Defect Related Dark Currents in III-V MWIR nBn Detectors
2014-01-01
theory indicates a thermal activation energy of half the bandgap, and a direct proportionality between dark current density and defect density. 2.2...density due to defects maintains a full bandgap thermal activation energy , and is proportional to the square root of the defect density. Although neutral...photodiodes, and cooling is more efficient in reducing nBn’s dark current due to the full bandgap activation energy . Downloaded From: http
García-Rodríguez, Rodrigo; Villanueva-Cab, Julio; Anta, Juan A.; Oskam, Gerko
2016-01-01
The influence of the thickness of the nanostructured, mesoporous TiO2 film on several parameters determining the performance of a dye-sensitized solar cell is investigated both experimentally and theoretically. We pay special attention to the effect of the exchange current density in the dark, and we compare the values obtained by steady state measurements with values extracted from small perturbation techniques. We also evaluate the influence of exchange current density, the solar cell ideality factor, and the effective absorption coefficient of the cell on the optimal film thickness. The results show that the exchange current density in the dark is proportional to the TiO2 film thickness, however, the effective absorption coefficient is the parameter that ultimately defines the ideal thickness. We illustrate the importance of the exchange current density in the dark on the determination of the current–voltage characteristics and we show how an important improvement of the cell performance can be achieved by decreasing values of the total series resistance and the exchange current density in the dark. PMID:28787833
Low-dark current 1024×1280 InGaAs PIN arrays
NASA Astrophysics Data System (ADS)
Yuan, Ping; Chang, James; Boisvert, Joseph C.; Karam, Nasser
2014-06-01
Photon counting imaging applications requires low noise from both detector and readout integrated circuit (ROIC) arrays. In order to retain the photon-counting-level sensitivity, a long integration time has to be employed and the dark current has to be minimized. It is well known that the PIN dark current is sensitive to temperature and a dark current density of 0.5 nA/cm2 was demonstrated at 7 °C previously. In order to restrain the size, weight, and power consumption (SWaP) of cameras for persistent large-area surveillance on small platforms, it is critical to develop large format PIN arrays with small pitch and low dark current density at higher operation temperatures. Recently Spectrolab has grown, fabricated and tested 1024x1280 InGaAs PIN arrays with 12.5 μm pitch and achieved 0.7 nA/cm2 dark current density at 15 °C. Based on our previous low-dark-current PIN designs, the improvements were focused on 1) the epitaxial material design and growth control; and 2) PIN device structure to minimize the perimeter leakage current and junction diffusion current. We will present characterization data and analyses that illustrate the contribution of various dark current mechanisms.
NASA Astrophysics Data System (ADS)
Song, P. Y.; Ye, Z. H.; Huang, A. B.; Chen, H. L.; Hu, X. N.; Ding, R. J.; He, L.
2016-09-01
The dark currents of two short wave (SW) HgCdTe infrared focal plane arrays (IRFPA) detectors hybridized with direct injection (DI) readout and capacitance transimpedance amplifier (CTIA) with long time integration were investigated. The cutoff wavelength of the two SW IRFPAs is about 2.6 μm at 84 K. The dark current densities of DI and CTIA samples are approximately 8.0 × 10-12 A/cm2 and 7.2 × 10-10 A/cm2 at 110 K, respectively. The large divergence of the dark current density might arise from the injection efficiency difference of the two readouts. The low injection efficiency of the DI readout, compared with the high injection efficiency of the CTIA readout at low temperature, makes the dark current density of the DI sample much lower than that of the CTIA sample. The experimental value of injection efficiency of the DI sample was evaluated as 1.1% which is consistent with its theoretical value.
Low dark current InGaAs detector arrays for night vision and astronomy
NASA Astrophysics Data System (ADS)
MacDougal, Michael; Geske, Jon; Wang, Chad; Liao, Shirong; Getty, Jonathan; Holmes, Alan
2009-05-01
Aerius Photonics has developed large InGaAs arrays (1K x 1K and greater) with low dark currents for use in night vision applications in the SWIR regime. Aerius will present results of experiments to reduce the dark current density of their InGaAs detector arrays. By varying device designs and passivations, Aerius has achieved a dark current density below 1.0 nA/cm2 at 280K on small-pixel, detector arrays. Data is shown for both test structures and focal plane arrays. In addition, data from cryogenically cooled InGaAs arrays will be shown for astronomy applications.
The maximal-density mass function for primordial black hole dark matter
NASA Astrophysics Data System (ADS)
Lehmann, Benjamin V.; Profumo, Stefano; Yant, Jackson
2018-04-01
The advent of gravitational wave astronomy has rekindled interest in primordial black holes (PBH) as a dark matter candidate. As there are many different observational probes of the PBH density across different masses, constraints on PBH models are dependent on the functional form of the PBH mass function. This complicates general statements about the mass functions allowed by current data, and, in particular, about the maximum total density of PBH. Numerical studies suggest that some forms of extended mass functions face tighter constraints than monochromatic mass functions, but they do not preclude the existence of a functional form for which constraints are relaxed. We use analytical arguments to show that the mass function which maximizes the fraction of the matter density in PBH subject to all constraints is a finite linear combination of monochromatic mass functions. We explicitly compute the maximum fraction of dark matter in PBH for different combinations of current constraints, allowing for total freedom of the mass function. Our framework elucidates the dependence of the maximum PBH density on the form of observational constraints, and we discuss the implications of current and future constraints for the viability of the PBH dark matter paradigm.
NASA Astrophysics Data System (ADS)
Ejrnaes, M.; Parlato, L.; Arpaia, R.; Bauch, T.; Lombardi, F.; Cristiano, R.; Tafuri, F.; Pepe, G. P.
2017-12-01
We have fabricated several 10 nm thick and 65 nm wide YBa2Cu3O7-δ (YBCO) nanostrips. The nanostrips with the highest critical current densities are characterized by hysteretic current voltage characteristics (IVCs) with a direct bistable switch from the zero-voltage to the finite voltage state. The presence of hysteretic IVCs allowed the observation of dark pulses due to fluctuations phenomena. The key role of the bistable behavior is its ability to transform a small disturbance (e.g. an intrinsic fluctuation) into a measurable transient signal, i.e. a dark pulse. On the contrary, in devices characterized by lower critical current density values, the IVCs are non-hysteretic and dark pulses have not been observed. To investigate the physical origin of the dark pulses, we have measured the bias current dependence of the dark pulse rate: the observed exponential increase with the bias current is compatible with mechanisms based on thermal activation of magnetic vortices in the nanostrip. We believe that the successful amplification of small fluctuation events into measurable signals in nanostrips of ultrathin YBCO is a milestone for further investigation of YBCO nanostrips for superconducting nanostrip single photon detectors and other quantum detectors for operation at higher temperatures.
Dark current of organic heterostructure devices with insulating spacer layers
NASA Astrophysics Data System (ADS)
Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; Saxena, Avadh; Smith, Darryl L.; Ruden, P. Paul
2015-03-01
The dark current density at fixed voltage bias in donor/acceptor organic planar heterostructure devices can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of an interfacial exciplex state. If the exciplex formation rate limits current flow, the insulating interface layer can increase dark current whereas, if the exciplex recombination rate limits current flow, the insulating interface layer decreases dark current. We present a device model to describe this behavior and illustrate it experimentally for various donor/acceptor systems, e.g. P3HT/LiF/C60.
The dark side of cosmology: dark matter and dark energy.
Spergel, David N
2015-03-06
A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. Copyright © 2015, American Association for the Advancement of Science.
Analytic study of the effect of dark energy-dark matter interaction on the growth of structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcondes, Rafael J.F.; Landim, Ricardo C.G.; Costa, André A.
2016-12-01
Large-scale structure has been shown as a promising cosmic probe for distinguishing and constraining dark energy models. Using the growth index parametrization, we obtain an analytic formula for the growth rate of structures in a coupled dark energy model in which the exchange of energy-momentum is proportional to the dark energy density. We find that the evolution of f σ{sub 8} can be determined analytically once we know the coupling, the dark energy equation of state, the present value of the dark energy density parameter and the current mean amplitude of dark matter fluctuations. After correcting the growth function formore » the correspondence with the velocity field through the continuity equation in the interacting model, we use our analytic result to compare the model's predictions with large-scale structure observations.« less
X-ray detection with zinc-blende (cubic) GaN Schottky diodes
NASA Astrophysics Data System (ADS)
Gohil, T.; Whale, J.; Lioliou, G.; Novikov, S. V.; Foxon, C. T.; Kent, A. J.; Barnett, A. M.
2016-07-01
The room temperature X-ray responses as functions of time of two n type cubic GaN Schottky diodes (200 μm and 400 μm diameters) are reported. The current densities as functions of time for both diodes showed fast turn-on transients and increases in current density when illuminated with X-ray photons of energy up to 35 keV. The diodes were also electrically characterized: capacitance, implied depletion width and dark current measurements as functions of applied bias at room temperature are presented. At -5 V reverse bias, the capacitances of the diodes were measured to be (84.05 ± 0.01) pF and (121.67 ± 0.02) pF, respectively. At -5 V reverse bias, the dark current densities of the diodes were measured to be (347.2 ± 0.4) mA cm-2 and (189.0 ± 0.2) mA cm-2, respectively. The Schottky barrier heights of the devices (0.52 ± 0.07) eV and (0.63 ± 0.09) eV, respectively, were extracted from the forward dark current characteristics.
Current–voltage characteristics of organic heterostructure devices with insulating spacer layers
Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; ...
2015-05-14
The dark current density in donor/acceptor organic planar heterostructure devices at a given forward voltage bias can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of interfacial exciplex states. If the exciplex recombination rate limits current flow, an insulating interface layer decreases the dark current. However, if the exciplex formation rate limits the current, an insulating interface layer may increase the dark current. As a result, we present a device model to describe this behavior, and wemore » discuss relevant experimental data.« less
NASA Astrophysics Data System (ADS)
Roodenko, K.; Choi, K. K.; Clark, K. P.; Fraser, E. D.; Vargason, K. W.; Kuo, J.-M.; Kao, Y.-C.; Pinsukanjana, P. R.
2016-09-01
Performance of quantum well infrared photodetector (QWIP) device parameters such as detector cutoff wavelength and the dark current density depend strongly on the quality and the control of the epitaxy material growth. In this work, we report on a methodology to precisely control these critical material parameters for long wavelength infrared (LWIR) GaAs/AlGaAs QWIP epi wafers grown by multi-wafer production Molecular beam epitaxy (MBE). Critical growth parameters such as quantum well (QW) thickness, AlGaAs composition and QW doping level are discussed.
Dynamics of Dwarf Galaxies Disfavor Stellar-Mass Black Holes as Dark Matter.
Koushiappas, Savvas M; Loeb, Abraham
2017-07-28
We study the effects of black hole dark matter on the dynamical evolution of stars in dwarf galaxies. We find that mass segregation leads to a depletion of stars in the center of dwarf galaxies and the appearance of a ring in the projected stellar surface density profile. Using Segue 1 as an example we show that current observations of the projected surface stellar density rule out at the 99.9% confidence level the possibility that more than 6% of the dark matter is composed of black holes with a mass of few tens of solar masses.
On the observability of coupled dark energy with cosmic voids
NASA Astrophysics Data System (ADS)
Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander
2015-01-01
Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.
Wang, Ping; Zheng, Qinghong; Tang, Qing; Yang, Yintang; Guo, Lixin; Huang, Feng; Song, Zhenjie; Zhang, Zhiyong
2014-01-15
The application of asymmetric Schottky barrier and electrode area in an MgZnO metal-semiconductor-metal (MSM) solar-blind ultraviolet photodetector has been investigated by a physical-based numerical model in which the electron mobility is obtained by an ensemble Monte Carlo simulation combined with first principle calculations using the density functional theory. Compared with the experimental data of symmetric and asymmetric MSM structures based on ZnO substrate, the validity of this model is verified. The asymmetric Schottky barrier and electrode area devices exhibit reductions of 20 times and 1.3 times on dark current, respectively, without apparent photocurrent scarification. The plots of photo-to-dark current ratio (PDR) indicate that the asymmetric MgZnO MSM structure has better dark current characteristic than that of the symmetric one.
Simplified phenomenology for colored dark sectors
NASA Astrophysics Data System (ADS)
El Hedri, Sonia; Kaminska, Anna; de Vries, Maikel; Zurita, Jose
2017-04-01
We perform a general study of the relic density and LHC constraints on simplified models where the dark matter coannihilates with a strongly interacting particle X. In these models, the dark matter depletion is driven by the self-annihilation of X to pairs of quarks and gluons through the strong interaction. The phenomenology of these scenarios therefore only depends on the dark matter mass and the mass splitting between dark matter and X as well as the quantum numbers of X. In this paper, we consider simplified models where X can be either a scalar, a fermion or a vector, as well as a color triplet, sextet or octet. We compute the dark matter relic density constraints taking into account Sommerfeld corrections and bound state formation. Furthermore, we examine the restrictions from thermal equilibrium, the lifetime of X and the current and future LHC bounds on X pair production. All constraints are comprehensively presented in the mass splitting versus dark matter mass plane. While the relic density constraints can lead to upper bounds on the dark matter mass ranging from 2 TeV to more than 10 TeV across our models, the prospective LHC bounds range from 800 to 1500 GeV. A full coverage of the strongly coannihilating dark matter parameter space would therefore require hadron colliders with significantly higher center-of-mass energies.
Extra-high short-circuit current for bifacial solar cells in sunny and dark-light conditions.
Duan, Jialong; Duan, Yanyan; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei
2017-09-05
We present here a symmetrically structured bifacial solar cell tailored by two fluorescent photoanodes and a platinum/titanium/platinum counter electrode, yielding extra-high short-circuit current densities as high as 28.59 mA cm -2 and 119.9 μA cm -2 in simulated sunlight irradiation (100 mW cm -2 , AM1.5) and dark-light conditions, respectively.
NASA Technical Reports Server (NTRS)
Lord, Kenneth; Woodyard, James R.
2002-01-01
The effect of 40 keV electron irradiation on a-Si:H p-i-n single-junction solar cells was investigated using measured and simulated dark J-V characteristics. EPRI-AMPS and PC-1D simulators were explored for use in the studies. The EPRI-AMPS simulator was employed and simulator parameters selected to produce agreement with measured J-V characteristics. Three current mechanisms were evident in the measured dark J-V characteristics after electron irradiation, namely, injection, shunting and a term of the form CV(sup m). Using a single discrete defect state level at the center of the band gap, good agreement was achieved between measured and simulated J-V characteristics in the forward-bias voltage region where the dark current density was dominated by injection. The current mechanism of the form CV(sup m) was removed by annealing for two hours at 140 C. Subsequent irradiation restored the CV(sup m) current mechanism and it was removed by a second anneal. Some evidence of the CV(sup m) term is present in device simulations with a higher level of discrete density of states located at the center of the bandgap.
Advances in the characterization of InAs/GaSb superlattice infrared photodetectors
NASA Astrophysics Data System (ADS)
Wörl, A.; Daumer, V.; Hugger, T.; Kohn, N.; Luppold, W.; Müller, R.; Niemasz, J.; Rehm, R.; Rutz, F.; Schmidt, J.; Schmitz, J.; Stadelmann, T.; Wauro, M.
2016-10-01
This paper reports on advances in the electro-optical characterization of InAs/GaSb short-period superlattice infrared photodetectors with cut-off wavelengths in the mid-wavelength and long-wavelength infrared ranges. To facilitate in-line monitoring of the electro-optical device performance at different processing stages we have integrated a semi-automated cryogenic wafer prober in our process line. The prober is configured for measuring current-voltage characteristics of individual photodiodes at 77 K. We employ it to compile a spatial map of the dark current density of a superlattice sample with a cut-off wavelength around 5 μm patterned into a regular array of 1760 quadratic mesa diodes with a pitch of 370 μm and side lengths varying from 60 to 350 μm. The different perimeter-to-area ratios make it possible to separate bulk current from sidewall current contributions. We find a sidewall contribution to the dark current of 1.2×10-11 A/cm and a corrected bulk dark current density of 1.1×10-7 A/cm2, both at 200 mV reverse bias voltage. An automated data analysis framework can extract bulk and sidewall current contributions for various subsets of the test device grid. With a suitable periodic arrangement of test diode sizes, the spatial distribution of the individual contributions can thus be investigated. We found a relatively homogeneous distribution of both bulk dark current density and sidewall current contribution across the sample. With the help of an improved capacitance-voltage measurement setup developed to complement this technique a residual carrier concentration of 1.3×1015 cm-3 is obtained. The work is motivated by research into high performance superlattice array sensors with demanding processing requirements. A novel long-wavelength infrared imager based on a heterojunction concept is presented as an example for this work. It achieves a noise equivalent temperature difference below 30 mK for realistic operating conditions.
Top-philic dark matter within and beyond the WIMP paradigm
NASA Astrophysics Data System (ADS)
Garny, Mathias; Heisig, Jan; Hufnagel, Marco; Lülf, Benedikt
2018-04-01
We present a comprehensive analysis of top-philic Majorana dark matter that interacts via a colored t -channel mediator. Despite the simplicity of the model—introducing three parameters only—it provides an extremely rich phenomenology allowing us to accommodate the relic density for a large range of coupling strengths spanning over 6 orders of magnitude. This model features all "exceptional" mechanisms for dark matter freeze-out, including the recently discovered conversion-driven freeze-out mode, with interesting signatures of long-lived colored particles at colliders. We constrain the cosmologically allowed parameter space with current experimental limits from direct, indirect and collider searches, with special emphasis on light dark matter below the top mass. In particular, we explore the interplay between limits from Xenon1T, Fermi-LAT and AMS-02 as well as limits from stop, monojet and Higgs invisible decay searches at the LHC. We find that several blind spots for light dark matter evade current constraints. The region in parameter space where the relic density is set by the mechanism of conversion-driven freeze-out can be conclusively tested by R -hadron searches at the LHC with 300 fb-1 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fertig, Fabian, E-mail: fabian.fertig@ise.fraunhofer.de; Greulich, Johannes; Rein, Stefan
Spatially resolved determination of solar cell parameters is beneficial for loss analysis and optimization of conversion efficiency. One key parameter that has been challenging to access by an imaging technique on solar cell level is short-circuit current density. This work discusses the robustness of a recently suggested approach to determine short-circuit current density spatially resolved based on a series of lock-in thermography images and options for a simplified image acquisition procedure. For an accurate result, one or two emissivity-corrected illuminated lock-in thermography images and one dark lock-in thermography image have to be recorded. The dark lock-in thermography image can bemore » omitted if local shunts are negligible. Furthermore, it is shown that omitting the correction of lock-in thermography images for local emissivity variations only leads to minor distortions for standard silicon solar cells. Hence, adequate acquisition of one image only is sufficient to generate a meaningful map of short-circuit current density. Beyond that, this work illustrates the underlying physics of the recently proposed method and demonstrates its robustness concerning varying excitation conditions and locally increased series resistance. Experimentally gained short-circuit current density images are validated for monochromatic illumination in comparison to the reference method of light-beam induced current.« less
Dark sequential Z ' portal: Collider and direct detection experiments
NASA Astrophysics Data System (ADS)
Arcadi, Giorgio; Campos, Miguel D.; Lindner, Manfred; Masiero, Antonio; Queiroz, Farinaldo S.
2018-02-01
We revisit the status of a Majorana fermion as a dark matter candidate when a sequential Z' gauge boson dictates the dark matter phenomenology. Direct dark matter detection signatures rise from dark matter-nucleus scatterings at bubble chamber and liquid xenon detectors, and from the flux of neutrinos from the Sun measured by the IceCube experiment, which is governed by the spin-dependent dark matter-nucleus scattering. On the collider side, LHC searches for dilepton and monojet + missing energy signals play an important role. The relic density and perturbativity requirements are also addressed. By exploiting the dark matter complementarity we outline the region of parameter space where one can successfully have a Majorana dark matter particle in light of current and planned experimental sensitivities.
NASA Astrophysics Data System (ADS)
Kipp, Dylan; Ganesan, Venkat
2013-06-01
We develop a kinetic Monte Carlo model for photocurrent generation in organic solar cells that demonstrates improved agreement with experimental illuminated and dark current-voltage curves. In our model, we introduce a charge injection rate prefactor to correct for the electrode grid-size and electrode charge density biases apparent in the coarse-grained approximation of the electrode as a grid of single occupancy, charge-injecting reservoirs. We use the charge injection rate prefactor to control the portion of dark current attributed to each of four kinds of charge injection. By shifting the dark current between electrode-polymer pairs, we align the injection timescales and expand the applicability of the method to accommodate ohmic energy barriers. We consider the device characteristics of the ITO/PEDOT/PSS:PPDI:PBTT:Al system and demonstrate the manner in which our model captures the device charge densities unique to systems with small injection energy barriers. To elucidate the defining characteristics of our model, we first demonstrate the manner in which charge accumulation and band bending affect the shape and placement of the various current-voltage regimes. We then discuss the influence of various model parameters upon the current-voltage characteristics.
Ricci-Gauss-Bonnet holographic dark energy
NASA Astrophysics Data System (ADS)
Saridakis, Emmanuel N.
2018-03-01
We present a model of holographic dark energy in which the infrared cutoff is determined by both the Ricci and the Gauss-Bonnet invariants. Such a construction has the significant advantage that the infrared cutoff, and consequently the holographic dark energy density, does not depend on the future or the past evolution of the universe, but only on its current features, and moreover it is determined by invariants, whose role is fundamental in gravitational theories. We extract analytical solutions for the behavior of the dark energy density and equation-of-state parameters as functions of the redshift. These reveal the usual thermal history of the universe, with the sequence of radiation, matter and dark energy epochs, resulting in the future to a complete dark energy domination. The corresponding dark energy equation-of-state parameter can lie in the quintessence or phantom regime, or experience the phantom-divide crossing during the cosmological evolution, and its asymptotic value can be quintessencelike, phantomlike, or be exactly equal to the cosmological-constant value. Finally, we extract the constraints on the model parameters that arise from big bang nucleosynthesis.
Neutrino Oscillations as a Probe of Light Scalar Dark Matter.
Berlin, Asher
2016-12-02
We consider a class of models involving interactions between ultralight scalar dark matter and standard model neutrinos. Such couplings modify the neutrino mass splittings and mixing angles to include additional components that vary in time periodically with a frequency and amplitude set by the mass and energy density of the dark matter. Null results from recent searches for anomalous periodicities in the solar neutrino flux strongly constrain the dark matter-neutrino coupling to be orders of magnitude below current and projected limits derived from observations of the cosmic microwave background.
Ultra-efficient all-printed organic photodetectors
NASA Astrophysics Data System (ADS)
Kielar, Marcin; Dhez, Olivier; Hirsch, Lionel
2016-09-01
Organic photodetectors are able to transform plastic into intelligent surfaces making our daily life easier, smarter and more productive. The key element for a sensor is to reduce the dark current density in order to boost the limit of detection. The energetic requirements in order to select materials for ultra-high performance organic photodetectors are presented with the following experimental results: a detectivity of 3.36 × 1013 Jones has been achieved with an extremely low dark current density of 0.32 nA cm-2 and a responsivity as high as 0.34 A W-1. Flexible devices are all made at lowtemperature and with solution-processed materials. Their stability under operation is also presented.
Anti-anthropic solutions to the cosmic coincidence problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedrow, Joseph M.; Griest, Kim, E-mail: j.m.fedrow@gmail.com, E-mail: kgriest@ucsd.edu
2014-01-01
A cosmological constant fits all current dark energy data, but requires two extreme fine tunings, both of which are currently explained by anthropic arguments. Here we discuss anti-anthropic solutions to one of these problems: the cosmic coincidence problem- that today the dark energy density is nearly equal to the matter density. We replace the ensemble of Universes used in the anthropic solution with an ensemble of tracking scalar fields that do not require fine-tuning. This not only does away with the coincidence problem, but also allows for a Universe that has a very different future than the one currently predictedmore » by a cosmological constant. These models also allow for transient periods of significant scalar field energy (SSFE) over the history of the Universe that can give very different observational signatures as compared with a cosmological constant, and so can be confirmed or disproved in current and upcoming experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Çalışkan, Deniz, E-mail: dcaliskan@fen.bilkent.edu.tr; Department of Nanotechnology and Nanomedicine, Hacettepe University, 06800 Beytepe, Ankara; Bütün, Bayram
2014-10-20
ZnO thin films are deposited by radio-frequency magnetron sputtering on thermally grown SiO{sub 2} on Si substrates. Pt/Au contacts are fabricated by standard photolithography and lift-off in order to form a metal-semiconductor-metal (MSM) photodetector. The dark current of the photodetector is measured as 1 pA at 100 V bias, corresponding to 100 pA/cm{sup 2} current density. Spectral photoresponse measurement showed the usual spectral behavior and 0.35 A/W responsivity at a 100 V bias. The rise and fall times for the photocurrent are measured as 22 ps and 8 ns, respectively, which are the lowest values to date. Scanning electron microscope image shows high aspect ratio andmore » dense grains indicating high surface area. Low dark current density and high speed response are attributed to high number of recombination centers due to film morphology, deducing from photoluminescence measurements. These results show that as deposited ZnO thin film MSM photodetectors can be used for the applications needed for low light level detection and fast operation.« less
Dark energy and the cosmic microwave background radiation
NASA Technical Reports Server (NTRS)
Dodelson, S.; Knox, L.
2000-01-01
We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical-as predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the energy density of nonrelativistic matter is much less than critical. Together, these results are evidence, independent of supernovae data, for dark energy in the Universe.
Dark energy and the cosmic microwave background radiation.
Dodelson, S; Knox, L
2000-04-17
We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical-as predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the energy density of nonrelativistic matter is much less than critical. Together, these results are evidence, independent of supernovae data, for dark energy in the Universe.
Searching gamma-ray bursts for gravitational lensing echoes - Implications for compact dark matter
NASA Technical Reports Server (NTRS)
Nemiroff, R. J.; Norris, J. P.; Wickramasinghe, W. A. D. T.; Horack, J. M.; Kouveliotou, C.; Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Paciesas, W. S.
1993-01-01
The first available 44 gamma-ray bursts (GRBs) detected by the Burst and Transient Source Experiment on board the Compton Gamma-Ray Observatory have been inspected for echo signals following shortly after the main signal. No significant echoes have been found. Echoes would have been expected were the GRBs distant enough and the universe populated with a sufficient density of compact objects composing the dark matter. Constraints on dark matter abundance and GRB redshifts from the present data are presented and discussed. Based on these preliminary results, a universe filled to critical density of compact objects between 10 exp 6.5 and 10 exp 8.1 solar masses are now marginally excluded, or the most likely cosmological distance paradigm for GRBs is not correct. We expect future constraints to be able either to test currently popular cosmological dark matter paradigms or to indicate that GRBs do not lie at cosmological distances.
Simulated Milky Way analogues: implications for dark matter direct searches
NASA Astrophysics Data System (ADS)
Bozorgnia, Nassim; Calore, Francesca; Schaller, Matthieu; Lovell, Mark; Bertone, Gianfranco; Frenk, Carlos S.; Crain, Robert A.; Navarro, Julio F.; Schaye, Joop; Theuns, Tom
2016-05-01
We study the implications of galaxy formation on dark matter direct detection using high resolution hydrodynamic simulations of Milky Way-like galaxies simulated within the EAGLE and APOSTLE projects. We identify Milky Way analogues that satisfy observational constraints on the Milky Way rotation curve and total stellar mass. We then extract the dark matter density and velocity distribution in the Solar neighbourhood for this set of Milky Way analogues, and use them to analyse the results of current direct detection experiments. For most Milky Way analogues, the event rates in direct detection experiments obtained from the best fit Maxwellian distribution (with peak speed of 223-289 km/s) are similar to those obtained directly from the simulations. As a consequence, the allowed regions and exclusion limits set by direct detection experiments in the dark matter mass and spin-independent cross section plane shift by a few GeV compared to the Standard Halo Model, at low dark matter masses. For each dark matter mass, the halo-to-halo variation of the local dark matter density results in an overall shift of the allowed regions and exclusion limits for the cross section. However, the compatibility of the possible hints for a dark matter signal from DAMA and CDMS-Si and null results from LUX and SuperCDMS is not improved.
NASA Astrophysics Data System (ADS)
Lin, Jyun-Hao; Huang, Shyh-Jer; Su, Yan-Kuin
2014-01-01
A simple thermal cycle annealing (TCA) process was used to improve the quality of GaN grown on a Si substrate. The X-ray diffraction (XRD) and etch pit density (EPD) results revealed that using more process cycles, the defect density cannot be further reduced. However, the performance of GaN-based metal-semiconductor-metal (MSM) photodiodes (PDs) prepared on Si substrates showed significant improvement. With a two-cycle TCA process, it is found that the dark current of the device was only 1.46 × 10-11 A, and the photo-to-dark-current contrast ratio was about 1.33 × 105 at 5 V. Also, the UV/visible rejection ratios can reach as high as 1077.
Uncorrelated measurements of the cosmic expansion history and dark energy from supernovae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Yun; Tegmark, Max; Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
We present a method for measuring the cosmic expansion history H(z) in uncorrelated redshift bins, and apply it to current and simulated type Ia supernova data assuming spatial flatness. If the matter density parameter {omega}{sub m} can be accurately measured from other data, then the dark-energy density history X(z)={rho}{sub X}(z)/{rho}{sub X}(0) can trivially be derived from this expansion history H(z). In contrast to customary 'black box' parameter fitting, our method is transparent and easy to interpret: the measurement of H(z){sup -1} in a redshift bin is simply a linear combination of the measured comoving distances for supernovae in that bin,more » making it obvious how systematic errors propagate from input to output. We find the Riess et al. (2004) gold sample to be consistent with the vanilla concordance model where the dark energy is a cosmological constant. We compare two mission concepts for the NASA/DOE Joint Dark-Energy Mission (JDEM), the Joint Efficient Dark-energy Investigation (JEDI), and the Supernova Accelaration Probe (SNAP), using simulated data including the effect of weak lensing (based on numerical simulations) and a systematic bias from K corrections. Estimating H(z) in seven uncorrelated redshift bins, we find that both provide dramatic improvements over current data: JEDI can measure H(z) to about 10% accuracy and SNAP to 30%-40% accuracy.« less
Performance Simulation of Unipolar InAs/InAs1-x Sb x Type-II Superlattice Photodetector
NASA Astrophysics Data System (ADS)
Singh, Anand; Pal, Ravinder
2018-05-01
This paper reports performance simulation of a unipolar tunable band gap InAs-InAsSb type-II superlattice (T2SL) infrared photodetector. The generation-recombination and surface leakage currents limit the performance of T2SL photodiodes. Unipolar nBn device design incorporating a suitable barrier layer in the diode structure is taken to suppress the Auger recombination and tunneling currents. At low reverse bias, the generation-recombination current is negligible in the absence of a depletion region, but the dark current is dominated by the diffusion current at higher operation temperatures. The composition, band alignment, barrier width, doping level and thickness of the absorber region are optimized here to achieve low dark current and high quantum efficiency at elevated operating temperatures. Thin unipolar T2SL absorbers are placed in a resonant cavity to enhance photon-material interaction, thus allowing complete absorption in a thinner detector element. It leads to the reduction in the detector volume for lower dark current without affecting the quantum efficiency. It shows an improvement in the quantum efficiency and reduction in the dark current. Dark current density ˜ 10-5 A/cm2 is achievable with low absorber thickness of 2 μm and effective lifetime of 250 ns in the InAs/InAs0.6Sb0.4/B-AlAs1-x Sb x long wave length T2SL detector at 110 K.
Dark sector shining through 750 GeV dark Higgs boson at the LHC
NASA Astrophysics Data System (ADS)
Ko, P.; Nomura, Takaaki
2016-07-01
We consider a dark sector with SU(3)C × U(1)Y × U(1)X and three families of dark fermions that are chiral under dark U(1)X gauge symmetry, whereas scalar dark matter X is the SM singlet. U(1)X dark symmetry is spontaneously broken by nonzero VEV of dark Higgs field 〈 Φ 〉, generating the masses of dark fermions and dark photon Z‧. The resulting dark Higgs boson ϕ can be produced at the LHC by dark quark loop (involving 3 generations) and will decay into a pair of photon through charged dark fermion loop. Its decay width can be easily ∼ 45 GeV due to its possible decays into a pair of dark photon, which is not strongly constrained by the current LHC searches pp → ϕ →Z‧Z‧ followed by Z‧ decays into the SM fermion pairs. The scalar DM can achieve thermal relic density without conflict with direct detection bound or the invisible ϕ decay into a pair of DM.
Dips in the diffuse supernova neutrino background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farzan, Yasaman; Palomares-Ruiz, Sergio, E-mail: yasaman@theory.ipm.ac.ir, E-mail: Sergio.Palomares.Ruiz@ific.uv.es
2014-06-01
Scalar (fermion) dark matter with mass in the MeV range coupled to ordinary neutrinos and another fermion (scalar) is motivated by scenarios that establish a link between radiatively generated neutrino masses and the dark matter relic density. With such a coupling, cosmic supernova neutrinos, on their way to us, could resonantly interact with the background dark matter particles, giving rise to a dip in their redshift-integrated spectra. Current and future neutrino detectors, such as Super-Kamiokande, LENA and Hyper-Kamiokande, could be able to detect this distortion.
Holographic Dark Energy Density
NASA Astrophysics Data System (ADS)
Saadat, Hassan
2011-06-01
In this article we consider the cosmological model based on the holographic dark energy. We study dark energy density in Universe with arbitrary spatially curvature described by the Friedmann-Robertson-Walker metric. We use Chevallier-Polarski-Linder parametrization to specify dark energy density.
NASA Astrophysics Data System (ADS)
El Radaf, I. M.; Nasr, Mahmoud; Mansour, A. M.
2018-01-01
Au/p-CoS/n-Si/Al heterojunction device was fabricated by spray pyrolysis technique. The structural and morphological features were examined by x-ray diffraction, scanning electron microscope and energy dispersive x-ray analysis. The capacitance-voltage characteristics of the prepared heterojunction were analyzed at room temperature in the dark. The current-voltage characteristics were examined under dark and different incident light intensities 20-100 mW cm-2. The rectification ratio, series resistance, shunt resistance, diode ideality factor and the effective barrier height were determined at dark and illumination conditions. The photovoltaic parameters such as short circuit current density, open circuit voltage, fill factor and power conversion efficiency were calculated at different incident light intensities.
The "dark Side" of Gravitational Experiments
NASA Astrophysics Data System (ADS)
Hoyle, Charles D.
Theoretical speculations about the quantum nature of the gravitational interaction have motivated many recent experiments. But perhaps the most profound and puzzling questions that these investigations address surround the observed cosmic acceleration, or Dark Energy. This mysterious substance comprises roughly 2/3 of the energy density of the universe. Current gravitational experiments may soon have the sensitivity to detect subtle clues that will reveal the mechanism behind the cosmic acceleration. On the laboratory scale, short-range tests of the Newtonian inverse-square law (ISL) provide the most sensitive measurements of gravity at the Dark Energy length scale, λd = (ħc/ρd)1/4 ≈ 85 μm, where ρd ≈ 3.8 keV/cm3 is the observed Dark Energy density. This length scale may also have fundamental significance that could be related to the "size" of the graviton. At the University of Washington, we are conducting the world's most sensitive, short-range test of the Newtonian ISL.
Simulated Milky Way analogues: implications for dark matter direct searches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozorgnia, Nassim; Calore, Francesca; Lovell, Mark
2016-05-01
We study the implications of galaxy formation on dark matter direct detection using high resolution hydrodynamic simulations of Milky Way-like galaxies simulated within the EAGLE and APOSTLE projects. We identify Milky Way analogues that satisfy observational constraints on the Milky Way rotation curve and total stellar mass. We then extract the dark matter density and velocity distribution in the Solar neighbourhood for this set of Milky Way analogues, and use them to analyse the results of current direct detection experiments. For most Milky Way analogues, the event rates in direct detection experiments obtained from the best fit Maxwellian distribution (withmore » peak speed of 223–289 km/s) are similar to those obtained directly from the simulations. As a consequence, the allowed regions and exclusion limits set by direct detection experiments in the dark matter mass and spin-independent cross section plane shift by a few GeV compared to the Standard Halo Model, at low dark matter masses. For each dark matter mass, the halo-to-halo variation of the local dark matter density results in an overall shift of the allowed regions and exclusion limits for the cross section. However, the compatibility of the possible hints for a dark matter signal from DAMA and CDMS-Si and null results from LUX and SuperCDMS is not improved.« less
Dark energy and key physical parameters of clusters of galaxies
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Chernin, A. D.
2012-04-01
We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.
Dark Energy and Key Physical Parameters of Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Bisnovatyi-Kogan, G. S.
We discuss the physics of clusters of galaxies embedded in the cosmic dark energy background and show that 1) the halo cut-off radius of a cluster like the Virgo cluster is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; 2) the halo averaged density is equal to two densities of dark energy; 3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile.
Dark-matter QCD-axion searches.
Rosenberg, Leslie J
2015-10-06
In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments are discussed, but I hope to give a sense of the current experimental landscape of the search for dark-matter axions.
Dark-matter QCD-axion searches
Rosenberg, Leslie J
2015-01-01
In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10−(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments are discussed, but I hope to give a sense of the current experimental landscape of the search for dark-matter axions. PMID:25583487
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fertig, Fabian, E-mail: fabian.fertig@ise.fraunhofer.de; Greulich, Johannes; Rein, Stefan
We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplifiedmore » in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.« less
NASA Astrophysics Data System (ADS)
Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David
2011-06-01
We describe the factors that go into the component choices for a short wavelength IR (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7 °C. In addition, we have mated our InGaAs detector arrays to 640×512 readout integrated integrated circuits to make focal plane arrays (FPAs). The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 μm at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0 °C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling. In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, and provide artifact-free imagery versus conventional laser illuminators.
The Structure of Dark Matter Halos in Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Burkert, A.
1995-07-01
Recent observations indicate that dark matter halos have flat central density profiles. Cosmological simulations with nonbaryonic dark matter, however, predict self-similar halos with central density cusps. This contradiction has lead to the conclusion that dark matter must be baryonic. Here it is shown that the dark matter halos of dwarf spiral galaxies represent a one-parameter family with self-similar density profiles. The observed global halo parameters are coupled with each other through simple scaling relations which can be explained by the standard cold dark matter model if one assumes that all the halos formed from density fluctuations with the same primordial amplitude. We find that the finite central halo densities correlate with the other global parameters. This result rules out scenarios where the flat halo cores formed subsequently through violent dynamical processes in the baryonic component. These cores instead provide important information on the origin and nature of dark matter in dwarf galaxies.
The dark matter distribution of M87 and NGC 1399
NASA Technical Reports Server (NTRS)
Tsai, John C.
1993-01-01
Recent X-ray observations of clusters of galaxies indicate that, outside the innermost about 100 kpc region, the ratio of dark matter density to baryonic matter density declines with radius. We show that this result is consistent with a cold dark matter simulation, suggesting the presence of dissipationless dark matter in the observed clusters. This is contrary to previous suggestions that dissipational baryonic dark matter is required to explain the decline in the density ratio. The simulation further shows that, in the inner 100 kpc region, the density ratio should rise with radius. We confirm this property in M87 and NGC 1399, which are close enough to allow the determination of the density ratio in the required inner region. X-ray mappings of the dark matter distribution in clusters of galaxies are therefore consistent with the presence of dissipationless dark matter.
Dark-matter QCD-axion searches
Rosenberg, Leslie J.
2015-01-12
In the late 20th century, cosmology became a precision science. At the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the darkmore » matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10 -(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. But, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. Our paper is a selective overview of the current generation of sensitive axion searches. Finally, not all techniques and experiments are discussed, but I hope to give a sense of the current experimental landscape of the search for dark-matter axions.« less
Redshift drift constraints on holographic dark energy
NASA Astrophysics Data System (ADS)
He, Dong-Ze; Zhang, Jing-Fei; Zhang, Xin
2017-03-01
The Sandage-Loeb (SL) test is a promising method for probing dark energy because it measures the redshift drift in the spectra of Lyman- α forest of distant quasars, covering the "redshift desert" of 2 ≲ z ≲ 5, which is not covered by existing cosmological observations. Therefore, it could provide an important supplement to current cosmological observations. In this paper, we explore the impact of SL test on the precision of cosmological constraints for two typical holographic dark energy models, i.e., the original holographic dark energy (HDE) model and the Ricci holographic dark energy (RDE) model. To avoid data inconsistency, we use the best-fit models based on current combined observational data as the fiducial models to simulate 30 mock SL test data. The results show that SL test can effectively break the existing strong degeneracy between the present-day matter density Ωm0 and the Hubble constant H 0 in other cosmological observations. For the considered two typical dark energy models, not only can a 30-year observation of SL test improve the constraint precision of Ωm0 and h dramatically, but can also enhance the constraint precision of the model parameters c and α significantly.
High Detectivity Graphene-Silicon Heterojunction Photodetector.
Li, Xinming; Zhu, Miao; Du, Mingde; Lv, Zheng; Zhang, Li; Li, Yuanchang; Yang, Yao; Yang, Tingting; Li, Xiao; Wang, Kunlin; Zhu, Hongwei; Fang, Ying
2016-02-03
A graphene/n-type silicon (n-Si) heterojunction has been demonstrated to exhibit strong rectifying behavior and high photoresponsivity, which can be utilized for the development of high-performance photodetectors. However, graphene/n-Si heterojunction photodetectors reported previously suffer from relatively low specific detectivity due to large dark current. Here, by introducing a thin interfacial oxide layer, the dark current of graphene/n-Si heterojunction has been reduced by two orders of magnitude at zero bias. At room temperature, the graphene/n-Si photodetector with interfacial oxide exhibits a specific detectivity up to 5.77 × 10(13) cm Hz(1/2) W(-1) at the peak wavelength of 890 nm in vacuum, which is highest reported detectivity at room temperature for planar graphene/Si heterojunction photodetectors. In addition, the improved graphene/n-Si heterojunction photodetectors possess high responsivity of 0.73 A W(-1) and high photo-to-dark current ratio of ≈10(7) . The current noise spectral density of the graphene/n-Si photodetector has been characterized under ambient and vacuum conditions, which shows that the dark current can be further suppressed in vacuum. These results demonstrate that graphene/Si heterojunction with interfacial oxide is promising for the development of high detectivity photodetectors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nomura, Takaaki; Okada, Hiroshi; Okada, Nobuchika
2016-09-22
Here, we propose a radiative seesaw model at the three-loop level, in which quarks, leptons, leptoquark bosons, and a Majorana fermion of dark matter candidate are involved in the neutrino loop. When analyzing neutrino oscillation data includes all possible constraints such as flavor changing neutral currents, lepton flavor violations, upper/lower bound on the mass of leptoquark from the collider physics, and the measured relic density of the dark matter, we show the allowed region to satisfy all the data/constraints.
Barnes, Piers R F; Anderson, Assaf Y; Juozapavicius, Mindaugas; Liu, Lingxuan; Li, Xiaoe; Palomares, Emilio; Forneli, Amparo; O'Regan, Brian C
2011-02-28
A simple and powerful approach for assessing the recombination losses in dye sensitised solar cells (DSSCs) across the current voltage curve (j-V) as a function of TiO(2) electron concentration (n) is demonstrated. The total flux of electrons recombining with iodine species in the electrolyte and oxidised dye molecules can be thought of as a recombination current density, defined as j(rec) = j(inj)-j where j(inj) is the current of electrons injected from optically excited dye states and j is the current density collected at cell voltage (V). The electron concentration at any given operating conditions is determined by charge extraction. This allows comparison of factors influencing electron recombination rates at matched n. We show that j(rec) is typically 2-3 times higher under 1 sun equivalent illumination (j(inj) > 0) relative to dark (j(inj) = 0) conditions. This difference was increased by increasing light intensity, electrolyte iodine concentration and electrolyte solvent viscosity. The difference was reduced by increasing the electrolyte iodide concentration and increasing the temperature. These results allowed us to verify a numerical model of complete operational cells (Barnes et al., Phys. Chem. Chem. Phys., DOI: 10.1039/c0cp01554g) and to relate the differences in j(rec) to physical processes in the devices. The difference between j(rec) in the light and dark can be explained by two factors: (1) an increase in the concentration of electron acceptor species (I(3)(-) and/or I(2)) when current is flowing under illumination relative to dark conditions where the current is flowing in the opposite direction, and (2) a non-trivial contribution from electron recombination to oxidised dye molecules under light conditions. More generally, the technique helps to assign the observed relationship between the components, processing and performance of DSSCs to more fundamental physical processes.
Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barenboim, Gabriela; /Valencia U.; Lykken, Joseph D.
2006-08-01
Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard {Lambda}CDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction ofmore » the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP-allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to {Lambda}CDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions.« less
Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology
NASA Astrophysics Data System (ADS)
Barenboim, Gabriela; Lykken, Joseph D.
2006-12-01
Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard ΛCDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction of the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to ΛCDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions.
HgCdTe APD-based linear-mode photon counting components and ladar receivers
NASA Astrophysics Data System (ADS)
Jack, Michael; Wehner, Justin; Edwards, John; Chapman, George; Hall, Donald N. B.; Jacobson, Shane M.
2011-05-01
Linear mode photon counting (LMPC) provides significant advantages in comparison with Geiger Mode (GM) Photon Counting including absence of after-pulsing, nanosecond pulse to pulse temporal resolution and robust operation in the present of high density obscurants or variable reflectivity objects. For this reason Raytheon has developed and previously reported on unique linear mode photon counting components and modules based on combining advanced APDs and advanced high gain circuits. By using HgCdTe APDs we enable Poisson number preserving photon counting. A metric of photon counting technology is dark count rate and detection probability. In this paper we report on a performance breakthrough resulting from improvement in design, process and readout operation enabling >10x reduction in dark counts rate to ~10,000 cps and >104x reduction in surface dark current enabling long 10 ms integration times. Our analysis of key dark current contributors suggest that substantial further reduction in DCR to ~ 1/sec or less can be achieved by optimizing wavelength, operating voltage and temperature.
Narrowband ultraviolet photodetector based on MgZnO and NPB heterojunction.
Hu, Zuofu; Li, Zhenjun; Zhu, Lu; Liu, Fengjuan; Lv, Yanwu; Zhang, Xiqing; Wang, Yongsheng
2012-08-01
An ultraviolet photodetector was fabricated based on Mg0.07Zn0.93O heterojunction. N, N'-bis (naphthalen-1-y1)-N, N'-bis(pheny) benzidine was selected as the hole transporting layer. I-V characteristic curves of the device were measured in the dark and under the illumination of 340 nm UV light with density of 1.33 mW/cm2. The device showed a low dark current of about 3×10(-10) A and a high photo-dark current ratio of 1×10(5) at -2 V bias. A narrowband photoresponse was observed from 300 to 400 nm and centered at 340 nm with a full width at half-maximum of only 30 nm. The maximum peak response is at 340 nm, which is 0.192 A/W at the bias of -1 V.
NASA Astrophysics Data System (ADS)
Bothun, Greg
2011-10-01
Ever since Aristotle placed us, with certainty, in the Center of the Cosmos, Cosmological models have more or less operated from a position of known truths for some time. As early as 1963, for instance, it was ``known'' that the Universe had to be 15-17 billion years old due to the suspected ages of globular clusters. For many years, attempts to determine the expansion age of the Universe (the inverse of the Hubble constant) were done against this preconceived and biased notion. Not surprisingly when more precise observations indicated a Hubble expansion age of 11-13 billion years, stellar models suddenly changed to produce a new age for globular cluster stars, consistent with 11-13 billion years. Then in 1980, to solve a variety of standard big bang problems, inflation was introduced in a fairly ad hoc manner. Inflation makes the simple prediction that the net curvature of spacetime is zero (i.e. spacetime is flat). The consequence of introducing inflation is now the necessary existence of a dark matter dominated Universe since the known baryonic material could comprise no more than 1% of the necessary energy density to make spacetime flat. As a result of this new cosmological ``truth'' a significant world wide effort was launched to detect the dark matter (which obviously also has particle physics implications). To date, no such cosmological component has been detected. Moreover, all available dynamical inferences of the mass density of the Universe showed in to be about 20% of that required for closure. This again was inconsistent with the truth that the real density of the Universe was the closure density (e.g. Omega = 1), that the observations were biased, and that 99% of the mass density had to be in the form of dark matter. That is, we know the universe is two component -- baryons and dark matter. Another prevailing cosmological truth during this time was that all the baryonic matter was known to be in galaxies that populated our galaxy catalogs. Subsequent observations showed that a significant population of baryons was contained in both a) a population of not easily detected galaxies (i.e. they had been missed for decades) and b) in intergalactic space. In 1999, the balloon borne Boomerang experiment gave good evidence that space was flat (total energy density = 1). Around this same time, various lines of evidence suggested that the ``cosmological constant'' (Lambda) maybe non-zero meaning we now live in a three component universe of baryons, dark matter and dark energy. The WMAP mission a few years later then produced our current cosmological truth that 5% of the Universe is baryons, 20% is Dark Matter, and 75% is Dark energy. What happened to Dark Matter dominance? Where did it go? Is this a fine tuned Universe? Our current cosmological truth, as defined by the WMAP results, rests on two important assumptions: a) that we fully understand gravity as a long range force and that alternative models, such as Modified Newtonian Dynamics (MOND) can therefore be dismissed and b) observationally we are fully confident that we understand supernova explosion physics to the point that they can be used as reliable cosmological indicators. This talk will attempt to summarize this evolution of cosmological truths, cast doubt on the certainty of the previously stated assumptions, and to culturally suggest that we should not continue with arrogance of Aristotle is assuring ourselves that we do in fact, know the ``truth''.
Constraining self-interacting dark matter with scaling laws of observed halo surface densities
NASA Astrophysics Data System (ADS)
Bondarenko, Kyrylo; Boyarsky, Alexey; Bringmann, Torsten; Sokolenko, Anastasia
2018-04-01
The observed surface densities of dark matter halos are known to follow a simple scaling law, ranging from dwarf galaxies to galaxy clusters, with a weak dependence on their virial mass. Here we point out that this can not only be used to provide a method to determine the standard relation between halo mass and concentration, but also to use large samples of objects in order to place constraints on dark matter self-interactions that can be more robust than constraints derived from individual objects. We demonstrate our method by considering a sample of about 50 objects distributed across the whole halo mass range, and by modelling the effect of self-interactions in a way similar to what has been previously done in the literature. Using additional input from simulations then results in a constraint on the self-interaction cross section per unit dark matter mass of about σ/mχlesssim 0.3 cm2/g. We expect that these constraints can be significantly improved in the future, and made more robust, by i) an improved modelling of the effect of self-interactions, both theoretical and by comparison with simulations, ii) taking into account a larger sample of objects and iii) by reducing the currently still relatively large uncertainties that we conservatively assign to the surface densities of individual objects. The latter can be achieved in particular by using kinematic observations to directly constrain the average halo mass inside a given radius, rather than fitting the data to a pre-selected profile and then reconstruct the mass. For a velocity-independent cross-section, our current result is formally already somewhat smaller than the range 0.5‑5 cm2/g that has been invoked to explain potential inconsistencies between small-scale observations and expectations in the standard collisionless cold dark matter paradigm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations,more » such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations,more » such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.« less
NASA Astrophysics Data System (ADS)
Schramm, David N.
1992-07-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold'' and ``hot'' non-baryonic candidates is shown to depend on the assumed ``seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
NASA Astrophysics Data System (ADS)
Schramm, D. N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the omega = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between 'cold' and 'hot' non-baryonic candidates is shown to depend on the assumed 'seeds' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages, and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Dissipative hidden sector dark matter
NASA Astrophysics Data System (ADS)
Foot, R.; Vagnozzi, S.
2015-01-01
A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken U (1 )' gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength ε ˜10-9 appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on big bang nucleosynthesis and its contribution to the relativistic energy density at hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focusing on spiral and irregular galaxies. For these galaxies we modeled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.
Origin of ΔN{sub eff} as a result of an interaction between dark radiation and dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bjaelde, Ole Eggers; Das, Subinoy; Moss, Adam, E-mail: oeb@phys.au.dk, E-mail: subinoy@physik.rwth-aachen.de, E-mail: Adam.Moss@nottingham.ac.uk
2012-10-01
Results from the Wilkinson Microwave Anisotropy Probe (WMAP), Atacama Cosmology Telescope (ACT) and recently from the South Pole Telescope (SPT) have indicated the possible existence of an extra radiation component in addition to the well known three neutrino species predicted by the Standard Model of particle physics. In this paper, we explore the possibility of the apparent extra dark radiation being linked directly to the physics of cold dark matter (CDM). In particular, we consider a generic scenario where dark radiation, as a result of an interaction, is produced directly by a fraction of the dark matter density effectively decayingmore » into dark radiation. At an early epoch when the dark matter density is negligible, as an obvious consequence, the density of dark radiation is also very small. As the Universe approaches matter radiation equality, the dark matter density starts to dominate thereby increasing the content of dark radiation and changing the expansion rate of the Universe. As this increase in dark radiation content happens naturally after Big Bang Nucleosynthesis (BBN), it can relax the possible tension with lower values of radiation degrees of freedom measured from light element abundances compared to that of the CMB. We numerically confront this scenario with WMAP+ACT and WMAP+SPT data and derive an upper limit on the allowed fraction of dark matter decaying into dark radiation.« less
Explaining dark matter and B decay anomalies with an L μ - L τ model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altmannshofer, Wolfgang; Gori, Stefania; Profumo, Stefano
We present a dark sector model based on gauging the L μ - L τ symmetry that addresses anomalies in b→ sμ +μ - decays and that features a particle dark matter candidate. The dark matter particle candidate is a vector-like Dirac fermion coupled to the Z' gauge boson of the L μ - L τ symmetry. We compute the dark matter thermal relic density, its pair-annihilation cross section, and the loop-suppressed dark matter-nucleon scattering cross section, and compare our predictions with current and future experimental results. We demonstrate that after taking into account bounds from Bs meson oscillations, darkmore » matter direct detection, and the CMB, the model is highly predictive: B physics anomalies and a viable particle dark matter candidate, with a mass of ~ (5 - 23) GeV, can be accommodated only in a tightly-constrained region of parameter space, with sharp predictions for future experimental tests. The viable region of parameter space expands if the dark matter is allowed to have L μ - L τ charges that are smaller than those of the SM leptons.« less
Explaining dark matter and B decay anomalies with an L μ - L τ model
Altmannshofer, Wolfgang; Gori, Stefania; Profumo, Stefano; ...
2016-12-20
We present a dark sector model based on gauging the L μ - L τ symmetry that addresses anomalies in b→ sμ +μ - decays and that features a particle dark matter candidate. The dark matter particle candidate is a vector-like Dirac fermion coupled to the Z' gauge boson of the L μ - L τ symmetry. We compute the dark matter thermal relic density, its pair-annihilation cross section, and the loop-suppressed dark matter-nucleon scattering cross section, and compare our predictions with current and future experimental results. We demonstrate that after taking into account bounds from Bs meson oscillations, darkmore » matter direct detection, and the CMB, the model is highly predictive: B physics anomalies and a viable particle dark matter candidate, with a mass of ~ (5 - 23) GeV, can be accommodated only in a tightly-constrained region of parameter space, with sharp predictions for future experimental tests. The viable region of parameter space expands if the dark matter is allowed to have L μ - L τ charges that are smaller than those of the SM leptons.« less
DarkBit: a GAMBIT module for computing dark matter observables and likelihoods
NASA Astrophysics Data System (ADS)
Bringmann, Torsten; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Kahlhoefer, Felix; Kvellestad, Anders; Putze, Antje; Savage, Christopher; Scott, Pat; Weniger, Christoph; White, Martin; Wild, Sebastian
2017-12-01
We introduce DarkBit, an advanced software code for computing dark matter constraints on various extensions to the Standard Model of particle physics, comprising both new native code and interfaces to external packages. This release includes a dedicated signal yield calculator for gamma-ray observations, which significantly extends current tools by implementing a cascade-decay Monte Carlo, as well as a dedicated likelihood calculator for current and future experiments ( gamLike). This provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states. We also supply a direct detection package that models a large range of direct detection experiments ( DDCalc), and that provides the corresponding likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes. Finally, we provide custom relic density routines along with interfaces to DarkSUSY, micrOMEGAs, and the neutrino telescope likelihood package nulike. DarkBit is written in the framework of the Global And Modular Beyond the Standard Model Inference Tool ( GAMBIT), providing seamless integration into a comprehensive statistical fitting framework that allows users to explore new models with both particle and astrophysics constraints, and a consistent treatment of systematic uncertainties. In this paper we describe its main functionality, provide a guide to getting started quickly, and show illustrative examples for results obtained with DarkBit (both as a stand-alone tool and as a GAMBIT module). This includes a quantitative comparison between two of the main dark matter codes ( DarkSUSY and micrOMEGAs), and application of DarkBit 's advanced direct and indirect detection routines to a simple effective dark matter model.
NASA Astrophysics Data System (ADS)
Abazajian, Kevork N.; Keeley, Ryan E.
2016-04-01
We incorporate Milky Way dark matter halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the Galactic Center Extended gamma-ray excess (GCE) detected by the Fermi Gamma Ray Space Telescope. The range of particle annihilation rate and masses expand when including these unknowns. However, two of the most precise empirical determinations of the Milky Way halo's local density and density profile leave the signal region to be in considerable tension with dark matter annihilation searches from combined dwarf galaxy analyses for single-channel dark matter annihilation models. The GCE and dwarf tension can be alleviated if: one, the halo is very highly concentrated or strongly contracted; two, the dark matter annihilation signal differentiates between dwarfs and the GC; or, three, local stellar density measures are found to be significantly lower, like that from recent stellar counts, increasing the local dark matter density.
Sanotra, G S; Lund, J Damkjer; Vestergaard, K S
2002-07-01
1. The aims of this study were to determine (1) the effect of light-dark schedules on the walking ability, the risk of tibial dyschondroplasia (TD) as well as the duration of tonic immobility (TI) reactions in commercial broiler flocks and (2) the effect of a daily dark period and reduced density on the behaviour of broiler chickens. 2. Experiment 1. Group 1 had a 2 to 8 h daily dark period from 2 to 26 d of age (light-dark programme A) at a stocking density of 28.4 chicks/m2. Group 2 had 8 h of darkness daily from 2 to 38 d of age (light-dark programme B) at 24 chicks/m2. The control group had 24 h continuous light at 28.4 chicks/m2. 3. Experiment 2. Behaviour was studied with and without a daily 8 h dark period and at high (30 chicks/m2) and low (18 chicks/m2) stocking densities. 4. Programme B reduced the prevalence of impaired walking ability, corresponding to gait score > 2, when compared with controls. The effect on walking ability corresponding to gait score > 0 approached significance. 5. Both light-dark programmes reduced the occurrence of TD. Programme B (combined with reduced stocking density), however, had the greater effect. 6. Both light-dark programmes reduced the duration of TI, compared with controls (mean = 426 s) Programme B resulted in a larger reduction (alpha = -156.9 s) than programme A (alpha = -117.0). 7. The proportions of chicks drinking, eating, pecking, scratching, standing and performing vertical wing-shakes increased--both when the 8 h dark period and the reduced stocking density were applied separately and in combination (experiment 2). 8. For all behaviours, except standing, the effect of the dark period was largest in broilers kept at the high stocking density (d 40).
Cosmological constant problem and renormalized vacuum energy density in curved background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohri, Kazunori; Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp
The current vacuum energy density observed as dark energy ρ{sub dark}≅ 2.5×10{sup −47} GeV{sup 4} is unacceptably small compared with any other scales. Therefore, we encounter serious fine-tuning problem and theoretical difficulty to derive the dark energy. However, the theoretically attractive scenario has been proposed and discussed in literature: in terms of the renormalization-group (RG) running of the cosmological constant, the vacuum energy density can be expressed as ρ{sub vacuum}≅ m {sup 2} H {sup 2} where m is the mass of the scalar field and rather dynamical in curved spacetime. However, there has been no rigorous proof to derivemore » this expression and there are some criticisms about the physical interpretation of the RG running cosmological constant. In the present paper, we revisit the RG running effects of the cosmological constant and investigate the renormalized vacuum energy density in curved spacetime. We demonstrate that the vacuum energy density described by ρ{sub vacuum}≅ m {sup 2} H {sup 2} appears as quantum effects of the curved background rather than the running effects of cosmological constant. Comparing to cosmological observational data, we obtain an upper bound on the mass of the scalar fields to be smaller than the Planck mass, m ∼< M {sub Pl}.« less
Hybrid anomaly and gravity mediation for electroweak supersymmetry
NASA Astrophysics Data System (ADS)
Zhu, Bin; Ding, Ran; Li, Tianjun
2018-03-01
In this paper, we propose a hybrid mediation and hybrid supersymmetry breaking. In particular, the RG-invariant anomaly mediation is considered. Together with additional gravity mediation, the slepton tachyon problem of anomaly mediation is solved automatically. The special properties are that all color sparticles masses fall into several TeV regions due to the large m0 and m32 which are well beyond the scope of current LHC Run II limits. Unlike the gauge mediation, the dark matter candidate is still the lightest neutralino and the correct dark matter relic density can be realized within the framework of mixed axion-Wino dark matter. Due to the existence of multi-component axion-Wino dark matter, the direct detection cross-section is suppressed to evade the tightest LUX, PandaX bound.
Reconstructing the Initial Density Field of the Local Universe: Methods and Tests with Mock Catalogs
NASA Astrophysics Data System (ADS)
Wang, Huiyuan; Mo, H. J.; Yang, Xiaohu; van den Bosch, Frank C.
2013-07-01
Our research objective in this paper is to reconstruct an initial linear density field, which follows the multivariate Gaussian distribution with variances given by the linear power spectrum of the current cold dark matter model and evolves through gravitational instabilities to the present-day density field in the local universe. For this purpose, we develop a Hamiltonian Markov Chain Monte Carlo method to obtain the linear density field from a posterior probability function that consists of two components: a prior of a Gaussian density field with a given linear spectrum and a likelihood term that is given by the current density field. The present-day density field can be reconstructed from galaxy groups using the method developed in Wang et al. Using a realistic mock Sloan Digital Sky Survey DR7, obtained by populating dark matter halos in the Millennium simulation (MS) with galaxies, we show that our method can effectively and accurately recover both the amplitudes and phases of the initial, linear density field. To examine the accuracy of our method, we use N-body simulations to evolve these reconstructed initial conditions to the present day. The resimulated density field thus obtained accurately matches the original density field of the MS in the density range 0.3 \\lesssim \\rho /\\bar{\\rho } \\lesssim 20 without any significant bias. In particular, the Fourier phases of the resimulated density fields are tightly correlated with those of the original simulation down to a scale corresponding to a wavenumber of ~1 h Mpc-1, much smaller than the translinear scale, which corresponds to a wavenumber of ~0.15 h Mpc-1.
Dark interactions and cosmological fine-tuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quartin, Miguel; Calvao, Mauricio O; Joras, Sergio E
2008-05-15
Cosmological models involving an interaction between dark matter and dark energy have been proposed in order to solve the so-called coincidence problem. Different forms of coupling have been studied, but there have been claims that observational data seem to narrow (some of) them down to something annoyingly close to the {Lambda}CDM (CDM: cold dark matter) model, thus greatly reducing their ability to deal with the problem in the first place. The smallness problem of the initial energy density of dark energy has also been a target of cosmological models in recent years. Making use of a moderately general coupling scheme,more » this paper aims to unite these different approaches and shed some light on whether this class of models has any true perspective in suppressing the aforementioned issues that plague our current understanding of the universe, in a quantitative and unambiguous way.« less
Cosmological implications of the transition from the false vacuum to the true vacuum state
NASA Astrophysics Data System (ADS)
Stachowski, Aleksander; Szydłowski, Marek; Urbanowski, Krzysztof
2017-06-01
We study cosmology with running dark energy. The energy density of dark energy is obtained from the quantum process of transition from the false vacuum state to the true vacuum state. We use the Breit-Wigner energy distribution function to model the quantum unstable systems and obtain the energy density of the dark energy parametrization ρ _ {de}(t). We also use Krauss and Dent's idea linking properties of the quantum mechanical decay of unstable states with the properties of the observed Universe. In the cosmological model with this parametrization there is an energy transfer between dark matter and dark energy. The intensity of this process, measured by a parameter α , distinguishes two scenarios. As the Universe starts from the false vacuum state, for the small value of α (0<α <0.4) it goes through an intermediate oscillatory (quantum) regime of the density of dark energy, while for α > 0.4 the density of the dark energy jumps down. In both cases the present value of the density of dark energy is reached. From a statistical analysis we find this model to be in good agreement with the astronomical data and practically indistinguishable from the Λ CDM model.
Constraints on the dark matter neutralinos from the radio emissions of galaxy clusters
NASA Astrophysics Data System (ADS)
Kiew, Ching-Yee; Hwang, Chorng-Yuan; Zainal Abibin, Zamri
2017-05-01
By assuming the dark matter to be composed of neutralinos, we used the detection of upper limit on diffuse radio emission in a sample of galaxy clusters to put constraint on the properties of neutralinos. We showed the upper limit constraint on <σv>-mχ space with neutralino annihilation through b\\bar{b} and μ+μ- channels. The best constraint is from the galaxy clusters A2199 and A1367. We showed the uncertainty due to the density profile and cluster magnetic field. The largest uncertainty comes from the uncertainty in dark matter spatial distribution. We also investigated the constraints on minimal Supergravity (mSUGRA) and minimal supersymmetric standard model (MSSM) parameter space by scanning the parameters using the darksusy package. By using the current radio observation, we managed to exclude 40 combinations of mSUGRA parameters. On the other hand, 573 combinations of MSSM parameters can be excluded by current observation.
SiC-based Photo-detectors for UV, VUV, EUV and Soft X-ray Detection
NASA Technical Reports Server (NTRS)
Yan, Feng
2006-01-01
A viewgraph presentation describing an ideal Silicon Carbide detector for ultraviolet, vacuum ultraviolet, extreme ultraviolet and soft x-ray detection is shown. The topics include: 1) An ideal photo-detector; 2) Dark current density of SiC photodiodes at room temperature; 3) Dark current in SiC detectors; 4) Resistive and capacitive feedback trans-impedance amplifier; 5) Avalanche gain; 6) Excess noise; 7) SNR in single photon counting mode; 8) Structure of SiC single photon counting APD and testing structure; 9) Single photon counting waveform and testing circuit; 10) Amplitude of SiC single photon counter; 11) Dark count of SiC APD photon counters; 12) Temperature-dependence of dark count rate; 13) Reduce the dark count rate by reducing the breakdown electric field; 14) Spectrum range for SiC detectors; 15) QE curves of Pt/4H-SiC photodiodes; 16) QE curve of SiC; 17) QE curves of SiC photodiode vs. penetration depth; 18) Visible rejection of SiC photodiodes; 19) Advantages of SiC photodiodes; 20) Competitors of SiC detectors; 21) Extraterrestrial solar spectra; 22) Visible-blind EUV detection; 23) Terrestrial solar spectra; and 24) Less than 1KeV soft x-ray detection.
Antimatter cosmic rays from dark matter annihilation: First results from an N-body experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavalle, J.; Nezri, E.; Athanassoula, E.
2008-11-15
While the particle hypothesis for dark matter may be very soon investigated at the LHC, and as the PAMELA and GLAST satellites are currently taking new data on charged and gamma cosmic rays, the need of controlling the theoretical uncertainties affecting the possible indirect signatures of dark matter annihilation is of paramount importance. The uncertainties which originate from the dark matter distribution are difficult to estimate because current astrophysical observations provide rather weak dynamical constraints and because, according to cosmological N-body simulations, dark matter is neither smoothly nor spherically distributed in galactic halos. Some previous studies made use of N-bodymore » simulations to compute the {gamma}-ray flux from dark matter annihilation, but such a work has never been performed for the antimatter (positron and antiproton) primary fluxes, for which transport processes complicate the calculations. We take advantage of the galaxylike 3D dark matter map extracted from the Horizon Project results to calculate the positron and antiproton fluxes from dark matter annihilation, in a model-independent approach as well as for dark matter particle benchmarks relevant at the LHC scale (from supersymmetric and extradimensional theories). We find that the flux uncertainties arise mainly from fluctuations of the local dark matter density, and are of {approx}1 order of magnitude. We compare our results to analytic descriptions of the dark matter halo, showing how the latter can well reproduce the former. The overall antimatter predictions associated with our benchmark models are shown to lie far below the existing measurements and, in particular, that of the positron fraction recently reported by PAMELA, and far below the background predictions as well. Finally, we stress the limits of the use of an N-body framework in this context.« less
The diverse density profiles of galaxy clusters with self-interacting dark matter plus baryons
NASA Astrophysics Data System (ADS)
Robertson, Andrew; Massey, Richard; Eke, Vincent; Tulin, Sean; Yu, Hai-Bo; Bahé, Yannick; Barnes, David J.; Bower, Richard G.; Crain, Robert A.; Dalla Vecchia, Claudio; Kay, Scott T.; Schaller, Matthieu; Schaye, Joop
2018-05-01
We present the first simulated galaxy clusters (M200 > 1014 M⊙) with both self-interacting dark matter (SIDM) and baryonic physics. They exhibit a greater diversity in both dark matter and stellar density profiles than their counterparts in simulations with collisionless dark matter (CDM), which is generated by the complex interplay between dark matter self-interactions and baryonic physics. Despite variations in formation history, we demonstrate that analytical Jeans modelling predicts the SIDM density profiles remarkably well, and the diverse properties of the haloes can be understood in terms of their different final baryon distributions.
NASA Astrophysics Data System (ADS)
Youssef, Sarah; El-Batawy, Yasser M.; Abouelsaood, Ahmed A.
2016-09-01
A theoretical method for calculating the electron mobility in quantum dot infrared photodetectors is developed. The mobility calculation is based on a time-dependent, finite-difference solution of the Boltzmann transport equation in a bulk semiconductor material with randomly positioned conical quantum dots. The quantum dots act as scatterers of current carriers (conduction-band electrons in our case), resulting in limiting their mobility. In fact, carrier scattering by quantum dots is typically the dominant factor in determining the mobility in the active region of the quantum dot device. The calculated values of the mobility are used in a recently developed generalized drift-diffusion model for the dark current of the device [Ameen et al., J. Appl. Phys. 115, 063703 (2014)] in order to fix the overall current scale. The results of the model are verified by comparing the predicted dark current characteristics to those experimentally measured and reported for actual InAs/GaAs quantum dot infrared photodetectors. Finally, the effect of the several relevant device parameters, including the operating temperature and the quantum dot average density, is studied.
Bahcall, Neta A
2015-10-06
Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.
Bahcall, Neta A.
2015-01-01
Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091
3D MHD SIMULATION OF FLARE SUPRA-ARCADE DOWNFLOWS IN A TURBULENT CURRENT SHEET MEDIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cécere, M.; Zurbriggen, E.; Costa, A.
2015-07-01
Supra-arcade downflows (SADs) are sunward, generally dark, plasma density depletions originated above posteruption flare arcades. In this paper, using 3D MHD simulations we investigate whether the SAD cavities can be produced by a direct combination of the tearing mode and Kelvin–Helmholtz instabilities leading to a turbulent current sheet (CS) medium or if the current sheet is merely the background where SADs are produced, triggered by an impulsive deposition of energy. We find that to give an account of the observational dark lane structures an addition of local energy, provided by a reconnection event, is required. We suggest that there maymore » be a closed relation between characteristic SAD sizes and CS widths that must be satisfied to obtain an observable SAD.« less
3D MHD Simulation of Flare Supra-Arcade Downflows in a Turbulent Current Sheet Medium
NASA Astrophysics Data System (ADS)
Cécere, M.; Zurbriggen, E.; Costa, A.; Schneiter, M.
2015-07-01
Supra-arcade downflows (SADs) are sunward, generally dark, plasma density depletions originated above posteruption flare arcades. In this paper, using 3D MHD simulations we investigate whether the SAD cavities can be produced by a direct combination of the tearing mode and Kelvin-Helmholtz instabilities leading to a turbulent current sheet (CS) medium or if the current sheet is merely the background where SADs are produced, triggered by an impulsive deposition of energy. We find that to give an account of the observational dark lane structures an addition of local energy, provided by a reconnection event, is required. We suggest that there may be a closed relation between characteristic SAD sizes and CS widths that must be satisfied to obtain an observable SAD.
Condensation of galactic cold dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Visinelli, Luca
2016-07-07
We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for “canonical” cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional “quantum pressure” term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the “cuspy halo problem” present in some cold dark matter theories. Withinmore » the model proposed, we predict the mass of the cold dark matter particle to be of the order of M{sub χ}c{sup 2}≈10{sup −24} eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mary A.; Tangyunyong, Paiboon; Cole, Edward I.
2016-01-14
Laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes (LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increased leakage ismore » not present in devices without AVM signals. Transmission electron microscopy analysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less
Miller, Mary A.; Tangyunyong, Paiboon; Edward I. Cole, Jr.
2016-01-12
In this study, laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes(LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increasedmore » leakage is not present in devices without AVM signals. Transmission electron microscopyanalysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less
From "~" to Precision Science: Cosmology from 1995 to 2025
NASA Astrophysics Data System (ADS)
Kamionkowski, Marc; Spergel, David N.
2016-01-01
Over the past decade and a half, astronomical measurements, primarily of fluctuations in the cosmic microwave background, have transformed cosmology from an order-of-magnitude game into a paragon of precision science. From these measurements has emerged a 6-parameter cosmological "standard model": a flat universe filled with dark matter and dark energy and seeded by a nearly scale-invariant spectrum of Gaussian random-phase density perturbations. The striking resemblance between these perturbations and those expected from inflation motivates the search for a unique "B-mode" signature of inflation in the polarization of the cosmic microwave background. While the fluctuation spectrum is close to scale invariant, WMAP, Planck and ground-based CMB experiments now have strong evidence for a departure from scale invariance in primordial perturbations. This suggests, in simple models of inflation that these B modes should be within striking distance within the next 5-10 years. The advent of a new generation of galaxy surveys will, over similar timescales, shed additional light not only on the physics of inflation, but also the nature of the dark matter and dark energy required by the current cosmological standard model, and perhaps on the new physics that determines the baryon density.
Enlightening Students about Dark Matter
NASA Astrophysics Data System (ADS)
Hamilton, Kathleen; Barr, Alex; Eidelman, Dave
2018-01-01
Dark matter pervades the universe. While it is invisible to us, we can detect its influence on matter we can see. To illuminate this concept, we have created an interactive javascript program illustrating predictions made by six different models for dark matter distributions in galaxies. Students are able to match the predicted data with actual experimental results, drawn from several astronomy papers discussing dark matter’s impact on galactic rotation curves. Programming each new model requires integration of density equations with parameters determined by nonlinear curve-fitting using MATLAB scripts we developed. Using our javascript simulation, students can determine the most plausible dark matter models as well as the average percentage of dark matter lurking in galaxies, areas where the scientific community is still continuing to research. In that light, we strive to use the most up-to-date and accepted concepts: two of our dark matter models are the pseudo-isothermal halo and Navarro-Frenk-White, and we integrate out to each galaxy’s virial radius. Currently, our simulation includes NGC3198, NGC2403, and our own Milky Way.
Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao
2016-11-18
We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.
The density of dark matter in the Galactic bulge and implications for indirect detection
Hooper, Dan
2016-11-29
A recent study, making use of the number of horizontal branch stars observed in infrared photometric surveys and kinematic measurements of M-giant stars from the BRAVA survey, combined with N-body simulations of stellar populations, has presented a new determination of the dark matter mass within the bulge-bar region of the Milky Way. That study constrains the total mass within themore » $$\\pm 2.2 \\times \\pm 1.4 \\times \\pm 1.2$$ kpc volume of the bulge-bar region to be ($$1.84 \\pm 0.07) \\times 10^{10} \\, M_{\\odot}$$, of which 9-30% is made up of dark matter. Here, we use this result to constrain the the Milky Way's dark matter density profile, and discuss the implications for indirect dark matter searches. Furthermore uncertainties remain significant, these results favor dark matter distributions with a cusped density profile. For example, for a scale radius of 20 kpc and a local dark matter density of 0.4 GeV/cm$^3$, density profiles with an inner slope of 0.69 to 1.40 are favored, approximately centered around the standard NFW value. In contrast, profiles with large flat-density cores are disfavored by this information.« less
Constraints on supersymmetric dark matter for heavy scalar superpartners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Peisi; Roglans, Roger A.; Spiegel, Daniel D.
2017-05-01
We study the constraints on neutralino dark matter in minimal low energy supersymmetry models and the case of heavy lepton and quark scalar superpartners. For values of the Higgsino and gaugino mass parameters of the order of the weak scale, direct detection experiments are already putting strong bounds on models in which the dominant interactions between the dark matter candidates and nuclei are governed by Higgs boson exchange processes, particularly for positive values of the Higgsino mass parameter mu. For negative values of mu, there can be destructive interference between the amplitudes associated with the exchange of the standard CP-evenmore » Higgs boson and the exchange of the nonstandard one. This leads to specific regions of parameter space which are consistent with the current experimental constraints and a thermal origin of the observed relic density. In this article, we study the current experimental constraints on these scenarios, as well as the future experimental probes, using a combination of direct and indirect dark matter detection and heavy Higgs and electroweakino searches at hadron colliders« less
NASA Astrophysics Data System (ADS)
Linder, Eric V.
2006-08-01
Non-negligible dark energy density at high redshifts would indicate dark energy physics distinct from a cosmological constant or "reasonable" canonical scalar fields. Such dark energy can be constrained tightly through investigation of the growth of structure, with limits of ≲2% of total energy density at z ≫ 1 for many models. Intermediate dark energy can have effects distinct from its energy density; the dark ages acceleration can be constrained to last less than 5% of a Hubble e-fold time, exacerbating the coincidence problem. Both the total linear growth, or equivalently σ8, and the shape and evolution of the nonlinear mass power spectrum for z < 2 (using the Linder-White nonlinear mapping prescription) provide important windows. Probes of growth, such as weak gravitational lensing, can interact with supernovae and CMB distance measurements to scan dark energy behavior over the entire range z = 0-1100.
Higgs seesaw mechanism as a source for dark energy.
Krauss, Lawrence M; Dent, James B
2013-08-09
Motivated by the seesaw mechanism for neutrinos which naturally generates small neutrino masses, we explore how a small grand-unified-theory-scale mixing between the standard model Higgs boson and an otherwise massless hidden sector scalar can naturally generate a small mass and vacuum expectation value for the new scalar which produces a false vacuum energy density contribution comparable to that of the observed dark energy dominating the current expansion of the Universe. This provides a simple and natural mechanism for producing the correct scale for dark energy, even if it does not address the long-standing question of why much larger dark energy contributions are not produced from the visible sector. The new scalar produces no discernible signatures in existing terrestrial experiments so that one may have to rely on other cosmological tests of this idea.
A theoretical analysis of the current-voltage characteristics of solar cells
NASA Technical Reports Server (NTRS)
Fang, R. C. Y.; Hauser, J. R.
1979-01-01
The following topics are discussed: (1) dark current-voltage characteristics of solar cells; (2) high efficiency silicon solar cells; (3) short circuit current density as a function of temperature and the radiation intensity; (4) Keldysh-Franz effects and silicon solar cells; (5) thin silicon solar cells; (6) optimum solar cell designs for concentrated sunlight; (7) nonuniform illumination effects of a solar cell; and (8) high-low junction emitter solar cells.
Direct detection of sub-GeV dark matter with semiconductor targets
Essig, Rouven; Fernández-Serra, Marivi; Mardon, Jeremy; ...
2016-05-09
Dark matter in the sub-GeV mass range is a theoretically motivated but largely unexplored paradigm. Such light masses are out of reach for conventional nuclear recoil direct detection experiments, but may be detected through the small ionization signals caused by dark matter-electron scattering. Semiconductors are well-studied and are particularly promising target materials because their O(1 eV) band gaps allow for ionization signals from dark matter particles as light as a few hundred keV. Current direct detection technologies are being adapted for dark matter-electron scattering. In this paper, we provide the theoretical calculations for dark matter-electron scattering rate in semiconductors, overcomingmore » several complications that stem from the many-body nature of the problem. We use density functional theory to numerically calculate the rates for dark matter-electron scattering in silicon and germanium, and estimate the sensitivity for upcoming experiments such as DAMIC and SuperCDMS. We find that the reach for these upcoming experiments has the potential to be orders of magnitude beyond current direct detection constraints and that sub-GeV dark matter has a sizable modulation signal. We also give the first direct detection limits on sub-GeV dark matter from its scattering off electrons in a semiconductor target (silicon) based on published results from DAMIC. We make available publicly our code, QEdark, with which we calculate our results. Our results can be used by experimental collaborations to calculate their own sensitivities based on their specific setup. In conclusion, the searches we propose will probe vast new regions of unexplored dark matter model and parameter space.« less
Development of High-Performance eSWIR HgCdTe-Based Focal-Plane Arrays on Silicon Substrates
NASA Astrophysics Data System (ADS)
Park, J. H.; Pepping, J.; Mukhortova, A.; Ketharanathan, S.; Kodama, R.; Zhao, J.; Hansel, D.; Velicu, S.; Aqariden, F.
2016-09-01
We report the development of high-performance and low-cost extended short-wavelength infrared (eSWIR) focal-plane arrays (FPAs) fabricated from molecular beam epitaxial (MBE)-grown HgCdTe on Si-based substrates. High-quality n-type eSWIR HgCdTe (cutoff wavelength ˜2.68 μm at 77 K, electron carrier concentration 5.82 × 1015 cm-3) layers were grown on CdTe/Si substrates by MBE. High degrees of uniformity in composition and thickness were demonstrated over three-inch areas, and low surface defect densities (voids 9.56 × 101 cm-2, micro-defects 1.67 × 103 cm-2) were measured. This material was used to fabricate 320 × 256 format, 30 μm pitch FPAs with a planar device architecture using arsenic implantation to achieve p-type doping. The dark current density of test devices showed good uniformity between 190 K and room temperature, and high-quality eSWIR imaging from hybridized FPAs was obtained with a median dark current density of 2.63 × 10-7 A/cm2 at 193 K with a standard deviation of 1.67 × 10-7 A/cm2.
NASA Astrophysics Data System (ADS)
Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng
2017-10-01
Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.
Halo density profiles and baryon physics
NASA Astrophysics Data System (ADS)
Del Popolo, A.; Li, Xi-Guo
2017-08-01
The radial dependence of the pseudo phase-space density, ρ( r)/ σ 3( r) is studied. We find that the pseudo phase-space density for halos consisting both of dark matter and baryons is approximately a power-law only down to 0.1% of the virial radius while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. Halos consisting just of dark matter, as the one in dark matter only simulations, are characterized by an approximately power-law behavior. The results argue against universality of the pseudo phase-space density, when the baryons effect are included, and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in [1].
NASA Astrophysics Data System (ADS)
Fathipour, Vala; Bonakdar, Alireza; Mohseni, Hooman
2016-08-01
Short-wave infrared (SWIR) photon detection has become an essential technology in the modern world. Sensitive SWIR detector arrays with high pixel density, low noise levels and high signal-to-noise-ratios are highly desirable for a variety of applications including biophotonics, light detection and ranging, optical tomography, and astronomical imaging. As such many efforts in infrared detector research are directed towards improving the performance of the photon detectors operating in this wavelength range. We review the history, principle of operation, present status and possible future developments of a sensitive SWIR detector technology, which has demonstrated to be one of the most promising paths to high pixel density focal plane arrays for low flux applications. The so-called electron-injection (EI) detector was demonstrated for the first time (in 2007). It offers an overall system-level sensitivity enhancement compared to the p-i-n diode due to a stable internal avalanche-free gain. The amplification method is inherently low noise, and devices exhibit an excess noise of unity. The detector operates in linear-mode and requires only bias voltage of a few volts. The stable detector characteristics, makes formation of high yield large-format, and high pixel density focal plane arrays less challenging compared to other detector technologies such as avalanche photodetectors. Detector is based on the mature InP material system (InP/InAlAs/GaAsSb/InGaAs), and has a cutoff wavelength of 1700 nm. It takes advantage of a unique three-dimensional geometry and combines the efficiency of a large absorbing volume with the sensitivity of a low-dimensional switch (injector) to sense and amplify signals. Current devices provide high-speed response ~ 5 ns rise time, and low jitter ~ 12 ps at room temperature. The internal dark current density is ~ 1 μA/cm2 at room temperature decreasing to 0.1 nA/cm2 at 160 K. EI detectors have been designed, fabricated, and tested during two generations of development and optimization cycles. We review our imager results using the first-generation detectors. In the second-generation devices, the dark current is reduced by two orders of magnitude, and bandwidth is improved by 4 orders of magnitude. The dark current density of the EI detector is shown to outperform the state-of-the-art technology, the
Interaction in the dark sector
NASA Astrophysics Data System (ADS)
del Campo, Sergio; Herrera, Ramón; Pavón, Diego
2015-06-01
It may well happen that the two main components of the dark sector of the Universe, dark matter and dark energy, do not evolve separately but interact nongravitationally with one another. However, given our current lack of knowledge of the microscopic nature of these two components, there is no clear theoretical path to determine their interaction. Yet, over the years, phenomenological interaction terms have been proposed on mathematical simplicity and heuristic arguments. In this paper, based on the likely evolution of the ratio between the energy densities of these dark components, we lay down reasonable criteria to obtain phenomenological, useful, expressions of the said term independent of any gravity theory. We illustrate this with different proposals which seem compatible with the known evolution of the Universe at the background level. Likewise, we show that two possible degeneracies with noninteracting models are only apparent as they can be readily broken at the background level. Further, we analyze some interaction terms that appear in the literature.
The 640 × 512 LWIR type-II superlattice detectors operating at 110 K
NASA Astrophysics Data System (ADS)
Tan, Bi-Song; Zhang, Chuan-Jie; Zhou, Wen-Hong; Yang, Xiao-Jie; Wang, Guo-Wei; Li, Yun-Tao; Ding, Yan-Yan; Zhang, Zhou; Lei, Hua-Wei; Liu, Wei-Hua; Du, Yu; Zhang, Li-Fang; Liu, Bin; Wang, Li-Bao; Huang, Li
2018-03-01
The type-II InAs/GaSb superlattices (T2SLs)-based 640 × 512 long wavelength infrared (LWIR) Focal Plane Array (FPA) detector with15 μm pitch and 50% cut-off wavelength of 10.5 μm demonstrates a peak quantum efficiency of 38.6% and peak detectivity of 1.65 × 1011 cm Hz1/2 W-1 at 8.1 μm, high pixel operability of 99.5% and low responsivity non-uniformity of 2.69% at 80 K. The FPA exhibits clear infrared imaging at 110 K and diffusion-limited dark current densities below Tennant's 'Rule07' at temperature above 100 K, which is attributed to the efficient suppression of diffusion dark current and surface leak current by introducing M-structure barrier and double hetero-structure passivation layers.
Identification of a limiting mechanism in GaSb-rich superlattice midwave infrared detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delmas, Marie; Rodriguez, Jean-Baptiste; Rossignol, Rémi
2016-05-07
GaSb-rich superlattice (SL) p-i-n photodiodes grown by molecular beam epitaxy were studied theoretically and experimentally in order to understand the poor dark current characteristics typically obtained. This behavior, independent of the SL-grown material quality, is usually attributed to the presence of defects due to Ga-related bonds, limiting the SL carrier lifetime. By analyzing the photoresponse spectra of reverse-biased photodiodes at 80 K, we have highlighted the presence of an electric field, breaking the minibands into localized Wannier-Stark states. Besides the influence of defects in such GaSb-rich SL structures, this electric field induces a strong tunneling current at low bias which canmore » be the main limiting mechanism explaining the high dark current density of the GaSb-rich SL diode.« less
Recent progress in the development of MCT hot detectors
NASA Astrophysics Data System (ADS)
Wollrab, R.; Schirmacher, W.; Schallenberg, T.; Lutz, H.; Wendler, J.; Haiml, M.; Ziegler, J.
2017-11-01
To push HOT-performance, AIMs existing n-on-p technology has been improved by introducing Gold as an acceptor and reducing its concentration to the lower 1015/cm3 range as well as by optimizing the passivation process. This results in a substantial reduction in dark current density, a prerequisite for HOT operation. Recent dark current data are compared to ones previously obtained as well as to Tennant`s Rule07 [1], a generally accepted bench mark in this context. Furthermore, we present electro-optical parameters obtained in the temperature range from 120 K to 170 K on resulting FPAs with 640x512 pixels, a pitch of 15 μm and a typical (80 K) cutoff wavelength of 5.1 μm.
Non-thermal production of minimal dark matter via right-handed neutrino decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Mayumi; Toma, Takashi; Vicente, Avelino
2015-09-29
Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2){sub L} quintuplet and a scalar SU(2){sub L} septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermalmore » equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.« less
Non-thermal production of minimal dark matter via right-handed neutrino decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Mayumi; Toma, Takashi; Vicente, Avelino, E-mail: mayumi@hep.s.kanazawa-u.ac.jp, E-mail: takashi.toma@th.u-psud.fr, E-mail: Avelino.Vicente@ulg.ac.be
2015-09-01
Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2){sub L} quintuplet and a scalar SU(2){sub L} septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermalmore » equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.« less
Search for light scalar dark matter with atomic gravitational wave detectors
NASA Astrophysics Data System (ADS)
Arvanitaki, Asimina; Graham, Peter W.; Hogan, Jason M.; Rajendran, Surjeet; Van Tilburg, Ken
2018-04-01
We show that gravitational wave detectors based on a type of atom interferometry are sensitive to ultralight scalar dark matter. Such dark matter can cause temporal oscillations in fundamental constants with a frequency set by the dark matter mass and amplitude determined by the local dark matter density. The result is a modulation of atomic transition energies. We point out a new time-domain signature of this effect in a type of gravitational wave detector that compares two spatially separated atom interferometers referenced by a common laser. Such a detector can improve on current searches for electron-mass or electric-charge modulus dark matter by up to 10 orders of magnitude in coupling, in a frequency band complementary to that of other proposals. It demonstrates that this class of atomic sensors is qualitatively different from other gravitational wave detectors, including those based on laser interferometry. By using atomic-clock-like interferometers, laser noise is mitigated with only a single baseline. These atomic sensors can thus detect scalar signals in addition to tensor signals.
Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models.
Marsh, M C David
2017-01-06
Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, N_{vac}∼O(10^{272 000}), are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.
Age of high redshift objects—a litmus test for the dark energy models
NASA Astrophysics Data System (ADS)
Jain, Deepak; Dev, Abha
2006-02-01
The discovery of the quasar, the APM 08279+5255 at z=3.91 whose age is 2 3 Gyr has once again led to “age crisis”. The noticeable fact about this object is that it cannot be accommodated in a universe with Ω=0.27, currently accepted value of matter density parameter and ω=const. In this work, we explore the concordance of various dark energy parameterizations (w(z) models) with the age estimates of the old high redshift objects. It is alarming to note that the quasar cannot be accommodated in any dark energy model even for Ω=0.23, which corresponds to 1σ deviation below the best fit value provided by WMAP. There is a need to look for alternative cosmologies or some other dark energy parameterizations which allow the existence of the high redshift objects.
Small but mighty: Dark matter substructures
NASA Astrophysics Data System (ADS)
Cyr-Racine, Francis-Yan; Keeton, Charles; Moustakas, Leonidas
2018-01-01
The fundamental properties of dark matter, such as its mass, self-interaction, and coupling to other particles, can have a major impact on the evolution of cosmological density fluctuations on small length scales. Strong gravitational lenses have long been recognized as powerful tools to study the dark matter distribution on these small subgalactic scales. In this talk, we discuss how gravitationally lensed quasars and extended lensed arcs could be used to probe non minimal dark matter models. We comment on the possibilities enabled by precise astrometry, deep imaging, and time delays to extract information about mass substructures inside lens galaxies. To this end, we introduce a new lensing statistics that allows for a robust diagnostic of the presence of perturbations caused by substructures. We determine which properties of mass substructures are most readily constrained by lensing data and forecast the constraining power of current and future observations.
Constraints on CDM cosmology from galaxy power spectrum, CMB and SNIa evolution
NASA Astrophysics Data System (ADS)
Ferramacho, L. D.; Blanchard, A.; Zolnierowski, Y.
2009-05-01
Aims: We examine the constraints that can be obtained on standard cold dark matter models from the most currently used data set: CMB anisotropies, type Ia supernovae and the SDSS luminous red galaxies. We also examine how these constraints are widened when the equation of state parameter w and the curvature parameter Ωk are left as free parameters. Finally, we investigate the impact on these constraints of a possible form of evolution in SNIa intrinsic luminosity. Methods: We obtained our results from MCMC analysis using the full likelihood of each data set. Results: For the ΛCDM model, our “vanilla” model, cosmological parameters are tightly constrained and consistent with current estimates from various methods. When the dark energy parameter w is free we find that the constraints remain mostly unchanged, i.e. changes are smaller than the 1 sigma uncertainties. Similarly, relaxing the assumption of a flat universe leads to nearly identical constraints on the dark energy density parameter of the universe Ω_Λ , baryon density of the universe Ω_b, the optical depth τ, the index of the power spectrum of primordial fluctuations n_S, with most one sigma uncertainties better than 5%. More significant changes appear on other parameters: while preferred values are almost unchanged, uncertainties for the physical dark matter density Ω_ch^2, Hubble constant H0 and σ8 are typically twice as large. The constraint on the age of the Universe, which is very accurate for the vanilla model, is the most degraded. We found that different methodological approaches on large scale structure estimates lead to appreciable differences in preferred values and uncertainty widths. We found that possible evolution in SNIa intrinsic luminosity does not alter these constraints by much, except for w, for which the uncertainty is twice as large. At the same time, this possible evolution is severely constrained. Conclusions: We conclude that systematic uncertainties for some estimated quantities are similar or larger than statistical ones.
Encircling the dark: constraining dark energy via cosmic density in spheres
NASA Astrophysics Data System (ADS)
Codis, S.; Pichon, C.; Bernardeau, F.; Uhlemann, C.; Prunet, S.
2016-08-01
The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the density, which, as expected, is shown to have smaller relative error than the sample variance. This estimator provides a competitive probe for the equation of state of dark energy, reaching a few per cent accuracy on wp and wa for a Euclid-like survey. The corresponding likelihood function can take into account the configuration of the cells via their relative separations. A code to compute one-cell-density probability density functions for arbitrary initial power spectrum, top-hat smoothing and various spherical-collapse dynamics is made available online, so as to provide straightforward means of testing the effect of alternative dark energy models and initial power spectra on the low-redshift matter distribution.
NASA Astrophysics Data System (ADS)
Ajo Franklin, J. B.; Lindsey, N.; Dou, S.; Freifeld, B. M.; Daley, T. M.; Tracy, C.; Monga, I.
2017-12-01
"Dark Fiber" refers to the large number of fiber-optic lines installed for telecommunication purposes but not currently utilized. With the advent of distributed acoustic sensing (DAS), these unused fibers have the potential to become a seismic sensing network with unparalleled spatial extent and density with applications to monitoring both natural seismicity as well as near-surface soil properties. While the utility of DAS for seismic monitoring has now been conclusively shown on built-for-purpose networks, dark fiber deployments have been challenged by the heterogeneity of fiber installation procedures in telecommunication as well as access limitations. However, the potential of telecom networks to augment existing broadband monitoring stations provides a strong incentive to explore their utilization. We present preliminary results demonstrating the application of DAS to seismic monitoring on a 20 km run of "dark" telecommunications fiber between West Sacramento, CA and Woodland CA, part of the Dark Fiber Testbed maintained by the DOE's ESnet user facility. We show a small catalog of local and regional earthquakes detected by the array and evaluate fiber coupling by using variations in recorded frequency content. Considering the low density of broadband stations across much of the Sacramento Basin, such DAS recordings could provide a crucial data source to constrain small-magnitude local events. We also demonstrate the application of ambient noise interferometry using DAS-recorded waveforms to estimate soil properties under selected sections of the dark fiber transect; the success of this test suggests that the network could be utilized for environmental monitoring at the basin scale. The combination of these two examples demonstrates the exciting potential for combining DAS with ubiquitous dark fiber to greatly extend the reach of existing seismic monitoring networks.
Local dark matter and dark energy as estimated on a scale of ~1 Mpc in a self-consistent way
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.
2009-12-01
Context: Dark energy was first detected from large distances on gigaparsec scales. If it is vacuum energy (or Einstein's Λ), it should also exist in very local space. Here we discuss its measurement on megaparsec scales of the Local Group. Aims: We combine the modified Kahn-Woltjer method for the Milky Way-M 31 binary and the HST observations of the expansion flow around the Local Group in order to study in a self-consistent way and simultaneously the local density of dark energy and the dark matter mass contained within the Local Group. Methods: A theoretical model is used that accounts for the dynamical effects of dark energy on a scale of ~1 Mpc. Results: The local dark energy density is put into the range 0.8-3.7ρv (ρv is the globally measured density), and the Local Group mass lies within 3.1-5.8×1012 M⊙. The lower limit of the local dark energy density, about 4/5× the global value, is determined by the natural binding condition for the group binary and the maximal zero-gravity radius. The near coincidence of two values measured with independent methods on scales differing by ~1000 times is remarkable. The mass ~4×1012 M⊙ and the local dark energy density ~ρv are also consistent with the expansion flow close to the Local Group, within the standard cosmological model. Conclusions: One should take into account the dark energy in dynamical mass estimation methods for galaxy groups, including the virial theorem. Our analysis gives new strong evidence in favor of Einstein's idea of the universal antigravity described by the cosmological constant.
Radial dependence of the dark matter distribution in M33
NASA Astrophysics Data System (ADS)
López Fune, E.; Salucci, P.; Corbelli, E.
2017-06-01
The stellar and gaseous mass distributions, as well as the extended rotation curve, in the nearby galaxy M33 are used to derive the radial distribution of dark matter density in the halo and to test cosmological models of galaxy formation and evolution. Two methods are examined to constrain the dark mass density profiles. The first method deals directly with fitting the rotation curve data in the range of galactocentric distances 0.24 ≤ r ≤ 22.72 kpc. Using the results of collisionless Λ cold dark matter numerical simulations, we confirm that the Navarro-Frenkel-White (NFW) dark matter profile provides a better fit to the rotation curve data than the cored Burkert profile (BRK) profile. The second method relies on the local equation of centrifugal equilibrium and on the rotation curve slope. In the aforementioned range of distances, we fit the observed velocity profile, using a function that has a rational dependence on the radius, and we derive the slope of the rotation curve. Then, we infer the effective matter densities. In the radial range 9.53 ≤ r ≤ 22.72 kpc, the uncertainties induced by the luminous matter (stars and gas) become negligible, because the dark matter density dominates, and we can determine locally the radial distribution of dark matter. With this second method, we tested the NFW and BRK dark matter profiles and we can confirm that both profiles are compatible with the data, even though in this case the cored BRK density profile provides a more reasonable value for the baryonic-to-dark matter ratio.
NASA Astrophysics Data System (ADS)
Wang, Deng
2018-06-01
To explore whether there is new physics going beyond the standard cosmological model or not, we constrain seven cosmological models by combining the latest and largest Pantheon Type Ia supernovae sample with the data combination of baryonic acoustic oscillations, cosmic microwave background radiation, Planck lensing and cosmic chronometers. We find that a spatially flat universe is preferred in the framework of Λ CDM cosmology, that the constrained equation of state of dark energy is very consistent with the cosmological constant hypothesis in the ω CDM model, that there is no evidence of dynamical dark energy in the dark energy density-parametrization model, that there is no hint of interaction between dark matter and dark energy in the dark sector of the universe in the decaying vacuum model, and that there does not exist the sterile neutrino in the neutrino sector of the universe in the Λ CDM model. We also give the 95% upper limit of the total mass of three active neutrinos Σ mν<0.178 eV under the assumption of Λ CDM scenario. It is clear that there is no any departure from the standard cosmological model based on current observational datasets.
Dark energy, non-minimal couplings and the origin of cosmic magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiménez, Jose Beltrán; Maroto, Antonio L., E-mail: jobeltra@fis.ucm.es, E-mail: maroto@fis.ucm.es
2010-12-01
In this work we consider the most general electromagnetic theory in curved space-time leading to linear second order differential equations, including non-minimal couplings to the space-time curvature. We assume the presence of a temporal electromagnetic background whose energy density plays the role of dark energy, as has been recently suggested. Imposing the consistency of the theory in the weak-field limit, we show that it reduces to standard electromagnetism in the presence of an effective electromagnetic current which is generated by the momentum density of the matter/energy distribution, even for neutral sources. This implies that in the presence of dark energy,more » the motion of large-scale structures generates magnetic fields. Estimates of the present amplitude of the generated seed fields for typical spiral galaxies could reach 10{sup −9} G without any amplification. In the case of compact rotating objects, the theory predicts their magnetic moments to be related to their angular momenta in the way suggested by the so called Schuster-Blackett conjecture.« less
Gravitationally Focused Dark Matter around Compact Stars
NASA Astrophysics Data System (ADS)
Bromley, Benjamin C.
2011-12-01
If dark matter self-annihilates then it may produce an observable signal when its density is high. The details depend on the intrinsic properties of dark matter and how it clusters in space. For example, the density profile of some dark matter candidates may rise steeply enough toward the Galactic Center that self-annihilation may produce detectable γ-ray emission. Here, we discuss the possibility that an annihilation signal arises near a compact object (e.g., neutron star or black hole) even when the density of dark matter in the neighborhood of the object is uniform. Gravitational focusing produces a local enhancement of density with a profile that falls off approximately as the inverse square-root of distance from the compact star. While geometric dilution may overwhelm the annihilation signal from this local enhancement, magnetic fields tied to the compact object can increase the signal's contrast relative to the background.
New Views on Dark Matter from Emergent Gravity
NASA Astrophysics Data System (ADS)
Sun, Sichun; Zhang, Yun-Long
2018-01-01
We discuss a scenario that apparent dark matter comes from the induced gravity in the (3+1)- dimensional spacetime, which can be embedded into one higher dimensional flat spacetime. The stress tensor of dark energy and dark matter is identified with the Brown-York stress tensor on the hypersurface, and we find an interesting constraint relation between the dark matter and dark energy density parameter and baryonic density parameter. Our approach may show a new understanding for Verlinde's emergent gravity from higher dimensions. We also comment on some phenomenological implications, including gravitational wave solutions and MOND limit.
NASA Astrophysics Data System (ADS)
Uhlemann, C.; Feix, M.; Codis, S.; Pichon, C.; Bernardeau, F.; L'Huillier, B.; Kim, J.; Hong, S. E.; Laigle, C.; Park, C.; Shin, J.; Pogosyan, D.
2018-02-01
Starting from a very accurate model for density-in-cells statistics of dark matter based on large deviation theory, a bias model for the tracer density in spheres is formulated. It adopts a mean bias relation based on a quadratic bias model to relate the log-densities of dark matter to those of mass-weighted dark haloes in real and redshift space. The validity of the parametrized bias model is established using a parametrization-independent extraction of the bias function. This average bias model is then combined with the dark matter PDF, neglecting any scatter around it: it nevertheless yields an excellent model for densities-in-cells statistics of mass tracers that is parametrized in terms of the underlying dark matter variance and three bias parameters. The procedure is validated on measurements of both the one- and two-point statistics of subhalo densities in the state-of-the-art Horizon Run 4 simulation showing excellent agreement for measured dark matter variance and bias parameters. Finally, it is demonstrated that this formalism allows for a joint estimation of the non-linear dark matter variance and the bias parameters using solely the statistics of subhaloes. Having verified that galaxy counts in hydrodynamical simulations sampled on a scale of 10 Mpc h-1 closely resemble those of subhaloes, this work provides important steps towards making theoretical predictions for density-in-cells statistics applicable to upcoming galaxy surveys like Euclid or WFIRST.
Challenging the cosmological constant
NASA Astrophysics Data System (ADS)
Kaloper, Nemanja
2007-09-01
We outline a dynamical dark energy scenario whose signatures may be simultaneously tested by astronomical observations and laboratory experiments. The dark energy is a field with slightly sub-gravitational couplings to matter, a logarithmic self-interaction potential with a scale tuned to ˜10 eV, as is usual in quintessence models, and an effective mass m influenced by the environmental energy density. Its forces may be suppressed just below the current bounds by the chameleon-like mimicry, whereby only outer layers of mass distributions, of thickness 1/m, give off appreciable long range forces. After inflation and reheating, the field is relativistic, and attains a Planckian expectation value before Hubble friction freezes it. This can make gravity in space slightly stronger than on Earth. During the matter era, interactions with nonrelativistic matter dig a minimum close to the Planck scale. However, due to its sub-gravitational matter couplings the field will linger away from this minimum until the matter energy density dips below ˜10 eV. Then it starts to roll to the minimum, driving a period of cosmic acceleration. Among the signatures of this scenario may be dark energy equation of state w≠-1, stronger gravity in dilute mediums, that may influence BBN and appear as an excess of dark matter, and sub-millimeter corrections to Newton's law, close to the present laboratory limits.
Dynamical constraints on the dark matter distribution in the Milky Way
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pato, Miguel; Iocco, Fabio; Bertone, Gianfranco, E-mail: migpato@gmail.com, E-mail: fabio.iocco.astro@gmail.com, E-mail: g.bertone@uva.nl
2015-12-01
An accurate knowledge of the dark matter distribution in the Milky Way is of crucial importance for galaxy formation studies and current searches for particle dark matter. In this paper we set new dynamical constraints on the Galactic dark matter profile by comparing the observed rotation curve, updated with a comprehensive compilation of kinematic tracers, with that inferred from a wide range of observation-based morphologies of the bulge, disc and gas. The generalised Navarro-Frenk-White (NFW) and Einasto dark matter profiles are fitted to the data in order to determine the favoured ranges of local density, slope and scale radius. Formore » a representative baryonic model, a typical local circular velocity v{sub 0}=230 km/s and a distance of the Sun to the Galactic centre R{sub 0}=8 kpc, we find a local dark matter density ρ{sub 0} = 0.420{sup +0.021}{sub −0.018} (2σ) ± 0.025 GeV/cm{sup 3} (ρ{sub 0} = 0.420{sup +0.019}{sub −0.021} (2σ) ± 0.026 GeV/cm{sup 3}) for NFW (Einasto), where the second error is an estimate of the systematic due to baryonic modelling. Apart from the Galactic parameters, the main sources of uncertainty inside and outside the solar circle are baryonic modelling and rotation curve measurements, respectively. Upcoming astronomical observations are expected to reduce all these uncertainties substantially over the coming years.« less
Ilie, C C; Guzman, F; Swanson, B L; Evans, I R; Costa, P S; Teeter, J D; Shekhirev, M; Benker, N; Sikich, S; Enders, A; Dowben, P A; Sinitskii, A; Yost, A J
2018-05-10
Photoactive perovskite quantum dot films, deposited via an inkjet printer, have been characterized by x-ray diffraction and x-ray photoelectron spectroscopy. The crystal structure and bonding environment are consistent with CsPbBr 3 perovskite quantum dots. The current-voltage (I-V) and capacitance-voltage (C-V) transport measurements indicate that the photo-carrier drift lifetime can exceed 1 ms for some printed perovskite films. This far exceeds the dark drift carrier lifetime, which is below 50 ns. The printed films show a photocarrier density 10 9 greater than the dark carrier density, making these printed films ideal candidates for application in photodetectors. The successful printing of photoactive-perovskite quantum dot films of CsPbBr 3 , indicates that the rapid prototyping of various perovskite inks and multilayers is realizable.
Many-body matter-wave dark soliton.
Delande, Dominique; Sacha, Krzysztof
2014-01-31
The Gross-Pitaevskii equation--which describes interacting bosons in the mean-field approximation--possesses solitonic solutions in dimension one. For repulsively interacting particles, the stationary soliton is dark, i.e., is represented by a local density minimum. Many-body effects may lead to filling of the dark soliton. Using quasiexact many-body simulations, we show that, in single realizations, the soliton appears totally dark although the single particle density tends to be uniform.
Emergence of a stellar cusp by a dark matter cusp in a low-mass compact ultrafaint dwarf galaxy
NASA Astrophysics Data System (ADS)
Inoue, Shigeki
2017-06-01
Recent observations have been discovering new ultrafaint dwarf galaxies as small as ˜20 pc in half-light radius and ˜3 km s-1 in line-of-sight velocity dispersion. In these galaxies, dynamical friction on a star against dark matter can be significant and alter their stellar density distribution. The effect can strongly depend on a central density profile of dark matter, I.e. cusp or core. In this study, I perform computations using a classical and a modern analytic formula and N-body simulations to study how dynamical friction changes a stellar density profile and how different it is between a cuspy and a cored dark matter halo. This study shows that, if a dark matter halo has a cusp, dynamical friction can cause shrivelling instability that results in emergence of a stellar cusp in the central region ≲2 pc. On the other hand, if it has a constant-density core, dynamical friction is significantly weaker and does not generate a stellar cusp even if the galaxy has the same line-of-sight velocity dispersion. In such a compact and low-mass galaxy, since the shrivelling instability by dynamical friction is inevitable if it has a dark matter cusp, absence of a stellar cusp implies that the galaxy has a dark matter core. I expect that this could be used to diagnose a dark matter density profile in these compact ultrafaint dwarf galaxies.
Dark energy and extended dark matter halos
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.
2012-03-01
The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even an overdense region, with a low density contrast ~1.
Intermediate-mass Black Holes and Dark Matter at the Galactic Center
NASA Astrophysics Data System (ADS)
Lacroix, Thomas; Silk, Joseph
2018-01-01
Could there be a large population of intermediate-mass black holes (IMBHs) formed in the early universe? Whether primordial or formed in Population III, these are likely to be very subdominant compared to the dark matter density, but could seed early dwarf galaxy/globular cluster and supermassive black hole formation. Via survival of dark matter density spikes, we show here that a centrally concentrated relic population of IMBHs, along with ambient dark matter, could account for the Fermi gamma-ray “excess” in the Galactic center because of dark matter particle annihilations.
Dark jets in the soft X-ray state of black hole binaries?
NASA Astrophysics Data System (ADS)
Drappeau, S.; Malzac, J.; Coriat, M.; Rodriguez, J.; Belloni, T. M.; Belmont, R.; Clavel, M.; Chakravorty, S.; Corbel, S.; Ferreira, J.; Gandhi, P.; Henri, G.; Petrucci, P.-O.
2017-04-01
X-ray binary observations led to the interpretation that powerful compact jets, produced in the hard state, are quenched when the source transitions to its soft state. The aim of this paper is to discuss the possibility that a powerful dark jet is still present in the soft state. Using the black hole X-ray binaries GX339-4 and H1743-322 as test cases, we feed observed X-ray power density spectra in the soft state of these two sources to an internal shock jet model. Remarkably, the predicted radio emission is consistent with current upper limits. Our results show that for these two sources, a compact dark jet could persist in the soft state with no major modification of its kinetic power compared to the hard state.
Particle Dark Matter constraints: the effect of Galactic uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benito, Maria; Bernal, Nicolás; Iocco, Fabio
2017-02-01
Collider, space, and Earth based experiments are now able to probe several extensions of the Standard Model of particle physics which provide viable dark matter candidates. Direct and indirect dark matter searches rely on inputs of astrophysical nature, such as the local dark matter density or the shape of the dark matter density profile in the target in object. The determination of these quantities is highly affected by astrophysical uncertainties. The latter, especially those for our own Galaxy, are ill-known, and often not fully accounted for when analyzing the phenomenology of particle physics models. In this paper we present amore » systematic, quantitative estimate of how astrophysical uncertainties on Galactic quantities (such as the local galactocentric distance, circular velocity, or the morphology of the stellar disk and bulge) propagate to the determination of the phenomenology of particle physics models, thus eventually affecting the determination of new physics parameters. We present results in the context of two specific extensions of the Standard Model (the Singlet Scalar and the Inert Doublet) that we adopt as case studies for their simplicity in illustrating the magnitude and impact of such uncertainties on the parameter space of the particle physics model itself. Our findings point toward very relevant effects of current Galactic uncertainties on the determination of particle physics parameters, and urge a systematic estimate of such uncertainties in more complex scenarios, in order to achieve constraints on the determination of new physics that realistically include all known uncertainties.« less
Metal-to-insulator transition induced by UV illumination in a single SnO2 nanobelt
NASA Astrophysics Data System (ADS)
Viana, E. R.; Ribeiro, G. M.; de Oliveira, A. G.; González, J. C.
2017-11-01
An individual tin oxide (SnO2) nanobelt was connected in a back-gate field-effect transistor configuration and the conductivity of the nanobelt was measured at different temperatures from 400 K to 4 K, in darkness and under UV illumination. In darkness, the SnO2 nanobelts showed semiconductor behavior for the whole temperature range measured. However, when subjected to UV illumination the photoinduced carriers were high enough to lead to a metal-to-insulator transition (MIT), near room temperature, at T MIT = 240 K. By measuring the current versus gate voltage curves, and considering the electrostatic properties of a non-ideal conductor, for the SnO2 nanobelt on top of a gate-oxide substrate, we estimated the capacitance per unit length, the mobility and the density of carriers. In darkness, the density was estimated to be 5-10 × 1018 cm-3, in agreement with our previously reported result (Phys. Status Solid. RRL 6, 262-4 (2012)). However, under UV illumination the density of carriers was estimated to be 0.2-3.8 × 1019 cm-3 near T MIT, which exceeded the critical Mott density estimated to be 2.8 × 1019 cm-3 above 240 K. These results showed that the electrical properties of the SnO2 nanobelts can be drastically modified and easily tuned from semiconducting to metallic states as a function of temperature and light.
Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, A. P.; Percy, B.; Marshall, A. R. J.
2015-05-18
Short-wave infrared barriode detectors were grown by molecular beam epitaxy. An absorption layer composition of In{sub 0.28}Ga{sub 0.72}As{sub 0.25}Sb{sub 0.75} allowed for lattice matching to GaSb and cut-off wavelengths of 2.9 μm at 250 K and 3.0 μm at room temperature. Arrhenius plots of the dark current density showed diffusion limited dark currents approaching those expected for optimized HgCdTe-based detectors. Specific detectivity figures of around 7×10{sup 10} Jones and 1×10{sup 10} Jones were calculated, for 240 K and room temperature, respectively. Significantly, these devices could support focal plane arrays working at higher operating temperatures.
Gravitational collapse of dark energy field configurations and supermassive black hole formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com
Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-timemore » and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.« less
Low dark current MCT-based focal plane detector arrays for the LWIR and VLWIR developed at AIM
NASA Astrophysics Data System (ADS)
Gassmann, Kai Uwe; Eich, Detlef; Fick, Wolfgang; Figgemeier, Heinrich; Hanna, Stefan; Thöt, Richard
2015-10-01
For nearly 40 years AIM develops, manufactures and delivers photo-voltaic and photo-conductive infrared sensors and associated cryogenic coolers which are mainly used for military applications like pilotage, weapon sights, UAVs or vehicle platforms. In 2005 AIM started to provide the competences also for space applications like IR detector units for the SLSTR instrument on board of the Sentinel 3 satellite, the hyperspectral SWIR Imager for EnMAP or pushbroom detectors for high resolution Earth observation satellites. Meanwhile AIM delivered more than 25 Flight Models for several customers. The first European pulse-tube cooler ever operating on-board of a satellite is made by AIM. AIM homes the required infrared core capabilities such as design and manufacturing of focal plane assemblies, detector housing technologies, development and manufacturing of cryocoolers and also data processing for thermal IR cameras under one roof which enables high flexibility to react to customer needs and assures economical solutions. Cryogenically cooled Hg(1-x)CdxTe (MCT) quantum detectors are unequalled for applications requiring high imaging as well as high radiometric performance in the infrared spectral range. Compared with other technologies, they provide several advantages, such as the highest quantum efficiency, lower power dissipation compared to photoconductive devices and fast response times, hence outperforming micro-bolometer arrays. However, achieving an excellent MCT detector performance at long (LWIR) and very long (VLWIR) infrared wavelengths is challenging due to the exponential increase in the thermally generated photodiode dark current with increasing cut-off wavelength and / or operating temperature. Dark current is a critical design driver, especially for LWIR / VLWIR multi-spectral imagers with moderate signal levels or hyper-spectral Fourier spectrometers operating deep into the VLWIR spectral region. Consequently, low dark current (LDC) technologies are the prerequisite for future scientific space and earth observation missions. Aiming, for example at exoplanet or earth atmospheric spectral analysis, significant improvement in LWIR / VLWIR detector material performance is mandatory. LDC material optimization can target different directions of impact: (i) reduction of dark current for a given operational temperature to increase SNR and reduce thermally induced signal offset variations. (ii) operation at elevated temperatures at a given dark current level to reduce mass and power budget of the required cryocooler and to reduce cryostat complexity. (iii) increase the accessible cut-off wavelength at constant detector temperature and dark current level. This paper presents AIM's latest results on n-on-p as well as p-on-n low dark current planar MCT photodiode focal plane detector arrays at cut-off wavelengths >11 μm at 80 K. Dark current densities below Tennant's `Rule07'1 have been demonstrated for n-on-p and p-on-n devices. This work has been carried out under ESA contract ESTEC 4000107414/13/NL/SFe².
Interacting dark energy models as an approach for solving Cosmic Coincidence Problem
NASA Astrophysics Data System (ADS)
Shojaei, Hamed
Understanding the dark side of the Universe is one of the main tasks of physicists. As there is no thorough understanding of nature of the dark energy, this area is full of new ideas and there may be several discoveries, theoretical or experimental, in the near future. We know that dark energy, though not detected directly, exists and it is not just an exotic idea. The presence of dark energy is required by the observation of the acceleration of the universe. There are several questions regarding dark energy. What is the nature of dark energy? How does it interact with matter, baryonic or dark? Why is the density of dark energy so tiny, i.e. why rhoΛ ≈ 10--120 M4Pl ? And finally why does its density have the same order of magnitude as the density of matter does at the present time? The last question is one form of what is known as the "Cosmic Coincidence Problem" and in this work, I have been investigating one way to resolve this issue. Observations of Type Ia supernovae indicate that we are in an accelerating universe. A matter-dominated universe cannot be accelerating. A good fit is obtained if we assume that energy density parameters are O Λ = 0.7 and Om = 0.3. Here O Λ is related to dark energy, or cosmological constant in ΛCDM model. At the same time data from Wilkinson Microwave Anisotropy Probe (WMAP) satellite and supernova surveys have placed a constraint on w, the equation of state for dark energy, which is actually the ratio of pressure and energy density. Any good theory needs to explain this coincidence problem and yields a value for w between -1.1 and -0.9. I have employed an interesting approach to solve this problem by assuming that there exists an interaction between dark energy and matter in the context of holographic dark energy. This interaction converts dark energy to matter or vice versa without violating the local conservation of energy in the universe. Holographic dark energy by itself indicates that the value of dark energy is related to the surface of a horizon. In this work, interacting dark energy models are considered in flat and curved spacetime, and their properties have been explored. Adding interaction to the equations of motion, creates new equilibrium solutions for the evolution of the universe. Adjusting parameters in the theory yields equilibrium solutions which are very close to the universe at the present time. In this sense, being in a universe where dark energy density and matter density are comparable is not a coincidence anymore. We don't just happen to be in this era. This situation is the equilibrium situation which the universe had been driven toward and there is no coincidence at all. I believe these models are not just for resolving the cosmic coincidence problem. They are capable of explaining the universe in all of its evolutionary stages. Upon finding the correct interaction, a task which is still under investigation, one is able to have a whole picture for the universe from the beginning, before inflation, until now. Finding that interaction also will help to discover the fundamental theory which explains the nature of dark energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gul, R., E-mail: rubi786@yahoo.com; Alabama A&M University, Normal AL, 35762; Cui, Y.
With the global shortage of {sup 3}He gas, researchers worldwide are looking for alternative materials for detecting neutrons. Among the candidate materials, semiconductors are attractive because of their light weight and ease in handling. Currently, we are looking into the suitability of boron arsenide (B{sub 12}As{sub 2}) for this specific application. As the first step in evaluating the material qualitatively, the photo-response of B{sub 12}As{sub 2} bulk crystals to light with different wavelengths was examined. The crystals showed photocurrent response to a band of 407- and 470- nm blue light. The maximum measured photoresponsivity and the photocurrent density at 0.7more » V for 470 nm blue light at room temperature were 0.25 A ⋅ W{sup −1} and 2.47 mA ⋅ cm{sup −2}, respectively. In addition to photo current measurements, the electrical properties as a function of temperature (range: 50-320 K) were measured. Reliable data were obtained for the low-temperature I-V characteristics, the temperature dependence of dark current and its density, and the resistivity variations with temperature in B{sub 12}As{sub 2} bulk crystals. The experiments showed an exponential dependence on temperature for the dark current, current density, and resistivity; these three electrical parameters, respectively, had a variation of a few nA to μA, 1-100 μA ⋅ cm{sup −2} and 7.6x10{sup 5}-7.7x10{sup 3} Ω ⋅ cm, for temperature increasing from 50 K to 320 K. The results from this study reported the first photoresponse and demonstrated that B{sub 12}As{sub 2} is a potential candidate for thermal-neutron detectors.« less
Bo, Renheng; Nasiri, Noushin; Chen, Hongjun; Caputo, Domenico; Fu, Lan; Tricoli, Antonio
2017-01-25
Accurate detection of UV light by wearable low-power devices has many important applications including environmental monitoring, space to space communication, and defense. Here, we report the structural engineering of ultraporous ZnO nanoparticle networks for fabrication of very low-voltage high-performance UV photodetectors. A record high photo- to dark-current ratio of 3.3 × 10 5 and detectivity of 3.2 × 10 12 Jones at an ultralow operation bias of 2 mV and low UV-light intensity of 86 μW·cm -2 are achieved by controlling the interplay between grain boundaries and surface depletion depth of ZnO nanoscale semiconductors. An optimal window of structural properties is determined by varying the particle size of ultraporous nanoparticle networks from 10 to 42 nm. We find that small electron-depleted nanoparticles (≤40 nm) are necessary to minimize the dark-current; however, the rise in photocurrent is tampered with decreasing particle size due to the increasing density of grain boundaries. These findings reveal that nanoparticles with a size close to twice their Debye length are required for high photo- to dark-current ratio and detectivity, while further decreasing their size decreases the photodetector performance.
Wide-area SWIR arrays and active illuminators
NASA Astrophysics Data System (ADS)
MacDougal, Michael; Hood, Andrew; Geske, Jon; Wang, Chad; Renner, Daniel; Follman, David; Heu, Paula
2012-01-01
We describe the factors that go into the component choices for a short wavelength (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7°C. We have mated our InGaAs detector arrays to 640x512 readout integrated integrated circuits (ROICs) to make focal plane arrays (FPAs). In addition, we have fabricated high definition 1920x1080 FPAs for wide field of view imaging. The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 microns at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0°C. FLIR has also developed a high definition, 1920x1080, 15 um pitch SWIR sensor. In addition, FLIR has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, provide artifact-free imagery versus conventional laser illuminators.
Cold dark matter plus not-so-clumpy dark relics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph
Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions,more » covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f {sub ncdm} of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f {sub ncdm}≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f {sub ncdm}≤0.43 (0.45), respectively.« less
Axions, Inflation and String Theory
NASA Astrophysics Data System (ADS)
Mack, Katherine J.; Steinhardt, P. J.
2009-01-01
The QCD axion is the leading contender to rid the standard model of the strong-CP problem. If the Peccei-Quinn symmetry breaking occurs before inflation, which is likely in string theory models, axions manifest themselves cosmologically as a form of cold dark matter with a density determined by the axion's initial conditions and by the energy scale of inflation. Constraints on the dark matter density and on the amplitude of CMB isocurvature perturbations currently demand an exponential degree of fine-tuning of both axion and inflationary parameters beyond what is required for particle physics. String theory models generally produce large numbers of axion-like fields; the prospect that any of these fields exist at scales close to that of the QCD axion makes the problem drastically worse. I will discuss the challenge of accommodating string-theoretic axions in standard inflationary cosmology and show that the fine-tuning problems cannot be fully addressed by anthropic principle arguments.
Tying dark matter to baryons with self-interactions.
Kaplinghat, Manoj; Keeley, Ryan E; Linden, Tim; Yu, Hai-Bo
2014-07-11
Self-interacting dark matter (SIDM) models have been proposed to solve the small-scale issues with the collisionless cold dark matter paradigm. We derive equilibrium solutions in these SIDM models for the dark matter halo density profile including the gravitational potential of both baryons and dark matter. Self-interactions drive dark matter to be isothermal and this ties the core sizes and shapes of dark matter halos to the spatial distribution of the stars, a radical departure from previous expectations and from cold dark matter predictions. Compared to predictions of SIDM-only simulations, the core sizes are smaller and the core densities are higher, with the largest effects in baryon-dominated galaxies. As an example, we find a core size around 0.3 kpc for dark matter in the Milky Way, more than an order of magnitude smaller than the core size from SIDM-only simulations, which has important implications for indirect searches of SIDM candidates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caprini, Chiara; Tamanini, Nicola, E-mail: chiara.caprini@cea.fr, E-mail: nicola.tamanini@cea.fr
We perform a forecast analysis of the capability of the eLISA space-based interferometer to constrain models of early and interacting dark energy using gravitational wave standard sirens. We employ simulated catalogues of standard sirens given by merging massive black hole binaries visible by eLISA, with an electromagnetic counterpart detectable by future telescopes. We consider three-arms mission designs with arm length of 1, 2 and 5 million km, 5 years of mission duration and the best-level low frequency noise as recently tested by the LISA Pathfinder. Standard sirens with eLISA give access to an intermediate range of redshift 1 ∼< zmore » ∼< 8, and can therefore provide competitive constraints on models where the onset of the deviation from ΛCDM (i.e. the epoch when early dark energy starts to be non-negligible, or when the interaction with dark matter begins) occurs relatively late, at z ∼< 6. If instead early or interacting dark energy is relevant already in the pre-recombination era, current cosmological probes (especially the cosmic microwave background) are more efficient than eLISA in constraining these models, except possibly in the interacting dark energy model if the energy exchange is proportional to the energy density of dark energy.« less
Flooded Dark Matter and S level rise
NASA Astrophysics Data System (ADS)
Randall, Lisa; Scholtz, Jakub; Unwin, James
2016-03-01
Most dark matter models set the dark matter relic density by some interaction with Standard Model particles. Such models generally assume the existence of Standard Model particles early on, with the dark matter relic density a later consequence of those interactions. Perhaps a more compelling assumption is that dark matter is not part of the Standard Model sector and a population of dark matter too is generated at the end of inflation. This democratic assumption about initial conditions does not necessarily provide a natural value for the dark matter relic density, and furthermore superficially leads to too much entropy in the dark sector relative to ordinary matter. We address the latter issue by the late decay of heavy particles produced at early times, thereby associating the dark matter relic density with the lifetime of a long-lived state. This paper investigates what it would take for this scenario to be compatible with observations in what we call Flooded Dark Matter (FDM) models and discusses several interesting consequences. One is that dark matter can be very light and furthermore, light dark matter is in some sense the most natural scenario in FDM as it is compatible with larger couplings of the decaying particle. A related consequence is that the decay of the field with the smallest coupling and hence the longest lifetime dominates the entropy and possibly the matter content of the Universe, a principle we refer to as "Maximum Baroqueness". We also demonstrate that the dark sector should be colder than the ordinary sector, relaxing the most stringent free-streaming constraints on light dark matter candidates. We will discuss the potential implications for the core-cusp problem in a follow-up paper. The FDM framework will furthermore have interesting baryogenesis implications. One possibility is that dark matter is like the baryon asymmetry and both are simultaneously diluted by a late entropy dump. Alternatively, FDM is compatible with an elegant non-thermal leptogenesis implementation in which decays of a heavy right-handed neutrino lead to late time reheating of the Standard Model degrees of freedom and provide suitable conditions for creation of a lepton asymmetry.
Hidden sector monopole, vector dark matter and dark radiation with Higgs portal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, Seungwon; Ko, P.; Park, Wan-Il, E-mail: sbaek1560@gmail.com, E-mail: pko@kias.re.kr, E-mail: wipark@kias.re.kr
2014-10-01
We show that the 't Hooft-Polyakov monopole model in the hidden sector with Higgs portal interaction makes a viable dark matter model, where monopole and massive vector dark matter (VDM) are stable due to topological conservation and the unbroken subgroup U(1 {sub X}. We show that, even though observed CMB data requires the dark gauge coupling to be quite small, a right amount of VDM thermal relic can be obtained via s-channel resonant annihilation for the mass of VDM close to or smaller than the half of SM higgs mass, thanks to Higgs portal interaction. Monopole relic density turns outmore » to be several orders of magnitude smaller than the observed dark matter relic density. Direct detection experiments, particularly, the projected XENON1T experiment, may probe the parameter space where the dark Higgs is lighter than ∼< 50 GeV. In addition, the dark photon associated with the unbroken U(1 {sub X} contributes to the radiation energy density at present, giving Δ N{sub eff}{sup ν} ∼ 0.1 as the extra relativistic neutrino species.« less
Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows.
Governato, F; Brook, C; Mayer, L; Brooks, A; Rhee, G; Wadsley, J; Jonsson, P; Willman, B; Stinson, G; Quinn, T; Madau, P
2010-01-14
For almost two decades the properties of 'dwarf' galaxies have challenged the cold dark matter (CDM) model of galaxy formation. Most observed dwarf galaxies consist of a rotating stellar disk embedded in a massive dark-matter halo with a near-constant-density core. Models based on the dominance of CDM, however, invariably form galaxies with dense spheroidal stellar bulges and steep central dark-matter profiles, because low-angular-momentum baryons and dark matter sink to the centres of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present-day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different dark-matter particle candidate. Here we report hydrodynamical simulations (in a framework assuming the presence of CDM and a cosmological constant) in which the inhomogeneous interstellar medium is resolved. Strong outflows from supernovae remove low-angular-momentum gas, which inhibits the formation of bulges and decreases the dark-matter density to less than half of what it would otherwise be within the central kiloparsec. The analogues of dwarf galaxies-bulgeless and with shallow central dark-matter profiles-arise naturally in these simulations.
Comprehensive asymmetric dark matter model
NASA Astrophysics Data System (ADS)
Lonsdale, Stephen J.; Volkas, Raymond R.
2018-05-01
Asymmetric dark matter (ADM) is motivated by the similar cosmological mass densities measured for ordinary and dark matter. We present a comprehensive theory for ADM that addresses the mass density similarity, going beyond the usual ADM explanations of similar number densities. It features an explicit matter-antimatter asymmetry generation mechanism, has one fully worked out thermal history and suggestions for other possibilities, and meets all phenomenological, cosmological and astrophysical constraints. Importantly, it incorporates a deep reason for why the dark matter mass scale is related to the proton mass, a key consideration in ADM models. Our starting point is the idea of mirror matter, which offers an explanation for dark matter by duplicating the standard model with a dark sector related by a Z2 parity symmetry. However, the dark sector need not manifest as a symmetric copy of the standard model in the present day. By utilizing the mechanism of "asymmetric symmetry breaking" with two Higgs doublets in each sector, we develop a model of ADM where the mirror symmetry is spontaneously broken, leading to an electroweak scale in the dark sector that is significantly larger than that of the visible sector. The weak sensitivity of the ordinary and dark QCD confinement scales to their respective electroweak scales leads to the necessary connection between the dark matter and proton masses. The dark matter is composed of either dark neutrons or a mixture of dark neutrons and metastable dark hydrogen atoms. Lepton asymmetries are generated by the C P -violating decays of heavy Majorana neutrinos in both sectors. These are then converted by sphaleron processes to produce the observed ratio of visible to dark matter in the universe. The dynamics responsible for the kinetic decoupling of the two sectors emerges as an important issue that we only partially solve.
Baryonic impact on the dark matter orbital properties of Milky Way-sized haloes
NASA Astrophysics Data System (ADS)
Zhu, Qirong; Hernquist, Lars; Marinacci, Federico; Springel, Volker; Li, Yuexing
2017-04-01
We study the orbital properties of dark matter haloes by combining a spectral method and cosmological simulations of Milky Way-sized Galaxies. We compare the dynamics and orbits of individual dark matter particles from both hydrodynamic and N-body simulations, and find that the fraction of box, tube and resonant orbits of the dark matter halo decreases significantly due to the effects of baryons. In particular, the central region of the dark matter halo in the hydrodynamic simulation is dominated by regular, short-axis tube orbits, in contrast to the chaotic, box and thin orbits dominant in the N-body run. This leads to a more spherical dark matter halo in the hydrodynamic run compared to a prolate one as commonly seen in the N-body simulations. Furthermore, by using a kernel-based density estimator, we compare the coarse-grained phase-space densities of dark matter haloes in both simulations and find that it is lower by ˜0.5 dex in the hydrodynamic run due to changes in the angular momentum distribution, which indicates that the baryonic process that affects the dark matter is irreversible. Our results imply that baryons play an important role in determining the shape, kinematics and phase-space density of dark matter haloes in galaxies.
Light dark matter through assisted annihilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dey, Ujjal Kumar; Maity, Tarak Nath; Ray, Tirtha Sankar, E-mail: ujjal@cts.iitkgp.ernet.in, E-mail: tarak.maity.physics@gmail.com, E-mail: tirthasankar.ray@gmail.com
2017-03-01
In this paper we investigate light dark matter scenarios where annihilation to Standard Model particles at tree-level is kinematically forbidden. In such cases annihilation can be aided by massive Standard Model-like species, called assisters , in the initial state that enhances the available phase space opening up novel tree-level processes. We investigate the feasibility of such non-standard assisted annihilation processes to reproduce the observed relic density of dark matter. We present a simple scalar dark matter-scalar assister model where this is realised. We find that if the dark matter and assister are relatively degenerate the required relic density can bemore » achieved for a keV-MeV scale dark matter. We briefly discuss the cosmological constraints on such dark matter scenarios.« less
Model of a multiverse providing the dark energy of our universe
NASA Astrophysics Data System (ADS)
Rebhan, E.
2017-09-01
It is shown that the dark energy presently observed in our universe can be regarded as the energy of a scalar field driving an inflation-like expansion of a multiverse with ours being a subuniverse among other parallel universes. A simple model of this multiverse is elaborated: Assuming closed space geometry, the origin of the multiverse can be explained by quantum tunneling from nothing; subuniverses are supposed to emerge from local fluctuations of separate inflation fields. The standard concept of tunneling from nothing is extended to the effect that in addition to an inflationary scalar field, matter is also generated, and that the tunneling leads to an (unstable) equilibrium state. The cosmological principle is assumed to pertain from the origin of the multiverse until the first subuniverses emerge. With increasing age of the multiverse, its spatial curvature decays exponentially so fast that, due to sharing the same space, the flatness problem of our universe resolves by itself. The dark energy density imprinted by the multiverse on our universe is time-dependent, but such that the ratio w = ϱ/(c2p) of its mass density and pressure (times c2) is time-independent and assumes a value - 1 + 𝜖 with arbitrary 𝜖 > 0. 𝜖 can be chosen so small, that the dark energy model of this paper can be fitted to the current observational data as well as the cosmological constant model.
Information entropy and dark energy evolution
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; Luongo, Orlando
Here, the information entropy is investigated in the context of early and late cosmology under the hypothesis that distinct phases of universe evolution are entangled between them. The approach is based on the entangled state ansatz, representing a coarse-grained definition of primordial dark temperature associated to an effective entangled energy density. The dark temperature definition comes from assuming either Von Neumann or linear entropy as sources of cosmological thermodynamics. We interpret the involved information entropies by means of probabilities of forming structures during cosmic evolution. Following this recipe, we propose that quantum entropy is simply associated to the thermodynamical entropy and we investigate the consequences of our approach using the adiabatic sound speed. As byproducts, we analyze two phases of universe evolution: the late and early stages. To do so, we first recover that dark energy reduces to a pure cosmological constant, as zero-order entanglement contribution, and second that inflation is well-described by means of an effective potential. In both cases, we infer numerical limits which are compatible with current observations.
Gamma-ray Signal from Dark Matter Annihilation Mediated by Mixing Slepton
NASA Astrophysics Data System (ADS)
Teng, Fei
2016-03-01
In order to reconcile the tension between the collider SUSY particle search and the dark matter relic density constraint, we free ourselves from the simplest CMSSM model and find a large parameter space in which a sub-TeV bino dark matter may comply with all the current experimental constraints. In this so-called incredible bulk region, dark matter mainly annihilates through the t channel exchange of a mixing slepton into a leptonic final state. We have explored this proposal and studied the resultant spectrum feature. We are going to show that the line signal produced by the γγ and γZ final state will give some indications to the mixing angle and CP-violation phase of the slepton sector. On the other hand, internal bremsstrahlung (IB) feature will be easier to get observed by future experiments, with sensitivity around 10-29cm3 /s . Unlike some other models, our IB signal is dominated by the collinear limit of the final state radiation amplitude and shows a bump-like feature.
NASA Astrophysics Data System (ADS)
Gonzalez-Morales, Alma X.; Profumo, Stefano; Queiroz, Farinaldo S.
2014-11-01
Recent discoveries of optical signatures of black holes in dwarf galaxies indicates that low-mass galaxies can indeed host intermediate massive black holes. This motivates the assessment of the resulting effect on the host dark matter density profile, and the consequences for the constraints on the plane of the dark matter annihilation cross section versus mass, stemming from the nonobservation of gamma rays from local dwarf spheroidals with the Fermi Large Area Telescope. We compute the density profile using three different prescriptions for the black hole mass associated with a given spheroidal galaxy, and taking into account the cutoff to the density from dark matter pair-annihilation. We find that the limits on the dark matter annihilation rate from observations of individual dwarfs are enhanced by factors of a few up to 1 06 , depending on the specific galaxy, on the black hole mass prescription, and on the dark matter particle mass. We estimate limits from combined observations of a sample of 15 dwarfs, for a variety of assumptions on the dwarf black hole mass and on the dark matter density profile prior to adiabatic contraction. We find that if black holes are indeed present in local dwarf spheroidals, then, independent of assumptions, (i) the dark matter interpretation of the Galactic center gamma-ray excess would be conclusively ruled out, (ii) wino dark matter would be excluded up to masses of about 3 TeV, and (iii) vanilla thermal relic weakly interacting massive particles must be heavier than 100 GeV.
Binary pulsars as probes of a Galactic dark matter disk
NASA Astrophysics Data System (ADS)
Caputo, Andrea; Zavala, Jesús; Blas, Diego
2018-03-01
As a binary pulsar moves through a wind of dark matter particles, the resulting dynamical friction modifies the binary's orbit. We study this effect for the double disk dark matter (DDDM) scenario, where a fraction of the dark matter is dissipative and settles into a thin disk. For binaries within the dark disk, this effect is enhanced due to the higher dark matter density and lower velocity dispersion of the dark disk, and due to its co-rotation with the baryonic disk. We estimate the effect and compare it with observations for two different limits in the Knudsen number (Kn). First, in the case where DDDM is effectively collisionless within the characteristic scale of the binary (Kn ≫ 1) and ignoring the possible interaction between the pair of dark matter wakes. Second, in the fully collisional case (Kn ≪ 1), where a fluid description can be adopted and the interaction of the pair of wakes is taken into account. We find that the change in the orbital period is of the same order of magnitude in both limits. A comparison with observations reveals good prospects to probe currently allowed DDDM models with timing data from binary pulsars in the near future. We finally comment on the possibility of extending the analysis to the intermediate (rarefied gas) case with Kn ∼ 1.
NASA Astrophysics Data System (ADS)
Liang, Shi-Dong; Harko, Tiberiu
2015-04-01
Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson), respectively. The gravitational field equations are obtained by also assuming the possibility of a nonminimal coupling between the cosmological mass current and the superconducting dark energy. The cosmological implications of the dark energy model are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two particular choices of the electromagnetic type potential, corresponding to a pure electric type field, and to a pure magnetic field, respectively. The time evolutions of the scale factor, matter energy density and deceleration parameter are obtained for both cases, and it is shown that in the presence of the superconducting dark energy the Universe ends its evolution in an exponentially accelerating vacuum de Sitter state. By using the formalism of the irreversible thermodynamic processes for open systems we interpret the generalized conservation equations in the superconducting dark energy model as describing matter creation. The particle production rates, the creation pressure and the entropy evolution are explicitly obtained.
Abramowski, A; Aharonian, F; Ait Benkhali, F; Akhperjanian, A G; Angüner, E O; Backes, M; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Becker Tjus, J; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Biteau, J; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Carrigan, S; Casanova, S; Chadwick, P M; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Grondin, M-H; Grudzińska, M; Hadasch, D; Häffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Lohse, T; Lopatin, A; Lu, C-C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Méhault, J; Meintjes, P J; Menzler, U; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Odaka, H; Ohm, S; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Paz Arribas, M; Pekeur, N W; Pelletier, G; Petrucci, P-O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reichardt, I; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J-P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Völk, H J; Volpe, F; Vorster, M; Vuillaume, T; Wagner, S J; Wagner, P; Wagner, R M; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zechlin, H-S
2015-02-27
An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data acquired in dedicated on-off observations of the Galactic center region with H.E.S.S. are analyzed for this purpose. No significant signal is found in a total of ∼9 h of on-off observations. Upper limits on the velocity averaged cross section, ⟨σv⟩, for the annihilation of dark matter particles with masses in the range of ∼300 GeV to ∼10 TeV are derived. In contrast to previous constraints derived from observations of the Galactic center region, the constraints that are derived here apply also under the assumption of a central core of constant dark matter density around the center of the Galaxy. Values of ⟨σv⟩ that are larger than 3×10^{-24} cm^{3}/s are excluded for dark matter particles with masses between ∼1 and ∼4 TeV at 95% C.L. if the radius of the central dark matter density core does not exceed 500 pc. This is the strongest constraint that is derived on ⟨σv⟩ for annihilating TeV mass dark matter without the assumption of a centrally cusped dark matter density distribution in the search region.
High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems.
Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long
2016-12-23
This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance R SS = 10 kΩ and environmental temperatures from 25 °C to 85 °C.
High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems
Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long
2016-01-01
This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance RSS = 10 kΩ and environmental temperatures from 25 °C to 85 °C. PMID:28025530
Charge Transport in Carbon Nanotubes-Polymer Composite Photovoltaic Cells
Ltaief, Adnen; Bouazizi, Abdelaziz; Davenas, Joel
2009-01-01
We investigate the dark and illuminated current density-voltage (J/V) characteristics of poly(2-methoxy-5-(2’-ethylhexyloxy)1-4-phenylenevinylene) (MEH-PPV)/single-walled carbon nanotubes (SWNTs) composite photovoltaic cells. Using an exponential band tail model, the conduction mechanism has been analysed for polymer only devices and composite devices, in terms of space charge limited current (SCLC) conduction mechanism, where we determine the power parameters and the threshold voltages. Elaborated devices for MEH-PPV:SWNTs (1:1) composites showed a photoresponse with an open-circuit voltage Voc of 0.4 V, a short-circuit current density JSC of 1 µA/cm² and a fill factor FF of 43%. We have modelised the organic photovoltaic devices with an equivalent circuit, where we calculated the series and shunt resistances.
NASA Astrophysics Data System (ADS)
Wang, Mei-Yu; Peter, Annika H. G.; Strigari, Louis E.; Zentner, Andrew R.; Arant, Bryan; Garrison-Kimmel, Shea; Rocha, Miguel
2014-11-01
We present a set of N-body simulations of a class of models in which an unstable dark matter particle decays into a stable dark matter particle and a non-interacting light particle with decay lifetime comparable to the Hubble time. We study the effects of the recoil kick velocity (Vk) received by the stable dark matter on the structures of dark matter haloes ranging from galaxy-cluster to Milky Way-mass scales. For Milky Way-mass haloes, we use high-resolution, zoom-in simulations to explore the effects of decays on Galactic substructure. In general, haloes with circular velocities comparable to the magnitude of kick velocity are most strongly affected by decays. We show that models with lifetimes Γ-1 ˜ H_0^{-1} and recoil speeds Vk ˜ 20-40 km s-1 can significantly reduce both the abundance of Galactic subhaloes and their internal densities. We find that decaying dark matter models that do not violate current astrophysical constraints can significantly mitigate both the `missing satellites problem' and the more recent `too big to fail problem'. These decaying models predict significant time evolution of haloes, and this implies that at high redshifts decaying models exhibit the similar sequence of structure formation as cold dark matter. Thus, decaying dark matter models are significantly less constrained by high-redshift phenomena than warm dark matter models. We conclude that models of decaying dark matter make predictions that are relevant for the interpretation of small galaxies observations in the Local Group and can be tested as well as by forthcoming large-scale surveys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chae, Kyu-Hyun; Kravtsov, Andrey V.; Frieman, Joshua A.
With Sloan Digital Sky Survey galaxy data and halo data from up-to-date N-body simulations within the ΛCDM framework we construct a semi-empirical catalog (SEC) of early-type galaxy-halo systems by making a self-consistent bivariate statistical match of stellar mass (M{sub *}) and velocity dispersion (σ) with halo virial mass (M{sub vir}) as demonstrated here for the first time. We then assign stellar mass profile and velocity dispersion profile parameters to each system in the SEC using their observed correlations with M{sub *} and σ. Simultaneously, we solve for dark matter density profile of each halo using the spherical Jeans equation. Themore » resulting dark matter density profiles deviate in general from the dissipationless profile of Navarro-Frenk-White or Einasto and their mean inner density slope and concentration vary systematically with M{sub vir}. Statistical tests of the distribution of profiles at fixed M{sub vir} rule out the null hypothesis that it follows the distribution predicted by dissipationless N-body simulations for M{sub vir}∼<10{sup 13.5} {sup –} {sup 14.5} M{sub s}un. These dark matter profiles imply that dark matter density is, on average, enhanced significantly in the inner region of halos with M{sub vir}∼<10{sup 13.5} {sup –} {sup 14.5} M{sub s}un supporting halo contraction. The main characteristics of halo contraction are: (1) the mean dark matter density within the effective radius has increased by a factor varying systematically up to ≈ 3–4 at M{sub vir} = 10{sup 12} M{sub s}un, and (2) the inner density slope has a mean of (α) ≈ 1.3 with ρ{sub dm}(r)∝r{sup −α} and a halo-to-halo rms scatter of rms(α) ∼ 0.4–0.5 for 10{sup 12} M{sub s}un∼« less
NASA Astrophysics Data System (ADS)
Kioussis, Nicholas
The InAs/GaSb and InAs/InAsSb type-II strain-layer superlattices (T2SLS) are of great importance and show great promise for mid-wave and long-wave infrared (IR) detectors for a variety of civil and military applications. The T2SLS offer several advantages over present day detection technologies including suppressed Auger recombination relative to the bulk MCT material, high quantum efficiencies, and commercial availability of low defect density substrates. While the T2SLS detectors are approaching the empirical Rule-07 benchmark of MCT's performance level, the dark-current density is still significantly higher than that of bulk MCT detectors. One of the major origins of dark current is associated with the Shockley-Read- Hall (SRH) process in the depletion region of the detector. I will present results of ab initio electronic structure calculations of the stability of a wide range of point defects [As and In vacancies, In, As and Sb antisites, In interstitials, As interstitials, and Sb interstitials] in various charged states in bulk InAs, InSb, and InAsSb systems and T2SLS. I will also present results of the transition energy levels. The calculations reveal that compared to defects in bulk materials, the formation and defect properties in InAs/InAsSb T2SLS can be affected by various structural features, such as strain, interface, and local chemical environment. I will present examples where the effect of strain or local chemical environment shifts the transition energy levels of certain point defects either above or below the conduction band minimum, thus suppressing their contribution to the SRH recombination.
Lepton flavor violation induced by dark matter
NASA Astrophysics Data System (ADS)
Arcadi, Giorgio; Ferreira, C. P.; Goertz, Florian; Guzzo, M. M.; Queiroz, Farinaldo S.; Santos, A. C. O.
2018-04-01
Guided by gauge principles we discuss a predictive and falsifiable UV complete model where the Dirac fermion that accounts for the cold dark matter abundance in our Universe induces the lepton flavor violation (LFV) decays μ →e γ and μ →e e e as well as μ -e conversion. We explore the interplay between direct dark matter detection, relic density, collider probes and lepton flavor violation to conclusively show that one may have a viable dark matter candidate yielding flavor violation signatures that can be probed in the upcoming experiments. In fact, keeping the dark matter mass at the TeV scale, a sizable LFV signal is possible, while reproducing the correct dark matter relic density and meeting limits from direct-detection experiments.
Galactoseismology and the local density of dark matter
Banik, Nilanjan; Widrow, Lawrence M.; Dodelson, Scott
2016-10-08
Here, we model vertical breathing mode perturbations in the Milky Way's stellar disc and study their effects on estimates of the local dark matter density, surface density, and vertical force. Evidence for these perturbations, which involve compression and expansion of the Galactic disc perpendicular to its midplane, come from the SEGUE, RAVE, and LAMOST surveys. We show that their existence may lead to systematic errors ofmore » $$10\\%$$ or greater in the vertical force $$K_z(z)$$ at $$|z|=1.1\\,{\\rm kpc}$$. These errors translate to $$\\gtrsim 25\\%$$ errors in estimates of the local dark matter density. Using different mono-abundant subpopulations as tracers offers a way out: if the inferences from all tracers in the Gaia era agree, then the dark matter determination will be robust. Disagreement in the inferences from different tracers will signal the breakdown of the unperturbed model and perhaps provide the means for determining the nature of the perturbation.« less
Scaling Laws for Dark Matter Halos in Late-type and Dwarf Spheroidal Galaxies
NASA Astrophysics Data System (ADS)
Kormendy, John; Freeman, K. C.
2016-02-01
Dark matter (DM) halos of Sc-Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes MV > -18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences between S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities Vcirc of test particles in their DM halos. Baryons become unimportant at Vcirc = 42 ± 4 km s-1. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ˜4.6 mag and dIm galaxies would be brighter by ˜3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from MB ˜ -5 to -22. This implies a Faber-Jackson law with halo mass M ∝ (halo dispersion)4.
Long-lived light mediator to dark matter and primordial small scale spectrum
Zhang, Yue
2015-05-01
We calculate the early universe evolution of perturbations in the dark matter energy density in the context of simple dark sector models containing a GeV scale light mediator. We consider the case that the mediator is long-lived, with lifetime up to a second, and before decaying it temporarily dominates the energy density of the universe. We show that for primordial perturbations that enter the horizon around this period, the interplay between linear growth during matter domination and collisional damping can generically lead to a sharp peak in the spectrum of dark matter density perturbation. Finally, as a result, the populationmore » of the smallest DM halos gets enhanced. Possible implications of this scenario are discussed.« less
Detecting dark matter with imploding pulsars in the galactic center.
Bramante, Joseph; Linden, Tim
2014-11-07
The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.
Using Voronoi Tessellations to identify groups in N-body Simulation
NASA Astrophysics Data System (ADS)
Gonzalez, R. E.; Theuns, T.
Dark matter N-body simulations often use a friends-of-friends (FOF) group finder to link together particles above a specified density threshold. An over density of 200 picks-out objects that can be identified with virialised dark matter haloes, based on the spherical collapse model for the formation of structure. When the halo contains significant substructure, as is the case in very high resolution simulations, then FOF will simply link all substructure to the parent halo. Many cosmological simulations now also include gas and stars, and these are often distributed differently from the dark matter. It is then not clear whether the structures identified by FOF are very physical. Here we use Voronoi tesselations to identify structures in hydrodynamical cosmological simulations, that contain dark matter, gas and stars. This adaptive technique allows accurate estimates of densities, and density gradients, for a non-structured distribution of points. We discuss how these estimates allow us to identify structures in the dark matter that can be identified with haloes, and in the stars, to identify galaxies.
Local dark energy: HST evidence from the vicinity of the M81/M82 galaxy group
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Karachentsev, I. D.; Kashibadze, O. G.; Makarov, D. I.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.
2007-10-01
The Hubble Space Telescope observations of the nearby galaxy group M81/M82 and its vicinity indicate that the dynamics of the expansion outflow around the group is dominated by the antigravity of the dark energy background. The local density of dark energy in the area is estimated to be near the global dark energy density or perhaps exactly equal to it. This conclusion agrees well with our previous results for the Local Group vicinity and the vicinity of the Cen A/M83 group.
MeV dark matter complementarity and the dark photon portal
NASA Astrophysics Data System (ADS)
Dutra, Maíra; Lindner, Manfred; Profumo, Stefano; Queiroz, Farinaldo S.; Rodejohann, Werner; Siqueira, Clarissa
2018-03-01
We discuss the phenomenology of an MeV-scale Dirac fermion coupled to the Standard Model through a dark photon with kinetic mixing with the electromagnetic field. We compute the dark matter relic density and explore the interplay of direct detection and accelerator searches for dark photons. We show that precise measurements of the temperature and polarization power spectra of the Cosmic Microwave Background Radiation lead to stringent constraints, leaving a small window for the thermal production of this MeV dark matter candidate. The forthcoming MeV gamma-ray telescope e-ASTROGAM will offer important and complementary opportunities to discover dark matter particles with masses below ~ 10 MeV . Lastly, we discuss how a late-time inflation episode and freeze-in production could conspire to yield the correct relic density while being consistent with existing and future constraints.
Static structure of chameleon dark matter as an explanation of dwarf spheroidal galaxy cores
NASA Astrophysics Data System (ADS)
Chanda, Prolay Krishna; Das, Subinoy
2017-04-01
We propose a novel mechanism that explains the cored dark matter density profile in recently observed dark matter rich dwarf spheroidal galaxies. In our scenario, dark matter particle mass decreases gradually as a function of distance towards the center of a dwarf galaxy due to its interaction with a chameleon scalar. At closer distance towards the Galactic center the strength of attractive scalar fifth force becomes much stronger than gravity and is balanced by the Fermi pressure of the dark matter cloud; thus, an equilibrium static configuration of the dark matter halo is obtained. Like the case of soliton star or fermion Q-star, the stability of the dark matter halo is obtained as the scalar achieves a static profile and reaches an asymptotic value away from the Galactic center. For simple scalar-dark matter interaction and quadratic scalar self-interaction potential, we show that dark matter behaves exactly like cold dark matter (CDM) beyond a few kpc away from the Galactic center but at closer distance it becomes lighter and Fermi pressure cannot be ignored anymore. Using Thomas-Fermi approximation, we numerically solve the radial static profile of the scalar field, fermion mass and dark matter energy density as a function of distance. We find that for fifth force mediated by an ultralight scalar, it is possible to obtain a flattened dark matter density profile towards the Galactic center. In our scenario, the fifth force can be neglected at distance r ≥1 kpc from the Galactic center and dark matter can be simply treated as heavy nonrelativistic particles beyond this distance, thus reproducing the success of CDM at large scales.
Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica
2016-06-01
Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures ∼10 000 K) objects. We follow the evolution of dark stars from their inception at ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses >[Formula: see text] and luminosities >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.
NASA Astrophysics Data System (ADS)
Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica
2016-06-01
Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures ˜10 000 K) objects. We follow the evolution of dark stars from their inception at ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses >{{10}6}{{M}⊙} and luminosities >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.
Cosmology with a stiff matter era
NASA Astrophysics Data System (ADS)
Chavanis, Pierre-Henri
2015-11-01
We consider the possibility that the Universe is made of a dark fluid described by a quadratic equation of state P =K ρ2 , where ρ is the rest-mass density and K is a constant. The energy density ɛ =ρ c2+K ρ2 is the sum of two terms: a rest-mass term ρ c2 that mimics "dark matter" (P =0 ) and an internal energy term u =K ρ2=P that mimics a "stiff fluid" (P =ɛ ) in which the speed of sound is equal to the speed of light. In the early universe, the internal energy dominates and the dark fluid behaves as a stiff fluid (P ˜ɛ , ɛ ∝a-6). In the late universe, the rest-mass energy dominates and the dark fluid behaves as pressureless dark matter (P ≃0 , ɛ ∝a-3). We provide a simple analytical solution of the Friedmann equations for a universe undergoing a stiff matter era, a dark matter era, and a dark energy era due to the cosmological constant. This analytical solution generalizes the Einstein-de Sitter solution describing the dark matter era, and the Λ CDM model describing the dark matter era and the dark energy era. Historically, the possibility of a primordial stiff matter era first appeared in the cosmological model of Zel'dovich where the primordial universe is assumed to be made of a cold gas of baryons. A primordial stiff matter era also occurs in recent cosmological models where dark matter is made of relativistic self-gravitating Bose-Einstein condensates (BECs). When the internal energy of the dark fluid mimicking stiff matter is positive, the primordial universe is singular like in the standard big bang theory. It expands from an initial state with a vanishing scale factor and an infinite density. We consider the possibility that the internal energy of the dark fluid is negative (while, of course, its total energy density is positive), so that it mimics anti-stiff matter. This happens, for example, when the BECs have an attractive self-interaction with a negative scattering length. In that case, the primordial universe is nonsingular and bouncing like in loop quantum cosmology. At t =0 , the scale factor is finite and the energy density is equal to zero. The universe first has a phantom behavior where the energy density increases with the scale factor, then a normal behavior where the energy density decreases with the scale factor. For the sake of generality, we consider a cosmological constant of arbitrary sign. When the cosmological constant is positive, the Universe asymptotically reaches a de Sitter regime where the scale factor increases exponentially rapidly with time. This can account for the accelerating expansion of the Universe that we observe at present. When the cosmological constant is negative (anti-de Sitter), the evolution of the Universe is cyclic. Therefore, depending on the sign of the internal energy of the dark fluid and on the sign of the cosmological constant, we obtain analytical solutions of the Friedmann equations describing singular and nonsingular expanding, bouncing, or cyclic universes.
Dark matter annihilation at the galactic center
NASA Astrophysics Data System (ADS)
Linden, Tim
Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately five times as much dark matter as baryonic matter. However, efforts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the first multiwavelength analysis of the GC, with suitable effective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing efforts which have successfully detected an excess in gamma-ray emission from the region immediately surrounding the GC, which is difficult to describe in terms of standard diffuse emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I discuss the role of future telescopes in differentiating a dark matter model from astrophysical emission.
Lyman-α forest constraints on decaying dark matter
NASA Astrophysics Data System (ADS)
Wang, Mei-Yu; Croft, Rupert A. C.; Peter, Annika H. G.; Zentner, Andrew R.; Purcell, Chris W.
2013-12-01
We present an analysis of high-resolution N-body simulations of decaying dark matter cosmologies focusing on the statistical properties of the transmitted Lyman-α (Lyα) forest flux in the high-redshift intergalactic medium (IGM). In this type of model a dark matter particle decays into a slightly less massive stable dark matter daughter particle and a comparably light particle. The small mass splitting provides a nonrelativistic kick velocity Vk=cΔM/M to the daughter particle resulting in free-streaming and subsequent damping of small-scale density fluctuations. Current Lyα forest power spectrum measurements probe comoving scales up to ˜2-3h-1Mpc at redshifts z˜2-4, providing one of the most robust ways to probe cosmological density fluctuations on relatively small scales. The suppression of structure growth due to the free-streaming of dark matter daughter particles also has a significant impact on the neutral hydrogen cloud distribution, which traces the underlying dark matter distribution well at high redshift. We exploit Lyα forest power spectrum measurements to constrain the amount of free-streaming of dark matter in such models and thereby place limits on decaying dark matter based only on the dynamics of cosmological perturbations without any assumptions about the interactions of the decay products. We use a suite of dark-matter-only simulations together with the fluctuating Gunn-Peterson approximation to derive the Lyα flux distribution. We argue that this approach should be sufficient for our main purpose, which is to demonstrate the power of the Lyα forest to constrain decaying dark matter models. We find that Sloan Digital Sky Survey 1D Lyα forest power spectrum data place a lifetime-dependent upper limit Vk≲30-70km/s for decay lifetimes ≲10Gyr. This is the most stringent model-independent bound on invisible dark matter decays with small mass splittings. For larger mass splittings (large Vk), Lyα forest data restrict the dark matter lifetime to Γ-1≳40Gyr. We leave the calibration of IGM properties using high-resolution hydrodynamic simulations for future work, which might become necessary if we consider data with higher precision such as the Baryon Oscillation and Spectroscopic Survey (BOSS) Lyα data. Forthcoming BOSS data should be able to provide more stringent constraints on exotic dark matter, mainly because the larger BOSS quasar spectrum sample will significantly reduce statistical errors.
A Solution to ``Too Big to Fail''
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-10-01
Its a tricky business to reconcile simulations of our galaxys formation with our current observations of the Milky Way and its satellites. In a recent study, scientists have addressed one discrepancy between simulations and observations: the so-called to big to fail problem.From Missing Satellites to Too Big to FailThe favored model of the universe is the lambda-cold-dark-matter (CDM) cosmological model. This model does a great job of correctly predicting the large-scale structure of the universe, but there are still a few problems with it on smaller scales.Hubble image of UGC 5497, a dwarf galaxy associated with Messier 81. In the missing satellite problem, simulations of galaxy formation predict that there should be more such satellite galaxies than we observe. [ESA/NASA]The first is the missing satellites problem: CDM cosmology predicts that galaxies like the Milky Way should have significantly more satellite galaxies than we observe. A proposed solution to this problem is the argument that there may exist many more satellites than weve observed, but these dwarf galaxies have had their stars stripped from them during tidal interactions which prevents us from being able to see them.This solution creates a new problem, though: the too big to fail problem. This problem states that many of the satellites predicted by CDM cosmology are simply so massive that theres no way they couldnt have visible stars. Another way of looking at it: the observed satellites of the Milky Way are not massive enough to be consistent with predictions from CDM.Artists illustration of a supernova, a type of stellar feedback that can modify the dark-matter distribution of a satellite galaxy. [NASA/CXC/M. Weiss]Density Profiles and Tidal StirringLed by Mihai Tomozeiu (University of Zurich), a team of scientists has published a study in which they propose a solution to the too big to fail problem. By running detailed cosmological zoom simulations of our galaxys formation, Tomozeiu and collaborators modeled the dark matter and the stellar content of the galaxy, tracking the formation and evolution of dark-matter subhalos.Based on the results of their simulations, the team argues that the too big to fail problem can be resolved by combining two effects:Stellar feedback in a satellite galaxy can modify its dark-matter distribution, lowering the dark-matter density in the galaxys center and creating a shallower density profile. Satellites with such shallow density profiles evolve differently than those typically modeled, which have a high concentration of dark matter in their centers.After these satellites fall into the Milky Ways potential, tidal effects such as shocks and stripping modify the mass distribution of both the dark matter and the baryons even further.Each curve represents a simulated satellites circular velocity (which corresponds to its total mass) at z=0. Left: results using typical dark-matter density profiles. Right: results using the shallower profiles expected when stellar feedback is included. Results from the shallower profiles are consistent with observed Milky-Way satellites(black crosses). [Adapted from Tomozeiu et al. 2016]A Match to ObservationsTomozeiu and collaborators found that when they used traditional density profiles to model the satellites, the satellites at z=0 in the simulation were much larger than those we observe around the Milky Way consistent with the too big to fail problem.When the team used shallower density profiles and took into account tidal effects, however, the simulations produced a distribution of satellites at z=0 that is consistent with what we observe.This study provides a tidy potential solution to the too big to fail problem, further strengthening the support for CDM cosmology.CitationMihai Tomozeiu et al 2016 ApJ 827 L15. doi:10.3847/2041-8205/827/1/L15
Computation of dark frames in digital imagers
NASA Astrophysics Data System (ADS)
Widenhorn, Ralf; Rest, Armin; Blouke, Morley M.; Berry, Richard L.; Bodegom, Erik
2007-02-01
Dark current is caused by electrons that are thermally exited into the conduction band. These electrons are collected by the well of the CCD and add a false signal to the chip. We will present an algorithm that automatically corrects for dark current. It uses a calibration protocol to characterize the image sensor for different temperatures. For a given exposure time, the dark current of every pixel is characteristic of a specific temperature. The dark current of every pixel can therefore be used as an indicator of the temperature. Hot pixels have the highest signal-to-noise ratio and are the best temperature sensors. We use the dark current of a several hundred hot pixels to sense the chip temperature and predict the dark current of all pixels on the chip. Dark current computation is not a new concept, but our approach is unique. Some advantages of our method include applicability for poorly temperature-controlled camera systems and the possibility of ex post facto dark current correction.
The Hubble diagram for a system within dark energy: influence of some relevant quantities
NASA Astrophysics Data System (ADS)
Saarinen, J.; Teerikorpi, P.
2014-08-01
Aims: We study the influence of relevant quantities, including the density of dark energy (DE), to the predicted Hubble outflow around a system of galaxies. In particular, we are interested in the difference between two models: 1) the standard ΛCDM model, with the everywhere constant DE density, and 2) the "Swiss cheese model", where the Universe is as old as the standard model and the DE density is zero on short scales, including the environment of the system. Methods: We calculated the current predicted outflow patterns of dwarf galaxies around the Local Group-like system, using different values for the mass of the group, the local DE density, and the time of ejection of the dwarf galaxies, which are treated as test particles. These results are compared with the observed Hubble flow around the Local Group. Results: The predicted distance-velocity relations around galaxy groups are not very sensitive indicators of the DE density, owing to the observational scatter and the uncertainties caused by the mass used for the group and a range in the ejection times. In general, the Local Group outflow data agree with the local DE density being equal to the global one, if the Local Group mass is about 4 × 1012 M⊙; a lower mass ≲ 2 × 1012 M⊙ could suggest a zero local DE density. The dependence of the inferred DE density on the mass is a handicap in this and other common dynamical methods. This emphasizes the need to use different approaches together, for constraining the local DE density.
NASA Astrophysics Data System (ADS)
Izquierdo, Germán; Blanquet-Jaramillo, Roberto C.; Sussman, Roberto A.
2018-01-01
The quasi-local scalar variables approach is applied to a spherically symmetric inhomogeneous Lemaître-Tolman-Bondi metric containing a mixture of non-relativistic cold dark matter and coupled dark energy with constant equation of state. The quasi-local coupling term considered is proportional to the quasi-local cold dark matter energy density and a quasi-local Hubble factor-like scalar via a coupling constant α . The autonomous numerical system obtained from the evolution equations is classified for different choices of the free parameters: the adiabatic constant of the dark energy w and α . The presence of a past attractor in a non-physical region of the energy densities phase-space of the system makes the coupling term non physical when the energy flows from the matter to the dark energy in order to avoid negative values of the dark energy density in the past. On the other hand, if the energy flux goes from dark energy to dark matter, the past attractor lies in a physical region. The system is also numerically solved for some interesting initial profiles leading to different configurations: an ever expanding mixture, a scenario where the dark energy is completely consumed by the non-relativistic matter by means of the coupling term, a scenario where the dark energy disappears in the inner layers while the outer layers expand as a mixture of both sources, and, finally, a structure formation toy model scenario, where the inner shells containing the mixture collapse while the outer shells expand.
Multi-Layer Organic Squaraine-Based Photodiode for Indirect X-Ray Detection
NASA Astrophysics Data System (ADS)
Iacchetti, Antonio; Binda, Maddalena; Natali, Dario; Giussani, Mattia; Beverina, Luca; Fiorini, Carlo; Peloso, Roberta; Sampietro, Marco
2012-10-01
The paper presents an organic-based photodiode coupled to a CsI(Tl) scintillator to realize an X-ray detector. A suitable blend of an indolic squaraine derivative and of fullerene derivative has been used for the photodiode, thus allowing external quantum efficiency in excess of 10% at a wavelength of 570 nm, well matching the scintillator output spectrum. Thanks to the additional deposition of a 15 nm thin layer of a suitable low electron affinity polymer, carriers injection from the metal into the organic semiconductor has been suppressed, and dark current density as low as has been obtained, which is comparable to standard Si-based photodiodes. By using a collimated X-ray beam impinging onto the scintillator mounted over the photodiode we have been able to measure current variations in the order of 150 pA on a dark current floor of less than 50 pA when operating the X-ray tube in switching mode, thus proving the feasibility of indirect X-ray detection by means of organic semiconductors.
Astronomical bounds on a cosmological model allowing a general interaction in the dark sector
NASA Astrophysics Data System (ADS)
Pan, Supriya; Mukherjee, Ankan; Banerjee, Narayan
2018-06-01
Non-gravitational interaction between two barotropic dark fluids, namely the pressureless dust and the dark energy in a spatially flat Friedmann-Lemaître-Robertson-Walker model, has been discussed. It is shown that for the interactions that are linear in terms the energy densities of the dark components and their first order derivatives, the net energy density is governed by a second-order differential equation with constant coefficients. Taking a generalized interaction, which includes a number of already known interactions as special cases, the dynamics of the universe is described for three types of the dark energy equation of state, namely that of interacting quintessence, interacting vacuum energy density, and interacting phantom. The models have been constrained using the standard cosmological probes, Supernovae Type Ia data from joint light curve analysis and the observational Hubble parameter data. Two geometric tests, the cosmographic studies, and the Om diagnostic have been invoked so as to ascertain the behaviour of the present model vis-a-vis the Λ-cold dark matter model. We further discussed the interacting scenarios taking into account the thermodynamic considerations.
Theoretical uncertainties in the calculation of supersymmetric dark matter observables
NASA Astrophysics Data System (ADS)
Bergeron, Paul; Sandick, Pearl; Sinha, Kuver
2018-05-01
We estimate the current theoretical uncertainty in supersymmetric dark matter predictions by comparing several state-of-the-art calculations within the minimal supersymmetric standard model (MSSM). We consider standard neutralino dark matter scenarios — coannihilation, well-tempering, pseudoscalar resonance — and benchmark models both in the pMSSM framework and in frameworks with Grand Unified Theory (GUT)-scale unification of supersymmetric mass parameters. The pipelines we consider are constructed from the publicly available software packages SOFTSUSY, SPheno, FeynHiggs, SusyHD, micrOMEGAs, and DarkSUSY. We find that the theoretical uncertainty in the relic density as calculated by different pipelines, in general, far exceeds the statistical errors reported by the Planck collaboration. In GUT models, in particular, the relative discrepancies in the results reported by different pipelines can be as much as a few orders of magnitude. We find that these discrepancies are especially pronounced for cases where the dark matter physics relies critically on calculations related to electroweak symmetry breaking, which we investigate in detail, and for coannihilation models, where there is heightened sensitivity to the sparticle spectrum. The dark matter annihilation cross section today and the scattering cross section with nuclei also suffer appreciable theoretical uncertainties, which, as experiments reach the relevant sensitivities, could lead to uncertainty in conclusions regarding the viability or exclusion of particular models.
Big-bang nucleosynthesis and the baryon density of the universe.
Copi, C J; Schramm, D N; Turner, M S
1995-01-13
For almost 30 years, the predictions of big-bang nucleosynthesis have been used to test the big-bang model to within a fraction of a second of the bang. The agreement between the predicted and observed abundances of deuterium, helium-3, helium-4, and lithium-7 confirms the standard cosmology model and allows accurate determination of the baryon density, between 1.7 x 10(-31) and 4.1 x 10(-31) grams per cubic centimeter (corresponding to about 1 to 15 percent of the critical density). This measurement of the density of ordinary matter is pivotal to the establishment of two dark-matter problems: (i) most of the baryons are dark, and (ii) if the total mass density is greater than about 15 percent of the critical density, as many determinations indicate, the bulk of the dark matter must be "non-baryonic," composed of elementary particles left from the earliest moments.
NASA Astrophysics Data System (ADS)
Fukuda, Kunito; Asakawa, Naoki
2017-02-01
Reported is the observation of dark spin-dependent electrical conduction in a Schottky barrier diode with pentacene (PSBD) using electrically detected magnetic resonance at room temperature. It is suggested that spin-dependent conduction exists in pentacene thin films, which is explored by examining the anisotropic linewidth of the EDMR signal and current density-voltage (J-V) measurements. The EDMR spectrum can be decomposed to Gaussian and Lorentzian components. The dependency of the two signals on the applied voltage was consistent with the current density-voltage (J-V) of the PSBD rather than that of the electron-only device of Al/pentacene/Al, indicating that the spin-dependent conduction is due to bipolaron formation associated with hole polaronic hopping processes. The applied-voltage dependence of the ratio of intensity of the Gaussian line to the Lorentzian may infer that increasing current density should make conducting paths more dispersive, thereby resulting in an increased fraction of the Gaussian line due to the higher dispersive g-factor.
NASA Technical Reports Server (NTRS)
Prescod-Weinstein, Chanda; Afshordi, Niayesh
2011-01-01
Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit or overpredict the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy or a modified gravity implement a modified Press-Schechter formalism, which relates the linear overdensities to the abundance of dark matter haloes at the same time. We critically examine the universality of the Press-Schechter formalism for different cosmologies, and show that the halo abundance is best correlated with spherical linear overdensity at 94% of collapse (or observation) time. We then extend this argument to ellipsoidal collapse (which decreases the fractional time of best correlation for small haloes), and show that our results agree with deviations from modified Press-Schechter formalism seen in simulated mass functions. This provides a novel universal prescription to measure linear density evolution, based on current and future observations of cluster (or dark matter) halo mass function. In particular, even observations of cluster abundance in a single epoch will constrain the entire history of linear growth of cosmological of perturbations.
NASA Astrophysics Data System (ADS)
Yang, Kwei-Chou
2018-01-01
In light of the observed Galactic center gamma-ray excess, we investigate a simplified model, for which the scalar dark matter interacts with quarks through a pseudoscalar mediator. The viable regions of the parameter space, that can also account for the relic density and evade the current searches, are identified, if the low-velocity dark matter annihilates through an s -channel off shell mediator mostly into b ¯b , and/or annihilates directly into two hidden on shell mediators, which subsequently decay into the quark pairs. These two kinds of annihilations are s wave. The projected monojet limit set by the high luminosity LHC sensitivity could constrain the favored parameter space, where the mediator's mass is larger than the dark matter mass by a factor of 2. We show that the projected sensitivity of 15-year Fermi-LAT observations of dwarf spheroidal galaxies can provide a stringent constraint on the most parameter space allowed in this model. If the on shell mediator channel contributes to the dark matter annihilation cross sections over 50%, this model with a lighter mediator can be probed in the projected PICO-500L experiment.
Agalarov, Agalar; Zhulego, Vladimir; Gadzhimuradov, Telman
2015-04-01
The reduction procedure for the general coupled nonlinear Schrödinger (GCNLS) equations with four-wave mixing terms is proposed. It is shown that the GCNLS system is equivalent to the well known integrable families of the Manakov and Makhankov U(n,m)-vector models. This equivalence allows us to construct bright-bright and dark-dark solitons and a quasibreather-dark solution with unconventional dynamics: the density of the first component oscillates in space and time, whereas the density of the second component does not. The collision properties of solitons are also studied.
Performance and Transient Behavior of Vertically Integrated Thin-film Silicon Sensors
Wyrsch, Nicolas; Choong, Gregory; Miazza, Clément; Ballif, Christophe
2008-01-01
Vertical integration of amorphous hydrogenated silicon diodes on CMOS readout chips offers several advantages compared to standard CMOS imagers in terms of sensitivity, dynamic range and dark current while at the same time introducing some undesired transient effects leading to image lag. Performance of such sensors is here reported and their transient behaviour is analysed and compared to the one of corresponding amorphous silicon test diodes deposited on glass. The measurements are further compared to simulations for a deeper investigation. The long time constant observed in dark or photocurrent decay is found to be rather independent of the density of defects present in the intrinsic layer of the amorphous silicon diode. PMID:27873778
USING A PHENOMENOLOGICAL MODEL TO TEST THE COINCIDENCE PROBLEM OF DARK ENERGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Yun; Zhu Zonghong; Alcaniz, J. S.
2010-03-01
By assuming a phenomenological form for the ratio of the dark energy and matter densities rho{sub X} {proportional_to} rho{sub m} a {sup x}i, we discuss the cosmic coincidence problem in light of current observational data. Here, xi is a key parameter to denote the severity of the coincidence problem. In this scenario, xi = 3 and xi = 0 correspond to LAMBDACDM and the self-similar solution without the coincidence problem, respectively. Hence, any solution with a scaling parameter 0 < xi < 3 makes the coincidence problem less severe. In addition, the standard cosmology without interaction between dark energy andmore » dark matter is characterized by xi + 3omega{sub X} = 0, where omega{sub X} is the equation of state of the dark energy component, whereas the inequality xi + 3omega{sub X} {ne} 0 represents non-standard cosmology. We place observational constraints on the parameters (OMEGA{sub X,0}, omega{sub X}, xi) of this model, where OMEGA{sub X,0} is the present value of density parameter of dark energy OMEGA{sub X}, by using the Constitution Set (397 supernovae of type Ia data, hereafter SNeIa), the cosmic microwave background shift parameter from the five-year Wilkinson Microwave Anisotropy Probe and the Sloan Digital Sky Survey baryon acoustic peak. Combining the three samples, we get OMEGA{sub X,0} = 0.72 +- 0.02, omega{sub X} = -0.98 +- 0.07, and xi = 3.06 +- 0.35 at 68.3% confidence level. The result shows that the LAMBDACDM model still remains a good fit to the recent observational data, and the coincidence problem indeed exists and is quite severe, in the framework of this simple phenomenological model. We further constrain the model with the transition redshift (deceleration/acceleration). It shows that if the transition from deceleration to acceleration happens at the redshift z > 0.73, within the framework of this model, we can conclude that the interaction between dark energy and dark matter is necessary.« less
Cosmic selection rule for the glueball dark matter relic density
NASA Astrophysics Data System (ADS)
Soni, Amarjit; Xiao, Huangyu; Zhang, Yue
2017-10-01
We point out a unique mechanism to produce the relic abundance for the glueball dark matter from a gauged SU (N )d hidden sector which is bridged to the standard model sector through heavy vectorlike quarks colored under gauge interactions from both sides. A necessary ingredient of our assumption is that the vectorlike quarks, produced either thermally or nonthermally, are abundant enough to dominate the universe for some time in the early universe. They later undergo dark color confinement and form unstable vectorlike-quarkonium states which annihilate decay and reheat the visible and dark sectors. The ratio of entropy dumped into two sectors and the final energy budget in the dark glueballs is only determined by low energy parameters, including the intrinsic scale of the dark SU (N )d , Λd, and number of dark colors, Nd, but depend weakly on parameters in the ultraviolet such as the vectorlike quark mass or the initial condition. We call this a cosmic selection rule for the glueball dark matter relic density.
Low-Light-Level InGaAs focal plane arrays with and without illumination
NASA Astrophysics Data System (ADS)
Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David
2010-04-01
Short wavelength IR imaging using InGaAs-based FPAs is shown. Aerius demonstrates low dark current in InGaAs detector arrays with 15 μm pixel pitch. The same material is mated with a 640x 512 CTIA-based readout integrated circuit. The resulting FPA is capable of imaging photon fluxes with wavelengths between 1 and 1.6 microns at low light levels. The mean dark current density on the FPAs is extremely low at 0.64 nA/cm2 at 10°C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling (CDS). In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide speckle-free illumination, provide artifact-free imagery versus conventional laser illuminators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chae, Kyu-Hyun; Kravtsov, Andrey V.; Frieman, Joshua A.
With SDSS galaxy data and halo data from up-to-date N-body simulations we construct a semi-empirical catalog (SEC) of early-type systems by making a self-consistent bivariate statistical match of stellar mass (M_star) and velocity dispersion (sigma) with halo virial mass (M_vir). We then assign stellar mass profile and velocity dispersion profile parameters to each system in the SEC using their observed correlations with M_star and sigma. Simultaneously, we solve for dark matter density profile of each halo using the spherical Jeans equation. The resulting dark matter density profiles deviate in general from the dissipationless profile of NFW or Einasto and theirmore » mean inner density slope and concentration vary systematically with M_vir. Statistical tests of the distribution of profiles at fixed M_vir rule out the null hypothesis that it follows the distribution predicted by N-body simulations for M_vir ~< 10^{13.5-14.5} M_solar. These dark matter profiles imply that dark matter density is, on average, enhanced significantly in the inner region of halos with M_vir ~< 10^{13.5-14.5} M_solar supporting halo contraction. The main characteristics of halo contraction are: (1) the mean dark matter density within the effective radius has increased by a factor varying systematically up to ~ 3-4 at M_vir = 10^{12} M_solar, and (2) the inner density slope has a mean of ~ 1.3 with rho(r) ~ r^{-alpha} and a halo-to-halo rms scatter of rms(alpha) ~ 0.4-0.5 for 10^{12} M_solar ~< M_vir ~< 10^{13-14} M_solar steeper than the NFW profile (alpha=1). Based on our results we predict that halos of nearby elliptical and lenticular galaxies can, in principle, be promising targets for gamma-ray emission from dark matter annihilation.« less
Implications of two-component dark matter induced by forbidden channels and thermal freeze-out
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Mayumi; Toma, Takashi, E-mail: mayumi@hep.s.kanazawa-u.ac.jp, E-mail: takashi.toma@tum.de
2017-01-01
We consider a model of two-component dark matter based on a hidden U(1) {sub D} symmetry, in which relic densities of the dark matter are determined by forbidden channels and thermal freeze-out. The hidden U(1) {sub D} symmetry is spontaneously broken to a residual Z{sub 4} symmetry, and the lightest Z{sub 4} charged particle can be a dark matter candidate. Moreover, depending on the mass hierarchy in the dark sector, we have two-component dark matter. We show that the relic density of the lighter dark matter component can be determined by forbidden annihilation channels which require larger couplings compared tomore » the normal freeze-out mechanism. As a result, a large self-interaction of the lighter dark matter component can be induced, which may solve small scale problems of ΛCDM model. On the other hand, the heavier dark matter component is produced by normal freeze-out mechanism. We find that interesting implications emerge between the two dark matter components in this framework. We explore detectabilities of these dark matter particles and show some parameter space can be tested by the SHiP experiment.« less
Is the continuous matter creation cosmology an alternative to ΛCDM?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabris, J.C.; Pacheco, J.A. de Freitas; Piattella, O.F., E-mail: fabris@pq.cnpq.br, E-mail: pacheco@oca.eu, E-mail: oliver.piattella@pq.cnpq.br
2014-06-01
The matter creation cosmology is revisited, including the evolution of baryons and dark matter particles. The creation process affects only dark matter and not baryons. The dynamics of the ΛCDM model can be reproduced only if two conditions are satisfied: 1) the entropy density production rate and the particle density variation rate are equal and 2) the (negative) pressure associated to the creation process is constant. However, the matter creation model predicts a present dark matter-to-baryon ratio much larger than that observed in massive X-ray clusters of galaxies, representing a potential difficulty for the model. In the linear regime, amore » fully relativistic treatment indicates that baryons are not affected by the creation process but this is not the case for dark matter. Both components evolve together at early phases but lately the dark matter density contrast decreases since the background tends to a constant value. This behaviour produces a negative growth factor, in disagreement with observations, being a further problem for this cosmology.« less
Electrical transport properties of thermally evaporated phthalocyanine (H 2Pc) thin films
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Farid, A. M.; Attia, A. A.; Ali, H. A. M.
2006-08-01
Thin films of H 2Pc of various thicknesses have been deposited onto glass substrates using thermal evaporation technique at room temperature. The dark electrical resistivity measurements were carried out at different temperatures in the range 298-473 K. An estimation of mean free path ( lo) of charge carriers in H 2Pc thin films was attempted. Measurements of thermoelectric power confirm that H 2Pc thin films behave as a p-type semiconductor. The current density-voltage characteristics of Au/H 2Pc/Au at room temperature showed ohmic conduction mechanism at low voltages. At higher voltages the space-charge-limited conduction (SCLC) accompanied by an exponential trap distribution was dominant. The temperature dependence of current density allows the determination of some essential parameters such as the hole mobility ( μh), the total trap concentration ( Nt), the characteristic temperature ( Tt) and the trap density P( E).
Determining the Local Dark Matter Density with SDSS G-dwarf data
NASA Astrophysics Data System (ADS)
Silverwood, Hamish; Sivertsson, Sofia; Read, Justin; Bertone, Gianfranco; Steger, Pascal
2018-04-01
We present a determination of the local dark matter density derived using the integrated Jeans equation method presented in Silverwood et al. (2016) applied to SDSS-SEGUE G-dwarf data processed by Büdenbender et al. (2015). For our analysis we construct models for the tracer density, dark matter and baryon distribution, and tilt term (linking radial and vertical motions), and then calculate the vertical velocity dispersion using the integrated Jeans equation. These models are then fit to the data using MultiNest, and a posterior distribution for the local dark matter density is derived. We find the most reliable determination to come from the α-young population presented in Büdenbender et al. (2015), yielding a result of ρDM = 0.46+0.07 -0.09 GeV cm-3 = 0.012+0.001 -0.002 M⊙ pc-3. Our results also illuminate the path ahead for future analyses using Gaia DR2 data, highlighting which quantities will need to be determined and which assumptions could be relaxed.
Exploratory Corrugated Infrared Hot-Electron Transistor Arrays
2009-02-01
quantum well infrared photodetector ( QWIP ) structure. This improvement is consistent with the hot-electron distributions created by the thermal and...the designed value. This higher barrier height can be attributed to the finite p-type doping density in the material. 15. SUBJECT TERMS QWIP ...infrared photodetector ( QWIP ) sensor in a small exploratory array format, which is capable of suppressing the detector dark current. The new detector
Temperature dependent charge transport in poly(3-hexylthiophene) diodes
NASA Astrophysics Data System (ADS)
Rahaman, Abdulla Bin; Sarkar, Atri; Banerjee, Debamalya
2018-04-01
In this work, we present charge transport properties of poly(3-hexylthiophene) (P3HT) diodes under dark conditions. Temperature dependent current-voltage (J-V) characteristics shows that charge transport represents a transition from ohomic to trap limited current. The forward current density obeys a power law J˜Vm, m>2 represents the space charge limited current region in presence of traps within the band gap. Frequency dependent conductivity has been studied in a temperature range 150K-473K. The dc conductivity values show Arrhenius like behavior and it gives conductivity activation energy 223 meV. Temperature dependent conductivity indicates a thermodynamic transition of our system.
The cosmological constant and dark energy
NASA Astrophysics Data System (ADS)
Peebles, P. J.; Ratra, Bharat
2003-04-01
Physics welcomes the idea that space contains energy whose gravitational effect approximates that of Einstein’s cosmological constant, Λ; today the concept is termed dark energy or quintessence. Physics also suggests that dark energy could be dynamical, allowing for the arguably appealing picture of an evolving dark-energy density approaching its natural value, zero, and small now because the expanding universe is old. This would alleviate the classical problem of the curious energy scale of a millielectron volt associated with a constant Λ. Dark energy may have been detected by recent cosmological tests. These tests make a good scientific case for the context, in the relativistic Friedmann-Lemaître model, in which the gravitational inverse-square law is applied to the scales of cosmology. We have well-checked evidence that the mean mass density is not much more than one-quarter of the critical Einstein de Sitter value. The case for detection of dark energy is not yet as convincing but still serious; we await more data, which may be derived from work in progress. Planned observations may detect the evolution of the dark-energy density; a positive result would be a considerable stimulus for attempts at understanding the microphysics of dark energy. This review presents the basic physics and astronomy of the subject, reviews the history of ideas, assesses the state of the observational evidence, and comments on recent developments in the search for a fundamental theory.
Cores in Dwarf Galaxies from Fermi Repulsion
NASA Astrophysics Data System (ADS)
Randall, Lisa; Scholtz, Jakub; Unwin, James
2017-05-01
We show that Fermi repulsion can lead to cored density profiles in dwarf galaxies for sub-keV fermionic dark matter. We treat the dark matter as a quasi-degenerate self-gravitating Fermi gas and calculate its density profile assuming hydrostatic equilibrium. We find that suitable dwarf galaxy cores of size ≳130 pc can be achieved for fermion dark matter with mass in the range of 70-400 eV. While in conventional dark matter scenarios such sub-keV thermal dark matter would be excluded by free streaming bounds, the constraints are ameliorated in models with dark matter at a lower temperature than conventional thermal scenarios, such as the Flooded Dark Matter model that we have previously considered. Modifying the arguments of Tremaine and Gunn, we derive a conservative lower bound on the mass of fermionic dark matter of 70 eV and a stronger lower bound from Lymanα clouds of about 470 eV, leading to slightly smaller cores than have been observed. We comment on this result and how the tension is relaxed in dark matter scenarios with non-thermal momentum distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Kohei; Chiba, Masashi, E-mail: kohei.hayashi@ipmu.jp, E-mail: chiba@astr.tohoku.ac.jp
We investigate the non-spherical density structure of dark halos of the dwarf spheroidal (dSph) galaxies in the Milky Way and Andromeda galaxies based on revised axisymmetric mass models from our previous work. The models we adopt here fully take into account velocity anisotropy of tracer stars confined within a flattened dark halo. Applying our models to the available kinematic data of the 12 bright dSphs, we find that these galaxies associate with, in general, elongated dark halos, even considering the effect of this velocity anisotropy of stars. We also find that the best-fit parameters, especially for the shapes of darkmore » halos and velocity anisotropy, are susceptible to both the availability of velocity data in the outer regions and the effect of the lack of sample stars in each spatial bin. Thus, to obtain more realistic limits on dark halo structures, we require photometric and kinematic data over much larger areas in the dSphs than previously explored. The results obtained from the currently available data suggest that the shapes of dark halos in the dSphs are more elongated than those of ΛCDM subhalos. This mismatch needs to be solved by theory including baryon components and the associated feedback to dark halos as well as by further observational limits in larger areas of dSphs. It is also found that more diffuse dark halos may have undergone consecutive star formation history, thereby implying that dark-halo structure plays an important role in star formation activity.« less
Impact of semi-annihilation of ℤ{sub 3} symmetric dark matter with radiative neutrino masses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Mayumi; Toma, Takashi
2014-09-08
We investigate a ℤ{sub 3} symmetric model with two-loop radiative neutrino masses. Dark matter in the model is either a Dirac fermion or a complex scalar as a result of an unbroken ℤ{sub 3} symmetry. In addition to standard annihilation processes, semi-annihilation of the dark matter contributes to the relic density. We study the effect of the semi-annihilation in the model and find that those contributions are important to obtain the observed relic density. The experimental signatures in dark matter searches are also discussed, where some of them are expected to be different from the signatures of dark matter inmore » ℤ{sub 2} symmetric models.« less
Impact of semi-annihilation of Z{sub 3} symmetric dark matter with radiative neutrino masses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Mayumi; Toma, Takashi, E-mail: mayumi@hep.s.kanazawa-u.ac.jp, E-mail: takashi.toma@durham.ac.uk
2014-09-01
We investigate a Z{sub 3} symmetric model with two-loop radiative neutrino masses. Dark matter in the model is either a Dirac fermion or a complex scalar as a result of an unbroken Z{sub 3} symmetry. In addition to standard annihilation processes, semi-annihilation of the dark matter contributes to the relic density. We study the effect of the semi-annihilation in the model and find that those contributions are important to obtain the observed relic density. The experimental signatures in dark matter searches are also discussed, where some of them are expected to be different from the signatures of dark matter inmore » Z{sub 2} symmetric models.« less
A new method to quantify the effects of baryons on the matter power spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Aurel; Teyssier, Romain, E-mail: aurel@physik.uzh.ch, E-mail: teyssier@physik.uzh.ch
2015-12-01
Future large-scale galaxy surveys have the potential to become leading probes for cosmology provided the influence of baryons on the total mass distribution is understood well enough. As hydrodynamical simulations strongly depend on details in the feedback implementations, no unique and robust predictions for baryonic effects currently exist. In this paper we propose a baryonic correction model that modifies the density field of dark-matter-only N-body simulations to mimic the effects of baryons from any underlying adopted feedback recipe. The model assumes haloes to consist of 4 components: 1- hot gas in hydrostatical equilibrium, 2- ejected gas from feedback processes, 3-more » central galaxy stars, and 4- adiabatically relaxed dark matter, which all modify the initial dark-matter-only density profiles. These altered profiles allow to define a displacement field for particles in N-body simulations and to modify the total density field accordingly. The main advantage of the baryonic correction model is to connect the total matter density field to the observable distribution of gas and stars in haloes, making it possible to parametrise baryonic effects on the matter power spectrum. We show that the most crucial quantities are the mass fraction of ejected gas and its corresponding ejection radius. The former controls how strongly baryons suppress the power spectrum, while the latter provides a measure of the scale where baryonic effects become important. A comparison with X-ray and Sunyaev-Zel'dovich cluster observations suggests that baryons suppress wave modes above k∼0.5 h/Mpc with a maximum suppression of 10-25 percent around k∼ 2 h/Mpc. More detailed observations of the gas in the outskirts of groups and clusters are required to decrease the large uncertainties of these numbers.« less
The Structure and Dark Halo Core Properties of Dwarf Spheroidal Galaxies
NASA Astrophysics Data System (ADS)
Burkert, A.
2015-08-01
The structure and dark matter halo core properties of dwarf spheroidal galaxies (dSphs) are investigated. A double-isothermal (DIS) model of an isothermal, non-self-gravitating stellar system embedded in an isothermal dark halo core provides an excellent fit to the various observed stellar surface density distributions. The stellar core scale length a* is sensitive to the central dark matter density ρ0,d. The maximum stellar radius traces the dark halo core radius {r}c,d. The concentration c* of the stellar system, determined by a King profile fit, depends on the ratio of the stellar-to-dark-matter velocity dispersion {σ }*/{σ }d. Simple empirical relationships are derived that allow us to calculate the dark halo core parameters ρ0,d, {r}c,d, and σd given the observable stellar quantities σ*, a*, and c*. The DIS model is applied to the Milky Way’s dSphs. All dSphs closely follow the same universal dark halo scaling relations {ρ }0,d× {r}c,d={75}-45+85 M⊙ pc-2 that characterize the cores of more massive galaxies over a large range in masses. The dark halo core mass is a strong function of core radius, {M}c,d˜ {r}c,d2. Inside a fixed radius of ˜400 pc the total dark matter mass is, however, roughly constant with {M}d=2.6+/- 1.4× {10}7 M⊙, although outliers are expected. The dark halo core densities of the Galaxy’s dSphs are very high, with {ρ }0,d ≈ 0.2 M⊙ pc-3. dSphs should therefore be tidally undisturbed. Evidence for tidal effects might then provide a serious challenge for the CDM scenario.
Evolution of density and velocity profiles of dark matter and dark energy in spherical voids
NASA Astrophysics Data System (ADS)
Novosyadlyj, Bohdan; Tsizh, Maksym; Kulinich, Yurij
2017-02-01
We analyse the evolution of cosmological perturbations which leads to the formation of large isolated voids in the Universe. We assume that initial perturbations are spherical and all components of the Universe (radiation, matter and dark energy) are continuous media with ideal fluid energy-momentum tensors, which interact only gravitationally. Equations of the evolution of perturbations for every component in the comoving to cosmological background reference frame are obtained from equations of energy and momentum conservation and Einstein's ones and are integrated numerically. Initial conditions are set at the early stage of evolution in the radiation-dominated epoch, when the scale of perturbation is much larger than the particle horizon. Results show how the profiles of density and velocity of matter and dark energy are formed and how they depend on parameters of dark energy and initial conditions. In particular, it is shown that final matter density and velocity amplitudes change within range ˜4-7 per cent when the value of equation-of-state parameter of dark energy w vary in the range from -0.8 to -1.2, and change within ˜1 per cent only when the value of effective sound speed of dark energy vary over all allowable range of its values.
The white dwarf luminosity function - A possible probe of the galactic halo
NASA Technical Reports Server (NTRS)
Tamanaha, Christopher M.; Silk, Joseph; Wood, M. A.; Winget, D. E.
1990-01-01
The dynamically inferred dark halo mass density, amounting to above 0.01 solar masses/cu pc at the sun's Galactocentric radius, can be composed of faint white dwarfs provided that the halo formed in a sufficiently early burst of star formation. The model is constrained by the observed disk white dwarf luminosity function which falls off below log (L/solar L) = -4.4, due to the onset of star formation in the disk. By using a narrow range for the initial mass function and an exponentially decaying halo star formation rate with an e-folding time equal to the free-fall time, all the halo dark matter is allowed to be in cool white dwarfs which lie beyond the falloff in the disk luminosity function. Although it is unlikely that all the dark matter is in these dim white dwarfs, a definite signature in the low-luminosity end of the white dwarf luminosity function is predicted even if they comprise only 1 percent of the dark matter. Current CCD surveys should answer the question of the existence of this population within the next few years.
A new approach to simulating collisionless dark matter fluids
NASA Astrophysics Data System (ADS)
Hahn, Oliver; Abel, Tom; Kaehler, Ralf
2013-09-01
Recently, we have shown how current cosmological N-body codes already follow the fine grained phase-space information of the dark matter fluid. Using a tetrahedral tessellation of the three-dimensional manifold that describes perfectly cold fluids in six-dimensional phase space, the phase-space distribution function can be followed throughout the simulation. This allows one to project the distribution function into configuration space to obtain highly accurate densities, velocities and velocity dispersions. Here, we exploit this technique to show first steps on how to devise an improved particle-mesh technique. At its heart, the new method thus relies on a piecewise linear approximation of the phase-space distribution function rather than the usual particle discretization. We use pseudo-particles that approximate the masses of the tetrahedral cells up to quadrupolar order as the locations for cloud-in-cell (CIC) deposit instead of the particle locations themselves as in standard CIC deposit. We demonstrate that this modification already gives much improved stability and more accurate dynamics of the collisionless dark matter fluid at high force and low mass resolution. We demonstrate the validity and advantages of this method with various test problems as well as hot/warm dark matter simulations which have been known to exhibit artificial fragmentation. This completely unphysical behaviour is much reduced in the new approach. The current limitations of our approach are discussed in detail and future improvements are outlined.
Partially acoustic dark matter, interacting dark radiation, and large scale structure
NASA Astrophysics Data System (ADS)
Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo; Okui, Takemichi; Tsai, Yuhsinz
2016-12-01
The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H 0 and the matter density perturbation σ 8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightly coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ 8 problem, while the presence of tightly coupled dark radiation ameliorates the H 0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.
Partially acoustic dark matter, interacting dark radiation, and large scale structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo
The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H 0 and the matter density perturbation σ 8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightlymore » coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ 8 problem, while the presence of tightly coupled dark radiation ameliorates the H 0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.« less
Partially acoustic dark matter, interacting dark radiation, and large scale structure
Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo; ...
2016-12-21
The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H 0 and the matter density perturbation σ 8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightlymore » coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ 8 problem, while the presence of tightly coupled dark radiation ameliorates the H 0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.« less
Creation of a Mock Universe: Photometric Astronomy on Simulation
NASA Astrophysics Data System (ADS)
Nene, Ajinkya; Rodriguez, Aldo; Primack, Joel R.
2016-01-01
A major focus in astronomy is to understand how galaxies form and evolve in the Universe. The current model known as ΛCDM explains that galaxies form and evolve in halos composed of cold dark matter. In an effort to understand galactic processes in relation to halos, researchers have developed statistical methods to connect galaxies to their halos. One of these approaches is abundance matching: a technique in which the galaxy number density of a property is connected to a theoretical halo number density. In this study, we exploit the abundance matching technique and create a massive photometric mock catalog. We populate millions of dark matter halos in the Bolshoi-Planck Simulation with highly defined galaxies that each has: luminosities, magnitudes, fluxes, masses, and Sérsic profiles. Our catalog acts as an interface between cold dark matter theory and observations: astronomers can use this mock galaxy catalog to compare ΛCDM predictions to observations as well as constrain galaxy formation models. Using our catalog, we can make powerful predictions about both theoretical data and about future astronomical surveys. We demonstrate the usability of our catalog through angular power spectra. Specifically, we shed light on the controversial intrahalo light phenomena. We emphasize that this is the first catalog of this accuracy and size and has incredible potential for application.
Spectroscopic Study of a Dark Lane and a Cool Loop in a Solar Limb Active Region by Hinode/EIS
NASA Astrophysics Data System (ADS)
Lee, Kyoung-Sun; Imada, S.; Moon, Y.-J.; Lee, Jin-Yi
2014-01-01
We investigated a cool loop and a dark lane over a limb active region on 2007 March 14 using the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in the coronal spectral lines and is rooted on a bright point. We examined their electron densities, Doppler velocities, and nonthermal velocities as a function of distance from the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII, and Fe XIV spectra. We also compared the observed density scale heights with the calculated scale heights from each peak formation temperatures of the spectral lines under the hydrostatic equilibrium. We noted that the observed density scale heights of the cool loop are consistent with the calculated heights, with the exception of one observed cooler temperature; we also found that the observed scale heights of the dark lane are much lower than their calculated scale heights. The nonthermal velocity in the cool loop slightly decreases along the loop, while nonthermal velocity in the dark lane sharply falls off with height. Such a decrease in the nonthermal velocity may be explained by wave damping near the solar surface or by turbulence due to magnetic reconnection near the bright point.
Opportunities for future supernova studies of cosmic acceleration.
Weller, J; Albrecht, A
2001-03-05
We investigate the potential of a future supernova data set, as might be obtained by the proposed SNAP satellite, to discriminate among different "dark energy" theories that describe an accelerating Universe. We find that many such models can be distinguished with a fit to the effective pressure-to-density ratio w of this energy. More models can be distinguished when the effective slope dw/dz of a changing w is also fit, but only if our knowledge of the current mass density Omega(m) is improved. We investigate the use of "fitting functions" to interpret luminosity distance data from supernova searches.
Rostami, A; Leilaeioun, M; Golmmohamadi, S; Rasooli Saghai, H
2012-06-01
In this paper, we present a self-consistent theoretical model for a metal-insulator semiconductor (MIS) dual band ultraviolet (UV) photodetector with a modified structure implying an arbitrarily defined insulating potential barrier as its active region. Utilizing our proposed model, the dark and photocurrent density-voltage (J-V) characteristics of MIS UV photodetectors with multi-quantum wells of silicon (MQWs) are calculated. We demonstrate that dark current is reduced in the suggested structure, because the electron-tunneling probability becomes unity at energies coincident with the peak detection wavelength. This is due to the resonant tunneling and decreases at energies that are significantly smaller than this optimum value. In consequence, the number of carriers contributing to the dark current, which have a broad energy distribution at high temperatures, will decrease. It is also shown that the designed structure could detect two individual UV wavelengths, simultaneously. The width of each Si quantum well has been considered at around 1.2 nm, in order to observe these two absorption peaks in the middle and near UV regions of photon spectrum (about 365 nm, 175 nm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audren, Benjamin; Bellini, Emilio; Cuesta, Antonio J.
The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by searching for the typical signatures of the fluctuations of free-streaming species in the temperature and polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values of these parameters, which seems to bring further evidence for the existence of a cosmicmore » neutrino background. In this work, we investigate the robustness of this conclusion under various assumptions. We generalise the definition of an effective sound speed and viscosity speed to the case of massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We show that current bounds on these effective parameters do not vary significantly when considering an arbitrary value of the particle mass, or extended cosmological models with a free effective neutrino number, dynamical dark energy or a running of the primordial spectrum tilt. We conclude that it is possible to make a robust statement about the detection of the cosmic neutrino background by CMB experiments.« less
Dark Current Degradation of Near Infrared Avalanche Photodiodes from Proton Irradiation
NASA Technical Reports Server (NTRS)
Becker, Heidi N.; Johnston, Allan H.
2004-01-01
InGaAs and Ge avalanche photodiodes (APDs) are examined for the effects of 63-MeV protons on dark current. Dark current increases were large and similar to prior results for silicon APDs, despite the smaller size of InGaAs and Ge devices. Bulk dark current increases from displacement damage in the depletion regions appeared to be the dominant contributor to overall dark current degradation. Differences in displacement damage factors are discussed as they relate to structural and material differences between devices.
Density perturbation in the models reconstructed from jerk parameter
NASA Astrophysics Data System (ADS)
Sinha, Srijita; Banerjee, Narayan
2018-06-01
The present work deals with the late time evolution of the linear density contrast in the dark energy models reconstructed from the jerk parameter. It is found that the non-interacting models are favoured compared to the models where an interaction is allowed in the dark sector.
Dodging the dark matter degeneracy while determining the dynamics of dark energy
NASA Astrophysics Data System (ADS)
Busti, Vinicius C.; Clarkson, Chris
2016-05-01
One of the key issues in cosmology is to establish the nature of dark energy, and to determine whether the equation of state evolves with time. When estimating this from distance measurements there is a degeneracy with the matter density. We show that there exists a simple function of the dark energy equation of state and its first derivative which is independent of this degeneracy at all redshifts, and so is a much more robust determinant of the evolution of dark energy than just its derivative. We show that this function can be well determined at low redshift from supernovae using Gaussian Processes, and that this method is far superior to a variety of parameterisations which are also subject to priors on the matter density. This shows that parametrised models give very biased constraints on the evolution of dark energy.
Darkness without dark matter and energy - generalized unimodular gravity
NASA Astrophysics Data System (ADS)
Barvinsky, A. O.; Kamenshchik, A. Yu.
2017-11-01
We suggest a Lorentz non-invariant generalization of the unimodular gravity theory, which is classically equivalent to general relativity with a locally inert (devoid of local degrees of freedom) perfect fluid having an equation of state with a constant parameter w. For the range of w near -1 this dark fluid can play the role of dark energy, while for w = 0 this dark dust admits spatial inhomogeneities and can be interpreted as dark matter. We discuss possible implications of this model in the cosmological initial conditions problem. In particular, this is the extension of known microcanonical density matrix predictions for the initial quantum state of the closed cosmology to the case of spatially open Universe, based on the imitation of the spatial curvature by the dark fluid density. We also briefly discuss quantization of this model necessarily involving the method of gauge systems with reducible constraints and the effect of this method on the treatment of recently! suggested mechanism of vacuum energy sequestering.
Sensitivity projections for dark matter searches with the Fermi large area telescope
NASA Astrophysics Data System (ADS)
Charles, E.; Sánchez-Conde, M.; Anderson, B.; Caputo, R.; Cuoco, A.; Di Mauro, M.; Drlica-Wagner, A.; Gomez-Vargas, G. A.; Meyer, M.; Tibaldo, L.; Wood, M.; Zaharijas, G.; Zimmer, S.; Ajello, M.; Albert, A.; Baldini, L.; Bechtol, K.; Bloom, E. D.; Ceraudo, F.; Cohen-Tanugi, J.; Digel, S. W.; Gaskins, J.; Gustafsson, M.; Mirabal, N.; Razzano, M.
2016-06-01
The nature of dark matter is a longstanding enigma of physics; it may consist of particles beyond the Standard Model that are still elusive to experiments. Among indirect search techniques, which look for stable products from the annihilation or decay of dark matter particles, or from axions coupling to high-energy photons, observations of the γ-ray sky have come to prominence over the last few years, because of the excellent sensitivity of the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope mission. The LAT energy range from 20 meV to above 300 GeV is particularly well suited for searching for products of the interactions of dark matter particles. In this report we describe methods used to search for evidence of dark matter with the LAT, and review the status of searches performed with up to six years of LAT data. We also discuss the factors that determine the sensitivities of these searches, including the magnitudes of the signals and the relevant backgrounds, considering both statistical and systematic uncertainties. We project the expected sensitivities of each search method for 10 and 15 years of LAT data taking. In particular, we find that the sensitivity of searches targeting dwarf galaxies, which provide the best limits currently, will improve faster than the square root of observing time. Current LAT limits for dwarf galaxies using six years of data reach the thermal relic level for masses up to 120 GeV for the b b ¯ annihilation channel for reasonable dark matter density profiles. With projected discoveries of additional dwarfs, these limits could extend to about 250 GeV. With as much as 15 years of LAT data these searches would be sensitive to dark matter annihilations at the thermal relic cross section for masses to greater than 400 GeV (200 GeV) in the b b ¯ (τ+τ-) annihilation channels.
Sensitivity projections for dark matter dearches with the Fermi large area telescope
Charles, E.; M. Sanchez-Conde; Anderson, B.; ...
2016-05-20
The nature of dark matter is a longstanding enigma of physics; it may consist of particles beyond the Standard Model that are still elusive to experiments. Among indirect search techniques, which look for stable products from the annihilation or decay of dark matter particles, or from axions coupling to high-energy photons, observations of themore » $$\\gamma$$-ray sky have come to prominence over the last few years, because of the excellent sensitivity of the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope mission. The LAT energy range from 20 MeV to above 300 GeV is particularly well suited for searching for products of the interactions of dark matter particles. In this report we describe methods used to search for evidence of dark matter with the LAT, and review the status of searches performed with up to six years of LAT data. We also discuss the factors that determine the sensitivities of these searches, including the magnitudes of the signals and the relevant backgrounds, considering both statistical and systematic uncertainties. We project the expected sensitivities of each search method for 10 and 15 years of LAT data taking. In particular, we find that the sensitivity of searches targeting dwarf galaxies, which provide the best limits currently, will improve faster than the square root of observing time. Current LAT limits for dwarf galaxies using six years of data reach the thermal relic level for masses up to 120 GeV for the $$b\\bar{b}$$ annihilation channel for reasonable dark matter density profiles. With projected discoveries of additional dwarfs, these limits could extend to about 250 GeV. With as much as 15 years of LAT data these searches would be sensitive to dark matter annihilations at the thermal relic cross section for masses to greater than 400 GeV (200 GeV) in the $$b\\bar{b}$$ ($$\\tau^+ \\tau^-$$) annihilation channels.« less
Sensitivity projections for dark matter dearches with the Fermi large area telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles, E.; M. Sanchez-Conde; Anderson, B.
The nature of dark matter is a longstanding enigma of physics; it may consist of particles beyond the Standard Model that are still elusive to experiments. Among indirect search techniques, which look for stable products from the annihilation or decay of dark matter particles, or from axions coupling to high-energy photons, observations of themore » $$\\gamma$$-ray sky have come to prominence over the last few years, because of the excellent sensitivity of the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope mission. The LAT energy range from 20 MeV to above 300 GeV is particularly well suited for searching for products of the interactions of dark matter particles. In this report we describe methods used to search for evidence of dark matter with the LAT, and review the status of searches performed with up to six years of LAT data. We also discuss the factors that determine the sensitivities of these searches, including the magnitudes of the signals and the relevant backgrounds, considering both statistical and systematic uncertainties. We project the expected sensitivities of each search method for 10 and 15 years of LAT data taking. In particular, we find that the sensitivity of searches targeting dwarf galaxies, which provide the best limits currently, will improve faster than the square root of observing time. Current LAT limits for dwarf galaxies using six years of data reach the thermal relic level for masses up to 120 GeV for the $$b\\bar{b}$$ annihilation channel for reasonable dark matter density profiles. With projected discoveries of additional dwarfs, these limits could extend to about 250 GeV. With as much as 15 years of LAT data these searches would be sensitive to dark matter annihilations at the thermal relic cross section for masses to greater than 400 GeV (200 GeV) in the $$b\\bar{b}$$ ($$\\tau^+ \\tau^-$$) annihilation channels.« less
The median density of the Universe
NASA Astrophysics Data System (ADS)
Stücker, Jens; Busch, Philipp; White, Simon D. M.
2018-07-01
Despite the fact that the mean matter density of the Universe has been measured to an accuracy of a few per cent within the standard Λcold dark matter (ΛCDM) paradigm, its median density is not known even to the order of magnitude. Typical points lie in low-density regions and are not part of a collapsed structure of any scale. Locally, the dark matter distribution is then simply a stretched version of that in the early Universe. In this single-stream regime, the distribution of unsmoothed density is sensitive to the initial power spectrum on all scales, in particular on very small scales, and hence to the nature of the dark matter. It cannot be estimated reliably using conventional cosmological simulations because of the enormous dynamic range involved, but a suitable excursion set procedure can be used instead. For the Planck cosmological parameters, a 100 GeV WIMP, corresponding to a free-streaming mass ˜10-6M⊙, results in a median density of ˜4 × 10-3 in units of the mean density, whereas a 10 μeV axion with free-streaming mass ˜10-12M⊙ gives ˜3 × 10-3, and warm dark matter (WDM) with a (thermal relic) mass of 1 keV gives ˜8 × 10-2. In CDM (but not in WDM) universes, single-stream regions are predicted to be topologically isolated by the excursion set formalism. A test by direct N-body simulations seems to confirm this prediction, although it is still subject to finite size and resolution effects. Unfortunately, it is unlikely that any of these properties is observable and so suitable for constraining the properties of dark matter.
Astrophysical uncertainties on the local dark matter distribution and direct detection experiments
NASA Astrophysics Data System (ADS)
Green, Anne M.
2017-08-01
The differential event rate in weakly interacting massive particle (WIMP) direct detection experiments depends on the local dark matter density and velocity distribution. Accurate modelling of the local dark matter distribution is therefore required to obtain reliable constraints on the WIMP particle physics properties. Data analyses typically use a simple standard halo model which might not be a good approximation to the real Milky Way (MW) halo. We review observational determinations of the local dark matter density, circular speed and escape speed and also studies of the local dark matter distribution in simulated MW-like galaxies. We discuss the effects of the uncertainties in these quantities on the energy spectrum and its time and direction dependence. Finally, we conclude with an overview of various methods for handling these astrophysical uncertainties.
NASA Astrophysics Data System (ADS)
Nopparuchikun, Adison; Promros, Nathaporn; Sittimart, Phongsaphak; Onsee, Peeradon; Duangrawa, Asanlaya; Teakchaicum, Sakmongkon; Nogami, Tomohiro; Yoshitake, Tsuyoshi
2017-09-01
By utilizing pulsed laser deposition (PLD), heterojunctions comprised of n-type nanocrystalline (NC) FeSi2 thin films and p-type Si substrates were fabricated at room temperature in this study. Both dark and illuminated current density-voltage (J-V) curves for the heterojunctions were measured and analyzed at room temperature. The heterojunctions demonstrated a large reverse leakage current as well as a weak near-infrared light response. Based on the analysis of the dark forward J-V curves, at the V value ⩽ 0.2 V, we show that a carrier recombination process was governed at the heterojunction interface. When the V value was > 0.2 V, the probable mechanism of carrier transportation was a space-charge limited-current process. Both the measurement and analysis for capacitance-voltage-frequency (C-V-f ) and conductance-voltage-frequency (G-V-f ) curves were performed in the applied frequency (f ) range of 50 kHz-2 MHz at room temperature. From the C-V-f and G-V-f curves, the density of interface states (N ss) for the heterojunctions was computed by using the Hill-Coleman method. The N ss values were 9.19 × 1012 eV-1 cm-2 at 2 MHz and 3.15 × 1014 eV-1 cm-2 at 50 kHz, which proved the existence of interface states at the heterojunction interface. These interface states are the probable cause of the degraded electrical performance in the heterojunctions. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.
Olson, Benjamin Varberg; Kadlec, Emil Andrew; Kim, Jin K.; ...
2015-04-17
Our time-resolved measurements for carrier recombination are reported as a midwave infrared InAs/InAs 0.66Sb 0.34 type-II superlattice (T2SL) function of pump intensity and sample temperature. By including the T2SL doping level in the analysis, the Shockley-Read-Hall (SRH), radiative, and Auger recombination components of the carrier lifetime are uniquely distinguished at each temperature. SRH is the limiting recombination mechanism for excess carrier densities less than the doping level (the low-injection regime) and temperatures less than 175 K. A SRH defect energy of 95 meV, either below the T2SL conduction-band edge or above the T2SL valence-band edge, is identified. Auger recombination limitsmore » the carrier lifetimes for excess carrier densities greater than the doping level (the high-injection regime) for all temperatures tested. Additionally, at temperatures greater than 225 K, Auger recombination also limits the low-injection carrier lifetime due to the onset of the intrinsic temperature range and large intrinsic carrier densities. Radiative recombination is found to not have a significant contribution to the total lifetime for all temperatures and injection regimes, with the data implying a photon recycling factor of 15. Using the measured lifetime data, diffusion currents are calculated and compared to calculated Hg 1-xCd xTe dark current, indicating that the T2SL can have a lower dark current with mitigation of the SRH defect states. Our results illustrate the potential for InAs/InAs 1-xSb x T2SLs as absorbers in infrared photodetectors.« less
Cosmic selection rule for the glueball dark matter relic density
Soni, Amarjit; Xiao, Huangyu; Zhang, Yue
2017-10-16
Here, we point out a unique mechanism to produce the relic abundance for the glueball dark matter from a gauged SU(N) d hidden sector which is bridged to the standard model sector through heavy vectorlike quarks colored under gauge interactions from both sides. A necessary ingredient of our assumption is that the vectorlike quarks, produced either thermally or nonthermally, are abundant enough to dominate the universe for some time in the early universe. They later undergo dark color confinement and form unstable vectorlike-quarkonium states which annihilate decay and reheat the visible and dark sectors. The ratio of entropy dumped intomore » two sectors and the final energy budget in the dark glueballs is only determined by low energy parameters, including the intrinsic scale of the dark SU(N) d, Λ d, and number of dark colors, N d, but depend weakly on parameters in the ultraviolet such as the vectorlike quark mass or the initial condition. We call this a cosmic selection rule for the glueball dark matter relic density.« less
Cosmic selection rule for the glueball dark matter relic density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soni, Amarjit; Xiao, Huangyu; Zhang, Yue
Here, we point out a unique mechanism to produce the relic abundance for the glueball dark matter from a gauged SU(N) d hidden sector which is bridged to the standard model sector through heavy vectorlike quarks colored under gauge interactions from both sides. A necessary ingredient of our assumption is that the vectorlike quarks, produced either thermally or nonthermally, are abundant enough to dominate the universe for some time in the early universe. They later undergo dark color confinement and form unstable vectorlike-quarkonium states which annihilate decay and reheat the visible and dark sectors. The ratio of entropy dumped intomore » two sectors and the final energy budget in the dark glueballs is only determined by low energy parameters, including the intrinsic scale of the dark SU(N) d, Λ d, and number of dark colors, N d, but depend weakly on parameters in the ultraviolet such as the vectorlike quark mass or the initial condition. We call this a cosmic selection rule for the glueball dark matter relic density.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddadi, A.; Chevallier, R.; Chen, G.
2015-01-05
A high performance bias-selectable mid-/long-wavelength infrared photodetector based on InAs/InAs{sub 1−x}Sb{sub x} type-II superlattices on GaSb substrate has been demonstrated. The mid- and long-wavelength channels' 50% cut-off wavelengths were ∼5.1 and ∼9.5 μm at 77 K. The mid-wavelength channel exhibited a quantum efficiency of 45% at 100 mV bias voltage under front-side illumination and without any anti-reflection coating. With a dark current density of 1 × 10{sup −7} A/cm{sup 2} under 100 mV applied bias, the mid-wavelength channel exhibited a specific detectivity of 8.2 × 10{sup 12 }cm·√(Hz)/W at 77 K. The long-wavelength channel exhibited a quantum efficiency of 40%, a dark current density of 5.7 × 10{sup −4} A/cm{sup 2} undermore » −150 mV applied bias at 77 K, providing a specific detectivity value of 1.64 × 10{sup 11 }cm·√(Hz)/W.« less
Lower-Dark-Current, Higher-Blue-Response CMOS Imagers
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Cunningham, Thomas; Hancock, Bruce
2008-01-01
Several improved designs for complementary metal oxide/semiconductor (CMOS) integrated-circuit image detectors have been developed, primarily to reduce dark currents (leakage currents) and secondarily to increase responses to blue light and increase signal-handling capacities, relative to those of prior CMOS imagers. The main conclusion that can be drawn from a study of the causes of dark currents in prior CMOS imagers is that dark currents could be reduced by relocating p/n junctions away from Si/SiO2 interfaces. In addition to reflecting this conclusion, the improved designs include several other features to counteract dark-current mechanisms and enhance performance.
Using voids to unscreen modified gravity
NASA Astrophysics Data System (ADS)
Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo; Cautun, Marius
2018-04-01
The Vainshtein mechanism, present in many models of gravity, is very effective at screening dark matter haloes such that the fifth force is negligible and general relativity is recovered within their Vainshtein radii. Vainshtein screening is independent of halo mass and environment, in contrast to e.g. chameleon screening, making it difficult to test. However, our previous studies have found that the dark matter particles in filaments, walls, and voids are not screened by the Vainshtein mechanism. We therefore investigate whether cosmic voids, identified as local density minima using a watershed technique, can be used to test models of gravity that exhibit Vainshtein screening. We measure density, velocity, and screening profiles of stacked voids in cosmological N-body simulations using both dark matter particles and dark matter haloes as tracers of the density field. We find that the voids are completely unscreened, and the tangential velocity and velocity dispersion profiles of stacked voids show a clear deviation from Λ cold dark matter at all radii. Voids have the potential to provide a powerful test of gravity on cosmological scales.
QCD nature of dark energy at finite temperature: Cosmological implications
NASA Astrophysics Data System (ADS)
Azizi, K.; Katırcı, N.
2016-05-01
The Veneziano ghost field has been proposed as an alternative source of dark energy, whose energy density is consistent with the cosmological observations. In this model, the energy density of the QCD ghost field is expressed in terms of QCD degrees of freedom at zero temperature. We extend this model to finite temperature to search the model predictions from late time to early universe. We depict the variations of QCD parameters entering the calculations, dark energy density, equation of state, Hubble and deceleration parameters on temperature from zero to a critical temperature. We compare our results with the observations and theoretical predictions existing at different eras. It is found that this model safely defines the universe from quark condensation up to now and its predictions are not in tension with those of the standard cosmology. The EoS parameter of dark energy is dynamical and evolves from -1/3 in the presence of radiation to -1 at late time. The finite temperature ghost dark energy predictions on the Hubble parameter well fit to those of Λ CDM and observations at late time.
NASA Astrophysics Data System (ADS)
Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan; Bacon, David; Nichol, Robert C.; Nord, Brian; Morice-Atkinson, Xan; Amara, Adam; Birrer, Simon; Kuropatkin, Nikolay; More, Anupreeta; Papovich, Casey; Romer, Kathy K.; Tessore, Nicolas; Abbott, Tim M. C.; Allam, Sahar; Annis, James; Benoit-Lévy, Aurlien; Brooks, David; Burke, David L.; Carrasco Kind, Matias; Castander, Francisco Javier J.; D'Andrea, Chris B.; da Costa, Luiz N.; Desai, Shantanu; Diehl, H. Thomas; Doel, Peter; Eifler, Tim F.; Flaugher, Brenna; Frieman, Josh; Gerdes, David W.; Goldstein, Daniel A.; Gruen, Daniel; Gschwend, Julia; Gutierrez, Gaston; James, David J.; Kuehn, Kyler; Kuhlmann, Steve; Lahav, Ofer; Li, Ting S.; Lima, Marcos; Maia, Marcio A. G.; March, Marisa; Marshall, Jennifer L.; Martini, Paul; Melchior, Peter; Miquel, Ramon; Plazas, Andrs A.; Rykoff, Eli S.; Sanchez, Eusebio; Scarpine, Vic; Schindler, Rafe; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Smith, Mathew; Sobreira, Flavia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Tucker, Douglas L.; Walker, Alistair R.
2017-07-01
We report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z s = 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec is ˜ {10}14.2 {M}⊙ . We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro-Frenk-White profile—with a free parameter for the inner density slope—we find that the break radius is {270}-76+48 kpc, and that the inner density falls with radius to the power -0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as {r}-1. The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as {r}-0.8 and {r}-1.0) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan
We report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster atmore » $z=1.06$. The arc system is notable for the presence of a bright central image. The source is a Lyman Break galaxy at $$z_s=2.39$$ and the mass enclosed within the 14 arc second radius Einstein ring is $$10^{14.2}$$ solar masses. We perform a full light profile reconstruction of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro-Frenk-White profile---with a free parameter for the inner density slope---we find that the break radius is $$270^{+48}_{-76}$$ kpc, and that the inner density falls with radius to the power $$-0.38\\pm0.04$$ at 68 percent confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter only simulations predict the inner density should fall as $$r^{-1}$$. The tension can be alleviated if this cluster is in fact a merger; a two halo model can also reconstruct the data, with both clumps (density going as $$r^{-0.8}$$ and $$r^{-1.0}$$) much more consistent with predictions from dark matter only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.« less
Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan; ...
2017-07-10
Here, we report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z s = 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec ismore » $$\\sim {10}^{14.2}\\ {M}_{\\odot }$$. We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro–Frenk–White profile—with a free parameter for the inner density slope—we find that the break radius is $${270}_{-76}^{+48}$$ kpc, and that the inner density falls with radius to the power –0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as $${r}^{-1}$$. The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as $${r}^{-0.8}$$ and $${r}^{-1.0}$$) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan
Here, we report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z s = 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec ismore » $$\\sim {10}^{14.2}\\ {M}_{\\odot }$$. We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro–Frenk–White profile—with a free parameter for the inner density slope—we find that the break radius is $${270}_{-76}^{+48}$$ kpc, and that the inner density falls with radius to the power –0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as $${r}^{-1}$$. The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as $${r}^{-0.8}$$ and $${r}^{-1.0}$$) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.« less
Kamehama, Hiroki; Kawahito, Shoji; Shrestha, Sumeet; Nakanishi, Syunta; Yasutomi, Keita; Takeda, Ayaki; Tsuru, Takeshi Go
2017-01-01
This paper presents a novel full-depletion Si X-ray detector based on silicon-on-insulator pixel (SOIPIX) technology using a pinned depleted diode structure, named the SOIPIX-PDD. The SOIPIX-PDD greatly reduces stray capacitance at the charge sensing node, the dark current of the detector, and capacitive coupling between the sensing node and SOI circuits. These features of the SOIPIX-PDD lead to low read noise, resulting high X-ray energy resolution and stable operation of the pixel. The back-gate surface pinning structure using neutralized p-well at the back-gate surface and depleted n-well underneath the p-well for all the pixel area other than the charge sensing node is also essential for preventing hole injection from the p-well by making the potential barrier to hole, reducing dark current from the Si-SiO2 interface and creating lateral drift field to gather signal electrons in the pixel area into the small charge sensing node. A prototype chip using 0.2 μm SOI technology shows very low readout noise of 11.0 e−rms, low dark current density of 56 pA/cm2 at −35 °C and the energy resolution of 200 eV(FWHM) at 5.9 keV and 280 eV (FWHM) at 13.95 keV. PMID:29295523
Kamehama, Hiroki; Kawahito, Shoji; Shrestha, Sumeet; Nakanishi, Syunta; Yasutomi, Keita; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo
2017-12-23
This paper presents a novel full-depletion Si X-ray detector based on silicon-on-insulator pixel (SOIPIX) technology using a pinned depleted diode structure, named the SOIPIX-PDD. The SOIPIX-PDD greatly reduces stray capacitance at the charge sensing node, the dark current of the detector, and capacitive coupling between the sensing node and SOI circuits. These features of the SOIPIX-PDD lead to low read noise, resulting high X-ray energy resolution and stable operation of the pixel. The back-gate surface pinning structure using neutralized p-well at the back-gate surface and depleted n-well underneath the p-well for all the pixel area other than the charge sensing node is also essential for preventing hole injection from the p-well by making the potential barrier to hole, reducing dark current from the Si-SiO₂ interface and creating lateral drift field to gather signal electrons in the pixel area into the small charge sensing node. A prototype chip using 0.2 μm SOI technology shows very low readout noise of 11.0 e - rms , low dark current density of 56 pA/cm² at -35 °C and the energy resolution of 200 eV(FWHM) at 5.9 keV and 280 eV (FWHM) at 13.95 keV.
Performance of mid-wave T2SL detectors with heterojunction barriers
NASA Astrophysics Data System (ADS)
Asplund, Carl; Marcks von Würtemberg, Rickard; Lantz, Dan; Malm, Hedda; Martijn, Henk; Plis, Elena; Gautam, Nutan; Krishna, Sanjay
2013-07-01
A heterojunction T2SL barrier detector which effectively blocks majority carrier leakage over the pn-junction was designed and fabricated for the mid-wave infrared (MWIR) atmospheric transmission window. The layers in the barrier region comprised AlSb, GaSb and InAs, and the thicknesses were selected by using k · P-based energy band modeling to achieve maximum valence band offset, while maintaining close to zero conduction band discontinuity in a way similar to the work of Abdollahi Pour et al. [1] The barrier-structure has a 50% cutoff at 4.75 μm and 40% quantum efficiency and shows a dark current density of 6 × 10-6 A/cm2 at -0.05 V bias and 120 K. This is one order of magnitude lower than for comparable T2SL-structures without the barrier. Further improvement of the (non-surface related) bulk dark current can be expected with optimized doping of the absorber and barrier, and by fine tuning of the barrier layer design. We discuss the effect of barrier doping on dark current based on simulations. A T2SL focal plane array with 320 × 256 pixels, 30 μm pitch and 90% fill factor was processed in house using a conventional homojunction p-i-n photodiode architecture and the ISC9705 readout circuit. High-quality imaging up to 110 K was demonstrated with the substrate fully removed.
Non-Abelian dark forces and the relic densities of dark glueballs
NASA Astrophysics Data System (ADS)
Forestell, Lindsay; Morrissey, David E.; Sigurdson, Kris
2017-01-01
Our understanding of the Universe is known to be incomplete, and new gauge forces beyond those of the Standard Model might be crucial to describing its observed properties. A minimal and well-motivated possibility is a pure Yang-Mills non-Abelian dark gauge force with no direct connection to the Standard Model. We determine here the relic abundances of the glueball bound states that arise in such theories and investigate their cosmological effects. Glueballs are first formed in a confining phase transition, and their relic densities are set by a network of annihilation and transfer reactions. The lightest glueball has no lighter states to annihilate into, and its yield is set mainly by 3 →2 number-changing processes which persistently release energy into the glueball gas during freeze-out. The abundances of the heavier glueballs are dominated by 2 →2 transfer reactions and tend to be much smaller than the lightest state. We also investigate potential connectors between the dark force and the Standard Model that allow some or all of the dark glueballs to decay. If the connection is weak, the lightest glueball can be very long-lived or stable and is a viable dark matter candidate. For stronger connections, the lightest glueball will decay quickly, but other heavier glueball states can remain stable and contribute to the dark matter density.
Star Formation and Gas Dynamics in Galactic Disks: Physical Processes and Numerical Models
NASA Astrophysics Data System (ADS)
Ostriker, Eve C.
2011-04-01
Star formation depends on the available gaseous ``fuel'' as well as galactic environment, with higher specific star formation rates where gas is predominantly molecular and where stellar (and dark matter) densities are higher. The partition of gas into different thermal components must itself depend on the star formation rate, since a steady state distribution requires a balance between heating (largely from stellar UV for the atomic component) and cooling. In this presentation, I discuss a simple thermal and dynamical equilibrium model for the star formation rate in disk galaxies, where the basic inputs are the total surface density of gas and the volume density of stars and dark matter, averaged over ~kpc scales. Galactic environment is important because the vertical gravity of the stars and dark matter compress gas toward the midplane, helping to establish the pressure, and hence the cooling rate. In equilibrium, the star formation rate must evolve until the gas heating rate is high enough to balance this cooling rate and maintain the pressure imposed by the local gravitational field. In addition to discussing the formulation of this equilibrium model, I review the current status of numerical simulations of multiphase disks, focusing on measurements of quantities that characterize the mean properties of the diffuse ISM. Based on simulations, turbulence levels in the diffuse ISM appear relatively insensitive to local disk conditions and energetic driving rates, consistent with observations. It remains to be determined, both from observations and simulations, how mass exchange processes control the ratio of cold-to-warm gas in the atomic ISM.
Spectroscopic study of a dark lane and a cool loop in a solar limb active region by Hinode/EIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kyoung-Sun; Imada, S.; Moon, Y.-J.
2014-01-10
We investigated a cool loop and a dark lane over a limb active region on 2007 March 14 using the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in the coronal spectral lines and is rooted on a bright point. We examined their electron densities, Doppler velocities, and nonthermal velocities as a function of distance from the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII, and Femore » XIV spectra. We also compared the observed density scale heights with the calculated scale heights from each peak formation temperatures of the spectral lines under the hydrostatic equilibrium. We noted that the observed density scale heights of the cool loop are consistent with the calculated heights, with the exception of one observed cooler temperature; we also found that the observed scale heights of the dark lane are much lower than their calculated scale heights. The nonthermal velocity in the cool loop slightly decreases along the loop, while nonthermal velocity in the dark lane sharply falls off with height. Such a decrease in the nonthermal velocity may be explained by wave damping near the solar surface or by turbulence due to magnetic reconnection near the bright point.« less
SCALING LAWS FOR DARK MATTER HALOS IN LATE-TYPE AND DWARF SPHEROIDAL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kormendy, John; Freeman, K. C., E-mail: kormendy@astro.as.utexas.edu, E-mail: kenneth.freeman@anu.edu.au
2016-02-01
Dark matter (DM) halos of Sc–Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes M{sub V} > −18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences betweenmore » S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities V{sub circ} of test particles in their DM halos. Baryons become unimportant at V{sub circ} = 42 ± 4 km s{sup −1}. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ∼4.6 mag and dIm galaxies would be brighter by ∼3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from M{sub B} ∼ −5 to −22. This implies a Faber–Jackson law with halo mass M ∝ (halo dispersion){sup 4}.« less
Secretly asymmetric dark matter
NASA Astrophysics Data System (ADS)
Agrawal, Prateek; Kilic, Can; Swaminathan, Sivaramakrishnan; Trendafilova, Cynthia
2017-01-01
We study a mechanism where the dark matter number density today arises from asymmetries generated in the dark sector in the early Universe, even though the total dark matter number remains zero throughout the history of the Universe. The dark matter population today can be completely symmetric, with annihilation rates above those expected from thermal weakly interacting massive particles. We give a simple example of this mechanism using a benchmark model of flavored dark matter. We discuss the experimental signatures of this setup, which arise mainly from the sector that annihilates the symmetric component of dark matter.
Status of HgCdTe Barrier Infrared Detectors Grown by MOCVD in Military University of Technology
NASA Astrophysics Data System (ADS)
Kopytko, M.; Jóźwikowski, K.; Martyniuk, P.; Gawron, W.; Madejczyk, P.; Kowalewski, A.; Markowska, O.; Rogalski, A.; Rutkowski, J.
2016-09-01
In this paper we present the status of HgCdTe barrier detectors with an emphasis on technological progress in metalorganic chemical vapor deposition (MOCVD) growth achieved recently at the Institute of Applied Physics, Military University of Technology. It is shown that MOCVD technology is an excellent tool for HgCdTe barrier architecture growth with a wide range of composition, donor /acceptor doping, and without post-grown annealing. The device concept of a specific barrier bandgap architecture integrated with Auger-suppression is as a good solution for high-operating temperature infrared detectors. Analyzed devices show a high performance comparable with the state-of-the-art of HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07" and detectivities of non-immersed detectors are close to the value marked for HgCdTe photodiodes. Experimental data of long-wavelength infrared detector structures were confirmed by numerical simulations obtained by a commercially available software APSYS platform. A detailed analysis applied to explain dark current plots was made, taking into account Shockley-Read-Hall, Auger, and tunneling currents.
Two interacting current model of holographic Dirac fluid in graphene
NASA Astrophysics Data System (ADS)
Rogatko, Marek; Wysokinski, Karol I.
2018-02-01
The electrons in graphene for energies close to the Dirac point have been found to form strongly interacting fluid. Taking this fact into account we have extended previous work on the transport properties of graphene by taking into account possible interactions between the currents and adding the external magnetic field directed perpendicularly to the graphene sheet. The perpendicular magnetic field B severely modifies the transport parameters. In the present approach the quantization of the spectrum and formation of Landau levels is ignored. Gauge/gravity duality has been used in the probe limit. The dependence on the charge density of the Seebeck coefficient and thermoelectric parameters αi j nicely agree with recent experimental data for graphene. The holographic model allows for the interpretation of one of the fields representing the currents as resulting from the dark matter sector. For the studied geometry with electric field perpendicular to the thermal gradient the effect of the dark sector has been found to modify the transport parameters but mostly in a quantitative way only. This makes difficult the detection of this elusive component of the Universe by studying transport properties of graphene.
CLUMPY: A code for γ-ray signals from dark matter structures
NASA Astrophysics Data System (ADS)
Charbonnier, Aldée; Combet, Céline; Maurin, David
2012-03-01
We present the first public code for semi-analytical calculation of the γ-ray flux astrophysical J-factor from dark matter annihilation/decay in the Galaxy, including dark matter substructures. The core of the code is the calculation of the line of sight integral of the dark matter density squared (for annihilations) or density (for decaying dark matter). The code can be used in three modes: i) to draw skymaps from the Galactic smooth component and/or the substructure contributions, ii) to calculate the flux from a specific halo (that is not the Galactic halo, e.g. dwarf spheroidal galaxies) or iii) to perform simple statistical operations from a list of allowed DM profiles for a given object. Extragalactic contributions and other tracers of DM annihilation (e.g. positrons, anti-protons) will be included in a second release.
High-power AlGaInN lasers for Blu-ray disc system
NASA Astrophysics Data System (ADS)
Takeya, Motonubu; Ikeda, Shinroh; Sasaki, Tomomi; Fujimoto, Tsuyoshi; Ohfuji, Yoshio; Mizuno, Takashi; Oikawa, Kenji; Yabuki, Yoshifumi; Uchida, Shiro; Ikeda, Masao
2003-07-01
This paper describes an improved laser structure for AlGaInN based blue-violet lasers (BV-LDs). The design realizes a small beam divergence angle perpendicular to the junction plane and high characteristic temperature wihtout significant increase in threshold current density (Jth) by optimizing the position of the Mg-doped layer and introducing an undoped AlGaN layer between the active layer and the Mg-doped electron-blocking layer. The mean time to failure (MTTF) of devices based on this design was found to be closely related to the dislocation density of ELO-GaN basal layer. Under 50 mW CW operation at 70°C, a MTTF of over 5000 h was realized whenthe dark spot density (indicative of dislocation density) is less than ~5×106 cm-2. Power consumption under 50mW CW operation at 70°C was approximately 0.33 W, independent of the dislocation density.
Oxygen suppresses light-driven anodic current generation by a mixed phototrophic culture.
Darus, Libertus; Ledezma, Pablo; Keller, Jürg; Freguia, Stefano
2014-12-02
This paper describes the detrimental effect of photosynthetically evolved oxygen on anodic current generation in the presence of riboflavin upon illumination of a mixed phototrophic culture enriched from a freshwater pond at +0.6 V vs standard hydrogen electrode. In the presence of riboflavin, the phototrophic biomass in the anodic compartment produced an electrical current in response to light/dark cycles (12 h/12 h) over 12 months of operation, generating a maximum current density of 17.5 mA x m(-2) during the dark phase, whereas a much lower current of approximately 2 mA x m(-2) was generated during illumination. We found that the low current generation under light exposure was caused by high rates of reoxidation of reduced riboflavin by oxygen produced during photosynthesis. Quantification of biomass by fluorescence in situ hybridization images suggested that green algae were predominant in both the anode-based biofilm (55.1%) and the anolyte suspension (87.9%) with the remaining biovolume accounted for by bacteria. Genus-level sequencing analysis revealed that bacteria were dominated by cyanobacterium Leptolyngbia (∼35%), while the prevailing algae were Dictyosphaerium, Coelastrum, and Auxenochlorella. This study offers a key comprehension of mediator sensitivity to reoxidation by dissolved oxygen for improvement of microbial solar cell performance.
Higgs enhancement for the dark matter relic density
NASA Astrophysics Data System (ADS)
Harz, Julia; Petraki, Kalliopi
2018-04-01
We consider the long-range effect of the Higgs on the density of thermal-relic dark matter. While the electroweak gauge boson and gluon exchange have been previously studied, the Higgs is typically thought to mediate only contact interactions. We show that the Sommerfeld enhancement due to a 125 GeV Higgs can deplete TeV-scale dark matter significantly and describe how the interplay between the Higgs and other mediators influences this effect. We discuss the importance of the Higgs enhancement in the minimal supersymmetric standard model and its implications for experiments.
NASA Astrophysics Data System (ADS)
Nomura, Takaaki; Okada, Hiroshi
2018-03-01
We propose a Dirac type active neutrino with rank two mass matrix and a Majorana fermion dark matter candidate with an alternative local U(1)_{B-L} extension of neutrinophilic two Higgs doublet model. Our dark matter candidate can be stabilized due to charge assignment under the gauge symmetry without imposing extra discrete Z_2 symmetry and the relic density is obtained from an Z' boson exchanging process. Taking into account collider constraints on the Z' boson mass and coupling, we estimate the relic density.
NASA Astrophysics Data System (ADS)
Thahe, Asad A.; Bidin, Noriah; Hassan, Z.; Bakhtiar, Hazri; Qaeed, M. A.; Bououdina, Mohamed; Ahmed, Naser M.; Talib, Zainal A.; Al-Azawi, Mohammed A.; Alqaraghuli, Hasan; Uday, M. B.; Hamad Ahmed, Omar
2017-11-01
Nanoporous silicon (n-PSi) with diverse morphologies was prepared on silicon (Si) substrate via photo-electrochemical etching technique. The role of changing current density (15, 30 and 45 mA cm-2) on the structure, morphology and optical properties was determined. As-prepared samples were systematically characterized using XRD, FESEM, AFM and photoluminescence measurements. Furthermore, the achieved n-PSi sample was used to make metal-semiconductor-metal (MSM) UV photodetector. The performance of these photodetectors was evaluated upon exposing to visible light of wavelength 530 nm (power density 1.55 mW cm-2), which exhibited very high sensitivity of 150.26 with a low dark current. The achieved internal photoconductive gain was 2.50, the photoresponse peak was 1.23 A W-1 and the response time was 0.49 s and the recovery time was 0.47 s. Excellent attributes of the fabricated photodetectors suggest that the present approach may provide a cost effective and simple way to obtain n-PSi suitable for sundry applications.
Probing GeV-scale MSSM neutralino dark matter in collider and direct detection experiments
NASA Astrophysics Data System (ADS)
Duan, Guang Hua; Wang, Wenyu; Wu, Lei; Yang, Jin Min; Zhao, Jun
2018-03-01
Given the recent constraints from the dark matter (DM) direct detections, we examine a light GeV-scale (2-30 GeV) neutralino DM in the alignment limit of the Minimal Supersymmetric Standard Model (MSSM). In this limit without decoupling, the heavy CP-even scalar H plays the role of the Standard Model (SM) Higgs boson while the other scalar h can be rather light so that the DM can annihilate through the h resonance or into a pair of h to achieve the observed relic density. With the current collider and cosmological constraints, we find that such a light neutralino DM above 6 GeV can be excluded by the XENON-1T (2017) limits while the survivied parameter space below 6 GeV can be fully tested by the future germanium-based light dark matter detections (such as CDEX), by the Higgs coupling precison measurements or by the production process e+e- → hA at an electron-positron collider (Higgs factory).
Theoretical Comparison Between Candidates for Dark Matter
NASA Astrophysics Data System (ADS)
McKeough, James; Hira, Ajit; Valdez, Alexandra
2017-01-01
Since the generally-accepted view among astrophysicists is that the matter component of the universe is mostly dark matter, the search for dark matter particles continues unabated. The Large Underground Xenon (LUX) improvements, aided by advanced computer simulations at the U.S. Department of Energy's Lawrence Berkeley National Laboratory's (Berkeley Lab) National Energy Research Scientific Computing Center (NERSC) and Brown University's Center for Computation and Visualization (CCV), can potentially eliminate some particle models of dark matter. Generally, the proposed candidates can be put in three categories: baryonic dark matter, hot dark matter, and cold dark matter. The Lightest Supersymmetric Particle(LSP) of supersymmetric models is a dark matter candidate, and is classified as a Weakly Interacting Massive Particle (WIMP). Similar to the cosmic microwave background radiation left over from the Big Bang, there is a background of low-energy neutrinos in our Universe. According to some researchers, these may be the explanation for the dark matter. One advantage of the Neutrino Model is that they are known to exist. Dark matter made from neutrinos is termed ``hot dark matter''. We formulate a novel empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function adequately treats both void size and redshift, and describes the scale radius and the central density of voids. We started with a five-parameter model. Our research is mainly on LSP and Neutrino models.
Frequency-Agile LIDAR Receiver for Chemical and Biological Agent Sensing
2010-06-01
transimpedance preamplifier architecture was optimized around the selected IR detector diode – Input-referenced noise density of 0.8 nV/ Hz0.5 A portion of...objectives: • Reduce baseline (background) photon flux on detector : Tunable Fabry-Perot etalon in optical train • Reduce input-referenced amplifier noise ...custom amplifier • Reduce detector dark current: High impedance detector Performance Metrics: – Noise equivalent power of receiver system (NEP
Abazajian, Kevork N
2014-04-25
Sterile neutrinos produced through a resonant Shi-Fuller mechanism are arguably the simplest model for a dark matter interpretation of the origin of the recent unidentified x-ray line seen toward a number of objects harboring dark matter. Here, I calculate the exact parameters required in this mechanism to produce the signal. The suppression of small-scale structure predicted by these models is consistent with Local Group and high-z galaxy count constraints. Very significantly, the parameters necessary in these models to produce the full dark matter density fulfill previously determined requirements to successfully match the Milky Way Galaxy's total satellite abundance, the satellites' radial distribution, and their mass density profile, or the "too-big-to-fail problem." I also discuss how further precision determinations of the detailed properties of the candidate sterile neutrino dark matter can probe the nature of the quark-hadron transition, which takes place during the dark matter production.
CMB and matter power spectra with non-linear dark-sector interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marttens, R.F. vom; Casarini, L.; Zimdahl, W.
2017-01-01
An interaction between dark matter and dark energy, proportional to the product of their energy densities, results in a scaling behavior of the ratio of these densities with respect to the scale factor of the Robertson-Walker metric. This gives rise to a class of cosmological models which deviate from the standard model in an analytically tractable way. In particular, it becomes possible to quantify the role of potential dark-energy perturbations. We investigate the impact of this interaction on the structure formation process. Using the (modified) CAMB code we obtain the CMB spectrum as well as the linear matter power spectrum.more » It is shown that the strong degeneracy in the parameter space present in the background analysis is considerably reduced by considering Planck data. Our analysis is compatible with the ΛCDM model at the 2σ confidence level with a slightly preferred direction of the energy flow from dark matter to dark energy.« less
The dark matter of galaxy voids
NASA Astrophysics Data System (ADS)
Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.
2014-03-01
How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ˜20 per cent, they have somewhat shallower density profiles and they have centres offset by ˜ 0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though the centres may be offset. When this offset is taken into account, we recover almost identical radial density profiles between galaxies and dark matter. All mock catalogues used in this work are available at http://www.cosmicvoids.net.
NASA Astrophysics Data System (ADS)
Pires, Sandrine; Starck, Jean-Luc; Leonard, Adrienne; Réfrégier, Alexandre
2012-03-01
This chapter reviews the data mining methods recently developed to solve standard data problems in weak gravitational lensing. We detail the different steps of the weak lensing data analysis along with the different techniques dedicated to these applications. An overview of the different techniques currently used will be given along with future prospects. Until about 30 years ago, astronomers thought that the Universe was composed almost entirely of ordinary matter: protons, neutrons, electrons, and atoms. The field of weak lensing has been motivated by the observations made in the last decades showing that visible matter represents only about 4-5% of the Universe (see Figure 14.1). Currently, the majority of the Universe is thought to be dark, that is, does not emit electromagnetic radiation. The Universe is thought to be mostly composed of an invisible, pressure less matter - potentially relic from higher energy theories - called "dark matter" (20-21%) and by an even more mysterious term, described in Einstein equations as a vacuum energy density, called "dark energy" (70%). This "dark" Universe is not well described or even understood; its presence is inferred indirectly from its gravitational effects, both on the motions of astronomical objects and on light propagation. So this point could be the next breakthrough in cosmology. Today's cosmology is based on a cosmological model that contains various parameters that need to be determined precisely, such as the matter density parameter Omega_m or the dark energy density parameter Omega_lambda. Weak gravitational lensing is believed to be the most promising tool to understand the nature of dark matter and to constrain the cosmological parameters used to describe the Universe because it provides a method to directly map the distribution of dark matter (see [1,6,60,63,70]). From this dark matter distribution, the nature of dark matter can be better understood and better constraints can be placed on dark energy, which affects the evolution of structures. Gravitational lensing is the process by which light from distant galaxies is bent by the gravity of intervening mass in the Universe as it travels toward us. This bending causes the images of background galaxies to appear slightly distorted, and can be used to extract important cosmological information. In the beginning of the twentieth century, A. Einstein predicted that massive bodies could be seen as gravitational lenses that bend the path of light rays by creating a local curvature in space time. One of the first confirmations of Einstein's new theory was the observation during the 1919 solar eclipse of the deflection of light from distant stars by the sun. Since then, a wide range of lensing phenomena have been detected. The gravitational deflection of light by mass concentrations along light paths produces magnification, multiplication, and distortion of images. These lensing effects are illustrated by Figure 14.2, which shows one of the strongest lenses observed: Abell 2218, a very massive and distant cluster of galaxies in the constellation Draco. The observed gravitational arcs are actually the magnified and strongly distorted images of galaxies that are about 10 times more distant than the cluster itself. These strong gravitational lensing effects are very impressive but they are very rare. Far more prevalent are weak gravitational lensing effects, which we consider in this chapter, and in which the induced distortion in galaxy images is much weaker. These gravitational lensing effects are now widely used, but the amplitude of the weak lensing signal is so weak that its detection relies on the accuracy of the techniques used to analyze the data. Future weak lensing surveys are already planned in order to cover a large fraction of the sky with high accuracy, such as Euclid [68]. However, improving accuracy also places greater demands on the methods used to extract the available information.
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III; Weinberg, David H.; Melott, Adrian L.
1987-01-01
A quantitative measure of the topology of large-scale structure: the genus of density contours in a smoothed density distribution, is described and applied. For random phase (Gaussian) density fields, the mean genus per unit volume exhibits a universal dependence on threshold density, with a normalizing factor that can be calculated from the power spectrum. If large-scale structure formed from the gravitational instability of small-amplitude density fluctuations, the topology observed today on suitable scales should follow the topology in the initial conditions. The technique is illustrated by applying it to simulations of galaxy clustering in a flat universe dominated by cold dark matter. The technique is also applied to a volume-limited sample of the CfA redshift survey and to a model in which galaxies reside on the surfaces of polyhedral 'bubbles'. The topology of the evolved mass distribution and 'biased' galaxy distribution in the cold dark matter models closely matches the topology of the density fluctuations in the initial conditions. The topology of the observational sample is consistent with the random phase, cold dark matter model.
Electronic defects in the halide antiperovskite semiconductor Hg3Se2I2
NASA Astrophysics Data System (ADS)
Kim, Joon-Il; Peters, John A.; He, Yihui; Liu, Zhifu; Das, Sanjib; Kontsevoi, Oleg Y.; Kanatzidis, Mercouri G.; Wessels, Bruce W.
2017-10-01
Halide perovskites have emerged as a potential photoconducting material for photovoltaics and hard radiation detection. We investigate the nature of charge transport in the semi-insulating chalcohalide Hg3Se2I2 compound using the temperature dependence of dark current, thermally stimulated current (TSC) spectroscopy, and photoconductivity measurements as well as first-principles density functional theory (DFT) calculations. Dark conductivity measurements and TSC spectroscopy indicate the presence of multiple shallow and deep level traps that have relatively low concentrations of the order of 1013-1015c m-3 and capture cross sections of ˜10-16c m2 . A distinct persistent photoconductivity is observed at both low temperatures (<170 K ) and high temperatures (>230 K), with major implications for room-temperature compound semiconductor radiation detection. From preliminary DFT calculations, the origin of the traps is attributed to intrinsic vacancy defects (VHg, VSe, and VI) and interstitials (Seint) or other extrinsic impurities. The results point the way for future improvements in crystal quality and detector performance.
Mid-wavelength infrared unipolar nBp superlattice photodetector
NASA Astrophysics Data System (ADS)
Kazemi, Alireza; Myers, Stephen; Taghipour, Zahra; Mathews, Sen; Schuler-Sandy, Ted; Lee, Seunghyun; Cowan, Vincent M.; Garduno, Eli; Steenbergen, Elizabeth; Morath, Christian; Ariyawansa, Gamini; Scheihing, John; Krishna, Sanjay
2018-01-01
We report a Mid-Wavelength Infrared (MWIR) barrier photodetector based on the InAs/GaSb/AlSb type-II superlattice (T2SL) material system. The nBp design consists of a single unipolar barrier (InAs/AlSb SL) placed between a 4 μm thick p-doped absorber (InAs/GaSb SL) and an n-type contact layer (InAs/GaSb SL). At 80 K, the device exhibited a 50% cut-off wavelength of 5 μm, was fully turned-ON at zero bias and the measured QE was 50% (front side illumination with no AR coating) at 4.5 μm with a dark current density of 4.7 × 10-6 A/cm2 at Vb = 50 mV. At 150 K and Vb = 50 mV, the 50% cut-off wavelength increased to 5.3 μm, and the QE was 54% at 4.5 μm with a dark current of 5.0 × 10-4 A/cm2.
Measuring the power spectrum of dark matter substructure using strong gravitational lensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hezaveh, Yashar; Dalal, Neal; Holder, Gilbert
2016-11-01
In recent years, it has become possible to detect individual dark matter subhalos near images of strongly lensed extended background galaxies. Typically, only the most massive subhalos in the strong lensing region may be detected this way. In this work, we show that strong lenses may also be used to constrain the much more numerous population of lower mass subhalos that are too small to be detected individually. In particular, we show that the power spectrum of projected density fluctuations in galaxy halos can be measured using strong gravitational lensing. We develop the mathematical framework of power spectrum estimation, andmore » test our method on mock observations. We use our results to determine the types of observations required to measure the substructure power spectrum with high significance. We predict that deep observations (∼10 hours on a single target) with current facilities can measure this power spectrum at the 3σ level, with no apparent degeneracy with unknown clumpiness in the background source structure or fluctuations from detector noise. Upcoming ALMA measurements of strong lenses are capable of placing strong constraints on the abundance of dark matter subhalos and the underlying particle nature of dark matter.« less
NASA Technical Reports Server (NTRS)
Mendenhall, J. A.
2001-01-01
The stability of the EO-1 Advanced Land Imager dark current levels over the period of one-half orbit is investigated. A series of two-second dark current collections, over the course of 40 minutes, was performed during the first sixty days the instrument was in orbit. Analysis of this data indicates only two dark current reference periods, obtained entering and exiting eclipse, are required to remove ALI dark current offsets for 99.9% of the focal plane to within 1.5 digital numbers for any observation on the solar illuminated portion of the orbit.
FIMP dark matter freeze-in gauge mediation and hidden sector
NASA Astrophysics Data System (ADS)
Tsao, Kuo-Hsing
2018-07-01
We explore the dark matter freeze-in mechanism within the gauge mediation framework, which involves a hidden feebly interacting massive particle (FIMP) coupling feebly with the messenger fields while the messengers are still in the thermal bath. The FIMP is the fermionic component of the pseudo-moduli in a generic metastable supersymmetry (SUSY) breaking model and resides in the hidden sector. The relic abundance and the mass of the FIMP are determined by the SUSY breaking scale and the feeble coupling. The gravitino, which is the canonical dark matter candidate in the gauge mediation framework, contributes to the dark matter relic abundance along with the freeze-in of the FIMP. The hidden sector thus becomes two-component with both the FIMP and gravitino lodging in the SUSY breaking hidden sector. We point out that the ratio between the FIMP and the gravitino is determined by how SUSY breaking is communicated to the messengers. In particular when the FIMP dominates the hidden sector, the gravitino becomes the minor contributor in the hidden sector. Meanwhile, the neutralino is assumed to be both the weakly interacting massive particle dark matter candidate in the freeze-out mechanism and the lightest observable SUSY particle. We further find out the neutralino has the sub-leading contribution to the current dark matter relic density in the parameter space of our freeze-in gauge mediation model. Our result links the SUSY breaking scale in the gauge mediation framework with the FIMP freeze-in production rate leading to a natural and predicting scenario for the studies of the dark matter in the hidden sector.
The limit of photoreceptor sensitivity: molecular mechanisms of dark noise in retinal cones.
Holcman, David; Korenbrot, Juan I
2005-06-01
Detection threshold in cone photoreceptors requires the simultaneous absorption of several photons because single photon photocurrent is small in amplitude and does not exceed intrinsic fluctuations in the outer segment dark current (dark noise). To understand the mechanisms that limit light sensitivity, we characterized the molecular origin of dark noise in intact, isolated bass single cones. Dark noise is caused by continuous fluctuations in the cytoplasmic concentrations of both cGMP and Ca(2+) that arise from the activity in darkness of both guanylate cyclase (GC), the enzyme that synthesizes cGMP, and phosphodiesterase (PDE), the enzyme that hydrolyzes it. In cones loaded with high concentration Ca(2+) buffering agents, we demonstrate that variation in cGMP levels arise from fluctuations in the mean PDE enzymatic activity. The rates of PDE activation and inactivation determine the quantitative characteristics of the dark noise power density spectrum. We developed a mathematical model based on the dynamics of PDE activity that accurately predicts this power spectrum. Analysis of the experimental data with the theoretical model allows us to determine the rates of PDE activation and deactivation in the intact photoreceptor. In fish cones, the mean lifetime of active PDE at room temperature is approximately 55 ms. In nonmammalian rods, in contrast, active PDE lifetime is approximately 555 ms. This remarkable difference helps explain why cones are noisier than rods and why cone photocurrents are smaller in peak amplitude and faster in time course than those in rods. Both these features make cones less light sensitive than rods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.
Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less
Simple cosmological model with inflation and late times acceleration
NASA Astrophysics Data System (ADS)
Szydłowski, Marek; Stachowski, Aleksander
2018-03-01
In the framework of polynomial Palatini cosmology, we investigate a simple cosmological homogeneous and isotropic model with matter in the Einstein frame. We show that in this model during cosmic evolution, early inflation appears and the accelerating phase of the expansion for the late times. In this frame we obtain the Friedmann equation with matter and dark energy in the form of a scalar field with a potential whose form is determined in a covariant way by the Ricci scalar of the FRW metric. The energy density of matter and dark energy are also parameterized through the Ricci scalar. Early inflation is obtained only for an infinitesimally small fraction of energy density of matter. Between the matter and dark energy, there exists an interaction because the dark energy is decaying. For the characterization of inflation we calculate the slow roll parameters and the constant roll parameter in terms of the Ricci scalar. We have found a characteristic behavior of the time dependence of density of dark energy on the cosmic time following the logistic-like curve which interpolates two almost constant value phases. From the required numbers of N-folds we have found a bound on the model parameter.
Dark matter freeze-out in a nonrelativistic sector
NASA Astrophysics Data System (ADS)
Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele
2016-08-01
A thermally decoupled hidden sector of particles, with a mass gap, generically enters a phase of cannibalism in the early Universe. The Standard Model sector becomes exponentially colder than the hidden sector. We propose the cannibal dark matter framework, where dark matter resides in a cannibalizing sector with a relic density set by 2-to-2 annihilations. Observable signals of cannibal dark matter include a boosted rate for indirect detection, new relativistic degrees of freedom, and warm dark matter.
Measurements and Modeling of III-V Solar Cells at High Temperatures up to 400 $${}^{\\circ}$$ C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, Emmett E.; Simon, John; Geisz, John F.
2016-09-01
In this paper, we study the performance of 2.0 eV Al0.12Ga0.39In0.49P and 1.4 eV GaAs solar cells over a temperature range of 25-400 degrees C. The temperature-dependent J01 and J02 dark currents are extracted by fitting current-voltage measurements to a two-diode model. We find that the intrinsic carrier concentration ni dominates the temperature dependence of the dark currents, open-circuit voltage, and cell efficiency. To study the impact of temperature on the photocurrent and bandgap of the solar cells, we measure the quantum efficiency and illuminated current-voltage characteristics of the devices up to 400 degrees C. As the temperature is increased,more » we observe no degradation to the internal quantum efficiency and a decrease in the bandgap. These two factors drive an increase in the short-circuit current density at high temperatures. Finally, we measure the devices at concentrations ranging from ~30 to 1500 suns and observe n = 1 recombination characteristics across the entire temperature range. These findings should be a valuable guide to the design of any system that requires high-temperature solar cell operation.« less
Cold dark matter: Controversies on small scales.
Weinberg, David H; Bullock, James S; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H G
2015-10-06
The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. We review the current observational and theoretical status of these "small-scale controversies." Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.
Dark matter as a trigger for periodic comet impacts.
Randall, Lisa; Reece, Matthew
2014-04-25
Although statistical evidence is not overwhelming, possible support for an approximately 35×106 yr periodicity in the crater record on Earth could indicate a nonrandom underlying enhancement of meteorite impacts at regular intervals. A proposed explanation in terms of tidal effects on Oort cloud comet perturbations as the Solar System passes through the galactic midplane is hampered by lack of an underlying cause for sufficiently enhanced gravitational effects over a sufficiently short time interval and by the time frame between such possible enhancements. We show that a smooth dark disk in the galactic midplane would address both these issues and create a periodic enhancement of the sort that has potentially been observed. Such a disk is motivated by a novel dark matter component with dissipative cooling that we considered in earlier work. We show how to evaluate the statistical evidence for periodicity by input of appropriate measured priors from the galactic model, justifying or ruling out periodic cratering with more confidence than by evaluating the data without an underlying model. We find that, marginalizing over astrophysical uncertainties, the likelihood ratio for such a model relative to one with a constant cratering rate is 3.0, which moderately favors the dark disk model. Our analysis furthermore yields a posterior distribution that, based on current crater data, singles out a dark matter disk surface density of approximately 10M⊙/pc2. The geological record thereby motivates a particular model of dark matter that will be probed in the near future.
Geum, Dae-Myeong; Kim, SangHyeon; Kang, SooSeok; Kim, Hosung; Park, Hwanyeol; Rho, Il Pyo; Ahn, Seung Yeop; Song, Jindong; Choi, Won Jun; Yoon, Euijoon
2018-03-05
In this paper, InAs 0.81 Sb 0.19 -based hetero-junction photovoltaic detector (HJPD) with an In 0.2 Al 0.8 Sb barrier layer was grown on GaAs substrates. By using technology computer aided design (TCAD), a design of a barrier layer that can achieve nearly zero valance band offsets was accomplished. A high quality InAs 0.81 Sb 0.19 epitaxial layer was obtained with relatively low threading dislocation density (TDD), calculated from a high-resolution X-ray diffraction (XRD) measurement. This layer showed a Hall mobility of 15,000 cm 2 /V⋅s, which is the highest mobility among InAsSb layers with an Sb composition of around 20% grown on GaAs substrates. Temperature dependence of dark current, photocurrent response and responsivity were measured and analyzed for fabricated HJPD. HJPD showed the clear photocurrent response having a long cutoff wavelength of 5.35 μm at room temperature. It was observed that the dark current of HJPDs is dominated by the diffusion limited current at temperatures ranging from 200K to room temperature from the dark current analysis. Peak responsivity of HJPDs exhibited the 1.18 A/W and 15 mA/W for 83K and a room temperature under zero bias condition even without anti-reflection coating (ARC). From these results, we believe that HJPDs could be an appropriate PD device for future compact and low power dissipation mid-infrared on-chip sensors and imaging devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.
2015-02-20
We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increasesmore » for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M {sub *} = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less
Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; ...
2015-02-17
Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less
Development of Low Parasitic Light Sensitivity and Low Dark Current 2.8 μm Global Shutter Pixel †
Yokoyama, Toshifumi; Tsutsui, Masafumi; Suzuki, Masakatsu; Nishi, Yoshiaki; Mizuno, Ikuo; Lahav, Assaf
2018-01-01
We developed a low parasitic light sensitivity (PLS) and low dark current 2.8 μm global shutter pixel. We propose a new inner lens design concept to realize both low PLS and high quantum efficiency (QE). 1/PLS is 7700 and QE is 62% at a wavelength of 530 nm. We also propose a new storage-gate based memory node for low dark current. P-type implants and negative gate biasing are introduced to suppress dark current at the surface of the memory node. This memory node structure shows the world smallest dark current of 9.5 e−/s at 60 °C. PMID:29370146
Development of Low Parasitic Light Sensitivity and Low Dark Current 2.8 μm Global Shutter Pixel.
Yokoyama, Toshifumi; Tsutsui, Masafumi; Suzuki, Masakatsu; Nishi, Yoshiaki; Mizuno, Ikuo; Lahav, Assaf
2018-01-25
Abstract : We developed a low parasitic light sensitivity (PLS) and low dark current 2.8 μm global shutter pixel. We propose a new inner lens design concept to realize both low PLS and high quantum efficiency (QE). 1/PLS is 7700 and QE is 62% at a wavelength of 530 nm. We also propose a new storage-gate based memory node for low dark current. P-type implants and negative gate biasing are introduced to suppress dark current at the surface of the memory node. This memory node structure shows the world smallest dark current of 9.5 e - /s at 60 °C.
Visible and dark matter from a first-order phase transition in a baryon-symmetric universe
Petraki, Kalliopi; Trodden, Mark; Volkas, Raymond R.
2012-02-28
The similar cosmological abundances observed for visible and dark matter suggest a common origin for both. By viewing the dark matter density as a dark-sector asymmetry, mirroring the situation in the visible sector, we show that the visible and dark matter asymmetries may have arisen simultaneously through a first-order phase transition in the early universe. The additional scalar particles in the theory can mix with the standard Higgs boson and provide other striking signatures.
Reconstructing the Dwarf Galaxy Progenitor from Tidal Streams Using MilkyWay@home
NASA Astrophysics Data System (ADS)
Newberg, Heidi; Shelton, Siddhartha
2018-04-01
We attempt to reconstruct the mass and radial profile of stars and dark matter in the dwarf galaxy progenitor of the Orphan Stream, using only information from the stars in the Orphan Stream. We show that given perfect data and perfect knowledge of the dwarf galaxy profile and Milky Way potential, we are able to reconstruct the mass and radial profiles of both the stars and dark matter in the progenitor to high accuracy using only the density of stars along the stream and either the velocity dispersion or width of the stream in the sky. To perform this test, we simulated the tidal disruption of a two component (stars and dark matter) dwarf galaxy along the orbit of the Orphan Stream. We then created a histogram of the density of stars along the stream and a histogram of either the velocity dispersion or width of the stream in the sky as a function of position along the stream. The volunteer supercomputer MilkyWay@home was given these two histograms, the Milky Way potential model, and the orbital parameters for the progenitor. N-body simulations were run, varying dwarf galaxy parameters and the time of disruption. The goodness-of-fit of the model to the data was determined using an Earth-Mover Distance algorithm. The parameters were optimized using Differential Evolution. Future work will explore whether currently available information on the Orphan Stream stars is sufficient to constrain its progenitor, and how sensitive the optimization is to our knowledge of the Milky Way potential and the density model of the dwarf galaxy progenitor, as well as a host of other real-life unknowns.
NASA Astrophysics Data System (ADS)
Cacciato, Marcello; van den Bosch, Frank C.; More, Surhud; Mo, Houjun; Yang, Xiaohu
2013-04-01
We simultaneously constrain cosmology and galaxy bias using measurements of galaxy abundances, galaxy clustering and galaxy-galaxy lensing taken from the Sloan Digital Sky Survey. We use the conditional luminosity function (which describes the halo occupation statistics as a function of galaxy luminosity) combined with the halo model (which describes the non-linear matter field in terms of its halo building blocks) to describe the galaxy-dark matter connection. We explicitly account for residual redshift-space distortions in the projected galaxy-galaxy correlation functions, and marginalize over uncertainties in the scale dependence of the halo bias and the detailed structure of dark matter haloes. Under the assumption of a spatially flat, vanilla Λ cold dark matter (ΛCDM) cosmology, we focus on constraining the matter density, Ωm, and the normalization of the matter power spectrum, σ8, and we adopt 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) priors for the spectral index, n, the Hubble parameter, h, and the baryon density, Ωb. We obtain that Ωm = 0.278+ 0.023- 0.026 and σ8 = 0.763+ 0.064- 0.049 (95 per cent CL). These results are robust to uncertainties in the radial number density distribution of satellite galaxies, while allowing for non-Poisson satellite occupation distributions results in a slightly lower value for σ8 (0.744+ 0.056- 0.047). These constraints are in excellent agreement (at the 1σ level) with the cosmic microwave background constraints from WMAP. This demonstrates that the use of a realistic and accurate model for galaxy bias, down to the smallest non-linear scales currently observed in galaxy surveys, leads to results perfectly consistent with the vanilla ΛCDM cosmology.
Extraction of minority carrier diffusion length of MWIR Type-II superlattice nBp detector
NASA Astrophysics Data System (ADS)
Taghipour, Zahra; Kazemi, Alireza; Myers, Stephen; Wijewarnasuriya, Priyalal; Mathews, Sen; Steenbergen, Elizabeth H.; Morath, Christian; Cowan, Vincent M.; Ariyawansa, Gamini; Scheihing, John; Krishna, Sanjay
2017-08-01
We present a model for the spectral external quantum efficiency (EQE) to extract the minority carrier diffusion length (Ln) of a unipolar nBp InAs/GaSb Type-II superlattice (T2SL) mid-wave infrared (MWIR) detector. The detector consists of a 4 μm thick p-doped 10ML InAs/10ML GaSb SL absorber with a 50% cut-off wavelength of 5 μm at 80 K and zero bias. The n-type doped InAs/AlSb SL barrier in the structure was included to reduce the GR dark current. By fitting the experimentally measured EQE data to the theoretically calculated QE based on the solution of the drift-diffusion equation, the p-type absorber was found the have Ln = 10 +/- 0.5 μm at 80K, and Ln = 12 +/- 0.5 μm at 120K and 150K. We performed the absorption coefficient measurement at different temperatures of interest. Also, we estimated the reduced background concentration and the built-in potential by utilizing a capacitance-voltage measurement technique. We used time-resolved-photoluminescence (TRPL) to determine the lifetime at 80K. With the result of the model and the lifetime measurement, we calculated the diffusion coefficient and the mobility in the T2SL detector at various temperatures. Also, we studied the behavior of different dark current mechanisms by fitting the experimentally measured and simulated dark current density under different operating temperatures and biases.
Hsu, Cheng-Liang; Li, Hsieh-Heng; Hsueh, Ting-Jen
2013-11-13
High-density La-doped ZnO nanowires (NWs) were grown hydrothermally on flexible polyimide substrate. The length and diameter of the NWs were around 860 nm and 80-160 nm, respectively. All XRD peaks of the La-doped sample shift to a larger angle. The strong PL peak of the La-doped sample is 380 nm, which is close to the 3.3 eV ZnO bandgap. That PL dominated indicates that the La-doped sample has a great amount of oxygen vacancies. The lattice constants ~0.514 nm of the ZnO:La NW were smaller when measured by HR-TEM. The EDX spectrum determined that the La-doped sample contains approximately 1.27 at % La. The La-doped sample was found to be p-type by Hall Effect measurement. The dark current of the p-ZnO:La NWs decreased with increased relative humidity (RH), while the photocurrent of the p-ZnO:La nanowires increased with increased RH. The higher RH environment was improved that UV response performance. Based on the highest 98% RH, the photocurrent/dark current ratio was around 47.73. The UV response of water drops on the p-ZnO:La NWs was around 2 orders compared to 40% RH. In a water environment, the photocurrent/dark current ratio of p-ZnO:La NWs was 212.1, which is the maximum UV response.
NASA Astrophysics Data System (ADS)
Nasr, Mahmoud; El Radaf, I. M.; Mansour, A. M.
2018-04-01
In this study, a crystalline n-PbTe/p-GaP heterojunction was fabricated using the electron beam deposition technique. The structural properties of the prepared heterojunction were examined by X-ray diffraction and scanning electron microscopy. The dark current-voltage characteristics of the heterojunction were investigated at different temperatures ranging from 298 to 398 K. The rectification factor, series resistance, shunt resistance, diode ideality factor, and effective barrier height (ϕb) were determined. The photovoltaic parameters were identified based on the current density-voltage characteristics under illumination. The capacitance-voltage characteristics showed that the junction was abrupt in nature.
Figueredo, Federico; Cortón, Eduardo; Abrevaya, Ximena C
2015-09-01
Microbial fuel cells (MFCs) are bioelectrochemical systems (BES) capable of harvesting electrons from redox reactions involved in metabolism. In a previous work, we used chemoorganoheterotrophic microorganisms from the three domains of life-Bacteria, Archaea, and Eukarya-to demonstrate that these BES could be applied to the in situ detection of extraterrestrial life. Since metabolism can be considered a common signature of life "as we know it," we extended in this study the ability to use MFCs as sensors for photolithoautotrophic metabolisms. To achieve this goal, two different photosynthetic microorganisms were used: the microalgae Parachlorella kessleri and the cyanobacterium Nostoc sp. MFCs were loaded with nonsterilized samples, sterilized samples, or sterilized culture medium of both microorganisms. Electric potential measurements were recorded for each group in single experiments or in continuum during light-dark cycles, and power and current densities were calculated. Our results indicate that the highest power and current density values were achieved when metabolically active microorganisms were present in the anode of the MFC. Moreover, when continuous measurements were performed during light-dark cycles, it was possible to see a positive response to light. Therefore, these BES could be used not only to detect chemoorganoheterotrophic metabolisms but also photolithoautotrophic metabolisms, in particular those involving oxygenic photosynthesis. Additionally, the positive response to light when using these BES could be employed to distinguish photosynthetic from nonphotosynthetic microorganisms in a sample.
Halo mass and weak galaxy-galaxy lensing profiles in rescaled cosmological N-body simulations
NASA Astrophysics Data System (ADS)
Renneby, Malin; Hilbert, Stefan; Angulo, Raúl E.
2018-05-01
We investigate 3D density and weak lensing profiles of dark matter haloes predicted by a cosmology-rescaling algorithm for N-body simulations. We extend the rescaling method of Angulo & White (2010) and Angulo & Hilbert (2015) to improve its performance on intra-halo scales by using models for the concentration-mass-redshift relation based on excursion set theory. The accuracy of the method is tested with numerical simulations carried out with different cosmological parameters. We find that predictions for median density profiles are more accurate than ˜5 % for haloes with masses of 1012.0 - 1014.5h-1 M⊙ for radii 0.05 < r/r200m < 0.5, and for cosmologies with Ωm ∈ [0.15, 0.40] and σ8 ∈ [0.6, 1.0]. For larger radii, 0.5 < r/r200m < 5, the accuracy degrades to ˜20 %, due to inaccurate modelling of the cosmological and redshift dependence of the splashback radius. For changes in cosmology allowed by current data, the residuals decrease to ≲ 2 % up to scales twice the virial radius. We illustrate the usefulness of the method by estimating the mean halo mass of a mock galaxy group sample. We find that the algorithm's accuracy is sufficient for current data. Improvements in the algorithm, particularly in the modelling of baryons, are likely required for interpreting future (dark energy task force stage IV) experiments.
Super-Eddington accreting massive black holes explore high-z cosmology: Monte-Carlo simulations
NASA Astrophysics Data System (ADS)
Cai, Rong-Gen; Guo, Zong-Kuan; Huang, Qing-Guo; Yang, Tao
2018-06-01
In this paper, we simulate Super-Eddington accreting massive black holes (SEAMBHs) as the candles to probe cosmology for the first time. SEAMBHs have been demonstrated to be able to provide a new tool for estimating cosmological distance. Thus, we create a series of mock data sets of SEAMBHs, especially in the high redshift region, to check their abilities to probe the cosmology. To fulfill the potential of the SEAMBHs on the cosmology, we apply the simulated data to three projects. The first is the exploration of their abilities to constrain the cosmological parameters, in which we combine different data sets of current observations such as the cosmic microwave background from Planck and type Ia supernovae from Joint Light-curve Analysis (JLA). We find that the high redshift SEAMBHs can help to break the degeneracies of the background cosmological parameters constrained by Planck and JLA, thus giving much tighter constraints of the cosmological parameters. The second uses the high redshift SEAMBHs as the complements of the low redshift JLA to constrain the early expansion rate and the dark energy density evolution in the cold dark matter frame. Our results show that these high redshift SEAMBHs are very powerful on constraining the early Hubble rate and the evolution of the dark energy density; thus they can give us more information about the expansion history of our Universe, which is also crucial for testing the Λ CDM model in the high redshift region. Finally, we check the SEAMBH candles' abilities to reconstruct the equation of state for dark energy at high redshift. In summary, our results show that the SEAMBHs, as the rare candles in the high redshift region, can provide us a new and independent observation to probe cosmology in the future.
MATTER IN THE BEAM: WEAK LENSING, SUBSTRUCTURES, AND THE TEMPERATURE OF DARK MATTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahdi, Hareth S.; Elahi, Pascal J.; Lewis, Geraint F.
2016-08-01
Warm dark matter (WDM) models offer an attractive alternative to the current cold dark matter (CDM) cosmological model. We present a novel method to differentiate between WDM and CDM cosmologies, namely, using weak lensing; this provides a unique probe as it is sensitive to all of the “matter in the beam,” not just dark matter haloes and the galaxies that reside in them, but also the diffuse material between haloes. We compare the weak lensing maps of CDM clusters to those in a WDM model corresponding to a thermally produced 0.5 keV dark matter particle. Our analysis clearly shows thatmore » the weak lensing magnification, convergence, and shear distributions can be used to distinguish between CDM and WDM models. WDM models increase the probability of weak magnifications, with the differences being significant to ≳5 σ , while leaving no significant imprint on the shear distribution. WDM clusters analyzed in this work are more homogeneous than CDM ones, and the fractional decrease in the amount of material in haloes is proportional to the average increase in the magnification. This difference arises from matter that would be bound in compact haloes in CDM being smoothly distributed over much larger volumes at lower densities in WDM. Moreover, the signature does not solely lie in the probability distribution function but in the full spatial distribution of the convergence field.« less
Gravitationally bound BCS state as dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Stephon; Cormack, Sam, E-mail: stephon_alexander@brown.edu, E-mail: samuel.c.cormack.gr@dartmouth.edu
2017-04-01
We explore the possibility that fermionic dark matter undergoes a BCS transition to form a superfluid. This requires an attractive interaction between fermions and we describe a possible source of this interaction induced by torsion. We describe the gravitating fermion system with the Bogoliubov-de Gennes formalism in the local density approximation. We solve the Poisson equation along with the equations for the density and gap energy of the fermions to find a self-gravitating, superfluid solution for dark matter halos. In order to produce halos the size of dwarf galaxies, we require a particle mass of ∼ 200 eV. We findmore » a maximum attractive coupling strength before the halo becomes unstable. If dark matter halos do have a superfluid component, this raises the possibility that they contain vortex lines.« less
NASA Astrophysics Data System (ADS)
Lee, K.; Imada, S.; Moon, Y.; Lee, J.
2013-12-01
We investigate spectral properties of a cool loop and a dark lane over a limb active region on 2007 March 14 by the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in coronal spectral lines and rooted on a bright point. We determine their electron densities, Doppler velocities, and non-thermal velocities with height over the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII and Fe XIV spectra. Under the hydrostatic equilibrium and isothermal assumption, we determine their temperatures from the density scale height. Comparing the scale height temperatures to the peak formation temperatures of the spectral lines, we note that the scale height temperature of the cool loop is consistent with a peak formation temperature of the Fe XII and the scale height temperatures of the dark lane from each spectral lines are much lower than their peak formation temperatures. The non-thermal velocity in the cool loop slightly decreases along the loop while that in the dark lane sharply falls off with height. The variation of non-thermal velocity with height in the cool loop and the dark lane is contrast to that in off-limb polar coronal holes which are considered as source of the solar wind. Such a decrease in the non-thermal velocity may be explained by wave damping near the solar surface or turbulence due to magnetic reconnection near the bright point.
NASA Technical Reports Server (NTRS)
Silk, Joseph; Stebbins, Albert
1993-01-01
A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.
Revisiting Supernova 1987A constraints on dark photons
Chang, Jae Hyeok; Essig, Rouven; McDermott, Samuel D.
2017-01-25
We revisit constraints on dark photons with masses below ~ 100 MeV from the observations of Supernova 1987A. If dark photons are produced in sufficient quantity, they reduce the amount of energy emitted in the form of neutrinos, in conflict with observations. For the first time, we include the effects of finite temperature and density on the kinetic-mixing parameter,ϵ, in this environment. This causes the constraints on ϵ to weaken with the dark-photon mass below ~ 15 MeV. For large-enough values of ϵ, it is well known that dark photons can be reabsorbed within the supernova. Since the rates ofmore » reabsorption processes decrease as the dark-photon energy increases, we point out that dark photons with energies above the Wien peak can escape without scattering, contributing more to energy loss than is possible assuming a blackbody spectrum. Furthermore, we estimate the systematic uncertainties on the cooling bounds by deriving constraints assuming one analytic and four different simulated temperature and density profiles of the proto-neutron star. Finally, we estimate also the systematic uncertainty on the bound by varying the distance across which dark photons must propagate from their point of production to be able to affect the star. Finally, this work clarifies the bounds from SN1987A on the dark-photon parameter space.« less
High-efficiency acceleration in the laser wakefield by a linearly increasing plasma density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Kegong; Wu, Yuchi; Zhu, Bin
The acceleration length and the peak energy of the electron beam are limited by the dephasing effect in the laser wakefield acceleration with uniform plasma density. Based on 2D-3V particle in cell simulations, the effects of a linearly increasing plasma density on the electron acceleration are investigated broadly. Comparing with the uniform plasma density, because of the prolongation of the acceleration length and the gradually increasing accelerating field due to the increasing plasma density, the electron beam energy is twice higher in moderate nonlinear wakefield regime. Because of the lower plasma density, the linearly increasing plasma density can also avoidmore » the dark current caused by additional injection. At the optimal acceleration length, the electron energy can be increased from 350 MeV (uniform) to 760 MeV (linearly increasing) with the energy spread of 1.8%, the beam duration is 5 fs and the beam waist is 1.25 μm. This linearly increasing plasma density distribution can be achieved by a capillary with special gas-filled structure, and is much more suitable for experiment.« less
The insight into the dark side - I. The pitfalls of the dark halo parameters estimation
NASA Astrophysics Data System (ADS)
Saburova, Anna S.; Kasparova, Anastasia V.; Katkov, Ivan Yu.
2016-12-01
We examined the reliability of estimates of pseudo-isothermal, Burkert and NFW dark halo parameters for the methods based on the mass-modelling of the rotation curves. To do it, we constructed the χ2 maps for the grid of the dark matter halo parameters for a sample of 14 disc galaxies with high-quality rotation curves from THINGS. We considered two variants of models in which: (a) the mass-to-light ratios of disc and bulge were taken as free parameters, (b) the mass-to-light ratios were fixed in a narrow range according to the models of stellar populations. To reproduce the possible observational features of the real galaxies, we made tests showing that the parameters of the three halo types change critically in the cases of a lack of kinematic data in the central or peripheral areas and for different spatial resolutions. We showed that due to the degeneracy between the central densities and the radial scales of the dark haloes there are considerable uncertainties of their concentrations estimates. Due to this reason, it is also impossible to draw any firm conclusion about universality of the dark halo column density based on mass-modelling of even a high-quality rotation curve. The problem is not solved by fixing the density of baryonic matter. In contrast, the estimates of dark halo mass within optical radius are much more reliable. We demonstrated that one can evaluate successfully the halo mass using the pure best-fitting method without any restrictions on the mass-to-light ratios.
Tully-Fisher relation, galactic rotation curves and dissipative mirror dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foot, R., E-mail: rfoot@unimelb.edu.au
2014-12-01
If dark matter is dissipative then the distribution of dark matter within galactic halos can be governed by dissipation, heating and hydrostatic equilibrium. Previous work has shown that a specific model, in the framework of mirror dark matter, can explain several empirical galactic scaling relations. It is shown here that this dynamical halo model implies a quasi-isothermal dark matter density, ρ(r) ≅ ρ{sub 0}r{sub 0}{sup 2}/(r{sup 2}+r{sub 0}{sup 2}), where the core radius, r{sub 0}, scales with disk scale length, r{sub D}, via r{sub 0}/kpc ≈ 1.4(r{sub D}/kpc). Additionally, the product ρ{sub 0}r{sub 0} is roughly constant, i.e. independent ofmore » galaxy size (the constant is set by the parameters of the model). The derived dark matter density profile implies that the galactic rotation velocity satisfies the Tully-Fisher relation, L{sub B}∝v{sup 3}{sub max}, where v{sub max} is the maximal rotational velocity. Examples of rotation curves resulting from this dynamics are given.« less
Astronomical Constraints on Quantum Cold Dark Matter
NASA Astrophysics Data System (ADS)
Spivey, Shane; Musielak, Z.; Fry, J.
2012-01-01
A model of quantum (`fuzzy') cold dark matter that accounts for both the halo core problem and the missing dwarf galaxies problem, which plague the usual cold dark matter paradigm, is developed. The model requires that a cold dark matter particle has a mass so small that its only allowed physical description is a quantum wave function. Each such particle in a galactic halo is bound to a gravitational potential that is created by luminous matter and by the halo itself, and the resulting wave function is described by a Schrödinger equation. To solve this equation on a galactic scale, we impose astronomical constraints that involve several density profiles used to fit data from simulations of dark matter galactic halos. The solutions to the Schrödinger equation are quantum waves which resemble the density profiles acquired from simulations, and they are used to determine the mass of the cold dark matter particle. The effects of adding certain types of baryonic matter to the halo, such as a dwarf elliptical galaxy or a supermassive black hole, are also discussed.
Einasto profiles and the dark matter power spectrum
NASA Astrophysics Data System (ADS)
Ludlow, Aaron D.; Angulo, Raúl E.
2017-02-01
We study the mass accretion histories (MAHs) and density profiles of dark matter haloes using N-body simulations of self-similar gravitational clustering from scale-free power spectra, P(k) ∝ kn. We pay particular attention to the density profile curvature, which we characterize using the shape parameter, α, of an Einasto profile. In agreement with previous findings, our results suggest that, despite vast differences in their MAHs, the density profiles of virialized haloes are remarkably alike. Nonetheless, clear departures from self-similarity are evident: For a given spectral index, α increases slightly but systematically with `peak height', ν ≡ δsc/σ(M, z), regardless of mass or redshift. More importantly, however, the `α-ν' relation depends on n: The steeper the initial power spectrum, the more gradual the curvature of both the mean MAHs and mean density profiles. These results are consistent with previous findings connecting the shapes of halo mass profiles and MAHs, and imply that dark matter haloes are not structurally self-similar but, through the merger history, retain a memory of the linear density field from which they form.
Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozina, Galia; Ciechonski, Rafal; Bi, Zhaoxia
2015-12-21
Today's energy saving solutions for general illumination rely on efficient white light emitting diodes (LEDs). However, the output efficiency droop experienced in InGaN based LEDs with increasing current injection is a serious limitation factor for future development of bright white LEDs. We show using cathodoluminescence (CL) spatial mapping at different electron beam currents that threading dislocations are active as nonradiative recombination centers only at high injection conditions. At low current, the dislocations are inactive in carrier recombination due to local potentials, but these potentials are screened by carriers at higher injection levels. In CL images, this corresponds to the increasemore » of the dark contrast around dislocations with the injection (excitation) density and can be linked with droop related to the threading dislocations. Our data indicate that reduction of droop in the future efficient white LED can be achieved via a drastic reduction of the dislocation density by using, for example, bulk native substrates.« less
Dark-matter particles without weak-scale masses or weak interactions.
Feng, Jonathan L; Kumar, Jason
2008-12-05
We propose that dark matter is composed of particles that naturally have the correct thermal relic density, but have neither weak-scale masses nor weak interactions. These models emerge naturally from gauge-mediated supersymmetry breaking, where they elegantly solve the dark-matter problem. The framework accommodates single or multiple component dark matter, dark-matter masses from 10 MeV to 10 TeV, and interaction strengths from gravitational to strong. These candidates enhance many direct and indirect signals relative to weakly interacting massive particles and have qualitatively new implications for dark-matter searches and cosmological implications for colliders.
Spectroscopic Study of a Dark Lane and a Cool Loop in a Solar Limb Active Region by Hinode/EIS
NASA Astrophysics Data System (ADS)
Lee, K.; Imada, S.; Moon, Y.; Lee, J.
2012-12-01
We investigate a cool loop and a dark lane over a limb active region on 2007 March 14 by the Hinode/EUV Imaging Spectrometer (EIS). The cool loop is clearly seen in the EIS spectral lines formed at the transition region temperature (log T = 5.8). The dark lane is characterized by an elongated faint structure in coronal spectral lines (log T = 5.8 - 6.1) and rooted on a bright point. We examine their electron densities, Doppler velocities, and non-thermal velocities as a function of distance from the limb using the spectral lines formed at different temperatures (log T = 5.4 - 6.4). The electron densities of the cool loop and the dark lane are derived from the density sensitive line pairs of Mg VII, Fe XII, and Fe XIV spectra. Under the hydrostatic equilibrium and isothermal assumption, we determine their temperatures from the density scale height. Comparing the scale height temperatures to the peak formation temperatures of the spectral lines, we note that the scale height temperature of the cool loop is consistent with a peak formation temperature of the Mg VII (log T = 5.8) and the scale height temperature of the dark lane is close to a peak formation temperature of the Fe XII and Fe XIII (log T = 6.1 - 6.2). It is interesting to note that the structures of the cool loop and the dark lane are most visible in these temperature lines. While the non-thermal velocity in the cool loop slightly decreases (less than 7 km {s-1}) along the loop, that in the dark lane sharply falls off with height. The variation of non-thermal velocity with height in the cool loop and the dark lane is contrast to that in off-limb polar coronal holes which are considered as source of the fast solar wind. Such a decrease in the non-thermal velocity may be explained by wave damping near the solar surface or turbulence due to magnetic reconnection near the bright point.
Bera, Ashok; Das Mahapatra, Ayon; Mondal, Sulakshana; Basak, Durga
2016-12-21
Organic-inorganic hybrid diodes are very promising for solution processing, low cost, high performance optoelectronic devices. Here, we report a high quality p-n heterojunction diode composed of n-type inorganic Sb 2 S 3 and p-type organic 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) with a rectification ratio of ∼10 2 at an applied bias of 1 V. On illumination with visible light (470 nm, 1.82 mW/cm 2 ), the current value in our device becomes 8 × 10 2 times that of its dark value even at a zero bias condition. The estimated responsivity value at zero bias is 0.087 A/W which is so far the highest reported for any organic-inorganic hybrid photodiode, to the best of our knowledge. It also exhibits a fast photoresponse time of <25 ms (instrumental limit). More importantly, our device can also detect visible light with power density as low as 8 μW/cm 2 with a photocurrent density of 1.2 μA/cm 2 and a photocurrent to dark current ratio of more than 8. We also demonstrate that the values of responsivity, short circuit current, and open circuit voltage of the photodetector can be improved significantly using a thin layer of TiO 2 hole-blocking layer. These findings suggest Sb 2 S 3 /spiro-OMeTAD heterojuncton as a promising candidate for efficient self-powered low visible light photodetector.
Requirements for high-efficiency solar cells
NASA Technical Reports Server (NTRS)
Sah, C. T.
1986-01-01
Minimum recombination and low injection level are essential for high efficiency. Twenty percent AM1 efficiency requires a dark recombination current density of 2 x 10 to the minus 13th power A/sq cm and a recombination center density of less than 10 to the 10th power /cu cm. Recombination mechanisms at thirteen locations in a conventional single crystalline silicon cell design are reviewed. Three additional recombination locations are described at grain boundaries in polycrystalline cells. Material perfection and fabrication process optimization requirements for high efficiency are outlined. Innovative device designs to reduce recombination in the bulk and interfaces of single crystalline cells and in the grain boundary of polycrystalline cells are reviewed.
Opening up the QCD axion window
NASA Astrophysics Data System (ADS)
Agrawal, Prateek; Marques-Tavares, Gustavo; Xue, Wei
2018-03-01
We present a new mechanism to deplete the energy density of the QCD axion, making decay constants as high as f a ≃ 1017 GeV viable for generic initial conditions. In our setup, the axion couples to a massless dark photon with a coupling that is moderately stronger than the axion coupling to gluons. Dark photons are produced copiously through a tachyonic instability when the axion field starts oscillating, and an exponential suppression of the axion density can be achieved. For a large part of the parameter space this dark radiation component of the universe can be observable in upcoming CMB experiments. Such dynamical depletion of the axion density ameliorates the isocurvature bound on the scale of inflation. The depletion also amplifies the power spectrum at scales that enter the horizon before particle production begins, potentially leading to axion miniclusters.
Comparison between two scalar field models using rotation curves of spiral galaxies
NASA Astrophysics Data System (ADS)
Fernández-Hernández, Lizbeth M.; Rodríguez-Meza, Mario A.; Matos, Tonatiuh
2018-04-01
Scalar fields have been used as candidates for dark matter in the universe, from axions with masses ∼ 10-5eV until ultra-light scalar fields with masses ∼ Axions behave as cold dark matter while the ultra-light scalar fields galaxies are Bose-Einstein condensate drops. The ultra-light scalar fields are also called scalar field dark matter model. In this work we study rotation curves for low surface brightness spiral galaxies using two scalar field models: the Gross-Pitaevskii Bose-Einstein condensate in the Thomas-Fermi approximation and a scalar field solution of the Klein-Gordon equation. We also used the zero disk approximation galaxy model where photometric data is not considered, only the scalar field dark matter model contribution to rotation curve is taken into account. From the best-fitting analysis of the galaxy catalog we use, we found the range of values of the fitting parameters: the length scale and the central density. The worst fitting results (values of χ red2 much greater than 1, on the average) were for the Thomas-Fermi models, i.e., the scalar field dark matter is better than the Thomas- Fermi approximation model to fit the rotation curves of the analysed galaxies. To complete our analysis we compute from the fitting parameters the mass of the scalar field models and two astrophysical quantities of interest, the dynamical dark matter mass within 300 pc and the characteristic central surface density of the dark matter models. We found that the value of the central mass within 300 pc is in agreement with previous reported results, that this mass is ≈ 107 M ⊙/pc2, independent of the dark matter model. And, on the contrary, the value of the characteristic central surface density do depend on the dark matter model.
Baryogenesis via dark matter-induced symmetry breaking in the early Universe
NASA Astrophysics Data System (ADS)
Sakstein, Jeremy; Trodden, Mark
2017-11-01
We put forward a new proposal for generating the baryon asymmetry of the universe by making use of the dynamics of a U (1) scalar field coupled to dark matter. High dark matter densities cause the U (1) symmetry to break spontaneously so that the field acquires a large vacuum expectation value. The symmetry is restored when the density redshifts below a critical value, resulting in the coherent oscillation of the scalar field. A net B - L number can be generated either via baryon number-conserving couplings to the standard model or through small symmetry-violating operators and the subsequent decay of the scalar condensate.
Holographic dark energy with varying gravitational constant in Hořava-Lifshitz cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setare, M.R.; Jamil, Mubasher, E-mail: rezakord@ipm.ir, E-mail: mjamil@camp.nust.edu.pk
2010-02-01
We investigate the holographic dark energy scenario with a varying gravitational constant in a flat background in the context of Hořava-Lifshitz gravity. We extract the exact differential equation determining the evolution of the dark energy density parameter, which includes G variation term. Also we discuss a cosmological implication of our work by evaluating the dark energy equation of state for low redshifts containing varying G corrections.
Perovskite solar cell with an efficient TiO₂ compact film.
Ke, Weijun; Fang, Guojia; Wang, Jing; Qin, Pingli; Tao, Hong; Lei, Hongwei; Liu, Qin; Dai, Xin; Zhao, Xingzhong
2014-09-24
A perovskite solar cell with a thin TiO2 compact film prepared by thermal oxidation of sputtered Ti film achieved a high efficiency of 15.07%. The thin TiO2 film prepared by thermal oxidation is very dense and inhibits the recombination process at the interface. The optimum thickness of the TiO2 compact film prepared by thermal oxidation is thinner than that prepared by spin-coating method. Also, the TiO2 compact film and the TiO2 porous film can be sintered at the same time. This one-step sintering process leads to a lower dark current density, a lower series resistance, and a higher recombination resistance than those of two-step sintering. Therefore, the perovskite solar cell with the TiO2 compact film prepared by thermal oxidation has a higher short-circuit current density and a higher fill factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piattella, O.F.; Rodrigues, D.C.; Fabris, J.C.
2013-11-01
We discuss solutions of Vlasov-Einstein equation for collisionless dark matter particles in the context of a flat Friedmann universe. We show that, after decoupling from the primordial plasma, the dark matter phase-space density indicator Q = ρ/(σ{sub 1D}{sup 2}){sup 3/2} remains constant during the expansion of the universe, prior to structure formation. This well known result is valid for non-relativistic particles and is not ''observer dependent'' as in solutions derived from the Vlasov-Poisson system. In the linear regime, the inclusion of velocity dispersion effects permits to define a physical Jeans length for collisionless matter as function of the primordial phase-spacemore » density indicator: λ{sub J} = (5π/G){sup 1/2}Q{sup −1/3}ρ{sub dm}{sup −1/6}. The comoving Jeans wavenumber at matter-radiation equality is smaller by a factor of 2-3 than the comoving wavenumber due to free-streaming, contributing to the cut-off of the density fluctuation power spectrum at the lowest scales. We discuss the physical differences between these two scales. For dark matter particles of mass equal to 200 GeV, the derived Jeans mass is 4.3 × 10{sup −6}M{sub ⊙}.« less
Dark Currents and Their Effect on the Primary Beam in an X-band Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bane, K.L.F.; Dolgashev, V.A.; Raubenheimer, T.
2005-05-27
We numerically study properties of primary dark currents in an X-band accelerating structure. For the H60VG3 structure considered for the Next Linear Collider (NLC) we first perform a fairly complete (with some approximations) calculation of dark current trajectories. These results are used to study properties of the dark current leaving the structure. For example, at accelerating gradient of 65 MV/m, considering two very different assumptions about dark current emission around the irises, we find that the fraction of emitted current leaving the structure to be a consistent {approx} 1%. Considering that {approx} 1 mA outgoing dark current is seen inmore » measurement, this implies that {approx} 100 mA (or 10 pC per period) is emitted within the structure itself. Using the formalism of the Lienard-Wiechert potentials, we then perform a systematic calculation of the transverse kick of dark currents on a primary linac bunch. The result is {approx} 1 V kick per mA (or per 0.1 pC per period) dark current emitted from an iris. For an entire structure we estimate the total kick on a primary bunch to be {approx} 15 V. For the NLC linac this translates to a ratio of (final) vertical beam offset to beam size of about 0.2. However, with the assumptions that needed to be made--particularly the number of emitters and their distribution within a structure--the accuracy of this result may be limited to the order of magnitude.« less
The median density of the Universe
NASA Astrophysics Data System (ADS)
Stücker, Jens; Busch, Philipp; White, Simon D. M.
2018-03-01
Despite the fact that the mean matter density of the universe has been measured to an accuracy of a few percent within the standard ΛCDM paradigm, its median density is not known even to order of magnitude. Typical points lie in low-density regions and are not part of a collapsed structure of any scale. Locally, the dark matter distribution is then simply a stretched version of that in the early universe. In this single-stream regime, the distribution of unsmoothed density is sensitive to the initial power spectrum on all scales, in particular on very small scales, and hence to the nature of the dark matter. It cannot be estimated reliably using conventional cosmological simulations because of the enormous dynamic range involved, but a suitable excursion set procedure can be used instead. For the Planck cosmological parameters, a 100 GeV WIMP, corresponding to a free-streaming mass ˜10-6M⊙, results in a median density of ˜4 × 10-3 in units of the mean density, whereas a 10 μeV axion with free-streaming mass ˜10-12M⊙ gives ˜3 × 10-3, and Warm Dark Matter with a (thermal relic) mass of 1 keV gives ˜8 × 10-2. In CDM (but not in WDM) universes, single-stream regions are predicted to be topologically isolated by the excursion set formalism. A test by direct N-Body simulations seems to confirm this prediction, although it is still subject to finite size and resolution effects. Unfortunately, it is unlikely that any of these properties is observable and so suitable for constraining the properties of dark matter.
A method for evaluating models that use galaxy rotation curves to derive the density profiles
NASA Astrophysics Data System (ADS)
de Almeida, Álefe O. F.; Piattella, Oliver F.; Rodrigues, Davi C.
2016-11-01
There are some approaches, either based on General Relativity (GR) or modified gravity, that use galaxy rotation curves to derive the matter density of the corresponding galaxy, and this procedure would either indicate a partial or a complete elimination of dark matter in galaxies. Here we review these approaches, clarify the difficulties on this inverted procedure, present a method for evaluating them, and use it to test two specific approaches that are based on GR: the Cooperstock-Tieu (CT) and the Balasin-Grumiller (BG) approaches. Using this new method, we find that neither of the tested approaches can satisfactorily fit the observational data without dark matter. The CT approach results can be significantly improved if some dark matter is considered, while for the BG approach no usual dark matter halo can improve its results.
Universe without dark energy: Cosmic acceleration from dark matter-baryon interactions
NASA Astrophysics Data System (ADS)
Berezhiani, Lasha; Khoury, Justin; Wang, Junpu
2017-06-01
Cosmic acceleration is widely believed to require either a source of negative pressure (i.e., dark energy), or a modification of gravity, which necessarily implies new degrees of freedom beyond those of Einstein gravity. In this paper we present a third possibility, using only dark matter (DM) and ordinary matter. The mechanism relies on the coupling between dark matter and ordinary matter through an effective metric. Dark matter couples to an Einstein-frame metric, and experiences a matter-dominated, decelerating cosmology up to the present time. Ordinary matter couples to an effective metric that depends also on the DM density, in such a way that it experiences late-time acceleration. Linear density perturbations are stable and propagate with arbitrarily small sound speed, at least in the case of "pressure" coupling. Assuming a simple parametrization of the effective metric, we show that our model can successfully match a set of basic cosmological observables, including luminosity distance, baryon acoustic oscillation measurements, angular-diameter distance to last scattering, etc. For the growth history of density perturbations, we find an intriguing connection between the growth factor and the Hubble constant. To get a growth history similar to the Λ CDM prediction, our model predicts a higher H0, closer to the value preferred by direct estimates. On the flip side, we tend to overpredict the growth of structures whenever H0 is comparable to the Planck preferred value. The model also tends to predict larger redshift-space distortions at low redshift than Λ CDM .
Multiple kinetic k-essence, phantom barrier crossing and stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sur, Sourav; Das, Saurya, E-mail: sourav.sur@uleth.ca
We investigate models of dark energy with purely kinetic multiple k-essence sources that allow for the crossing of the phantom divide line, without violating the conditions of stability. It is known that with more than one kinetic k-field one can possibly construct dark energy models whose equation of state parameter w{sub X} crosses -1 (the phantom barrier) at recent red-shifts, as indicated by the Supernova Ia and other observational probes. However, such models may suffer from cosmological instabilities, as the effective speed of propagation c{sub X} of the dark energy density perturbations may become imaginary while the w{sub X} =more » -1 barrier is crossed. Working out the expression for c{sub X} we show that multiple kinetic k-essence fields do indeed lead to a w{sub X} = -1 crossing dark energy model, satisfying the stability criterion c{sub X}{sup 2} {>=} 0 as well as the condition c{sub X} {<=} 1 (in natural units), which implies that the dark energy is not super-luminal. As a specific example, we construct a phantom barrier crossing model involving three k-fields for which c{sub X} is a constant, lying between 0 and 1. The model fits well with the latest Supernova Ia Union data, and the best fit shows that w{sub X} crosses -1 at red-shift z {approx} 0.2, whereas the dark energy density nearly tracks the matter density at higher red-shifts.« less
Stratigraphy of the Perrine and Nun Sulci quadrangles (Jg-2 and Jg-5), Ganymede
NASA Technical Reports Server (NTRS)
Mcgill, George E.; Squyres, Steven W.
1991-01-01
Dark and light terrain materials in the Perrine and Nun Sulci quadrangles are divided into nine map units, four dark, and five light. These are placed in time-stratigraphic sequence primarily by means of embayment and cross-cutting relationships. Dark terrain is generally more heavily cratered and thus older that light terrain but, at least in these quadrangles, crater densities are not reliable indicators of relative ages among the four dark material units. The four mapped material units within dark terrain are: cratered dark materials (dc), grooved dark materials (dg), transitional dark materials (di), and dark materials, undivided (d). The five mapped units within light terrain are: intermediate light materials (li), grooved light materials (lg), irregularly grooved light materials (lgl), smooth light materials (ls), and light materials, undivided.
A dark matter scaling relation from mirror dark matter
NASA Astrophysics Data System (ADS)
Foot, R.
2014-12-01
Mirror dark matter, and other similar dissipative dark matter candidates, need an energy source to stabilize dark matter halos around spiral galaxies. It has been suggested previously that ordinary supernovae can potentially supply the required energy. By matching the energy supplied to the halo from supernovae to that lost due to radiative cooling, we here derive a rough scaling relation, RSN ∝ρ0r02 (RSN is the supernova rate and ρ0 ,r0 the dark matter central density and core radius). Such a relation is consistent with dark matter properties inferred from studies of spiral galaxies with halo masses larger than 3 ×1011M⊙. We speculate that other observed galaxy regularities might be explained within the framework of such dissipative dark matter.
Adsorption of O_{2} on Ag(111): Evidence of Local Oxide Formation.
Andryushechkin, B V; Shevlyuga, V M; Pavlova, T V; Zhidomirov, G M; Eltsov, K N
2016-07-29
The atomic structure of the disordered phase formed by oxygen on Ag(111) at low coverage is determined by a combination of low-temperature scanning tunneling microscopy and density functional theory. We demonstrate that the previous assignment of the dark objects in STM to chemisorbed oxygen atoms is incorrect and incompatible with trefoil-like structures observed in atomic-resolution images in current work. In our model, each object is an oxidelike ring formed by six oxygen atoms around the vacancy in Ag(111).
First-principles study of defects in TlBr
NASA Astrophysics Data System (ADS)
Du, Mao-Hua
2010-03-01
TlBr is a promising radiation detection material due to its high gamma-ray stopping efficiency, high resistivity (that reduces dark current and noise), large enough band gap of 2.68 eV (suitable for room temperature applications), and long electron carrier lifetime (for efficient collection of the radiation-generated carriers). The defect properties obtained from density functional calculations will be presented to discuss their roles in carrier trapping and recombination (which affects the carrier lifetime) and carrier compensation (which affects the resistivity).
NASA Astrophysics Data System (ADS)
Jackson, J. C.
1998-05-01
Based upon a simple vacuum Lagrangian, comprising cosmological and quadratic scalar field terms, a cosmological model is presented the history of which is indistinguishable from that of an innocuous low-density cold dark matter (CDM) universe, but the future of which is very much shorter. For sensible values of the deceleration parameter (0
NASA Technical Reports Server (NTRS)
Mendenhall, J. A.
2001-01-01
The dark current and noise characteristics of the Earth Observing-1 Advanced Land Imager measured during ground calibration at MIT Lincoln Laboratory are presented. Data were collected for the nominal focal plane operating temperature of 220 K as well as supplemental operating temperatures (215 and 225 K). Dark current baseline values are provided, and noise characterization includes the evaluation of white, coherent, low frequency, and high frequency components. Finally, anomalous detectors, characterized by unusual dark current, noise, gain, or cross-talk properties are investigated.
First test of Verlinde's theory of emergent gravity using weak gravitational lensing measurements
NASA Astrophysics Data System (ADS)
Brouwer, Margot M.; Visser, Manus R.; Dvornik, Andrej; Hoekstra, Henk; Kuijken, Konrad; Valentijn, Edwin A.; Bilicki, Maciej; Blake, Chris; Brough, Sarah; Buddelmeijer, Hugo; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Holwerda, Benne W.; Hopkins, Andrew M.; Klaes, Dominik; Liske, Jochen; Loveday, Jon; McFarland, John; Nakajima, Reiko; Sifón, Cristóbal; Taylor, Edward N.
2017-04-01
Verlinde proposed that the observed excess gravity in galaxies and clusters is the consequence of emergent gravity (EG). In this theory, the standard gravitational laws are modified on galactic and larger scales due to the displacement of dark energy by baryonic matter. EG gives an estimate of the excess gravity (described as an apparent dark matter density) in terms of the baryonic mass distribution and the Hubble parameter. In this work, we present the first test of EG using weak gravitational lensing, within the regime of validity of the current model. Although there is no direct description of lensing and cosmology in EG yet, we can make a reasonable estimate of the expected lensing signal of low-redshift galaxies by assuming a background Lambda cold dark matter cosmology. We measure the (apparent) average surface mass density profiles of 33 613 isolated central galaxies and compare them to those predicted by EG based on the galaxies' baryonic masses. To this end, we employ the ˜180 deg2 overlap of the Kilo-Degree Survey with the spectroscopic Galaxy And Mass Assembly survey. We find that the prediction from EG, despite requiring no free parameters, is in good agreement with the observed galaxy-galaxy lensing profiles in four different stellar mass bins. Although this performance is remarkable, this study is only a first step. Further advancements on both the theoretical framework and observational tests of EG are needed before it can be considered a fully developed and solidly tested theory.
Francese, Joseph A; Rietz, Michael L; Crook, Damon J; Fraser, Ivich; Lance, David R; Mastro, Victor C
2013-12-01
The current emerald ash borer survey trap used in the United States is a prism trap constructed from a stock purple corrugated plastic. In recent years, several colors (particularly shades of green and purple) have been shown to be more attractive to the emerald ash borer than this stock color. Our goal was to determine if plastics produced with these colors and incorporated into prism traps can improve and serve as a new alternative to plastics already in use for the emerald ash borer survey. The plastics were tested in moderate to heavily infested areas in Michigan in two initial studies to test their effectiveness at catching the emerald ash borer. Because results from studies performed in heavily infested sites may not always correspond with what is found along the edges of the infestation, we compared trap catch and detection rates (recording at least one catch on a trap over the course of the entire trapping season) of several trap types and colors at sites outside the core of the currently known emerald ash borer infestation in a nine-state detection tool comparison study. Two of the new plastics, a (Sabic) purple and a medium-dark (Sabic) green were incorporated into prism traps and tested alongside a standard purple prism trap and a green multifunnel trap. In areas with lower emerald ash borer density, the new purple (Sabic) corrugated plastic caught more beetles than the current purple prism trap, as well as more than the medium-dark green (Sabic) prism and green multifunnel traps. Sabic purple traps in the detection tools comparison study recorded a detection rate of 86% compared with 73, 66, and 58% for the standard purple, Sabic green, and green multifunnel traps, respectively. These detection rates were reduced to 80, 63, 55, and 46%, respectively, at low emerald ash borer density sites.
Accounting for Dark Current Accumulated during Readout of Hubble's ACS/WFC Detectors
NASA Astrophysics Data System (ADS)
Ryon, Jenna E.; Grogin, Norman A.; Coe, Dan A.; ACS Team
2018-06-01
We investigate the properties of excess dark current accumulated during the 100-second full-frame readout of the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) detectors. This excess dark current, called "readout dark", gives rise to ambient background gradients and hot columns in each ACS/WFC image. While readout dark signal is removed from science images during the bias correction step in CALACS, the additional noise from the readout dark is currently not taken into account. We develop a method to estimate the readout dark noise properties in ACS/WFC observations. We update the error (ERR) extensions of superbias images to include the appropriate noise from the ambient readout dark gradient and stable hot columns. In recent data, this amounts to about 5 e-/pixel added variance in the rows farthest from the WFC serial registers, and about 7 to 30 e-/pixel added variance along the stable hot columns. We also flag unstable hot columns in the superbias data quality (DQ) extensions. The new reference file pipeline for ACS/WFC implements these updates to our superbias creation process.
Dynamical Family Properties and Dark Halo Scaling Relations of Giant Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Gerhard, Ortwin; Kronawitter, Andi; Saglia, R. P.; Bender, Ralf
2001-04-01
Based on a uniform dynamical analysis of the line-profile shapes of 21 mostly luminous, slowly rotating, and nearly round elliptical galaxies, we have investigated the dynamical family relations and dark halo properties of ellipticals. Our results include: (i) The circular velocity curves (CVCs) of elliptical galaxies are flat to within ~=10% for R>~0.2Re. (ii) Most ellipticals are moderately radially anisotropic; their dynamical structure is surprisingly uniform. (iii) Elliptical galaxies follow a Tully-Fisher (TF) relation with marginally shallower slope than spiral galaxies, and vmaxc~=300 km s-1 for an L*B galaxy. At given circular velocity, they are ~1 mag fainter in B and ~0.6 mag in R and appear to have slightly lower baryonic mass than spirals, even for the maximum M/LB allowed by the kinematics. (iv) The luminosity dependence of M/LB indicated by the tilt of the fundamental plane (FP) is confirmed. The tilt of the FP is not caused by dynamical or photometric nonhomology, although the latter might influence the slope of M/L versus L. It can also not be due only to an increasing dark matter fraction with L for the range of IMF currently discussed. It is, however, consistent with stellar population models based on published metallicities and ages. The main driver is therefore probably metallicity, and a secondary population effect is needed to explain the K-band tilt. (v) These results make it likely that elliptical galaxies have nearly maximal M/LB (minimal halos). (vi) Despite the uniformly flat CVCs, there is a spread in the luminous to dark matter ratio and in cumulative M/LB(r). Some galaxies have no indication for dark matter within 2Re, whereas for others we obtain local M/LB-values of 20-30 at 2Re. (vii) In models with maximum stellar mass, the dark matter contributes ~10%-40% of the mass within Re. Equal interior mass of dark and luminous matter is predicted at ~2-4Re. (viii) Even in these maximum stellar mass models, the halo core densities and phase-space densities are at least ~25 times larger and the halo core radii ~4 times smaller than in spiral galaxies of the same circular velocity. The increase in M/L sets in at ~10 times larger acceleration than in spirals. This could imply that elliptical galaxy halos collapsed at high redshifts or that some of the dark matter in ellipticals might be baryonic.
An Exploration of WFC3/IR Dark Current Variation
NASA Astrophysics Data System (ADS)
Sunnquist, B.; Baggett, S.; Long, K. S.
2017-02-01
We use a collection of darks spanning September 2009 to June 2016 to study variations in the dark current in the IR detector on WFC3. Although the darks possess a similar signal pattern across the detector, we find that their median dark rates vary by as much as 0.014 DN/s (0.032 e-/s). The distribution of these median values has a triangular shape with a mean and standard deviation of 0.021 ± 0.0029 DN/s (0.049 ± 0.0069 e-/s). We observe a long term time-dependence in the inboard vertical reference pixel and zeroth read signals; however, these differences do not noticeably affect the calibrated dark signals, and we conclude that the WFC3/IR dark current levels continue to remain stable since launch. The inboard reference pixel signals exhibit a unique, but consistent, pattern around the detector, but this pattern does not evolve noticeably with the median of the science pixels, and a quadrant or row-based reference pixel subtraction strategy does not reduce the spread between the median dark rates. We notice a slight drift in the inboard reference pixel signals up the dark ramps, and the intensity of this drift is related to the median dark current in the science pixels. This holds true using either the horizontal or vertical reference pixels and for darks with a variety of sample sequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higaki, Tetsutaro; Jeong, Kwang Sik; Takahashi, Fuminobu, E-mail: tetsutaro.higaki@riken.jp, E-mail: ksjeong@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp
The baryon-dark matter coincidence is a long-standing issue. Interestingly, the recent observations suggest the presence of dark radiation, which, if confirmed, would pose another coincidence problem of why the density of dark radiation is comparable to that of photons. These striking coincidences may be traced back to the dark sector with particle contents and interactions that are quite similar, if not identical, to the standard model: a dark parallel world. It naturally solves the coincidence problems of dark matter and dark radiation, and predicts a sterile neutrino(s) with mass of O(0.1−1) eV, as well as self-interacting dark matter made ofmore » the counterpart of ordinary baryons. We find a robust prediction for the relation between the abundance of dark radiation and the sterile neutrino, which can serve as the smoking-gun evidence of the dark parallel world.« less
On physical scales of dark matter halos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemp, Marcel, E-mail: mzemp@pku.edu.cn
2014-09-10
It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to themore » illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.« less
Cold dark matter: Controversies on small scales
Weinberg, David H.; Bullock, James S.; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H. G.
2015-01-01
The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf galaxy satellites. We review the current observational and theoretical status of these “small-scale controversies.” Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years. PMID:25646464
NASA Astrophysics Data System (ADS)
Yang, Qiaoli
2017-05-01
Dark matter constitutes about 23% of the total energy density of the universe, but its properties are still little known besides that it should be composed by cold and weakly interacting particles. Many beyond Standard Model theories can provide proper candidates to serve as dark matter and the axion introduced to solve the strong CP problem turns out to be an attractive one. In this paper, we briefly review several important features of the axion and the axion dark matter.
Point sources from dissipative dark matter
NASA Astrophysics Data System (ADS)
Agrawal, Prateek; Randall, Lisa
2017-12-01
If a component of dark matter has dissipative interactions, it can cool to form compact astrophysical objects with higher density than that of conventional cold dark matter (sub)haloes. Dark matter annihilations might then appear as point sources, leading to novel morphology for indirect detection. We explore dissipative models where interaction with the Standard Model might provide visible signals, and show how such objects might give rise to the observed excess in gamma rays arising from the galactic center.
NASA Astrophysics Data System (ADS)
Najafi, A.; Hossienkhani, H.
2017-10-01
Since the fractal cosmology has been created in early universe, therefore their models were mostly isotropic. The majority of previous studies had been based on FRW universe, while in the early universe, the best model for describing fractal cosmology is actually the anisotropic universe. Therefore in this work, by assuming the anisotropic universe, the cosmological implications of ghost and generalized ghost dark energy models with dark matter in fractal cosmology has been discussed. Moreover, the different kinds of dark energy models such as quintessence and tachyon field, with the generalized ghost dark energy in fractal universe has been investigated. In addition, we have reconstructed the Hubble parameter, H, the energy density, ρ, the deceleration parameter, q, the equations of state parameter, {ω }{{}D}, for both ghost and generalized ghost dark energy models. This correspondence allows us to reconstruct the potential and the dynamics of a fractal canonical scalar field according to the evolution of generalized ghost dark energy density. Eventually, thermodynamics of the cosmological apparent horizon in fractal cosmology was investigated and the validity of the Generalized second law of thermodynamics (GSLT) have been examined in an anisotropic universe. The results show the influence of the anisotropy on the GSLT of thermodynamics in a fractal cosmology.
NASA Technical Reports Server (NTRS)
Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan
1988-01-01
The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.
What the Milky Way's dwarfs tell us about the Galactic Center extended gamma-ray excess
NASA Astrophysics Data System (ADS)
Keeley, Ryan E.; Abazajian, Kevork N.; Kwa, Anna; Rodd, Nicholas L.; Safdi, Benjamin R.
2018-05-01
The Milky Way's Galactic Center harbors a gamma-ray excess that is a candidate signal of annihilating dark matter. Dwarf galaxies remain predominantly dark in their expected commensurate emission. In this work we quantify the degree of consistency between these two observations through a joint likelihood analysis. In doing so we incorporate Milky Way dark matter halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the Galactic Center extended gamma-ray excess (GCE) detected by the Fermi Gamma-Ray Space Telescope. The preferred range of annihilation rates and masses expands when including these unknowns. Even so, using two recent determinations of the Milky Way halo's local density leaves the GCE preferred region of single-channel dark matter annihilation models to be in strong tension with annihilation searches in combined dwarf galaxy analyses. A third, higher Milky Way density determination, alleviates this tension. Our joint likelihood analysis allows us to quantify this inconsistency. We provide a set of tools for testing dark matter annihilation models' consistency within this combined data set. As an example, we test a representative inverse Compton sourced self-interacting dark matter model, which is consistent with both the GCE and dwarfs.
Universal Dark Halo Scaling Relation for the Dwarf Spheroidal Satellites
NASA Astrophysics Data System (ADS)
Hayashi, Kohei; Ishiyama, Tomoaki; Ogiya, Go; Chiba, Masashi; Inoue, Shigeki; Mori, Masao
2017-07-01
Motivated by a recently found interesting property of the dark halo surface density within a radius, {r}\\max , giving the maximum circular velocity, {V}\\max , we investigate it for dark halos of the Milky Way’s and Andromeda’s dwarf satellites based on cosmological simulations. We select and analyze the simulated subhalos associated with Milky-Way-sized dark halos and find that the values of their surface densities, {{{Σ }}}{V\\max }, are in good agreement with those for the observed dwarf spheroidal satellites even without employing any fitting procedures. Moreover, all subhalos on the small scales of dwarf satellites are expected to obey the universal relation, irrespective of differences in their orbital evolutions, host halo properties, and observed redshifts. Therefore, we find that the universal scaling relation for dark halos on dwarf galaxy mass scales surely exists and provides us with important clues for understanding fundamental properties of dark halos. We also investigate orbital and dynamical evolutions of subhalos to understand the origin of this universal dark halo relation and find that most subhalos evolve generally along the {r}\\max \\propto {V}\\max sequence, even though these subhalos have undergone different histories of mass assembly and tidal stripping. This sequence, therefore, should be the key feature for understanding the nature of the universality of {{{Σ }}}{V\\max }.
Status of the scalar singlet dark matter model
NASA Astrophysics Data System (ADS)
Athron, Peter; Balázs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Kahlhoefer, Felix; Krislock, Abram; Kvellestad, Anders; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Serra, Nicola; Weniger, Christoph; White, Martin
2017-08-01
One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a Z_2 symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above ˜ 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned.
NASA Astrophysics Data System (ADS)
Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan
1988-11-01
The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega0 = 1 and h = 0.5 was considered (here h = H0 bar 100/kms/Mpc and H0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.
1989-07-11
this dark matter to be mea- sured. The special feature of the Spartan 1 instrument has been its ability to measure the density and temperature of the...required to create the potential well, because it exceeds by a large margin the mass we can account for as galaxies and gas. Some invisible (" dark ...34) matter of unknown origin pervades the cluster. Measurements of the radial density and temperature gradients in the hot gas allow the distribution of
Observations of supra-arcade fans: instabilities at the head of reconnection jets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Innes, D. E.; Guo, L.-J.; Schmit, D.
2014-11-20
Supra-arcade fans are bright, irregular regions of emission that develop during eruptive flares above flare arcades. The underlying flare arcades are thought to be a consequence of magnetic reconnection along a current sheet in the corona. At the same time, theory predicts plasma jets from the reconnection sites which are extremely difficult to observe directly because of their low densities. It has been suggested that the dark supra-arcade downflows (SADs) seen falling through supra-arcade fans may be low-density jet plasma. The head of a low-density jet directed toward higher-density plasma would be Rayleigh-Taylor unstable, and lead to the development ofmore » rapidly growing low- and high-density fingers along the interface. Using Solar Dynamics Observatory/Atmospheric Imaging Assembly 131 Å images, we show details of SADs seen from three different orientations with respect to the flare arcade and current sheet, and highlight features that have been previously unexplained, such as the splitting of SADs at their heads, but are a natural consequence of instabilities above the arcade. Comparison with three-dimensional magnetohydrodynamic simulations suggests that SADs are the result of secondary instabilities of the Rayleigh-Taylor type in the exhaust of reconnection jets.« less
Effects of Density Fluctuations on Weakly Nonlinear Alfven Waves: An IST Perspective
NASA Astrophysics Data System (ADS)
Hamilton, R.; Hadley, N.
2012-12-01
The effects of random density fluctuations on oblique, 1D, weakly nonlinear Alfven waves is examined through a numerical study of an analytical model developed by Ruderman [M.S. Ruderman, Phys. Plasmas, 9 (7), pp. 2940-2945, (2002).]. Consistent with Ruderman's application to the one-parameter dark soliton, the effects on both one-parameter bright and dark solitons, the two-parameter soliton as well as pairs of one-parameter solitons were similar to that of Ohmic dissipation found by Hamilton et al. [R. Hamilton, D. Peterson, and S. Libby, J. Geophys. Res 114, A03104,doi:10.1029/2008JA013582 (2009).] It was found in all cases where bright or two-parameter solitons are present initially, that the effects of density fluctuations results in the eventual damping of such compressive wave forms and the formation of a train of dark solitons, or magnetic depressions.
Joint measurement of lensing–galaxy correlations using SPT and DES SV data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, E.; Clampitt, J.; Giannantonio, T.
We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimetre-wave data from the 2500 sq. deg. South Pole Telescope Sunyaev–Zel'dovich (SPT-SZ) survey. The two lensing–galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy-lensing measurements. We show that an attractive feature of these fits is that they are fairlymore » insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favoured Λ cold dark matter cosmological model. It also demonstrates that joint lensing–galaxy correlation measurement considered here contains a wealth of information that can be extracted using current and future surveys.« less
Dark current reduction of Ge photodetector by GeO₂ surface passivation and gas-phase doping.
Takenaka, Mitsuru; Morii, Kiyohito; Sugiyama, Masakazu; Nakano, Yoshiaki; Takagi, Shinichi
2012-04-09
We have investigated the dark current of a germanium (Ge) photodetector (PD) with a GeO₂ surface passivation layer and a gas-phase-doped n+/p junction. The gas-phase-doped PN diodes exhibited a dark current of approximately two orders of magnitude lower than that of the diodes formed by a conventional ion implantation process, indicating that gas-phase doping is suitable for low-damage PN junction formation. The bulk leakage (Jbulk) and surface leakage (Jsurf) components of the dark current were also investigated. We have found that GeO₂ surface passivation can effectively suppress the dark current of a Ge PD in conjunction with gas-phase doping, and we have obtained extremely low values of Jbulk of 0.032 mA/cm² and Jsurf of 0.27 μA/cm.
Reconstructing f(R) modified gravity with dark energy parametrization
NASA Astrophysics Data System (ADS)
Morita, Masaaki; Takahashi, Hirotaka
2014-03-01
We demonstrate the reconstruction of f(R) modified gravity theory with late-time accelerated cosmic expansion. A second-order differential equation for Lagrangian density is obtained from the field equation, and is solved as a function of the cosmic scale factor in two cases. First we begin with the case of a wCDM cosmological model, in which a dark-energy equation-of-state parameter w is constant, for simplicity. Next we extend the method to a case in which the parameter w is epoch-dependent and is expressed as the Chevallier-Polarski-Linder parametrization. Thus we can represent Lagrangian density of f(R) modified gravity theory in terms of dark energy parameters.
The impact of baryonic discs on the shapes and profiles of self-interacting dark matter halos
NASA Astrophysics Data System (ADS)
Sameie, Omid; Creasey, Peter; Yu, Hai-Bo; Sales, Laura V.; Vogelsberger, Mark; Zavala, Jesús
2018-06-01
We employ isolated N-body simulations to study the response of self-interacting dark matter (SIDM) halos in the presence of the baryonic potentials. Dark matter self-interactions lead to kinematic thermalization in the inner halo, resulting in a tight correlation between the dark matter and baryon distributions. A deep baryonic potential shortens the phase of SIDM core expansion and triggers core contraction. This effect can be further enhanced by a large self-scattering cross section. We find the final SIDM density profile is sensitive to the baryonic concentration and the strength of dark matter self-interactions. Assuming a spherical initial halo, we also study evolution of the SIDM halo shape together with the density profile. The halo shape at later epochs deviates from spherical symmetry due to the influence of the non-spherical disc potential, and its significance depends on the baryonic contribution to the total gravitational potential, relative to the dark matter one. In addition, we construct a multi-component model for the Milky Way, including an SIDM halo, a stellar disc and a bulge, and show it is consistent with observations from stellar kinematics and streams.
NASA Astrophysics Data System (ADS)
Relatores, Nicole C.; Newman, Andrew B.; Simon, Joshua D.; Ellis, Richard; Truong, Phuongmai N.; Blitz, Leo
2018-01-01
We present high quality Hα velocity fields for a sample of nearby dwarf galaxies (log M/M⊙ = 8.4-9.8) obtained as part of the Dark Matter in Dwarf Galaxies survey. The purpose of the survey is to investigate the cusp-core discrepancy by quantifying the variation of the inner slope of the dark matter distributions of 26 dwarf galaxies, which were selected as likely to have regular kinematics. The data were obtained with the Palomar Cosmic Web Imager, located on the Hale 5m telescope. We extract rotation curves from the velocity fields and use optical and infrared photometry to model the stellar mass distribution. We model the total mass distribution as the sum of a generalized Navarro-Frenk-White dark matter halo along with the stellar and gaseous components. We present the distribution of inner dark matter density profile slopes derived from this analysis. For a subset of galaxies, we compare our results to an independent analysis based on CO observations. In future work, we will compare the scatter in inner density slopes, as well as their correlations with galaxy properties, to theoretical predictions for dark matter core creation via supernovae feedback.
Hot spots and dark current in advanced plasma wakefield accelerators
Manahan, G. G.; Deng, A.; Karger, O.; ...
2016-01-29
Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. Likewise, these electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. The strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.
Varanasi, Jhansi L; Sinha, Pallavi; Das, Debabrata
2017-05-01
To selectively enrich an electrogenic mixed consortium capable of utilizing dark fermentative effluents as substrates in microbial fuel cells and to further enhance the power outputs by optimization of influential anodic operational parameters. A maximum power density of 1.4 W/m 3 was obtained by an enriched mixed electrogenic consortium in microbial fuel cells using acetate as substrate. This was further increased to 5.43 W/m 3 by optimization of influential anodic parameters. By utilizing dark fermentative effluents as substrates, the maximum power densities ranged from 5.2 to 6.2 W/m 3 with an average COD removal efficiency of 75% and a columbic efficiency of 10.6%. A simple strategy is provided for selective enrichment of electrogenic bacteria that can be used in microbial fuel cells for generating power from various dark fermentative effluents.
Determining density of maize canopy. 1: Digitized photography
NASA Technical Reports Server (NTRS)
Stoner, E. R.; Baumgardner, M. F.; Swain, P. H.
1972-01-01
The relationship between different densities of maize (Zea mays L.) canopies and the energy reflected by these canopies was studied. Field plots were laid out, representing four growth stages of maize, on a dark soil and on a very light colored surface soil. Spectral and spatial data were obtained from color and color infrared photography taken from a vertical distance of 10 m above the maize canopies. Estimates of ground cover were related to field measurements of leaf area index. Ground cover was predicted from leaf area index measurements by a second order equation. Color infrared photography proved helpful in determining the density of maize canopy on dark soils. Color photography was useful for determining canopy density on light colored soils. The near infrared dye layer is the most valuable in canopy density determinations.
Cosmological explosions from cold dark matter perturbations
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.
1992-01-01
The cosmological-explosion model is examined for a universe dominated by cold dark matter in which explosion seeds are produced from the growth of initial density perturbations of a given form. Fragmentation of the exploding shells is dominated by the dark-matter potential wells rather than the self-gravity of the shells, and particular conditions are required for the explosions to bootstrap up to very large scales. The final distribution of dark matter is strongly correlated with the baryons on small scales, but uncorrelated on large scales.
Concentrated dark matter: Enhanced small-scale structure from codecaying dark matter
NASA Astrophysics Data System (ADS)
Dror, Jeff A.; Kuflik, Eric; Melcher, Brandon; Watson, Scott
2018-03-01
We study the cosmological consequences of codecaying dark matter—a recently proposed mechanism for depleting the density of dark matter through the decay of nearly degenerate particles. A generic prediction of this framework is an early dark matter dominated phase in the history of the Universe, that results in the enhanced growth of dark matter perturbations on small scales. We compute the duration of the early matter dominated phase and show that the perturbations are robust against washout from free streaming. The enhanced small-scale structure is expected to survive today in the form of compact microhalos and can lead to significant boost factors for indirect-detection experiments, such as FERMI, where dark matter would appear as point sources.
Singlet particles as cold dark matter in a noncommutative space-time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettefaghi, M. M.
2009-03-15
We extend the noncommutative (NC) standard model to incorporate singlet particles as cold dark matter. In the NC space-time, the singlet particles can be coupled to the U(1) gauge field in the adjoint representation. We study the relic density of the singlet particles due to the NC induced interaction. Demanding either the singlet fermion or the singlet scalar to serve as cold dark matter and the NC induced interactions to be relevant to the dark matter production, we obtain the corresponding relations between the NC scale and the dark matter masses, which are consistent with some existing bounds.
Probing dark matter at the LHC using vector boson fusion processes.
Delannoy, Andres G; Dutta, Bhaskar; Gurrola, Alfredo; Johns, Will; Kamon, Teruki; Luiggi, Eduardo; Melo, Andrew; Sheldon, Paul; Sinha, Kuver; Wang, Kechen; Wu, Sean
2013-08-09
Vector boson fusion processes at the Large Hadron Collider (LHC) provide a unique opportunity to search for new physics with electroweak couplings. A feasibility study for the search of supersymmetric dark matter in the final state of two vector boson fusion jets and large missing transverse energy is presented at 14 TeV. Prospects for determining the dark matter relic density are studied for the cases of wino and bino-Higgsino dark matter. The LHC could probe wino dark matter with mass up to approximately 600 GeV with a luminosity of 1000 fb(-1).
Upper bounds on asymmetric dark matter self annihilation cross sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellwanger, Ulrich; Mitropoulos, Pantelis, E-mail: ulrich.ellwanger@th.u-psud.fr, E-mail: pantelis.mitropoulos@th.u-psud.fr
2012-07-01
Most models for asymmetric dark matter allow for dark matter self annihilation processes, which can wash out the asymmetry at temperatures near and below the dark matter mass. We study the coupled set of Boltzmann equations for the symmetric and antisymmetric dark matter number densities, and derive conditions applicable to a large class of models for the absence of a significant wash-out of an asymmetry. These constraints are applied to various existing scenarios. In the case of left- or right-handed sneutrinos, very large electroweak gaugino masses, or very small mixing angles are required.
Constraining dark matter by the 511 keV line
NASA Astrophysics Data System (ADS)
Chan, Man Ho; Leung, Chung Hei
2018-06-01
In the past few decades, observations indicated that an unexplained high production rate of positrons (the strong 511 keV line) exists in the Milky Way center. By using the fact that a large amount of high density gas used to exist near the Milky Way center million years ago, we model the rate of positrons produced due to dark matter annihilation. We consider the effect of adiabatic contraction of dark matter density due to the supermassive black hole at the Milky Way center and perform a detailed calculation to constrain the possible annihilation channel and dark matter mass range. We find that only three annihilation channels (μ+μ-, 4e and 4μ) can provide the required positron production rate and satisfy the stringent constraint of gamma-ray observations. In particular, the constrained mass range for the μ+μ- channel is m ≈ 80 - 100 GeV, which is close to the mass range obtained for the dark matter interpretation of the GeV gamma-ray and positron excess. In other words, the proposed scenario can simultaneously provide the required positron production rate to explain the 511 keV emission, the positron excess and the GeV gamma-ray excess in our Milky Way, and it is compatible with the density spike due to adiabatic growth model of the supermassive black hole.
NASA Astrophysics Data System (ADS)
Brook, Chris B.
2015-12-01
Rotation curves of galaxies show a wide range of shapes, which can be paramaterized as scatter in Vrot(1 kpc)/Vmax , i.e. the ratio of the rotation velocity measured at 1 kpc and the maximum measured rotation velocity. We examine whether the observed scatter can be accounted for by combining scatters in disc scalelengths, the concentration-halo mass relation, and the M⋆-Mhalo relation. We use these scatters to create model galaxy populations; when housed within dark matter haloes that have universal, Navarro, Frenk & White density profiles, the model does not match the lowest observed values of Vrot(1 kpc)/Vmax and has too little scatter in Vrot(1 kpc)/Vmax compared to observations. By contrast, a model using a mass-dependent dark matter profile, where the inner slope is determined by the ratio of M⋆/Mhalo, produces galaxies with low values of Vrot(1 kpc)/Vmax and a much larger scatter, both in agreement with observation. We conclude that the large observed scatter in Vrot(1 kpc)/Vmax favours density profiles that are significantly affected by baryonic processes. Alternative dark matter core formation models such as self-interacting dark matter may also account for the observed variation in rotation curve shapes, but these observations may provide important constraints in terms of core sizes, and whether they vary with halo mass and/or merger history.
A Novel Approach to Visualizing Dark Matter Simulations.
Kaehler, R; Hahn, O; Abel, T
2012-12-01
In the last decades cosmological N-body dark matter simulations have enabled ab initio studies of the formation of structure in the Universe. Gravity amplified small density fluctuations generated shortly after the Big Bang, leading to the formation of galaxies in the cosmic web. These calculations have led to a growing demand for methods to analyze time-dependent particle based simulations. Rendering methods for such N-body simulation data usually employ some kind of splatting approach via point based rendering primitives and approximate the spatial distributions of physical quantities using kernel interpolation techniques, common in SPH (Smoothed Particle Hydrodynamics)-codes. This paper proposes three GPU-assisted rendering approaches, based on a new, more accurate method to compute the physical densities of dark matter simulation data. It uses full phase-space information to generate a tetrahedral tessellation of the computational domain, with mesh vertices defined by the simulation's dark matter particle positions. Over time the mesh is deformed by gravitational forces, causing the tetrahedral cells to warp and overlap. The new methods are well suited to visualize the cosmic web. In particular they preserve caustics, regions of high density that emerge, when several streams of dark matter particles share the same location in space, indicating the formation of structures like sheets, filaments and halos. We demonstrate the superior image quality of the new approaches in a comparison with three standard rendering techniques for N-body simulation data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddadi, A.; Suo, X. V.; Adhikary, S.
2015-10-05
A high-performance short-wavelength infrared n-i-p photodiode based on InAs/InAs{sub 1−x}Sb{sub x}/AlAs{sub 1−x}Sb{sub x} type-II superlattices on GaSb substrate has been demonstrated. The device is designed to have a 50% cut-off wavelength of ∼1.8 μm at 300 K. The photodetector exhibited a room-temperature (300 K) peak responsivity of 0.47 A/W at 1.6 μm, corresponding to a quantum efficiency of 37% at zero bias under front-side illumination, without any anti-reflection coating. With an R × A of 285 Ω cm{sup 2} and a dark current density of 9.6 × 10{sup −5} A/cm{sup 2} under −50 mV applied bias at 300 K, the photodiode exhibited a specific detectivity of 6.45 × 10{sup 10 }cm Hz{supmore » 1/2}/W. At 200 K, the photodiode exhibited a dark current density of 1.3 × 10{sup −8} A/cm{sup 2} and a quantum efficiency of 36%, resulting in a detectivity of 5.66 × 10{sup 12 }cm Hz{sup 1/2}/W.« less
Dark Current Reduction of IR Detectors
2017-10-19
demonstrating a novel dark current reduction approach for dense infrared detector arrays. This technique is based on the diffusion control junction (DCJ...fabricate and test detector arrays with and without DCJs on the same wafer and demonstrate the effectiveness of the DCJ approach in reducing dark current...subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE
NASA Technical Reports Server (NTRS)
Weiland, J.L.; Hill, R.S.; Odegard, 3.; Larson, D.; Bennett, C.L.; Dunkley, J.; Jarosik, N.; Page, L.; Spergel, D.N.; Halpern, M.;
2008-01-01
The Wilkinson Microwave Anisotropy Probe (WMAP) is a Medium-Class Explorer (MIDEX) satellite aimed at elucidating cosmology through full-sky observations of the cosmic microwave background (CMB). The WMAP full-sky maps of the temperature and polarization anisotropy in five frequency bands provide our most accurate view to date of conditions in the early universe. The multi-frequency data facilitate the separation of the CMB signal from foreground emission arising both from our Galaxy and from extragalactic sources. The CMB angular power spectrum derived from these maps exhibits a highly coherent acoustic peak structure which makes it possible to extract a wealth of information about the composition and history of the universe. as well as the processes that seeded the fluctuations. WMAP data have played a key role in establishing ACDM as the new standard model of cosmology (Bennett et al. 2003: Spergel et al. 2003; Hinshaw et al. 2007: Spergel et al. 2007): a flat universe dominated by dark energy, supplemented by dark matter and atoms with density fluctuations seeded by a Gaussian, adiabatic, nearly scale invariant process. The basic properties of this universe are determined by five numbers: the density of matter, the density of atoms. the age of the universe (or equivalently, the Hubble constant today), the amplitude of the initial fluctuations, and their scale dependence. By accurately measuring the first few peaks in the angular power spectrum, WMAP data have enabled the following accomplishments: Showing the dark matter must be non-baryonic and interact only weakly with atoms and radiation. The WMAP measurement of the dark matter density puts important constraints on supersymmetric dark matter models and on the properties of other dark matter candidates. With five years of data and a better determination of our beam response, this measurement has been significantly improved. Precise determination of the density of atoms in the universe. The agreement between the atomic density derived from WMAP and the density inferred from the deuterium abundance is an important test of the standard big bang model. Determination of the acoustic scale at redshift z = 1090. Similarly, the recent measurement of baryon acoustic oscillations (BAO) in the galaxy power spectrum (Eisenstein et al. 2005) has determined the acoustic scale at redshift z approx. 0.35. When combined, these standard rulers accurately measure the geometry of the universe and the properties of the dark energy. These data require a nearly flat universe dominated by dark energy consistent with a cosmological constant. Precise determination of the Hubble Constant, in conjunction with BAO observations. Even when allowing curvature (Omega(sub 0) does not equal 1) and a free dark energy equation of state (w does not equal -1), the acoustic data determine the Hubble constant to within 3%. The measured value is in excellent agreement with independent results from the Hubble Key Project (Freedman et al. 2001), providing yet another important consistency test for the standard model. Significant constraint of the basic properties of the primordial fluctuations. The anti-correlation seen in the temperature/polarization (TE) correlation spectrum on 4deg scales implies that the fluctuations are primarily adiabatic and rule out defect models and isocurvature models as the primary source of fluctuations (Peiris et al. 2003).
Pathologic Changes of the Peripheral Vestibular System Secondary to Chronic Otitis Media.
da Costa Monsanto, Rafael; Erdil, Mehmet; Pauna, Henrique F; Kwon, Geeyoun; Schachern, Patricia A; Tsuprun, Vladimir; Paparella, Michael M; Cureoglu, Sebahattin
2016-09-01
To evaluate the histopathologic changes of dark, transitional, and hair cells of the vestibular system in human temporal bones from patients with chronic otitis media. Comparative human temporal bone study. Otopathology laboratory. To compare the density of vestibular dark, transitional, and hair cells in temporal bones with and without chronic otitis media, we used differential interference contrast microscopy. In the chronic otitis media group (as compared with the age-matched control group), the density of type I and type II hair cells was significantly decreased in the lateral semicircular canal, saccule, and utricle (P < .05). The density of type I cells was also significantly decreased in the chronic otitis media group in the posterior semicircular canal (P = .005), but that of type II cells was not (P = .168). The mean number of dark cells was significantly decreased in the chronic otitis media group in the lateral semicircular canal (P = .014) and in the posterior semicircular canal (P = .002). We observed no statistically significant difference in the density of transitional cells between the 2 groups (P > .1). The findings of our study suggest that the decrease in the number of vestibular sensory cells and dark cells could be the cause of the clinical symptoms of imbalance of some patients with chronic otitis media. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.
Thermally activated persistent photoconductivity & donor binding energy in high mobility AlAs QWs
NASA Astrophysics Data System (ADS)
Dasgupta, S.; Knaak, C.; Fontcuberta, A.; Bichler, M.; Abstreiter, G.; Grayson, M.
2008-03-01
In AlAs, valley index is important quantum number which can help understand interactions. However, important parameters for growth such as donor binding energy and Si δ-doping efficiency were unknown and AlAs quantum wells (QWs) typically did not conduct in dark. We grew series of (001) and (110) oriented double-sided doped n-type AlAs QWs and deduced Si donor binding energy δ in Al0.45Ga0.55 As and doping efficiency η. They work in dark possibly because dilute charge traps in substrate are screened by backside doping. From dark saturation density for doping series we deduced δdk=65.2 meV [1]. Our studies show thermally activated PPC where sample is illuminated at 4 K and returned to dark without appreciable density increase. As temperature is increased to 30 K, density doubles, indicating shallow binding energy δPIA=0 meV post-illumination anneal (PIA). Doping efficiency after illumination for (001) facet was found to be η=n2D/nSi=35% and for (110) η=17%. With this understanding, we designed (001) AlAs QW with PIA density n=2.4 x 10^11 cm-2 and mobility μ=4.3 x 10^5 cm^2/Vs(330 mK), improvement of almost an order of magnitude over published results. [1] Dasgupta, et al. APL (2007)
NASA Astrophysics Data System (ADS)
Gunawan, R.; Sugiarti, E.; Isnaeni; Purawiardi, R. I.; Widodo, H.; Muslimin, A. N.; Yuliasari; Ronaldus, C. E.; Prastomo, N.; Hastuty, S.
2018-03-01
The optical, electrical and structural characteristics of InGaN-based blue light-emitting diodes (LEDs) were investigated to identify the degradation of LED before and after current injection. The sample was injected by high current of 200 A/cm2 for 5 and 20 minutes. It was observed that injection of current shifts light intensity and wavelength characteristics that indicated defect generation. Transmission Electron Microscopy (TEM) characterization was carried out in order to clarify the structure degradation caused by defect in active layer which consisted of 14 quantum well with thickness of about 5 nm and confined with barrier layer with thickness of about 12 nm. TEM results showed pre-existing defect in LED before injection with high current. Furthermore, discontinue and edge defect was found in dark spot region of LED after injection with high current.
Dark current in multilayer stabilized amorphous selenium based photoconductive x-ray detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frey, Joel B.; Belev, George; Kasap, Safa O.
2012-07-01
We report on experimental results which show that the dark current in n-i-p structured, amorphous selenium films is independent of i-layer thickness in samples with consistently thick blocking layers. We have observed, however, a strong dependence on the n-layer thickness and positive contact metal chosen. These results indicate that the dominant source of the dark current is carrier injection from the contacts and any contribution from carriers thermally generated in the bulk of the photoconductive layer is negligible. This conclusion is supported by a description of the dark current transients at different applied fields by a model which assumes onlymore » carrier emission over a Schottky barrier. This model also predicts that while hole injection is initially dominant, some time after the application of the bias, electron injection may become the dominant source of dark current.« less
Cosmological simulations of multicomponent cold dark matter.
Medvedev, Mikhail V
2014-08-15
The nature of dark matter is unknown. A number of dark matter candidates are quantum flavor-mixed particles but this property has never been accounted for in cosmology. Here we explore this possibility from the first principles via extensive N-body cosmological simulations and demonstrate that the two-component dark matter model agrees with observational data at all scales. Substantial reduction of substructure and flattening of density profiles in the centers of dark matter halos found in simulations can simultaneously resolve several outstanding puzzles of modern cosmology. The model shares the "why now?" fine-tuning caveat pertinent to all self-interacting models. Predictions for direct and indirect detection dark matter experiments are made.
Improved first-pass spiral myocardial perfusion imaging with variable density trajectories.
Salerno, Michael; Sica, Christopher; Kramer, Christopher M; Meyer, Craig H
2013-11-01
To develop and evaluate variable-density spiral first-pass perfusion pulse sequences for improved efficiency and off-resonance performance and to demonstrate the utility of an apodizing density compensation function (DCF) to improve signal-to-noise ratio (SNR) and reduce dark-rim artifact caused by cardiac motion and Gibbs Ringing. Three variable density spiral trajectories were designed, simulated, and evaluated in 18 normal subjects, and in eight patients with cardiac pathology on a 1.5T scanner. By using a DCF, which intentionally apodizes the k-space data, the sidelobe amplitude of the theoretical point spread function (PSF) is reduced by 68%, with only a 13% increase in the full-width at half-maximum of the main-lobe when compared with the same data corrected with a conventional variable-density DCF, and has an 8% higher resolution than a uniform density spiral with the same number of interleaves and readout duration. Furthermore, this strategy results in a greater than 60% increase in measured SNR when compared with the same variable-density spiral data corrected with a conventional DCF (P < 0.01). Perfusion defects could be clearly visualized with minimal off-resonance and dark-rim artifacts. Variable-density spiral pulse sequences using an apodized DCF produce high-quality first-pass perfusion images with minimal dark-rim and off-resonance artifacts, high SNR and contrast-to-noise ratio, and good delineation of resting perfusion abnormalities. Copyright © 2012 Wiley Periodicals, Inc.
Surface leakage current in 12.5 μm long-wavelength HgCdTe infrared photodiode arrays.
Qiu, Weicheng; Hu, Weida; Lin, Chun; Chen, Xiaoshuang; Lu, Wei
2016-02-15
Long-wavelength (especially >12 μm) focal plane array (FPA) infrared detection is the cutting edge technique for third-generation infrared remote sensing. However, dark currents, which are very sensitive to the growth of small Cd composition HgCdTe, strongly limits the performance of long wavelength HgCdTe photodiode arrays in FPAs. In this Letter, 12.5 μm long-wavelength Hg1-xCdxTe (x≈0.219) infrared photodiode arrays are reported. The variable-area and variable-temperature electrical characteristics of the long-wavelength infrared photodiodes are measured. The characteristics of the extracted zero-bias resistance-area product (l/R0A) varying with the perimeter-to-area (P/A) ratio clearly show that surface leakage current mechanisms severely limit the overall device performance. A sophisticated model has been developed for investigating the leakage current mechanism in the photodiodes. Modeling of temperature-dependent I-V characteristic indicates that the trap-assisted tunneling effect dominates the dark current at 50 K resulting in nonuniformities in the arrays. The extracted trap density, approximately 1013-1014 cm-3, with an ionized energy of 30 meV is determined by simulation. The work described in this Letter provides the basic mechanisms for a better understanding of the leakage current mechanism for long-wavelength (>12 μm) HgCdTe infrared photodiode arrays.
Detecting dark energy in orbit: The cosmological chameleon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine
2004-12-15
We show that the chameleon scalar field can drive the current phase of cosmic acceleration for a large class of scalar potentials that are also consistent with local tests of gravity. These provide explicit realizations of a quintessence model where the quintessence scalar field couples directly to baryons and dark matter with gravitational strength. We analyze the cosmological evolution of the chameleon field and show the existence of an attractor solution with the chameleon following the minimum of its effective potential. For a wide range of initial conditions, spanning many orders of magnitude in initial chameleon energy density, the attractormore » is reached before nucleosynthesis. Surprisingly, the range of allowed initial conditions leading to a successful cosmology is wider than in normal quintessence. We discuss applications to the cyclic model of the universe and show how the chameleon mechanism weakens some of the constraints on cyclic potentials.« less
Exploring spin-3 /2 dark matter with effective Higgs couplings
NASA Astrophysics Data System (ADS)
Chang, Chia-Feng; He, Xiao-Gang; Tandean, Jusak
2017-10-01
We study an economical model of weakly interacting massive particle dark matter (DM) which has spin 3 /2 and interacts with the 125 GeV Higgs boson via effective scalar and pseudoscalar operators. We apply constraints on the model from the relic density data, LHC measurements of the Higgs boson, and direct and indirect searches for DM, taking into account the effective nature of the DM-Higgs couplings. We show that this DM is currently viable in most of the mass region from about 58 GeV to 2.3 TeV and will be probed more stringently by ongoing and upcoming experiments. Nevertheless, the presence of the DM-Higgs pseudoscalar coupling could make parts of the model parameter space elusive from future tests. We find that important aspects of this scenario are quite similar to those of its more popular spin-1 /2 counterpart.
Redshift space clustering of galaxies and cold dark matter model
NASA Technical Reports Server (NTRS)
Bahcall, Neta A.; Cen, Renyue; Gramann, Mirt
1993-01-01
The distorting effect of peculiar velocities on the power speturm and correlation function of IRAS and optical galaxies is studied. The observed redshift space power spectra and correlation functions of IRAS and optical the galaxies over the entire range of scales are directly compared with the corresponding redshift space distributions using large-scale computer simulations of cold dark matter (CDM) models in order to study the distortion effect of peculiar velocities on the power spectrum and correlation function of the galaxies. It is found that the observed power spectrum of IRAS and optical galaxies is consistent with the spectrum of an Omega = 1 CDM model. The problems that such a model currently faces may be related more to the high value of Omega in the model than to the shape of the spectrum. A low-density CDM model is also investigated and found to be consistent with the data.
NASA Astrophysics Data System (ADS)
Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub
2017-08-01
Recently it was shown that dark matter with mass of order the weak scale can be charged under a new long-range force, decoupled from the Standard Model, with only weak constraints from early Universe cosmology. Here we consider the implications of an additional charged particle C that is light enough to lead to significant dissipative dynamics on galactic times scales. We highlight several novel features of this model, which can be relevant even when the C particle constitutes only a small fraction of the number density (and energy density). We assume a small asymmetric abundance of the C particle whose charge is compensated by a heavy X particle so that the relic abundance of dark matter consists mostly of symmetric X and bar X, with a small asymmetric component made up of X and C. As the universe cools, it undergoes asymmetric recombination binding the free Cs into (XC) dark atoms efficiently. Even with a tiny asymmetric component, the presence of C particles catalyzes tight coupling between the heavy dark matter X and the dark photon plasma that can lead to a significant suppression of the matter power spectrum on small scales and lead to some of the strongest bounds on such dark matter theories. We find a viable parameter space where structure formation constraints are satisfied and significant dissipative dynamics can occur in galactic haloes but show a large region is excluded. Our model shows that subdominant components in the dark sector can dramatically affect structure formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa
Recently it was shown that dark matter with mass of order the weak scale can be charged under a new long-range force, decoupled from the Standard Model, with only weak constraints from early Universe cosmology. Here we consider the implications of an additional charged particle C that is light enough to lead to significant dissipative dynamics on galactic times scales. We highlight several novel features of this model, which can be relevant even when the C particle constitutes only a small fraction of the number density (and energy density). We assume a small asymmetric abundance of the C particle whosemore » charge is compensated by a heavy X particle so that the relic abundance of dark matter consists mostly of symmetric X and X-bar , with a small asymmetric component made up of X and C . As the universe cools, it undergoes asymmetric recombination binding the free C s into ( XC ) dark atoms efficiently. Even with a tiny asymmetric component, the presence of C particles catalyzes tight coupling between the heavy dark matter X and the dark photon plasma that can lead to a significant suppression of the matter power spectrum on small scales and lead to some of the strongest bounds on such dark matter theories. We find a viable parameter space where structure formation constraints are satisfied and significant dissipative dynamics can occur in galactic haloes but show a large region is excluded. Our model shows that subdominant components in the dark sector can dramatically affect structure formation.« less
Nonlinear time dependence of dark current in charge-coupled devices
NASA Astrophysics Data System (ADS)
Dunlap, Justin C.; Bodegom, Erik; Widenhorn, Ralf
2011-03-01
It is generally assumed that charge-coupled device (CCD) imagers produce a linear response of dark current versus exposure time except near saturation. We found a large number of pixels with nonlinear dark current response to exposure time to be present in two scientific CCD imagers. These pixels are found to exhibit distinguishable behavior with other analogous pixels and therefore can be characterized in groupings. Data from two Kodak CCD sensors are presented for exposure times from a few seconds up to two hours. Linear behavior is traditionally taken for granted when carrying out dark current correction and as a result, pixels with nonlinear behavior will be corrected inaccurately.
Ultra-Fast Image Sensor Using Ge on Insulator MIS/Schottky Detectors
2008-05-28
electronic system. The noise equivalent power is defined as in /R, where in is the current noise and R is the responsivity. At 1 V, the current noise ...is limited by the dark current and can be approximated as the shot noise 2eIdf1/2, where Id is the measured dark current. At 0 V, the dark current...approaches zero, and the current noise should be approximated as Johnson noise 4kTGf1/2, where G is the measured conductance. Therefore, D* can be
Ultralight scalars as cosmological dark matter
NASA Astrophysics Data System (ADS)
Hui, Lam; Ostriker, Jeremiah P.; Tremaine, Scott; Witten, Edward
2017-02-01
Many aspects of the large-scale structure of the Universe can be described successfully using cosmological models in which 27 ±1 % of the critical mass-energy density consists of cold dark matter (CDM). However, few—if any—of the predictions of CDM models have been successful on scales of ˜10 kpc or less. This lack of success is usually explained by the difficulty of modeling baryonic physics (star formation, supernova and black-hole feedback, etc.). An intriguing alternative to CDM is that the dark matter is an extremely light (m ˜10-22 eV ) boson having a de Broglie wavelength λ ˜1 kpc , often called fuzzy dark matter (FDM). We describe the arguments from particle physics that motivate FDM, review previous work on its astrophysical signatures, and analyze several unexplored aspects of its behavior. In particular, (i) FDM halos or subhalos smaller than about 1 07(m /10-22 eV )-3 /2 M⊙ do not form, and the abundance of halos smaller than a few times 1 010(m /10-22 eV )-4 /3 M⊙ is substantially smaller in FDM than in CDM. (ii) FDM halos are comprised of a central core that is a stationary, minimum-energy solution of the Schrödinger-Poisson equation, sometimes called a "soliton," surrounded by an envelope that resembles a CDM halo. The soliton can produce a distinct signature in the rotation curves of FDM-dominated systems. (iii) The transition between soliton and envelope is determined by a relaxation process analogous to two-body relaxation in gravitating N-body systems, which proceeds as if the halo were composed of particles with mass ˜ρ λ3 where ρ is the halo density. (iv) Relaxation may have substantial effects on the stellar disk and bulge in the inner parts of disk galaxies, but has negligible effect on disk thickening or globular cluster disruption near the solar radius. (v) Relaxation can produce FDM disks but a FDM disk in the solar neighborhood must have a half-thickness of at least ˜300 (m /10-22 eV )-2/3 pc and a midplane density less than 0.2 (m /10-22 eV )2/3 times the baryonic disk density. (vi) Solitonic FDM subhalos evaporate by tunneling through the tidal radius and this limits the minimum subhalo mass inside ˜30 kpc of the Milky Way to a few times 1 08(m /10-22 eV )-3 /2 M⊙ . (vii) If the dark matter in the Fornax dwarf galaxy is composed of CDM, most of the globular clusters observed in that galaxy should have long ago spiraled to its center, and this problem is resolved if the dark matter is FDM. (viii) FDM delays galaxy formation relative to CDM but its galaxy-formation history is consistent with current observations of high-redshift galaxies and the late reionization observed by Planck. If the dark matter is composed of FDM, most observations favor a particle mass ≳10-22 eV and the most significant observational consequences occur if the mass is in the range 1 - 10 ×10-22 eV . There is tension with observations of the Lyman-α forest, which favor m ≳10 - 20 ×10-22 eV and we discuss whether more sophisticated models of reionization may resolve this tension.
In Situ observation of dark current emission in a high gradient rf photocathode gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.
Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (~100 μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. Finally, the postexaminations with scanning electron microscopy and white light interferometry reveal the origins ofmore » ~75% strong emission areas overlap with the spots where rf breakdown has occurred.« less
In Situ observation of dark current emission in a high gradient rf photocathode gun
Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.; ...
2016-08-15
Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (~100 μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. Finally, the postexaminations with scanning electron microscopy and white light interferometry reveal the origins ofmore » ~75% strong emission areas overlap with the spots where rf breakdown has occurred.« less
Dark energy and the structure of the Coma cluster of galaxies
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Bisnovatyi-Kogan, G. S.; Teerikorpi, P.; Valtonen, M. J.; Byrd, G. G.; Merafina, M.
2013-05-01
Context. We consider the Coma cluster of galaxies as a gravitationally bound physical system embedded in the perfectly uniform static dark energy background as implied by ΛCDM cosmology. Aims: We ask if the density of dark energy is high enough to affect the structure of a large and rich cluster of galaxies. Methods: We base our work on recent observational data on the Coma cluster, and apply our theory of local dynamical effects of dark energy, including the zero-gravity radius RZG of the local force field as the key parameter. Results: 1) Three masses are defined that characterize the structure of a regular cluster: the matter mass MM, the dark-energy effective mass MDE (<0), and the gravitating mass MG (=MM + MDE). 2) A new matter-density profile is suggested that reproduces the observational data well for the Coma cluster in the radius range from 1.4 Mpc to 14 Mpc and takes the dark energy background into account. 3) Using this profile, we calculate upper limits for the total size of the Coma cluster, R ≤ RZG ≈ 20 Mpc, and its total matter mass, MM ≲ MM(RZG) = 6.2 × 1015 M⊙. Conclusions: The dark energy antigravity affects the structure of the Coma cluster strongly at large radii R ≳ 14 Mpc and should be considered when its total mass is derived.
Cosmological perturbations during the Bose-Einstein condensation of dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freitas, R.C.; Gonçalves, S.V.B., E-mail: rodolfo.camargo@pq.cnpq.br, E-mail: sergio.vitorino@pq.cnpq.br
In the present work, we analyze the evolution of the scalar and tensorial perturbations and the quantities relevant for the physical description of the Universe, as the density contrast of the scalar perturbations and the gravitational waves energy density during the Bose-Einstein condensation of dark matter. The behavior of these parameters during the Bose-Einstein phase transition of dark matter is analyzed in details. To study the cosmological dynamics and evolution of scalar and tensorial perturbations in a Universe with and without cosmological constant we use both analytical and numerical methods. The Bose-Einstein phase transition modifies the evolution of gravitational wavesmore » of cosmological origin, as well as the process of large-scale structure formation.« less
Effective Dark Matter Halo Catalog in f(R) Gravity.
He, Jian-Hua; Hawken, Adam J; Li, Baojiu; Guzzo, Luigi
2015-08-14
We introduce the idea of an effective dark matter halo catalog in f(R) gravity, which is built using the effective density field. Using a suite of high resolution N-body simulations, we find that the dynamical properties of halos, such as the distribution of density, velocity dispersion, specific angular momentum and spin, in the effective catalog of f(R) gravity closely mimic those in the cold dark matter model with a cosmological constant (ΛCDM). Thus, when using effective halos, an f(R) model can be viewed as a ΛCDM model. This effective catalog therefore provides a convenient way for studying the baryonic physics, the galaxy halo occupation distribution and even semianalytical galaxy formation in f(R) cosmologies.
Asymmetric dark matter models in SO(10)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagata, Natsumi; Olive, Keith A.; Zheng, Jiaming, E-mail: natsumi@hep-th.phys.s.u-tokyo.ac.jp, E-mail: olive@physics.umn.edu, E-mail: zheng@physics.umn.edu
2017-02-01
We systematically study the possibilities for asymmetric dark matter in the context of non-supersymmetric SO(10) models of grand unification. Dark matter stability in SO(10) is guaranteed by a remnant Z{sub 2} symmetry which is preserved when the intermediate scale gauge subgroup of SO(10) is broken by a (\\bf 126) dimensional representation. The asymmetry in the dark matter states is directly generated through the out-of-equilibrium decay of particles around the intermediate scale, or transferred from the baryon/lepton asymmetry generated in the Standard Model sector by leptogenesis. We systematically classify possible asymmetric dark matter candidates in terms of their quantum numbers, andmore » derive the conditions for each case that the observed dark matter density is (mostly) explained by the asymmetry of dark matter particles.« less
NASA Astrophysics Data System (ADS)
Oshio, S.; Yamaguchi, K. E.; Takahashi, S.; Naraoka, H.; Ikehara, M.
2016-12-01
Asian monsoon climate system has started about 50 Ma, after the collision of the Indian and Eurasian continents followed by uplift of the Himalaya and Tibetan Plateau. It has influenced sediments in the Japan Sea, where cm-scale alternation of Corg-rich dark layers and Corg-poor light layers occurs. This is most likely due to temporal changes in the nutrient status and/or oceanic redox conditions, which are likely caused by the fluctuations in the intensity of continental weathering and ocean currents, both of which were ultimately caused by the variable monsoon system. In order to obtain insights into the evolving oceanic redox state and the monsoon system, we conducted sulfur speciation and isotope study for the marine sediment core samples recovered in the central Japan Sea by IODP Exp. 346. The light layers have lower Spy (0.03-0.25 wt.%) contents when compared to the dark layers (0.26-1.49 wt.%). The Corg contents have similar distribution (0.34-1.10 wt.% for light layers and 1.16-3.38 wt.% for dark layers). However, the SSO4 contents (0.02-.64 wt.%) and the δ34S values (-34 to -38‰) did not show such light-dark distinction. Elevated Spy/Corg ratios (0.03-1.00) in the dark layers are interpreted to represent sulfide formation in the anoxic water column by bacterial sulfate reduction. During deposition of light layers, oxidation of sulfide minerals could have resulted in formation of sulfate minerals without significant isotope fractionation, as observed in this study. Regardless of the type of the sediments (dark vs. light), sulfate was not limiting during bacterial sulfate reduction, as reflected in the sulfur isotope compositions. We speculate that, during deposition of dark layers, enhanced summer monsoon activity caused heavy rainfall and increased source-rock weathering, runoff of the Yangtze River, and nutrient input into the East China Sea and the Tsushima Warm Current. Inflow of nutrient-rich and less salty water into the Japan Sea triggered enhanced biological activity, water-column density stratification, transport of organic matter into deeper ocean and consumption of dissolved oxygen, and ultimately the creation of anoxic water body to allow bacterial sulfate reduction. (syngenetic sulfide formation)
WFC3/UVIS Dark Calibration: Monitoring Results and Improvements to Dark Reference Files
NASA Astrophysics Data System (ADS)
Bourque, M.; Baggett, S.
2016-04-01
The Wide Field Camera 3 (WFC3) UVIS detector possesses an intrinsic signal during exposures, even in the absence of light, known as dark current. A daily monitor program is employed every HST cycle to characterize and measure this current as well as to create calibration files which serve to subtract the dark current from science data. We summarize the results of the daily monitor program for all on-orbit data. We also introduce a new algorithm for generating the dark reference files that provides several improvements to their overall quality. Key features to the new algorithm include correcting the dark frames for Charge Transfer Efficiency (CTE) losses, using an anneal-cycle average value to measure the dark current, and generating reference files on a daily basis. This new algorithm is part of the release of the CALWF3 v3.3 calibration pipeline on February 23, 2016 (also known as "UVIS 2.0"). Improved dark reference files have been regenerated and re-delivered to the Calibration Reference Data System (CRDS) for all on-orbit data. Observers with science data taken prior to the release of CALWF3 v3.3 may request their data through the Mikulski Archive for Space Telescopes (MAST) to obtain the improved products.
Radiometric and Radiation Response of Visible FPAs
NASA Technical Reports Server (NTRS)
Hubbs, John
2007-01-01
The readout integrated circuit (ROIC) used in these devices was originally developed for use in space based infrared systems operating at deep cryogenic temperatures and was selected because of its proven tolerance to total ionizing radiation? The detectors are a 128 x 128 array of 60 pm x 60 pm pixel elements that have been anti-reflection (AR) coated to improve the response at very short wavelengths. These visible focal plane arrays were operated at -40 C (233 K). Two focal planes were characterized using cobalt-60 radiation to produce ionizing total dose damage in the VFPAs. Both operational and performance data were obtained as functions of total dose. The first device tested showed no appreciable change in responsivity or noise up to 300 krad(Si). However, at the next dose level of 600 krad(Si), the readout was non-operational due to failure in the digital circuitry. The second device was characterized to a total dose of 750 krad(Si) with no observed change in responsivity. An increase dark current was observed in both devices, and in the second device, the dark current caused an increase in noise at low irradiance at 400 krad(Si) and above. The increase in dark current was somewhat un-expected for visible PIN detectors. The median dark current increased more than two orders of magnitude at 300 krad(Si) for the first device and a factor of 350 at 750 krad(Si) for pixels near the edge for the second device. The dark current was found to be a strong function of detector bias, with pixels near the edge of the array showing a greater increase in dark current with bias than those near the center. Since the optical response was not a function of bias, it is hypothesized that the dark current is a surface effect and that the variation in dark current with location is due to a variation in pixel bias, caused by a voltage drop across the pixel common lead. As the total dose increased, the dark current and the voltage drop increased
Riding gravity away from doomsday
NASA Astrophysics Data System (ADS)
Sen, Ashoke
2015-09-01
The discovery that most of the energy density in the universe is stored in the form of dark energy has profound consequences for our future. In particular, our current limited understanding of quantum theory of gravity indicates that some time in the future, our universe will undergo a phase transition that will destroy us and everything else around us instantaneously. However, the laws of gravity also suggest a way out — some of our descendants could survive this catastrophe by riding gravity away from the danger. This paper describes the tale of this escape from doomsday.
Holographic scalar fields in Kaluza-Klein framework
NASA Astrophysics Data System (ADS)
Erkan, Sevda; Pirinccioglu, Nurettin; Salti, Mustafa; Aydogdu, Oktay
2017-12-01
Making use of the Friedmann-Robertson-Walker (FRW) type Kaluza-Klein universe (KKU), we discuss the holographic dark energy density (HDED) in order to develop its correspondence with some scalar field descriptions such as the tachyon, quintessence, DBI-essence, dilaton and the k-essence. It is concluded that the Kaluza-Klein-type HDED proposal becomes stable throughout the history of our universe and is consistent with the current status of the universe. Next, we obtain the exact solutions of self-interacting potential and scalar field function for the selected models.
A Possible Solution to the Smallness Problem of Dark Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin; /SLAC; Gu, Je-An
2005-07-08
The smallness of the dark energy density has been recognized as the most crucial difficulty in understanding dark energy and also one of the most important questions in the new century. In a recent paper[1], we proposed a new dark energy model in which the smallness of the cosmological constant is naturally achieved by invoking the Casimir energy in a supersymmetry-breaking brane-world. In this paper we review the basic notions of this model. Various implications, perspectives, and subtleties of this model are briefly discussed.
Dark solitons with Majorana fermions in spin-orbit-coupled Fermi gases.
Xu, Yong; Mao, Li; Wu, Biao; Zhang, Chuanwei
2014-09-26
We show that a single dark soliton can exist in a spin-orbit-coupled Fermi gas with a high spin imbalance, where spin-orbit coupling favors uniform superfluids over nonuniform Fulde-Ferrell-Larkin-Ovchinnikov states, leading to dark soliton excitations in highly imbalanced gases. Above a critical spin imbalance, two topological Majorana fermions without interactions can coexist inside a dark soliton, paving a way for manipulating Majorana fermions through controlling solitons. At the topological transition point, the atom density contrast across the soliton suddenly vanishes, suggesting a signature for identifying topological solitons.
Observations of SO in dark and molecular clouds
NASA Technical Reports Server (NTRS)
Rydbeck, O. E. H.; Hjalmarson, A.; Rydbeck, G.; Ellder, J.; Kollberg, E.; Irvine, W. M.
1980-01-01
The 1(0)-0(1) transition of SO at 30 GHz has been observed in several sources, including the first detection of sulfur monoxide in cold dark clouds without apparent internal energy sources. The SO transition appears to be an excellent tracer of structure in dark clouds, and the data support suggestions that self-absorption is important in determining emission profiles in such regions for large line-strength transitions. Column densities estimated from a comparison of the results for the two isotopic species indicate a high fractional abundance of SO in dark clouds.
Loop induced type-II seesaw model and GeV dark matter with U(1)B - L gauge symmetry
NASA Astrophysics Data System (ADS)
Nomura, Takaaki; Okada, Hiroshi
2017-11-01
We propose a model with U(1) B - L gauge symmetry and several new fermions in no conflict with anomaly cancellation where the neutrino masses are given by the vacuum expectation value of Higgs triplet induced at the one-loop level. The new fermions are odd under discrete Z2 symmetry and the lightest one becomes dark matter candidate. We find that the mass of dark matter is typically O (1)- O (10) GeV. Then relic density of the dark matter is discussed.
Matter Under Extreme Conditions
2006-03-01
decay of topological defects, or dark matter particles; however, also the acceleration of protons to high energy, and their subsequent interaction to...dominating now and why does it have a comparable contribution to the energy density as the dark matter ? I will try and introduce the observational
Search for dark matter effects on gravitational signals from neutron star mergers
NASA Astrophysics Data System (ADS)
Ellis, John; Hektor, Andi; Hütsi, Gert; Kannike, Kristjan; Marzola, Luca; Raidal, Martti; Vaskonen, Ville
2018-06-01
Motivated by the recent detection of the gravitational wave signal emitted by a binary neutron star merger, we analyse the possible impact of dark matter on such signals. We show that dark matter cores in merging neutron stars may yield an observable supplementary peak in the gravitational wave power spectral density following the merger, which could be distinguished from the features produced by the neutron components.
Aydiner, Ekrem
2018-01-15
In this study, we consider nonlinear interactions between components such as dark energy, dark matter, matter and radiation in the framework of the Friedman-Robertson-Walker space-time and propose a simple interaction model based on the time evolution of the densities of these components. By using this model we show that these interactions can be given by Lotka-Volterra type equations. We numerically solve these coupling equations and show that interaction dynamics between dark energy-dark matter-matter or dark energy-dark matter-matter-radiation has a strange attractor for 0 > w de >-1, w dm ≥ 0, w m ≥ 0 and w r ≥ 0 values. These strange attractors with the positive Lyapunov exponent clearly show that chaotic dynamics appears in the time evolution of the densities. These results provide that the time evolution of the universe is chaotic. The present model may have potential to solve some of the cosmological problems such as the singularity, cosmic coincidence, big crunch, big rip, horizon, oscillation, the emergence of the galaxies, matter distribution and large-scale organization of the universe. The model also connects between dynamics of the competing species in biological systems and dynamics of the time evolution of the universe and offers a new perspective and a new different scenario for the universe evolution.
Can dark matter be a scalar field?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesus, J.F.; Malatrasi, J.L.G.; Pereira, S.H.
2016-08-01
In this paper we study a real scalar field as a possible candidate to explain the dark matter in the universe. In the context of a free scalar field with quadratic potential, we have used Union 2.1 SN Ia observational data jointly with a Planck prior over the dark matter density parameter to set a lower limit on the dark matter mass as m ≥0.12 H {sub 0}{sup -1} eV ( c = h-bar =1). For the recent value of the Hubble constant indicated by the Hubble Space Telescope, namely H {sub 0}=73±1.8 km s{sup -1}Mpc{sup -1}, this leads tomore » m ≥1.56×10{sup -33} eV at 99.7% c.l. Such value is much smaller than m ∼ 10{sup -22} eV previously estimated for some models. Nevertheless, it is still in agreement with them once we have not found evidences for a upper limit on the scalar field dark matter mass from SN Ia analysis. In practice, it confirms free real scalar field as a viable candidate for dark matter in agreement with previous studies in the context of density perturbations, which include scalar field self interaction.« less
Recognising Axionic Dark Matter by Compton and de-Broglie Scale Modulation of Pulsar Timing
NASA Astrophysics Data System (ADS)
De Martino, Ivan; Broadhurst, Tom; Tye, S.-H. Henry; Chiueh, Tzihong; Schive, Hsi-Yu; Lazkoz, Ruth
2017-11-01
Light Axionic Dark Matter, motivated by string theory, is increasingly favored for the "no-WIMP era". Galaxy formation is suppressed below a Jeans scale, of ≃ 10^8 M_⊙ by setting the axion mass to, m_B ˜ 10^{-22}eV, and the large dark cores of dwarf galaxies are explained as solitons on the de-Broglie scale. This is persuasive, but detection of the inherent scalar field oscillation at the Compton frequency, ω_B= (2.5 months)^{-1}(m_B/10^{-22}eV), would be definitive. By evolving the coupled Schrödinger-Poisson equation for a Bose-Einstein condensate, we predict the dark matter is fully modulated by de-Broglie interference, with a dense soliton core of size ≃ 150pc, at the Galactic center. The oscillating field pressure induces General Relativistic time dilation in proportion to the local dark matter density and pulsars within this dense core have detectably large timing residuals, of ≃ 400nsec/(m_B/10^{-22}eV). This is encouraging as many new pulsars should be discovered near the Galactic center with planned radio surveys. More generally, over the whole Galaxy, differences in dark matter density between pairs of pulsars imprints a pairwise Galactocentric signature that can be distinguished from an isotropic gravitational wave background.
Improved First Pass Spiral Myocardial Perfusion Imaging with Variable Density Trajectories
Salerno, Michael; Sica, Christopher; Kramer, Christopher M.; Meyer, Craig H.
2013-01-01
Purpose To develop and evaluate variable-density (VD) spiral first-pass perfusion pulse sequences for improved efficiency and off-resonance performance and to demonstrate the utility of an apodizing density compensation function (DCF) to improve SNR and reduce dark-rim artifact caused by cardiac motion and Gibbs Ringing. Methods Three variable density spiral trajectories were designed, simulated, and evaluated in 18 normal subjects, and in 8 patients with cardiac pathology on a 1.5T scanner. Results By utilizing a density compensation function (DCF) which intentionally apodizes the k-space data, the side-lobe amplitude of the theoretical PSF is reduced by 68%, with only a 13% increase in the FWHM of the main-lobe as compared to the same data corrected with a conventional VD DCF, and has an 8% higher resolution than a uniform density spiral with the same number of interleaves and readout duration. Furthermore, this strategy results in a greater than 60% increase in measured SNR as compared to the same VD spiral data corrected with a conventional DCF (p<0.01). Perfusion defects could be clearly visualized with minimal off-resonance and dark-rim artifacts. Conclusion VD spiral pulse sequences using an apodized DCF produce high-quality first-pass perfusion images with minimal dark-rim and off-resonance artifacts, high SNR and CNR and good delineation of resting perfusion abnormalities. PMID:23280884
NASA Astrophysics Data System (ADS)
Pan, Supriya; Chakraborty, Subenoy
2013-09-01
In this work we consider the evolution of the interactive dark fluids in the background of homogeneous and isotropic FRW model of the universe. The dark fluids consist of a warm dark matter and a dark energy and both are described as perfect fluid with barotropic equation of state. The dark species interact non-gravitationally through an additional term in the energy conservation equations. An autonomous system is formed in the energy density spaces and fixed points are analyzed. A general expression for the deceleration parameter has been obtained and it is possible to have more than one zero of the deceleration parameter. Finally, vanishing of the deceleration parameter has been examined with some examples.
Dark energy equation of state parameter and its evolution at low redshift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, Ashutosh; Sangwan, Archana; Jassal, H.K., E-mail: ashutosh_tripathi@fudan.edu.cn, E-mail: archanakumari@iisermohali.ac.in, E-mail: hkjassal@iisermohali.ac.in
In this paper, we constrain dark energy models using a compendium of observations at low redshifts. We consider the dark energy as a barotropic fluid, with the equation of state a constant as well the case where dark energy equation of state is a function of time. The observations considered here are Supernova Type Ia data, Baryon Acoustic Oscillation data and Hubble parameter measurements. We compare constraints obtained from these data and also do a combined analysis. The combined observational constraints put strong limits on variation of dark energy density with redshift. For varying dark energy models, the range ofmore » parameters preferred by the supernova type Ia data is in tension with the other low redshift distance measurements.« less
Simulating the cold dark matter-neutrino dipole with TianNu
Inman, Derek; Yu, Hao-Ran; Zhu, Hong-Ming; ...
2017-04-20
Measurements of neutrino mass in cosmological observations rely on two-point statistics that are hindered by significant degeneracies with the optical depth and galaxy bias. The relative velocity effect between cold dark matter and neutrinos induces a large scale dipole in the matter density field and may be able to provide orthogonal constraints to standard techniques. In this paper, we numerically investigate this dipole in the TianNu simulation, which contains cold dark matter and 50 meV neutrinos. We first compute the dipole using a new linear response technique where we treat the displacement caused by the relative velocity as a phasemore » in Fourier space and then integrate the matter power spectrum over redshift. Then, we compute the dipole numerically in real space using the simulation density and velocity fields. We find excellent agreement between the linear response and N-body methods. Finally, utilizing the dipole as an observational tool requires two tracers of the matter distribution that are differently biased with respect to the neutrino density.« less
The evolving intergalactic medium - The uncollapsed baryon fraction in a cold dark matter universe
NASA Technical Reports Server (NTRS)
Shapiro, Paul R.; Giroux, Mark L.; Babul, Arif
1991-01-01
The time-varying density of the intergalactic medium (IGM) is calculated by coupling detailed numerical calculations of the thermal and ionization balance and radiative transfer in a uniform IGM of H and He to the linearized equations for the growth of density fluctuations in both gases and a dark component in a cold dark matter universe. The IGM density is identified with the collapsed baryon fraction. It is found that even if the IGM is never reheated, a significant fraction of the baryons remain uncollapsed at redshifts of four. If instead the collapsed fraction releases enough ionizing radiation or thermal energy to reionize the IGM by z greater than four as required by the Gunn-Peterson (GP) constraint, the uncollapsed fraction at z of four is even higher. The known quasar distribution is insufficient to supply the ionizing radiation necessary to satisfy the GP constraint in this case and, if stars are instead responsible, a substantial metallicity must have been produced by z of four.
Transient photoresponse in amorphous In-Ga-Zn-O thin films under stretched exponential analysis
NASA Astrophysics Data System (ADS)
Luo, Jiajun; Adler, Alexander U.; Mason, Thomas O.; Bruce Buchholz, D.; Chang, R. P. H.; Grayson, M.
2013-04-01
We investigated transient photoresponse and Hall effect in amorphous In-Ga-Zn-O thin films and observed a stretched exponential response which allows characterization of the activation energy spectrum with only three fit parameters. Measurements of as-grown films and 350 K annealed films were conducted at room temperature by recording conductivity, carrier density, and mobility over day-long time scales, both under illumination and in the dark. Hall measurements verify approximately constant mobility, even as the photoinduced carrier density changes by orders of magnitude. The transient photoconductivity data fit well to a stretched exponential during both illumination and dark relaxation, but with slower response in the dark. The inverse Laplace transforms of these stretched exponentials yield the density of activation energies responsible for transient photoconductivity. An empirical equation is introduced, which determines the linewidth of the activation energy band from the stretched exponential parameter β. Dry annealing at 350 K is observed to slow the transient photoresponse.
Organic Solar Cells: Degradation Processes and Approaches to Enhance Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fungura, Fadzai
2016-12-17
Intrinsic photodegradation of organic solar cells, theoretically attributed to C-H bond rearrangement/breaking, remains a key commercialization barrier. This work presents, via dark electron paramagnetic resonance (EPR), the first experimental evidence for metastable C dangling bonds (DBs) (g=2.0029±0.0004) formed by blue/UV irradiation of polymer:fullerene blend films in nitrogen. The DB density increased with irradiation and decreased ~4 fold after 2 weeks in the dark. The dark EPR also showed increased densities of other spin-active sites in photodegraded polymer, fullerene, and polymer:fullerene blend films, consistent with broad electronic measurements of fundamental properties, including defect/gap state densities. The EPR enabled identification of defectmore » states, whether in the polymer, fullerene, or at the donor/acceptor (D/A) interface. Importantly, the EPR results indicate that the DBs are at the D/A interface, as they were present only in the blend films. The role of polarons in interface DB formation is also discussed.« less
Pressure from dark matter annihilation and the rotation curve of spiral galaxies
NASA Astrophysics Data System (ADS)
Wechakama, M.; Ascasibar, Y.
2011-05-01
The rotation curves of spiral galaxies are one of the basic predictions of the cold dark matter paradigm, and their shape in the innermost regions has been hotly debated over the last decades. The present work shows that dark matter annihilation into electron-positron pairs may affect the observed rotation curve by a significant amount. We adopt a model-independent approach, where all the electrons and positrons are injected with the same initial energy E0˜mdmc2 in the range from 1 MeV to 1 TeV and the injection rate is constrained by INTEGRAL, Fermi and HESS data. The pressure of the relativistic electron-positron gas is determined by solving the diffusion-loss equation, considering inverse Compton scattering, synchrotron radiation, Coulomb collisions, bremsstrahlung and ionization. For values of the gas density and magnetic field that are representative of the Milky Way, it is estimated that pressure gradients are strong enough to balance gravity in the central parts if E0 < 1 GeV. The exact value depends somewhat on the astrophysical parameters, and it changes dramatically with the slope of the dark matter density profile. For very steep slopes, as those expected from adiabatic contraction, the rotation curves of spiral galaxies would be affected on ˜kpc scales for most values of E0. By comparing the predicted rotation curves with observations of dwarf and low surface brightness galaxies, we show that the pressure from dark matter annihilation may improve the agreement between theory and observations in some cases, but it also imposes severe constraints on the model parameters (most notably, the inner slope of halo density profile, as well as the mass and the annihilation cross-section of dark matter particles into electron-positron pairs).
Dark-dark-soliton dynamics in two density-coupled Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Morera, I.; Mateo, A. Muñoz; Polls, A.; Juliá-Díaz, B.
2018-04-01
We study the one-dimensional dynamics of dark-dark solitons in the miscible regime of two density-coupled Bose-Einstein condensates having repulsive interparticle interactions within each condensate (g >0 ). By using an adiabatic perturbation theory in the parameter g12/g , we show that, contrary to the case of two solitons in scalar condensates, the interactions between solitons are attractive when the interparticle interactions between condensates are repulsive g12>0 . As a result, the relative motion of dark solitons with equal chemical potential μ is well approximated by harmonic oscillations of angular frequency wr=(μ /ℏ ) √{(8 /15 ) g12/g } . We also show that, in finite systems, the resonance of this anomalous excitation mode with the spin-density mode of lowest energy gives rise to alternating dynamical instability and stability fringes as a function of the perturbative parameter. In the presence of harmonic trapping (with angular frequency Ω ) the solitons are driven by the superposition of two harmonic motions at a frequency given by w2=(Ω/√{2 }) 2+wr2 . When g12<0 , these two oscillators compete to give rise to an overall effective potential that can be either single well or double well through a pitchfork bifurcation. All our theoretical results are compared with numerical solutions of the Gross-Pitaevskii equation for the dynamics and the Bogoliubov equations for the linear stability. A good agreement is found between them.
Future cosmological sensitivity for hot dark matter axions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archidiacono, Maria; Basse, Tobias; Hannestad, Steen
2015-05-01
We study the potential of a future, large-volume photometric survey to constrain the axion mass m{sub a} in the hot dark matter limit. Future surveys such as EUCLID will have significantly more constraining power than current observations for hot dark matter. Nonetheless, the lowest accessible axion masses are limited by the fact that axions lighter than ∼ 0.15 eV decouple before the QCD epoch, assumed here to occur at a temperature T{sub QCD} ∼ 170 MeV; this leaves an axion population of such low density that its late-time cosmological impact is negligible. For larger axion masses, m{sub a} ∼> 0.15 eV, where axions remain inmore » equilibrium until after the QCD phase transition, we find that a EUCLID-like survey combined with Planck CMB data can detect m{sub a} at very high significance. Our conclusions are robust against assumptions about prior knowledge of the neutrino mass. Given that the proposed IAXO solar axion search is sensitive to m{sub a}∼<0.2 eV, the axion mass range probed by cosmology is nicely complementary.« less
NASA Astrophysics Data System (ADS)
Ha, JaeUn; Yoon, Seongwon; Lee, Jong-Soo; Chung, Dae Sung
2016-03-01
In this study, the strategy of using an organic-inorganic hybrid planar heterojunction consisting of polymeric semiconductors and inorganic nanocrystals is introduced to realize a high-performance hybrid photodiode (HPD) with low dark current and high detectivity. To prevent undesired charge injection under the reverse bias condition, which is the major dark current source of the photodiode, a well-defined planar heterojunction is strategically constructed via smart solution process techniques. The optimized HPD renders a low dark current of ˜10-5 mA cm-2 at -5 V and ˜10-6 mA cm-2 at -1 V, as well as a high detectivity ˜1012 Jones across the entire visible wavelength range. Furthermore, excellent photocurrent stability is demonstrated under continuous light exposure. We believe that the solution-processed planar heterojunction with inverted structure can be an attractive alternative diode structure for fabricating high-performance HPDs, which usually suffer from high dark current issues.
Jahromi, Hamed Dehdashti; Mahmoodi, Ali; Sheikhi, Mohammad Hossein; Zarifkar, Abbas
2016-10-20
Reduction of dark current at high-temperature operation is a great challenge in conventional quantum dot infrared photodetectors, as the rate of thermal excitations resulting in the dark current increases exponentially with temperature. A resonant tunneling barrier is the best candidate for suppression of dark current, enhancement in signal-to-noise ratio, and selective extraction of different wavelength response. In this paper, we use a physical model developed by the authors recently to design a proper resonant tunneling barrier for quantum infrared photodetectors and to study and analyze the spectral response of these devices. The calculated transmission coefficient of electrons by this model and its dependency on bias voltage are in agreement with experimental results. Furthermore, based on the calculated transmission coefficient, the dark current of a quantum dot infrared photodetector with a resonant tunneling barrier is calculated and compared with the experimental data. The validity of our model is proven through this comparison. Theoretical dark current by our model shows better agreement with the experimental data and is more accurate than the previously developed model. Moreover, noise in the device is calculated. Finally, the effect of different parameters, such as temperature, size of quantum dots, and bias voltage, on the performance of the device is simulated and studied.
NASA Astrophysics Data System (ADS)
Liu, Ming Xiong
2017-03-01
In this review, we present the current status and prospects of the dark sector physics search program of the SeaQuest/E1067 fixed target dimuon experiment at Fermilab Main Injector. There has been tremendous excitement and progress in searching for new physics in the dark sector in recent years. Dark sector refers to a collection of currently unknown particles that do not directly couple with the Standard Model (SM) strong and electroweak (EW) interactions but assumed to carry gravitational force, thus could be candidates of the missing Dark Matter (DM). Such particles may interact with the SM particles through “portal” interactions. Two of the simple possibilities are being investigated in our initial search: (1) dark photon and (2) dark Higgs. They could be within immediate reach of current or near future experimental search. We show there is a unique opportunity today at Fermilab to directly search for these particles in a highly motivated but uncharted parameter space in high-energy proton-nucleus collisions in the beam-dump mode using the 120 GeV proton beam from the Main Injector. Our current search window covers the mass range 0.2-10 GeV/c2, and in the near future, by adding an electromagnetic calorimeter (EMCal) to the spectrometer, we can further explore the lower mass region down to about ˜1 MeV/c2 through the di-electron channel. If dark photons (and/or dark Higgs) were observed, they would revolutionize our understanding of the fundamental structures and interactions of our universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Väliviita, Jussi; Palmgren, Elina, E-mail: jussi.valiviita@helsinki.fi, E-mail: elina.palmgren@helsinki.fi
2015-07-01
We employ the Planck 2013 CMB temperature anisotropy and lensing data, and baryon acoustic oscillation (BAO) data to constrain a phenomenological wCDM model, where dark matter and dark energy interact. We assume time-dependent equation of state parameter for dark energy, and treat dark matter and dark energy as fluids whose energy-exchange rate is proportional to the dark-matter density. The CMB data alone leave a strong degeneracy between the interaction rate and the physical CDM density parameter today, ω{sub c}, allowing a large interaction rate |Γ| ∼ H{sub 0}. However, as has been known for a while, the BAO data break this degeneracy.more » Moreover, we exploit the CMB lensing potential likelihood, which probes the matter perturbations at redshift z ∼ 2 and is very sensitive to the growth of structure, and hence one of the tools for discerning between the ΛCDM model and its alternatives. However, we find that in the non-phantom models (w{sub de}>−1), the constraints remain unchanged by the inclusion of the lensing data and consistent with zero interaction, −0.14 < Γ/H{sub 0} < 0.02 at 95% CL. On the contrary, in the phantom models (w{sub de}<−1), energy transfer from dark energy to dark matter is moderately favoured over the non-interacting model; 0−0.57 < Γ/H{sub 0} < −0.1 at 95% CL with CMB+BAO, while addition of the lensing data shifts this to −0.46 < Γ/H{sub 0} < −0.01.« less
Solving the small-scale structure puzzles with dissipative dark matter
NASA Astrophysics Data System (ADS)
Foot, Robert; Vagnozzi, Sunny
2016-07-01
Small-scale structure is studied in the context of dissipative dark matter, arising for instance in models with a hidden unbroken Abelian sector, so that dark matter couples to a massless dark photon. The dark sector interacts with ordinary matter via gravity and photon-dark photon kinetic mixing. Mirror dark matter is a theoretically constrained special case where all parameters are fixed except for the kinetic mixing strength, epsilon. In these models, the dark matter halo around spiral and irregular galaxies takes the form of a dissipative plasma which evolves in response to various heating and cooling processes. It has been argued previously that such dynamics can account for the inferred cored density profiles of galaxies and other related structural features. Here we focus on the apparent deficit of nearby small galaxies (``missing satellite problem"), which these dissipative models have the potential to address through small-scale power suppression by acoustic and diffusion damping. Using a variant of the extended Press-Schechter formalism, we evaluate the halo mass function for the special case of mirror dark matter. Considering a simplified model where Mbaryons propto Mhalo, we relate the halo mass function to more directly observable quantities, and find that for epsilon ≈ 2 × 10-10 such a simplified description is compatible with the measured galaxy luminosity and velocity functions. On scales Mhalo lesssim 108 Msolar, diffusion damping exponentially suppresses the halo mass function, suggesting a nonprimordial origin for dwarf spheroidal satellite galaxies, which we speculate were formed via a top-down fragmentation process as the result of nonlinear dissipative collapse of larger density perturbations. This could explain the planar orientation of satellite galaxies around Andromeda and the Milky Way.
Λ-enhanced grey molasses on the D2 transition of Rubidium-87 atoms.
Rosi, Sara; Burchianti, Alessia; Conclave, Stefano; Naik, Devang S; Roati, Giacomo; Fort, Chiara; Minardi, Francesco
2018-01-22
Laser cooling based on dark states, i.e. states decoupled from light, has proven to be effective to increase the phase-space density of cold trapped atoms. Dark-states cooling requires open atomic transitions, in contrast to the ordinary laser cooling used for example in magneto-optical traps (MOTs), which operate on closed atomic transitions. For alkali atoms, dark-states cooling is therefore commonly operated on the D 1 transition nS 1/2 → nP 1/2 . We show that, for 87 Rb, thanks to the large hyperfine structure separations the use of this transition is not strictly necessary and that "quasi-dark state" cooling is efficient also on the D 2 line, 5S 1/2 → 5P 3/2 . We report temperatures as low as (4.0 ± 0.3) μK and an increase of almost an order of magnitude in the phase space density with respect to ordinary laser sub-Doppler cooling.
NASA Astrophysics Data System (ADS)
Fan, Zuhui
2000-01-01
The linear bias of the dark halos from a model under the Zeldovich approximation is derived and compared with the fitting formula of simulation results. While qualitatively similar to the Press-Schechter formula, this model gives a better description for the linear bias around the turnaround point. This advantage, however, may be compromised by the large uncertainty of the actual behavior of the linear bias near the turnaround point. For a broad class of structure formation models in the cold dark matter framework, a general relation exists between the number density and the linear bias of dark halos. This relation can be readily tested by numerical simulations. Thus, instead of laboriously checking these models one by one, numerical simulation studies can falsify a whole category of models. The general validity of this relation is important in identifying key physical processes responsible for the large-scale structure formation in the universe.
Haschke, Sandra; Pankin, Dmitrii; Petrov, Yuri; Bochmann, Sebastian; Manshina, Alina; Bachmann, Julien
2017-09-22
Nanotubular iron(III) oxide electrodes are optimized for catalytic efficiency in the water oxidation reaction at neutral pH. The nanostructured electrodes are prepared from anodic alumina templates, which are coated with Fe 2 O 3 by atomic layer deposition. Scanning helium ion microscopy, X-ray diffraction, and Raman spectroscopy are used to characterize the morphologies and phases of samples submitted to various treatments. These methods demonstrate the contrasting effects of thermal annealing and electrochemical treatment. The electrochemical performances of the corresponding electrodes under dark conditions are quantified by steady-state electrolysis and electrochemical impedance spectroscopy. A rough and amorphous Fe 2 O 3 with phosphate incorporation is critical for the optimization of the water oxidation reaction. For the ideal pore length of 17 μm, the maximum catalytic turnover is reached with an effective current density of 140 μA cm -2 at an applied overpotential of 0.49 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Forensics of subhalo-stream encounters: the three phases of gap growth
NASA Astrophysics Data System (ADS)
Erkal, Denis; Belokurov, Vasily
2015-06-01
There is hope to discover dark matter subhaloes free of stars (predicted by the current theory of structure formation) by observing gaps they produce in tidal streams. In fact, this is the most promising technique for dark substructure detection and characterization as such gaps grow with time, magnifying small perturbations into clear signatures observable by ongoing and planned Galaxy surveys. To facilitate such future inference, we develop a comprehensive framework for studies of the growth of the stream density perturbations. Starting with simple assumptions and restricting to streams on circular orbits, we derive analytic formulae that describe the evolution of all gap properties (size, density contrast, etc.) at all times. We uncover complex, previously unnoticed behaviour, with the stream initially forming a density enhancement near the subhalo impact point. Shortly after, a gap forms due to the relative change in period induced by the subhalo's passage. There is an intermediate regime where the gap grows linearly in time. At late times, the particles in the stream overtake each other, forming caustics, and the gap grows like √{t}. In addition to the secular growth, we find that the gap oscillates as it grows due to epicyclic motion. We compare this analytic model to N-body simulations and find an impressive level of agreement. Importantly, when analysing the observation of a single gap we find a large degeneracy between the subhalo mass, the impact geometry and kinematics, the host potential, and the time since flyby.
The features of the Cosmic Web unveiled by the flip-flop field
NASA Astrophysics Data System (ADS)
Shandarin, Sergei F.; Medvedev, Mikhail V.
2017-07-01
Currently the dark matter environment is widely accepted as a framework for understanding of the observed structure in the universe. N-body simulations are indispensable for the analysis of the formation and evolution of the dark matter web. Two primary fields - density and velocity fields - are used in most of studies. Dark matter provides two additional fields that are unique for collisionless media only. They are the multistream field in Eulerian space and flip-flop field in Lagrangian space. The flip-flop field represents the number of sign reversals of an elementary volume of each collisionless fluid element. This field can be estimated by counting the sign reversals of the Jacobian at each particle at every time step of the simulation. The Jacobian is evaluated by numerical differentiation of the Lagrangian submanifold, I.e. the three-dimensional dark matter sheet in the six-dimensional space formed by three Lagrangian and three Eulerian coordinates. We present the results of the statistical study of the evolution of the flip-flop field from z = 50 to the present time z = 0. A number of statistical characteristics show that the pattern of the flip-flop field remains remarkably stable from z ≈ 30 to the present time. As a result the flip-flop field evaluated at z = 0 stores a wealth of information about the dynamical history of the dark matter web. In particular one of the most intriguing properties of the flip-flop is a unique capability to preserve the information about the merging history of haloes.
Constraints on Dark Matter Annihilation by Synchrotron Emission based on Planck Data
NASA Astrophysics Data System (ADS)
Muanglay, Chalit; Wechakama, Maneenate; Cantlay, Brandon K.
2017-09-01
Synchrotron emission can be a good probe for dark matter particles in the Milky Way. We have investigated the production of electrons and positrons in the Milky Way within the context of dark matter annihilation. Upper limits on the relevant cross-section are obtained by comparing synchrotron emission in the microwave bands with Planck data. According to our results, the dark matter annihilation cross-section into electron-positron pairs should not be higher than the canonical value for a thermal relic if the mass of the dark matter candidate is smaller than a few GeV. In addition, we also look for constraints on the inner slope of dark matter density profile in the Milky Way. Our results indicate that the inner slope of dark matter profile is between 1 to 1.5.
Constraining heavy dark matter with cosmic-ray antiprotons
NASA Astrophysics Data System (ADS)
Cuoco, Alessandro; Heisig, Jan; Korsmeier, Michael; Krämer, Michael
2018-04-01
Cosmic-ray observations provide a powerful probe of dark matter annihilation in the Galaxy. In this paper we derive constraints on heavy dark matter from the recent precise AMS-02 antiproton data. We consider all possible annihilation channels into pairs of standard model particles. Furthermore, we interpret our results in the context of minimal dark matter, including higgsino, wino and quintuplet dark matter. We compare the cosmic-ray antiproton limits to limits from γ-ray observations of dwarf spheroidal galaxies and to limits from γ-ray and γ-line observations towards the Galactic center. While the latter limits are highly dependent on the dark matter density distribution and only exclude a thermal wino for cuspy profiles, the cosmic-ray limits are more robust, strongly disfavoring the thermal wino dark matter scenario even for a conservative estimate of systematic uncertainties.
The Chameleon Solid Rocket Propulsion Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Glen A.
The Khoury and Weltman (2004a and 2004b) Chameleon Model presents an addition to the gravitation force and was shown by the author (Robertson, 2009a and 2009b) to present a new means by which one can view other forces in the Universe. The Chameleon Model is basically a density-dependent model and while the idea is not new, this model is novel in that densities in the Universe to include the vacuum of space are viewed as scalar fields. Such an analogy gives the Chameleon scalar field, dark energy/dark matter like characteristics; fitting well within cosmological expansion theories. In respect to thismore » forum, in this paper, it is shown how the Chameleon Model can be used to derive the thrust of a solid rocket motor. This presents a first step toward the development of new propulsion models using density variations verse mass ejection as the mechanism for thrust. Further, through the Chameleon Model connection, these new propulsion models can be tied to dark energy/dark matter toward new space propulsion systems utilizing the vacuum scalar field in a way understandable by engineers, the key toward the development of such systems. This paper provides corrections to the Chameleon rocket model in Robertson (2009b).« less
Head-on collision of multistate ultralight BEC dark matter configurations
NASA Astrophysics Data System (ADS)
Guzmán, F. S.; Avilez, Ana A.
2018-06-01
Density profiles of ultralight Bose-condensate dark matter inferred from numerical simulations of structure formation, ruled by the Gross-Pitaevskii-Poisson (GPP) system of equations, have a core-tail structure. Multistate equilibrium configurations of the GPP system, on the other hand, have a similar core-tail density profile. We now submit these multistate configurations to highly dynamical scenarios and show their potential as providers of appropriate density profiles of structures. We present the simulation of head-on collisions between two equilibrium configurations of the GPP system of equations, including the collision of ground state with multistate configurations. We study the regimes of solitonic and merger behavior and show generic properties of the dynamics of the system, including the relaxation process and attractor density profiles. We show that the merger of multistate configurations has the potential to produce core-tail density profiles, with the core dominated by the ground state and the halo dominated by an additional state.
NASA Astrophysics Data System (ADS)
Ghosh, Avirup; Mondal, Tanmoy; Mukhopadhyaya, Biswarup
2017-12-01
We consider two theoretical scenarios, each including a ℤ 2-odd sector and leading to an elementary dark matter candidate. The first one is a variant of the Type-III seesaw model where one lepton triplet is ℤ 2-odd, together with a heavy sterile neutrino. It leads to a fermionic dark matter, together with the charged component of the triplet being a quasi-stable particle which decays only via a higher-dimensional operator suppressed by a high scale. The second model consists of an inert scalar doublet together with a ℤ 2-odd right-handed Majorana neutrino dark matter. A tiny Yukawa coupling delays the decay of the charged component of the inert doublet into the dark matter candidate, making the former long-lived on the scale of collider detectors. The parameter space of each model has been constrained by big-bang nucleosynthesis constraints, and also by estimating the contribution to the relic density through freeze-out of the long-lived charged particle as well the freeze-in production of the dark matter candidate. We consider two kinds of signals at the Large Hadron Collider for each case. For the first kind of models, namely two charged tracks and single track [InlineMediaObject not available: see fulltext.] and for the second kind, the characteristic signals are opposite as well as same-sign charged track pairs. We perform a detailed analysis using event selection criteria consistent with the current experimental programmes. It is found that the scenario with a lepton triplet can be probed upto 960 (1190) GeV with an integrated luminosity of 300 (3000) fb-1, while the corresponding numbers for the inert doublet scenario are 630 (800) GeV. Furthermore, the second kind of signal mentioned in each case allows us to differentiate different dark matter scenarios from each other.
Light dark Higgs boson in minimal sub-GeV dark matter scenarios
NASA Astrophysics Data System (ADS)
Darmé, Luc; Rao, Soumya; Roszkowski, Leszek
2018-03-01
Minimal scenarios with light (sub-GeV) dark matter whose relic density is obtained from thermal freeze-out must include new light mediators. In particular, a very well-motivated case is that of a new "dark" massive vector gauge boson mediator. The mass term for such mediator is most naturally obtained by a "dark Higgs mechanism" which leads to the presence of an often long-lived dark Higgs boson whose mass scale is the same as that of the mediator. We study the phenomenology and experimental constraints on two minimal, self-consistent dark sectors that include such a light dark Higgs boson. In one the dark matter is a pseudo-Dirac fermion, in the other a complex scalar. We find that the constraints from BBN and CMB are considerably relaxed in the framework of such minimal dark sectors. We present detection prospects for the dark Higgs boson in existing and projected proton beam-dump experiments. We show that future searches at experiments like Xenon1T or LDMX can probe all the relevant parameter space, complementing the various upcoming indirect constraints from astrophysical observations.
Lee, Yujin; Berryman, Claire E; West, Sheila G; Chen, C-Y Oliver; Blumberg, Jeffrey B; Lapsley, Karen G; Preston, Amy G; Fleming, Jennifer A; Kris-Etherton, Penny M
2017-11-29
Consumption of almonds or dark chocolate and cocoa has favorable effects on markers of coronary heart disease; however, the combined effects have not been evaluated in a well-controlled feeding study. The aim of this study was to examine the individual and combined effects of consumption of dark chocolate and cocoa and almonds on markers of coronary heart disease risk. A randomized controlled, 4-period, crossover, feeding trial was conducted in overweight and obese individuals aged 30 to 70 years. Forty-eight participants were randomized, and 31 participants completed the entire study. Each diet period was 4 weeks long, followed by a 2-week compliance break. Participants consumed each of 4 isocaloric, weight maintenance diets: (1) no treatment foods (average American diet), (2) 42.5 g/d of almonds (almond diet [ALD]), (3) 18 g/d of cocoa powder and 43 g/d of dark chocolate (chocolate diet [CHOC]), or (4) all 3 foods (CHOC+ALD). Compared with the average American diet, total cholesterol, non-high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol after the ALD were lower by 4%, 5%, and 7%, respectively ( P <0.05). The CHOC+ALD decreased apolipoprotein B by 5% compared with the average American diet. For low-density lipoprotein subclasses, compared with the average American diet, the ALD showed a greater reduction in large buoyant low-density lipoprotein particles (-5.7±2.3 versus -0.3±2.3 mg/dL; P =0.04), whereas the CHOC+ALD had a greater decrease in small dense low-density lipoprotein particles (-12.0±2.8 versus -5.3±2.8 mg/dL; P =0.04). There were no significant differences between diets for measures of vascular health and oxidative stress. Our results demonstrate that consumption of almonds alone or combined with dark chocolate under controlled-feeding conditions improves lipid profiles. Incorporating almonds, dark chocolate, and cocoa into a typical American diet without exceeding energy needs may reduce the risk of coronary heart disease. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01882881. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Giant Comets, Evolution and Civilization
1998-01-01
Depending on the assumed scale height of dark matter in the Galactic disc, the periodic modulations may easily attain amplitudes of 3:1 or more...an in-plane density pz - 0.18 M® p- 3 for the ambient Galactic disc [18], im- 4 plying the presence of dark matter in the disc with an extreme...poles and equator, broadly in accordance with the Galactic tide [19] complemented by individ- ual (stellar and dark matter ) perturbers. In addition
Core filling and snaking instability of dark solitons in spin-imbalanced superfluid Fermi gases
NASA Astrophysics Data System (ADS)
Reichl, Matthew D.; Mueller, Erich J.
2017-05-01
We use the time-dependent Bogoliubov-de Gennes equations to study dark solitons in three-dimensional spin-imbalanced superfluid Fermi gases. We explore how the shape and dynamics of dark solitons are altered by the presence of excess unpaired spins which fill their low-density core. The unpaired particles broaden the solitons and suppress the transverse snake instability. We discuss ways of observing these phenomena in cold-atom experiments.
NASA Astrophysics Data System (ADS)
Demenev, A. A.; Gavrilov, S. S.; Brichkin, A. S.; Larionov, A. V.; Kulakovskii, V. D.
2014-12-01
The first-order spatial correlation function g (1)( r 12) and the polariton density distribution in the condensate of quasi-two-dimensional exciton polaritons formed in a high- Q semiconductor microcavity pillar under nonresonant optical pumping are investigated. It is found that the correlation function in certain regions of the micropillar decreases abruptly with increasing condensate density. It is shown that this behavior of the correlation function is caused by the formation of a localized dark soliton in these regions. A deep minimum of the polariton density and a shift in the phase of the condensate wavefunction by π occur within the soliton localization area.
WIMP dark matter candidates and searches-current status and future prospects.
Roszkowski, Leszek; Sessolo, Enrico Maria; Trojanowski, Sebastian
2018-06-01
We review several current aspects of dark matter theory and experiment. We overview the present experimental status, which includes current bounds and recent claims and hints of a possible signal in a wide range of experiments: direct detection in underground laboratories, gamma-ray, cosmic ray, x-ray, neutrino telescopes, and the LHC. We briefly review several possible particle candidates for a weakly interactive massive particle (WIMP) and dark matter that have recently been considered in the literature. We pay particular attention to the lightest neutralino of supersymmetry as it remains the best motivated candidate for dark matter and also shows excellent detection prospects. Finally we briefly review some alternative scenarios that can considerably alter properties and prospects for the detection of dark matter obtained within the standard thermal WIMP paradigm.
WIMP dark matter candidates and searches—current status and future prospects
NASA Astrophysics Data System (ADS)
Roszkowski, Leszek; Sessolo, Enrico Maria; Trojanowski, Sebastian
2018-06-01
We review several current aspects of dark matter theory and experiment. We overview the present experimental status, which includes current bounds and recent claims and hints of a possible signal in a wide range of experiments: direct detection in underground laboratories, gamma-ray, cosmic ray, x-ray, neutrino telescopes, and the LHC. We briefly review several possible particle candidates for a weakly interactive massive particle (WIMP) and dark matter that have recently been considered in the literature. We pay particular attention to the lightest neutralino of supersymmetry as it remains the best motivated candidate for dark matter and also shows excellent detection prospects. Finally we briefly review some alternative scenarios that can considerably alter properties and prospects for the detection of dark matter obtained within the standard thermal WIMP paradigm.
The three-point function as a probe of models for large-scale structure
NASA Astrophysics Data System (ADS)
Frieman, Joshua A.; Gaztanaga, Enrique
1994-04-01
We analyze the consequences of models of structure formation for higher order (n-point) galaxy correlation functions in the mildly nonlinear regime. Several variations of the standard Omega = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, Rp is approximately 20/h Mpc, e.g., low matter-density (nonzero cosmological constant) models, 'tilted' primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower et al. We show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale dependence leads to a dramatic decrease of the the hierarchical amplitudes QJ at large scales, r is greater than or approximately Rp. Current observational constraints on the three-point amplitudes Q3 and S3 can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.
The correlation between the sizes of globular cluster systems and their host dark matter haloes
NASA Astrophysics Data System (ADS)
Hudson, Michael J.; Robison, Bailey
2018-07-01
The sizes of entire systems of globular clusters (GCs) depend not only on the formation and destruction histories of the GCs themselves but also on the assembly, merger, and accretion history of the dark matter (DM) haloes that they inhabit. Recent work has shown a linear relation between total mass of GCs in the GC system and the mass of its host DM halo, calibrated from weak lensing. Here, we extend this to GC system sizes, by studying the radial density profiles of GCs around galaxies in nearby galaxy groups. We find that radial density profiles of the GC systems are well fit with a de Vaucouleurs profile. Combining our results with those from the literature, we find tight relationship (˜0.2 dex scatter) between the effective radius of the GC system and the virial radius (or mass) of its host DM halo, for haloes with masses greater than ˜1012 M⊙. The steep non-linear dependence of this relationship (R_{ {e, GCS}} ∝ R_{200}^{2.5 - 3} ∝ M_{200}^{0.8 - 1}) is currently not well understood, but is an important clue regarding the assembly history of DM haloes and of the GC systems that they host.
NASA Astrophysics Data System (ADS)
Kumar, Suresh; Xu, Lixin
2014-10-01
In this paper, we study a cosmological model in general relativity within the framework of spatially flat Friedmann-Robertson-Walker space-time filled with ordinary matter (baryonic), radiation, dark matter and dark energy, where the latter two components are described by Chevallier-Polarski-Linder equation of state parameters. We utilize the observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements of matter power spectrum to constrain the model parameters. We find that the current observational data offer tight constraints on the equation of state parameter of dark matter. We consider the perturbations and study the behavior of dark matter by observing its effects on CMB and matter power spectra. We find that the current observational data favor the cold dark matter scenario with the cosmological constant type dark energy at the present epoch.
A Herschel [C ii] Galactic plane survey. II. CO-dark H2 in clouds
NASA Astrophysics Data System (ADS)
Langer, W. D.; Velusamy, T.; Pineda, J. L.; Willacy, K.; Goldsmith, P. F.
2014-01-01
Context. H i and CO large scale surveys of the Milky Way trace the diffuse atomic clouds and the dense shielded regions of molecular hydrogen clouds, respectively. However, until recently, we have not had spectrally resolved C+ surveys in sufficient lines of sight to characterize the ionized and photon dominated components of the interstellar medium, in particular, the H2 gas without CO, referred to as CO-dark H2, in a large sample of interstellar clouds. Aims: We use a sparse Galactic plane survey of the 1.9 THz (158 μm) [C ii] spectral line from the Herschel open time key programme, Galactic Observations of Terahertz C+ (GOT C+), to characterize the H2 gas without CO in a statistically significant sample of interstellar clouds. Methods: We identify individual clouds in the inner Galaxy by fitting the [C ii] and CO isotopologue spectra along each line of sight. We then combine these spectra with those of H i and use them along with excitation models and cloud models of C+ to determine the column densities and fractional mass of CO-dark H2 clouds. Results: We identify1804 narrow velocity [C ii] components corresponding to interstellar clouds in different categories and evolutionary states. About 840 are diffuse molecular clouds with no CO, ~510 are transition clouds containing [C ii] and 12CO, but no 13CO, and the remainder are dense molecular clouds containing 13CO emission. The CO-dark H2 clouds are concentrated between Galactic radii of ~3.5 to 7.5 kpc and the column density of the CO-dark H2 layer varies significantly from cloud to cloud with a global average of 9 × 1020 cm-2. These clouds contain a significant fraction by mass of CO-dark H2, that varies from ~75% for diffuse molecular clouds to ~20% for dense molecular clouds. Conclusions: We find a significant fraction of the warm molecular ISM gas is invisible in H i and CO, but is detected in [C ii]. The fraction of CO-dark H2 is greatest in the diffuse clouds and decreases with increasing total column density, and is lowest in the massive clouds. The column densities and mass fraction of CO-dark H2 are less than predicted by models of diffuse molecular clouds using solar metallicity, which is not surprising as most of our detections are in Galactic regions where the metallicity is larger and shielding more effective. There is an overall trend towards a higher fraction of CO-dark H2 in clouds with increasing Galactic radius, consistent with lower metallicity there. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Light responses in rods of vitamin A-deprived Xenopus.
Solessio, Eduardo; Umino, Yumiko; Cameron, David A; Loew, Ellis; Engbretson, Gustav A; Knox, Barry E; Barlow, Robert B
2009-09-01
Accumulation of free opsin by mutations in rhodopsin or insufficiencies in the visual cycle can lead to retinal degeneration. Free opsin activates phototransduction; however, the link between constitutive activation and retinal degeneration is unclear. In this study, the photoresponses of Xenopus rods rendered constitutively active by vitamin A deprivation were examined. Unlike their mammalian counterparts, Xenopus rods do not degenerate. Contrasting phototransduction in vitamin A-deprived Xenopus rods with phototransduction in constitutively active mammalian rods may provide new understanding of the mechanisms that lead to retinal degeneration. The photocurrents of Xenopus tadpole rods were measured with suction electrode recordings, and guanylate cyclase activity was measured with the IBMX (3-isobutyl-1-methylxanthine) jump technique. The amount of rhodopsin in rods was determined by microspectrophotometry. The vitamin A-deprived rod outer segments were 60% to 70% the length and diameter of the rods in age-matched animals. Approximately 90% of its opsin content was in the free or unbound form. Analogous to bleaching adaptation, the photoresponses were desensitized (10- to 20-fold) and faster. Unlike bleaching adaptation, the vitamin A-deprived rods maintained near normal saturating (dark) current densities by developing abnormally high rates of cGMP synthesis. Their rate of cGMP synthesis in the dark (15 seconds(-1)) was twofold greater than the maximum levels attainable by control rods ( approximately 7 seconds(-1)). Preserving circulating current density and response range appears to be an important goal for rod homeostasis. However, the compensatory changes associated with vitamin A deprivation in Xenopus rods come at the high metabolic cost of a 15-fold increase in basal ATP consumption.
NASA Astrophysics Data System (ADS)
Capra, L.; Macías, J. L.; Cortés, A.; Dávila, N.; Saucedo, R.; Osorio-Ocampo, S.; Arce, J. L.; Gavilanes-Ruiz, J. C.; Corona-Chávez, P.; García-Sánchez, L.; Sosa-Ceballos, G.; Vázquez, R.
2016-01-01
On July 10-11, 2015 an eruption occurred at Colima volcano produced 10.5 km long pyroclastic density currents (PDCs) along the Montegrande, and 6.5 km long along the San Antonio ravines. The summit dome was destroyed and a new crater excavated and breached to the south. This new breach connects to a narrow channel that descends along Colima's southern flank and was used by a subsequent lava flow. The Montegrande PDCs represent the longest and hottest flow of this type recorded during the past 30 years but are still smaller in comparison to the 15-km long PDCs produced during the 1913 Plinian eruption. Data obtained from field reconnaissance, lahar monitoring stations, and satellite imagery suggest that at least six PDCs occurred. The two largest PDCs (H/L 0.2) were able to surmount topographic barriers or bends. Based on field reconnaissance and digital elevation models extracted from SPOT satellite imageries we estimate a minimum volume for the valley-pond and distal fan deposits of 4.5 × 106 m3. After one week, the deposits were still hot with burning trees on the surface and millimeter-sized holes from which fumes were emanating. The juvenile components of the deposits consist of gray dense blocks and vesicular dark-gray blocks and bombs with bread-crust textures and cooling joints. The mineral association of these rocks consists of plagioclase + clinopyroxene + orthopyroxene + FeTi-oxides ± olivine and resorbed hornblende in a dark glassy matrix that corresponds to an andesitic composition.
Design of InAs/GaSb superlattice infrared barrier detectors
NASA Astrophysics Data System (ADS)
Delmas, M.; Rossignol, R.; Rodriguez, J. B.; Christol, P.
2017-04-01
Design of InAs/GaSb type-II superlattice (T2SL) infrared barrier detectors is theoretically investigated. Each part of the barrier structures is studied in order to achieve optimal device operation at 150 K and 77 K, in the midwave and longwave infrared domain, respectively. Whatever the spectral domain, nBp structure with a p-type absorbing zone and an n-type contact layer is found to be the most favourable detector architecture allowing a reduction of the dark-current associated with generation-recombination processes. The nBp structures are then compared to pin photodiodes. The MWIR nBp detector with 5 μm cut-off wavelength can operate up to 120 K, resulting in an improvement of 20 K on the operating temperature compared to the pin device. The dark-current density of the LWIR nBp device at 77 K is expected to be as low as 3.5 × 10-4 A/cm2 at 50 mV reverse bias, more than one decade lower than the usual T2SL photodiode. This result, for a device having cut-off wavelength at 12 μm, is at the state of the art compared to the well-known MCT 'rule 07'.
Phantom energy: dark energy with w <--1 causes a cosmic doomsday.
Caldwell, Robert R; Kamionkowski, Marc; Weinberg, Nevin N
2003-08-15
We explore the consequences that follow if the dark energy is phantom energy, in which the sum of the pressure and energy density is negative. The positive phantom-energy density becomes infinite in finite time, overcoming all other forms of matter, such that the gravitational repulsion rapidly brings our brief epoch of cosmic structure to a close. The phantom energy rips apart the Milky Way, solar system, Earth, and ultimately the molecules, atoms, nuclei, and nucleons of which we are composed, before the death of the Universe in a "big rip."
Effect of gravitational focusing on annual modulation in dark-matter direct-detection experiments.
Lee, Samuel K; Lisanti, Mariangela; Peter, Annika H G; Safdi, Benjamin R
2014-01-10
The scattering rate in dark-matter direct-detection experiments should modulate annually due to Earth's orbit around the Sun. The rate is typically thought to be extremized around June 1, when the relative velocity of Earth with respect to the dark-matter wind is maximal. We point out that gravitational focusing can alter this modulation phase. Unbound dark-matter particles are focused by the Sun's gravitational potential, affecting their phase-space density in the lab frame. Gravitational focusing can result in a significant overall shift in the annual-modulation phase, which is most relevant for dark matter with low scattering speeds. The induced phase shift for light O(10) GeV dark matter may also be significant, depending on the threshold energy of the experiment.
Olson, B. V.; Kim, J. K.; Kadlec, E. A.; ...
2015-11-03
Carrier lifetime and dark current measurements are reported for a mid-wavelength infrared InAs 0.91Sb 0.09 alloy nBn photodetector. Minority carrier lifetimes are measured using a non-contact time-resolved microwave technique on unprocessed portions of the nBn wafer and the Auger recombination Bloch function parameter is determined to be |F 1F 2|=0.292. Moreover, the measured lifetimes are also used to calculate the expected diffusion dark current of the nBn devices and are compared with the experimental dark current measured in processed photodetector pixels from the same wafer. As a result, excellent agreement is found between the two, highlighting the important relationship betweenmore » lifetimes and diffusion currents in nBn photodetectors.« less
van den Aarssen, Laura G; Bringmann, Torsten; Pfrommer, Christoph
2012-12-07
The cold dark matter paradigm describes the large-scale structure of the Universe remarkably well. However, there exists some tension with the observed abundances and internal density structures of both field dwarf galaxies and galactic satellites. Here, we demonstrate that a simple class of dark matter models may offer a viable solution to all of these problems simultaneously. Their key phenomenological properties are velocity-dependent self-interactions mediated by a light vector messenger and thermal production with much later kinetic decoupling than in the standard case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casanellas, Jordi; Lopes, IlIDio, E-mail: jordicasanellas@ist.utl.p, E-mail: ilidio.lopes@ist.utl.p
2009-11-01
The formation and evolution of low-mass stars within dense halos of dark matter (DM) leads to evolution scenarios quite different from the classical stellar evolution. As a result of our detailed numerical work, we describe these new scenarios for a range of DM densities on the host halo, for a range of scattering cross sections of the DM particles considered, and for stellar masses from 0.7 to 3 M {sub sun}. For the first time, we also computed the evolution of young low-mass stars in their Hayashi track in the pre-main-sequence phase and found that, for high DM densities, thesemore » stars stop their gravitational collapse before reaching the main sequence, in agreement with similar studies on first stars. Such stars remain indefinitely in an equilibrium state with lower effective temperatures (|DELTAT{sub eff}|>10{sup 3} K for a star of one solar mass), the annihilation of captured DM particles in their core being the only source of energy. In the case of lower DM densities, these protostars continue their collapse and progress through the main-sequence burning hydrogen at a lower rate. A star of 1 M{sub sun} will spend a time period greater than the current age of the universe consuming all the hydrogen in its core if it evolves in a halo with DM density rho{sub c}hi = 10{sup 9} GeV cm{sup -3}. We also show the strong dependence of the effective temperature and luminosity of these stars on the characteristics of the DM particles and how this can be used as an alternative method for DM research.« less
Schou, T M; Faurby, S; Kjærsgaard, A; Pertoldi, C; Loeschcke, V; Hald, B; Bahrndorff, S
2013-12-01
The behavior of ectotherm organisms is affected by both abiotic and biotic factors. However, a limited number of studies have investigated the synergistic effects on behavioral traits. This study examined the effect of temperature and density on locomotor activity of Musca domestica (L.). Locomotor activity was measured for both sexes and at four densities (with mixed sexes) during a full light and dark (L:D) cycle at temperatures ranging from 10 to 40°C. Locomotor activity during daytime increased with temperature at all densities until reaching 30°C and then decreased. High-density treatments significantly reduced the locomotor activity per fly, except at 15°C. For both sexes, daytime activity also increased with temperature until reaching 30 and 35°C for males and females, respectively, and thereafter decreased. Furthermore, males showed a significantly higher and more predictable locomotor activity than females. During nighttime, locomotor activity was considerably lower for all treatments. Altogether the results of the current study show that there is a significant interaction of temperature and density on daytime locomotor activity of M. domestica and that houseflies are likely to show significant changes in locomotor activity with change in temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ming Xiong
In this study, we present the current status and prospects of the dark sector physics search program of the SeaQuest/E1067 fixed target dimuon experiment at Fermilab Main Injector. There has been tremendous excitement and progress in searching for new physics in the dark sector in recent years. Dark sector refers to a collection of currently unknown particles that do not directly couple with the Standard Model (SM) strong and electroweak (EW) interactions but assumed to carry gravitational force, thus could be candidates of the missing Dark Matter (DM). Such particles may interact with the SM particles through “portal” interactions. Twomore » of the simple possibilities are being investigated in our initial search: (1) dark photon and (2) dark Higgs. They could be within immediate reach of current or near future experimental search. We show there is a unique opportunity today at Fermilab to directly search for these particles in a highly motivated but uncharted parameter space in high-energy proton–nucleus collisions in the beam-dump mode using the 120 GeV proton beam from the Main Injector. Our current search window covers the mass range 0.2–10 GeV/c 2, and in the near future, by adding an electromagnetic calorimeter (EMCal) to the spectrometer, we can further explore the lower mass region down to about ~1 MeV/c 2 through the di-electron channel. If dark photons (and/or dark Higgs) were observed, they would revolutionize our understanding of the fundamental structures and interactions of our universe.« less
Liu, Ming Xiong
2017-03-14
In this study, we present the current status and prospects of the dark sector physics search program of the SeaQuest/E1067 fixed target dimuon experiment at Fermilab Main Injector. There has been tremendous excitement and progress in searching for new physics in the dark sector in recent years. Dark sector refers to a collection of currently unknown particles that do not directly couple with the Standard Model (SM) strong and electroweak (EW) interactions but assumed to carry gravitational force, thus could be candidates of the missing Dark Matter (DM). Such particles may interact with the SM particles through “portal” interactions. Twomore » of the simple possibilities are being investigated in our initial search: (1) dark photon and (2) dark Higgs. They could be within immediate reach of current or near future experimental search. We show there is a unique opportunity today at Fermilab to directly search for these particles in a highly motivated but uncharted parameter space in high-energy proton–nucleus collisions in the beam-dump mode using the 120 GeV proton beam from the Main Injector. Our current search window covers the mass range 0.2–10 GeV/c 2, and in the near future, by adding an electromagnetic calorimeter (EMCal) to the spectrometer, we can further explore the lower mass region down to about ~1 MeV/c 2 through the di-electron channel. If dark photons (and/or dark Higgs) were observed, they would revolutionize our understanding of the fundamental structures and interactions of our universe.« less
Searching for a dark photon with DarkLight
NASA Astrophysics Data System (ADS)
Corliss, R.; DarkLight Collaboration
2017-09-01
Despite compelling astrophysical evidence for the existence of dark matter in the universe, we have yet to positively identify it in any terrestrial experiment. If such matter is indeed particle in nature, it may have a new interaction as well, carried by a dark counterpart to the photon. The DarkLight experiment proposes to search for such a beyond-the-standard-model dark photon through complete reconstruction of the final states of electron-proton collisions. In order to accomplish this, the experiment requires a moderate-density target and a very high intensity, low energy electron beam. I describe DarkLight's approach and focus on the implications this has for the design of the experiment, which centers on the use of an internal gas target in Jefferson Lab's Low Energy Recirculating Facility. I also discuss upcoming beam tests, where we will place our target and solenoidal magnet in the beam for the first time.
A power-law coupled three-form dark energy model
NASA Astrophysics Data System (ADS)
Yao, Yan-Hong; Yan, Yang-Jie; Meng, Xin-He
2018-02-01
We consider a field theory model of coupled dark energy which treats dark energy as a three-form field and dark matter as a spinor field. By assuming the effective mass of dark matter as a power-law function of the three-form field and neglecting the potential term of dark energy, we obtain three solutions of the autonomous system of evolution equations, including a de Sitter attractor, a tracking solution and an approximate solution. To understand the strength of the coupling, we confront the model with the latest Type Ia Supernova, Baryon Acoustic Oscillations and Cosmic Microwave Background radiation observations, with the conclusion that the combination of these three databases marginalized over the present dark matter density parameter Ω _{m0} and the present three-form field κ X0 gives stringent constraints on the coupling constant, - 0.017< λ <0.047 (2σ confidence level), by which we present the model's applicable parameter range.
Searching for Dark Matter Annihilation in the Smith High-Velocity Cloud
NASA Technical Reports Server (NTRS)
Drlica-Wagner, Alex; Gomez-Vargas, German A.; Hewitt, John W.; Linden, Tim; Tibaldo, Luigi
2014-01-01
Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use gamma-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant gamma-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (approximately 3 x 10 (sup -26) cubic centimeters per second) for dark matter masses less than or approximately 30 gigaelectronvolts annihilating via the B/B- bar oscillation or tau/antitau channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.
Searching For Dark Matter Annihilation In The Smith High-Velocity Cloud
Drlica-Wagner, Alex; Gómez-Vargas, Germán A.; Hewitt, John W.; ...
2014-06-27
Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use γ-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant γ-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation crossmore » section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (~3 × 10 -26 cm3 s -1) for dark matter masses . 30 GeV annihilating via the b¯b or τ⁺τ⁻ channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.« less
Light dark matter and galaxy formation
NASA Astrophysics Data System (ADS)
Ascasibar, Yago
2006-11-01
What if dark matter particles were as light as a few MeV? Well, they would ``just'' need to decay or annihilate in exactly the right amount to explain the observed dark matter density... However, such a process would yield a detectable imprint on both particle and cosmological scales. Some of the signatures would be difficult to measure; some others would determine whether a galaxy can form stars or not. Does any (actually all) of these weird things happen?
When the universe expands too fast: relentless dark matter
NASA Astrophysics Data System (ADS)
D'Eramo, Francesco; Fernandez, Nicolas; Profumo, Stefano
2017-05-01
We consider a modification to the standard cosmological history consisting of introducing a new species phi whose energy density red-shifts with the scale factor a like ρphi propto a-(4+n). For 0n>, such a red-shift is faster than radiation, hence the new species dominates the energy budget of the universe at early times while it is completely negligible at late times. If equality with the radiation energy density is achieved at low enough temperatures, dark matter can be produced as a thermal relic during the new cosmological phase. Dark matter freeze-out then occurs at higher temperatures compared to the standard case, implying that reproducing the observed abundance requires significantly larger annihilation rates. Here, we point out a completely new phenomenon, which we refer to as relentless dark matter: for large enough n, unlike the standard case where annihilation ends shortly after the departure from thermal equilibrium, dark matter particles keep annihilating long after leaving chemical equilibrium, with a significant depletion of the final relic abundance. Relentless annihilation occurs for n >= 2 and n >= 4 for s-wave and p-wave annihilation, respectively, and it thus occurs in well motivated scenarios such as a quintessence with a kination phase. We discuss a few microscopic realizations for the new cosmological component and highlight the phenomenological consequences of our calculations for dark matter searches.
Recognizing Axionic Dark Matter by Compton and de Broglie Scale Modulation of Pulsar Timing.
De Martino, Ivan; Broadhurst, Tom; Tye, S-H Henry; Chiueh, Tzihong; Schive, Hsi-Yu; Lazkoz, Ruth
2017-12-01
Light axionic dark matter, motivated by string theory, is increasingly favored for the "no weakly interacting massive particle era". Galaxy formation is suppressed below a Jeans scale of ≃10^{8} M_{⊙} by setting the axion mass to m_{B}∼10^{-22} eV, and the large dark cores of dwarf galaxies are explained as solitons on the de Broglie scale. This is persuasive, but detection of the inherent scalar field oscillation at the Compton frequency ω_{B}=(2.5 months)^{-1}(m_{B}/10^{-22} eV) would be definitive. By evolving the coupled Schrödinger-Poisson equation for a Bose-Einstein condensate, we predict the dark matter is fully modulated by de Broglie interference, with a dense soliton core of size ≃150 pc, at the Galactic center. The oscillating field pressure induces general relativistic time dilation in proportion to the local dark matter density and pulsars within this dense core have detectably large timing residuals of ≃400 nsec/(m_{B}/10^{-22} eV). This is encouraging as many new pulsars should be discovered near the Galactic center with planned radio surveys. More generally, over the whole Galaxy, differences in dark matter density between pairs of pulsars imprints a pairwise Galactocentric signature that can be distinguished from an isotropic gravitational wave background.
Search for dark matter annihilation in the Galactic Center with IceCube-79
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Abraham, K.; Ackermann, M.
The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, newmore » and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. Here, no neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, Av>, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≃4•10 –24 cm 3 s –1, and ≃2.6•10 –23 cm 3 s –1 for the ν ν¯ channel, respectively.« less
Search for dark matter annihilation in the Galactic Center with IceCube-79
Aartsen, M. G.; Abraham, K.; Ackermann, M.; ...
2015-10-15
The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, newmore » and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. Here, no neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, Av>, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≃4•10 –24 cm 3 s –1, and ≃2.6•10 –23 cm 3 s –1 for the ν ν¯ channel, respectively.« less
Thin-Film Module Reverse-Bias Breakdown Sites Identified by Thermal Imaging: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Steven; Sulas, Dana; Guthrey, Harvey L
Thin-film module sections are stressed under reverse bias to simulate partial shading conditions. Such stresses can cause permanent damage in the form of 'wormlike' defects due to thermal runaway. When large reverse biases with limited current are applied to the cells, dark lock-in thermography (DLIT) can detect where spatially-localized breakdown initiates before thermal runaway leads to permanent damage. Predicted breakdown defect sites have been identified in both CIGS and CdTe modules using DLIT. These defects include small pinholes, craters, or voids in the absorber layer of the film that lead to built-in areas of weakness where high current densities maymore » cause thermal damage in a partial-shading event.« less
Thin-Film Module Reverse-Bias Breakdown Sites Identified by Thermal Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Steven; Sulas, Dana; Guthrey, Harvey L
Thin-film module sections are stressed under reverse bias to simulate partial shading conditions. Such stresses can cause permanent damage in the form of 'wormlike' defects due to thermal runaway. When large reverse biases with limited current are applied to the cells, dark lock-in thermography (DLIT) can detect where spatially-localized breakdown initiates before thermal runaway leads to permanent damage. Predicted breakdown defect sites have been identified in both CIGS and CdTe modules using DLIT. These defects include small pinholes, craters, or voids in the absorber layer of the film that lead to built-in areas of weakness where high current densities maymore » cause thermal damage in a partial-shading event.« less
Joint constraints on galaxy bias and σ{sub 8} through the N-pdf of the galaxy number density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnalte-Mur, Pablo; Martínez, Vicent J.; Vielva, Patricio
We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on themore » bias parameter), and of those parameters defining the dark matter correlations, in particular its amplitude (σ{sub 8}). It also provides the proper framework to perform model selection between two competitive hypotheses. The parameters estimation capabilities of the N-pdf are proved by SDSS-like simulations (both, ideal log-normal simulations and mocks obtained from Las Damas simulations), showing that our estimator is unbiased. We apply our formalism to the 7th release of the SDSS main sample (for a volume-limited subset with absolute magnitudes M{sub r} ≤ −20). We obtain b-circumflex = 1.193 ± 0.074 and σ-bar{sub 8} = 0.862 ± 0.080, for galaxy number density fluctuations in cells of the size of 30h{sup −1}Mpc. Different model selection criteria show that galaxy biasing is clearly favoured.« less
NASA Astrophysics Data System (ADS)
Peirani, Sébastien; Dubois, Yohan; Volonteri, Marta; Devriendt, Julien; Bundy, Kevin; Silk, Joe; Pichon, Christophe; Kaviraj, Sugata; Gavazzi, Raphaël; Habouzit, Mélanie
2017-12-01
Using a suite of three large cosmological hydrodynamical simulations, HORIZON-AGN, HORIZON–NOAGN (no AGN feedback) and HORIZON-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density profiles of massive dark matter haloes and galaxies. Based on direct object-to-object comparisons, we find that the integrated inner mass and density slope differences between objects formed in these three simulations (hereafter, HAGN, HnoAGN and HDM) significantly evolve with time. More specifically, at high redshift (z ∼ 5), the mean central density profiles of HAGN and HnoAGN dark matter haloes tend to be much steeper than their HDM counterparts owing to the rapidly growing baryonic component and ensuing adiabatic contraction. By z ∼ 1.5, these mean halo density profiles in HAGN have flattened, pummelled by powerful AGN activity ('quasar mode'): the integrated inner mass difference gaps with HnoAGN haloes have widened, and those with HDM haloes have narrowed. Fast forward 9.5 billion years, down to z = 0, and the trend reverses: HAGN halo mean density profiles drift back to a more cusped shape as AGN feedback efficiency dwindles ('radio mode'), and the gaps in integrated central mass difference with HnoAGN and HDM close and broaden, respectively. On the galaxy side, the story differs noticeably. Averaged stellar profile central densities and inner slopes are monotonically reduced by AGN activity as a function of cosmic time, resulting in better agreement with local observations.
Belloir, Jean-Marc; Goiffon, Vincent; Virmontois, Cédric; Raine, Mélanie; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Molina, Romain; Magnan, Pierre; Gilard, Olivier
2016-02-22
The dark current produced by neutron irradiation in CMOS Image Sensors (CIS) is investigated. Several CIS with different photodiode types and pixel pitches are irradiated with various neutron energies and fluences to study the influence of each of these optical detector and irradiation parameters on the dark current distribution. An empirical model is tested on the experimental data and validated on all the irradiated optical imagers. This model is able to describe all the presented dark current distributions with no parameter variation for neutron energies of 14 MeV or higher, regardless of the optical detector and irradiation characteristics. For energies below 1 MeV, it is shown that a single parameter has to be adjusted because of the lower mean damage energy per nuclear interaction. This model and these conclusions can be transposed to any silicon based solid-state optical imagers such as CIS or Charged Coupled Devices (CCD). This work can also be used when designing an optical imager instrument, to anticipate the dark current increase or to choose a mitigation technique.
Waveguide-integrated vertical pin photodiodes of Ge fabricated on p+ and n+ Si-on-insulator layers
NASA Astrophysics Data System (ADS)
Ito, Kazuki; Hiraki, Tatsurou; Tsuchizawa, Tai; Ishikawa, Yasuhiko
2017-04-01
Vertical pin structures of Ge photodiodes (PDs) integrated with Si optical waveguides are fabricated by depositing Ge epitaxial layers on Si-on-insulator (SOI) layers, and the performances of n+-Ge/i-Ge/p+-SOI PDs are compared with those of p+-Ge/i-Ge/n+-SOI PDs. Both types of PDs show responsivities as high as 1.0 A/W at 1.55 µm, while the dark leakage current is different, which is consistent with previous reports on free-space PDs formed on bulk Si wafers. The dark current of the p+-Ge/i-Ge/n+-SOI PDs is higher by more than one order of magnitude. Taking into account the activation energies for dark current as well as the dependence on PD area, the dark current of the n+-Ge/i-Ge/p+-SOI PDs is dominated by the thermal generation of carriers via mid-gap defect levels in Ge, while for the p+-Ge/i-Ge/n+-SOI PDs, the dark current is ascribed to not only thermal generation but also other mechanisms such as locally formed conduction paths.
NASA Astrophysics Data System (ADS)
Banerjee, Sudeep
2011-10-01
This talk will report the production of high energy, quasi-monoenergetic electron bunches without the low-energy electron background that is typically detected from self-injected laser-wakefield accelerators. These electron bunches are produced when the accelerator is operated in the blowout regime, and the laser and plasma parameters are optimized. High-contrast, high power (30-60 TW) and ultra-short-duration (30 fs) laser pulses are focused onto He-gas-jet targets. The high energy (300-400 MeV) monoenergetic (energy spread < 10%) beams are characterized by 1-4-mrad divergence, pointing stability of 1-2 mrad, and a few-percent shot-to-shot fluctuation of peak energy. The results are scalable: the beam energy can be tuned by appropriate choice of acceleration length, laser power and plasma density. Three-dimensional particle-in-cell simulations show that these electron beams are generated when the accelerator is operated near the self-injection threshold, which suppresses dark current (continuous injection in the first bucket). Suppression of dark current is required to minimize noise, improve the quality of secondary radiation sources, and minimize shielding requirements for high repetition-rate operation. Also reported, is the application of this novel electron-beam source to radiography of dense objects with sub-millimeter spatial resolution. In this case, the energetic electron beam is incident on a 2''-thick steel target with embedded voids, which are detected with image plates. Current progress on the generation of GeV energy electron beams with petawatt peak power laser pulses, from the upgraded DIOCLES laser system, will also be discussed. Work supported by U. S. DOE grants DEFG02-05ER15663, DE-FG02-08ER55000; DARPA grant FA9550-09-1-0009; DTRA grant HDTRA1-11-C-0001 and, DHS grant 2007-DN-007-ER0007-02. The laser is supported by AFOSR contracts FA 9550-08-1-0232, FA9550-07-1-0521.
Wang, B; Abdalla, E; Atrio-Barandela, F; Pavón, D
2016-09-01
Models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. We review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations. We test models using the most recent observational data and we find that the interaction is compatible with the current astronomical and cosmological data. Finally, we describe the forthcoming data sets from current and future facilities that are being constructed or designed that will allow a clearer understanding of the physics of the dark sector.
THE DARK HALO-SPHEROID CONSPIRACY AND THE ORIGIN OF ELLIPTICAL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remus, Rhea-Silvia; Burkert, Andreas; Dolag, Klaus
2013-04-01
Dynamical modeling and strong-lensing data indicate that the total density profiles of early-type galaxies are close to isothermal, i.e., {rho}{sub tot}{proportional_to}r {sup {gamma}} with {gamma} Almost-Equal-To -2. To understand the origin of this universal slope we study a set of simulated spheroids formed in isolated binary mergers as well as the formation within the cosmological framework. The total stellar plus dark matter density profiles can always be described by a power law with an index of {gamma} Almost-Equal-To -2.1 with a tendency toward steeper slopes for more compact, lower-mass ellipticals. In the binary mergers the amount of gas involved inmore » the merger determines the precise steepness of the slope. This agrees with results from the cosmological simulations where ellipticals with steeper slopes have a higher fraction of stars formed in situ. Each gas-poor merger event evolves the slope toward {gamma} {approx} -2, once this slope is reached further merger events do not change it anymore. All our ellipticals have flat intrinsic combined stellar and dark matter velocity dispersion profiles. We conclude that flat velocity dispersion profiles and total density distributions with a slope of {gamma} {approx} -2 for the combined system of stars and dark matter act as a natural attractor. The variety of complex formation histories as present in cosmological simulations, including major as well as minor merger events, is essential to generate the full range of observed density slopes seen for present-day elliptical galaxies.« less
Asymmetric mass models of disk galaxies. I. Messier 99
NASA Astrophysics Data System (ADS)
Chemin, Laurent; Huré, Jean-Marc; Soubiran, Caroline; Zibetti, Stefano; Charlot, Stéphane; Kawata, Daisuke
2016-04-01
Mass models of galactic disks traditionally rely on axisymmetric density and rotation curves, paradoxically acting as if their most remarkable asymmetric features, such as lopsidedness or spiral arms, were not important. In this article, we relax the axisymmetry approximation and introduce a methodology that derives 3D gravitational potentials of disk-like objects and robustly estimates the impacts of asymmetries on circular velocities in the disk midplane. Mass distribution models can then be directly fitted to asymmetric line-of-sight velocity fields. Applied to the grand-design spiral M 99, the new strategy shows that circular velocities are highly nonuniform, particularly in the inner disk of the galaxy, as a natural response to the perturbed gravitational potential of luminous matter. A cuspy inner density profile of dark matter is found in M 99, in the usual case where luminous and dark matter share the same center. The impact of the velocity nonuniformity is to make the inner profile less steep, although the density remains cuspy. On another hand, a model where the halo is core dominated and shifted by 2.2-2.5 kpc from the luminous mass center is more appropriate to explain most of the kinematical lopsidedness evidenced in the velocity field of M 99. However, the gravitational potential of luminous baryons is not asymmetric enough to explain the kinematical lopsidedness of the innermost regions, irrespective of the density shape of dark matter. This discrepancy points out the necessity of an additional dynamical process in these regions: possibly a lopsided distribution of dark matter.
Distance measurements from supernovae and dark energy constraints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Yun
2009-12-15
Constraints on dark energy from current observational data are sensitive to how distances are measured from Type Ia supernova (SN Ia) data. We find that flux averaging of SNe Ia can be used to test the presence of unknown systematic uncertainties, and yield more robust distance measurements from SNe Ia. We have applied this approach to the nearby+SDSS+ESSENCE+SNLS+HST set of 288 SNe Ia, and the 'Constitution' set of 397 SNe Ia. Combining the SN Ia data with cosmic microwave background anisotropy data from Wilkinson Microwave Anisotropy Probe 5 yr observations, the Sloan Digital Sky Survey baryon acoustic oscillation measurements, themore » data of 69 gamma-ray bursts (GRBs) , and the Hubble constant measurement from the Hubble Space Telescope project SHOES, we measure the dark energy density function X(z){identical_to}{rho}{sub X}(z)/{rho}{sub X}(0) as a free function of redshift (assumed to be a constant at z>1 or z>1.5). Without the flux averaging of SNe Ia, the combined data using the Constitution set of SNe Ia seem to indicate a deviation from a cosmological constant at {approx}95% confidence level at 0 < or apporx. z < or approx. 0.8; they are consistent with a cosmological constant at {approx}68% confidence level when SNe Ia are flux averaged. The combined data using the nearby+SDSS+ESSENCE+SNLS+HST data set of SNe Ia are consistent with a cosmological constant at 68% confidence level with or without flux averaging of SNe Ia, and give dark energy constraints that are significantly more stringent than that using the Constitution set of SNe Ia. Assuming a flat Universe, dark energy is detected at >98% confidence level for z{<=}0.75 using the combined data with 288 SNe Ia from nearby+SDSS+ESSENCE+SNLS+HST, independent of the assumptions about X(z{>=}1). We quantify dark energy constraints without assuming a flat Universe using the dark energy figure of merit for both X(z) and a dark energy equation-of-state linear in the cosmic scale factor.« less
Calculation of momentum distribution function of a non-thermal fermionic dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Anirban; Gupta, Aritra, E-mail: anirbanbiswas@hri.res.in, E-mail: aritra@hri.res.in
The most widely studied scenario in dark matter phenomenology is the thermal WIMP scenario. Inspite of numerous efforts to detect WIMP, till now we have no direct evidence for it. A possible explanation for this non-observation of dark matter could be because of its very feeble interaction strength and hence, failing to thermalise with the rest of the cosmic soup. In other words, the dark matter might be of non-thermal origin where the relic density is obtained by the so-called freeze-in mechanism. Furthermore, if this non-thermal dark matter is itself produced substantially from the decay of another non-thermal mother particle,more » then their distribution functions may differ in both size and shape from the usual equilibrium distribution function. In this work, we have studied such a non-thermal (fermionic) dark matter scenario in the light of a new type of U(1){sub B−L} model. The U(1){sub B−L} model is interesting, since, besides being anomaly free, it can give rise to neutrino mass by Type II see-saw mechanism. Moreover, as we will show, it can accommodate a non-thermal fermionic dark matter as well. Starting from the collision terms, we have calculated the momentum distribution function for the dark matter by solving a coupled system of Boltzmann equations. We then used it to calculate the final relic abundance, as well as other relevant physical quantities. We have also compared our result with that obtained from solving the usual Boltzmann (or rate) equations directly in terms of comoving number density, Y . Our findings suggest that the latter approximation is valid only in cases where the system under study is close to equilibrium, and hence should be used with caution.« less
Calculation of momentum distribution function of a non-thermal fermionic dark matter
NASA Astrophysics Data System (ADS)
Biswas, Anirban; Gupta, Aritra
2017-03-01
The most widely studied scenario in dark matter phenomenology is the thermal WIMP scenario. Inspite of numerous efforts to detect WIMP, till now we have no direct evidence for it. A possible explanation for this non-observation of dark matter could be because of its very feeble interaction strength and hence, failing to thermalise with the rest of the cosmic soup. In other words, the dark matter might be of non-thermal origin where the relic density is obtained by the so-called freeze-in mechanism. Furthermore, if this non-thermal dark matter is itself produced substantially from the decay of another non-thermal mother particle, then their distribution functions may differ in both size and shape from the usual equilibrium distribution function. In this work, we have studied such a non-thermal (fermionic) dark matter scenario in the light of a new type of U(1)B-L model. The U(1)B-L model is interesting, since, besides being anomaly free, it can give rise to neutrino mass by Type II see-saw mechanism. Moreover, as we will show, it can accommodate a non-thermal fermionic dark matter as well. Starting from the collision terms, we have calculated the momentum distribution function for the dark matter by solving a coupled system of Boltzmann equations. We then used it to calculate the final relic abundance, as well as other relevant physical quantities. We have also compared our result with that obtained from solving the usual Boltzmann (or rate) equations directly in terms of comoving number density, Y. Our findings suggest that the latter approximation is valid only in cases where the system under study is close to equilibrium, and hence should be used with caution.
Reconstruction of the Dark Energy Equation of State from the Latest Observations
NASA Astrophysics Data System (ADS)
Dai, Ji-Ping; Yang, Yang; Xia, Jun-Qing
2018-04-01
Since the discovery of the accelerating expansion of our universe in 1998, studying the features of dark energy has remained a hot topic in modern cosmology. In the literature, dark energy is usually described by w ≡ P/ρ, where P and ρ denote its pressure and energy density. Therefore, exploring the evolution of w is the key approach to understanding dark energy. In this work, we adopt three different methods, polynomial expansion, principal component analysis, and the correlated prior method, to reconstruct w with a collection of the latest observations, including the type-Ia supernova, cosmic microwave background, large-scale structure, Hubble measurements, and baryon acoustic oscillations (BAOs), and find that the concordance cosmological constant model (w = ‑1) is still safely consistent with these observational data at the 68% confidence level. However, when we add the high-redshift BAO measurement from the Lyα forest (Lyα FB) of BOSS DR11 quasars into the calculation, there is a significant impact on the reconstruction result. In the standard ΛCDM model, since the Lyα FB data slightly prefer a negative dark energy density, in order to avoid this problem, a dark energy model with a w significantly smaller than ‑1 is needed to explain this Lyα FB data. In this work, we find the consistent conclusion that there is a strong preference for the time-evolving behavior of dark energy w at high redshifts, when including the Lyα FB data. Therefore, we think that this Lyα FB data needs to be watched carefully attention when studying the evolution of the dark energy equation of state.
Atomic dark matter with hyperfine interactions
NASA Astrophysics Data System (ADS)
Boddy, Kimberly K.; Kaplinghat, Manoj; Kwa, Anna; Peter, Annika H. G.
2017-11-01
We consider dark matter as an analog of hydrogen in a secluded sector and study its astrophysical implications. The self interactions between dark matter particles include elastic scatterings as well as inelastic processes from hyperfine transitions. We show that for a dark hydrogen mass in the 10-100 GeV range and a dark fine-structure constant larger than 0.01, the self-interaction cross section has the right magnitude and velocity dependence to explain the low dark matter density cores seen in small galaxies while being consistent with all constraints from observations of galaxy clusters. Excitations to the hyperfine state and subsequent decays, however, may cause significant cooling losses and affect the evolution of low-mass halos. We also find minimum halo masses in the range of 103.5-107 M⊙, which are significantly larger than the typical predictions for weakly interacting dark matter models. This pattern of observables in structure formation is unique to this model, making it possible to determine the viability of hidden-sector hydrogen as a dark matter candidate.
Phenomenology of ELDER dark matter
NASA Astrophysics Data System (ADS)
Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai
2017-08-01
We explore the phenomenology of Elastically Decoupling Relic (ELDER) dark matter. ELDER is a thermal relic whose present density is determined primarily by the cross-section of its elastic scattering off Standard Model (SM) particles. Assuming that this scattering is mediated by a kinetically mixed dark photon, we argue that the ELDER scenario makes robust predictions for electron-recoil direct-detection experiments, as well as for dark photon searches. These predictions are independent of the details of interactions within the dark sector. Together with the closely related Strongly-Interacting Massive Particle (SIMP) scenario, the ELDER predictions provide a physically motivated, well-defined target region, which will be almost entirely accessible to the next generation of searches for sub-GeV dark matter and dark photons. We provide useful analytic approximations for various quantities of interest in the ELDER scenario, and discuss two simple renormalizable toy models which incorporate the required strong number-changing interactions among the ELDERs, as well as explicitly implement the coupling to electrons via the dark photon portal.
Multi-Messenger Astronomy and Dark Matter
NASA Astrophysics Data System (ADS)
Bergström, Lars
This chapter presents the elaborated lecture notes on Multi-Messenger Astronomy and Dark Matter given by Lars Bergström at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". One of the main problems of astrophysics and astro-particle physics is that the nature of dark matter remains unsolved. There are basically three complementary approaches to try to solve this problem. One is the detection of new particles with accelerators, the second is the observation of various types of messengers from radio waves to gamma-ray photons and neutrinos, and the third is the use of ingenious experiments for direct detection of dark matter particles. After giving an introduction to the particle universe, the author discusses the relic density of particles, basic cross sections for neutrinos and gamma-rays, supersymmetric dark matter, detection methods for neutralino dark matter, particular dark matter candidates, the status of dark matter detection, a detailled calculation on an hypothetical "Saas-Fee Wimp", primordial black holes, and gravitational waves.
Holographic dark energy in higher derivative gravity with time varying model parameter c2
NASA Astrophysics Data System (ADS)
Borah, B.; Ansari, M.
2015-01-01
Purpose of this paper is to study holographic dark energy in higher derivative gravity assuming the model parameter c2 as a slowly time varying function. Since dark energy emerges as combined effect of linear as well as non-linear terms of curvature, therefore it is important to see holographic dark energy at higher derivative gravity, where action contains both linear as well as non-linear terms of Ricci curvature R. We consider non-interacting scenario of the holographic dark energy with dark matter in spatially flat universe and obtain evolution of the equation of state parameter. Also, we determine deceleration parameter as well as the evolution of dark energy density to explain expansion of the universe. Further, we investigate validity of generalized second law of thermodynamics in this scenario. Finally, we find out a cosmological application of our work by evaluating a relation for the equation of state of holographic dark energy for low red-shifts containing c2 correction.
Understanding redshift space distortions in density-weighted peculiar velocity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugiyama, Naonori S.; Okumura, Teppei; Spergel, David N., E-mail: nao.s.sugiyama@gmail.com, E-mail: teppei.oku@gmail.com, E-mail: dns@astro.princeton.edu
2016-07-01
Observations of the kinetic Sunyaev-Zel'dovich (kSZ) effect measure the density-weighted velocity field, a potentially powerful cosmological probe. This paper presents an analytical method to predict the power spectrum and two-point correlation function of the density-weighted velocity in redshift space, the direct observables in kSZ surveys. We show a simple relation between the density power spectrum and the density-weighted velocity power spectrum that holds for both dark matter and halos. Using this relation, we can then extend familiar perturbation expansion techniques to the kSZ power spectrum. One of the most important features of density-weighted velocity statistics in redshift space is themore » change in sign of the cross-correlation between the density and density-weighted velocity at mildly small scales due to nonlinear redshift space distortions. Our model can explain this characteristic feature without any free parameters. As a result, our results can precisely predict the non-linear behavior of the density-weighted velocity field in redshift space up to ∼ 30 h {sup -1} Mpc for dark matter particles at the redshifts of z =0.0, 0.5, and 1.0.« less
Tuneable photoconductivity and mobility enhancement in printed MoS2/graphene composites
NASA Astrophysics Data System (ADS)
Kelly, Adam G.; Murphy, Conor; Vega-Mayoral, Victor; Harvey, Andrew; Sajad Esmaeily, Amir; Hallam, Toby; McCloskey, David; Coleman, Jonathan N.
2017-12-01
With the aim of increasing carrier mobility in nanosheet-network devices, we have investigated MoS2-graphene composites as active regions in printed photodetectors. Combining liquid exfoliation and inkjet-printing, we fabricated all-printed photodetectors with graphene electrodes and MoS2-graphene composite channels with various graphene mass fractions (0 ⩽ M f ⩽ 16 wt%). The increase in channel dark conductivity with M f was consistent with percolation theory for composites below the percolation threshold. While the photoconductivity increased with graphene content, it did so more slowly than the dark conductivity, such that the fractional photoconductivity decayed rapidly with increasing M f. We propose that both mobility and dark carrier density increase with graphene content according to percolation-like scaling laws, while photo-induced carrier density is essentially independent of graphene loading. This leads to percolation-like scaling laws for both photoconductivity and fractional photoconductivity—in excellent agreement with the data. These results imply that channel mobility and carrier density increase up to 100-fold with the addition of 16 wt% graphene.
Cross-correlation cosmography with intensity mapping of the neutral hydrogen 21 cm emission
NASA Astrophysics Data System (ADS)
Pourtsidou, A.; Bacon, D.; Crittenden, R.
2015-11-01
The cross-correlation of a foreground density field with two different background convergence fields can be used to measure cosmographic distance ratios and constrain dark energy parameters. We investigate the possibility of performing such measurements using a combination of optical galaxy surveys and neutral hydrogen (HI) intensity mapping surveys, with emphasis on the performance of the planned Square Kilometre Array (SKA). Using HI intensity mapping to probe the foreground density tracer field and/or the background source fields has the advantage of excellent redshift resolution and a longer lever arm achieved by using the lensing signal from high redshift background sources. Our results show that, for our best SKA-optical configuration of surveys, a constant equation of state for dark energy can be constrained to ≃8 % for a sky coverage fsky=0.5 and assuming a σ (ΩDE)=0.03 prior for the dark energy density parameter. We also show that using the cosmic microwave background as the second source plane is not competitive, even when considering a COrE-like satellite.
k-essence model of inflation, dark matter, and dark energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Nilok; Majumdar, A. S.
We investigate the possibility for k-essence dynamics to reproduce the primary features of inflation in the early universe, generate dark matter subsequently, and finally account for the presently observed acceleration. We first show that for a purely kinetic k-essence model the late-time energy density of the universe when expressed simply as a sum of a cosmological constant and a dark matter term leads to a static universe. We then study another k-essence model in which the Lagrangian contains a potential for the scalar field as well as a noncanonical kinetic term. We show that such a model generates the basicmore » features of inflation in the early universe, and also gives rise to dark matter and dark energy at appropriate subsequent stages. Observational constraints on the parameters of this model are obtained.« less
Interacting holographic dark energy models: a general approach
NASA Astrophysics Data System (ADS)
Som, S.; Sil, A.
2014-08-01
Dark energy models inspired by the cosmological holographic principle are studied in homogeneous isotropic spacetime with a general choice for the dark energy density . Special choices of the parameters enable us to obtain three different holographic models, including the holographic Ricci dark energy (RDE) model. Effect of interaction between dark matter and dark energy on the dynamics of those models are investigated for different popular forms of interaction. It is found that crossing of phantom divide can be avoided in RDE models for β>0.5 irrespective of the presence of interaction. A choice of α=1 and β=2/3 leads to a varying Λ-like model introducing an IR cutoff length Λ -1/2. It is concluded that among the popular choices an interaction of the form Q∝ Hρ m suits the best in avoiding the coincidence problem in this model.
Dark matter and cosmological nucleosynthesis
NASA Technical Reports Server (NTRS)
Schramm, D. N.
1986-01-01
Existing dark matter problems, i.e., dynamics, galaxy formation and inflation, are considered, along with a model which proposes dark baryons as the bulk of missing matter in a fractal universe. It is shown that no combination of dark, nonbaryonic matter can either provide a cosmological density parameter value near unity or, as in the case of high energy neutrinos, allow formation of condensed matter at epochs when quasars already existed. The possibility that correlations among galactic clusters are scale-free is discussed. Such a distribution of matter would yield a fractal of 1.2, close to a one-dimensional universe. Biasing, cosmic superstrings, and percolated explosions and hot dark matter are theoretical approaches that would satisfy the D = 1.2 fractal model of the large-scale structure of the universe and which would also allow sufficient dark matter in halos to close the universe.
Gravitational waves in cold dark matter
NASA Astrophysics Data System (ADS)
Flauger, Raphael; Weinberg, Steven
2018-06-01
We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore show that the spectrum of primordial gravitational waves in principle contains detailed information about the properties of dark matter. However, depending on the wavelength, the effects are either suppressed because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves in practice also appear too small to be detectable.
Large Synoptic Survey Telescope: From Science Drivers to Reference Design
2008-01-01
faint time domain. The LSST design is driven by four main science themes: constraining dark energy and dark matter , taking an inventory of the Solar...Energy and Dark Matter (2) Taking an Inventory of the Solar System (3) Exploring the Transient Optical Sky (4) Mapping the Milky Way Each of these four...Constraining Dark Energy and Dark Matter Current models of cosmology require the exis- tence of both dark matter and dark energy to match observational
Model-independent cosmological constraints from growth and expansion
NASA Astrophysics Data System (ADS)
L'Huillier, Benjamin; Shafieloo, Arman; Kim, Hyungjin
2018-05-01
Reconstructing the expansion history of the Universe from Type Ia supernovae data, we fit the growth rate measurements and put model-independent constraints on some key cosmological parameters, namely, Ωm, γ, and σ8. The constraints are consistent with those from the concordance model within the framework of general relativity, but the current quality of the data is not sufficient to rule out modified gravity models. Adding the condition that dark energy density should be positive at all redshifts, independently of its equation of state, further constrains the parameters and interestingly supports the concordance model.
NASA Astrophysics Data System (ADS)
Wu, D. H.; Zhang, Y. Y.; Razeghi, M.
2018-03-01
We demonstrate room temperature operation of In0.5Ga0.5Sb/InAs type-II quantum well photodetectors on an InAs substrate grown by metal-organic chemical vapor deposition. At 300 K, the detector exhibits a dark current density of 0.12 A/cm2 and a peak responsivity of 0.72 A/W corresponding to a quantum efficiency of 23.3%, with the calculated specific detectivity of 2.4 × 109 cm Hz1/2/W at 3.81 μm.
Correlated perturbations from inflation and the cosmic microwave background.
Amendola, Luca; Gordon, Christopher; Wands, David; Sasaki, Misao
2002-05-27
We compare the latest cosmic microwave background data with theoretical predictions including correlated adiabatic and cold dark matter (CDM) isocurvature perturbations with a simple power-law dependence. We find that there is a degeneracy between the amplitude of correlated isocurvature perturbations and the spectral tilt. A negative (red) tilt is found to be compatible with a larger isocurvature contribution. Estimates of the baryon and CDM densities are found to be almost independent of the isocurvature amplitude. The main result is that current microwave background data do not exclude a dominant contribution from CDM isocurvature fluctuations on large scales.
A uniform laminar air plasma plume with large volume excited by an alternating current voltage
NASA Astrophysics Data System (ADS)
Li, Xuechen; Bao, Wenting; Chu, Jingdi; Zhang, Panpan; Jia, Pengying
2015-12-01
Using a plasma jet composed of two needle electrodes, a laminar plasma plume with large volume is generated in air through an alternating current voltage excitation. Based on high-speed photography, a train of filaments is observed to propagate periodically away from their birth place along the gas flow. The laminar plume is in fact a temporal superposition of the arched filament train. The filament consists of a negative glow near the real time cathode, a positive column near the real time anode, and a Faraday dark space between them. It has been found that the propagation velocity of the filament increases with increasing the gas flow rate. Furthermore, the filament lifetime tends to follow a normal distribution (Gaussian distribution). The most probable lifetime decreases with increasing the gas flow rate or decreasing the averaged peak voltage. Results also indicate that the real time peak current decreases and the real time peak voltage increases with the propagation of the filament along the gas flow. The voltage-current curve indicates that, in every discharge cycle, the filament evolves from a Townsend discharge to a glow one and then the discharge quenches. Characteristic regions including a negative glow, a Faraday dark space, and a positive column can be discerned from the discharge filament. Furthermore, the plasma parameters such as the electron density, the vibrational temperature and the gas temperature are investigated based on the optical spectrum emitted from the laminar plume.
Relativistic Dark Matter at the Galactic Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amin, Mustafa A.; /Stanford U., Phys. Dept. /KIPAC, Menlo Park; Wizansky, Tommer
2007-11-16
In a large region of the supersymmetry parameter space, the annihilation cross section for neutralino dark matter is strongly dependent on the relative velocity of the incoming particles. We explore the consequences of this velocity dependence in the context of indirect detection of dark matter from the galactic center. We find that the increase in the annihilation cross section at high velocities leads to a flattening of the halo density profile near the galactic center and an enhancement of the annihilation signal.
Diurnal rhythm of melatonin binding in the rat suprachiasmatic nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laitinen, J.T.; Castren, E.; Vakkuri, O.
1989-03-01
We used quantitative in vitro autoradiography to localize and characterize 2-/sup 125/I-melatonin binding sites in the rat suprachiasmatic nuclei in relation to pineal melatonin production. In a light:dark cycle of 12:12 h, binding density exhibited significant diurnal variation with a peak at the dark-light transition and a trough 12 hours later. Saturation studies suggested that the decreased binding at light-dark transition might be due to a shift of the putative melatonin receptor to a low affinity state.
Effects of cocoa products/dark chocolate on serum lipids: a meta-analysis.
Tokede, O A; Gaziano, J M; Djoussé, L
2011-08-01
Cocoa products, which are rich sources of flavonoids, have been shown to reduce blood pressure and the risk of cardiovascular disease. Dark chocolate contains saturated fat and is a source of dietary calories; consequently, it is important to determine whether consumption of dark chocolate adversely affects the blood lipid profile. The objective was to examine the effects of dark chocolate/cocoa product consumption on the lipid profile using published trials. A detailed literature search was conducted via MEDLINE (from 1966 to May 2010), CENTRAL and ClinicalTrials.gov for randomized controlled clinical trials assessing the effects of flavanol-rich cocoa products or dark chocolate on lipid profile. The primary effect measure was the difference in means of the final measurements between the intervention and control groups. In all, 10 clinical trials consisting of 320 participants were included in the analysis. Treatment duration ranged from 2 to 12 weeks. Intervention with dark chocolate/cocoa products significantly reduced serum low-density lipoprotein (LDL) and total cholesterol (TC) levels (differences in means (95% CI) were -5.90 mg/dl (-10.47, -1.32 mg/dl) and -6.23 mg/dl (-11.60, -0.85 mg/dl), respectively). No statistically significant effects were observed for high-density lipoprotein (HDL) (difference in means (95% CI): -0.76 mg/dl (-3.02 to 1.51 mg/dl)) and triglyceride (TG) (-5.06 mg/dl (-13.45 to 3.32 mg/dl)). These data are consistent with beneficial effects of dark chocolate/cocoa products on total and LDL cholesterol and no major effects on HDL and TG in short-term intervention trials.
Bringing isolated dark matter out of isolation: Late-time reheating and indirect detection
NASA Astrophysics Data System (ADS)
Erickcek, Adrienne L.; Sinha, Kuver; Watson, Scott
2016-09-01
In standard cosmology, the growth of structure becomes significant following matter-radiation equality. In nonthermal histories, where an effectively matter-dominated phase occurs due to scalar oscillations prior to big bang nucleosynthesis, a new scale at smaller wavelengths appears in the matter power spectrum. Density perturbations that enter the horizon during the early matter-dominated era (EMDE) grow linearly with the scale factor prior to the onset of radiation domination, which leads to enhanced inhomogeneity on small scales if dark matter (DM) thermally and kinetically decouples during the EMDE. The microhalos that form from these enhanced perturbations significantly boost the self-annihilation rate for dark matter. This has important implications for indirect detection experiments: the larger annihilation rate may result in observable signals from dark matter candidates that are usually deemed untestable. As a proof of principle, we consider binos in heavy supersymmetry with an intermediate extended Higgs sector and all other superpartners decoupled. We find that these isolated binos, which lie under the neutrino floor, can account for the dark matter relic density and decouple from the standard model early enough to preserve the enhanced small-scale inhomogeneity generated during the EMDE. If early forming microhalos survive as subhalos within larger microhalos, the resulting boost to the annihilation rate for bino dark matter near the pseudoscalar resonance exceeds the upper limit established by Fermi-LAT's observations of dwarf spheroidal galaxies. These DM candidates motivate the N -body simulations required to eliminate uncertainties in the microhalos' internal structure by exemplifying how an EMDE can enable Fermi-LAT to probe isolated dark matter.
GeV-scale dark matter: Production at the main injector
Dobrescu, Bogdan A.; Frugiuele, Claudia
2015-02-03
In this study, assuming that dark matter particles interact with quarks via a GeV-scale mediator, we study dark matter production in fixed target collisions. The ensuing signal in a neutrino near detector consists of neutral-current events with an energy distribution peaked at higher values than the neutrino background. We find that for a Z' boson of mass around a few GeV that decays to dark matter particles, the dark matter beam produced by the Main Injector at Fermilab allows the exploration of a range of values for the gauge coupling that currently satisfy all experimental constraints. The NOνA near detectormore » is well positioned for probing the presence of a dark matter beam, and future LBNF near detectors would provide more sensitive probes.« less
Antiproton signatures from astrophysical and dark matter sources at the galactic center
NASA Astrophysics Data System (ADS)
Cembranos, J. A. R.; Gammaldi, V.; Maroto, A. L.
2015-03-01
The center of our Galaxy is a complex region characterized by extreme phenomena. The presence of the supermassive Sagittarius A* black hole, a high dark matter density and an even higher baryonic density are able to produce very energetic processes. Indeed, high energetic gamma-rays have been observed by different telescopes, although their origin is not clear. In this work, we estimate the possible antiproton flux component associated with this signal. The expected secondary astrophysical antiproton background already saturates the observed data. It implies that any other important astrophysical source leads to an inconsistent excess. We estimate the sensitivity of PAMELA to this new primary antiproton source, which depends on the diffusion model and its spectral features. In particular, we consider antiproton spectra described by a power-law, a monochromatic signal and a Standard Model particle-antiparticle channel production. This latter spectrum is typical in the production from annihilating or decaying dark matter. We pay particular attention to the case of a heavy dark matter candidate, which could be associated with the High Energy Stereoscopic System (HESS) data observed from the J1745-290 source.
New holographic dark energy model inspired by the DGP braneworld
NASA Astrophysics Data System (ADS)
Sheykhi, A.; Dehghani, M. H.; Ghaffari, S.
2016-11-01
The energy density of the holographic dark energy (HDE) is based on the area law of entropy, and thus any modification of the area law leads to a modified holographic energy density. Inspired by the entropy expression associated with the apparent horizon of a Friedmann-Robertson-Walker (FRW) universe in DGP braneworld, we propose a new model for the HDE in the framework of DGP brane cosmology. We investigate the cosmological consequences of this new model and calculate the equation of state (EoS) parameter by choosing the Hubble radius, L = H-1, as the system’s IR cutoff. Our study show that, due to the effects of the extra dimension (bulk), the identification of IR cutoff with Hubble radius, can reproduce the present acceleration of the universe expansion. This is in contrast to the ordinary HDE in standard cosmology which leads to the zero EoS parameter in the case of choosing the Hubble radius as system’s IR cutoff in the absence of interaction between dark matter (DM) and dark energy (DE).
Warm and cold fermionic dark matter via freeze-in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klasen, Michael; Yaguna, Carlos E., E-mail: michael.klasen@uni-muenster.de, E-mail: carlos.yaguna@uni-muenster.de
2013-11-01
The freeze-in mechanism of dark matter production provides a simple and intriguing alternative to the WIMP paradigm. In this paper, we analyze whether freeze-in can be used to account for the dark matter in the so-called singlet fermionic model. In it, the SM is extended with only two additional fields, a singlet scalar that mixes with the Higgs boson, and the dark matter particle, a fermion assumed to be odd under a Z{sub 2} symmetry. After numerically studying the generation of dark matter, we analyze the dependence of the relic density with respect to all the free parameters of themore » model. These results are then used to obtain the regions of the parameter space that are compatible with the dark matter constraint. We demonstrate that the observed dark matter abundance can be explained via freeze-in over a wide range of masses extending down to the keV range. As a result, warm and cold dark matter can be obtained in this model. It is also possible to have dark matter masses well above the unitarity bound for WIMPs.« less
Dark Matter's secret liaisons: phenomenology of a dark U(1) sector with bound states
NASA Astrophysics Data System (ADS)
Cirelli, Marco; Panci, Paolo; Petraki, Kalliopi; Sala, Filippo; Taoso, Marco
2017-05-01
Dark matter (DM) charged under a dark U(1) force appears in many extensions of the Standard Model, and has been invoked to explain anomalies in cosmic-ray data, as well as a self-interacting DM candidate. In this paper, we perform a comprehensive phenomenological analysis of such a model, assuming that the DM abundance arises from the thermal freeze-out of the dark interactions. We include, for the first time, bound-state effects both in the DM production and in the indirect detection signals, and quantify their importance for FERMI, AMS-02, and CMB experiments. We find that DM in the mass range 1 GeV to 100 TeV, annihilating into dark photons of MeV to GeV mass, is in conflict with observations. Instead, DM annihilation into heavier dark photons is viable. We point out that the late decays of multi-GeV dark photons can produce significant entropy and thus dilute the DM density. This can lower considerably the dark coupling needed to obtain the DM abundance, and in turn relax the existing constraints.
Strong constraints on sub-GeV dark sectors from SLAC beam dump E137.
Batell, Brian; Essig, Rouven; Surujon, Ze'ev
2014-10-24
We present new constraints on sub-GeV dark matter and dark photons from the electron beam-dump experiment E137 conducted at SLAC in 1980-1982. Dark matter interacting with electrons (e.g., via a dark photon) could have been produced in the electron-target collisions and scattered off electrons in the E137 detector, producing the striking, zero-background signature of a high-energy electromagnetic shower that points back to the beam dump. E137 probes new and significant ranges of parameter space and constrains the well-motivated possibility that dark photons that decay to light dark-sector particles can explain the ∼3.6σ discrepancy between the measured and standard model value of the muon anomalous magnetic moment. It also restricts the parameter space in which the relic density of dark matter in these models is obtained from thermal freeze-out. E137 also convincingly demonstrates that (cosmic) backgrounds can be controlled and thus serves as a powerful proof of principle for future beam-dump searches for sub-GeV dark-sector particles scattering off electrons in the detector.
Dark Matter's secret liaisons: phenomenology of a dark U(1) sector with bound states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirelli, Marco; Petraki, Kalliopi; Sala, Filippo
Dark matter (DM) charged under a dark U(1) force appears in many extensions of the Standard Model, and has been invoked to explain anomalies in cosmic-ray data, as well as a self-interacting DM candidate. In this paper, we perform a comprehensive phenomenological analysis of such a model, assuming that the DM abundance arises from the thermal freeze-out of the dark interactions. We include, for the first time, bound-state effects both in the DM production and in the indirect detection signals, and quantify their importance for FERMI, AMS-02, and CMB experiments. We find that DM in the mass range 1 GeVmore » to 100 TeV, annihilating into dark photons of MeV to GeV mass, is in conflict with observations. Instead, DM annihilation into heavier dark photons is viable. We point out that the late decays of multi-GeV dark photons can produce significant entropy and thus dilute the DM density. This can lower considerably the dark coupling needed to obtain the DM abundance, and in turn relax the existing constraints.« less
Photoelectrochemical Performance of the Ag(III)-Based Oxygen-Evolving Catalyst.
Sordello, Fabrizio; Ghibaudo, Manuel; Minero, Claudio
2017-07-19
We report the electrosynthesis of a water oxidation catalyst based on Ag oxides (AgCat). The deposited AgCat is composed of mixed valence crystalline Ag oxides with the presence of particle aggregates whose size is ∼1 μm. This catalyst, coupled with TiO 2 and hematite, and under photoelectrochemical conditions, substantially increases photocurrents in a wide range of applied potentials compared with bare and Co-Pi-modified photocatalysts. AgCat can sustain current densities comparable with other water oxidation catalysts. Dark bulk electrolysis demonstrated that AgCat is stable and can sustain high turnover number in operative conditions. Oxygen evolution from water occurs in mild conditions: pH = 2-13, room temperature and pressure, and moderate overpotentials (600 mV) compatible with the coupling with semiconducting oxides as sensitizers. Using hematite in sustained electrolysis O 2 production is significant, both in the dark and under irradiation, after an initial slow induction time in which modification of surface species occurs.
Probing dark energy via galaxy cluster outskirts
NASA Astrophysics Data System (ADS)
Morandi, Andrea; Sun, Ming
2016-04-01
We present a Bayesian approach to combine Planck data and the X-ray physical properties of the intracluster medium in the virialization region of a sample of 320 galaxy clusters (0.056 < z < 1.24, kT ≳ 3 keV) observed with Chandra. We exploited the high level of similarity of the emission measure in the cluster outskirts as cosmology proxy. The cosmological parameters are thus constrained assuming that the emission measure profiles at different redshift are weakly self-similar, that is their shape is universal, explicitly allowing for temperature and redshift dependence of the gas fraction. This cosmological test, in combination with Planck+SNIa data, allows us to put a tight constraint on the dark energy models. For a constant-w model, we have w = -1.010 ± 0.030 and Ωm = 0.311 ± 0.014, while for a time-evolving equation of state of dark energy w(z) we have Ωm = 0.308 ± 0.017, w0 = -0.993 ± 0.046 and wa = -0.123 ± 0.400. Constraints on the cosmology are further improved by adding priors on the gas fraction evolution from hydrodynamic simulations. Current data favour the cosmological constant with w ≡ -1, with no evidence for dynamic dark energy. We checked that our method is robust towards different sources of systematics, including background modelling, outlier measurements, selection effects, inhomogeneities of the gas distribution and cosmic filaments. We also provided for the first time constraints on which definition of cluster boundary radius is more tenable, namely based on a fixed overdensity with respect to the critical density of the Universe. This novel cosmological test has the capacity to provide a generational leap forward in our understanding of the equation of state of dark energy.
Unified origin for baryonic visible matter and antibaryonic dark matter.
Davoudiasl, Hooman; Morrissey, David E; Sigurdson, Kris; Tulin, Sean
2010-11-19
We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, David E.; Krnjaic, Gordan Z.; Rehermann, Keith R.
We present a simple UV completion of Atomic Dark Matter (aDM) in which heavy right-handed neutrinos decay to induce both dark and lepton number densities. This model addresses several outstanding cosmological problems: the matter/anti-matter asymmetry, the dark matter abundance, the number of light degrees of freedom in the early universe, and the smoothing of small-scale structure. Additionally, this realization of aDM may reconcile the CoGeNT excess with recently published null results and predicts a signal in the CRESST Oxygen band. We also find that, due to unscreened long-range interactions, the residual un recombined dark ions settle into a diffuse isothermalmore » halo.« less
NASA Astrophysics Data System (ADS)
Baldi, Marco; Simpson, Fergus
2017-02-01
Persisting tensions between the cosmological constraints derived from low-redshift probes and the ones obtained from temperature and polarization anisotropies of the cosmic microwave background (CMB) - although not yet providing compelling evidence against the Λcold dark matter model - seem to consistently indicate a slower growth of density perturbations as compared to the predictions of the standard cosmological scenario. Such behaviour is not easily accommodated by the simplest extensions of General Relativity, such as f(R) models, which generically predict an enhanced growth rate. In this work, we present the outcomes of a suite of large N-body simulations carried out in the context of a cosmological model featuring a non-vanishing scattering cross-section between the dark matter and the dark energy fields, for two different parametrizations of the dark energy equation of state. Our results indicate that these dark scattering models have very mild effects on many observables related to large-scale structures formation and evolution, while providing a significant suppression of the amplitude of linear density perturbations and the abundance of massive clusters. Our simulations therefore confirm that these models offer a promising route to alleviate existing tensions between low-redshift measurements and those of the CMB.
Symmetron and de Sitter attractor in a teleparallel model of cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadjadi, H. Mohseni, E-mail: mohsenisad@ut.ac.ir
In the teleparallel framework of cosmology, a quintessence with non-minimal couplings to the scalar torsion and a boundary term is considered. A conformal coupling to matter density is also taken into account. It is shown that the model can describe onset of cosmic acceleration after an epoch of matter dominated era, where dark energy is negligible, via Z {sub 2} symmetry breaking. While the conformal coupling holds the Universe in a state with zero dark energy density in the early epoch, the non-minimal couplings lead the Universe to a stable state with de Sitter expansion at late time.
Comparison of dark energy models after Planck 2015
NASA Astrophysics Data System (ADS)
Xu, Yue-Yao; Zhang, Xin
2016-11-01
We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant w model, and the α dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear-Polarski-Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali-Gabadadze-Porrati model, and the Ricci dark energy model are excluded by the current observations.
Using dark current data to estimate AVIRIS noise covariance and improve spectral analyses
NASA Technical Reports Server (NTRS)
Boardman, Joseph W.
1995-01-01
Starting in 1994, all AVIRIS data distributions include a new product useful for quantification and modeling of the noise in the reported radiance data. The 'postcal' file contains approximately 100 lines of dark current data collected at the end of each data acquisition run. In essence this is a regular spectral-image cube, with 614 samples, 100 lines and 224 channels, collected with a closed shutter. Since there is no incident radiance signal, the recorded DN measure only the DC signal level and the noise in the system. Similar dark current measurements, made at the end of each line are used, with a 100 line moving average, to remove the DC signal offset. Therefore, the pixel-by-pixel fluctuations about the mean of this dark current image provide an excellent model for the additive noise that is present in AVIRIS reported radiance data. The 61,400 dark current spectra can be used to calculate the noise levels in each channel and the noise covariance matrix. Both of these noise parameters should be used to improve spectral processing techniques. Some processing techniques, such as spectral curve fitting, will benefit from a robust estimate of the channel-dependent noise levels. Other techniques, such as automated unmixing and classification, will be improved by the stable and scene-independence noise covariance estimate. Future imaging spectrometry systems should have a similar ability to record dark current data, permitting this noise characterization and modeling.
NASA Technical Reports Server (NTRS)
Meyers, D. G.; Farmer, J. M.
1982-01-01
Gravity receptors of Dephnia magna were discovered on the basal segment of the swimming antennae and were shown to respond to upward water currents that pass the animal as it sinks between swimming strokes. Sensitivity of the gravity perceiving mechanism was tested by subjecting daphnids to a series of five decreasingly dense aqueous solutions (neutral density to water) in darkness (to avoid visual cues). Three-dimensional, video analysis of body position (pitch, yaw and roll) and swimming path (hop and sink, vertical and horizontal patterns) revealed a gradual threshold that occurred near a density difference between the animal and its environment of less than 0.25%. Because daphnids do not sink but continue to slide after stroking in the increased density solutions, gravity perception appears to occur during a vertical swing of the longitudinal body axis to the vertical plane, about their center of gravity, and, thereby, implies a multidirectional sensitivity for the antennal-socket setae.
NASA Astrophysics Data System (ADS)
Cautun, Marius; van de Weygaert, Rien; Jones, Bernard J. T.; Frenk, Carlos S.; Hellwing, Wojciech A.
2015-01-01
One of the important unknowns of current cosmology concerns the effects of the large scale distribution of matter on the formation and evolution of dark matter haloes and galaxies. One main difficulty in answering this question lies in the absence of a robust and natural way of identifying the large scale environments and their characteristics. This work summarizes the NEXUS+ formalism which extends and improves our multiscale scale-space MMF method. The new algorithm is very successful in tracing the Cosmic Web components, mainly due to its novel filtering of the density in logarithmic space. The method, due to its multiscale and hierarchical character, has the advantage of detecting all the cosmic structures, either prominent or tenuous, without preference for a certain size or shape. The resulting filamentary and wall networks can easily be characterized by their direction, thickness, mass density and density profile. These additional environmental properties allows to us to investigate not only the effect of environment on haloes, but also how it correlates with the environment characteristics.