Otten, E.; Palanque-Delabrouille, N.; Pallavicini, M.; Pantuev, V. S.; Papastergis, E.; Parke, S.; Pascoli, S.; Pastor, S.; Patwardhan, A.; Pilaftsis, A.; Radford, D. C.; Ranitzsch, P. C.-O.; Rest, O.; Robinson, D. J.; Rodrigues da Silva, P. S.; Ruchayskiy, O.; Sanchez, N. G.; Sasaki, M.; Saviano, N.; Schneider, A.; Schneider, F.; Schwetz, T.; Schönert, S.; Scholl, S.; Shankar, F.; Shrock, R.; Steinbrink, N.; Strigari, L.; Suekane, F.; Suerfu, B.; Takahashi, R.; Van, N. Thi Hong; Tkachev, I.; Totzauer, M.; Tsai, Y.; Tully, C. G.; Valerius, K.; Valle, J. W. F.; Venos, D.; Viel, M.; Vivier, M.; Wang, M. Y.; Weinheimer, C.; Wendt, K.; Winslow, L.; Wolf, J.; Wurm, M.; Xing, Z.; Zhou, S.; Zuber, K.
2017-01-01
We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved—cosmology, astrophysics, nuclear, and particle physics—in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.
Differentiating Dark Triad Traits Within and Across Interpersonal Circumplex Surfaces.
Dowgwillo, Emily A; Pincus, Aaron L
2017-01-01
Recent discussions surrounding the Dark Triad (narcissism, psychopathy, and Machiavellianism) have centered on areas of distinctiveness and overlap. Given that interpersonal dysfunction is a core feature of Dark Triad traits, the current study uses self-report data from 562 undergraduate students to examine the interpersonal characteristics associated with narcissism, psychopathy, and Machiavellianism on four interpersonal circumplex (IPC) surfaces. The distinctiveness of these characteristics was examined using a novel bootstrapping methodology for computing confidence intervals around circumplex structural summary method parameters. Results suggest that Dark Triad traits exhibit distinct structural summary method parameters with narcissism characterized by high dominance, psychopathy characterized by a blend of high dominance and low affiliation, and Machiavellianism characterized by low affiliation on the problems, values, and efficacies IPC surfaces. Additionally, there was some heterogeneity in findings for different measures of psychopathy. Gender differences in structural summary parameters were examined, finding similar parameter values despite mean-level differences in Dark Triad traits. Finally, interpersonal information was integrated across different IPC surfaces to create profiles associated with each Dark Triad trait and to provide a more in-depth portrait of associated interpersonal dynamics. © The Author(s) 2016.
A White Paper on keV sterile neutrino Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, R.
Here, we present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. First, we review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterilemore » neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. Our paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.« less
Investigating the internal structure of galaxies and clusters through strong gravitational lensing
NASA Astrophysics Data System (ADS)
Jigish Gandhi, Pratik; Grillo, Claudio; Bonamigo, Mario
2018-01-01
Gravitational lensing studies have radically improved our understanding of the internal structure of galaxies and cluster-scale systems. In particular, the combination of strong lensing and stellar dynamics or stellar population synthesis models have made it possible to characterize numerous fundamental properties of the galaxies as well as dark matter halos and subhalos with unprecedented robustness and accuracy. Here we demonstrate the usefulness and accuracy of strong lensing as a probe for characterising the properties of cluster members as well as dark matter halos, to show that such characterisation carried out via lensing analyses alone is as viable as those carried out through a combination of spectroscopy and lensing analyses.Our study uses focuses on the early-type galaxy cluster MACS J1149.5+2223 at redshift 0.54 in the Hubble Frontier Fields (HFF) program, where the first magnified and spatially resolved multiple images of supernova (SN) “Refsdal” and its late-type host galaxy at redshift 1.489 were detected. The Refsdal system is unique in being the first ever multiply-imaged supernova, with it’s first four images appearing in an Einstein Cross configuration around one of the cluster members in 2015. In our lensing analyses we use HST data of the multiply-imaged SN Refsdal to constrain the dynamical masses, velocity dispersions, and virial radii of individual galaxies and dark matter halos in the MACS J1149.5+2223 cluster. For our lensing models we select a sample of 300 cluster members within approximately 500 kpc from the BCG, and a set of reliable multiple images associated with 18 distinct knots in the SN host spiral galaxy, as well as multiple images of the supernova itself. Our results provide accurate measurements of the masses, velocity dispersions, and radii of the cluster’s dark matter halo as well as three chosen members galaxies, in strong agreement with those obtained by Grillo et al 2015, demonstrating the usefulness of strong lensing in characterising the properties of cluster-scale systems.
Prospects for indirect dark matter searches with MeV photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartels, Richard; Gaggero, Daniele; Weniger, Christoph, E-mail: r.t.bartels@uva.nl, E-mail: d.gaggero@uva.nl, E-mail: c.weniger@uva.nl
2017-05-01
Over the past decade, extensive studies have been undertaken to search for photon signals from dark matter annihilation or decay for dark matter particle masses above ∼1 GeV. However, due to the lacking sensitivity of current experiments at MeV–GeV energies, sometimes dubbed the 'MeV gap', dark matter models with MeV to sub-GeV particle masses have received little attention so far. Various proposed MeV missions (like, e.g., e-ASTROGAM or AMEGO) are aimed at closing this gap in the mid- or long-term future. This, and the absence of clear dark matter signals in the GeV–TeV range, makes it relevant to carefully reconsidermore » the expected experimental instrumental sensitivities in this mass range. The most common two-body annihilation channels for sub-GeV dark matter are to neutrinos, electrons, pions or directly to photons. Among these, only the electron channel has been extensively studied, and almost exclusively in the context of the 511 keV line. In this work, we study the prospects for detecting MeV dark matter annihilation in general in future MeV missions, using e-ASTROGAM as reference, and focusing on dark matter masses in the range 1 MeV–3 GeV. In the case of leptonic annihilation, we emphasise the importance of the often overlooked bremsstrahlung and in-flight annihilation spectral features, which in many cases provide the dominant gamma-ray signal in this regime.« less
Detecting dark-matter waves with a network of precision-measurement tools
NASA Astrophysics Data System (ADS)
Derevianko, Andrei
2018-04-01
Virialized ultralight fields (VULFs) are viable cold dark-matter candidates and include scalar and pseudoscalar bosonic fields, such as axions and dilatons. Direct searches for VULFs rely on low-energy precision-measurement tools. While previous proposals have focused on detecting coherent oscillations of the VULF signals at the VULF Compton frequencies for individual devices, here I consider a network of such devices. Virialized ultralight fields are essentially dark-matter waves and as such they carry both temporal and spatial phase information. Thereby, the discovery reach can be improved by using networks of precision-measurement tools. To formalize this idea, I derive a spatiotemporal two-point correlation function for the ultralight dark-matter fields in the framework of the standard halo model. Due to VULFs being Gaussian random fields, the derived two-point correlation function fully determines N -point correlation functions. For a network of ND devices within the coherence length of the field, the sensitivity compared to a single device can be improved by a factor of √{ND}. Further, I derive a VULF dark-matter signal profile for an individual device. The resulting line shape is strongly asymmetric due to the parabolic dispersion relation for massive nonrelativistic bosons. I discuss the aliasing effect that extends the discovery reach to VULF frequencies higher than the experimental sampling rate. I present sensitivity estimates and develop a stochastic field signal-to-noise ratio statistic. Finally, I consider an application of the formalism developed to atomic clocks and their networks.
Radiometric characterization of an LWIR, type-II strained layer superlattice pBiBn photodetector
NASA Astrophysics Data System (ADS)
Treider, L. A.; Morath, C. P.; Cowan, V. M.; Tian, Z. B.; Krishna, S.
2015-05-01
Type-II Strained Layer Superlattice (T2SLS) infrared photodetectors have been in development over the last decade. T2SLS offers a theoretically longer Auger recombination lifetime than traditional mercury cadmium telluride (MCT), which presumably translates to infrared detectors with lower dark-current and higher operating temperatures. However, these improvements did not materialize due to the presence of Shockley-Read-Hall (SRH) defects in T2SLSs, which limits the recombination lifetime well below the Auger-limit. With the recent introduction of the pBiBn, and other similar unipolar barrier detectors, T2SLS material has seen renewed interest since these designs ideally eliminate the SRH-generation and surface currents while retaining the other potential advantages of T2SLS: reduced manufacturing cost, better availability of a durable state-side manufacturing base, ability to tune the cutoff wavelength, and better uniformity. Here, an electrical and optical characterization of a long-wave, pBiBn detector with a T2SLS absorber is presented. Dark-current, spectral response and optical response were measured as functions of temperature and bias. Activation energy was then determined as a function of bias from the dark-current measurements. Quantum efficiency was also determined as a function of bias from the optical response measurements. Additionally, noise spectrum measurements were taken as a function of bias.
Liu, Yintao; Jia, Renxu; Wang, Yucheng; Hu, Ziyang; Zhang, Yuming; Pang, Tiqiang; Zhu, Yuejin; Luan, Suzhen
2017-05-10
Zero drift can severely deteriorate the stability of the light-dark current ratio, detectivity, and responsivity of photodetectors. In this paper, the effects of a [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)-doped perovskite-based photodetector device on the inhibition of zero drift under dark state are discussed. Two kinds of photodetectors (Au/CH 3 NH 3 PbI x Cl 3-x /Au and Au/CH 3 NH 3 PbI x Cl 3-x :PCBM/Au) were prepared, and the materials and photodetector devices were measured by scanning electron microscopy, X-ray diffraction, photoluminescence, ultraviolet absorption spectra, and current-voltage and current-time measurements. It was found that similar merit parameters, including light-dark current ratio (∼10 2 ), detectivity (∼10 11 Jones), and responsivity were obtained for these two kinds of photodetectors. However, the drift of Au/CH 3 NH 3 PbI x Cl 3-x :PCBM/Au devices is negligible, while a drift of ∼0.2 V exists in Au/CH 3 NH 3 PbI x Cl 3-x /Au devices. A new model is proposed based on the hindering theory of ion (vacancy) migration, and it is believed that the dopant PCBM can hinder the ion (vacancy) migration of perovskite materials to suppress the phenomenon of zero drift in perovskite-based photodetectors.
Sloan, Joshua L; Islam, M Anisul; Jacobs, Douglass F
2016-01-01
Northern red oak (Quercus rubra L.) seedlings are frequently planted on suboptimal sites in their native range in North America, subjecting them to environmental stresses, such as flooding, for which they may not be well adapted. Members of the genus Quercus exhibit a wide range of responses to flooding, and responses of northern red oak to flooding remain inadequately described. To better understand the physiological effects of root system inundation in post-transplant northern red oak seedlings and the effects of flooding on endogenous patterns of resource allocation within the plant, we observed the effects of short-term flooding initiated at the linear shoot growth stage on net photosynthetic rates, dark respiration, chlorophyll fluorescence (Fv/Fm) and translocation of (13)C-labeled current photosynthate. Downward translocation of current photosynthate declined after 4 days of flooding and was the first measured physiological response to flooding; net photosynthetic rates decreased and dark respiration rates increased after 7 days of flooding. Short-term flooding did not affect maximal potential efficiency of photosystem II (Fv/Fm). The finding that decreased downward translocation of (13)C-labeled current photosynthate preceded reduced net photosynthesis and increased dark respiration during flooding suggests the occurrence of sink-limited photosynthesis under these conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Dark UNiverse Explorer (DUNE): proposal to ESA's cosmic vision
NASA Astrophysics Data System (ADS)
Refregier, A.
2009-03-01
The Dark UNiverse Explorer (DUNE) is a wide-field space imager whose primary goal is the study of dark energy and dark matter with unprecedented precision. For this purpose, DUNE is optimised for the measurement of weak gravitational lensing but will also provide complementary measurements of baryonic accoustic oscillations, cluster counts and the Integrated Sachs Wolfe effect. Immediate auxiliary goals concern the evolution of galaxies, to be studied with unequalled statistical power, the detailed structure of the Milky Way and nearby galaxies, and the demographics of Earth-mass planets. DUNE is an Medium-class mission which makes use of readily available components, heritage from other missions, and synergy with ground based facilities to minimise cost and risks. The payload consists of a 1.2 m telescope with a combined visible/NIR field-of-view of 1 deg2. DUNE will carry out an all-sky survey, ranging from 550 to 1600 nm, in one visible and three NIR bands which will form a unique legacy for astronomy. DUNE will yield major advances in a broad range of fields in astrophysics including fundamental cosmology, galaxy evolution, and extrasolar planet search. DUNE was recently selected by ESA as one of the mission concepts to be studied in its Cosmic Vision programme.
Choline oxidation by intact spinach chloroplasts. [Spinacia oleracea L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weigel, P.; Lerma, C.; Hanson, A.D.
1988-01-01
Plants synthesize betaine by a two-step oxidation of choline (choline ..-->.. betaine aldehyde ..-->.. betaine). Protoplast-derived chloroplasts of spinach (Spinacia oleracea L.) carry out both reactions, more rapidly in light than in darkness. We investigated the light-stimulated oxidation of choline, using spinach chloroplasts isolated directly from leaves. The rates of choline oxidation obtained (dark and light rates: 10-50 and 100-300 nanomoles per hour per milligram chlorophyll, respectively) were approximately 20-fold higher than for protoplast-derived chloroplasts. Betaine aldehyde was the main product. Choline oxidation in darkness and light was suppressed by hypoxia. Neither uncouplers not the Calvin cycle inhibitor glyceraldehyde greatlymore » affected choline oxidation in the light, and maximal choline oxidation was attained far below light saturation of CO/sub 2/ fixation. The light stimulation of choline oxidation was abolished by the PSII inhibitors DCMU and dibromothymoquinone, and was partially restored by adding reduced diaminodurene, an electron donor to PSI. Both methyl viologen and phenazine methosulfate prevented choline oxidation. Adding dihydroxyacetone phosphate, which can generate NADPH in organello, doubled the dark rate of choline oxidation. These results indicate that choline oxidation in chloroplasts requires oxygen, and reducing power generated from PSI. Enzymic reactions consistent with these requirements are discussed.« less
Evaporation and scattering of momentum- and velocity-dependent dark matter in the Sun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busoni, Giorgio; Simone, Andrea De; Scott, Pat
Dark matter with momentum- or velocity-dependent interactions with nuclei has shown significant promise for explaining the so-called Solar Abundance Problem, a longstanding discrepancy between solar spectroscopy and helioseismology. The best-fit models are all rather light, typically with masses in the range of 3–5 GeV. This is exactly the mass range where dark matter evaporation from the Sun can be important, but to date no detailed calculation of the evaporation of such models has been performed. Here we carry out this calculation, for the first time including arbitrary velocity- and momentum-dependent interactions, thermal effects, and a completely general treatment valid frommore » the optically thin limit all the way through to the optically thick regime. We find that depending on the dark matter mass, interaction strength and type, the mass below which evaporation is relevant can vary from 1 to 4 GeV. This has the effect of weakening some of the better-fitting solutions to the Solar Abundance Problem, but also improving a number of others. As a by-product, we also provide an improved derivation of the capture rate that takes into account thermal and optical depth effects, allowing the standard result to be smoothly matched to the well-known saturation limit.« less
On the Evolution of Dark Matter Halo Properties Following Major and Minor Mergers
NASA Astrophysics Data System (ADS)
Wu, Peter; Zhang, Shawn; Lee, Christoph; Primack, Joel
2018-01-01
We conducted an analysis on dark matter halo properties following major and minor mergers to advance our understanding of halo evolution. In this work, we analyzed ~80,000 dark matter halos from the Bolshoi-Planck cosmological simulation and studied halo evolution during relaxation after major mergers. We then applied a Gaussian filter to the property evolutions and characterized peak distributions, frequencies, and variabilities for several halo properties, including centering, spin, shape (prolateness), scale radius, and virial ratio. However, there were also halos that experienced relaxation without the presence of major mergers. We hypothesized that this was due to minor mergers unrecorded by the simulation analysis. By using property peaks to create a novel merger detection algorithm, we attempted to find minor mergers and match them to the unaccounted relaxed halos. Not only did we find evidence that minor mergers were the causes, but we also found similarities between major and minor merger effects, showing the significance of minor mergers for future studies. Through our dark matter merger statistics, we expect our work to ultimately serve as vital parameters towards better understanding galaxy formation and evolution. Most of this work was carried out by high school students working under the auspices of the Science Internship Program (SIP) at UC Santa Cruz.
Lighting the universe with filaments.
Gao, Liang; Theuns, Tom
2007-09-14
The first stars in the universe form when chemically pristine gas heats as it falls into dark-matter potential wells, cools radiatively because of the formation of molecular hydrogen, and becomes self-gravitating. Using supercomputer simulations, we demonstrated that the stars' properties depend critically on the currently unknown nature of the dark matter. If the dark-matter particles have intrinsic velocities that wipe out small-scale structure, then the first stars form in filaments with lengths on the order of the free-streaming scale, which can be approximately 10(20) meters (approximately 3 kiloparsecs, corresponding to a baryonic mass of approximately 10(7) solar masses) for realistic "warm dark matter" candidates. Fragmentation of the filaments forms stars with a range of masses, which may explain the observed peculiar element abundance pattern of extremely metal-poor stars, whereas coalescence of fragments and stars during the filament's ultimate collapse may seed the supermassive black holes that lurk in the centers of most massive galaxies.
Novel test of modified Newtonian dynamics with gas rich galaxies.
McGaugh, Stacy S
2011-03-25
The current cosmological paradigm, the cold dark matter model with a cosmological constant, requires that the mass-energy of the Universe be dominated by invisible components: dark matter and dark energy. An alternative to these dark components is that the law of gravity be modified on the relevant scales. A test of these ideas is provided by the baryonic Tully-Fisher relation (BTFR), an empirical relation between the observed mass of a galaxy and its rotation velocity. Here, I report a test using gas rich galaxies for which both axes of the BTFR can be measured independently of the theories being tested and without the systematic uncertainty in stellar mass that affects the same test with star dominated spirals. The data fall precisely where predicted a priori by the modified Newtonian dynamics. The scatter in the BTFR is attributable entirely to observational uncertainty, consistent with a single effective force law.
McEwen, Jordan T; Kanno, Masahiro; Atsumi, Shota
2016-07-01
Cyanobacteria are under investigation as a means to utilize light energy to directly recycle CO2 into chemical compounds currently derived from petroleum. Any large-scale photosynthetic production scheme must rely on natural sunlight for energy, thereby limiting production time to only lighted hours during the day. Here, an obligate photoautotrophic cyanobacterium was engineered for enhanced production of 2,3-butanediol (23BD) in continuous light, 12h:12h light-dark diurnal, and continuous dark conditions via supplementation with glucose or xylose. This study achieved 23BD production under diurnal conditions comparable to production under continuous light conditions. The maximum 23BD titer was 3.0gL(-1) in 10d. Also achieving chemical production under dark conditions, this work enhances the feasibility of using cyanobacteria as industrial chemical-producing microbes. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Age of high redshift objects—a litmus test for the dark energy models
NASA Astrophysics Data System (ADS)
Jain, Deepak; Dev, Abha
2006-02-01
The discovery of the quasar, the APM 08279+5255 at z=3.91 whose age is 2 3 Gyr has once again led to “age crisis”. The noticeable fact about this object is that it cannot be accommodated in a universe with Ω=0.27, currently accepted value of matter density parameter and ω=const. In this work, we explore the concordance of various dark energy parameterizations (w(z) models) with the age estimates of the old high redshift objects. It is alarming to note that the quasar cannot be accommodated in any dark energy model even for Ω=0.23, which corresponds to 1σ deviation below the best fit value provided by WMAP. There is a need to look for alternative cosmologies or some other dark energy parameterizations which allow the existence of the high redshift objects.
The DAMIC Dark Matter Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Mello Neto, J. R.T.
The DAMIC (DArk Matter In CCDs) experiment uses high-resistivity, scientific-grade CCDs to search for dark matter. The CCD’s low electronic noise allows an unprecedently low energy threshold of a few tens of eV; this characteristic makes it possible to detect silicon recoils resulting from interactions of low-mass WIMPs. In addition, the CCD’s high spatial resolution and the excellent energy response results in very effective background identification techniques. The experiment has a unique sensitivity to dark matter particles with masses below 10 GeV/c 2. Previous results have motivated the construction of DAMIC100, a 100 grams silicon target detector currently being installedmore » at SNOLAB. The mode of operation and unique imaging capabilities of the CCDs, and how they may be exploited to characterize and suppress backgrounds are discussed, as well as physics results after one year of data taking.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binder, Gary A.; /Caltech /SLAC
2010-08-25
In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images frommore » the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.« less
Hunting Down Massless Dark Photons in Kaon Physics
NASA Astrophysics Data System (ADS)
Fabbrichesi, M.; Gabrielli, E.; Mele, B.
2017-07-01
If dark photons are massless, they couple to standard-model particles only via higher dimensional operators, while direct (renormalizable) interactions induced by kinetic mixing, which motivates most of the current experimental searches, are absent. We consider the effect of possible flavor-changing magnetic-dipole couplings of massless dark photons in kaon physics. In particular, we study the branching ratio for the process K+→π+π0γ ¯ with a simplified-model approach, assuming the chiral quark model to evaluate the hadronic matrix element. Possible effects in the K0-K¯ 0 mixing are taken into account. We find that branching ratios up to O (10-7) are allowed—depending on the dark-sector masses and couplings. Such large branching ratios for K+→π+π0γ ¯ could be of interest for experiments dedicated to rare K+ decays like NA62 at CERN, where γ ¯ can be detected as a massless invisible system.
On the observability of coupled dark energy with cosmic voids
NASA Astrophysics Data System (ADS)
Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander
2015-01-01
Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.
Accretion of dark matter by stars.
Brito, Richard; Cardoso, Vitor; Okawa, Hirotada
2015-09-11
Searches for dark matter imprints are one of the most active areas of current research. We focus here on light fields with mass m_{B}, such as axions and axionlike candidates. Using perturbative techniques and full-blown nonlinear numerical relativity methods, we show the following. (i) Dark matter can pile up in the center of stars, leading to configurations and geometries oscillating with a frequency that is a multiple of f=2.5×10^{14}(m_{B}c^{2}/eV) Hz. These configurations are stable throughout most of the parameter space, and arise out of credible mechanisms for dark-matter capture. Stars with bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories. We also show that (ii) collapse of the host star to a black hole is avoided by efficient gravitational cooling mechanisms.